
Hybrid Graph Neural Networks for the
prediction of activity coefficients in

separation processes

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur
(Dr.-Ing.)

von M.Sc. Edgar Ivan Sanchez Medina

geboren am 12.09.1995 in Mazatlan, Sinaloa, Mexiko

genehmigt durch die Fakultät für Verfahrens- und Systemtechnik der
Otto-von-Guericke-Universität Magdeburg

Promotionskommission:

Prof. Dr. Berend van Wachem (Vorsitz)
Prof. Dr.-Ing. Kai Sundmacher (Gutachter)
Prof. Dr. Martin Stoll (Gutachter)
Prof. Dr.-Ing. Hans Hasse (Gutachter)

eingereicht am: 06.09.2024

Promotionskolloquium am: 17.12.2024



M.Sc. Edgar Ivan Sanchez Medina
Hybrid Graph Neural Networks for the prediction of activity coefficients in separation processes
Dissertation, 06.09.2024

Otto-von-Guericke-Universität Magdeburg

Department of Process Systems Engineering

Institute of Process Engineering

Universitätsplatz 2

39106 Magdeburg



Abstract

The task of predicting properties of mixtures from the molecular structure of their
components has been studied for decades. In the past, a broad spectrum of mechanis-
tic models has been developed for predicting thermophysical properties of mixtures.
These models have been the basis of many successful applications across various
chemical and process engineering domains. Noticeable examples are the large
chemical plants supporting today’s world economy through oil refinement.

However, when the properties of novel complex mixtures are the focus, e.g., oc-
curring in biorefineries or in chemical recycling of plastic waste streams, or when
sustainable processes for the future circular economy need to be developed, the
existing property models are often limited regarding their accuracy and predictive
power and are not suited for the effective exploration of the vast chemical space.

Of special importance is the modeling and calculation of phase equilibria, which
is a cornerstone in the design of separation processes for molecular mixtures. For
describing the non-ideal mixing behaviour of components in liquid mixtures, activity
coefficients are often used. The exploration of alternative routes to separation
requires the development of accurate and efficient predictive models that estimate
the activity coefficients across large chemical spaces.

In this dissertation several hybrid models are presented that combine the flexibility
of graph neural networks (GNNs) with phenomenological/mechanistic modeling
approaches of the thermodynamic behavior of mixtures. Two main arrangements for
the construction of such hybrid models are explored: (i) a parallel arrangement in
which the graph neural network serves as a corrector of a phenomenological model
prediction. (ii) A serial arrangement in which the graph neural network is embedded
in some form of mechanistic expression to preserve the physical constraints of the
latter.

The proposed hybrid graph neural network models are then presented from the
simplest scenario to increasing levels of generality in predicting activity coefficients.
The proposed models are extensively tested to evaluate their advantages and limita-
tions compared to conventional methods (e.g., UNIFAC). The dissertation concludes
with a series of case studies that demonstrate the utility of the proposed models in
the context of supporting the early stages of separation process design.
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Overall, the results suggest that hybrid graph neural networks offer more efficient
and accurate solutions for predicting activity coefficients compared to the standalone
submodels. Such advantages can be exploited in practical scenarios in the context
of separation process design. The implementation of hybrid graph neural networks
could be of high relevance in the development of more sustainable separation
processes.
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Zusammenfassung
Die Vorhersage der Eigenschaften von Stoffgemischen anhand der Molekularstruktur
ihrer Bestandteile wird seit mehreren Jahrzehnten erforscht. Im Ergebnis dieser
Aktivitäten wurde eine ganze Reihe von mechanistischen Modellen der thermo-
physikalischen Eigenschaften von Reinstoffen und Gemischen erfolgreich entwickelt.
Diese Modelle bildeten die Grundlage für zahlreiche erfolgreiche Anwendungen in
verschiedenen Bereichen der chemischen und thermischen Verfahrenstechnik. Ein
wichtiges Beispiel sind die Chemieanlagen in Erdölraffinerien, welche das Rückgrat
der heutigen (fossilen) Weltwirtschaft darstellen.

Wenn jedoch die Eigenschaften neuartiger komplexer Gemische im Mittelpunkt
stehen, wie sie z. B. in Bioraffinerien oder beim chemischen Recycling von Kunst-
stoffabfallströmen vorkommen, oder wenn nachhaltige Prozesse für die zukünftige
Kreislaufwirtschaft entwickelt werden sollen, dann sind die existierenden Eigen-
schaftsmodelle in Bezug auf ihre Genauigkeit und Vorhersagekraft oft begrenzt
und eignen sich insbesondere nicht für die effektive Erkundung großer Räume von
molekularen Strukturen.

Von besonderer Bedeutung für die thermische Verfahrenstechnik ist die Modellierung
von Phasengleichgewichte von Gemischen. Sie ist der Grundstein für die Auslegung
von Trennprozessen für Flüssigkeitsgemische. Zur Beschreibung des nicht-idealen
Verhaltens von Komponenten in Flüssigkeitsgemischen werden häufig Aktivität-
skoeffizienten verwendet. Um Aktivitätskoeffizienten für verschiedenste Moleküle
in große chemischen Strukturräumen zuverlässig bestimmen zu können, werden
akkurate, effizient auswertbare Vorhersagemodelle benötigt.

Vor diesem Hintergrund werden in der vorliegenden Dissertation verschiedene
hybride Modelle entwickelt, die die Flexibilität von Graph Neural Networks (GNNs)
mit mechanistischen Modellen des thermodynamischen Verhaltens von Gemischen
kombinieren. Es werden zwei Hauptanordnungen für die Konstruktion solcher
Hybridmodelle untersucht: (i) eine parallele Anordnung, bei der ein Graph Neural
Network als Korrektor für eine mechanistischen Modellvorhersage dient; (ii) eine
serielle Anordnung, bei der ein Graph Neural Network in ein mechanistisches Modell
direkt eingebettet ist, um bestimmte physikalisch begründete Eigenschaften des
letzteren zu erhalten.

Die vorgeschlagenen hybriden GNNs werden dann vom einfachsten Szenario bis hin
zu allgemeineren Vorhersagen von Aktivitätskoeffizienten vorgestellt. Die hybriden
Modelle werden ausgiebig getestet, um ihre Vorteile und Grenzen im Vergleich zu
konventionellen Methoden (z. B. UNIFAC) aufzuzeigen. Die Dissertation schließt
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mit einer Reihe von Fallstudien, die den Nutzen der vorgeschlagenen Modelle in der
frühen Phase der Planung von Trennprozessen aufzeigen.

Insgesamt deuten die erzielten Ergebnisse darauf hin, dass hybride GNNs im Vergle-
ich zu den eigenständigen Teilmodellen effizientere und genauere Lösungen für die
Vorhersage von Aktivitätskoeffizienten liefern. Diese Vorteile können in praktischen
Anwendungen im Zusammenhang mit dem Entwurf von Trennprozessen genutzt
werden. Die Implementierung dieser hybriden GNN-Modelle könnte insbesondere
für die Entwicklung nachhaltigerer Trennverfahren zukünftig von großer Bedeutung
sein.
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Preface

Writing this dissertation has been a unique opportunity for me to condense the
efforts and findings of most of my time as a doctoral researcher. Along with each
Chapter of this dissertation, I have included a quote. Collectively, I believe that these
quotes represent the spirit of this dissertation, and I would like, in this preface, to
provide the reader with a more extensive explanation of why I believe it so.

The collective capacity that humanity has achieved compared to other living species
is very admirable. However, more often than not, we forget about what unites us as
a species, and the struggles and wonders that we all share. As Prof. Goodenough
said, “we compete against problems, not against people". I believe that this attitude
will be of great practical value in addressing today’s sustainability challenge.

This dissertation combines three main pillars of knowledge: phase equilibria, hybrid
modeling, and graph neural networks. While I understand that the core advances in
these areas have historically happened independent from each other, the advance-
ment of science will increasingly require a multidisciplinary approach. Of course,
this poses certain challenges, since our individual capacities are limited. Historically,
these individual limitations have usually been overcome by the collective develop-
ment of knowledge. This point was also considered by Max Planck, to whom the
phrase “science advances one funeral at a time” is attributed.

While our goal should be to arrive at a complete understanding of physical phenom-
ena, it is also true that practical challenges require the use of tractable solutions. This
was mentioned by Arnold Bondi in the very same context of predicting properties of
condensed matter from molecular structure [22]. In fact, Bondi’s work on mapping
molecular structure to property prediction is still relevant and used today. This has
motivated the use of graph neural networks and hybrid parallel approaches in this
work.

Nevertheless, our understanding of physical phenomena is not completely missing,
and the physical constraints that we do understand must always be respected.
Therefore, as Helmholtz pointed out - “Each individual fact, taken by itself, can
indeed arouse our curiosity or our astonishment, or be useful to us in its practical
applications. But intellectual satisfaction we obtain only from a connection of the
whole, just from its conformity with law".
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As the reader will soon discover, great part of the models proposed in this dissertation
contain a large deep learning component. I believe to be though provoking to include
the quote - “one doesn’t bet against deep learning" by Ilya Sutskever precisely on
Chapter 5, where several limitations of the proposed approaches are pointed out.
However, while observing the limitations is important, one should not forget the
significant benefits, as illustrated in this dissertation, that deep learning can provide.
Such benefits can also permeate the realm of science in general, and the area of
process systems engineering in particular.

In the past, Prof. Roger Sargent foresaw the importance that computers would have
for process engineering. This was at a time when his own machine was extremely
limited by today’s standards. I think we can now confidently say that his prediction
was correct. Overall, I expect deep learning-enabled approaches to be of tremendous
importance in several areas of science and, specifically, process systems engineering.
It is my hope that this dissertation can support these advances.
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Nomenclature

Latin

a activity
A Porter’s model parameter or KDB vapor pressure correlation coefficient
A matrix of node features
a vector of node features
AP atomic polarizability
B second-virial coefficient or KDB vapor pressure correlation coefficient
B matrix of edge features
b vector of edge features
BP bond polarizability
C KDB vapor pressure correlation coefficient
C matrix of graph connectivity
D KDB vapor pressure correlation coefficient
f fugacity or function
FP molecular fingerprint
G Gibbs energy
g molar Gibbs energy
ḡ partial molar Gibbs energy
H enthalpy
h̄ partial molar enthalpy
IG integrated gradients
K weighting factor or parameter from Gibbs-Helmholtz derived expression
Kα separation factor
K∞ separation factor at infinite dilution
L number of message passing layers
M system’s property or molar mass
m molar property
m̄ partial molar property
minSF minimum solvent-to-feed ratio
n number of moles
n vector of number of moles
na number of nodes in a graph
nb number of edges in a graph
nD number of data points
N number of mixture components
NHBA number of hydrogen-bond acceptor sites
NHBD number of hydrogen-bond donor sites
p partial pressure
P pressure
q vector of learnable parameters or hidden state of LSTM
R universal gas constant
r residual
r readout vector of LSTM



SF solvent-to-feed ratio
S entropy or selectivity
T temperature
TopoPSA topological polar surface area
u global-level feature
u vector of global-level features
v molar volume
V volume
v̄ partial molar volume
w Margules parameter
W matrix of learnable parameters
x molar fraction in the liquid phase
x vector of molar fractions in the liquid phase
y molar fraction in the vapor phase
z molar fraction
z vector of molar fractions

Greek

α attention weight or relative volatility
β vector of learnable parameters
δ Jaccard distance metric
ϵ small number
γ activity coefficient
µ chemical potential
Ω weight fraction activity coefficient
ϕ fugacity coefficient
ϕ0 initial features transformation function
ϕa node updating function
ϕb edge updating function
ϕE edge feature transformation function
ϕu global updating function
Π number of phases at equilibrium
ψ message passing function
Ξ updating function

Subscripts

base baseline
CL caprolactam
g graph-level
G actual graph
Gbase baseline graph
i mixture component i
IL ionic-liquid
̸= i different than component i
j mixture component j
k mixture component k
mg mixture graph
mix mixture
pure pure chemical species
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r role of the species (either solvent or solute)
s extrapolated chemical species
S solvent
t processing step of LSTM
v node v
vw between node v and node w
w node w

Superscripts

0 reference state
(final) final embedding
(i) phase i
(l) number of message passing layer
∗ final state in processing step of LSTM
Cat concatenated
E excess property or extract phase
hyb hybrid
id ideal
∞ infinite dilution
L liquid phase
phe phenomenological
pure pure component
R raffinate phase
sat saturation
V vapor phase

Other symbols

A set of pure component molecular-level characteristics
B set of pure component phase-level properties
C set of mixture components’ molecular-level characteristics
CO set of mixture components
D set of mixture phase-level properties
E set of graph edges
G graph
M DECHEMA training set
N neighborhood
P global-pooling function
T set of 10 shortest Jaccard distances
V set of graph nodes
□ aggregation operator

Acronyms and Abbreviations

Adam adaptive moment estimation
AE absolute error
CAMD computer-aided molecular design
CAS-RN chemical abstracts service registry number
CAMPD computer-aided molecular and process design
COSMO conductor-like screening model
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COSMO-RS conductor-like screening model for real solvents
DECHEMA Deutsche Gesellschaft für Chemische Technik und Biotechnologie
DFT density functional theory
e-GNN ensemble of graph neural networks
GAT graph attention network
GCN graph convolutional network
GH-GNN Gibbs-Helmholtz Graph Neural Network
GHS globally harmonized system
GNN graph neural network
GPU graphics process unit
GRU gated recurrent unit
HSP Hansen solubility parameter
IDAC infinite dilution activity coefficient
IL ionic-liquid
KDB Korean Data Bank
LLE liquid-liquid equilibrium
LSTM long-short term memory
LSER linear solvation energy relationship
MAE mean absolute error
MAPE mean absolute percentage error
MCM matrix completion method
MSE mean squared error
MPI Max Planck Institute
MPNN message passing neural network
MLP multi-layer perceptron
MOSCED modified separation of cohesive energy density
NRTL nonrandom two-liquid model
QSPR quantitative structure-property relationship
ReLU rectified linear unit
R2 coefficient of determination
SLE solid-liquid equilibrium
SLLE solid-liquid-liquid equilibrium
SMILES simplified molecular-input line-entry system
SPT SMILES-to-property transformer
TCM tensor completion method
UNIQUAC universal quasichemical model
UNIFAC universal quasichemical functional-group activity coefficients model
VLE vapor-liquid equilibrium
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Introduction 1
„We compete against problems, not against

people.

— John B. Goodenough
(Nobel Prize in Chemistry, 2019)

Humankind has a long history dealing with mixtures. Perhaps, the first examples of
human-made separations can be trace back to the extraction of edible parts from
plants and animals, a fundamental activity for the early humans’ survival. The
extraction and purification of metals from ores, an important step in the evolution
of technology and society, and the distillation of alcohol from fermented substances
also highlight the significant impact of mixture separation on human history [145].
Not only the task of separating mixtures has been important, also the combination
of substances to create new mixtures has advanced society in different ways. The
creation of new metal alloys with desired properties and the creation of novel
mixtures for the development of plastics, paints and adhesives has shaped many
technological advancements that have resulted in our today’s standard of living.

