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Summary

Hierarchical random coefficient regression models are popular in many fields of statistical
application, for example in pharmacokinetics. In these models the observational units are
assumed to come from the same population and differ from each other by individual ran-
dom parameters with an unknown population mean. The aim of this thesis is to develop
an analytical approach for determining designs, which are optimal for the prediction of
linear aspects in hierarchical random coefficient regression models.

After the first introductory chapter the main concepts of optimal design for classical
linear regression models and Bayesian models (random coefficient regression with a given
population parameter) are presented in the second chapter.

The third chapter provides some analytical results for the estimation and prediction
of linear aspects in linear mixed models. This theory is used in Chapter 4 for determining
best linear unbiased predictions of linear aspects, in particular individual parameters
and individual deviations from the population mean, in hierarchical random coefficient
regression models.

In Chapter 5 design criteria - linear criteria and a generalized version of the deter-
minant criterion - in the models under investigation are introduced. For prediction of
the individual deviations Bayesian optimal designs retain their optimality. In the case
of prediction of the individual parameters the design criteria result in compound criteria
with weights depending on the number of experimental units.

A more general case of the random coefficient regression models (multi-group models)
is considered in Chapter 6. In these models the statistical analysis can be performed in
each group separately if the group sizes are fixed.

The thesis is concluded by a discussion and an outlook on further open problems.
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Zusammenfassung

Hierarchische Regressionsmodelle mit zufälligen Parametern sind populär in vielen statis-
tischen Anwendungsbereichen, beispielsweise in Pharmakokinetik. In diesen Modellen
wird angenommen, dass die Beobachtungseinheiten aus derselben Population kommen
und sich voneinander durch individuelle zufällige Parameter mit einem unbekannten Po-
pulationsmittelwert unterscheiden. Das Ziel dieser Arbeit ist die Entwicklung eines an-
alytischen Ansatzes zur Ermittlung von Designs, die optimal für die Vorhersage linearer
Aspekte in hierarchischen Regressionsmodellen mit zufälligen Parametern sind.

Nach dem ersten einleitenden Kapitel werden im Kapitel 2 die grundliegenden Konzepte
der optimalen Designs in klassischen linearen Regressionsmodellen sowie Bayesschen Mod-
ellen (Regressionsmodelle mit zufälligen Parametern mit einem bekannten Populations-
mittelwert) präsentiert.

Das dritte Kapitel liefert analytische Ergebnisse für die Schätzung und Vorhersage
linearer Aspekte in linearen gemischten Modellen. Anhand dieser Theorie werden im
vierten Kapitel beste lineare unverfälschte Vorhersagen für lineare Aspekte, insbesondere
für individuelle Parameter und individuelle Abweichungen vom Populationsparameter, in
hierarchischen Regressionsmodellen ermittelt.

Im fünften Kapitel werden Designkriterien - lineare Kriterien sowie eine verallgemei-
nerte Version vom Determinantenkriterium - in den untersuchten Modellen eingeführt.
Für die Vorhersage individueller Abweichungen sind Bayessche optimale Designs weiterhin
optimal. Im Fall der Vorhersage individueller Parametern resultieren die Designkriterien
in zusammengesetzten Kriterien, deren Gewichte von der Anzahl der Beobachtungsein-
heiten abhängig sind.

Im sechsten Kapitel wird eine allgemeinere Klasse von Regressionsmodellen mit zufäl-
ligen Parametern (Mehrgruppenmodelle) betrachtet. In diesen Modellen erfolgt die statis-
tische Analyse separat in jeder Gruppe, wenn die Gruppengrößen fixiert sind.

Die Arbeit wird mit einer Diskussion und einem Ausblick auf weitere offene Probleme
abgeschlossen.
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1 Introduction

Hierarchical random coefficient regression models, which allow for variations between indi-
viduals, are popular in many fields of statistical application. In these models observational
units are assumed to come from the same population and differ from each other by in-
dividual random parameters with an unknown population mean. Originally, hierarchical
random coefficient regression was introduced in biosciences and applied for selection pur-
poses, in particular, in plant and animal breeding (see e.g. Henderson (1984)). More
recently, this concept appears in sociological and psychological research and is often used
in statistical methodology, for instance, for small area estimation (see e.g. Rao (2003)).
Some real data examples can be found in Pinheiro and Bates (2000) and Molenberghs
and Verbeke (2001).

The problem of estimation of the population parameters (population mean) has been
well discussed in the literature (see e.g. Rao (1965), Spjotvoll (1977), Isotalo et al.
(2011)). If the population mean is assumed to be known, the Bayesian approach (see
e.g. Pukelsheim (1993)) is commonly used for the estimation (prediction) of the individ-
ual parameters. For the situation, where the population parameters are unknown, under
the assumption of normal distribution with a non-singular covariance matrix of random
effects the Maximum-Likelihood estimator can be directly derived (see e.g. Fedorov and
Jones (2005)). In the general case Henderson’s approach (see Henderson (1975)) based on
moment assumptions only is the common solution (see e.g. Christensen (2002)). The pre-
diction of the individual parameters was also considered by Fedorov and Leonov (2013).
Some related findings can be found in Haslett et al. (2014). In this thesis we avoid distri-
butional assumptions and allow for a singular covariance matrix of random parameters.

Optimal designs for the estimation of population mean parameters in hierarchical
random coefficient regression models have been considered in detail in many scientific
works (see e.g. Fedorov and Hackl (1997), Liski et al. (2002), Entholzner et al. (2005) or
Schmelter (2007)). Gladitz and Pilz (1982) have investigated the models with a known
population mean (Bayesian models) and have established that Bayesian optimal designs
are optimal for the prediction of the individual parameters. Some results for the prediction
of the individual deviations from the population mean in the models with unknown pop-
ulation parameters are briefly presented by Prus and Schwabe (2013). Prus and Schwabe

1



(2016) (see also Prus and Schwabe (2011)) propose an analytical approach for determin-
ing optimal designs for the prediction of the individual parameters. Candel (2009) has
considered this problem in the particular case of polynomial growth curves.

In this work we focus on the models with unknown population mean and search for
optimal designs for the prediction of various linear aspects. We consider linear design
criteria, in particular the commonly used integrated mean squared error criterion, and
introduce a generalized version of the determinant criterion, which can also be used when
the dispersion matrix of random effects is singular. For the prediction of the individual
deviations Bayesian optimal designs retain their optimality. The prediction of the in-
dividual parameters leads for the criteria mentioned above to a compound criterion as
considered by Cook and Wong (1994) (see also Läuter (1974), Atkinson et al. (2007),
ch. 10, 21): a weighted sum of the corresponding criterion in the fixed effects model and
the Bayesian criterion.

The present thesis has the following structure: The main concepts of optimal design
for classical linear regression models and Bayesian models are introduced in the second
chapter. The third chapter provides some analytical results for the estimation and pre-
diction of linear aspects in linear mixed models. This theory is used in Chapter 4 for
determining best linear unbiased predictions of linear aspects, in particular individual
parameters and individual deviations, in hierarchical random coefficient regression mod-
els. In Chapter 5 design criteria in the models under investigation are proposed and an
analytical approach for determining optimal designs is given. Moreover some tools for
construction of optimal designs by in- or equivariance are provided. Theoretical results
are illustrated by simple examples. In Chapter 6 the theory developed in the previous
chapters is applied to multi-group models. In these models the statistical analysis can be
performed in each group separately if the group sizes are fixed. The thesis is concluded
by a discussion and an outlook on further research.
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2 Optimal Designs in Classical Linear Regression and

Bayesian Models

This chapter provides the basic concepts of optimal experimental designs in classical lin-
ear regression and Bayesian models. The problem of optimal designs in classical linear
regression (or fixed effects) models is well discussed in the literature. The books by Fe-
dorov (1972), Silvey (1980), Pazman (1986) and Atkinson and Donev (1992) build a good
introduction. Optimal designs in the general case of Bayesian models has been consid-
ered by Pukelsheim (1993). Gladitz and Pilz (1982) propose solutions for the particular
case of random coefficient regression with a known population parameter (see also Fe-
dorov and Hackl (1997)). The results presented in this chapter come form the mentioned
publications.

2.1 Model Specification and Estimation

In this section the fixed effects linear regression and Bayesian models are described and
the best linear unbiased estimators in these models are introduced.

2.1.1 Fixed Effects Models

In fixed effects linear regression models the j-th observation is given by the formula

Yj = f(xj)
>β + εj, j = 1, ..,m, xj ∈ X , (2.1)

where m is the number of observations, Yj denotes the j-th observation, f = (f1, .., fp)
> :

X → Rp is a vector of known regression functions and β = (β1, .., βp)
> is a vector

of unknown fixed parameters. The experimental settings xj may be chosen from the
experimental region X for which the image f(X ) ⊂ Rp is assumed to be a compact
set. The observational errors εj are uncorrelated, have zero mean and common variance
σ2 > 0 .

In the vector notation the model (2.1) has the form

Y = Fβ + ε, (2.2)
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where Y = (Y1, ..., Ym)> is the vector of observations, F = (f(x1), ..., f(xm))> is called
design matrix and ε = (ε1, ..., εm)> denotes the vector of observational errors.

Now we consider properties of linear aspects, i.e. aspects of the form Ψ = Kβ for a
specified τ × p matrix K , of the parameter β as well as of their estimators.

Definition 1. An estimator Ψ̂ of a linear aspect Ψ is called linear if Ψ̂ = U Y for a
specified τ ×m matrix U.

Definition 2. An estimator Ψ̂ of a linear aspect Ψ is called unbiased if E(Ψ̂) = Ψ for
all β.

Definition 3. A linear aspect Ψ is called (linear) estimable if there exists a linear unbi-
ased estimator Ψ̂ of Ψ .

Now we search for the best estimator Ψ̂ of an estimable linear aspect Ψ in the class
of linear unbiased estimators.

Definition 4. A linear unbiased estimator Ψ̂ of an estimable linear aspect Ψ is called
the best linear unbiased estimator for Ψ if for any linear unbiased estimator Ψ̃ of Ψ

the matrix
Cov

(
Ψ̃
)
− Cov

(
Ψ̂
)

(2.3)

is non-negative definite.

Note that the best linear unbiased estimator Ψ̂ introduced in Definition 4 is unique.

Definition 5. A generalized inverse of an m × n matrix A is any n ×m matrix A−

such that
AA−A = A. (2.4)

The latter definition may be found for example in Harville (1997), ch. 9.
Due to the Gauss-Markov Theorem (see e.g. Christensen (2002), ch. 2) the best linear

unbiased estimator of an estimable aspect Ψ = Kβ is given by

Ψ̂ = K(F>F)−F>Y, (2.5)

where (F>F)− is a generalized inverse of F>F . The estimator (2.5) has covarince matrix

Cov(Ψ̂) = σ2K(F>F)−K>. (2.6)
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If the design matrix F has full column rank, the vector of unknown parameters β is
estimable with the best linear unbiased estimator

β̂ = (F>F)−1F>Y. (2.7)

The covariance matrix of the estimator (2.7) is given by

Cov(β̂) = σ2(F>F)−1. (2.8)

2.1.2 Bayesian Models

Now we consider the Bayesian linear models with moment assumptions (see e.g. Pukelsheim
(1993), ch. 11). We investigate the particular case of a constant variance of observational
errors.

Bayesian linear models with moment assumptions have the general form (2.1):

Yj = f(xj)
>θ + εj, j = 1, ..,m, xj ∈ X . (2.9)

However, in (2.9) the unknown parameter θ is a random vector with known expectation
E(θ) = θ0 and covariance matrix Cov(θ) = σ2D . The dispersion matrix D is known
and assumed to be non-singular. The regression functions f and the observational errors
εj have the same properties as in the fixed effects model (2.1).

In the vector notation the model equation (2.9) results in

Y = Fθ + ε (2.10)

with F and ε as defined in Section 2.1.1.
Now we consider candidate estimators of a linear aspect Ψ = Kθ for a specified τ×p

matrix K .

Definition 6. An estimator Ψ̂ of a linear aspect Ψ is called unbiased if E(Ψ̂) = E(Ψ) .

As we will see later there exists in the model (2.9) an unbiased estimator for every
linear aspect Ψ = Kθ .

Definition 7. An estimator Ψ̂ of a linear aspect Ψ is called affine linear if Ψ̂ = A Y+b

for a specified τ ×m matrix A and a specified τ -dimensional vector b .
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Definition 8. An affine linear estimator Ψ̂ of a linear aspect Ψ is called a Bayes
estimator of Ψ if for any affine linear estimator Ψ̃ of Ψ the matrix

E
(

(Ψ̃−Ψ)(Ψ̃−Ψ)>
)
− E

(
(Ψ̂−Ψ)(Ψ̂−Ψ)>

)
(2.11)

is non-negative definite, i.e Ψ̂ has minimum mean squared error matrix in the non-
negative definite sense.

According to Pukelsheim (1993), ch. 11 the unique Bayes estimator of a linear aspect
Ψ = Kθ is given by

Ψ̂ = K (F>F + D−1)−1(F>Y + D−1θ0). (2.12)

The Bayes estimator (2.12) is unbiased since E(Ψ̂) = Kθ0 = E(Ψ) . The mean
squared error matrix of (2.12) is given by

Cov(Ψ̂−Ψ) = σ2 K (F>F + D−1)−1K>. (2.13)

In the particular case Ψ = θ the Bayes estimator simplifies to

θ̂ = (F>F + D−1)−1(F>Y + D−1θ0) (2.14)

and its mean squared error matrix equals

Cov(θ̂ − θ) = σ2(F>F + D−1)−1. (2.15)

2.2 Optimal Designs

In this section we want to characterize designs, i.e. collections of experimental settings
x1, ..., xm , which are optimal for the estimation of the unknown parameters β and θ

in the models (2.1) and (2.9) respectively. The performance of the estimation may be
measured by means of the covariance matrix (2.8) and the mean squared error matrix
(2.15), which depend on the choice of the not necessarily distinct experimental settings
x1, ..., xm . Let x1, ..., xk be the distinct settings and m1, ...,mk denote their numbers of
replications with

∑k
j=1mj = m . Then the general form of an (exact) design is given by

ξ =

(
x1 , ..., xk

m1 , ..., mk

)
. (2.16)
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Let ΞX be the set of all designs of the form (2.16) (exact designs) of size m .
Further we focus on the concept of approximate (continuous) designs in the sense of

Kiefer (1974). These designs have the general form (2.16); however, the restriction of
integer values for the replication numbers mj is dropped and only the conditions mj ≥ 0

and
∑k

j=1mj = m have to be satisfied. Let Ξ denote the set of all approximate designs
of size m . Then it is easy to see that ΞX ⊆ Ξ .

For any approximate design ξ the (standardized) information matrix in the model
(2.1) is defined by

M(ξ) =
1

m

k∑
j=1

mjf(xj)f(xj)
> (2.17)

(see e.g. Silvey (1980), ch. 3), which simplifies to the inverse of the covariance matrix
(2.8) of the best linear unbiased estimator β̂

M(ξ) =
1

m
F>F

in the case of an exact design, when we suppress the constant factor σ2

m
.

Further let
∆ = mD (2.18)

denote an appropriately adjusted version of the dispersion matrix D in the Bayesian
model (2.9). With this notation the Bayesian information matrix of an approximate
design is defined by

MSE (ξ) = (M(ξ) + ∆−1)−1 (2.19)

and coincides with (2.15) divided by the factor σ2

m
for an exact design. Note that the

mean squared error matrix (2.19) is defined for any information matrix M(ξ) , i.e. for
any design matrix F .

2.2.1 D-Optimal Designs

The D-criterion for the estimation of the unknown parameter vector β in the classical
linear regression model (2.1) is defined as the logarithm of the determinant of the inverse
information matrix:

Dβ(ξ) = ln det M(ξ)−1, (2.20)
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where the information matrix M(ξ) is assumed to be non-singular.
For the estimation of the unknown parameter θ in the Bayesian model (2.9) the

Bayesian D-criterion is analogously defined as the logarithm of the determinant of the
mean squared error matrix of the Bayes estimator θ̂ :

Dθ(ξ) = ln det MSE(ξ), (2.21)

which results in the explicit form

Dθ(ξ) = ln det(M(ξ) + ∆−1)−1. (2.22)

Note that the Bayesian D-criterion (2.22) is defined for every information matrix M(ξ)

because the dispersion matrix D has been assumed to be non-singular.
Then using the general equivalence theorem (see e.g. Silvey (1980), ch. 3) for ap-

proximate designs optimality conditions for the D-criterion in the fixed effects and the
Bayesian models can be formulated.

Theorem 1. The approximate design ξ∗ ∈ Ξ is D-optimal for the estimation in the fixed
effects model if and only if

f(x)>M(ξ∗)−1f(x) ≤ p (2.23)

for all x ∈ X . Moreover, for any support point x∗j of ξ∗ with positive weight (m∗j > 0)

equality holds in (2.23).

The above result is also known as the Kiefer-Wolfowitz equivalence theorem (see Kiefer
and Wolfowitz (1960)).

Theorem 2. The approximate design ξ∗ ∈ Ξ is D-optimal for the estimation in the
Bayesian model if and only if

f(x)>(M(ξ∗) + ∆−1)−1f(x) ≤ tr ((M(ξ∗) + ∆−1)−1M(ξ∗)) (2.24)

for all x ∈ X . Moreover, for any support point x∗j of ξ∗ with positive weight (m∗j > 0)

equality holds in (2.24).

The result of Theorem 2 can be found in Gladitz and Pilz (1982) or Fedorov and Hackl
(1997), ch. 5.
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2.2.2 L-Optimal Designs

The classical linear criterion (L-criterion) in the fixed effects model (2.1) is defined for
exact designs as the trace of the covariance matrix of the linear combination Kβ̂ for a
specified fixed τ × p matrix K :

Lβ(ξ) = tr
(

Cov(Kβ̂)
)
. (2.25)

In the Bayesian model (2.9) the L-criterion is similarly defined as the trace of the
mean squared error matrix of the linear combination Kθ̂ :

Lθ(ξ) = tr
(

Cov
(
Kθ̂ −Kθ

))
. (2.26)

For an approximate design ξ the linear criteria (2.25) and (2.26) can be generalized
for A = K>K to

Lβ(ξ) = tr (M(ξ)−1A) (2.27)

and
Lθ(ξ) = tr (MSE(ξ)A) = tr ((M(ξ) + ∆−1)−1A) (2.28)

respectively if we suppress the constant factor σ2

m
.

Due to the general equivalence theorem the following optimality condition for approx-
imate designs in the fixed effects models can be formulated.

Theorem 3. The approximate design ξ∗ ∈ Ξ is L-optimal with respect to A for the
estimation in the fixed effects model if and only if

f(x)>M(ξ∗)−1AM(ξ∗)−1f(x) ≤ tr (M(ξ∗)−1A) (2.29)

for all x ∈ X . Moreover, for any support point x∗j of ξ∗ with positive weight (m∗j > 0)

equality holds in (2.29).

The optimality condition for the Bayesian model is given by the next theorem (see
e.g. Gladitz and Pilz (1982)) .