Along with the technological and societal advancements that have taken us this far,
new global challenges have arise. Our society is consuming natural resources at a
rate that exceeds our planet’s capacity for regeneration, and this consumption is
accelerating over time [44]. This results in a clear sustainability problem. There-
fore, there is the need of shifting the current ways of production, distribution and
consumption of resources and goods to meet the natural boundaries of our planet.
Chemical processes, as the central means of today’s society production system, are
at the core of the sustainability goal. Industrial separation processes, specifically,
account for 10-15% of the world’s total energy consumption [147]. And, thermal
separation technologies (i.e., distillation, evaporation and drying) alone account
for approximately 80% of all energy consumed by industrial separations [93]. Our
relationship of us, humans, with mixtures appears to be strong and important to-
wards our sustainability objective. Just as we skillfully combine elements to create
mixtures that advance society, we must also master the "art" of efficient separation
to hopefully revert the environmental damage and keep pushing society forward in
a sustainable way.
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Initially, separation processes were simplistic, often relying on basic mechanical
methods such as filtration, gravity separation, and manual sorting. These processes
were fundamental in industries like mining, agriculture, and early chemical man-
ufacturing. However, their design was mainly driven by empirical thinking that
follows from common experience. With the rise of the Industrial Revolution on
the 18th and 19th centuries, there was a need for more efficient and large-scale
separation methods. This led to the development of more sophisticated separation
equipment which could handle larger volumes and more complex mixtures. It was
precisely around this time that chemical engineering was established as a field for
dealing with the “industrial chemistry" [118]. The design of separation equipment
such as distillation columns and evaporators started to take place in a more studied
manner, but still relying mainly on empirical knowledge with very few instances
of systematic knowledge in the form of physical property tables and constructor
specifications [36]. Despite this, the sophistication of the separation equipment of
that time was notable, and to some extent not radically different from the equipment
used nowadays. In the 20th century, separation processes became fundamental in
petrochemical, pharmaceutical, and food industries. More systematic approaches
for process design started to arise such as the McCabe-Thiele method [104] for
distillation column design. After World War II, there was an increased focus on
optimizing processes for energy efficiency and capacity, driven by the economic ex-
pansion and growing environmental concerns. This era witnessed a stronger use of
applied mathematics and the introduction of computer-aided design and simulation,
allowing for more precise and efficient separation process design [118]. The 21st

century has seen more integrated approaches across multiple spacial scales in which
the process design paradigm is taken from the traditional unit operation level to the
phase-level and even to the molecular-level on what is known as Computer-Aided
Molecular and Process Design (CAMPD) [49]. The evolution of separation processes
design is depicted in Fig. 1.1.

Fig. 1.1.: Depiction of the main techniques used for separation processes design throughout
history.

2 Chapter 1 Introduction



1.1 Motivation

Separation processes of fluid mixtures take advantage of the differences on the
thermodynamic and transport properties of the constituents to carry out the separa-
tion. These differences in the macroscopic (i.e., phase-level) properties are in turn a
result of the constituents’ differences at the molecular-level. Therefore, a relationship
fpure : A → B must exist such that, given the set of molecular-level characteristics A
(e.g., molecular weight, polarizability, molecular shape, configuration, atomic con-
stitution...) of a chemical species, its phase-level properties B (e.g., vapor pressure,
melting point...) can be accurately predicted. In the paradigm of computer-aided
process design, the impact of mathematically modeling fpure is apparent as this
would allow the estimation of relevant physical properties for chemical process
calculations. Not only this would be highly valuable for the chemical engineer
designing processes, but also for the chemist developing new products with desirable
physical characteristics, and for the physical chemist who is trying to unravel the
actual laws of nature. This is the reason why a considerable amount of research [22,
120, 83, 133, 8] has been dedicated to the modeling of fpure since the pioneering
efforts of Langmuir [94] by introducing the idea of group-contribution methods.
This continues to have a key role within the Computer-Aided Molecular Design
(CAMD) and CAMPD paradigms.

The accurate modeling of fpure (despite being already challenging by itself) is only
part of the overall challenge of constructing the mathematical foundations needed
for the development of more sustainable separation processes. The reason is that
fpure only describes the information of pure chemical species. One would also need
to accurately model the phase-level properties of the mixture itself. Similarly to the
pure-component phase-level properties B, a relationship fmix : C → D must exist that
maps the molecular-level characteristics of the mixture constituents together with its
relative composition and physical state (i.e., pressure, volume and temperature) to
its phase-level properties. While the physical P-V-T state of a fluid mixture and its
composition can be characterized relatively well with the available measurement
devices, it is the lack of understanding of the complex inter- and intramolecular
interactions which prevents us from a smooth transition from the corresponding
fpure relationships of the mixture components to the actual fmix relationship. The
statement Abrams and Prausnitz wrote almost three decades ago remains true today
- “Despite attention for over a century from some of the best scientific minds, the goal of
predicting mixture properties from pure-component properties alone remains elusive"
[3].
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Ideally, the mathematical models for fpure and fmix need to be predictive in na-
ture. The reason for this is that the chemical space that we face in designing
novel processes using novel materials is enormous [129]. It is possible that a yet
unexplored molecule or material within such vast chemical space could surpass
its current industrial counterpart in terms of sustainability, cost-effectiveness, and
efficiency. Exploring the entirety of the chemical space through experimental means
is unfeasible. The situation is even worse when considering the realm of mixtures.
The combinatorial nature of them causes the already extensive chemical space to
expand to staggeringly immense proportions, rendering comprehensive experimen-
tal exploration even more impossible. As a matter of fact, if we assume that only
1,000 compounds are of interest, even for the most popular physical properties of
mixtures like vapor-liquid equilibria, only around 1.2% of the experimental data
is available [56]. Yet, the importance of mixtures is unarguable. It may not be a
single “golden" molecule or material that propels the advancement of sustainable
separation processes, but rather, the key could lie in a cleverly designed mixture.

To advance the design of sustainable separation processes, a deeper understanding
of both molecular-level and phase-level physical phenomena of pure components and
mixtures is crucial. However, what is particularly vital is expanding our knowledge
about the interconnection between these two spatial scales. This “bridge" is key
to effectively linking microscopic interactions with macroscopic behavior, thereby
enhancing our ability to describe phase equilibria better and in turn to design more
efficient and sustainable separation processes. A promising approach towards this
goal is to utilize the available experimental data to offset the scarcity of system-
specific information [103]. By combining the data with the current mechanistic
understanding, hybrid mechanistic and data-driven models could potentially take us
closer to the development of more sustainable separation processes.

In recent years, the field of data-driven modeling has witnessed remarkable progress,
largely fueled by advancements in machine learning and deep learning. This surge
in innovation can be attributed not only to the algorithms and techniques emerging
from these domains, but also to the substantial improvements in computational
capabilities [146], and to the trend towards open-sourcing technological frameworks
[116, 1]. This latter development has notably lowered the entry barriers to the field,
making these powerful tools more accessible and fostering a broader participation
in this area of research and application. The question is whether this progress in
data-driven modeling can also be transferred to the area of applied thermodynamics
in combination with the available mechanistic understanding to support the general
problem of molecular and mixture property prediction, specifically regarding the
prediction of phase equilibria in separation processes.
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1.2 Contributions of this thesis

Scope: The challenge of investigating the use of hybrid models for assisting sepa-
ration process design is indeed broad. For the scope of this dissertation, the use of
data-driven tools has mainly focused on investigating how graph neural networks,
an arguably advanced machine learning technique, can assist the process of con-
structing foundational predictive models for fluid phase equilibria. The use of graph
neural networks in this research is motivated by their recent success in predicting
molecular properties, particularly in the field of drug discovery [163]. The role
of accurately predicting phase equilibria of fluid mixtures within the context of
separation processes design is remarkable [23]. Even a small improvement in the
prediction accuracy can significantly impact the outcomes of the design. If a model
falls short, there exist a risk of incorrectly predicting that separation will not occur
when it actually will, or conversely, suggesting a viable separation for a system that
does not exhibit such behavior.

In this study, the focus is restricted to systems operating under low to medium
pressure levels. This limitation is due to the reliance on the concept of activity
coefficients in the phase equilibria calculations conducted here. Therefore, systems
at high pressure levels (for which it is well known that activity coefficient-based
models do not work well [56]) are left out of the present scope. This dissertation also
aims for the advancement of the understanding of different hybridization strategies
that can be applied to combine the worlds of mechanistic modeling and data-driven
modeling. This is particularly relevant in the context of applied thermodynamics,
where the thermodynamic principles and constraints are fundamental and must be
adhered to by any modeling framework.

Therefore, the contributions of this dissertation can be summarized by addressing
the following set of questions:

• Application of graph neural networks: How can graph neural networks be
leveraged to aid in the design of separation processes, particularly through the
prediction of activity coefficients for phase equilibria calculations?

• Effectiveness of hybrid models: Do hybrid models, which combine mechanis-
tic and machine learning approaches, offer more robust solutions for predicting
phase equilibria of fluid mixtures compared to standalone models?

• Exploration of hybrid model arrangements: What configurations of hybrid
models are most effective, and what factors contribute to their superiority in
the context of phase equilibria prediction?
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• Integration into existing design frameworks: Is it feasible to integrate
these novel hybrid models into the existing methodologies used for separation
process design, and if so, how can this be effectively achieved?

1.3 Thesis structure

The remainder of this dissertation is structured as follows:

Chapter 2. In this Chapter, the thermodynamic fundamentals of phase equilibria in
fluid systems are presented along with the main approaches for modeling it. The
role of molar excess Gibbs energy (gE) models is described. Emphasis has been
set on revising the concept of activity coefficients γ. The significance of activity
coefficients in the infinite dilution region has been also explained. Additionally, this
Chapter provides an overview of the concept of hybrid modeling, focusing on its two
primary architectures: parallel and serial arrangements. Lastly, this Chapter delves
into the fundamentals of graph neural networks, emphasizing the mechanisms that
enable their training for the purpose of performing graph-level predictions.

Chapter 3. In this Chapter, an extensive comparison is presented between graph
neural network models and the most widely-used predictive models for infinite
dilution activity coefficients, specifically conducted at a temperature of 298.15 K.
Additionally, the Chapter introduces the concept of hybrid parallel graph neural
networks, examining their performance relative to their individual submodels. A
number of additional isothermal studies are also provided.

Chapter 4. This Chapter generalizes the graph neural network models introduced
in Chapter 3 for the prediction of activity coefficients at infinite dilution, by now
allowing temperature variation. The temperature dependency is included by in-
troducing the concept of hybrid serial graph neural networks. Here, mechanistic
knowledge derived from the Gibbs-Helmholtz thermodynamic relation is used to-
gether with a series of graph neural networks for predicting the activity coefficients
at infinite dilution. The extension of such model, referred to as the Gibbs-Helmholtz
Graph Neural Network (GH-GNN), to more complex mixtures including ionic liquids
and polymers is also presented.

6 Chapter 1 Introduction



Chapter 5. This Chapter progresses with the generalization of the graph neural
network models to predict activity coefficients across varying temperatures and
compositions. The concept of the hybrid serial arrangement is developed further by
incorporating composition dependency through the extended Margules equation.
The Chapter also presents a comparative analysis of this approach, which relies
solely on infinite dilution data, against the commonly used UNIFAC-Dortmund
model, developed using extensive and diverse types of experimental data. This
comparison highlights their respective performances and limitations, particularly in
the contexts of predicting vapor-liquid equilibria.

Chapter 6. This Chapter applies the previously introduced graph neural network-
based models to practical scenarios in the design of separation processes. It specif-
ically explores their application in the pre-selection of solvents for extractive dis-
tillation and liquid-liquid extraction. Additionally, the Chapter demonstrates the
value of these type of models in supporting sustainable separation process design,
particularly through their contribution to the design of a lignin process.

Chapter 7. In this Chapter, a summary of the key contributions of this thesis is
presented, alongside an outlook that aims to steer future research and initiatives
towards leveraging hybrid graph neural networks. This guidance is particularly
focused on enhancing the development of more sustainable separation processes,
highlighting the potential impact and applications of these advanced computational
tools in the field.
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Background 2
„Science advances one funeral at a time.

— Adapted from Max Planck
(Nobel Prize in Physics, 1918)

This Chapter provides a comprehensive review of the foundational concepts that
underpin the research presented in this work. The core of this work rests on three
pillars: phase equilibria (with a special focus on the concept of activity coefficients)
reviewed in Section 2.1, hybrid semi-parametric modeling reviewed in Section 2.2,
and graph neural networks reviewed in Section 2.3. The subject of phase equilibria
has long been a cornerstone in the field of chemical engineering due to its critical
relevance in the typical tasks of a chemical engineer (e.g., process design, control
and optimization). On the other hand, hybrid semi-parametric modeling, though
less prevalent within the chemical engineering community, has seen a significant
increase in interest over the past decade [76, 103, 77]. This surge is primarily
attributed to recent advancements in data-driven modeling and computational
techniques, coupled with the immutable physical constraints inherent in chemical
engineering systems. Furthermore, the incorporation of graph neural networks into
chemical engineering is a relatively recent development, marking a new frontier in
the discipline. This Chapter aims to equip the reader with the necessary conceptual,
thermodynamic, and mathematical background in these areas. However, for a
detailed understanding of the overarching concepts on any of these areas, the reader
may find it beneficial to consult the references provided herein.

2.1 Phase equilibria

When considering separation processes, separations by means of mechanical oper-
ations can be included. Examples of these include the separation of metals from
a solid-waste stream by means of a magnetic field or the centrifugation of cream
from milk. However, separation operations of fluid systems in the chemical industry
are typically driven by an increase of the mass transfer rate of specific components
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within a certain phase [145]. The speed at which separation occurs is determined
by the rate of mass transfer, whereas the degree of separation itself is controlled by
thermodynamic equilibrium.

Thermodynamic equilibrium of a multi-component mixture between Π phases is
defined by the fulfillment of the following conditions

T (1) = T (2) = · · · = T (Π) (2.1)

P (1) = P (2) = · · · = P (Π) (2.2)

µ
(1)
i = µ

(2)
i = · · · = µ

(Π)
i ∀ i ∈ CO (2.3)

which are referred to as the thermal (Eq. 2.1), mechanical (Eq. 2.2) and material (Eq.
2.3) equilibirum conditions. Here, CO refers to the set of N mixture components.
The conditions of equal temperatures (Eq. 2.1) and pressures (Eq. 2.2) are rather
intuitive because of their formulation in terms of variables that seem closer to our
daily life experience. By contrast, the condition of material equilibrium is formulated
in terms of the chemical potential µ of each species i ∈ CO in the mixture for all
the Π phases. The concept of chemical potential is much less intuitive compared to
the concepts of temperature and pressure, and it is defined as the rate of change
in the system’s energy due to a change in the composition of a specific component.
It is important to note that while the concepts discussed herein are relevant to the
equilibrium of solid, liquid, and vapor phases, the focus here predominantly lies
on the fluid phases (liquid and vapor). Unlike the solid phase, which maintains its
shape under shear stress, fluid phases are characterized by their ability to deform
and flow when subjected to such stress [56].

2.1.1 Thermodynamic fundamentals

Mixture properties

When addressing mixtures of N components, it is essential to consider the influence
of composition on the thermophysical properties of the mixture, in addition to the
effects of temperature and pressure. Historically, the modeling of mixture properties
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has been approached through three primary mechanisms [56] that are explained
briefly in the following:

1) Modeling the property change upon mixing: The idea here is to model the differ-
ence between the property of the real mixture and the weighted average of the pure
component properties according to their molar fraction in the mixture. Therefore,
for any molar property m we can write its property change upon mixing as

∆m = m−
N∑
i

zimi (2.4)

where zi stands for the mole fraction of component i in the mixture, and mi refers
to the molar property of the pure component i.

2) Introducing the partial molar property: This approach relies on understanding
how individual components contribute to the overall mixture property of interest.
The idea is to model how a single component, infinitesimally added to a mixture
while maintaining everything else constant, affects the overall system’s property M .
The definition of a partial molar property is then given by

m̄i ≡
(
∂M

∂ni

)
T,P,n̸=i

(2.5)

where n ̸=i refers to the vector of number of moles for all mixture components except
component i.

By having access to the partial molar property of each component in the mixture, one
can calculate (as shown by the Euler theorem for homogeneous functions, Appendix
A.1) that the mixture property is equal to the weighted average of the partial molar
properties according to their mole fraction (Eq. 2.6).

m =
N∑
i

zim̄i (2.6)
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3) Introducing the excess property: This method involves the use of excess proper-
ties, which are defined as the difference between the actual property of the mixture
and the property predicted by an ideal model (Eq. 2.7). Excess properties help
in quantifying the deviations from ideality, offering a measure of the different
interactions between different components in the mixture.

mE = m−mid (2.7)

Chemical potential and fugacity

If we consider a closed system consisting of only one phase, its change in Gibbs
energy G in differential form is given by

dG = dH − TdS − SdT = V dP − SdT (2.8)

where H, S, T , V and P stand for the enthalpy, entropy, temperature, volume and
pressure, respectively. If now material variation is allowed into the system (i.e., an
open system), the amount of each one of the components in the system needs to be
included as additional variables of the thermodynamic potential. Thus, the Gibbs
energy in an open system is a function of temperature, pressure and composition
G = f(T, P, n1, n2, . . . , nN ), and the total differential can be written as

dG =
(
∂G

∂T

)
P,n

dT +
(
∂G

∂P

)
T,n

dP +
N∑
i

(
∂G

∂ni

)
T,P,n̸=i

dni (2.9)

where n = [n1, n2, . . . , nN ] is the vector of number of mols for all components in the
mixture, and n ̸=i stands for the vector of number of mols for all components except
component i. By comparison of Eq. 2.9 to Eq. 2.8, it is clear that

(
∂G

∂P

)
T,n

= V (2.10)

(
∂G

∂T

)
P,n

= −S (2.11)

and thus, we can introduce the concept of chemical potential as being the last partial
derivative of the right hand side of Eq. 2.9
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µi =
(
∂G

∂ni

)
T,P,n ̸=i

= ḡi (2.12)

which corresponds to the partial molar Gibbs energy ḡi. Therefore, the chemical
potential of a substance i in a mixture can be described as the rate of change in the
system’s Gibbs energy when one molecule of i is added to the system at constant T
and P , holding the amount of the rest of components also constant.

At the same time, we can express the chemical potential in terms of an auxiliary
variable called fugacity fi (derivation in Appendix A.2) as

µi(T, P, z) = µ0,pure
i (T, P 0) +RT

fi(T, P, z)
f0,pure

i (T, P 0)
(2.13)

where the superscript 0 refers to the reference state at an arbitrary pressure P 0, the
superscript pure indicates the properties of the pure compound i, z is the vector of
molar ratios for all mixture components, and R is the universal gas constant. The
auxiliary variable fugacity needs to meet the limiting condition of the ideal gas

lim
P →0

fi(T, P, z) = ziP (2.14)

Since, for a multi-phase system in equilibrium, the temperature and pressure are the
same in all phases, the material equilibrium condition (Eq. 2.3) can be expressed in
terms of the fugacities f using Eq. 2.13 as

f
(1)
i = f

(2)
i = · · · = f

(Π)
i ∀ i ∈ CO (2.15)

The introduction of the chemical potential as a result of studying (chemical) systems
with material exchange in the framework of classical thermodynamics was indeed
an impactful contribution of Gibbs [51].

2.1.2 Activity coefficients

For simplification, another auxiliary variable is defined as the ratio of the fugacities
that appear in Eq. 2.13 (or, in general terms, as the ratio of the fugacities with an
arbitrary reference state). This variable is called the activity ai
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ai ≡
fi

f0
i

(2.16)

If the reference state is the ideal gas at the same temperature, pressure and composi-
tion, the activity corresponds to the fugacity coefficient

ϕi(T, P, z) = fi(T, P, z)
ziP

(2.17)

Similarly, if the reference point is the ideal solution, the activity corresponds to the
activity coefficient

γi(T, P,x) = fi(T, P,x)
xif

pure
i (T, P ) (2.18)

where xi refers to the molar fraction of component i in the (liquid) solution. From
Eq. 2.18 the limiting condition of γ = 1 when xi = 1 is clear. The ideal solution is
such that the fugacity of component i in the mixture fi is equal to the fugacity of the
pure component i weighted by the molar fraction (i.e., fi = xif

pure
i ). By combining

Eq. 2.18 and Eq. 2.16 the relationship between activity and activity coefficient can
be found

ai = xiγi (2.19)

Intuitively, and by observing Eq. 2.18, the activity coefficient can be regarded as a
measure of the deviation from the ideal behavior. This deviation occurs when the
assumptions of the ideal solution are no longer valid. In particular, the ideal solution
model assumes that all interactions between molecules are the same and, as a result,
the partial pressures are equal to the molar proportion of the saturation pressure of
the corresponding pure compound P sat

i . This is exactly Raoult’s law

Pi = xiP
sat
i (2.20)

where xi stands for the molar fraction of component i in the liquid phase.

Therefore, in order to solve the material equilibrium condition (Eq. 2.15) there
exist two approaches corresponding to how the fugacities are calculated using Eq.
2.17 and Eq. 2.18. These approaches are known as the “ϕ" and “γ" approaches,
respectively. The latter approach is specially useful in the context of liquid solutions,
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either within vapor-liquid or liquid-liquid equilibria calculations. For vapor phases
the former approach is used. Therefore, for a vapor-liquid equilibrium calculation
we would have that

γixif
pure
i (T, P ) = ϕV

i yiP (2.21)

where the superscript V refers to the vapor phase, and, with the assumption that
the molar liquid volume vL

i is incompressible (this is a good approximation far from
the critical point), the reference state fugacity is given by

fpure
i (T, P ) = ϕsat

i P sat
i exp v

L
i (P − P sat

i )
RT

(2.22)

where the superscript L refers to the liquid phase.

At conditions where the difference between the system’s pressure P and component’s
saturation pressure P sat

i is not very large, the exponential term, known as the
Poynting factor, is close to 1. Moreover, for non-associating compounds, the fugacity
coefficient at saturation conditions ϕsat

i and the fugacity coefficient of the same
compound in the vapor phase ϕV

i are very similar. Therefore, for many practical
applications vapor-liquid equilibrium (VLE) can be approximated by

γixiP
sat
i ≈ yiP (2.23)

Similarly, liquid-liquid equilibrium (LLE) between phase (1) and phase (2) requires
the fulfillment of the isoactivity condition given by

γ
(1)
i x

(1)
i = γ

(2)
i x

(2)
i (2.24)

Therefore, it becomes clear that the role of the activity coefficient for fluid phase
equilibria calculations is central. The activity coefficient depends mainly on the
temperature of the mixture T and its composition x, and, to a lesser extend, on the
pressure according to the following expressions

∂ ln γi

∂(1/T )

∣∣∣∣
P,x

= h̄E
i

R
(2.25)
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∂ ln γi

∂P

∣∣∣∣
T,x

= v̄E
i

RT
(2.26)

N∑
i

xid ln γi = 0 (2.27)

The derivation of these expressions from the excess properties is available in Ap-
pendix A.3. It is also important to mention that Eq. 2.27 is valid only for the isobaric
and isothermal case. Moreover, this expression is not (strictly speaking) valid for
binary mixtures due to the Gibbs phase rule constraint. Despite this, for the binary
case, it provides a fair approximation when applied to the isothermal case given the
small dependency of γi on P [122].

There are two last expressions that are worth mentioning here, which relate the
activity coefficient with the partial molar excess Gibbs energy (derivation in Appendix
A.4)

ḡE
i = ∂GE

∂ni
= RT ln γi (2.28)

and the molar excess Gibbs energy

gE = RT
N∑
i

xi ln γi (2.29)

Since the assumptions of the ideal solution (i.e., intermolecular interactions within
the mixture are identical, and all molecules are of the same size and shape) are met
for pure compounds, the excess properties for pure substances are zero by definition.
This defines the following boundary condition for the molar excess Gibbs energy

gE
i → 0 when xi → 1 (2.30)

The condition given by Eq. 2.30 has to be met by any model that predicts gE
i . In

the course of history several models have been proposed for predicting gE
i , from

which one can calculate the needed activity coefficients for the posterior phase
equilibria calculations. Among the most influential and widely used excess Gibbs
energy models are the Wilson [164], NRTL [128], and UNIQUAC [3] models.
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At conditions where the component i is infinite diluted, the activity coefficient is rep-
resented as γ∞

i , and it is referred to as the infinite dilution activity coefficient (IDAC).
This coefficient, when reported for binary mixtures, is of special theoretical interest
because it provides a measure of the interactions that provoke the non-ideality of
substances in liquid mixtures. Moreover, its practical significance spans a wide
range of chemical processes, especially for the ones achieving high product purities,
where conditions approach infinite dilution. Moreover, γ∞

i values can be used for
parameterizing models that predict the whole range of compositions [144, 139, 25].
Similarly, in extraction processes, the pre-selection of appropriate solvents often
depends on the values of γ∞

i [25, 11]. Beyond process design, γ∞
i values are also

integral to safety and environmental protection studies, where understanding the
solute’s behavior at infinite dilution can inform hazard assessments and mitigation
strategies [140].

2.2 Hybrid data-driven and mechanistic modeling

To improve the design of separation processes for enhanced efficiency and sus-
tainability, leveraging accurate and computationally efficient models for predicting
phase equilibria is essential. While one approach involves constructing models
based solely on our mechanistic understanding of the molecular processes driving
phase equilibria, this method is time-intensive and demands a high level of expertise
that is scarce [37]. Furthermore, our understanding of molecular processes and
complex intermolecular interactions remains incomplete in several areas, such as
emulsions and dispersions [37]. Consequently, an alternative strategy is to utilize
the knowledge embedded in thermophysical data through data-driven models. The
development of these models offer greater flexibility compared to purely mechanistic
ones, and, hence, tend to be more accessible to a broader community. However,
embedding the physical and thermodynamic constraints into data-driven models is
challenging [76]. Therefore, hybrid models, which integrate fundamental principles
with data-driven parts, represent a promising direction for model development of
fluid phase equilibria and separation processes in general [103]. This type of models
are increasingly recognized for their potential to significantly improve both the
accuracy and efficiency of predictions, while retaining the constraints of the physical
systems.

In fact, practically all chemical process models (at the various spacial scales) are
composed in a hybrid manner. Usually, a mechanistic part in the form of algebraic or
differential equations is coupled with parameters that are fitted to experimental data.

2.2 Hybrid data-driven and mechanistic modeling 17



This is the case also in many thermodynamic models (e.g., NRTL [128], UNIQUAC
[3]). Hence, such models might be regarded as hybrid models already. However, the
emphasis here is for the so-called “hybrid semi-parametric models" which combine
a parametric part (models with a defined set of parameters) with a non-parametric
part (models that can adapt flexibly to the data and do not have a defined set of
parameters) [54]. Hybrid semi-parametric models leverage the strengths of both
approaches. They use parametric models to capture known relationships within the
data based on theoretical or phenomenological evidence (e.g., conservation laws,
kinetic behavior), while employing non-parametric (or more generally, data-driven)
models to learn and adapt to complex data patterns that cannot be easily captured
by parametric forms. This hybrid approach aims to balance the interpretability
and simplicity of parametric models with the flexibility and adaptability of non-
parametric models. In the context of separation processes, McBride et al. [103]
provides an overview of several hybrid semi-parametric models that have supported
the development of separation processes.

Fig. 2.1.: Main hybrid semi-parametric model arrangements.

Hybrid semi-parametric models can be structured in two primary configurations:
parallel and serial. These configurations are illustrated in Fig. 2.1, with further
details provided in the subsequent Subsections. Each arrangement offers a unique
approach to integrating the strengths of both parametric and non-parametric models,
enabling flexible and robust modeling of complex data relationships.

2.2.1 Parallel arrangement

In the parallel configuration of hybrid semi-parametric models, as illustrated on the
left side of Fig. 2.1, the model incorporates both parametric and non-parametric
submodels working in tandem. The parametric submodel is responsible for making
the direct prediction based on a predefined mathematical framework, while the
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non-parametric submodel enhances this prediction by applying a correction. This
correction typically manifest as additive adjustments, although multiplicative cou-
pling can also be employed to refine the predictions. The final prediction of the
hybrid model is then the prediction of the parametric submodel corrected by the
non-parametric counterpart. An advantage of this arrangement is that the training of
the non-parametric part can be decoupled from the development of the parametric
submodel. This means that, once the parametric model has been developed, the
non-parametric model can be trained from the residuals of the parametric submodel
in a subsequent step.

Interestingly, this parallel arrangement restates a fundamental principle often ob-
served in thermodynamics, where the concept of applying “corrections" to theoretical
models is commonplace. For instance, in thermodynamics, the compressibility factor
is used to quantify deviations from ideal gas behavior, and the activity coefficient
provides adjustments from the ideal solution model. Such corrections are vital for
aligning theoretical models more closely with real-world observations, improving
the accuracy of predictions and the understanding of complex phenomena. The
synergy between parametric predictions and non-parametric corrections in hybrid
semi-parametric models mirrors this thermodynamic approach, enabling the model
to accommodate real-world complexities that might not be fully captured by tradi-
tional parametric models alone. This hybridization strategy can be motivated by a
lack of mechanistic understanding or simply by computational convenience. This
parallel arrangement not only enhances model flexibility and predictive power but
also highlights the value of integrating diverse modeling strategies to address the
complexity of certain physical phenomena.

2.2.2 Serial arrangement

The serial arrangement of hybrid semi-parametric models is designed by sequentially
linking the two submodels, where the output from the first serves as the input
for the second to generate the ultimate prediction. This arrangement allows for
a layered approach to modeling, where the insights or predictions from one layer
inform and refine the processing of the subsequent layer. Although it is feasible to
structure this configuration with the parametric component leading into the non-
parametric, it is more commonly arranged with the non-parametric part preceding
the parametric one [54, 103], as illustrated on the right side of Fig. 2.1. This
preferred sequence, where the initial, flexible non-parametric model’s predictions
are further refined and contextualized by the parametric model, leverages the
strengths of both approaches.
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The rationale behind the serial arrangement is that the non-parametric model, due
to its flexibility and fewer a priori assumptions, can capture complex patterns and
relationships in the data that might not be readily apparent or easily modeled by
parametric methods. These findings are then fed into the parametric model, which
can incorporate this embedded information into a more structured, theory-driven
framework. This sequential embedding allows the hybrid model to benefit from
the non-parametric model’s ability to detect and model intricate data complexities,
while the subsequent parametric model applies theoretical principles to ensure that
the predictions adhere to known behaviors or relationships.

2.3 Graph neural networks (GNNs)

Graph neural networks (GNNs) refer to a class of artificial neural networks designed
specifically for processing data that is represented as graphs. This approach is
particularly beneficial for handling structured data, where, besides the elements, the
relationships between elements is also important. Unlike traditional artificial neural
networks, which assume that data points are independent and identically distributed
(i.i.d.), GNNs learn from the complexity of graph structures, making them ideal for
a wide range of applications where data relationships play a crucial role [24].

A graph is usually represented as G = (V, E), where V is the set of nodes in the graph
and E is the set of edges. Nodes (and edges) are usually attributed, which means
that they have an associated vector of features. The goal of a GNN is to learn a useful
graph representation (embedding) that allows us to perform desired downstream
tasks (e.g., graph property prediction) or that allows us to reconstruct the original
graph from the embedding space [167]. This graph representation should take the
form of a dense and continuous vector, and should exist in an embedding space that
conserve the relationships of the graph structure data as relative distances within
the space. GNNs learn such graph representations through a series of operations
(layers) where each operation (layer) updates the node embeddings by aggregating
representations of its neighboring nodes. Therefore, we can write a GNN layer l as

f(al
v) = Ξ

(
al

v, □
w∈N (v)

ψ(al
v,al

w)
)

(2.31)

where f is the GNN operation, al
v is the embedding of node v at layer l, N (v) is the

set of indices of the neighbouring nodes of node v, □ is a permutation-invariant
aggregation operator (e.g., sum, mean), ψ is a message passing function that takes
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the embeddings of node v and node w to construct a message that is send to update
the features of node v, and Ξ is an updating function. Both ψ and Ξ are learnable
functions, which means that they are parameterized differentiable functions. In Eq.
2.31, only the node embeddings take part in the operations. However, edge features
and other graph information can also be included as part of the learning framework
of a GNN.