Theorem 4. The approximate design ξ∗ ∈ Ξ is L-optimal with respect to A for the
estimation in the Bayesian model if and only if

f(x)>M(ξ∗)−1(M(ξ∗)−1 + ∆)−1∆A∆(M(ξ∗)−1 + ∆)−1M(ξ∗)−1f(x) (2.30)

≤ tr (∆(M(ξ∗)−1 + ∆)−1M(ξ∗)−1(M(ξ∗)−1 + ∆)−1∆A)
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for all x ∈ X . Moreover, for any support point x∗j of ξ∗ with positive weight (m∗j > 0)

equality holds in (2.30).

The problem of computation of D- and L-optimal designs in the Bayesian model was
considered in detail by Gladitz and Pilz (1982).

A commonly used particular case of the linear criterion is the integrated mean squared
error (IMSE) criterion. For exact designs this criterion is defined as the integrated squared
difference between the estimated and the real mean response:

IMSEβ(ξ) =

∫
X

Cov
(
f(x)>β̂

)
ν(dx) (2.31)

and
IMSEθ(ξ) =

∫
X

Cov
(
f(x)>θ̂ − f(x)>θ

)
ν(dx) (2.32)

for the fixed effects and the Bayesian models respectively, where ν denotes some weight
distribution on the design region X . For approximate designs the criterion functions
(2.31) and (2.32) can be generalized and equivalently presented as

IMSEβ(ξ) = tr (M(ξ)−1 V) (2.33)

and
IMSEθ(ξ) = tr (MSE(ξ)V) = tr ((M(ξ) + ∆−1)−1 V), (2.34)

where V =
∫
X f(x)f(x)>ν(dx) (see e.g. Liski et al. (2002), ch. 3, Fedorov and Leonov

(2013), ch. 2).
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3 Estimation and Prediction in Linear Mixed Models

In this chapter we present best linear unbiased estimation and prediction of linear aspects
in linear mixed models. For the particular case of a full column rank fixed effects design
matrix this problem was basically considered by Henderson et al. (1959), Henderson (1963)
and Henderson (1975). Some results are also proved in Christensen (2002) (see also Isotalo
et al. (2011)).

The general form of a linear mixed model is given by the following formula:

Y = Xβ + Zγ + ε, (3.1)

where X and Z are known non-zero matrices, β is an unknown vector of fixed effects,
and γ is a vector of random effects. The random effects and the observational errors
ε have zero mean and are uncorrelated. G and R are the corresponding non-singular
covariance matrices: G = Cov (γ) and R = Cov (ε). We call the matrices X and Z

fixed and random effects design matrices.
Further we consider linear aspects Ψ of

(
β>, γ>

)> of the form Ψ = Kβ+Lγ. Since
Ψ includes the random term Lγ , we will generally speak about prediction and predictable
aspects (instead of estimation and estimable aspects) in this chapter. This notation is
often used in the literature to distinguish between the fixed and the random case (see
e.g. Christensen (2002), ch. 12). Only for special linear aspects of the form Ψ = Kβ ,
which are independent of the random effects, we will use the concepts “estimation” and
“estimable” as in Section 2.1.1.

Definition 9. A predictor Ψ̂ of a linear aspect Ψ is called linear if Ψ̂ = U Y for some
matrix U.

Definition 10. A predictor Ψ̂ of a linear aspect Ψ is called unbiased if E(Ψ̂) = E(Ψ)

for all values of the population parameter β.

Definition 11. A linear aspect Ψ is called (linear) predictable if there exists a linear
unbiased predictor Ψ̂ of Ψ .

Further we search for the best predictor Ψ̂ of a predictable linear aspect Ψ in the
class of linear unbiased predictors.
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Definition 12. A linear unbiased predictor Ψ̂ of a predictable linear aspect Ψ is called
the best linear unbiased predictor for Ψ if for any linear unbiased predictor Ψ̃ of Ψ the
matrix

Cov
(
Ψ̃−Ψ

)
− Cov

(
Ψ̂−Ψ

)
(3.2)

is non-negative definite (Ψ̂ has minimum mean squared error matrix in the non-negative
definite sense).

Theorem 5. A linear aspect Ψ = Kβ+ Lγ is predictable if and only if some matrix U

exists with U X = K .

Proof. Since E(Y) = Xβ and E(Ψ̂) = Kβ , we obtain

Ψ = Kβ + Lγ predictable ⇔ ∃ Ψ̂ = U Y : E(Ψ̂) = E (Ψ)

⇔ ∃U : U Xβ = Kβ, ∀β

⇔ ∃U : U X = K.

Corollary 1. If the fixed effects design matrix X has full column rank, all linear aspects
of the form Ψ = Kβ + Lγ are predictable.

The last result follows directly from Theorem 5 since for X of full column rank the
matrix X>X is non-singular and U = K (X>X)−1X> satisfies UX = K .

3.1 Prediction in the Case of a Full Column Rank Fixed Effects

Design Matrix

In this part the fixed effects design matrix X is assumed to have full column rank. Then
according to Corollary 1 all linear aspects of the form Ψ = Kβ + Lγ are predictable.
The fixed effects β may be estimated using Gauss-Markov theory: Since E (Y) = Xβ

and Cov (Y) = ZGZ> + R , we get the best linear unbiased estimator

β̂ =
(
X>(ZGZ> + R)−1X

)−1
X>(ZGZ> + R)−1Y. (3.3)

Note that the estimator (3.3) is unique.
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For the prediction of the random effects γ Henderson’s mixed model equation(
X>R−1X X>R−1Z

Z>R−1X Z>R−1Z + G−1

)(
β̂

γ̂

)
=

(
X>R−1Y

Z>R−1Y

)
(3.4)

(see e.g. Henderson (1963)) may be used. Note that the matrix(
X>R−1X X>R−1Z

Z>R−1X Z>R−1Z + G−1

)
(3.5)

is non-singular since the fixed effects design matrix X is of full column rank. Then the
equation (3.4) may be rewritten as(

β̂

γ̂

)
= C

(
X>R−1Y

Z>R−1Y

)
(3.6)

for

C =

(
X>R−1X X>R−1Z

Z>R−1X Z>R−1Z + G−1

)−1

(3.7)

and

C =

(
C11 C12

C>12 C22

)
(3.8)

can be partitioned accordingly, where C11 and C22 have the same dimensions as X>R−1X

and Z>R−1Z + G−1 respectively. By a standard inversion formula for partitioned ma-
trices (see e.g. Harville (1997), ch. 8, p. 99), the components C11, C22 and C12 can be
determined as

C11 =
(
X>

(
ZGZ> + R

)−1
X
)−1

, (3.9)

C22 =
(
Z>R−1Z + G−1 − Z>R−1X(X>R−1X)−1X>R−1Z

)−1 (3.10)

and

C12 = −C11 X>R−1Z
(
Z>R−1Z + G−1

)−1

= −(X>R−1X)−1X>R−1Z C22. (3.11)

Henderson et al. (1959) and Henderson (1963) have shown that (3.3) and

γ̂ = GZ>(ZGZ> + R)−1(Y −Xβ̂) (3.12)
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solve (3.4). According to Henderson (1975) (3.7) is the mean squared error matrix of(
β̂
>
, γ̂>

)>
:

C = Cov

(
β̂

γ̂ − γ

)
(3.13)

with C11 = Cov(β̂) and C22 = Cov (γ̂ − γ) .
The next theorem gives the best predictor of a predictable linear aspect Ψ = Kβ+Lγ

of the fixed and random parameters in the model (3.1).

Theorem 6. The best linear unbiased predictor for a linear aspect Ψ = Kβ + Lγ is
Ψ̂ = Kβ̂ + Lγ̂.

The result of Theorem 6 is presented in Henderson (1963) (see also Christensen (2002),
ch. 12).

Corollary 2. The best linear unbiased estimator of the fixed effects β is β̂ and γ̂ is
the best linear unbiased predictor of the random effects γ.

The next lemma gives an explicit form of the mean squared error matrix of the best
linear unbiased predictor Ψ̂ represented in Theorem 6.

Lemma 1. The mean squared error matrix of the best linear unbiased predictor Ψ̂ =

Kβ̂ + Lγ̂ of a linear aspect Ψ = Kβ + Lγ is given by

Cov(Ψ̂−Ψ) = K C11 K> + K C12 L> + L C>12 K> + L C22 L>. (3.14)

Proof. The result (3.14) follows from the linearity of the predictor Ψ̂ = (K, L) (β̂
>
, γ̂>)>

and formula (3.13).

3.2 Prediction in the Case of a General Fixed Effects Design Ma-

trix

In this section we consider the model (3.1) with some general (not necessarily full column
rank) fixed effects design matrix X . Since the matrix C from the equation (3.7) will not
exist in this case, we define for any generalized inverse (X>R−1X)− of X>R−1X the
matrices C′22 , C′11 and C′12 by

C′22 =
(
Z>R−1Z + G−1 − Z>R−1X(X>R−1X)−X>R−1Z

)−1
, (3.15)
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C′11 = (X>R−1X)− + (X>R−1X)−X>R−1Z C′22 Z>R−1X(X>R−1X)− (3.16)

and

C′12 = −(X>R−1X)−X>R−1Z C′22. (3.17)

The matrices C′11 and C′12 can be represented in the following equivalent forms:

C′11 =
(
X>R−1X−X>R−1Z

(
Z>R−1Z + G−1

)−1
Z>R−1X

)−
=

(
X>

(
ZGZ> + R

)−1
X
)−

(3.18)

and

C′12 = −C′11 X>R−1Z
(
Z>R−1Z + G−1

)−1
. (3.19)

Since for every non-singular covariance matrix R there exists a non-singular symmet-
ric matrix R1 with R>1 R1 = R , the matrix R−1

1 X(X>R−1X)−X>R−1
1 is unique and

idempotent as the projection matrix of R−1
1 X . Then also I−R−1

1 X(X>R−1X)−X>R−1
1 ,

where I denotes the identity matrix, is idempotent and nonnegative definite. The repre-
sentation

C′22 =
(
G−1 + Z>R−1

1

(
I−R−1

1 X(X>R−1X)−X>R−1
1

)
R−1

1 Z
)−1

establishes the uniqueness and positive definiteness of C′22 . The matrices C′11 and C′12

depend on the particular generalized inverse and are in general not unique.
By the standard formula for generalized inverses of a partitioned matrix (see e.g

Harville (1997), ch. 9, p. 121) the matrix

C′ =

(
C′11 C′12

C′>12 C′22

)
(3.20)

is a generalized inverse of (
X>R−1X X>R−1Z

Z>R−1X Z>R−1Z + G−1

)
.

Further we consider instead of (3.6) the following candidate estimations and predic-
tions of the fixed and random effects(

β̂

γ̂

)
= C′

(
X>R−1Y

Z>R−1Y

)
, (3.21)

which generally depend on the choice of C′ .
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Lemma 2. Solutions of the equation (3.21) are given by

β̂ =
(
X>

(
ZGZ> + R

)−1
X
)−

X>
(
ZGZ> + R

)−1
Y, (3.22)

γ̂ =
(
Z>R−1Z + G−1 − Z>R−1X(X>R−1X)−X>R−1Z

)−1

·
(
Z>R−1 − Z>R−1X(X>R−1X)−X>R−1

)
Y. (3.23)

Proof. From (3.21) it follows that

β̂ = C′11 X>R−1Y + C′12 Z>R−1Y (3.24)

and
γ̂ = C′

>
12 X>R−1Y + C′22 Z>R−1Y. (3.25)

Then using (3.19) it is easy to see that

β̂ = C′11 X>
(
R−1 −R−1Z

(
Z>R−1Z + G−1

)−1
Z>R−1

)
Y

= C′11 X>
(
ZGZ> + R

)−1
Y.

Applying (3.18) results in

β̂ =
(
X>

(
ZGZ> + R

)−1
X
)−

X>
(
ZGZ> + R

)−1
Y.

From (3.25) and (3.17) it follows that

γ̂ = C′22 (Z>R−1 − Z>R−1X(X>R−1X)−X>R−1)Y.

After inserting (3.15) in the last equation we obtain (3.23).

Note that the prediction γ̂ of the random effects is the same for all generalized inverses
(X>R−1X)− . While the estimator β̂ of the fixed effects is not unique, it follows from
properties of projection matrices and formula (3.22) that Xβ̂ is independent of the choice
of (X>R−1X)− .

Lemma 3. The mean squared error matrix of
(

(X β̂)>, γ̂>
)>

is given by

Cov

(
X β̂

γ̂ − γ

)
=

(
X C′11 X> X C′12

C′12
>X> C′22

)
. (3.26)
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Proof. For two random vectors x ∈ Rk and z ∈ Rl we define the covariance Cov (x, z)

of x and z as

Cov (x, z) = (cov (xr, zs))r,s , r = 1, ..., k, s = 1, ..., l. (3.27)

Then it is sufficient to establish that

Cov
(
X β̂

)
= X C′11 X>, (3.28)

Cov (γ̂ − γ) = C′22 (3.29)

and
Cov

(
X β̂, γ̂ − γ

)
= XC′12. (3.30)

To verify the equality (3.28) we use the notation

V := ZGZ> + R = Cov(Y). (3.31)

Then
β̂ =

(
X>V−1X

)−
X>V−1Y (3.32)

and
Cov

(
X β̂

)
= X

(
X>V−1X

)−
X>V−1X

(
X>V−1X

)−
X>.

Using properties of projection matrices we get X(X>V−1X)−X>V−1X = X and conse-
quently

Cov
(
X β̂

)
= X(X>V−1X)−X>, (3.33)

which results in (3.28) according to (3.18).
To establish the statement (3.29) we use the notation

A := Z>R−1 − Z>R−1X(X>R−1X)−X>R−1. (3.34)

Then according to (3.15) and (3.23) we get A Z = C′22
−1 −G−1 and

γ̂ =
(
AZ + G−1

)−1
AY = C′22AY. (3.35)

The mean squared error matrix of the prediction γ̂ of the random effects γ may be
represented in the form

Cov (γ̂ − γ) = Cov (γ̂)− Cov (γ̂, γ)− Cov (γ, γ̂) + Cov (γ) . (3.36)
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From (3.35) and (3.31) we obtain

Cov (γ̂) = C′22 A Z G Z>A>C′22 + C′22 A R A>C′22, (3.37)

where the first term on the right hand side may be rewritten as

C′22 A Z G Z>A>C′22 = C′22

(
C′22

−1 −G−1
)

G
(
C′22

−1 −G−1
)

C′22

= G− 2 C′22 + C′22 G−1C′22. (3.38)

Using (3.35) and
Cov (Y,γ) = Z G (3.39)

we get
Cov (γ̂,γ) = C′22 A Z G = G−C′22, (3.40)

which is symmetric and consequently results in

Cov (γ, γ̂) = G−C′22. (3.41)

Inserting Cov (γ) = G, (3.37), (3.40) and (3.41) in formula (3.36) implies

Cov (γ̂ − γ) = C′22

(
G−1 + A R A>

)
C′22. (3.42)

Using (3.34) it can be easily shown that

A R A> = Z>R−1
1

(
R−1

1 −R−1
1 X(X>R−1X)−X>R−1

)
R

·
(
R−1

1 −R−1X(X>R−1X)−X>R−1
1

)
R−1

1 Z

with the same R1 as in the proof of Lemma 2. Since the matrix R−1
1 X(X>R−1X)−X>R−1

1

is idempotent as a projection matrix, we obtain A R A> = A Z and consequently

G−1 + A R A> = C′22
−1
,

which implies the result (3.29) according to (3.42).
Now the result (3.30) will be established. From (3.19) and (3.18) it follows that

XC′12 = −X
(
X>V−1X

)−
X>R−1Z

(
Z>R−1Z + G−1

)−1
. (3.43)
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Using (3.32) and (3.35) we obtain

Cov
(
X β̂, γ̂ − γ

)
= X

(
X>V−1X

)−
X>V−1

(
Cov(Y)A>C′22 − Cov(Y,γ)

)
,

which results in

Cov
(
X β̂, γ̂ − γ

)
= X

(
X>V−1X

)− (
X>A>C′22 −X>V−1ZG

)
due to (3.31) and (3.39) and simplifies to

Cov
(
X β̂, γ̂ − γ

)
= −X

(
X>V−1X

)−
X>V−1ZG

since AX = 0 .
Using the standard formulas for an inverse of a sum of matrices (see e.g. Harville

(1997), ch 18., p. 424) it can be shown that(
ZGZ> + R

)−1
ZG = R−1Z

(
Z>R−1Z + G−1

)−1
,

which proves the result (3.30) according to (3.43).

Note that the mean squared error matrix (3.26) is unique since the matrices XC′11X
> ,

XC′12 and C′22 are independent of the choice of the generalized inverse
(
X>V−1X

)− .
Using E(β̂) = β , E(γ̂) = 0 , Definition 11 and Theorem 5 we can formulate the next

statement:

Remark 1. All linear aspects of the form Ψ = SXβ + Lγ for a specified matrix S are
predictable.

Theorem 7. The best linear unbiased predictor for a predictable aspect Ψ = Kβ + Lγ

is Ψ̂ = Kβ̂ + Lγ̂.

Proof. First, it will be shown that the predictor Ψ̂ is unbiased. According to Theorem 15
Ψ̂ may be rewritten in the form Ψ̂ = UXβ̂ + Lγ̂ . Then it follows from (3.22) and
E(Y) = Xβ that

E(Xβ̂) = X(X>V−1X)−X>V−1E(Y)

= X(X>V−1X)−X>V−1Xβ,
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which results in
E(Xβ̂) = Xβ

according to properties of projection matrices. Analogously we obtain from (3.23) that

E(γ̂) =
(
Z>R−1Z + G−1 − Z>R−1X(X>R−1X)−X>R−1Z

)−1

·
(
Z>R−1X− Z>R−1X(X>R−1X)−X>R−1X

)
β.

Since R−1X(X>R−1X)−X>R−1X = R−1X, the expected value of γ̂ is equal to zero,
which implies the unbiasedness of the prediction:

E(Ψ̂) = U Xβ = Kβ = E(Ψ).

Then according to Definition 11 it has to be established that Ψ̂ = Kβ̂ + Lγ̂ has
minimum mean squared error matrix in the class of linear unbiased predictors for Ψ =

Kβ + Lγ . First we prove this statement for one-dimensional aspects: ψ = k>β + l>γ ,
where k and l are specified vectors (K = k> and L = l>), and ψ̂ = k>β̂+ l>γ̂ . Now let
ψ̃ be some linear unbiased predictor of ψ , which means that ψ̃ = u>Y for some vector
u . Then it follows from Definition 10 and Theorem 5 that u>X = k> .

Further the following property has to be verified:

var
(
ψ̃ − ψ

)
− var

(
ψ̂ − ψ

)
≥ 0.

Using properties of the variance and the covariance it can be easily proved that

var
(
ψ̃ − ψ

)
− var

(
ψ̂ − ψ

)
= var

(
ψ̃ − ψ̂

)
+ 2 cov

(
ψ̃ − ψ̂, ψ̂ − ψ

)
. (3.44)

Then it is sufficient to show that

cov
(
ψ̃ − ψ̂, ψ̂ − ψ

)
= 0. (3.45)

For this we introduce the following matrices:

S′ =
(
X>V−1X

)−
X>V−1 (3.46)

and
T′ = GZ>V−1(I−XS′), (3.47)
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where
V = ZGZ> + R.