Since their introduction [143], GNNs have evolved into several variants depending
on the different mechanisms used for performing the three main steps of the general
message passing framework: message passing, aggregation and updating. Perhaps,
the most influential GNN architectures are the Graph Convolutional Network (GCN)
[82], the Graph Attention Network (GAT) [156] and the Message Passing Neural
Networks (MPNNs) [52].

Consequently, by layering multiple layers as depicted in Eq. 2.31, a GNN can
encapsulate both the feature information and the structural topology of graphs
through supervised learning. Specifically, in tasks aimed at predicting properties of
entire graphs, the GNN is trained on a data set comprising graphs along with their
respective labels. The training process involves minimizing a loss function (e.g.,
mean squared error), thereby allowing the model to adjust the parameters of the ψ
and Ξ functions through back-propagation and the application of a gradient descent-
based optimization algorithm. This learning framework is known as supervised
learning [19], and enables the GNN to effectively learn and leverage the complex
patterns present within both the features and the topology of graphs, facilitating
accurate predictions of graph properties.

To facilitate graph-level predictions (either regression or classification), a global
pooling operation is necessary. This operation aggregates the representations of all
nodes (and possibly edges and global information) in the graph, commonly derived
from the final layer L of a GNN, into a unified vector representation of the graph.
The aggregated graph-level representation, ag, enables the application of subsequent
prediction tasks on the graph as a whole. The global pooling mechanism can be
mathematically expressed as

ag = P({aL
v |v ∈ V}) (2.32)

where P denotes the global pooling function, which operates over the set of node
representations aL

v from the last layer L of the GNN, for all nodes v within the graph
V. This function also needs to be permutation invariant since the ordering of the
nodes in a graph is not defined.
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Predicting Isothermal Infinite
Dilution Activity Coefficients

3
„The physics of molecular condensed phases are

not now and may never be known sufficiently
well to allow attainment [of the precise
prediction of physical properties from molecular
structure alone] by tractable theoretical
formulations.

— Arnold Bondi
(Scientist for Shell Development Co.)

As discussed in Chapter 2, understanding the role of activity coefficients is crucial
for accurately modeling fluid phase equilibria. Specifically, infinite dilution activity
coefficients (IDACs) are particularly important. They provide insights into how
different molecules interact with one another, which is essential both for theoretical
understanding and practical applications, such as selecting the best solvents for
extractive processes. As also discussed in Section 2.1.2, to model activity coefficients
effectively, one must consider mainly their dependence on temperature and composi-
tion. Starting with the modeling of isothermal IDACs presents a convenient starting
point given that the effects of composition and temperature are held constant, allow-
ing the focus to be solely on the interactions between different mixture components.
The analysis presented in this Chapter centers mainly on the standard temperature
298.15 K, and concludes with a brief extension to other isothermal cases.

There exist different models for predicting IDACs, which can broadly be catego-
rized into phenomenological and machine learning-based models. Historically,
phenomenological models have been the go-to choice, benefiting from decades
of refinement, application, and validation. This preference stems from their long-
standing development and proven track records, in contrast to the relatively newer
machine learning techniques. Despite their established use, phenomenological
models are not without flaws. This issue is thoroughly discussed in the study by
Brouwer et al. [28], highlighting the limitations inherent in phenomenological
models. Meanwhile, the growth in computational capabilities and the expansion
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of comprehensive databases have paved the way for machine learning methods to
emerge as a promising alternative.

Phenomenological models: They can be organized into four main types: solvation
models, group contribution methods, linear solvation energy relationships (LSER),
and COSMO-RS.

• Solvation models account for the solute-solvent interactions based on specific
model parameters that depend on the specific molecules at hand. The more pa-
rameters they include, the better the predictions tend to be. The most popular
models include the Hildebrand model [71], the Hansen solubility model [65]
and the Modified Separation of Cohesive Energy Density (MOSCED) model
[153]. The mathematical formulation of these specific models can be found in
Appendix A.5.

• Group contribution models estimate activity coefficients based on the molecular
structure by using the assumption that groups in the molecule contribute
independently (and via addition) to non-ideality despite of their surrounding
environment. The most popular model under this category is the original
UNIFAC model [47] and the modifications thereof, UNIFAC-Lyngby [95, 81]
and UNIFAC-Dortmund [161, 57, 58, 59]. The mathematical formulation of
them can be found in Appendix A.6.

• Linear Solvation Energy Relationship models correlate a set of solute and solvent
descriptors to the partition coefficients of the solute into different phases. This
partition coefficients can be then used to estimate IDACs. Perhaps, the most
popular model of this kind is the Abraham model [2] which is described in
Appendix A.7.

• Lastly, COSMO-RS [42, 124], a model grounded in quantum chemistry, utilizes
the conductor-like screening model (COSMO) theory to estimate molecular
interactions. This approach enables the prediction of fluid phase equilibria
by accounting for a range of interaction types, including electrostatic forces,
hydrogen-bonding, and van der Waals interactions.

Machine learning models: There are different data-driven models that have been
proposed in the literature for the prediction of IDACs. Specially, in the last years
during the development of this thesis, the interest in investigating this type of
methods have increased significantly. We can categorize machine-learning based
IDAC models into three main groups as follows:
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• Numerous quantitative structure-property relationship (QSPR) models for pre-
dicting IDACs have been proposed in the literature [106, 53, 43, 4, 113, 13]
for a relatively long time. Developing these type of models predominantly
requires two foundational steps: selecting appropriate molecular descriptors
and employing a regression technique. While for the latter there are many
available options (e.g., linear regression, Gaussian process, support vector
machine), the former step requires extensive exploration of descriptors and
specific expert knowledge to guide the selection process.

• Matrix completion methods (MCM) and Tensor Completion Methods (TCM) have
recently emerged as a promising data-driven alternative in the prediction of
IDACs [74, 75, 33, 34, 32, 151] and other thermophysical [67] and transport
[60, 61] properties. This type of models formulate predictions using a partially
completed solute-solvent matrix (i.e., solutes as columns and solvents as rows)
of IDAC values. The application scope for MCMs, however, is restricted by the
specific solute-solvent matrix it employs, and the precision of its predictions is
deeply influenced by the size of the data set and the inter-data correlations
[33].

• Deep-learning models have also recently gained interest in the prediction of
IDACs. This type of models aim to overcome the limitation of manually
selecting molecular descriptors by providing an end-to-end framework that
can implicitly learn appropriate embeddings (descriptors) using a supervised
learning scheme. The two main deep-learning approaches for the prediction
of IDACs are the methods based on graph neural networks and transformers.
The former includes the pioneering work developed in the course of this thesis
[138] along with an independent work by Felton et al. [45], and further
developments [125, 137, 136, 132]. Methods leveraging transformers, as
primarily developed by Winter et al. [166, 165], incorporate a mechanism
called attention, allowing the model to weigh the importance of different parts
of the input data differently.

3.1 Data sources and data cleaning

The data set utilized for the work presented in the following Sections is compiled
from existing literature sources, originating from the compilation by Brouwer et
al.[28]. The original compilation was corrected for containing a few data point
errors on April 2023 [27]. This collection encompasses binary IDACs determined
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experimentally at a temperature of 298.15 K and for systems including organic
molecules and ionic liquids. For the work presented in this Chapter, all data points
involving ionic liquids were removed. The experimental measurement techniques
used for the determination of the IDACs varied, incorporating both non-analytical
approaches (e.g., ebulliometry, and dew-point temperature measurement) and
analytical strategies (e.g., gas-liquid chromatography retention measurements).
Analytical techniques generally offer more reliable confidence intervals than non-
analytical methods. Nevertheless, due to the limited data availability and the
prevalent omission of confidence intervals in the original experimental works, this
study considers data gathered through both methodologies.

Fig. 3.1.: Solute-solvent matrix representation of the available IDAC data at 298.15 K on
the Brouwer data set. Available IDAC data is represented by colored entries.

After removing all ionic liquid data, the database encompasses a collection of 4,460
data points, representing combinations from 156 solutes and 261 solvents, spanning
across binary mixtures. Despite the extensive data set, there exists redundancy
within the entries, with multiple data points corresponding to identical solute-

26 Chapter 3 Predicting Isothermal Infinite Dilution Activity Coefficients



solvent systems. After identifying these overlaps, the unique system count is refined
to 2,810 distinct pairs, which accounts for approximately 6.9% of the total binary
combinations, as exemplified in Fig. 3.1. The arithmetic mean was computed
for duplicated entries to achieve a singular, representative IDAC value for each
solute-solvent system. The cleaned data set is referred to as Brouwer data set.

For the purposes of scaling and facilitating more intuitive analysis, the natural
logarithm of the IDACs, denoted as ln (γ∞

i ), was preferred over the actual γ∞
i values.

This transformation is particularly advantageous as these scaled coefficients align
more closely with the calculation of chemical potentials (cf. Eq. 2.28), and effectively
scale the wide range of possible IDAC values.

3.2 Molecular graphs

Both solutes and solvents are represented as graphs, which are specifically termed
molecular graphs in this domain. Initially, solutes and solvents were encoded using
the SMILES notation [162] that represent molecular structures as strings. The
cheminformatics toolkit RDKit [127], version 2021.03.1, was utilized to extract atom
and bond characteristics for each molecule. Then, a graph object was constructed
using PyTorch Geometric [46], where nodes and edges represent atoms and covalent
bonds, respectively. In order to have more condensed graph representations, only
non-hydrogen atoms are explicitly included as nodes in the graph. Each node and
edge in this molecular graph is attributed with a vector detailing the previously men-
tioned atom and bond characteristics obtained from RDKit. The selection of features
for nodes and edges, as outlined in Tables 3.1 and 3.2, respectively, was guided by
the objective to capture distinct atomic and bond features within molecules, and
was inspired by methodologies previously described in the literature [52].

The dimensionality of the node feature vector a ∈ {0, 1}25 and edge feature vector
b ∈ {0, 1}6 is given by the sum of the dimensions indicated in Tables 3.1 and 3.2,
respectively. Specifically, binary features that categorize into one of two groups (e.g.,
“Ring” and “Aromatic” for node features as shown in Table 3.1, and “Conjugated”
and “Ring” for edge features in Table 3.2) are encoded with a single binary value,
indicating the presence (1) or absence (0) of each category. This binary encoding
approach, known as one-hot encoding, was used for all features. In essence, one-hot
encoding converts categorical variables into a binary vector, ensuring each category
is represented by a unique entry where only one element is marked with a value of
1, and all others are set to 0. By treating categories as separate dimensions without
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Tab. 3.1.: Atomic features defining the initial feature vector of nodes in the molecular
graphs constructed from the Brouwer data set. The dimension of the correspond-
ing one-hot encoded feature is also shown.

Feature Description Dimension
Atom type [C, Br, Cl, N, O, I, S, F, P] 9
Ring Is the atom in a ring? 1
Aromatic Is the atom part of an aromatic system? 1
Hybridization [sp, sp2, sp3] 3
Bonds Number of bonds the atom is involved in [1,2,3,4] 4
Charge Atom’s formal charge [0,-1,1] 3
Attached Hs Number of bonded hydrogen atoms [0,1,2,3] 4

Tab. 3.2.: Bond features defining the initial feature vector of edges in the molecular graphs
constructed from the Brouwer data set. The dimension of the corresponding
one-hot encoded feature is also shown.

Feature Description Dimension
Bond type [Single, double, triple, aromatic] 4
Conjugated Whether the bond is conjugated 1
Ring Whether the bond is part of a ring 1

implying any inherent order, one-hot encoding facilitates the accurate and unbiased
processing of non-numeric information, enhancing the performance of machine
learning algorithms.

Fig. 3.2.: Schematic representation outlining the process of generating molecular graphs
from SMILES strings.

A molecular graph is represented by the atom feature matrix A ∈ {0, 1}na×25 and the
bond feature matrix B ∈ {0, 1}nb×6, where na and nb denote the number of nodes and
edges, respectively. These matrices are formed by stacking the corresponding node
and edge feature vectors. The connectivity of the molecular graph is represented by
a connectivity matrix C ∈ N2×2nb , which contains the indices of source and receiver
nodes within the graph. The first row of this matrix enumerates the indices of the
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source nodes, while the second row specifies the indices for the target nodes. In the
context of molecular graphs, directed edges (covalent bonds) are not physical. This
aspect explains the dimensions of the matrix C, where 2nb reflects the bidirectional
nature of covalent bonds, thereby permitting nodes to serve simultaneously as
sources and receivers. The construction process of molecular graphs from SMILES
strings is depicted in Fig. 3.2.

This approach to modeling molecules as graphs offers a distinct alternative to other
molecular representation techniques, such as the identification of functional groups
employed in group contribution methods. In contrast to the manual definition of
groups, which relies heavily on the expertise of physical chemists, graph-based
representations enable the application of techniques like graph neural networks
(GNNs). GNNs have the capability to compute molecular representations, optimizing
them based on the atomic and bond information data and their relevance for
accurately predicting ln γ∞

i . This end-to-end learning process facilitates a more
data-driven approach to molecular representations and mixture-related property
prediction compared to the mechanistic models described at the beginning of this
Chapter.

3.3 Graph neural network

In an initial approximation, the molecular graphs representing both the solute and
the solvent are independently processed by distinct GNNs. Specifically, one GNN is
dedicated to generating a vectorial embedding for the solute, while a separate GNN
is tasked with producing the vectorial embedding for the solvent. This approach
ensures that the unique structural characteristics of each component are effectively
captured and represented through their respective embeddings. Subsequently, the
embeddings derived for both the solute and the solvent are concatenated to con-
struct a vectorial representation of the isothermal binary-mixture at infinite dilution.
This mixture embedding is utilized as input to a multi-layer perceptron (MLP) for
regressing the corresponding ln γ∞

i value.

The same architecture was used for both GNN models, the one processing the solvent
and the one processing the solute. First, the initial node embedding a(0)

v of each
node v ∈ V is transformed using a single-layer neural network ϕ0 : {0, 1}25 7→ Rd(l)

with the Leaky ReLU activation function to map the dimensions of the original node
feature vector to the dimensions of the node embeddings during message-passing.
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Fig. 3.3.: Schematic representation of the message-passing layer used for the prediction of
isothermal IDACs.

a(1)
v = ϕ0(a(0)

v ) (3.1)

Then, for each message-passing layer l, the node embeddings of the corresponding
graph are updated according to a message-passing mechanism similar to the gener-
alization of the Gated Graph Neural Networks given by Gilmer et al. [52] and the
edge-conditioned convolution proposed by Simonovsky et al. [148]:

â(l+1)
v = W(l) · a(l)

v + 1
|N (v)|

∑
w∈N (v)

(
ϕ

(l)
E (bvw) · a(l)

w + q(l)
)

(3.2)

Here, â(l+1)
v represents the updated d(l+1)-dimensional feature vector of node v in

layer l + 1. The term W(l) ∈ Rd(l+1)×d(l)
refers to a learnable weight matrix that

transforms the embedding of node v. This transformation is linear and is akin to
the weights used in traditional neural networks for feature transformation. N (v)
is the set of neighboring nodes for the specific node v, ensuring that messages are
passed only between directly connected nodes. The function ϕ(l)

E (·), which processes
the edge feature vector bvw between nodes v and w ∈ N (v), outputs an edge-
conditioned weight matrix in Rd(l+1)×d(l)

. In this work, ϕ(l)
E (·) is a single hidden-layer

neural network employing the ReLU activation function. The primary objective of the
neural network ϕ(l)

E (·) is to dynamically adjust the contribution of each neighbor’s
features to node v based on the characteristics of the edge connecting them. It is
important to emphasize that the matrix generated by ϕ(l)

E (·) is dynamically generated
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during the message-passing process. The actual parameters that are determined
during training correspond to the parameters of ϕ(l)

E (·), the bias vector q(l) ∈ Rd(l+1)
,

and the matrix W(l). The message-passing operations of layer l (Eq. 3.2) are
schematically represented in Fig. 3.3.