Then we obtain β̂ = S′Y and γ̂ = T′Y respectively. Since

X (I− S′X) = X−X
(
X>V−1X

)−
X>V−1X = 0, (3.48)

where 0 denotes a zero matrix, it is easy to see that T′X = 0 .
Since the prediction Ψ̂ can be represented as Ψ̂ = (k>S′ + l>T′)Y , we obtain the

following equation:

cov
(
ψ̃ − ψ̂, ψ̂ − ψ

)
= cov

((
u> − k>S′ − l>T′

)
Y,
(
k>S′ + l>T′

)
Y − l>γ

)
.

Then we get from Cov (Y) = V and Cov (Y,γ) = Z G the equation

cov
(
ψ̃ − ψ̂, ψ̂ − ψ

)
=
(
u> − k>S′ − l>T′

) (
V
(
k>S′ + l>T′

)> − Z Gl
)
. (3.49)

From (3.46) and (3.47) it follows that

V
(
k>S′ + l>T′

)> − Z Gl = VS′>k + VT′>l− Z Gl

= X
(
X>V−1X

)−
k + V

(
I− S′>X>

)
V−1Z Gl− Z Gl.

Applying (3.46) again results in

V
(
k>S′ + l>T′

)> − Z Gl = X
(
X>V−1X

)− (
k−X>V−1ZGl

)
. (3.50)

Using k> = u>X and T′X = 0 we obtain(
u> − k>S′ − l>T′

)
X = u>X (I− S′X) = 0

according to (3.48). Then the condition (3.45) follows from (3.50) and (3.49). Note that
if ψ̂ 6= ψ̃ , var

(
ψ̃ − ψ̂

)
> 0 . Then due to (3.44) var

(
ψ̃ − ψ

)
−var

(
ψ̂ − ψ

)
> 0 , which

shows that ψ̃ is not the best linear unbiased predictor of ψ . Consequently, the best
linear unbiased predictor ψ̂ is unique.

Now we come back to the general case, where K and L are specified matrices with
two or more rows. Let Ψ̃ = UY be some linear unbiased predictor of Ψ . Note that
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Ψ̃ is unbiased, which establishes UX = K . Then it has to be verified that the matrix
Cov

(
Ψ̃−Ψ

)
− Cov

(
Ψ̂−Ψ

)
is non-negative definite, i.e.

a>
(
Cov

(
Ψ̃−Ψ

)
− Cov

(
Ψ̂−Ψ

))
a ≥ 0

for every vector a. Note that

a>
(
Cov

(
Ψ̃−Ψ

)
− Cov

(
Ψ̂−Ψ

))
a = var

(
a>
(
Ψ̃−Ψ

))
− var

(
a>
(
Ψ̂−Ψ

))
.

Now we consider the aspect ψ = a>Ψ = a> (Kβ + Lγ) , for which ψ̂ = a>Ψ̂ =

a>
(
Kβ̂ + Lγ̂

)
and ψ̃ = a>Ψ̃ = a>UY . Note also that a>UX = a>K . Then we

obtain from the one-dimensional case with k> = a>K , l> = a>L and u> = a>U the
inequality

var
(
a>
(
Ψ̃−Ψ

))
− var

(
a>
(
Ψ̂−Ψ

))
= var

(
ψ̃ − ψ

)
− var

(
ψ̂ − ψ

)
≥ 0.

Note that according to Remark 1 the linear aspect Xβ of the fixed effects β and the
random effects γ are predictable.

Corollary 3. The best linear unbiased estimator of Xβ is Xβ̂ and γ̂ is the best linear
unbiased predictor of γ .

The last result is also presented in Christensen (2002).

Theorem 8. The mean squared error matrix of the best linear unbiased predictor Ψ̂ =

Kβ̂ + Lγ̂ of a predictable linear aspect Ψ = Kβ + Lγ is given by

Cov(Ψ̂−Ψ) = K C′11 K> + K C′12 L> + L C′
>
12 K> + L C′22 L>. (3.51)

Proof. Using the property K = UX of a predictable linear aspect Ψ = Kβ + Lγ we
obtain Ψ̂ = UXβ̂ + Lγ̂ and

Cov(Ψ̂−Ψ) = Cov
(
Kβ̂ + L(γ̂ − γ)

)
= Cov

(
UXβ̂ + L(γ̂ − γ)

)
= (U, L) Cov

(
X β̂

γ̂ − γ

)
(U, L)>. (3.52)
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Then it follows directly from the result (3.26) of Lemma 3 that

Cov

(
X β̂

γ̂ − γ

)
=

(
X 0

0 I

)
C′

(
X> 0

0 I

)
,

which implies

Cov(Ψ̂−Ψ) = (UX, L) C′ (UX, L)>

= (K, L) C′ (K, L)>

= K C′11 K> + K C′12 L> + L C′12
>

K> + L C′22 L>.

The result of Theorem 8 is also given in Henderson (1975) without proof.
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4 Estimation and Prediction in Hierarchical Random

Coefficient Regression Models

This chapter provides best linear unbiased estimators and predictors of linear aspects
in hierarchical random coefficient regression models. The problem of estimation of the
mean population parameters has been widely considered in the literature (see e.g. Rao
(1965), Spjotvoll (1977)). For the prediction of the individual parameters some results
are presented in Fedorov and Jones (2005), Fedorov and Hackl (1997), Candel (2009) and
Fedorov and Leonov (2013).

4.1 Hierarchical Random Coefficient Regression Models: Model

Formulation

In this chapter we consider hierarchical random coefficient regression models, for which
on the individual level the j-th observation of the i-th individual is given by the formula

Yij = f(xij)
>βi + εij, i = 1, .., n, j = 1, ..,mi, xij ∈ X , (4.1)

where n is the number of individuals, mi is the number of observations at individual
i , experimental settings xij come from the experimental region X . f = (f1, .., fp)

> :

X → Rp is a vector of known regression functions. The image f(X ) ⊂ Rp of the ex-
perimental region X is assumed to be a compact subset of Rp . Observational errors
εij are assumed to be uncorrelated, have zero mean and a common variance σ2 > 0 .
Individual parameters (individual random effects) βi = (βi1, .., βip)

> have unknown
(population) mean E(βi) = β = (β1, .., βp)

> ∈ Rp and (population) covariance ma-
trix Cov (βi) = σ2D ∈ Rp×p with a given (dispersion) matrix D . Individual parameters
for different individuals are uncorrelated with each other and with all observational errors.
The dispersion matrix D may be singular if, for example, some individual parameters
βi` are equal for all individuals (for all i = 1, ..., n ) and consequently fixed (since βi`
and βi′` are uncorrelated for i 6= i′ ).

Note that in contrast to the Bayesian model (2.9), considered in section 2.1.2, in the
random coefficient regression model (4.1) the expectation β of the (individual) random
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parameters βi is unknown, which leads to completely different results for optimal designs
as it will be shown in the next chapter.

Further a particular case of the model (4.1) will be considered, where the number of
observations as well as the experimental settings are the same for all individuals (mi = m,
xij = xj):

Yij = f(xj)
>βi + εij, i = 1, .., n, j = 1, ..,m, xj ∈ X . (4.2)

In vector notation this model may be represented as

Yi = Fβi + εi, (4.3)

where Yi = (Yi1, ..., Yim)> is the individual vector of observations at the i-th individual,
F = (f(x1), ..., f(xm))> is the individual design matrix, which is the same for all individuals
and coincides with the design matrix in the fixed effects model (2.2), εi = (εi1, ..., εim)>

denotes the corresponding vector of observational errors.
Now the random coefficient regression model (4.2) will be represented as a special

case of the linear mixed model (3.1). For this we introduce the centered random effects
(individual deviations) bi := βi − β, which separate the individual random effects from
the population mean. Then the model (4.2) can be rewritten as

Yij = f(xj)
>β + f(xj)

>bi + εij , (4.4)

which results in the vector notation

Yi = Fβ + Fbi + εi. (4.5)

Further we use the notation B = (β>1 , ...,β
>
n )> and b = (b>1 , ...,b

>
n )> for the vec-

tors of all individual parameters and all individual deviations and ε = (ε>1 , ..., ε
>
n )>

denotes the corresponding error vector. Then the complete observational vector Y =

(Y>1 , ...,Y
>
n )> for all individuals has the form

Y = (In ⊗ F)B + ε (4.6)

according to (4.3) or alternatively (according to (4.5))

Y = (1n ⊗ F)β + (In ⊗ F)b + ε, (4.7)
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where In is the n× n identity matrix, 1n = (1, .., 1)> is the vector of length n with all
components equal to 1 , “ ⊗ ” denotes the Kronecker product.

Note that the expected value and the covariance matrix of the full observational vector
Y are given by the following formulas:

E(Y) = (1n ⊗ F)β,

Cov(Y) = σ2In ⊗ (FDF> + Im).

The individual deviations b from formula (4.7) have zero mean and their covariance
matrix Cov (b) = σ2 In ⊗ D is only non-singular if the dispersion matrix D of the
individual deviations has full rank. Therefore, it is convenient to rewrite the model (4.7)
in some other form, where the dispersion matrix of random effects in non-singular. Let
q ≤ p be the rank of the matrix D . Then there exists a p × q matrix H with rank q

and D = HH> . (In this case the matrix H>H is non-singular). Now we introduce the
random variables

γi := (H>H)−1H>bi, (4.8)

which satisfy bi = Hγi and have zero expected value and the covariance matrix
Cov (γi) = σ2 Iq . The latter allows the following representations of the model:

Yi = Fβ + FHγi + εi (4.9)

on the individual level and

Y = (1n ⊗ F)β + (In ⊗ (FH))γ + ε (4.10)

on the population level for γ = (γ>1 , ..,γ
>
n )>.

Now it is easy to see that the model (4.10) satisfies all the conditions of the linear
mixed model (3.1) with E (γ) = 0 , G = Cov (γ) = σ2 Inq and R = Cov (ε) = σ2 Inm .
Consequently, for X = 1n ⊗ F and Z = In ⊗ (FH) (4.10) is of the form (3.1).

4.2 Predictable Linear Aspects in Hierarchical Random Coeffi-

cient Regression Models

In this section linear aspects of the form Ψ = Kβ + Tb will be investigated. Note that
the dispersion matrix D of random effects may be singular, and then the corresponding
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regression model (4.7) will not satisfy the conditions of the linear mixed model (3.1).
Therefore, we will also use the alternative form Ψ = Kβ + Lγ with L = T(In ⊗H) of
the linear aspect Ψ , which allows to apply the theory developed in the previous chapter.

Lemma 4. Let Ψ = Kβ + Tb be a linear aspect in the hierarchical random coefficient
regression model. Then it holds

a) Ψ is predictable if and only if some τ×mn matrix U exists with U (1n⊗F) = K ;

b) If K = 0, Ψ is predictable for all T;

c) If the fixed effects design matrix F has full column rank, Ψ is predictable for all
K and all T ;

d) If K = Ip , Ψ is predictable if and only if the fixed effects design matrix F has full
column rank.

Proof. a) The proof follows directly from Theorem 5 for X = 1n ⊗ F .

b) The proof follows directly from Remark 1 for b = (In ⊗H)γ .

c) For X = 1n ⊗ F the aspect Ψ is predictable according to Corollary 1.

d) If F has full column rank, Ψ is predictable according to part c).

If Ψ is predictable, then there exists some matrix U with U (1n ⊗ F) = Ip .
Consequently, the rank of U (1n⊗F) equals p , which is only possible if the design
matrix F has full column rank.

For further considerations of predictable linear aspects we will use the following prop-
erties of sums of matrices, which can be derived using the standard inversion formula (see
e.g. Harville (1997), ch. 18, p. 424):(

FDF> + Im
)−1

= Im − FH
(
H>F>FH + Iq

)−1
H>F> (4.11)

and (
H>F>FH + Iq

)−1
= Iq −H>F>

(
FDF> + Im

)−1
FH, (4.12)
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which implies

H
(
H>F>FH + Iq

)−1
H> = D−DF>

(
FDF> + Im

)−1
FD. (4.13)

For a non-singular dispersion matrix D , we obtain by the simplified version of the stan-
dard inversion formula of sums of matrices (see e.g. Harville (1997), ch. 18, p. 424)(

FDF> + Im
)−1

= Im − F
(
F>F + D−1

)−1
F>. (4.14)

Consequently, (4.13) simplifies to

H
(
H>F>FH + Iq

)−1
H> =

(
F>F + D−1

)−1
. (4.15)

If the information matrix F>F in the corresponding fixed effects model is non-singular,
i.e. the fixed effects design matrix F has full column rank, we obtain(

H>F>FH + Iq
)−1

= Iq −H>
((

F>F
)−1

+ D
)−1

H, (4.16)

which implies

H
(
H>F>FH + Iq

)−1
H> = D−D

((
F>F

)−1
+ D

)−1

D (4.17)

and results in
D−D

((
F>F

)−1
+ D

)−1

D =
(
F>F + D−1

)−1 (4.18)

if both matrices D and F>F are non-singular.

Theorem 9. The best linear unbiased predictor of a predictable linear aspect Ψ = Kβ +

Tb is given by Ψ̂ = Kβ̂ + Tb̂, where

β̂ =
(
F>
(
FDF> + Im

)−1
F
)−

F>
(
FDF> + Im

)−1
Ȳ (4.19)

for Ȳ = 1
n

∑n
i=1 Yi and

b̂ =

((
In −

1

n
1n1

>
n

)
⊗
(
DF>

(
FDF> + Im

)−1
))

Y. (4.20)
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Proof. From Theorem 7 and (3.22) it follows that

β̂ =

(
1

n
1>n ⊗

((
F>
(
FDF> + Im

)−1
F
)−

F>
(
FDF> + Im

)−1
))

Y

=
(
F>
(
FDF> + Im

)−1
F
)−

F>
(
FDF> + Im

)−1
Ȳ.

According to Theorem 7 and (3.23)

γ̂ =

((
In −

1

n
1n1

>
n

)
⊗
(
H>F>FH + Iq

)
+

1

n
1n1

>
n ⊗ Iq

)−1

·
((

In −
1

n
1n1

>
n

)
⊗
(
H>F>

))
Y.

Using properties of orthogonal idempotent matrices 1
n
1n1

>
n and In − 1

n
1n1

>
n it may be

easily verified that((
In −

1

n
1n1

>
n

)
⊗
(
H>F>FH + Iq

)
+

1

n
1n1

>
n ⊗ Iq

)−1

=(
In −

1

n
1n1

>
n

)
⊗
(
H>F>FH + Iq

)−1
+

1

n
1n1

>
n ⊗ Iq.

Then we obtain the following form of the prediction of the random effects γ :

γ̂ =

((
In −

1

n
1n1

>
n

)
⊗
((

H>F>FH + Iq
)−1

H>F>
))

Y.

From b̂ = (In ⊗H) γ̂ and the property (4.12) of inverses of sums of matrices it follows
that

b̂ =

((
In −

1

n
1n1

>
n

)
⊗
(
DF> −DF>

(
FDF> + Im

)−1
FDF>

))
Y

=

((
In −

1

n
1n1

>
n

)
⊗
(
DF>

(
FDF> + Im

)−1
))

Y.

Note that also if β̂ is not unique, the predictor Ψ̂ is independent of the choice of
the generalized inverse (F>F)−. The latter follows from Theorem 5, which results in the
condition K = U (1n ⊗ F) for predictable aspects in the hierarchical random coefficient
regression model.

Note also that β̂ and b̂ do not depend on the choice of the matrix H .
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Theorem 10. If the fixed effects design matrix F has full column rank, the population
parameter β is estimable and its best linear unbiased estimator is given by

β̂ = (F>F)−1F>Ȳ. (4.21)

Proof. The fixed effects β are estimable due to Lemma 4, part c). By the property (4.11)
of inverses of sums of matrices we get from (4.19) the equality

β̂ =
(
F>F− F>FH

(
H>F>FH + Iq

)−1
H>F>F

)−
·
(
F> − F>FH

(
H>F>FH + Iq

)−1
H>F>

)
Ȳ.

Then for non-singular F>F we obtain

F>F− F>FH
(
H>F>FH + Iq

)−1
H>F>F =

((
F>F

)−1
+ D

)−1

. (4.22)

Consequently, the matrix

Im − F>FH
(
H>F>FH + Iq

)−1
H>

=
(
F>F− F>FH

(
H>F>FH + Iq

)−1
H>F>F

) (
F>F

)−1

is non-singular. Then it follows that

β̂ =
(
F>F

)−1
(
Im − F>FH

(
H>F>FH + Iq

)−1
H>
)−1

·
(
Im − F>FH

(
H>F>FH + Iq

)−1
H>
)

F>Ȳ

=
(
F>F

)−1
F>Ȳ.

Lemma 5. The mean squared error matrix of the best linear unbiased predictor Ψ̂ =

Kβ̂ + Tb̂ of a predictable linear aspect Ψ = Kβ + Tb is given by

Cov(Ψ̂−Ψ) = K C̃11 K> + K C̃12 T> + T C̃>12 K> + T C̃22 T> (4.23)

where
C̃11 =

σ2

n

(
F>(FDF> + Im)−1F

)−
,

C̃12 = C̃>21 = −σ
2

n
1>n ⊗ ((F>F)−F>FD)
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and

C̃22 =
σ2

n

(
(1n1

>
n )⊗D + (nIn − 1n1

>
n )⊗ (D−DF>

(
FDF> + Im

)−1
FD)

)
.

Proof. As it was mentioned at the beginning of this chapter, the linear aspect Ψ =

Kβ + Tb can be represented in the form Ψ = Kβ + T(In ⊗ H)γ . Then it follows
from Theorem 8 that the mean squared error matrix of the best linear unbiased predictor
Ψ̂ = Kβ̂ + Tb̂ = Kβ̂ + T(In ⊗H)γ̂ of Ψ is given by

Cov(Ψ̂−Ψ) = K C′11 K> + K C′12 (In ⊗H>)T> + T(In ⊗H) C′
>
12 K> (4.24)

+ T(In ⊗H) C′22 (In ⊗H>)T>,

where the components C′22 , C′11 and C′12 of the matrix C′ defined by (3.20) may be
derived directly from formulas (3.15)-(3.17):

C′22 =
σ2

n

(
(1n1

>
n )⊗ Iq + (nIn − 1n1

>
n )⊗ (H>F>FH + Iq)

−1
)
,

C′11 =
σ2

n

(
F>(FDF> + Im)−1F

)−
,

C′12 = −σ
2

n
1>n ⊗ ((F>F)−F>FH).

The mean squared error matrix (4.24) may be also represented as

Cov(Ψ̂−Ψ) = (K, T(In ⊗H)) C′ (K, T(In ⊗H))>

or equivalently as

Cov(Ψ̂−Ψ) = (K, T)

(
Ip 0

0 In ⊗H

)
C′

(
Ip 0

0 In ⊗H>

)
(K, T)>.

By formula (4.13) the block matrix

C̃ =

(
C̃11 C̃12

C̃21 C̃22

)
may be rewritten as

C̃ =

(
Ip 0

0 In ⊗H

)
C′

(
Ip 0

0 In ⊗H>

)
.
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Then we obtain
Cov(Ψ̂−Ψ) = (K, T) C̃ (K, T)>,

which coincides with (4.23).

For a full column rank matrix F we obtain the following result using the properties
(4.13) and (4.17).

Corollary 4. If the fixed effects design matrix F has full column rank, the mean squared
error matrix C̃ of (β̂

>
, b̂>)> simplifies to

σ2

n

(
(F>F)−1 + D −1>n ⊗D

−1n ⊗D (1n1
>
n )⊗D + (nIn − 1n1

>
n )⊗

(
D−D((F>F)−1 + D)−1D

) ) .
Corollary 5. If the fixed effects design matrix F has full column rank, the covariance
matrix of the best linear unbiased estimator β̂ of the population parameter β is given by

Cov(β̂) =
σ2

n

(
(F>F)−1 + D

)
. (4.25)

Using the property (4.18) we get the special form of the mean squared error matrix
C̃ in the case of a non-singular dispersion matrix of random effects.

Corollary 6. If the fixed effects design matrix F has full column rank and the disper-
sion matrix D of random effects is non-singular, the mean squared error matrix C̃ of
(β̂
>
, b̂>)> simplifies to

σ2

n

(
(F>F)−1 + D −1>n ⊗D

−1n ⊗D (1n1
>
n )⊗D + (nIn − 1n1

>
n )⊗

(
F>F + D−1

)−1

)
.

4.3 Prediction of Individual Deviations

In this section we introduce the best linear unbiased prediction of the individual deviations
b . According to Lemma 4 part b) the individual deviations are predictable for any design
matrix F .

Theorem 11. The best linear unbiased predictor of the individual deviations bi is given
by

b̂i = DF>(FDF> + Im)−1(Yi − Ȳ). (4.26)
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Proof. To make use of the theory developed in the previous section, we represent the
individual deviations in the form bi = (e>i ⊗ Ip)b , where ei denotes the i-th unit vector
of length n . Then it follows from Theorem 9 that

b̂i = (e>i ⊗ Ip) b̂

= (e>i ⊗ Ip)

(
(In −

1

n
1n1

>
n )⊗

(
DF>(FDF> + Im)−1

))
Y

=

(
(e>i −

1

n
1>n )⊗

(
DF>(FDF> + Im)−1

))
Y

= DF>(FDF> + Im)−1(Yi − Ȳ).

For a non-singular dispersion matrix D we obtain from the property (4.14) of sums
of matrices the next result.

Corollary 7. If the dispersion matrix of random effects is non-singular, the best linear
unbiased predictor b̂i of the individual deviations bi simplifies to

b̂i =
(
F>F + D−1

)−1
F>
(
Yi − Ȳ

)
. (4.27)

In the case of full column rank fixed effects design matrix we will further use the
notation β̂i;ind for the individualized estimator based only on observations at the i-th
individual:

β̂i;ind = (F>F)−1F>Yi. (4.28)

Then due to Theorem 10 the predictor (4.26) may be represented in the following alter-
native form.

Remark 2. If the fixed effects design matrix F has full column rank, the best linear
unbiased predictor b̂i of the individual deviations bi simplifies to

b̂i = D
(
(F>F)−1 + D

)−1
(β̂i,ind − β̂). (4.29)

The following theorem gives the mean squared error matrix of the prediction (4.26).
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Theorem 12. The mean squared error matrix of the best linear unbiased prediction b̂ of
the individual deviations is given by

Cov
(
b̂− b

)
(4.30)

= σ2

(
1

n

(
1n1

>
n

)
⊗D +

(
In −

1

n
1n1

>
n

)
⊗
(
D−DF>

(
FDF> + Im

)−1
FD
))

.

Proof. The result (4.30) follows from Lemma 5 for the null matrix K = 0p×p and the
identity matrix L = Inp .

Corollary 8. If the dispersion matrix D of random effects is non-singular, the mean
squared error matrix of the best linear unbiased prediction b̂ of the individual deviations
simplifies to

Cov
(
b̂− b

)
= σ2

(
1

n

(
1n1

>
n

)
⊗D +

(
In −

1

n
1n1

>
n

)
⊗
(
F>F + D−1

)−1
)
. (4.31)

For further considerations we will use the reduced model

Yi = F0β
0
i + εi, i = 1, ..., n, (4.32)

where β0
i = (βi1, ...,βiq)

>, F0 = (f0(x1), ..., f0(xm))> for f0 = (f1, .., fq)
> and Cov(β0

i ) =

σ2 D0 for a non-singular q × q matrix D0 .
Now we consider the special case of the model (4.2) with the the block diagonal form

D = (Iq 0q×(p−q))
>D0 (Iq 0q×(p−q)) (4.33)

of the dispersion matrix of random effects (i.e. only the first q parameters are random).

Theorem 13. If the dispersion matrix D of random effects has the block diagonal form
(4.33), the best linear unbiased predictor of the individual deviations bi is given by

b̂i = (Iq 0q×(p−q))
>b̂0

i , (4.34)

where b̂0
i =

(
F>0 F0 + D−1

0

)−1
F>0
(
Yi − Ȳ

)
is the best linear unbiased predictor of the

individual deviations b0
i in the reduced model (4.32).
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Proof. For the parameter vector βi =
(
β0
i

>
, β1

i

>
)>

with β1
i = (βi(q+1), ...,βip)

> and

the regression functions f = (f0>, f1>)> with f1 = (fq+1, .., fp)
> the model (4.2) may be

represented as
Yij = f0(xj)

>β0
i + f1(xj)

>β1
i + εij. (4.35)

Then for F1 = (f1(x1), ..., f1(xm))> the vector of all observations at individual i has the
form

Yi = F0β
0
i + F1β

1
i + εi (4.36)

= (F0,F1)

(
β0
i

β1
i

)
+ εi.

It is easy to see that Cov(β0
i ) = D0 and β1

i are fixed effects. Hence, for the parameter

vector βi =
(
β0
i

>
, β1

i

>
)>

and the design matrix F = (F0,F1) the model (4.36) is of
the form (4.3).

For a non-singular matrix D0 there exists a non-singular matrix H0 with rank q and
D0 = H0H

>
0 . Then the dispersion matrix D of random effects may be represented as

D = HH> with H = (Iq 0q×(p−q))
>H0 .

Using formula (4.26) we obtain

b̂i = (Iq 0q×(p−q))
>H0

(
H>0 F>0 F0H0 + Iq

)−1
H>0 F>0

(
Yi − Ȳ

)
= (Iq 0q×(p−q))

> (F>0 F0 + D−1
0

)−1
F>0
(
Yi − Ȳ

)
.

According to Corollary 7 b̂0
i =

(
F>0 F0 + D−1

0

)−1
F>0
(
Yi − Ȳ

)
is the best linear unbiased

predictor for b0
i in the reduced model (4.32), which proves the result.

The mean squared error matrix of this prediction is given by the next theorem.

Theorem 14. If the dispersion matrix D of random effects has the block diagonal form
(4.33), the mean squared error matrix of the best linear unbiased predictor b̂ of the
individual deviations is given by

Cov
(
b̂− b

)
=
(
In ⊗ (Iq 0q×(p−q))

>)Cov
(
b̂0 − b0

) (
In ⊗ (Iq 0q×(p−q))

)
, (4.37)

where Cov
(
b̂0 − b0

)
denotes the mean squared error matrix of the best linear unbiased

predictor b̂0
i of the individual deviations in the reduced model (4.32).
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Proof. The proof of this result is similar to the proof of Theorem 13. The form (4.37)
follows from formula (4.30) for the mean squared error matrix of the prediction b̂ in the
general case, and Corollary 8, which is used to determine the mean squared error matrix
Cov

(
b̂0 − b0

)
in the reduced model.

Note that the prediction b̂i of the individual deviations as well as its mean squared
error matrix Cov

(
b̂− b

)
are independent of the fixed part F1β

1
i of the model (4.36).

Consequently, the reduced model only has to be investigated if the dispersion matrix of
random effects has the block diagonal form (4.33).

Remark 3. If the dispersion matrix D of random effects in the model (4.2) is singular,
the model can be reparametrized so that the dispersion matrix in the new model has the
block diagonal form (4.33).

The latter statement can be established in the following way: Since the matrix H ,
which has been introduced in Section 4.1, has full column rank, there exists a p× (p− q)
matrix H1 so that the matrix H̃ = (H H1) is non-singular (full rank). For the random
variables γ̃i := (γ>i 0>(p−q))

> , where 0(p−q) denotes the zero vector of length p − q , it
holds that bi = H̃γ̃i. Then for γ̃ = (γ̃>1 , ..., γ̃

>
n , )
> the model (4.10) can be rewritten in

form
Y = (1n ⊗ F)β + (In ⊗ (FH̃))γ̃ + ε,

where the dispersion matrix of the random effects γ̃ has the block diagonal form (4.33)
with D0 = Iq .

4.4 Prediction of Individual Parameters

In this section we introduce the best linear unbiased predictor of the individual parameters
βi = β+ bi . According to part d) of Lemma 4 the latter parameters are only predictable
if the design matrix F is a full column rank matrix. Hence, a special case of the model
(4.2) with rank(F) = p will be investigated.

Theorem 15. The best linear unbiased predictor of the individual parameters βi is given
by

β̂i = D((F>F)−1 + D)−1β̂i;ind + (F>F)−1((F>F)−1 + D)−1β̂. (4.38)
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Proof. The individual parameters βi can be represented in the form βi = β+ bi . Then
it follows from Theorems 9 and 10 and Remark 2 that βi is predictable and its best
linear unbiased predictor is given by

β̂i = β̂ + b̂i.

After applying formula (4.21) we obtain

β̂i = β̂ + D((F>F)−1 + D)−1(β̂i;ind − β̂)

= D((F>F)−1 + D)−1β̂i;ind + (F>F)−1((F>F)−1 + D)−1β̂.

Note that the predictor (4.38) of the individual parameters is a weighted average of
the individualized estimator β̂i;ind and the best linear unbiased estimator (4.21) of the
population parameter and coincides with the empirical Bayes estimator introduced by
Bryk and Raudenbush (1992) (see also Candel (2009)) of the individual parameters βi in
the special case of a known dispersion matrix of random effects.

Corollary 9. If the dispersion matrix D of random effects is non-singular, the best linear
unbiased predictor β̂i of the individual parameters βi simplifies to

β̂i = (F>F + D−1)−1(F>F β̂i;ind + D−1β̂) . (4.39)

The latter result was derived by Fedorov and Jones (2005) under the additional as-
sumption of normal distribution for multicentre regression models.

The following theorem represents the mean squared error matrix of the prediction
B̂ = (β̂

>
1 , ..., β̂

>
n )> of the individual parameters B = (β>1 , ...,β

>
n )> .

Theorem 16. The mean squared error matrix of the prediction B̂ = (β̂
>
1 , ..., β̂

>
n )> of the

individual parameters is given by

Cov
(
B̂−B

)
= σ2

(
1

n

(
1n1

>
n

)
⊗ (F>F)−1 +

(
In −

1

n
1n1

>
n

)
⊗
(
D−D((F>F)−1 + D)−1D

))
. (4.40)
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Proof. The prediction of the individual parameters may be represented as B̂ = (1n ⊗ Ip) β̂+

b̂ . Then it follows from Lemma 5 for K = 1n ⊗ Ip and L = Inp that

Cov
(
B̂−B

)
= (1n ⊗ Ip Inp) C̃ (1n ⊗ Ip Inp)

> .

Using Corollary 4 and some linear algebra we obtain the result (4.40)

Corollary 10. If the dispersion matrix D of random effects is non-singular, the mean
squared error matrix of the prediction B̂ simplifies to

Cov
(
B̂−B

)
= σ2

(
1

n

(
1n1

>
n

)
⊗ (F>F)−1 +

(
In −

1

n
1n1

>
n

)
⊗ (F>F + D−1)−1

)
. (4.41)

Note that the mean squared error matrix (4.41) can be recognized as a weighted sum
of covariance matrix (2.8) in the model without random effects and the mean squared
error matrix (2.15) in the Bayesian model.

Example 1. We consider the particular case of random intercepts (random block
effects) with an explicit individual constant term f1(x) ≡ 1 for all individuals. Since only
the intercept βi1 is random, the dispersion matrix D can be written as D = d1e1e

>
1 and

has rank q = 1 , q < p . Then in the reduced model (4.32) the design matrix is given by
F0 = 1m and the dispersion matrix is one-dimensional with D0 = d1 . Consequently, the
condition (4.33) is satisfied and according to Theorem 13 the prediction of the individual
deviations has the form

b̂i =
d1

1 +md1

1>m
(
Yi − Ȳ

)
e1. (4.42)

The corresponding mean squared error matrix simplifies to

Cov
(
b̂− b

)
= σ2

(
d1

n
1n1

>
n +

d1

1 +md1

(In −
1

n
1n1

>
n )

)
⊗ (e1e

>
1 ), (4.43)

which is independent of the design matrix.
The explicit form of the best linear unbiased predictor β̂i of the individual parameters

follows from formula β̂i = β̂ + b̂i :

β̂i = β̂ +
d1

1 +md1

1>m
(
Yi − Ȳ

)
e1. (4.44)
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Obviously, this result may be derived directly from (4.38). The mean squared error matrix
(4.40) of the prediction simplifies to

Cov
(
B̂−B

)
= σ2

(
1

n
(1n1

>
n )⊗ (F>F)−1 +

d1

1 +md1

(In −
1

n
1n1

>
n )⊗ (e1e

>
1 )

)
(4.45)

for the case of random intercepts. Note that only the predicted intercepts differ for
different individuals, while the estimates of the other parameters are the same.
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5 Optimal Designs in Hierarchical Random Coefficient

Regression Models

In this chapter we consider optimal designs for the prediction of the individual parameters
βi and individual deviations bi in the model (4.2). For the prediction of the individual
parameter some results for optimal designs are provided in Prus and Schwabe (2016) (see
also Prus and Schwabe (2011)). The problem of optimal designs for the prediction of
the individual deviations has been briefly discussed by Prus and Schwabe (2013). For
the estimation of the population mean parameter solutions for the design optimization
problem may be found in Fedorov and Hackl (1997), Liski et al. (2002) or Entholzner
et al. (2005).

As it was mentioned in Section 4.1, in model (4.2) the number of observations m as
well as the experimental settings x1, ..., xm are the same for all individuals. Therefore,
the individual (exact and approximate) designs are also the same for all individuals and
have the general form (2.16) introduced in the second chapter. ΞX and Ξ denote again
the sets of all exact and approximate designs of the form (2.16) respectively.

The notations M(ξ) and ∆ will be used again for the adjusted version of the disper-
sion matrix of random effects and the standardized individual information matrix in the
fixed effects models defined in (2.17) and (2.18) respectively. For simplicity, the matrix
M(ξ) will be further called individual information matrix. Note that for exact designs it
holds that M(ξ) = 1

m
F>F .

Then for an approximate design ξ the mean squared error matrix of the prediction of
the individual parameters can be defined by

MSEB (ξ) =
1

n
(1n1

>
n )⊗M(ξ)−1 + (In −

1

n
1n1

>
n )⊗ (∆−∆(M(ξ)−1 + ∆)−1∆) , (5.1)

which coincides with the representation (4.40) (divided by the constant factor σ2

m
) in the

special case of an exact design. In this case the individual information matrix M(ξ) is
assumed to be non-singular.

If also the dispersion matrix D of random effects is non-singular, the mean squared
error matrix (5.1) simplifies to

MSEB (ξ) =
1

n
(1n1

>
n )⊗M(ξ)−1 + (In −

1

n
1n1

>
n )⊗ (M(ξ) + ∆−1)−1. (5.2)
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According to Remark 3, in the case of prediction of the individual deviations we may
assume without loss of generality that the dispersion matrix D is non-singular or has the
block diagonal form (4.33). We define the mean squared error matrix for an approximate
design for the non-singular case as

MSEb (ξ) =
1

n
(1n1

>
n )⊗∆ + (In −

1

n
1n1

>
n )⊗ (M(ξ) + ∆−1)−1, (5.3)

which coincides with (4.31) (if we suppress the constant factor σ2

m
) in the special case of

an exact design.
In the singular (block diagonal) case we analogously define for the adjusted dispersion

matrix ∆0 = mD0 of random effects and the individual information matrix M0(ξ) =
1
m

∑k
j=1mj f0(xj)f0(xj)

> (equal to 1
m

F>0 F0 for exact designs) in the reduced model (4.32)
the mean squared error matrix

MSEb (ξ) =
(
In ⊗ (Iq 0q×(p−q))

>)MSEb0 (ξ)
(
In ⊗ (Iq 0q×(p−q))

)
, (5.4)

where
MSEb0 (ξ) =

1

n
(1n1

>
n )⊗∆0 + (In −

1

n
1n1

>
n )⊗ (M0(ξ) + ∆−1

0 )−1. (5.5)

Note that in (5.3) and (5.4) the individual information matrix M(ξ) may be singular.
Using the notation (2.17) and ∆ as above the covariance matrix (4.25) of the estimator

(4.21) of the fixed effects may be generalized to

Covβ(ξ) =
σ2

nm

(
M(ξ)−1 + ∆

)
(5.6)

for an approximate design ξ with a non-singular individual information matrix M(ξ) .
Since the factor σ2

nm
as well as the adjusted dispersion matrix ∆ are independent of

the designs, it can be concluded that L-optimal designs in the fixed effects model (2.1)
are L-optimal for the estimation of the population parameter in the hierarchical random
coefficient regression model (4.2). However, the latter statement does not hold for the
D-criterion (see Entholzner et al. (2005)).

5.1 D-Criterion

The determinant criterion in the hierarchical random coefficient regression model (4.2)
may be defined analogously to the Bayesian D-criterion (2.9) as a logarithmized determi-
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nant of the mean squared error matrix:

DB(ξ) = ln det MSEB(ξ) (5.7)

and
Db(ξ) = ln det MSEb(ξ) (5.8)

for the prediction of the individual parameters and individual deviations respectively.
The latter approach makes only sense if the dispersion matrix D of random effects and

consequently the mean squared error matrices MSEB (ξ) and MSEb (ξ) are non-singular,
since otherwise the criterion functions (5.7) and (5.8) would be equal to −∞ . For a
general dispersion matrix the D-criterion has to be appropriately adjusted. We consider
again the case of a non-zero matrix D with rank q (1 ≤ q ≤ p) and use the property
that for positive definite symmetric matrices the determinant is equal to the product of
the eigenvalues. Then the D-criterion for the individual parameters may be defined as
the logarithm of the product of the (n− 1)q + p largest eigenvalues of the mean squared
error matrix MSEB(ξ) and coincides for q = p with the classical D-criterion (5.7).

Definition 13. For a general dispersion matrix D with rank q the approximate design
ξ∗ ∈ Ξ is called D-optimal for the prediction of the individual parameters if

DB(ξ∗) = min
ξ∈Ξ

DB(ξ) (5.9)

for

DB(ξ) = ln

(n−1)q+p∏
ι=1

λι(ξ), (5.10)

where λ1(ξ), ..., λ(n−1)q+p(ξ) are the (n− 1)q+ p largest eigenvalues of the mean squared
error matrix MSEB (ξ) of the prediction of the individual parameters. The criterion
function (5.10) is called the (generalized) D-criterion for the prediction of the individual
parameters.

The (generalized) D-criterion for the prediction of the individual deviations can be
similarly defined as the logarithm of the product of the nq largest eigenvalues of MSEb(ξ),
which coincides with (5.8) for q = p .
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Definition 14. For a general dispersion matrix D with rank q the approximate design
ξ∗ ∈ Ξ is called D-optimal for the prediction of the individual deviations if

Db(ξ
∗) = min

ξ∈Ξ
Db(ξ) (5.11)

for

Db(ξ) = ln

nq∏
ι=1

νι(ξ), (5.12)

where ν1(ξ), ..., νnq(ξ) are the nq largest eigenvalues of the mean squared error matrix
MSEb (ξ) of the prediction of the individual deviations. The criterion function (5.12) is
called the (generalized) D-criterion for the prediction of the individual deviations.