After each message-passing layer l, batch normalization [73] is used to standardize
the node embeddings across the training mini-batch, enhancing the stability and
efficiency of the training process. Moreover, the Leaky ReLU activation function is
used to introduce non-linearity into the framework. This can be written as follows

a(l+1)
v = Leaky ReLU

 â(l+1)
v − E

[
â(l+1)

v

]
√
V ar

[
â(l+1)

v

]
+ ϵ

⊙ β
(l+1)
1 + β

(l+1)
2

 (3.3)

where E[·] and V ar[·] represent the expectation and variance operators, ϵ is a
small number to avoid zero-division, ⊙ denotes element-wise multiplication and
β

(l+1)
1 and β

(l+1)
2 are learnable vector parameters. These vector parameters are

utilized to maintain the expressiveness of a(l+1)
v by adjusting its output distribution

dynamically.

Dropout [72] is used after each message-passing iteration to avoid overfitting by
reducing the network’s reliance on specific neurons. This is done by randomly setting
a fraction of the vector a(l+1)

v entries to 0 at each update during the training phase.
After each message-passing layer l, an updated graph is obtained with the same
connectivity and edge features, but with updated node embeddings according to
Eqs. 3.2 and 3.3. The final set of node embeddings {a(final)

v |v ∈ V} is obtained by
averaging the corresponding intermediate node embeddings obtained after each
message-passing layer, as shown in Eq. 3.4. In Eq. 3.4, L denotes the total number
of message-passing layers in the GNN. This process is known as jumping knowledge
and has been reported [169] to improve the accuracy of GNN graph representation
learning.

a(final)
v = 1

L

L∑
l

a(l)
v ; ∀ v ∈ V (3.4)

After this, the final set of node embeddings {a(final)
v |v ∈ V} is processed via the

Set2Set [157] global pooling mechanism, yielding a vector that captures the infor-
mation of the corresponding molecular species, serving as its (learned) molecular
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fingerprint tailored for IDAC predictions. In this work, the same Set2Set pooling has
been used for the updated solute and solvent graphs.

The Set2Set pooling transforms the set of final node embeddings iteratively using a
Long Short-Term Memory (LSTM) network and the softmax function to compute
attention weights according to the following

qt = LSTM(q∗
t−1) (3.5)

αv,t = softmax(a(final)
v · qt) (3.6)

rt =
∑
v∈V

αv,ta(final)
v (3.7)

q∗
t = qt ∥ rt (3.8)

where, q∗
t−1 is the hidden state of the LSTM at processing step t − 1, αv,t is the

attention weight for node v at processing step t, rt is the readout vector at processing
step t, and ∥ represents concatenation. In this work, 3 processing steps were used.
Notice, that the same hidden state vector qt is used to compute the attention weights
for every node in the graph, and, as a result, the permutation invariance of the
pooling operation is kept. Therefore, after the Set2Set global pooling layer, a single
vector ag is obtained that condenses the information of the corresponding molecular
graph (cf. Eq. 3.9):

ag = q∗
t=3 = Set2Set({afinal

v |v ∈ V}) (3.9)

As previously mentioned, the vector ag for the solute and the solvent is computed by
using a single Set2Set layer. This means that the learnable parameters of the LSTM
network (Eq. 3.5) are the same despite of processing the solute or the solvent species.
Hence, the global pooling operation is just tailored to compress the information of
the final graphs independently of their composition in the mixture.

Finally, the binary mixture is represented by the concatenation of the solvent
ag=solvent and the solute ag=solute embeddings. This results in a vector amix which is
twice the size of the species embedding:

amix = ag=solvent ∥ ag=solute (3.10)
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This vector amix is then fed to a multi-layer perceptron (MLP) that predicts the
corresponding ln γ∞

i value. Batch normalization, the Leaky ReLU activation function,
and dropout are also used in each hidden layer of the MLP. This entire GNN-based
framework is represented in Fig. 3.4.

The main advantage of this approach, compared to the alternative phenomenological
models, is that it can be trained end-to-end from the molecular structures to the
IDAC values using backpropagation. Therefore, contrary to the development of, for
instance, group contribution methods involving the handpicking of molecular groups
based on expert knowledge, the processing of molecular structures is performed
automatically by the GNN-based model depending on the atomic and bond character-
istics of the molecules. As a result, and compared to group contribution methods, the
labor-intensive tasks of molecular fragmentation and binary-interaction parameter
fitting (which have been the domain of a select number of specialists in the field for
many years) are effectively accomplished/replaced by the proposed framework in a
single automatic step.

Fig. 3.4.: Schematic representation of the proposed GNN-based model for the prediction of
isothermal IDACs.

The final MLP serves a dual purpose, it calculates the enthalpic contributions to
non-ideality arising from intermolecular interactions between the solute and solvent,
and it also assesses the entropic contributions resulting from disparities in molecular
size and shape between the two. This computation leverages the binary-mixture
representation, amix, as a foundational input, enabling the MLP to integrate these
complex physicochemical phenomena into the same analytical framework. This
vectorial mixture representation is in contrast to the representation of mixtures based
on a set of functional groups used in group contribution methods (e.g., UNIFAC).
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3.3.1 Training

The hyperparameters of the proposed GNN-based model for predicting isothermal
IDACs are given in Appendix A.8, along with the details on how they were de-
termined via Bayesian optimization. Both GNNs used for processing the solvent
and the solute used the same hyperparameters. Therefore, both networks can be
regarded as identically structured, differing only by the actual model parameters de-
termined during the training. The complete GNN-based model has 619,483 trainable
parameters.

The Brouwer dataset described in Section 3.1 was divided into two sets: 80% allo-
cated for model development and the remaining 20% designated for testing. 90%
of the model development set was directly utilized for model training, and the
remaining 10% served for validation and fine-tuning of hyperparameters. Since the
Brouwer data set comprises only isothermal data, a random split was chosen to con-
struct the train/validation/test splits. As further discussed in Chapter 4, the random
data set splitting primarily evaluates the model’s performance in interpolating across
the solute-solvent chemical space delineated by the training data set. The evaluation
of the model in this way mirrors the practical application of phenomenological
models, which are employed within their specific domains of applicability, such as
for compounds that are polar, aliphatic, or aromatic [28, 56]. This strategy ensures
that the model’s capabilities are assessed within contexts relevant to its intended use.
This also simultaneously offers an advantage by suggesting an applicability domain
for the GNN (constructed from the solute-solvent training space). The resulting
model development and test sets follow a similar distribution of ln (γ∞

i ) values
covering the whole range of available values in the data set (cf. Appendix A.9).

The proposed GNN-model was developed in Python 3.8, using the PyTorch [116]
and PyTorch Geometric [46] libraries for its implementation. The training was carried
out using the Adam algorithm, with the mean squared error (MSE) as the loss
function. A learning rate adjustment mechanism was implemented, decreasing the
rate by 0.8 when the validation loss failed to improve beyond a threshold of 10−4

for three successive epochs. All computational experiments were carried out in a
single NVIDIA Tesla P100 GPU (16 GB).

3.3.2 Ensemble learning

Ensemble learning refers to the combination of multiple models (in this case, mul-
tiple GNN models) to improve the robustness and accuracy of predictions. In this
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approach, several GNN models, each with varied random train/validation splits, are
trained independently to predict isothermal IDACs. The individual predictions from
these models are then aggregated, through averaging, to produce a final, unified
prediction. This technique utilizes the chemical diversity learned among GNNs
to reduce the impact of any single GNN’s biases or errors, thereby enhancing the
overall predictive performance. The use of ensemble learning usually results in
better generalization to unseen data.

The ensemble size in this work was established through a systematic evaluation of
how the inclusion of additional GNN models, based on their performance in the
training and validation sets, impacts the ensemble’s overall performance. Fig. 3.5
illustrates the incremental progression of mean absolute percentage error (MAPE)
as the ensemble expands. Notably, the MAPE begins to plateau after the inclusion of
approximately 15 models. To reinforce the stability and reliability of the predictions,
and to enhance the statistical significance of the standard deviation given for a single
GNN model (cf. Table 3.3), a total of 30 models were ultimately integrated into
the ensemble. The smoothed tendency line shown in Fig. 3.5 was calculated as the
centered moving average with a window size of 7 and a minimum window of 1.

Fig. 3.5.: Incremental performance in the mean absolute percentage error (MAPE) with
respect to the ensemble size of the proposed GNN-based for isothermal IDACs.

3.3.3 Comparison to phenomenological models

Table 3.3 showcases the comparative performance of the proposed GNN model, with
eight of the most popular IDAC phenomenological models. A baseline comparison
is established with the Hildebrand model. Beyond this baseline, the remaining
models exhibit significantly enhanced performance. Except for the HSP model,
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these models are considered to represent the state-of-the-art in accurately predicting
IDACs in real-world applications. Within Table 3.3, the standard deviation of the
GNN performance is illustrated in between parenthesis. This standard deviation
was computed across 30 distinct runs of the GNN model, each with varying random
seed used for the train/validation splitting. The ensemble prediction (denoted by
e-GNN in Table 3.3) is obtained by averaging the predictions of the 30 individual
GNN models.

Tab. 3.3.: Performance comparison between the proposed GNN model and popular phe-
nomenological models for isothermal IDAC prediction.

Model Coverage ↑ MAE ↓ SDAE ↓ R2 ↑ MAPE ↓
Hildebrand 54.66% 2.55× 105 9.89× 106 −7.92× 109 4.26× 105

HSP 56.23% 15.86 122.23 −0.27 66.90
UNIFAC (Ly) 93.91% 10.32 59.17 0.56 32.65
UNIFAC 94.52% 10.44 60.39 0.54 32.06
COSMO-RS 97.22% 10.64 66.98 0.43 28.37
UNIFAC (Do) 94.91% 8.23 56.50 0.60 25.88
Abraham 44.27% 4.16 33.58 0.90 21.93
MOSCED 45.69% 2.78 12.58 0.48 19.88
GNN (test) 100% 4.36(0.33) 30.49(2.79) 0.77(0.04) 24.94(2.07)
GNN (all) 100% 4.12(0.36) 31.26(5.44) 0.87(0.05) 16.22(0.90)
e-GNN (test) 100% 3.61 26.49 0.83 22.41
e-GNN (all) 100% 3.30 24.12 0.92 14.05

Note: Performance metrics include Mean Absolute Error (MAE), Standard Deviation of
Absolute Errors (SDAE), Coefficient of Determination (R2), and Mean Absolute Percentage
Error (MAPE), calculated using unscaled γ∞

i,j values. The arrows in the metric names indicate
whether a larger or smaller value is better.

The Standard Deviation of Absolute Errors (SDAE), shown in Table 3.3, is calculated
as

SDAE =

√∑nD
i=1(ri − µr)2

nD
(3.11)

µr =
∑nD

i=1 ri

nD
(3.12)

ri = |γ∞
i − γ̂∞

i | (3.13)

where, nD refers to the number of data points in the data set and γ̂∞
i refers to the

predicted IDAC value.

A critical distinction between the GNN models and the traditional phenomenological
approaches lies in the scope of data coverage. The GNN models have the capability to
predict across the entirety of the data set, in contrast to the shown phenomenological

36 Chapter 3 Predicting Isothermal Infinite Dilution Activity Coefficients



models which are confined to narrower chemical spaces. For example, the appli-
cability of UNIFAC-based models is limited to scenarios where binary-interaction
parameters for the relevant UNIFAC groups are known. The availability of param-
eters similarly constrains the predictive reach of the other models. The exception
in this context is COSMO-RS, whose application depends upon the accessibility of
Density Functional Theory (DFT) calculations for the mixture constituents. In this
study, DFT calculations were available for 97.22% of the cases, slightly limiting the
COSMO-RS model’s coverage. Therefore, based on the dependency of component
parameters, models like Hildebrand, Hansen, MOSCED and Abraham are usually
not considered truly predictive.

Fig. 3.6.: Parity plot between the experimental and the predicted IDAC values by GNN
ensemble and UNIFAC-Dortmund. All the feasible systems for each method are
shown.

Considering the varying degrees of data set coverage by different models as presented
in Table 3.3, comparing their performance is indeed far from straightforward. The
eight phenomenological models’ performance is detailed for their entire feasible
data set, whereas the GNN’s performance is reported for the test set. Additionally,
for a holistic view, the GNN’s performance over the entire data set, denoted with
“(all)" in Table 3.3, is also provided. Focusing on the test set, the GNN model
demonstrates a lower MAE compared to most phenomenological models, with the
notable exceptions being the Abraham and MOSCED approaches. However, these
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two models exhibit limited system coverage, 44.27% and 45.69% respectively, in
contrast to the GNN’s complete coverage.

When narrowing the comparison to models with a data coverage of over 90% (i.e.,
UNIFAC-based, COSMO-RS and GNN-based models), the GNNs surpass them across
all metrics. Yet, it is observed that the MAPE for UNIFAC-Dortmund is within one
standard deviation of the GNN’s performance, suggesting a comparable effectiveness
according to this metric. However, the GNN’s significantly lower MAE (cf. Table
3.3) suggests that the GNN is able to predict highly non-ideal systems (where IDAC
values are larger) considerably better than UNIFAC-Dortmund. This can be observed
in the parity plot shown in Fig. 3.6, where for IDAC values exceeding 4, the e-GNN
model’s predictions more closely mirror the actual experimental values. However,
also an important limitation can be observed when looking at systems with the
lowest IDACs. In such cases, the GNN systematically overestimates the IDAC values.
This might be a result of the relatively few systems in such range contained in the
data set (cf. IDAC value distributions in Appendix A.9). It is important to highlight
that Fig. 3.6 encompasses all systems considered feasible by both the e-GNN and
UNIFAC-Dortmund methods. The e-GNN model outperforms all UNIFAC-based
models and COSMO-RS across all metrics.

If one considers the performance of the GNN models (both the ensemble and the
single GNN), their SDAE is only outperformed by the MOSCED model. This suggest
that the isothermal IDAC predictions of GNN-based models are more consistent
compared to most phenomenological models. In other words, GNN predictions are
uniformly closer to the true values, and contain fewer outliers or extreme errors
compared to the rest of the models (except for MOSCED). The relatively low SDAE
also suggest that the GNNs could be more trustworthy, at least in the tested chemical
space, compared to most phenomenological models given that the error is less likely
to vary widely from one prediction to the next. By looking now at the R2 values,
the GNN-based models outperformed the rest of the phenomenological models,
except for the Abraham model. This suggest that the GNN can indeed capture the
underlying pattern between the molecular structures and the corresponding IDAC
value across the data set better than almost all phenomenological models.