For further considerations of design criteria we will use the representation

∆−∆(M(ξ)−1 + ∆)−1∆ = mH
(
mH>M(ξ) H + Iq

)
)−1H>, (5.13)

which can be verified analogously to (4.17) for the matrix H defined in Section 4.1 with
D = HH> and consequently ∆ = mHH> . If the dispersion matrix of random effects
in non-singular, (5.13) may be rewritten (analogously to (4.18)) as

∆−∆(M(ξ∗)−1 + ∆)−1∆ = (M(ξ∗) + ∆−1)−1. (5.14)

The following Lemma presents an explicit form of the (generalized) D-criterion for the
prediction of the individual parameters.

Lemma 6. For a general dispersion matrix D with rank q the (generalized) D-criterion
for the prediction of the individual parameters is equal to

DB(ξ) = ln det(M(ξ)−1) + (n− 1) ln

q∏
`=1

µ`(ξ) , (5.15)

where µ1(ξ), ..., µq(ξ) are the q largest eigenvalues of the matrix ∆−∆(M(ξ)−1 +∆)−1∆.

Proof. Since the individual information matrix M(ξ) is positive definite, its inverse
M(ξ)−1 has p positive eigenvalues η1(ξ), ..., ηp(ξ) . Since the adjusted dispersion ∆

has rank q , according to Harville (1997) (ch. 14, p. 256) and formula (5.13) the matrix
∆ −∆(M(ξ)−1 + ∆)−1∆ is nonnegative definite with the same rank and consequently
has q positive eigenvalues µ1(ξ), ..., µq(ξ) and p− q eigenvalues equal to zero.
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Let v1(ξ), ...,vp(ξ) be pairwise orthogonal eigenvectors of the matrix M(ξ)−1 to the
eigenvalues η1(ξ), ..., ηp(ξ) respectively. The only positive eigenvalue of 1

n
1n1

>
n is 1 with

the corresponding eigenvector 1n . Then 1n ⊗ v1(ξ), ...,1n ⊗ vp(ξ) are pairwise orthog-
onal eigenvectors of 1

n
1n1

>
n ⊗M(ξ)−1 corresponding to the eigenvalues η1(ξ), ..., ηp(ξ)

respectively.
It follows from

(
In − 1

n
1n1

>
n

)
1n = 0 that for k = 1, ..., p

MSEB (ξ) (1n ⊗ vk(ξ)) =

(
1

n
1n1

>
n ⊗M(ξ)−1

)
(1n ⊗ vk(ξ)) = ηk(ξ) (1n ⊗ vk(ξ)) ,

which means that η1(ξ), ..., ηp(ξ) are eigenvalues of MSEB (ξ) .
Let w1(ξ), ...,wq(ξ) be pairwise orthogonal eigenvectors of ∆−∆(M(ξ)−1 + ∆)−1∆

corresponding to the eigenvalues µ1(ξ), ..., µq(ξ) respectively. The matrix
(
In − 1

n
1n1

>
n

)
has the only positive eigenvalue 1 with the algebraic multiplicity of n−1 . Then there ex-
ist n− 1 pairwise orthogonal eigenvectors corresponding to this eigenvalue: h1, ...,hn−1 .
Note that these vectors satisfy the condition

(
In − 1

n
1n1

>
n

)
ht = ht . Consequently, for

all t = 1, ..., n − 1 and all ` = 1, ..., q the vector ht ⊗ w`(ξ) is an eigenvector of(
In − 1

n
1n1

>
n

)
⊗ (∆−∆(M(ξ)−1 + ∆)−1∆) corresponding to µ`(ξ) . It is easy to see

that these eigenvectors are orthogonal to each other.
It follows from

(
In − 1

n
1n1

>
n

)
ht = ht that 1

n
1n1

>
nht = 0 for all t = 1, ..., n − 1 .

Consequently, for all t = 1, ..., n − 1 and all ` = 1, ..., q the vector ht ⊗ w`(ξ) is an
eigenvector of MSEB (ξ) corresponding to µ`(ξ) and µ`(ξ) is an eigenvalue of MSEB (ξ)

with multiplicity n− 1 .
For all k = 1, ..., p , t = 1, ..., n−1 and ` = 1, ..., q the vectors 1n⊗vk(ξ) and ht⊗w`(ξ)

are orthogonal to each other. Since the the mean squared error matrix MSEB (ξ) is
nonnegative definite and its rank cannot exceed (n − 1)q + p , the other (n − 1)(p − q)
eigenvalues are equal to zero. Hence, the following equality holds:

(n−1)q+p∏
ι=1

λι(ξ) =

p∏
k=1

ηk(ξ)

q∏
`=1

(µ`(ξ))
n−1

= det(M(ξ)−1)

q∏
`=1

(µ`(ξ))
n−1 .

The logarithm of the right hand side of this equation coincides with the right hand side
of (5.15).

44



Note that according to the proof of Lemma 6 the eigenvalues µ1(ξ), ..., µq(ξ) of the
matrix ∆−∆(M(ξ)−1 + ∆)−1∆ are at the same time eigenvalues of the mean squared
error matrix MSEB (ξ) with multiplicity n− 1 , which means that for every µ`(ξ) there
exist n−1 eigenvalues λs`

(ξ) with µ`(ξ) = λs`
(ξ) , ` = 1, ..., q , s` = 1, ..., (n−1)q . Also

the eigenvalues, η1(ξ), ..., ηp(ξ) of M(ξ)−1 are at the same time eigenvalues of MSEB (ξ)

with multiplicity 1 . The other eigenvalues of the mean squared error matrix are equal to
zero.

If the dispersion matrix D is non-singular, the (generalized) D-criterion simplifies.

Corollary 11. If the dispersion matrix D of random effects is non-singular, the (gener-
alized) D-criterion for the prediction of the individual parameters simplifies to

DB(ξ) = ln det(M(ξ)−1) + (n− 1) ln det((M(ξ) + ∆−1)−1). (5.16)

The last result is a weighted sum of the D-criterion ln det(M(ξ)−1) in the fixed effects
models and the Bayesian D-criterion ln det((M(ξ) + ∆−1)−1) represented in Chapter 2
and may be also recognized as a particular case of the compound criteria considered
by Cook and Wong (1994) (see also Läuter (1974), Atkinson and Donev (1992), ch. 21,
Atkinson et al. (2007), ch. 10, 21).

The next lemmas give explicit representations of the (generalized) D-criterion for the
prediction of the individual deviations introduced in Definition 14 in both cases of a
singular and a non-singular dispersion matrix of random effects. Note that the individual
deviations b are predictable for any individual design matrix F . Consequently, the
individual information matrix M(ξ) may be singular.

Lemma 7. If the dispersion matrix D of random effects is non-singular, the (generalized)
D-criterion for the prediction of the individual deviations is equal to

Db(ξ) = ln det(∆) + (n− 1) ln det((M(ξ) + ∆−1)−1). (5.17)

Proof. From the nonsingularity of the dispersion matrix D of random effects, which
implies q = p follows the nonsingularity of the adjusted dispersion matrix ∆ . Then the
matrix ∆ is positive definite and consequently has p positive eigenvalues τ1(ξ), ..., τp(ξ)

with corresponding pairwise orthogonal eigenvectors u1(ξ), ...,up(ξ) . Analogously to the
proof of Lemma 6 it can be shown that τ1(ξ), ..., τp(ξ) are at the same time eigenvalues
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of the mean squared error matrix MSEb (ξ) with pairwise orthogonal eigenvectors 1n ⊗
u1(ξ), ...,1n ⊗ up(ξ).

Since by (5.14) the matrix (M(ξ)+∆−1)−1 is equivalent to the matrix ∆−∆(M(ξ)−1+

∆)−1∆ for a non-singular adjusted dispersion matrix ∆ , we use here the same notations
µ1(ξ), ..., µp(ξ) and w1(ξ), ...,wp(ξ) for the p positive eigenvalues of (M(ξ)+∆−1)−1 and
the corresponding pairwise orthogonal eigenvectors as in the proof of Lemma 6. According
to that proof µ1(ξ), ..., µp(ξ) are also eigenvalues of MSEb (ξ) with algebraic multiplicity
n− 1 and pairwise orthogonal eigenvectors ht ⊗w`(ξ) , t = 1, ..., n− 1 , ` = 1, ..., p .

Since for all k = 1, ..., p , t = 1, ..., n− 1 and ` = 1, ..., p the vectors 1n ⊗ uk(ξ) and
ht ⊗w`(ξ) are orthogonal to each other and the dimension of MSEb (ξ) is equal to np ,
there mean squared error matrix has no other eigenvalues. Consequently,

np∏
ι=1

νι(ξ) =

p∏
k=1

ηk(ξ)

p∏
`=1

(µ`(ξ))
n−1 .

Since both matrices ∆ and (M(ξ) + ∆−1)−1 are non-singular, their determinants are
equal to the products of their eigenvalues, which implies for q = p the result.

Note that in the criterion (5.17) the first term is constant and the second term is
proportional to the Bayesian D-criterion (2.22).

Corollary 12. If the dispersion matrix D of random effects is non-singular, Bayesian
D-optimal designs are D-optimal for the prediction of the individual deviations.

Now we allow for a singular dispersion matrix of random effects. According to Re-
mark 3 singular dispersion matrices with the special structure (4.33) only have to be
considered.

Lemma 8. If the dispersion matrix D of random effects is singular and has the block
diagonal form (4.33), the (generalized) D-criterion for the prediction of the individual
deviations is equal to

Db(ξ) = ln det(∆0) + (n− 1) ln det((M0(ξ) + ∆−1
0 )−1), (5.18)

where M0(ξ) = 1
m

F>0 F0 and ∆0 = mD0 are the individual information matrix and the
dispersion matrix of random effects in the reduced model (4.32).
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Proof. Since the positive eigenvalues of the matrices

MSEb (ξ) =
(
In ⊗ (Iq 0q×(p−q))

>)MSEb0 (ξ)
(
In ⊗ (Iq 0q×(p−q))

)
and MSEb0 (ξ) are the same and the mean squared error matrix MSEb0 (ξ) in the re-
duced model (4.32) is of the form (5.3), the result follows directly from Definition 14 and
Lemma 7.

Note that (5.18) coincides with the D-criterion (5.17) for the prediction of the indi-
vidual deviations in the reduced model (4.32).

Corollary 13. If the dispersion matrix D of random effects is singular and has the block
diagonal form (4.33), D-optimal designs for the prediction of the individual deviations in
the reduced model (4.32) are D-optimal for the prediction of the individual deviations in
(4.2).

It follows from Corollaries 12 and 13 that Bayesian D-optimal designs, which minimize
the Bayesian D-criterion ln det(M0(ξ) + ∆−1

0 )−1 in the corresponding reduced model,
are D-optimal for the prediction of the individual deviations in the random coefficient
regression model (4.2).

Since the (generalized) D-criterion for the prediction of the individual deviations does
not simplify to some well known criterion, the optimality condition has to be formulated
explicitly in this case.

Theorem 17. The approximate design ξ∗ ∈ Ξ is D-optimal for the prediction of the
individual parameters if and only if

f(x)>M(ξ∗)−1f(x) + (n− 1) f(x)>(∆−∆(M(ξ∗)−1 + ∆)−1∆)f(x)

≤ p+ (n− 1) tr (∆(M(ξ∗)−1 + ∆)−1) (5.19)

for all x ∈ X Moreover, for any support point x∗j of ξ∗ with positive weight (m∗j > 0)

equality holds in (5.19).

Proof. According to Silvey (1980), ch. 3 (see also Fedorov and Hackl (1997), ch. 2) a
design ξ∗ minimizes a convex criterion function Φ if and only if the directional derivative
FΦ(M(ξ∗),M(ξx)) of Φ at M(ξ∗) in the direction of the information matrix M(ξx) =
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f(x)f(x)> of the one-point design ξx is nonnegative for all x ∈ X . Moreover, this
directional derivative is zero for all support points x∗j (m∗j > 0) of the optimal design ξ∗.

According to formula (5.13) the (generalized) D-criterion (5.15) may be represented
as the following function of the individual information matrix M:

Φ(M) = ln det(M−1) + (n− 1) ln det((mH>MH + Iq)
−1mH>H)

= ln det(M−1) + (n− 1) ln det((mH>MH + Iq)
−1) + (n− 1) ln det(mH>H),

which is convex as a sum of two convex functions and one constant term. Therefore,
the corresponding directional derivative FΦ(M(ξ∗),M(ξx)) has to be nonnegative for all
x ∈ X and equal zero for all support points of ξ∗.

The first term Φ1(M) := ln det(M−1) of the criterion function Φ(M) coincides with
the D-criterion in the fixed effects model (2.1) and is hence convex. In the second term
Φ2(M) := ln det(mH>MH + Iq)

−1 may be considered as the Bayesian D-criterion in the
model

Yj = f(xj)
>Hc + εj (5.20)

with E (c) = 0q and Cov (c) = σ2Iq (see e.g. Gladitz and Pilz (1982)) and is therefore
convex. Note that (5.20) is a special case of the model (2.9) with regression functions
H>f .

Now the directional derivative FΦ(M1,M2) of Φ at M1 in the direction of M2 may
be determined as weighted sum of the directional derivatives of its components:

FΦ1(M1,M2) = p− tr (M−1
1 M2)

and
FΦ2(M1,M2) = tr (mH(mH>M1H + Iq)

−1H>(M1 −M2)).

The derivatives FΦ1(M1,M2) and FΦ2(M1,M2) may be represented using the equality
(5.13) as

FΦ1(M(ξ∗), f(x)f(x)>) = p− f(x)>M(ξ∗)−1f(x)
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and

FΦ2(M(ξ∗), f(x)f(x)>) = tr ((∆−∆(M(ξ∗)−1 + ∆)−1∆) M(ξ∗))

− f(x)>(∆−∆(M(ξ∗)−1 + ∆)−1∆)f(x)

= tr (∆(M(ξ∗)−1 + ∆)−1)

− f(x)>(∆−∆(M(ξ∗)−1 + ∆)−1∆)f(x)

for M1 = M(ξ∗) and M2 = f(x)f(x)>, which implies the result (5.19).

For a non-singular dispersion matrix D the optimality condition (5.19) simplifies by
formula (5.14) to that of a compound criterion.

Corollary 14. If the dispersion matrix D of random effects is non-singular, the approx-
imate design ξ∗ ∈ Ξ is D-optimal for the prediction of the individual parameters if and
only if

f(x)>M(ξ∗)−1f(x) + (n− 1) f(x)>(M(ξ∗) + ∆−1)−1f(x)

≤ p+ (n− 1) tr ((M(ξ∗) + ∆−1)−1M(ξ∗)) (5.21)

for all x ∈ X Moreover, for any support point x∗j of ξ∗ with positive weight (m∗j > 0)

equality holds in (5.21).

Example 1 (cont.) We consider again the particular case of random intercepts.
To derive an explicit form of the (generalized) D-criterion (5.15) for the prediction of the
individual parameters, we use the property (5.13) of the matrix ∆−∆(M(ξ)−1+∆)−1∆ .
Since H =

√
d1e1 satisfies the condition HH> = D , we obtain ∆ − ∆(M(ξ)−1 +

∆)−1∆ = md1
1+md1

e1e
>
1 with the largest eigenvalue λ1(ξ) = md1

1+md1
. Then the (generalized)

D-criterion (5.15) for the prediction of the individual parameters simplifies to

DB(ξ) = ln det(M(ξ)−1) + (n− 1) ln
md1

1 +md1

, (5.22)

which establishes the following result.

Corollary 15. D-optimal designs in the fixed effects models are D-optimal for the pre-
diction of the individual parameters in the random intercepts model.
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For the prediction of the individual deviations we obtain the mean squared error matrix
MSEb(ξ) by formula (5.4) using ∆0 = md1 and M0(ξ) = 1 :

MSEb(ξ) =

(
md1

n
1n1

>
n +

md1

1 +md1

(In −
1

n
1n1

>
n )

)
⊗ (e1e

>
1 ), (5.23)

which coincides for exact designs with (4.43) divided by the factor σ2

m
. Since the mean

squared error matrix (5.23) is constant, the (generalized)D-criterion (5.12) is independent
of the design, which means that all designs of the form (2.16) are equally good for the
prediction.

5.2 Linear Criteria

Similarly to the Bayesian L-criterion (2.26), the linear criterion for the prediction of the
individual parameters for a single individual i is defined (for exact designs) as the trace
of the mean squared error matrix of a vector of linear combinations Liβi , where Li is a
specified matrix of dimension τ × p. Linear combinations of the parameters across the
individuals are not the subject of this work and the interest is the same in all individuals
(Li = L , for i = 1, ..., n ). Therefore, we may define the L-criterion as the sum of the
linear criteria for the individuals:

LB(ξ) =
n∑
i=1

tr (Cov (Lβ̂i − Lβi)), (5.24)

where L is some matrix of dimension τ × p.
Further we suppress for simplicity the constant factor σ2

m
and generalize the criterion

(5.24) to the case of approximate designs.

Definition 15. The approximate design ξ∗ ∈ Ξ is called L-optimal with respect to
A = L>L for the prediction of the individual parameters if

LB(ξ∗) = min
ξ∈Ξ

LB(ξ) (5.25)

for
LB(ξ) = tr (MSEB (ξ) (In ⊗A)) . (5.26)
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Analogously we define the linear criterion for the prediction of the individual deviations
using the corresponding mean squared error matrix:

Lb(ξ) =
n∑
i=1

tr (Cov (Lb̂i − Lbi)). (5.27)

For approximate designs this criterion can be generalized and represented in the fol-
lowing equivalent form.

Definition 16. The approximate design ξ∗ ∈ Ξ is called L-optimal with respect to A for
the prediction of the individual deviations if

Lb(ξ
∗) = min

ξ∈Ξ
Lb(ξ) (5.28)

for
Lb(ξ) = tr (MSEb (ξ) (In ⊗A)) . (5.29)

The next lemma gives a more explicit form of the linear criterion (5.26) for the pre-
diction of the individual parameters.

Lemma 9. The L-criterion for the prediction of the individual parameters is equal to

LB(ξ) = tr
(
M(ξ)−1A) + (n− 1) tr ((∆−∆(M(ξ)−1 + ∆)−1∆)A

)
. (5.30)

Proof. Due to formula (5.1) the L-criterion (5.26) may be represented in the form

LB(ξ) = tr

(
1

n
(1n1

>
n )⊗ (M(ξ)−1A) + (In −

1

n
1n1

>
n )⊗ ((∆−∆(M(ξ)−1 + ∆)−1∆)A)

)
and results using properties of the Kronecker product in

LB(ξ) = tr
(
M(ξ)−1A) + (n− 1) tr ((∆−∆(M(ξ)−1 + ∆)−1∆)A

)
.

If the dispersion matrix of random effects is non-singular, the criterion (5.30) may be
simplified using the equality (5.14).

Corollary 16. If the dispersion matrix D of individual effects is non-singular, the L-
criterion for the prediction of the individual parameters simplifies to

LB(ξ) = tr (M(ξ)−1A) + (n− 1) tr ((M(ξ) + ∆−1)−1A). (5.31)
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In this case the L-criterion for the prediction of the individual parameters is propor-
tional to a weighted average of the linear criterion tr (M(ξ)−1A) in the model without
random effects and the corresponding Bayesian linear criterion tr ((M(ξ) + ∆−1)−1A) .
As a consequence, the linear criterion can also be interpreted as a compound criterion.

For the prediction of the individual deviations the two cases of a singular and a non-
singular dispersion matrix will be considered separately as it has been done for the (gen-
eralized) D-criterion in Section 5.1.

Lemma 10. If the dispersion matrix D of random effects is non-singular, the L-criterion
for the prediction of the individual deviations is equal to

Lb(ξ) = tr (∆A) + (n− 1) tr ((M(ξ) + ∆−1)−1A). (5.32)

Proof. The result follows from the form (5.29) of the L-criterion and formula (5.3).

Note that in the criterion (5.32) the first term tr (∆A) is constant (independent of
the designs) and the second term (n − 1) tr ((M(ξ) + ∆−1)−1A) is proportional to the
Bayesian L-criterion (2.28).

Corollary 17. If the dispersion matrix D of random effects is non-singular, Bayesian
L-optimal designs are L-optimal for the prediction of the individual deviations.

For M0(ξ) and ∆0 from Lemma 8 an explicit form of the L-criterion for the prediction
of the individual deviations in the case of a singular dispersion matrix D is given by the
following lemma.

Lemma 11. If the dispersion matrix D of random effects is singular and has the block
diagonal form (4.33), the L-criterion for the prediction of the individual deviations is
equal to

Lb(ξ) = tr (∆0A0) + (n− 1) tr ((M0(ξ) + ∆−1
0 )−1A0), (5.33)

where A0 = (Iq 0q×(p−q))A (Iq 0q×(p−q))
>.

Proof. Using (5.4) the L-criterion (5.29) can be rewritten as

Lb(ξ) = tr (MSEb0 (ξ) (In ⊗A0))

and results in (5.33) after applying (5.5).
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Note that (5.33) coincides for A = A0 with the L-criterion (5.32) in the reduced
model (4.32).

Corollary 18. If the dispersion matrix D of random effects is singular and has the block
diagonal form (4.33), L-optimal designs for the prediction of the individual deviations in
the reduced model (4.32) are L-optimal for the prediction of the individual deviations in
(4.2).

Due to Corollaries 17 and 18 Bayesian L-optimal designs, which minimize the Bayesian
L-criterion tr ((M0(ξ) + ∆−1

0 )−1A0) , are L-optimal for the prediction of the individual
deviations in (4.2).

Remark 4. The c- and A-criteria for the prediction of the individual parameters and
individual deviations are special cases of the linear criteria (5.30), (5.32) and (5.33) with
L = c> and L = Ip respectively.

Another frequently used particular case of the linear criterion is the integrated mean
squared error criterion (IMSE-criterion). For the prediction of the individual parameters
this criterion will be defined (for exact design) as the sum over all individuals of the
integrated mean squared differences between the predicted and the real response, f(x)>β̂i

and f(x)>βi , respectively:

IMSEB(ξ) =
n∑
i=1

∫
X

Cov
(
f(x)>β̂i − f(x)>βi

)
ν(dx), (5.34)

where ν denotes a specified weight distribution on the design region X .
Then we suppress the factor σ2

m
and generalize the IMSE-criterion (5.34) to the case

of approximate designs as it has been done for the linear criterion (5.24).

Definition 17. The approximate design ξ∗ ∈ Ξ is called IMSE-optimal for the prediction
of the individual parameters if

IMSEB(ξ∗) = min
ξ∈Ξ

IMSEB(ξ) (5.35)

for
IMSEB(ξ) = tr (MSEB(ξ) (In ⊗ V)) . (5.36)

where V =
∫
X f(x)f(x)>ν(dx).
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We define (for exact designs) the IMSE-criterion for the prediction of the individual
deviations using the predicted and the real response f(x)>b̂i and f(x)>bi instead of
f(x)>β̂i and f(x)>βi :

IMSEb(ξ) =
n∑
i=1

∫
X

Cov
(
f(x)>b̂i − f(x)>bi

)
ν(dx). (5.37)

This criterion can also be generalized for approximate designs.

Definition 18. The approximate design ξ∗ ∈ Ξ is called IMSE-optimal for the prediction
of the individual deviations if

IMSEb(ξ
∗) = min

ξ∈Ξ
IMSEb(ξ) (5.38)

for
IMSEb(ξ) = tr (MSEb(ξ) (In ⊗ V)) . (5.39)

According to the next lemma the IMSE-criterion for the prediction of the individual
parameters is a particular case of the corresponding L-criterion for the special matrix
A = V , which may be interpreted as the individual information matrix for the weight
distribution ν (considered as a design).

Lemma 12. The IMSE-criterion for the prediction of the individual parameters is equal
to

IMSEB(ξ) = tr (M(ξ)−1 V) + (n− 1) tr ((∆−∆(M(ξ)−1 + ∆)−1∆)V). (5.40)

Proof. The result follows directly from (5.36) after applying formula (5.1).

Note that the matrix V is non-negative definite. Then a τ × p matrix L exists with
L>L = V , which means that the IMSE-criterion (5.40) may be represented in the form
(5.24) in the case of exact designs.

Corollary 19. If the dispersion matrix D of individual effects is non-singular, the IMSE-
criterion for the prediction of the individual parameters simplifies to

IMSEB(ξ) = tr (M(ξ)−1V) + (n− 1) tr ((M(ξ) + ∆−1)−1V). (5.41)
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The next lemma gives an explicit form of the IMSE-criterion for the prediction of the
individual deviations in the case of a non-singular dispersion matrix of random effects.

Lemma 13. If the dispersion matrix D of random effects is non-singular, the IMSE-
criterion for the prediction of the individual deviations is equal to

IMSEb(ξ) = tr (∆V) + (n− 1) tr ((M(ξ) + ∆−1)−1 V). (5.42)

Proof. The result follows from (5.39) and (5.3).

In the next lemma we present an explicit form of the IMSE-criterion for the prediction
of the individual deviations in the case of a singular (block diagonal) dispersion matrix
D for M0(ξ) and ∆0 defined in Lemma 8.

Lemma 14. If the dispersion matrix D of random effects is singular and has the block
diagonal form (4.33), the IMSE-criterion for the prediction of the individual deviations is
equal to

IMSEb(ξ) = tr (∆0 V0) + (n− 1) tr ((M0(ξ) + ∆−1
0 )−1 V0), (5.43)

where V0 = (Iq 0q×(p−q))V (Iq 0q×(p−q))
>.

Proof. Using (5.39) and (5.4) we obtain the following form of the IMSE-criterion:

IMSEb(ξ) = tr (MSEb0(ξ) (In ⊗ V0)) .

Then we apply (5.5) in the last formula and get the result.

It may be easily shown that V0 =
∫
X f0(x)f0(x)>ν(dx), where f0 are the regression

functions in the reduced model (4.32). Then the IMSE-criterion (5.43) coincides with
the criterion (5.42) in the reduced model and is consequently a special case of the L-
criterion (5.32) (for A = V0 ). Furthermore, the IMSE-criteria (5.42) and (5.43) may be
represented in the form (5.29).

Now we formulate the optimality condition for the linear criteria for the prediction of
the individual parameters.
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Theorem 18. The approximate design ξ∗ ∈ Ξ is L-optimal with respect to A for the
prediction of the individual parameters if and only if

f(x)>M(ξ∗)−1AM(ξ∗)−1f(x) (5.44)

+ (n− 1) f(x)>M(ξ∗)−1(M(ξ∗)−1 + ∆)−1∆A∆(M(ξ∗)−1 + ∆)−1M(ξ∗)−1f(x)

≤ tr (M(ξ∗)−1A) + (n− 1) tr (∆(M(ξ∗)−1 + ∆)−1M(ξ∗)−1(M(ξ∗)−1 + ∆)−1∆A)

for all x ∈ X Moreover, for any support point x∗j of ξ∗ with positive weight (m∗j > 0)

equality holds in (5.44).

Proof. The L-criterion (5.30) may be rewritten in the form

Φ(M) = tr (M−1A) + (n− 1) tr (mH(mH>MH + Iq)
−1 H>A)

using formula (5.13). Then this criterion is a convex function of the individual information
matrix M as a weighted sum of the L-criterion Φ1(M) := tr (M−1A) in the model
without random effects and the term Φ2(M) := tr (mH(mH>MH + Iq)

−1 H>A), which
may be recognized as the Bayesian L-criterion in the model (5.20).

The directional derivatives of the functions Φ1(M) and Φ2(M) at M1 in the direction
of M2 are given by

FΦ1(M1,M2) = tr (M−1
1 A)− tr (M−1

1 M2 M−1
1 A)

and

FΦ2(M1,M2) = tr (mH(mH>M1H+ Iq)
−1H>(M1−M2)mH(mH>M1H+ Iq)

−1H>A).

Further for M1 = M(ξ∗) and M2 = f(x)f(x)> we obtain

FΦ1(M(ξ∗), f(x)f(x)>) = tr (M(ξ)−1A)− f(x)>M(ξ∗)−1AM(ξ∗)−1f(x).

Using (5.13) again we get

FΦ2(M(ξ∗), f(x)f(x)>)

= tr ((∆−∆(M(ξ∗)−1 + ∆)−1∆) M(ξ∗)(∆−∆(M(ξ∗)−1 + ∆)−1∆)A)

− f(x)>((∆−∆(M(ξ∗)−1 + ∆)−1∆)A (∆−∆(M(ξ∗)−1 + ∆)−1∆) f(x)

= tr (∆(M(ξ∗)−1 + ∆)−1M(ξ∗)−1(M(ξ∗)−1 + ∆)−1∆A)

− f(x)>M(ξ∗)−1(M(ξ∗)−1 + ∆)−1∆A∆(M(ξ∗)−1 + ∆)−1M(ξ∗)−1f(x).
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Then the optimality condition (5.44) follows directly from the general equivalence theorem
(see e. g. Silvey (1980)).

According to formula (5.14) the optimality condition (5.44) simplifies to that of a
compound criterion, if the dispersion matrix of random effects is non-singular.

Corollary 20. If the dispersion matrix D of random effects is non-singular, the approx-
imate design ξ∗ ∈ Ξ is L-optimal with respect to A for the prediction of the individual
parameters if and only if

f(x)>M(ξ∗)−1AM(ξ∗)−1f(x) + (n− 1) f(x)>(M(ξ∗) + ∆−1)−1A (M(ξ∗) + ∆−1)−1f(x)

≤ tr (M(ξ∗)−1A) + (n− 1) tr ((M(ξ∗) + ∆−1)−1M(ξ∗)(M(ξ∗) + ∆−1)−1A) (5.45)

for all x ∈ X Moreover, for any support point x∗j of ξ∗ with positive weight (m∗j > 0)

equality holds in (5.45).

Remark 5. The optimality conditions for the IMSE-, c- and A-criteria are special cases
of the conditions (5.44)-(5.45) for A = V, A = cc> and A = Ip respectively.

Example 1 (cont.) In the particular case of random intercepts the L-criterion (5.30)
for the prediction of the individual parameters simplifies to

LB(ξ) = tr (M(ξ)−1A) +
(n− 1)md1

1 +md1

e>1A e1, (5.46)

which depends on the dispersion matrix only through an additive constant term.

Corollary 21. L-optimal designs in the fixed effects models are L-optimal for the predic-
tion of the individual parameters in the random intercepts model.

According to formula (5.23) the mean squared error matrix of the prediction of the
individual deviations is constant in the random intercepts case. Then it follows from the
form (5.39) of the L-criterion that the criterion function is independent of the designs and
all designs of the form (2.16) are optimal for the prediction.
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5.3 Example: Linear Regression with Random Slope

As shown in sections 5.1 and 5.2, the D- or L-optimal designs are independent of the dis-
persion matrix D of random effects in the random intercepts model. In the more general
situation, where the random coefficients are associated with the effects of explanatory
variables, the influence of the dispersion matrix may become crucial. To illustrate this we
consider the linear regression model

Yij = βi1 + βi2xj + εij (5.47)

on the experimental region X = [0, 1] . For simplicity we assume the same (constant)
intercept βi1 ≡ β1 for all individuals, which implies the dispersion matrix D = d2e2e

>
2 of

the random effects, where e2 = (0, 1)>. The latter assumption accentuates the dependence
of the optimal design on the dispersion, when the variance of the slope is large compared
to the variance of the baseline (intercept).

Since the model (5.47) is a particular case of (4.2) with regression functions f(x) =

(1, x)> , we obtain the following general form of the individual information matrix M(ξ)

using (2.17):

M(ξ) =

(
1

∑k
j=1wjxj∑k

j=1 wjxj
∑k

j=1wjx
2
j

)
, (5.48)

where the proportion wj of the number mj of replications at the point xj is given by
wj =

mj

m
.

As already mentioned at the beginning of this chapter, the individual information
matrix M(ξ) is assumed to be non-singular in the case of prediction of the individual
parameters. Using the equality (5.13) it may be easily proved that the matrix ∆ −
∆(M(ξ)−1 + ∆)−1∆ is non-negative definite. Since M(ξ) is positive definite, the left
hand side of the optimality condition (5.19) is a parabola (in x ) with a positive leading
term for every dispersion matrix D . Consequently, all D-optimal designs ξ∗ for the
prediction of the individual parameters may take observations only at the endpoints x = 0

and x = 1 of the design region and have the general form

ξ =

(
0 1

m−m1 m1

)
, (5.49)
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where only the optimal number m∗1 of replications at the support point x = 1 has to be
determined. Then for w1 = m1

m
, w1 ∈ (0, 1) the individual information matrix has the

following explicit form:

M(ξ) =

(
1 w1

w1 w1

)
, (5.50)

which results according to the (generalized) D-criterion (5.15) for the prediction of the
individual parameters in the criterion function

DB(ξ) = ln
m2

m1(m−m1)
+ (n− 1) ln

md2

1 +m1d2

. (5.51)

For the IMSE-criterion we use the uniform weighting ν = λ|[0,1] on the design region,
which results in the positive definite matrix

V =

∫ 1

0

f(x)f(x)>dx =

(
1 1

2
1
2

1
3

)
. (5.52)

Then the left hand side of the optimality condition (5.44) with A = V is a parabola with
a positive leading term for every dispersion matrix D . Consequently, the IMSE-optimal
design will have the general form (5.49) and the individual information matrix M(ξ) will
be of the form (5.50), which implies the following criterion function:

IMSEB(ξ) =
1

3

(
m2

m1(m−m1)
+ (n− 1)

md2

1 +m1d2

)
. (5.53)

The optimal number of replications m∗1 depends not only on the slope variance d2

but also on the number of individuals n and on the number of observations m at each in-
dividual. Since we are primarily interested in the dependence of the dispersion matrix, we
fix the number of individuals to n = 100 and the intra-individual number of observations
to m = 10. For these given values the behaviour of the optimal number of replications in
dependence of the monotonically increasing transformation ρ = d2/(1 + d2) of d2 (intra-
class correlation), which is used to cover the whole range of possible values by a finite
interval (ρ ∈ (0, 1)) , is illustrated graphically by Figure 1.

The optimal number of replications m∗1 increases with d2 from m∗1 = 5 (for d2 → 0

or ρ→ 0) to m∗1 ≈ 9.9 (d2 →∞ or ρ→ 1) for the (generalized) D-criterion (solid line)
and from m∗1 = 5 to m∗1 ≈ 9.1 for the IMSE-criterion (dashed line).
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Figure 1: Optimal number of replications m∗1 at x = 1 : (generalized) D-criterion - solid
line; IMSE-criterion - dashed line

Figure 2 illustrates the efficiency the equi-replicated design, which assigns equal num-
bers of replications at points x = 0 and x = 1 : m1 = m/2 = 5 , in dependence of the
variance parameter ρ . For the (generalized) D-criterion the efficiency is computed by the
formula

effD(ξ) =

(
exp(DB(ξ∗))

exp(DB(ξ))

) 1
(n−1)q+p

=

(
det(M(ξ∗))−1(

∏q
`=1µ`(ξ

∗))n−1

det(M(ξ))−1(
∏q

`=1µ`(ξ))
n−1

) 1
(n−1)q+p

, (5.54)

which is homogeneous in terms of the mean squared error matrix according to the general
form (5.10) of the criterion. For the IMSE-criterion we apply the standard formula

effIMSE(ξ) =
IMSEB(ξ∗)

IMSEB(ξ)
, (5.55)

which also implies a homogeneous efficiency. The efficiency is equal to 1 for both criteria
for ρ → 0 and decreases with d2 to effD(ξ) ≈ 0.50 and effIMSE(ξ) ≈ 0.60 for the
(generalized) D- and IMSE-criterion respectively.

To make use of the theory developed in Section 4.3 we rewrite for the prediction of
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Figure 2: Efficiency of equi-replicated design: (generalized) D-criterion - solid line;
IMSE-criterion - dashed line

the individual deviations the model (5.47) in the form (4.35):

Yij = βi2xj + βi1 + εij, xj ∈ [0, 1]. (5.56)

In this model the regresion functions have the form f(xj) = (xj, 1)> and the dispersion
matrix D = d2e1e

>
1 satisfy the condition (4.33). Then according to Corollaries 13 and

18 the IMSE- or D-optimal designs for the prediction of the individual deviations in the
reduced model

Yij = βi2xj + εij, xj ∈ [0, 1] (5.57)

are IMSE- or D-optimal for the prediction of the individual deviations in (5.56). For
the reduced model (5.57) we obtain D0 = d2 , f(xj) = xj and consequently M0(ξ) =∑k

j=1 wjx
2
j ≥ 0 . For the IMSE-criterion we use again ν = λ|[0,1] , which implies V0 =∫ 1

0
x2dx = 1

3
. Due to Corollaries 12 and 17 Bayesian optimal designs are optimal for the

prediction of the individual deviations in the model (5.57). Since the left hand sides of
the optimality conditions (2.24) and (2.30) have the form c x2 with c > 0 , the D- and
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IMSE-optimal design ξ∗ has the form

ξ =

(
1

m

)
, (5.58)

i. e. they take all observations at point x = 1 . Note that this design illustrates the
behavior of the Bayesian optimal designs in the model (5.47) for small values of the
intercept variance and leads to a singular individual information matrix, which makes it
useless for the prediction of individual parameters.

5.4 Construction of Optimal Designs by Equivariance

We consider a one-to-one transformation g : X → Xg of the experimental region X
(Xg = g(X ) ), and we assume that the regression functions f are defined simultaneously
on both experimental regions (X and Xg ) and are linearly equivariant with respect to
the transformation g . For the latter the existence of a non-singular p × p matrix Qg

such that
f(g(x)) = Qg f(x) (5.59)

for all x ∈ X is required (see e.g. Schwabe (1996), ch. 3). Then the corresponding
transformation of an approximate design ξ may be defined as

g : ξ =

(
x1, ..., xk

m1 , ..., mk

)
→ ξg =

(
g(x1), ..., g(xk)

m1 , ..., mk

)
, (5.60)

where the frequencies mj are the same for both designs ξ and ξg and only the design
points xj are transformed.

Further we add explicitly the dispersion matrix D to the definitions of the mean
squared error matrices of the prediction of the individual parameters and individual devi-
ations as well as to the definitions of the design criteria in order to indicate the influence
of the dispersion matrix.