Thus, it is interesting to consider the relatively good performance of the GNN
compared to well-established phenomenological models. This, of course, needs
to be considered through the lens of the specific chemical space studied here.
But, perhaps even more intriguing, one has to consider the fact that the Abraham
and MOSCED models perform comparatively well or even better than the GNN
model. This raises questions about the reasons behind their success and the specific
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type of information these models use to attain such results. On one hand, it is
expected that models tailored for a constrained chemical space (such as Abraham
and MOSCED, characterized by lower data coverage, cf. Table 3.3), would exhibit
strong predictive accuracy for those specific mixtures. The reason for this is that
models optimized within a narrower chemical domain are inherently designed to
address fewer types of physical phenomena than might be encountered in a broader
context. On the other hand, a defining characteristic that sets the Abraham and
MOSCED models apart from other phenomenological models is their inclusion
of model parameters specifically designed to address various van der Waals and
hydrogen-bonding intermolecular interactions (as elaborated upon in Appendices
A.5 and A.7).

3.3.4 Robustness analysis with 5-fold cross-validation

In order to test the robustness of the proposed GNN-based framework for predicting
isothermal IDACs, 5-fold cross-validation was used. This helps ensuring that the
assessment of the GNN model is not dependent on a particular random split of the
training and test data. This also ensures that all data is used for testing the model.
Table 3.4 shows the comparative performance of the proposed GNN model and
each of the phenomenological models presented before. The Hildebrand model is
excluded here due to its poor performance for predicting IDACs (cf. Table 3.3). In
general, the GNN model outperforms all phenomenological models when considering
the mean value across all range of metrics. Two exceptions are noted with the
Abraham model, which outperforms the GNN in MAE, standard deviation of absolute
errors (SDAE), and coefficient of determination (R2), and the MOSCED model which
outperforms the GNN in terms of the MAPE.

Regarding prediction variability, as indicated by the standard deviation values
presented in between parentheses in Table 3.4, the GNN model demonstrates greater
consistency than all phenomenological models with respect to both MAE and the
SDAE. On the other hand, for R2 and MAPE, the GNN model tends to exhibit higher
variability. This observation is attributed to the use of the MSE as a loss function
during the GNN training. Since, the MSE penalizes higher absolute errors more
than small absolute errors, the GNN is lead during training to minimize absolute
errors rather than relative percentage errors. Despite the GNN model’s increased
variability in R2 and MAPE, the assessment of the model’s overall robustness should
consider both mean and standard deviation values. For example, as illustrated in
Fig. 3.7 with the MAPE, despite a wider variability in the percentage errors of GNN
predictions relative to those from phenomenological models, the GNN predictions
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Fig. 3.7.: Mean absolute percentage error (MAPE) for the proposed GNN and popular
phenomenological models when predicting IDACs at 298.15 K. Results are shown
only for feasible systems of the corresponding phenomenological model contained
in the GNN test set during a 5-fold cross-validation.

Tab. 3.4.: Performance comparison between the proposed GNN model and popular phe-
nomenological models using 5-fold cross validation when predicting IDACs at
298.15 K.

Model MAE ↓ SDAE ↓ R2 ↑ MAPE ↓
HSP 15.85 (5.64) 102.42 (66.99) −0.49 (1.20) 66.6 (23.89)
GNN (test) 5.28 (0.84) 34.64 (12.47) 0.75 (0.18) 21.8 (5.04)
UNIFAC (Ly) 10.31 (1.82) 55.05 (21.03) 0.48 (0.16) 32.6 (2.58)
GNN (test) 4.98 (1.09) 35.92 (14.22) 0.69 (0.22) 20.6 (5.00)
UNIFAC 10.43 (1.99) 56.04 (21.91) 0.48 (0.13) 32.2 (2.40)
GNN (test) 5.00 (1.10) 35.83 (14.19) 0.69 (0.22) 20.6 (5.00)
COSMO-RS 10.65 (2.64) 61.43 (26.83) 0.41 (0.05) 28.4 (1.20)
GNN (test) 4.98 (1.06) 35.40 (14.04) 0.69 (0.22) 19.4 (5.00)
UNIFAC (Do) 8.22 (1.84) 52.84 (19.63) 0.53 (0.11) 25.8 (2.48)
GNN (test) 4.64 (1.13) 32.49 (13.23) 0.74 (0.20) 20.4 (4.63)
Abraham 4.18 (1.18) 27.22 (19.68) 0.91 (0.06) 21.8 (1.17)
GNN (test) 4.41 (0.72) 31.39 (9.79) 0.8 (0.13) 19.2 (5.56)
MOSCED 2.78 (0.53) 12.15 (3.58) 0.47 (0.22) 20.00 (1.90)
GNN (test) 1.44 (0.49) 4.38 (2.53) 0.93 (0.05) 20.20 (5.74)

Note: Performance metrics include Mean Absolute Error (MAE), Standard Deviation of
Absolute Errors (SDAE), Coefficient of Determination (R2), and Mean Absolute Percentage
Error (MAPE), calculated using unscaled γ∞

i,j values. The arrows in the metric names indicate
whether a larger or smaller value is better. All metrics are given for the feasible systems
of the corresponding phenomenological model contained in the test set of the GNN. The
standard deviation across the 5-folds is given in between parenthesis. The best mean value
is marked in bold.

generally outperform, except in the case of the chemically narrow Abraham and
MOSCED models.
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3.4 Hybrid parallel graph neural networks

In this Section, the integration of phenomenological IDAC models with the proposed
GNN-based model is explored through a parallel arrangement. In the context of
chemical processes, parallel hybrid models have shown notable improvements in
accuracy and interpretability compared to the individual submodels alone [159, 54,
103]. Specifically, the parallel hybrid arrangement involves training a machine learn-
ing model to learn the errors generated by a physics-based model. The prediction of
the hybrid model is constructed by adding the predictions of the submodels, thereby
reducing the overall prediction error. This type of hybrid model arrangement is
usually favored, against a sequential arrangement, for its implementation flexibility,
allowing for the effective combination of phenomenological understanding and
data-driven information to achieve superior predictive capabilities.

A hybrid parallel GNN model has been constructed for each of the eight phenomeno-
logical models presented in the previous Section. The construction procedure
consists of three sequential steps. First, the corresponding phenomenological model
is used for predicting the IDACs of the systems contained in the training set. Second,
the residual ri = | ln γ∞

i − ln γ∞,phe
i | between the phenomenological model IDAC

prediction and the actual IDAC value is calculated for each system in the training
set. Third, the proposed GNN-based model (as described in the previous Section) is
trained for predicting ri (in contrast of the previous approach of predicting the IDAC
value directly) from the corresponding solute-solvent molecular structures. Since, as
shown in Table 3.3 and discussed in the previous Section, the performance of the
ensemble of GNNs outperforms that of a single GNN, the ensemble of GNNs is here
used for predicting ri. The final IDAC prediction of the hybrid parallel GNN model
can be computed as

ln γ∞,hyb
i = ln γ∞,phe

i +Kri (3.14)

where, the superscripts hyb and phe refer to the predictions of the hybrid and
the phenomenological models, respectively. The parameter K ∈ [0, 1] serves as a
weighting factor for the correction term computed by the GNN model. This weighting
factor has been set to one in the present study (implying a full application of the GNN
correction). However, the application of K allows for tailored adjustments based
on the GNN model’s specific applicability domain. For instances where a prediction
pertains to a system outside the GNN’s applicability domain, K could be adjusted
to zero, effectively nullifying the GNN correction and keeping a phenomenological
“backbone" prediction. Moreover, a more elaborated approach could involve varying
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K between zero and one. This variation would ideally depend on the confidence
in the GNN’s residual prediction. Such mechanism offers a dynamic tool for fine-
tuning the influence of the GNN correction, enabling a balance between data-driven
information and phenomenological predictions.

The evaluation of each hybrid parallel GNN model involved a comparative analysis
against its corresponding phenomenological model as well as against a GNN ensem-
ble model that directly predicts IDACs (i.e., the direct approach). To ensure consis-
tency and fairness in comparison, identical hyperparameters and train/valid/test
splits were applied across both the hybrid and direct approaches. Furthermore,
to maintain fair conditions for assessment, the data set utilized for training and
testing the models was precisely limited to the data points deemed feasible by
each of the eight phenomenological models. This approach guarantees that the
performance comparisons are based on a common ground, allowing for an accu-
rate assessment of the effectiveness of the hybridization process relative to both
traditional phenomenological models and standalone GNN models.

Tab. 3.5.: Performance comparison between the corresponding hybrid parallel GNN, the
GNN ensemble (e-GNN) and the phenomenological models. Results are shown
for the systems in the test set. The best value for each method is shown in bold.

Model
% points with AE ≤ 0.2 ↑ # points with AE ≥ 1 ↓

Phenom. e-GNN Hybrid GNN Phenom. e-GNN Hybrid GNN
UNIFAC-Ly 39.96 78.41 74.62 56 5 5
UNIFAC 44.55 76.50 75.00 46 5 10
UNIFAC-Do 62.36 76.40 74.91 21 4 8
COSMO-RS 51.55 76.42 86.84 24 3 2
Abraham 62.65 74.70 83.13 1 4 1
MOSCED 70.04 73.93 85.99 4 2 1

Table 3.5 summarizes the test performance of the hybrid approaches compared to
the stand alone submodels in terms of the percentage of points that have an absolute
error in the logarithmic IDAC below 0.2 (% AE ≤ 0.2), and the number of points that
have an absolute error in the logarithmic IDAC above 1 (# points with AE ≥ 1).

Figures 3.8 to 3.13 show the absolute error density between the predicted loga-
rithmic IDAC values with respect to the experimental IDAC values. The prediction
performance is shown for the corresponding phenomenological model, the GNN
ensemble and the corresponding hybrid parallel GNN model. For visualization pur-
poses, only errors in the range (−1.5, 1.5) are shown. The number of test systems
included in each case is also shown in the corresponding graph. It can be seen that
the distribution of absolute errors for hybrid parallel GNN models generally clusters
closer to zero in comparison to their constituent models (i.e, the phenomenological
and pure GNN approaches), except for the UNIFAC-based models. This implies a
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superior ability of the GNN to predict residuals of the non-UNIFAC phenomenological
models more effectively than they do in predicting IDACs directly. A plausible expla-
nation for this enhanced predictive performance lies in the inductive bias introduced
by the phenomenological models, which positively influences the overall prediction
accuracy of the hybrid framework. This also shows the presence of systematic errors
inherent to the phenomenological models, errors which are overlooked by them,
yet can be discerned and corrected by the GNN from the solute-solvent molecular
structure information.

In the following, each hybrid parallel model’s performance is discussed, comparing
it to that of its component submodels. The Hildebrand and HSP models have been
omitted from this specific discussion because their performance falls short when
measured against the other phenomenological models, and the GNN-based models
clearly outperform them.

3.4.1 Hybrid UNIFAC-based GNN models

Fig. 3.8.: Absolute error density of UNIFAC (Lyngby), the GNN ensemble and the corre-
sponding hybrid GNN model. The black central line shows the null-error for
comparison. The results are shown for systems in the test set.

An initial observation reveals that the predictions generated by the UNIFAC-Lyngby
(cf. Fig. 3.8) and UNIFAC (cf. 3.9) models exhibit a tendency towards positive
deviations from the true values. This trend can be explained from the models’ need to
extrapolate beyond the finite concentration data utilized during their development,
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extending into the infinite dilution regime. This extrapolation challenge arises
because the parameters for these UNIFAC models were calibrated exclusively against
vapor-liquid equilibria (VLE) and liquid-liquid equilibria (LLE) data [47]. The
Lyngby modification to UNIFAC incorporated only additional excess enthalpy data
alongside VLE and LLE data [95] for its parameter fitting, but not IDAC data. In
contrast, the GNN model demonstrates, in both cases (cf. Fig. 3.8 and Fig. 3.9), a
capacity to predict a broader spectrum of systems with errors more closely aligned
to zero.

Fig. 3.9.: Absolute error density of UNIFAC, the GNN ensemble and the corresponding
hybrid GNN model. The black central line shows the null-error for comparison.
The results are shown for systems in the test set.

Nevertheless, it is interesting to note that the performance of the hybrid GNN model,
when applied in conjunction with both UNIFAC-Lyngby and UNIFAC models, slightly
underperforms relative to the GNN model trained directly on IDAC experimental
data. This pattern follows the observations reported before when discussing the per-
formance of hybrid matrix completion methods coupled with the UNIFAC-Dortmund
model [75]. But, despite the GNN model slightly outperforming the hybrid GNN, the
latter still effectively reduces the errors inherent to the phenomenological models,
aligning the majority of absolute errors closer to zero.

It is evident from Fig. 3.10, that the UNIFAC-Dortmund model demonstrates a
superior ability to predict IDACs when compared to both the UNIFAC and UNIFAC-
Lyngby models. This enhanced performance is anticipated, considering that the
development of this model variant explicitly incorporated experimental IDAC data
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Fig. 3.10.: Absolute error density of UNIFAC (Dortmund), the GNN ensemble and the
corresponding hybrid GNN model. The black central line shows the null-error
for comparison. The results are shown for systems in the test set.

into the calibration of its parameters [59]. Despite this improvement, the GNN
model continues to outperform, delivering more accurate predictions across a wider
array of systems. The gap between the GNN and the hybrid GNN model perfor-
mances narrows in this context, with the GNN model, exhibiting predictions that are
marginally more aligned towards zero. This observation is again aligning with the
discussions in the literature [75].

Hence, it becomes apparent that the effectiveness of data-driven models, particularly
when tasked with predicting the residuals of mechanistic or phenomenological
models, is significantly affected by the underlying structures of these models [119].
Large systematic deviations can confound the data-driven component, rendering
it more challenging for the model to accurately learn the residuals as opposed to
learning the properties directly. For UNIFAC-based models, the presence of numerous
severe outlier predictions (cf. Table 3.5) could account for their relatively negative
impact on the performance of hybrid GNN models. This phenomenon has been
similarly highlighted by Jirasek et al. [75].

3.4.2 Hybrid COSMO-RS GNN model

In the case of the hybrid GNN model derived from COSMO-RS predictions, a clear
pattern can be observed: the hybridization strategy yields more accurate predictions
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compared to either the GNN or COSMO-RS models independently (cf. Fig. 3.11).
This observation is particularly interesting, especially when contrasted with the
earlier discussion regarding UNIFAC-based models, which inherently integrate a
stronger data-driven component through molecular fragmentation into functional
groups and subsequent group parametrization compared to the more theoretical
foundation of COSMO-RS. This underscores the potential advantage of combining
insights coming from different sources (e.g., quantum chemistry and experimental
IDAC values correlated to molecular structure). Such a synergistic integration
of fundamentally different types of information is less explicitly realized in the
UNIFAC-based implementations.

Fig. 3.11.: Absolute error density of COSMO-RS the GNN ensemble and the corresponding
hybrid GNN model. The black central line shows the null-error for comparison.
The results are shown for systems in the test set.

The observed improvements in prediction robustness by the hybrid GNN model,
especially in enhancing the COSMO-RS model’s performance beyond that of, for
example, the UNIFAC-Dortmund model, are elucidated in Table 3.5. While COSMO-
RS alone can only predict 51.55% of the data points (i.e., 282 points) relatively well,
compared to UNIFAC-Dortmund which can predict 62.36% (i.e., 333 points) well, the
hybridization of COSMO-RS elevates the proportion of accurately predicted points
to 86.84%, as opposed to 74.91% for its UNIFAC-Dortmund counterpart. Notably,
despite both COSMO-RS and UNIFAC-Dortmund exhibiting similar frequencies of
significant outlier predictions errors (cf. 21 and 24 data points respectively in
Table 3.5), the hybrid model built upon COSMO-RS significantly outperforms its
UNIFAC-Dortmund equivalent in minimizing the occurrence of such inaccuracies.
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3.4.3 Hybrid Abraham and MOSCED GNN models

Fig. 3.12.: Absolute error density of Abraham, the GNN ensemble and the corresponding
hybrid GNN model. The black central line shows the null-error for comparison.
The results are shown for systems in the test set.