Lemma 15. The following relation between the mean squared error matrices for the pre-
diction of the individual parameters with respect to the initial and the transformed approx-
imate designs ξ and ξg respectively holds:

MSEB(ξg,Dg) = (In ⊗Q−>g ) MSEB(ξ,D) (In ⊗Q−1
g ) , (5.61)
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where Dg = Q−>g DQ−1
g and Q−>g = (Q>g )−1 = (Q−1

g )>.

Proof. For this proof we define the transformed regression functions as

f g(x) := f(g(x)) = Qg f(x).

Then we obtain the following results for the individual information matrix of the trans-
formed design ξg :

M(ξg) =
1

m

k∑
j=1

mj f g(xj) f g(xj)
>

=
1

m

k∑
j=1

mj Qg f(xj) f(xj)
>Q>g

= Qg M(ξ) Q>g

and consequently
M(ξg)−1 = Q−>g M(ξ)−1 Q−1

g .

For ∆g = mDg = Q−>g ∆ Q−1
g it may be seen that(

M(ξg)−1 + ∆g

)−1
= Qg

(
M(ξ)−1 + ∆

)−1
Q>g ,

which results in

∆g −∆g

(
M(ξg)−1 + ∆g

)−1
∆g = Q−>g

(
∆−∆

(
M(ξ)−1 + ∆

)−1
∆
)

Q−1
g .

Then using formula (5.1) for the mean squared error matrix of the prediction of the
individual parameters we get (5.61).

The next result for the mean squared error matrix of the prediction of the individual
deviations is a by-product of the proof of Lemma 15.

Lemma 16. The following relation between the mean squared error matrices for the pre-
diction of the individual deviations with respect to the initial and the transformed approx-
imate designs ξ and ξg respectively holds:

MSEb(ξ
g,Dg) = (In ⊗Q−>g ) MSEb(ξ,D) (In ⊗Q−1

g ). (5.62)
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Lemmas 15 and 16 imply the following result for the D-optimal designs.

Theorem 19. If the approximate design ξ∗ is D-optimal for the prediction of the indi-
vidual parameters for the dispersion matrix D on the experimental region X , then the
approximate design (ξ∗)g is D-optimal for the prediction of the individual parameters for
the dispersion matrix Dg on the experimental region Xg = g(X ) .

Proof. For this proof the criterion function (5.15) of the (generalized) D-criterion has to
be represented in an appropriate form. To do this we use again formula (5.13). Since the
positive eigenvalues of the matrices H(H>M(ξ)H+Iq)

−1H> and (H>M(ξ)H+Iq)
−1H>H

are the same and the matrix H>H has full rank, the (generalized) D-criterion can be
written as

DB(ξ,D) = ln det(M(ξ)−1) + (n− 1) ln det((H>M(ξ)H + Iq)
−1H>H)

= − ln det(M(ξ)) + (n− 1)(ln det(H>H)− ln det(H>M(ξ)H + Iq)).

Now let Hg = Q−>g H . Then the matrix Hg has full column rank q and satisfies
the condition HgH

>
g = Dg . Consequently, the (generalized) D-criterion (5.15) for the

transformed design ξg on the experimental region Xg may be represented as

DB(ξg,Dg) = − ln det(M(ξg)) + (n− 1)(ln det(H>g Hg)− ln det(H>g M(ξg)Hg + Iq))

and can be further transformed to

DB(ξg,Dg) = − ln det(QgM(ξ)Q>g ) + (n− 1)(ln det(H>g Hg)− ln det(H>M(ξ)H + Iq))

= − ln det(M(ξ)) + (n− 1)(ln det(H>H)− ln det(H>M(ξ)H + Iq))

+(n− 1)(ln det(H>g Hg)− ln det(H>H))− ln det(QgQ
>
g )

= DB(ξ,D) + (n− 1)(ln det(H>g Hg)− ln det(H>H))− 2 ln | det(Qg)|,

where on the right hand side only the first term depends on the design.

A similar result may be formulated for the prediction of the individual deviations.
Due to Corollaries 13 and 18 and Remark 3 it is sufficient to consider only the case of a
non-singular dispersion matrix of random effects.
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Theorem 20. If the approximate design ξ∗ is D-optimal for the prediction of the in-
dividual deviations for the dispersion matrix D on the experimental region X , then the
approximate design (ξ∗)g is D-optimal for the prediction of the individual deviations for
the dispersion matrix Dg on the experimental region Xg = g(X ) .

Proof. From (5.8) and (5.62) it follows directly that

Db(ξ
g,Dg) = Db(ξ,D)− 2 ln det |Qg|,

where the second term on the right hand side is independent of the design.

Similar results may be also formulated for the L-criterion. However, in this case also
the matrix L in (5.26) and (5.29) has to be appropriately transformed.

Theorem 21. If the approximate design ξ∗ is L-optimal for the prediction of the individ-
ual parameters for the dispersion matrix D on the experimental region X with respect to
the linear transformation L, then the design (ξ∗)g is L-optimal for the prediction of the
individual parameters for the dispersion matrix Dg on the experimental region Xg = g(X )

with respect to the linear transformation Lg = LQ>g .

Proof. Using properties of the trace of a matrix we get from the L-criterion (5.26) and
formula (5.61) the following relation

LB(ξg,Dg,Lg) = tr
((

In ⊗Q−>g
)

MSEB (ξ,D)
(
In ⊗Q−1

g

) (
In ⊗

(
L>g Lg

)))
= tr

(
MSEB (ξ,D)

(
In ⊗Q−1

g

) (
In ⊗

(
Qg L>LQ>g

)) (
In ⊗Q−>g

))
= tr

(
MSEB (ξ,D)

(
In ⊗ (L>L)

))
= LB(ξ,D,L),

which proves the result.

Theorem 22. If the approximate design ξ∗ is L-optimal for the prediction of the individ-
ual deviations for the dispersion matrix D on the experimental region X with respect to
the linear transformation L , then the design (ξ∗)g is L-optimal for the prediction of the
individual deviations for the dispersion matrix Dg on the experimental region Xg = g(X )

with respect to the linear transformation Lg = LQ>g .
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Proof. Analogously to the proof of Theorem 21 it can be shown using the L-criterion
(5.29) for the prediction of the individual deviations and formula (5.62) that

Lb(ξ
g,Dg,Lg) = Lb(ξ,D,L),

which implies the result.

The IMSE-criterion for the prediction of the individual parameters or individual devi-
ations is a special case of the L-criterion with A = V (see Lemma 12). As already men-
tioned in Section 5.2, there always exists some matrix L with L>L = V . If the weighting
measure ν will be transformed to its image νg , we obtain Vg =

∫
Xg

f(x) f(x)>νg(dx) =∫
X Qg f(x) f(x)>Q>g ν(dx) = Qg VQ>g . Then for every matrix L with L>L = V the
matrix Lg = LQ>g satisfies the condition L>g Lg = Vg , which establishes the next result.

Corollary 22. If the approximate design ξ∗ is IMSE-optimal for the prediction of the
individual parameters (or individual deviations) for the dispersion matrix D on the exper-
imental region X with respect to the measure ν , then the design (ξ∗)g is IMSE-optimal
for the prediction of the individual parameters (or individual deviations) for the dispersion
matrix Dg on the experimental region Xg = g(X ) with respect to the measure νg .

Example 2. We consider again the linear regression model (5.47) on the experi-
mental region X = [0, 1] . For the IMSE-criterion the uniform weighting ν = λ|[0,1] will
be used. According to Section 5.3 the D- and IMSE-optimal designs for the prediction of
the individual parameters are for every dispersion matrix D of the form (5.49):

ξ∗ =

(
0 1

m∗0 m∗1

)
, (5.63)

where m∗0 = m −m∗1 and m∗1 are the optimal numbers of replications at the endpoints
0 and 1 of the experimental region. Since the left hand sides of the optimality condi-
tions (2.24) and (2.30) are parabolas with positive leading terms for every non-singular
dispersion matrix D , Bayesian optimal designs, which are optimal for the prediction of
the individual deviations, also have the form (5.49).

Further we assume that the intercepts βi1 and slopes βi2 are random and independent
of each other, which implies a diagonal form of the dispersion matrix D = diag (d1, d2) ,
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where d1 and d2 are the variances of the intercepts and slopes respectively. Then optimal
designs for the predictions of the individual parameters as well as individual deviations
can be obtained numerically for any given values of d1 , d2 , m , and n for both design
criteria.

Now we consider the linear transformation g : [0, 1] → [0, a] with g(x) = a x for some
a > 0 . According to (5.59) the dispersion matrix D is transformed via Qg = diag (1, a)

to Dg = diag (d1, d2/a
2) . For the weighting measure ν we obtain the image νg = 1

a
λ|[0,a] ,

where λ|[0,a] is Lebesgue measure on [0, a] . Then according to Theorems 19 and 20 and
Corollary 22 D- and IMSE-optimal designs for the prediction of the individual parameters
as well as individual deviations in the linear regression model (5.47) on the experimental
region [0, a] are of the form

(ξ∗)g =

(
0 a

m∗0 m∗1

)
,

where the optimal numbers of replications m∗0 and m∗1 are the same as in (5.63).

Next we consider a (finite) group G of transformations g : X → X of the experi-
mental region onto itself, which satisfy the equivariance condition (5.59) of the regression
functions as well as the invariance condition Dg = D of the dispersion matrix for all
g ∈ G .

Theorem 23. Let G be a finite group of transformations on X , for which the regression
functions f are linearly equivariant and the dispersion matrix D is invariant.
If ξ∗ is D-optimal on X for the prediction of the individual parameters (or individual
deviations) for the dispersion D , then the design ξ̄∗ = 1

#G

∑
g∈G(ξ∗)g is also D-optimal

on X for the prediction of the individual parameters (or individual deviations) for the
dispersion matrix D .

Proof. Let the design ξ∗ be D-optimal for the prediction of the individual parameters
on the experimental region X for the dispersion D . Then it follows from Theorem 19
and the invariance of the dispersion matrix that the transformed designs (ξ∗)g are also
D-optimal for the prediction of the individual parameters on X for D for all g ∈ G .
Consequently,

DB(ξ∗,D) = DB((ξ∗)g,D) , ∀ g ∈ G. (5.64)
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From the convexity of the criterion function we obtain

DB(ξ̄∗,D) ≤ DB(ξ∗,D) , (5.65)

which implies the D-optimality of the design ξ̄∗ for the prediction of the individual
parameters on X for the dispersion D .

For the prediction of the individual deviations we use Theorem 20 instead of Theo-
rem 19 and obtain the optimality of the design ξ̄∗ from

Db(ξ
∗,D) = Db((ξ

∗)g,D) , ∀ g ∈ G (5.66)

and
Db(ξ̄∗,D) ≤ Db(ξ

∗,D). (5.67)

For the linear criteria we additionally need the invariance of the transformation matrix
A = L>L : Ag = L>g Lg = A for all g ∈ G. As the L-criteria (5.30), (5.32) and (5.33) are
explicitly defined by means of the transformation matrix A the notations LB(ξ,D,A)

and Lb(ξ,D,A) may be used for the linear criteria for the predictions of the individual
parameters and individual deviations respectively.

Theorem 24. Let G be a finite group of transformations on X , for which the regression
functions f are linearly equivariant and the dispersion matrix D as well as the transfor-
mation matrix A are invariant.
If ξ∗ is L-optimal on X for the prediction of the individual parameters (or individual
deviations) for the dispersion D with respect to the transformation matrix A , then the
design ξ̄∗ = 1

#G

∑
g∈G(ξ∗)g is also L-optimal on X for the prediction of the individual

parameters (or individual deviations) for the dispersion matrix D with respect to A .

Proof. Let the design ξ∗ be L-optimal for the prediction of the individual parameters on
the experimental region X for the dispersion D and the transformation matrix A . By
Theorem 21 the transformed designs (ξ∗)g are also L-optimal for the prediction of the
individual parameters on X for D and A for all g ∈ G . Then

LB(ξ∗,D,A) = LB((ξ∗)g,D,A) , ∀ g ∈ G (5.68)
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and since the L-criterion is convex,

LB(ξ̄∗,D,A) ≤ LB(ξ∗,D,A) , (5.69)

which implies the L-optimality of the design ξ̄∗ .
For the prediction of the individual deviation we use Theorem 22 instead of Theo-

rem 21.

Remark 6. The symmetrized design ξ̄∗ is invariant with respect to G , i. e. ξ̄∗ = (ξ̄∗)g

for all g ∈ G .

The last statement follows from group properties and allows to reduce the search for
an optimal design to the class of invariant designs.

For the IMSE-criterion we need the invariance of the measure ν : νg = ν , which
implies Vg = V . Since in both cases of prediction of the individual parameters and
individual deviations the IMSE-criterion is a special case of the linear criterion (for A =

V ), we obtain the next result.

Corollary 23. Let G be a finite group of transformations on X , for which the regression
functions f are linearly equivariant and the dispersion matrix D as well as the measure
ν are invariant.
If ξ∗ is IMSE-optimal on X for the prediction of the individual parameters (or individual
deviations) for the dispersion D with respect to the measure ν , then the design ξ̄∗ =

1
#G

∑
g∈G(ξ∗)g is also IMSE-optimal on X for the prediction of the individual parameters

(or individual deviations) for the dispersion matrix D with respect to the measure ν .

Example 3. Here we consider the linear regression model (5.47) on the symmetric
experimental region [−a, a] for some a > 0 . We assume the dispersion matrix D of
random effects to be diagonal and use the uniform weighting ν = 1

2a
λ|[−a,a] for the IMSE-

criterion. Since the left hand sides of the optimality conditions (5.19) and (5.44) as well as
(2.24) and (2.30) are parabolas (in x ) with positive leading terms , D- and IMSE-optimal
designs take all observation at the endpoints of the experimental region and consequently
have the general form

ξ∗ =

(
−a a

m∗0 m∗1

)
, (5.70)
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where m∗0 = m−m∗1 and m∗1 are the optimal numbers of observations at points −a and
a in both cases of prediction of the individual parameters and individual deviations.

Further we consider the group G = {id, g} with g(x) = −x and id(x) = x . Then we
obtain Qg = diag (1,−1) , and Qid is equal to the identity matrix. Consequently, every
diagonal dispersion matrix is invariant with respect to G i.e. Dg = D . The uniform
weighting ν is transformed to itself by both functions g and id from the group G .

The symmetrized design ξ̄∗ is then of the form (5.70) and results in the invariant
design

ξ̄∗ =

(
−a a

m/2 m/2

)
.

From Theorem 23 and Corollary 23 follows the D- and IMSE-optimality of this design for
both predictions.

Example 4. In this example the quadratic regression model

Yij = βi1 + βi2xj + βi3x
2
j + εij (5.71)

on the standard symmetric design region X = [−1, 1] with a chessboard structured
dispersion matrix

D =


d11 0 d13

0 d22 0

d13 0 d33


will be considered. For the IMSE-criterion we apply the uniform weighting ν = 1

2
λ|[−1,1] ,

which results in the nonsingular matrix

V =


2 0 2

3

0 2
3

0
2
3

0 2
5

 .

Then the left hand sides of the optimality conditions (5.19) and (2.24) for the D-criteria
as well as the conditions (5.44) and (2.30) with A = V for the IMSE-criteria are (in x )
polynomial functions of degree four with positive leading terms. Consequently, the corre-
sponding optimal designs are supported by not more than three design points including
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the two endpoints of the experimental region:

ξ∗ =

(
−1 b 1

m1 m−m1 −m2 m2

)
, (5.72)

where b ∈ [−1, 1] may be different for different design criteria.
Now we consider the sign change group G introduced in Example 3. Since Qg =

diag (1,−1, 1) and Qid = I3 , the dispersion matrix D is invariant for both transforma-
tions in G . The invariance of the weighting measure ν may also be confirmed. Then by
Theorem 23 and Corollary 23 designs of the general form

ξ̄∗ =

(
−1 0 1

m∗1 m− 2m∗1 m∗1

)
(5.73)

are optimal for the predictions of the individual parameters and individual deviations for
the D- and IMSE-criteria. The optimal number of observations m∗1 at points x = 1 and
x = −1 depends on the design criterion as well as on the entries of the dispersion matrix
and on the number of individuals.

Using Theorems 19 and 20 and Corollary 22 it may be shown that the IMSE- (with
uniform ν ) and D-optimal designs for the predictions of the individual parameters and
individual deviations in the model (5.71) on any symmetric interval [−a, a] will be of the
form

ξ∗ =

(
−a 0 a

m∗1 m− 2m∗1 m∗1

)
,

where the optimal frequency m∗1 is the same as in (5.73).
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6 Multi-Group Models

6.1 Estimation and Prediction in Multi-Group Models

In this part the more general model with s different groups of individuals will be consid-
ered. In this case the j-th observation at individual i in group l is given by

Ylij = f(xlj)
>βli + εlij, l = 1, .., s, i = 1, .., nl, j = 1, ..,m, xlj ∈ X , (6.1)

where nl is the number of individuals in group l ( n1, ..., ns satisfy
∑s

l=1 nl = n ) and
m is the number of observations at an individual, which are assumed to be the same
for all individuals in all groups. Also the regression functions f = (f1, .., fp)

> are the
same. The design support points xlj may differ between the groups and come from
the experimental region X . The image f(X ) ⊂ Rp of X is assumed to be a compact
set. εlij denote the observational errors with common variance σ2 > 0 . The individual
parameters βli = (βli1, .., βlip)

> have unknown group mean βl ∈ Rp and covariance
matrix σ2D ∈ Rp×p with a given dispersion matrix D . All individual parameters and
all observational errors are uncorrelated.

For any group the model (6.1) coincides with the random coefficient regression model
(4.2) introduced in Section 4.1. Hence, in group l the vector Yl = (Y>l1, ...,Y

>
lnl

)> of
observations at all individuals for Yli = (Y>li1, ...,Y

>
lim)> may be represented in the form

(4.10):
Yl = (1nl

⊗ Fl)β
l + (Inl

⊗ (FlH))γ l + εl, (6.2)

where Fl = (f(xl1), ..., f(xlm))> denotes the individual design matrix for the individuals
from group l and γ l = Inl

⊗((H>H)−1H>)bl are the random effects in group l (similarly
to the individual design matrix F and the random effects γ in (4.10) respectively). The
vector of individual deviations in group l is given by bl = (b>l1, ...,b

>
lnl

)> for bli = βli−βl.
εl is the vector of the observational errors in the group.

Then the complete observational vector Y = (Y>1 , ...,Y
>
s )> for all groups has the form

Y = diag (1nl
⊗ Fl)l=1,...,s β + diag (Inl

⊗ (FlH))l=1,...,s γ + ε, (6.3)

where β = (β1>, ...,βs>)> , γ = (γ>1 , ...,γ
>
s )>, ε = (ε>1 , ..., ε

>
s )> and diag(Al)l=1,...,s

denotes the block diagonal matrix with blocks A1, ..., As. Note that γ satisfies the
condition b = (In ⊗H)γ for b = (b>1 , ...,b

>
s )> .
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Note that for group l the model (6.1) may also be represented as

Yl = (1nl
⊗ Fl)β

l + (Inl
⊗ Fl)bl + εl, (6.4)

which is similar to (4.7) in part 4.1, and consequently in the form

Y = diag (1nl
⊗ Fl)l=1,...,s β + diag (Inl

⊗ Fl)l=1,...,s b + ε, (6.5)

for the whole population.
It is easy to see that the particular case of the model (6.1) with identical groups (when

it is known that the group means coincide, βl ≡ β0 ) and the same group designs xlj ≡ xj

coincides with the model (4.2).
Note that the form (6.3) of the multi-group model satisfies the conditions of the linear

mixed model (3.1) for X = diag (1nl
⊗ Fl)l=1,...,s , Z = diag (Inl

⊗ FlH)l=1,...,s , G =

Cov(γ) = σ2Inq and R = Cov(ε) = σ2Inp , where n =
∑s

l=1 nl . The next theorem
represents the best linear unbiased predictor of the individual deviations.