Fig. 3.13.: Absolute error density of MOSCED, the GNN ensemble and the corresponding
hybrid GNN model. The black central line shows the null-error for comparison.
The results are shown for systems in the test set.

Figures 3.12 and 3.13 illustrate comparable performances for the Abraham and
MOSCED models, particularly noting their tendency towards negative deviations
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from the true IDAC values. In both instances, employing the hybrid GNN methodol-
ogy enhances the robustness and overall accuracy of the predictions beyond what
is achievable by the standalone submodels. Furthermore, the performance gap
between the phenomenological models and the GNN ensemble remains minimal,
aligning with the insights presented in earlier discussions in Section 3.3.

3.5 Additional isothermal studies

In this Section, the previous discussion around the prediction of isothermal IDACs
using GNNs is extended to multiple temperatures other than 298.15 K. Moreover,
in this extended analysis, a more chemically diverse data set is used aiming to
enhance the robustness of the observations discussed in previous Sections regarding
the suitability of GNN-based models for predicting isothermal IDACs compared to
phenomenological models. Particular attention is paid to a comparison with the
COSMO-RS, UNIFAC-Dortmund, and MOSCED models, which were identified (cf.
Table 3.3) as exhibiting superior performance at 298.15 K. This superior perfor-
mance is noted not only in terms of the predictions’ accuracy (especially notable
with MOSCED), but also in terms of having a broad spectrum of feasible systems
they can predict (a strength of both COSMO-RS and UNIFAC-Dortmund). Other
phenomenological models are not considered in this comparison due to their rela-
tively lower performance, both in terms of prediction accuracy and/or applicability
range. The Abraham model is omitted due to its performance, which, albeit close,
is slightly inferior to that of MOSCED. Thus, this extended isothermal comparative
analysis includes one specialized and highly accurate model (MOSCED) and two
models (COSMO-RS and UNIFAC-Dortmund) known for their wide applicability
across various system types.

3.5.1 Data preprocessing

For these additional isothermal studies, the data set utilized originates from the
DECHEMA Chemistry Data Series Vol. IX [55], one of the most comprehensive
experimental data collections for IDACs currently available. The employment of this
DECHEMA database, which is contained in physical books, as opposed to similar
data collections in digital versions (e.g., Dortmund Data Bank [41]) facilitates the
open-sourcing of models derived from it, such as those presented in this dissertation.
Making the developed tools universally accessible to researchers and engineers
worldwide, regardless of their financial resources, could significantly contribute to
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the overall benefit of society. The physical volumes of the DECHEMA collection have
been digitized using Optical Character Recognition (OCR) techniques. This was
followed by extensive manual verification to ensure the accuracy and reliability of
the digital content. Errors found in the original DECHEMA Chemistry Data Series
Vol. IX [55] collection are reported in Appendix A.10.

The data contained in the DECHEMA Chemistry Data Series Vol. IX [55] encom-
passes IDAC values for binary systems, measured through various experimental
techniques including gas-liquid chromatography, solubility measurements, static
methods, ebulliometry, and among others. An in-depth review by [39] provides
further insights into these experimental methodologies. Appendix A.11 includes
further details on the experimental techniques used to collect all available IDACs and
the relative distribution of data points collected by each experimental method. For
the purposes of this extended isothermal analysis only systems containing organic
molecules were included.

Regarding experimental uncertainty, it is notable that many scientific publications
on IDAC measurements do not specify the method uncertainties. Nevertheless,
literature sources, including [33], offer general estimations of absolute experimental
IDAC uncertainties ranging from 0.1 to 0.2 (for the logarithmic IDACs), with relative
uncertainties between 1% and 6% reported by other researchers [100, 40, 160, 102].
Brouwer et al. [26] estimate a minimum relative uncertainty of 5% for their data
set, aligning with other uncertainty estimations found in literature [10, 39]. The
discussion on model prediction accuracy in these additional isothermal studies is
framed within the context of these experimental uncertainty estimations, specially
with respect to the one reported for absolute values of ln γ∞

i [33].

In the process of compiling the data set from DECHEMA Chemistry Data Series Vol.
IX [55], measurements of the same binary systems at identical temperatures were
averaged to derive a single value per system at that specific temperature. The data
set was refined by excluding compounds with ambiguous SMILES identifications,
such as certain commercial solvents. This rigorous selection process resulted in a
comprehensive data set, referred to as the DECHEMA data set, which encompasses
40,216 data points spanning 866 solvents and 1,032 solutes, with a total of 1,576
distinct compounds. Out of all 2,482,200 possible solute-solvent combinations, only
0.59% (14,663 binary systems) are reported in this data set. This highlights the
extreme sparsity of the measured data even when only considering the solute-solvent
space defined by the 1,576 distinct compounds contained in the data set.

Despite the sparsity of the measured data, the DECHEMA data set stands out for its
coverage in terms of both the number of chemical species and experimental data
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Tab. 3.6.: Comparison of the DECHEMA data set against similar IDAC data sets used in the
literature.

# solutes # solvents # observed binary systems Reference
378 414 7107 [33]
373 349 6416 [166]
295 407 7668 [151]

1,032 866 14,663 This work

points, surpassing data sets utilized in recent machine learning studies focused on
matrix completion methods [33, 151] and natural language processing [166]. Table
3.6 shows the specific comparison in terms of the number of distinct solutes and
solvents, and the number of observed binary systems.

The relatively larger number of distinct solutes and solvents available in the DECHEMA
data set (cf. Table 3.6) allows for the analysis of the developed models in a much
chemically diverse setting. This would potentially, not only increase the capacity of
the models to learn the relationship between IDACs and molecular graphs, but also
increase the robustness of the applicability domain of the models, revealing potential
limitations that, perhaps, could be missed if the analysis would be performed in
a much limited data set. Temperatures in the DECHEMA data set go from 213.15
to 562.45 K, with 90% of the data concentrated between 293.15 and 393.15 K.
Furthermore, among the 14,663 observed binary systems, only 6,326 systems had
their temperatures measured across a range of at least 20 K. The data set reveals
diverse chemical behavior, with 22.28% of the data points exhibiting negative de-
viations from ideality, 77.31% showing positive deviations, and a marginal 0.41%
approaching ideality.

Once the data was cleaned, a stratified splitting technique was adopted to define the
training and test data sets. Initially, every compound was categorized based on the
Classyfire ontology [38], resulting in the organization of the 1,576 distinct chemical
compounds from the DECHEMA data set into 91 unique chemical classes. Predomi-
nantly, these included “benzene and substituted derivatives" with 270 compounds
and “organooxygen compounds" with 193 compounds. A total of 17 compounds
were not able to be classified into a specific class by Classyfire [38], these were
grouped together for the purposes of the splitting. A more detailed enumeration of
these chemical classes along with the corresponding compound count is presented in
Appendix A.11. When considering these 91 chemical classes, the data points present
in the DECHEMA data set can be grouped into 841 distinct binary combinations
of chemical classes. For each of these combinations, we applied an 80/20 random
split to establish the training and test data sets. In scenarios where a combination
comprised solely a single solute-solvent pair, it was automatically allocated to the
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Tab. 3.7.: Information of the isothermal subsets obtained from the DECHEMA data set and
used for the extended isothermal study.

T (K) # solutes # solvents Size of matrix # obs. % obs. % train % test
293.15 333 118 39,294 1,548 3.94 79 21
298.15 488 239 116,632 3,719 3.19 79 21
303.15 364 321 116,844 3,812 3.26 80 20
313.15 376 196 73,696 2,458 3.34 80 20
323.15 413 189 78,057 2,687 3.44 81 19
333.15 408 220 89,760 2,762 3.08 79 21
343.15 400 119 47,600 1,852 3.89 80 20
353.15 412 127 52,324 1,746 3.34 78 22
373.15 266 108 28,728 1,323 4.61 79 21

training set. This stratified splitting approach ensures that the models developed are
exposed during training to a diverse set of distinct types of molecular interactions.
Additionally, this splitting strategy enhance the capabilities of the model user to elu-
cidate the model’s applicability domain by highlighting specific chemical categories
that underwent rigorous training and testing. The distributions of temperatures and
logarithmic IDAC values for the train and test sets are given in Appendix A.11.

3.5.2 Model comparison

Isothermal data subsets

Using the DECHEMA data set, a collection of isothermal subsets was constructed.
First, the data points were sorted according to their temperature. Then, the data
points were grouped into bins of 1 K increments. These bins were considered to be
isothermal. All bins that have less than 1,000 data points were discarded, and the
rest of bins are used for the present isothermal analysis. Only 9 subsets contained
enough data, and they are the ones used for this extended isothermal analysis.
Table 3.7 contains the number of solutes, solvents and actual observations for
each isothermal subset. The size of the corresponding solute-solvent matrix is also
shown together with the percentage of actual observations. Each subset’s isothermal
temperature was defined as the mean temperature across all corresponding data
points rounded to the closest integer in degree Celsius. However, it is important
to highlight that all data points in each isothermal set were kept and not averaged
out further as done during the cleaning process of the DECHEMA data set. For
example, if two measurements were placed in the same isothermal subset, but one
was measured at, for instance, 293.15K and the other one at 293.25K, both data
points were conserved in the subset. The train and test points in each isothermal
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subset are determined from the splitting performed on the complete DECHEMA data
set as explained in Subsection 3.5.1.

All comparisons were conducted using the natural logarithm of the IDAC (ln γ∞
i ).

This approach not only leverages the scaling advantages of ln γ∞
i but also aligns with

its intuitive presentation in chemical potential calculations (cf. Eq 2.28). Moreover,
employing the natural logarithm inherently enforces the physical constraint of having
positive IDACs when the re-scaling is performed.

Models’ specifications

Leveraging the previously outlined isothermal subsets, a comparative analysis of
phenomenological models COSMO-RS, UNIFAC-Dortmund, and MOSCED was per-
formed. Furthermore, the proposed GNN model detailed in Section 3.3 was also
evaluated, employing an ensemble of GNN models (e-GNN) trained with a 5-fold
cross-validation on the training set. The final prediction of the ensemble is taken
as the average prediction of the 5 models. The number of models in the ensemble,
in this case 5, was chosen to balance robustness in the predictions and computa-
tional cost. As discussed in Subsection 3.3.2, the overall accuracy of the ensemble
prediction tends to increase with the number of additional models included.

During the course of this research, another GNN-based architecture, referred to
as SolvGNN, was proposed in the literature as a promising tool for predicting
isothermal activity coefficients [125]. The SolvGNN model was also analyzed
into the present extended isothermal analysis, aiming to provide insights into the
distinctions and relative performance between it and the e-GNN model proposed
in this work. Similarly to e-GNN, the analysis was performed using the ensemble
of SolvGNN models obtained from the 5-fold cross-validation, and here denoted as
e-SolvGNN.

Additionally, a baseline model was established by training a random forest model on
the concatenated solute-solvent Morgan fingerprints, which were configured with a
radius of 4 and dimensionality of 1024 bits, serving as a comparative foundation for
evaluating the GNN-based models’ performances. The establishment of the random
forest baseline model fulfills two primary objectives. Firstly, it assesses the capability
of current phenomenological models to outperform a basic data-driven methodology.
Secondly, it evaluates the extent to which an advanced data-driven strategy (i.e., a
GNN-based model), enhances the prediction accuracy. For this analysis, the random
forest was configured with 100 estimators, utilizing the mean squared error (MSE)
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Tab. 3.8.: Comparison performance of UNIFAC-Dortmund, MOSCED, COSMO-RS, the pro-
posed e-GNN and e-SolvGNN [125] models on predicting ln γ∞

i on various
isothermal subsets.
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le 293.15 96.25 0.64 1.08 0.52 - 0.37 0.32
298.15 86.73 0.62 1.23 0.54 - 0.34 0.31
303.15 73.14 0.43 0.48 0.39 - 0.20 0.19
313.15 77.53 0.51 0.57 0.40 - 0.24 0.22
323.15 77.01 0.40 0.35 0.33 - 0.20 0.18
333.15 80.90 0.42 0.43 0.36 - 0.20 0.19
343.15 87.77 0.48 0.40 0.38 - 0.22 0.25
353.15 85.60 0.43 0.40 0.38 - 0.21 0.20
373.15 86.03 0.38 0.33 0.32 - 0.20 0.18
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ED
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293.15 53.44 0.60 0.47 0.38 0.31 0.33 0.26
298.15 46.94 0.41 1.05 0.34 0.29 0.21 0.19
303.15 21.77 0.54 0.38 0.34 0.25 0.24 0.19
313.15 30.97 0.57 0.65 0.33 0.26 0.28 0.22
323.15 31.23 0.45 0.37 0.30 0.17 0.18 0.15
333.15 27.02 0.43 0.32 0.27 0.22 0.17 0.16
343.15 22.07 0.58 0.44 0.30 0.26 0.22 0.28
353.15 15.18 0.44 0.24 0.34 0.32 0.16 0.13
373.15 16.91 0.60 0.22 0.28 0.36 0.21 0.22

as the training cost function. Additionally, the trees were allowed to grow until each
leaf was pure.

The hyperparameter optimization for both GNN-based models (i.e., e-GNN and
e-SolvGNN) models was conducted utilizing Optuna [5], incorporating 100 exper-
imental trials alongside 10-fold cross-validation within the training set of each
isothermal subset independently. Details for the hyperparameter search, along with
the final hyperparameters chosen, are delineated in Appendix A.12. The same
hyperparameters as in Section 3.3.1 were here optimized for the e-GNN. Similarly,
for the case of e-SolvGNN, the optimized hyperparameters correspond to the ones
optimized in the orignal work of [125]. Hyperparameters that were not optimized
for both models were kept fixed in this analysis using the original reported values.
The MSE was selected as the cost function for training, and Adam was selected as
the optimizer to refine model weights. All computational experiments were executed
on an NVIDIA Tesla P100 GPU, equipped with 16 GB of memory.

3.5 Additional isothermal studies 53



Models’ performance

Table 3.8 presents a comparative evaluation of the models included in this extended
isothermal study, focusing on their performance metrics measured by the mean
absolute error (MAE). Unlike COSMO-RS and the data-driven models, both UNIFAC-
Dortmund and MOSCED face limitations regarding their predictive capabilities.
These constraints originate from the models’ dependence on the availability of
parameters. Consequently, these models do not have the capacity to predict all
the systems covered in this extended analysis. To accommodate these limitations,
Table 3.8 offers two separate comparisons: one showcases the performance across
all systems in the test set that are feasible to predict by UNIFAC-Dortmund, and
the other narrows the focus to those systems that are within the predictive scope
of MOSCED, thereby providing a clearer view of each model’s efficacy within its
applicable domain. The percentage of feasible systems in the test set for UNIFAC-
Dortmund and MOSCED is indicated as a feasibility percentage.

In each isothermal subset examined, the lowest MAE is highlighted in bold within
Table 3.8. Notably, GNN-based methodologies outperform traditional phenomenolog-
ical approaches in minimizing the MAE across all isothermal subsets. An interesting
aspect of this analysis is the comparison of e-GNN’s performance against MOSCED’s
at a temperature of 298.15 K. In this context, where the logarithmic IDACs are the
focus, e-GNN demonstrates superior accuracy over MOSCED, as detailed in Table 3.8.
This finding is in contrast to the observations made while using the Brouwer data set
at 298.15 K (cf. Section 3.3.3), which evaluated performance based on the original
scale of the IDACs, where MOSCED exhibited better results. This discrepancy high-
lights that upon converting predicted IDACs from the logarithmic back to the original
scale, the prediction errors associated with the GNN-based model become more
pronounced relative to those of the MOSCED model. This consideration becomes
crucial in applications requiring the calculation of unscaled IDACs, such as when
determining solvent selectivity based on the ratio of original scale IDACs.