Theorem 25. The best linear unbiased predictor of the individual deviations bli in group
l is given by

b̂li = DF>l (FlDF>l + Im)−1(Yli − Ȳl), (6.6)

where Ȳl = 1
nl

∑nl

i=1 Yli denotes the mean observational vector in group l .

Proof. Using the form (6.3) of the multi-group model and Corollary 3 it can be shown
that

γ̂ = diag
(

(Inl
− 1

nl
1n1

>
nl

)⊗ (
(
H>F>l FlH + Iq

)−1
H>F>l )

)
l=1,...,s

Y

then using b̂ = (In⊗H)γ̂ we get for b̂ = (b̂1

>
, ..., b̂s

>
)> and b̂l = (b̂l1

>
, ..., ˆblnl

>
)> the

equations

b̂ = diag
(

(Inl
− 1

nl
1nl

1>nl
)⊗

(
DF>l (FlDF>l + Im)−1

))
l=1,...,s

Y

and
b̂l =

(
(Inl
− 1

nl
1nl

1>nl
)⊗

(
DF>l (FlDF>l + Im)−1

))
Yl

and consequently the result (6.6).
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The next theorem gives the mean squared error matrix of the best linear unbiased
prediction b̂ = (b̂1

>
, ..., b̂s

>
)> for b̂l = (b̂l1

>
, ..., ˆblnl

>
)> .

Theorem 26. The mean squared error matrix of the prediction b̂ of the individual de-
viations is given by

Cov
(
b̂− b

)
= σ2 diag

((
Inl
− 1

nl
1nl

1>nl

)
⊗
(
D−DF>l

(
FlDF>l + Im

)−1
FlD

)
+

1

nl

(
1nl

1>nl

)
⊗D

)
l=1,...,s

(6.7)

Proof. The result follows from Theorem 8 for K = 0 and L = (In ⊗ H) since b̂ =

(In ⊗H)γ̂ .

Note that if the dispersion matrix D of random effects has the block diagonal form
(4.33), the prediction (6.6) may be represented as a transformation of the prediction of the
individual deviations in the corresponding reduced model (analogously to (4.34)). This
case will not be considered explicitly. Instead, we assume the dispersion matrix to be
non-singular.

Corollary 24. If the dispersion matrix D of random effects is non-singular, the best
linear unbiased predictor b̂li of the individual deviations simplifies to

b̂li = (F>l Fl + D−1)−1F>l (Yli − Ȳl). (6.8)

Corollary 25. If the dispersion matrix D of random effects is non-singular, the mean
squared error matrix of the prediction b̂ of the individual deviations simplifies to

Cov
(
b̂− b

)
(6.9)

= σ2 diag

((
Inl
− 1

nl
1nl

1>nl

)
⊗
(
F>l Fl + D−1

)−1
+

1

nl

(
1nl

1>nl

)
⊗D

)
l=1,...,s

.

Further we consider the individual parameters βli , which are all predictable (according
to Corollary 1) only if all design matrices Fl are of full column rank. The next theorem
represents the best linear unbiased predictor of the individual parameters under the full
column rank assumption for the best linear unbiased estimator β̂l = (F>l Fl)

−1F>l Ȳl of
the group mean βl and the individualized estimator β̂li;ind = (F>l Fl)

−1F>l Yli depending
only on the observations at the i-th individual in the l-th group respectively.

74



Theorem 27. The best linear unbiased predictor of the individual parameters βli in
group l is given by

β̂li = D((F>l Fl)
−1 + D)−1β̂li;ind + (F>l Fl)

−1((F>l Fl)
−1 + D)−1β̂l. (6.10)

Proof. The total vector of all individual parameters B may be represented in the form
B = diag(1nl

⊗ Ip)l=1,...,s β + (In ⊗ H)γ . Then the result follows from Theorem 6 for
B̂ = (B̂>1 , ..., B̂

>
s )> and B̂l = (β̂

>
l1, ..., β̂

>
lnl

)> .

The mean squared error matrix of the prediction B̂ = (B̂>1 , ..., B̂
>
s )> of the full vector

of all individual parameters B = (B>1 , ...,B
>
s )> is presented for B̂l = (β̂

>
l1, ..., β̂

>
lnl

)> in
the next theorem.

Theorem 28. The mean squared error matrix of the prediction B̂ of the individual
parameters vector is given by

Cov
(
B̂−B

)
= σ2 diag

(
(Inl
− 1

nl
1nl

1>nl
)⊗

(
D−D((F>l Fl)

−1 + D)−1D
)

(6.11)

+
1

nl
(1nl

1>nl
)⊗ (F>l Fl)

−1

)
l=1,...,s

.

Proof. The result follows directly from Lemma 1 for K = diag(1nl
⊗ Ip)l=1,...,s and L =

In ⊗H , since B = diag(1nl
⊗ Ip)l=1,...,s β + (In ⊗H)γ .

6.2 Optimal Designs

In this section we consider optimal designs for the prediction of the individual parameters
βli and individual deviations bli for i = 1, ..., nl and l = 1, ..., s in the multi-group
model (6.1). We define (exact) design ς in the multi-group model as

ς =

(
ξ1 ... ξs

n1 ... ns

)
(6.12)

with group sizes n1, ..., ns and the group-designs

ξl =

(
xl1 ... xlkl

ml1 ... mlkl

)
, (6.13)
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where xl1, ..., xlkl
are distinct experimental settings for group l and ml1, ...,mlkl

are the
corresponding numbers of replications with

∑kl

j=1mlj = m for all l = 1, ..., s . Note that
the group-design ξl is the same for all individuals in the group and consequently has the
form (2.16) for all l = 1, ..., s .

For approximate designs, which are also of the form (6.13), the values mlj are not
necessarily integer. We denote by ΞX and Ξ the sets of all exact and approximate
designs of the form (6.12) respectively.

Analogously to the one-group case (4.2) we define the mean squared error matrix of
the prediction of the individual parameters for an approximate design ς by

MSEB (ς) = diag
(

(Inl
− 1

nl
1nl

1>nl
)⊗ (∆−∆(Ml(ξl)

−1 + ∆)−1∆) (6.14)

+
1

nl
(1nl

1>nl
)⊗Ml(ξl)

−1

)
l=1,...,s

,

where ∆ = mD is the adjusted dispersion matrix of random effects and

Ml(ξl) =
1

m

kl∑
j=1

mlj f(xlj)f(xlj)
> (6.15)

denotes the standardized individual information matrix in the group l . Then it is easy to
see that

MSEB (ς) = diag (MSEBl
(ξl))l=1,...,s , (6.16)

where

MSEBl
(ξl) =

1

nl
(1nl

1>nl
)⊗Ml(ξl)

−1+(Inl
− 1

nl
1nl

1>nl
)⊗(∆−∆(Ml(ξl)

−1+∆)−1∆) (6.17)

is the mean squared error matrix within group l . (6.17) coincides with (5.1) for Ml(ξl) =

M(ξ) and nl = n . Note that for exact designs the mean squared error matrix (6.14) is
in accordance with (6.11) if we suppress the constant factor σ2

m
.

As it was already mentioned in Section 6.1, in the case of prediction of the individual
deviations we assume the dispersion matrix D to be non-singular. Then we define the
mean squared error matrix of the prediction of the individual deviations as

MSEb (ς) = diag
(

1

nl
(1nl

1>nl
)⊗∆ + (Inl

− 1

nl
1nl

1>nl
)⊗ (Ml(ξl) + ∆−1)−1

)
l=1,...,s

. (6.18)
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For this mean squared error matrix it holds that

MSEb (ς) = diag (MSEbl (ξl))l=1,...,s , (6.19)

where

MSEbl (ξl) =
1

nl
(1nl

1>nl
)⊗∆ + (Inl

− 1

nl
1nl

1>nl
)⊗ (Ml(ξl) + ∆−1)−1 (6.20)

is in accordance with (5.3) for Ml(ξl) = M(ξ) and nl = n . In the case of exact designs
the mean squared error matrix (6.18) coincides with (6.9) (divided by σ2

m
).

Now design criteria for predictions in the multi-group model can be defined. For this
we consider the case of a general dispersion matrix D of random effects with rank q ≤ p .

Definition 19. For a general dispersion matrix D with rank q the approximate design
ς∗ ∈ Ξ is called D-optimal for the prediction of the individual parameters in the multi-
group model if

DB(ς∗) = min
ς∈Ξ
DB(ς) (6.21)

for

DB(ς) = ln

(n−s)q+sp∏
τ=1

ητ (ς), (6.22)

where η1(ς), ..., η(n−s)q+sp(ς) are the (n−s)q+sp largest eigenvalues of the mean squared
error matrix MSEB (ς) of the prediction of the individual parameters. The criterion
function (6.22) is called the (generalized) D-criterion for the prediction of the individual
parameters in the multi-group model.

According to the next lemma the (generalized) D-criterion for the prediction of the
individual parameters in the multi-group model can be represented as the sum of the
corresponding D-criteria in the one-group model (4.2).

Lemma 17. The (generalized) D-criterion DB(ς) for the prediction of the individual
parameters in the multi-group model is equal to

DB(ς) =
s∑
l=1

DBl
(ξl), (6.23)
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for

DBl
(ξl) = ln

(nl−1)q+p∏
ι=1

λι(ξl),

where λ1(ξl), ..., λ(nl−1)q+p(ξl) are the (nl − 1)q + p largest eigenvalues of MSEBl
(ξl) .

Proof. From properties of block diagonal matrices it follows that the eigenvalues of the
mean squared error MSEBl

(ξl) are at the same time the eigenvalues of MSEB (ς) for all
l = 1, ..., s . According to the proof of Lemma 6 the matrix MSEBl

(ξl) has (nl − 1)q + p

positive eigenvalues (for all l = 1, ..., s ). Then it follows from properties of the logarithm
that

ln

(n−s)q+sp∏
τ=1

ητ (ς) =
s∑
l=1

ln

(nl−1)q+p∏
ι=1

λι(ξl),

where λ1(ξl), ..., λ(nl−1)q+p(ξl) are the (nl − 1)q + p positive (largest) eigenvalues of
MSEBl

(ξl) . Using the form (5.10) of the (generalized) D-criterion in the one-group model
(4.2) we obtain the result.

Definition 20. For a general dispersion matrix D with rank q the approximate design
ς∗ ∈ Ξ is called D-optimal for the prediction of the individual deviations in the multi-group
model if

Db(ς∗) = min
ς∈Ξ
Db(ς) (6.24)

for

Db(ς) = ln

nq∏
τ=1

υτ (ς), (6.25)

where υ1(ς), ..., υnq(ς) are the nq largest eigenvalues of the mean squared error matrix
MSEb (ς) of the prediction of the individual deviations. The criterion function (6.25) is
called the (generalized) D-criterion for the prediction of the individual deviations in the
multi-group model.

The relation between the (generalized) D-criteria for the prediction of the individual
deviations in the multi-group model and the model (4.2) is illustrated by the next lemma.

Lemma 18. The (generalized) D-criterion Db(ς) for the prediction of the individual
deviations in the multi-group model is equal to

Db(ς) =
s∑
l=1

Dbl(ξl), (6.26)
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for

Dbl(ξl) = ln

nlq∏
ι=1

νι(ξl),

where ν1(ξl), ..., νnlq(ξl) are the nlq largest eigenvalues of MSEbl (ξl) .

Proof. The result (6.26) follows from properties of block diagonal matrices and the form
(5.12) fo the (generalized) D-criterion (analogously to the proof of Lemma 17).

Note that the (generalized) D-criteria DB1(ξ1), ...,DBs(ξs) for the prediction of the
individual parameters as well as the criteria Db1(ξ1), ...,Dbs(ξs) for the prediction of the
individual deviations are identical among the groups and independent of each other. In
the particular situation, where the group sizes nl are fixed, the group designs ξl can be
determined separately for each group using the theory developed in the previous chapter.
Then the resulting optimal designs are given by

ς =

(
ξ(n1) ... ξ(ns)

n1 ... ns

)
, (6.27)

where ξ(nl) are the optimal group designs, which have the same general form for all
groups.

Now the L-criterion for the prediction of the individual parameters in the multi-group
model will be introduced. For exact designs and a specified τ × p matrix L the criterion
may be defined as the sum of the linear criteria in the groups:

LB(ς) =
s∑
l=1

nl∑
i=1

tr (Cov (Lβ̂li − Lβli)), (6.28)

For approximate designs we generalize this criterion and represent it in the following
equivalent form.

Definition 21. The approximate design ς∗ ∈ Ξ is called L-optimal with respect to
A = L>L for the prediction of the individual parameters in the multi-group model if

LB(ς∗) = min
ς∈Ξ

LB(ς) (6.29)

for
LB(ξ) = tr (MSEB (ς) (In ⊗A)) . (6.30)

79



The next lemma gives an explicit form of the criterion (6.30).

Lemma 19. The L-criterion LB(ς) for the prediction of the individual parameters in the
multi-group model is equal to

LB(ς) =
s∑
l=1

LBl
(ξl). (6.31)

Proof. The result follows directly from the definitions (6.30) and (5.26) of the L-criteria
in the multi-group model and the model (4.2) and formula (6.14).

The linear criterion for the prediction of the individual deviations can be defined for
exact designs similarly to (6.28):

For approximate designs we generalize this criterion on the following way.

Definition 22. The approximate design ς∗ ∈ Ξ is called L-optimal with respect to A
for the prediction of the individual deviations in the multi-group model if

Lb(ς
∗) = min

ς∈Ξ
Lb(ς) (6.32)

for
Lb(ς) = tr (MSEb (ς) (In ⊗A)) . (6.33)

The criterion function (6.33) is called the L-criterion for the prediction of the individual
deviations in the multi-group model.

The next lemma represents a more explicit form of the L-criterion (6.33).

Lemma 20. The L-criterion Lb(ς) for the prediction of the individual deviations in the
multi-group model is equal to

Lb(ς) =
s∑
l=1

Lbl(ξl). (6.34)

Proof. The result (6.34) follows from the forms (6.33) and (5.29) of the linear criteria
in the multi-group and one-group models and formula (6.18) for the mean squared error
matrix of the prediction of the individual deviations.

Since the linear criteria LB1(ξ1), ...,LBs(ξs) and Lb1(ξ1), ...,Lbs(ξs) for the predictions
of the individual parameters and individual deviations respectively are identical among the
groups and independent of each other, the group designs ξl can be determined separately
for each group using the theory developed in Chapter 5 and the resulting optimal designs
are of the form (6.27) if the group sizes nl are fixed.
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7 Discussion and Outlook

In this chapter the results obtained will be summarized and discussed. Then a short
outlook on further open some problems will be given.

7.1 Summary and Discussion

The purpose of this thesis was to develop an analytical approach for determining designs,
which are optimal for prediction of linear aspects, in particular of individual parameters
and individual deviations, in hierarchical random coefficient regression models. In this
context a generalized D-criterion, which is an extension of the determinant criterion in
the situation of a singular covariance matrix of random effects, and linear criteria, in
particular the integrated mean squared error criterion, have been considered. For the
prediction of the individual deviations it has been established that Bayesian optimal
designs retain their optimality if the dispersion matrix of random effects is non-singular.
In the case of a singular dispersion matrix, where only parts of the parameter vector are
random, the design criteria simplify to those in the reduced model, which takes only the
random parameters in account. Consequently the Bayesian optimal designs in the reduced
model are optimal for the prediction. For the prediction of the individual parameters both
criteria result in a compound criterion: a weighted sum of the corresponding criterion in
the fixed effects model and the Bayesian criterion. For these criteria optimality conditions,
which result from the general equivalence theorem, have been formulated. In the particular
case of random intercepts (random block effects) optimal designs in the models without
random effects remain optimal for the prediction of the individual parameters. For the
prediction of the individual deviations all designs are equally good in the random block
effects models. The analytical results are illustrated by the example of straight line
regression. Additionally some examples are given for construction of optimal designs
by invariance and equivariance. Finally the more general case of hierarchical random
coefficient regression, multi-group models, has been considered. If the group sizes are
fixed, the statistical analysis in these models can be performed in each group separately.
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7.2 Further Considerations

In the hierarchical random coefficient regression discussed in this thesis the dispersion
matrix of random effects is assumed to be known and the obtained optimal designs for
the prediction are only locally optimal for a specific dispersion. The assumption of a
prior knowledge of the covariance structure may be inappropriate for many populations
in real applications, where the dispersion matrix is generally not given. Robustness and
sensitivity with respect to the variance parameters should be investigated in the future.

Besides the generalized determinant and linear criteria considered in this work other
optimality criteria like eigenvalue and minimax criteria can be a topic of future research.
Moreover some other criteria, which lead to more robust designs with respect to the dis-
persion, can be developed. Furthermore some particular linear criteria like c-criterion
can be investigated in more detail as it has been done by Elfving (1952) for the classical
regression. Optimal designs for inter- and extrapolation, discussed by Kiefer and Wol-
fowitz (1964a) and Kiefer and Wolfowitz (1964b) (see also Kiefer and Wolfowitz (1965))
for the fixed effects model, may be another object of future investigations. Note that the
inter- and extrapolation can be considered as a special c-criterion. However, in this case
the search for optimal designs is focused on the class of “non-singular” designs, for which
the fixed effects design matrix has full column rank. Another possibility is to represent
the inter- and extrapolation in the form of a linear aspect, which is predictable for any
fixed effect design matrix, and consider the corresponding mean squared error as a design
criterion.

In this thesis mainly the hierarchical models with identical designs for all observational
units have been considered. The only exception is the multi-group case briefly discussed in
Chapter 6. For the multi-group models the design criteria have been introduced; however,
no general optimality conditions could be formulated. Only for the particular case of fixed
group sizes optimal designs have been obtained. These designs follow directly from the
optimal designs inside the groups, i.e. the statistical analysis can be performed in each
group separately. The general multi-group models, where the group sizes are not fixed
and have to be optimized, will be considered in the future in more detail. Furthermore,
other special cases of the hierarchical random coefficient regression, where different designs
for different individuals are allowed, are relevant for many statistical applications. For
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instance, one-point designs, where all observations at an observational unit are made
at the same design point, though the design points are different for different units, are
popular in engineering (see e.g. Weaver and Meeker (2014)). Moreover, designs with
small numbers of observation per individual, considered by Graßhoff et al. (2012) for the
estimation of the population parameters, are relevant for pharmacological studies.

The design optimality conditions presented in this work have been formulated for ap-
proximate designs, which are generally not applicable in populations with small sample
sizes within individuals. The problem of generating exact designs in the fixed effects mod-
els has been well considered in the literature (see e.g. Harman et al. (2015)). Construction
of exacts designs for predictions in random coefficient regression models seems to be much
more complicated, which is a challenge for future investigations.
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