Specifically, within the range of systems where MOSCED is applicable, it is observed
that MOSCED surpasses UNIFAC-Dortmund and COSMO-RS in terms of MAE at
lower temperatures. However, at high temperature the accuracy of MOSCED seems
to degrade. This can be explained by the low feasibility percentage at these elevated
temperatures, which affects the reliability of the comparisons.

Importantly, e-SolvGNN [125] consistently outperforms the proposed e-GNN model
in the majority of isothermal subsets. The distinguishing factor between these two
models lies in the explicit integration of hydrogen-bonding information. e-SolvGNN
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enhances its predictive capability by constructing an interaction graph, where edges
are attributed with hydrogen-bond acceptor and donor characteristics specific to
the system, a feature absent in e-GNN. This distinction highlights the crucial role
of including detailed intermolecular interaction data (e.g., hydrogen-bonding) in
improving the accuracy of IDAC predictions. This aligns with the observations of Qin
et al. [125] and with the insights from Section 3.3.3, which attributes MOSCED’s
strong performance to similar considerations (i.e., model parameters related to
hydrogen-bonding, polarity and polarizability).

Another significant observation from the analysis involves examining the predictive
accuracy of the baseline random forest model against the performances of UNIFAC-
Dortmund. It can be observed that the random forest model surpasses UNIFAC-
Dortmund in predictive accuracy on various instances. Specifically, at temperatures
293.15 K and 298.15 K, UNIFAC-Dortmund’s predictions are notably poor. These
discrepancies largely contribute to skewing the overall performance metrics of
UNIFAC-Dortmund unfavorably. This highlights an important issue of UNIFAC-
Dortmund, which, despite of having available binary-interaction parameters, it is
still possible to get inaccurate predictions with large deviations. Predominantly,
the most inaccurately predicted systems by UNIFAC-Dortmund involve interactions
between solvents with pyridine groups and cyclic alkane solutes, as well as mixtures
containing water as a solvent and large molecular-weight phthalate solutes. This
observation suggests that for certain groups, the binary-interaction parameters are
overfitted towards certain specific systems. This phenomenon was also noted in the
study by Jirasek et al. [75].

When evaluating the proportion of predictions that fall within specific absolute error
margins (a metric less susceptible to outlier distortions compared to the MAE) the
overall findings remain consistent. Figure 3.14 elucidates this by showcasing three
different absolute error thresholds (0.1, 0.2 and 0.3) for systems in the test set that
can be predicted by UNIFAC-Dortmund. Once more, GNN-based methodologies
distinctly outperform others across all temperatures and error thresholds. Notably,
in nearly every isothermal subset and across all error benchmarks, e-SolvGNN
achieves superior outcomes compared to e-GNN. This reinforces the advantage of
integrating detailed molecular interaction insights into the predictive model. Fur-
thermore, it is intriguing that despite COSMO-RS displaying lower MAE values than
UNIFAC-Dortmund across the majority of temperatures (cf. Table 3.8), the scenario
reverses when assessing the frequency of systems falling within the absolute error
limits. This pattern suggests that COSMO-RS predictions exhibit more uniform error
rates as opposed to UNIFAC-Dortmund, which shows variable predictive accuracy
across different systems. Such variability in UNIFAC-Dortmund’s performance might
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Fig. 3.14.: Percentage of systems predicted within the absolute error thresholds 0.1, 0.2 and
0.3. Values correspond to systems in the test set of the corresponding isothermal
subset that are feasible to UNIFAC-Dortmund.

hint, again, at a tendency towards overfitting in several specific mixtures. More-
over, it is important to mention here, that, particularly for the UNIFAC-Dortmund
model, there exists a significant overlap between the IDAC data utilized to assess
its performance in this extended analysis and the IDAC data employed during the
UNIFAC-Dortmund’s parametrization phase [161]. Consequently, drawing conclu-
sions about the predictive performance of the UNIFAC-Dortmund model, or indeed
any group-contribution model, proves to be challenging due to the common practice
of parametrizing and testing the models on the same data set.
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3.6 Chapter summary

In summary, models based on GNNs emerge as potent instruments for predicting
isothermal IDACs. They outperform many well-established phenomenological mod-
els, such as UNIFAC-Dortmund and COSMO-RS, in terms of prediction accuracy.
However, exceptions are observed when comparing GNN models against the Abra-
ham and MOSCED models, which are specialized models with narrower applicability
domains among those evaluated. Against these models, GNNs show comparable
performance in terms of accuracy, but larger applicability domain. To enhance
prediction accuracy and model robustness, ensemble learning is applied to GNNs,
successfully improving outcomes. Yet, the MOSCED model still exhibits competitive
performance indicating that the inclusion of molecular interaction-related informa-
tion as model parameters benefit the overall IDAC prediction. This is confirmed
by the superior performance of e-SolvGNN in the extended isothermal analysis,
which makes use of explicit hydrogen-bonding information as part of the learning
framework.

The concept of a hybrid parallel GNN is introduced in this Chapter, wherein the GNN
is tasked with predicting the residuals from the predictions made by phenomeno-
logical models. The final output of the hybrid model is derived by summing the
phenomenological model’s prediction with the correction predicted by the GNN.
This methodology has been observed to enhance the accuracy of IDAC predictions
at 298.15 K beyond what the individual component models achieve independently.
A notable finding was that, in the context of UNIFAC-based models, employing a
hybridization strategy proved less effective compared to utilizing an ensemble of
GNNs designed to directly predict IDACs. Several reasons for this phenomenon are
discussed in this Chapter, including the overlapping information derived from molec-
ular structures and the propensity for significant errors in UNIFAC-based models
that appear to lead the hybrid model in a detrimental direction. Despite this, the
GNN-based models (either hybrid or standalone) improve the overall isothermal
IDAC prediction of all phenomenological models.

It is interesting to consider, at this point, that the idea of building hybrid parallel
models have been around the minds of scientists in the realm of fluid phase thermo-
dynamics for a while. One has to simply consider the theory that has been developed
around the idea of modeling a correction from a baseline model (e.g., ideal gas or
ideal solution). Even the idea of the activity coefficient γi itself is built upon the idea
of coupling a correction to a baseline. This Chapter aims to contribute in this same
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direction, by showing how GNN-based models can support the pursue of modeling
deviations from ideality through isothermal IDACs.
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Predicting
Temperature-Dependent
Infinite Dilution Activity
Coefficients

4

„Each individual fact, taken by itself, can indeed
arouse our curiosity or our astonishment, or be
useful to us in its practical applications. But
intellectual satisfaction we obtain only from a
connection of the whole, just from its conformity
with law.

— Hermann von Helmholtz
Physicist and physician

This Chapter advances the general objective of exploring the modeling of activity
coefficients using GNNs. In the previous Chapter, the simplest scenario where the
activity coefficient is estimated under constant conditions—specifically at constant
temperature and at infinite dilution was explored. This Chapter continuous the
discussion in this direction by incorporating the actual influence of temperature
variations in IDACs.

The temperature dependency of the activity coefficient is given by Eq. 2.25. This
relationship is known as the Gibbs-Helmholtz equation, which relates the change of
the activity coefficient due to a change in temperature to the partial molar excess
enthalpy of the same species. We can write this equation also at infinite dilution
conditions as follows

∂ ln γ∞
i

∂(1/T )

∣∣∣∣
P,x

= h̄E,∞
i

R
(4.1)

where, R stands for the universal gas constant and h̄E,∞
i is the partial molar excess

enthalpy at infinite dilution.
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Assuming that h̄E,∞
i remains constant while varying temperature, an approximation

frequently validated in the literature [120], allows for the integration of the previous
differential equation to yield an explicit relationship for the IDAC’s temperature
dependence:

ln γ∞
i (T ) = K1,i + K2,i

T
(4.2)

where, K1,i and K2,i are parameters that do not vary with temperature and are
uniquely determined for each component i in a given solvent j. Specifically, K1,i

represents the logarithmic IDAC at the hypothetical limit of temperature approaching
infinity, while K2,i is defined as the ratio h̄E,∞

i /R. The temperature-independence of
K1,i andK2,i suggests that, in theory, these parameters could be derived directly from
the molecular structures of the mixture components. This Chapter demonstrates such
an approach by utilizing a hybrid GNN-based framework with a serial arrangement
to accurately calculate these parameters based on the molecular graphs of the
components. And, through this methodology, the temperature dependency of the
IDAC is effectively incorporated into the model.

Furthermore, this Chapter illustrates that the proposed framework, referred to as the
Gibbs-Helmholtz Graph Neural Network (GH-GNN), can be extended beyond the
realm of small-sized organic molecules to model more complex chemical systems,
including those with ionic liquids and polymers. These extensions aim at showing
that the GH-GNN model might be broadly applied to a wide range of chemical
systems of potential industrial relevance. The performance of the GH-GNN model
is also compared against some of the phenomenological models introduced in the
previous Chapter. The limitations of the GH-GNN model are also discussed.

4.1 Gibbs-Helmholtz Graph Neural Network (GH-GNN)

The isothermal studies presented in Chapter 3 not only highlighted the effective-
ness of GNN-based models in predicting IDACs but also revealed a critical insight.
Models incorporating explicit features pertaining to intermolecular interactions, es-
pecially hydrogen-bonding, such as the MOSCED and e-SolvGNN models, generally
yield more accurate predictions than those lacking these considerations. However,
MOSCED’s major drawback is its limited applicability across the chemical space due
to the constrained availability of parameters [96]. Furthermore, the GNN models
discussed in Chapter 3 were confined to isothermal IDAC predictions, omitting direct
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consideration of IDACs’ temperature dependence. This Section aims to overcome
these limitations through the introduction of the GH-GNN. The GH-GNN not only
addresses the temperature dependency of IDACs through Eq. 4.2, but also inte-
grates features related to specific intermolecular interactions, marking a significant
advancement towards the overall objective of predicting activity coefficients using
hybrid GNNs.

4.1.1 Data set

The data set used for training and testing the proposed GH-GNN model corresponds
to the DECHEMA data set described in Section 3.5.1. The same stratified (train/test)
splits are used here, which were constructed according to the chemical class allo-
cation by Classyfire [38]. Instead of only taking the isothermal subsets, the whole
DECHEMA data set is now used to leverage all available IDAC data.

Testing the partial molar excess enthalpy assumption

The premise that h̄iE,∞ remains constant over temperature changes is often con-
sidered a reasonable approximation for many systems, as suggested by [120]. This
assumption has been previously applied to account for the temperature dependence
of IDACs using matrix completion techniques [33], and was also adopted by [26] to
extend their IDAC data set at 298.15 K from measurements at other temperatures. In
this study, the validity of this assumption for the DECHEMA data set was examined
through linear regression analysis on solute-solvent systems observed across at least
three distinct temperatures, yielding a MAE on ln γ∞

i of 0.04 ± 0.099. This outcome
aligns closely with the findings of [33], who reported a MAE of 0.05 on their IDAC
data set, thus indicating a potential accuracy threshold for models relying solely on
Eq. 4.2 to incorporate temperature effects on ln γ∞

i . However, it is also important
to mention that, this assumption loses strength for systems studied over broad
temperature ranges, particularly those involving highly polar components [9, 63].
Addressing this issue might involve modeling h̄E,∞

i directly from caloric property
data sets, an area not explored in this work due to data limitations, but represents
an interesting future direction for research.
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Tab. 4.1.: Atomic features defining the initial feature vector of nodes in the molecular
graphs constructed from the DECHEMA data set. The dimension of the corre-
sponding one-hot encoded feature is also shown.

Feature Description Dimension
Atom type [C, N, O, Cl, S, F, Br, I, Si, Sn, Pb, Ge, H, P, Hg, Te] 16
Ring Is the atom in a ring? 1
Aromatic Is the atom part of an aromatic system? 1
Hybridization [s, sp, sp2, sp3] 4
Bonds Number of bonds the atom is involved in. [0,1,2,3,4] 5
Charge Atom’s formal charge. [0,-1,1] 3
Attached Hs Number of bonded hydrogen atoms. [0,1,2,3] 4
Chirality [Unspecified, clockwise, counter-clockwise] 3

Tab. 4.2.: Bond features defining the initial feature vector of edges in the molecular graphs
constructed from the DECHEMA data set. The dimension of the corresponding
one-hot encoded feature is also shown.

Feature Description Dimension
Bond type [Single, double, triple, aromatic] 4
Conjugated Whether the bond is conjugated 1
Ring Whether the bond is part of a ring 1
Stereochemistry [None, Z, E] 1

4.1.2 Molecular graphs with global features

Molecular graphs were assembled in a manner akin to that detailed in Section
3.2, with the adaptation of atomic and bond features to fit the characteristics of
compounds found in the DECHEMA data set. These features are given in Tables
4.1 and 4.2, respectively. These same atomic and bond features were used for the
extended isothermal studies presented in Section 3.5, which were also constructed
from the DECHEMA data set. Drawing on insights from the isothermal analysis
presented in Chapter 3, this study additionally incorporated global-level features to
encapsulate information potentially critical for modeling intermolecular interactions.
The idea of constructing graphs with global-level features in the context of GNNs was
introduce by [12]. These global-level features contain information of the complete
molecule, making a graph comprehensively characterized by its node-features matrix
A, edge-features matrix B, connectivity matrix C, and a global-features vector
u ∈ R3.

Inspired by the parameters of the MOSCED model, the selection of global-level
features, as presented in Table 4.3, includes the atomic polarizability (AP ), the
bond polarizability (BP ) and the topological polar surface area (TopoPSA) of the
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Tab. 4.3.: Global features defining the initial feature vector of molecular graphs constructed
from the DECHEMA data set and used in the temperature-dependent IDAC
studies. The dimension of the corresponding one-hot encoded feature is also
shown.

Feature Dimension
Atomic polarizability (AP ) 1
Bond polarizability (BP ) 1
Topological polar surface area (TopoPSA) 1

molecule. The AP is defined by the sum of polarizability values uAP of each atom
in the molecule. This cumulative polarizability is given by:

AP =
∑
v∈V

uAP
v (4.3)

where, v represents a non-hydrogen atom within the molecule, with uAP being its
specific polarizability value as reported by [68]. Similarly, BP sums the absolute
differences in atomic polarizabilities across each covalent bond represented by edge
evw between nodes v and w:

BP =
∑

evw∈E
|uAP

v − uAP
w | (4.4)

where, E is the set of edges in the molecular graph.

Polarizability measures how susceptible an atom or molecule is to polarization in
response to an external electromagnetic field, which reflects on the strength of its
dispersion forces. By incorporating these global-level features, the model is enriched
with data related to dispersion interactions, akin to the induction parameter in
MOSCED which aims to quantify interactions such as “dipole-induced dipole" and the
ones caused by London dispersion forces in mixtures containing highly polarizable
compounds. The calculation of TopoPSA is based on a 2D approximation of the
polar surface area, following the methodology of [121]. This global feature is akin
to the polarity parameter in MOSCED, which aims at capturing mainly the “dipole-
dipole" interactions. The computation of all global-level features was facilitated
using the Mordred (version 1.2.0) computational tool [107].
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4.1.3 Model architecture

In contrast to the GNN framework described in Chapter 3, several challenges must
be addressed to adapt the model for broader, non-isothermal applications. A critical
enhancement, as already discussed, involves explicitly incorporating temperature
dependence into the learning mechanism. Furthermore, the original GNN approach
transforms the solute and solvent graphs through separate GNN models, that have
the same architecture but distinct parameters. Ideally, however, a GNN model for
non-isothermal IDAC prediction should uniformly handle any molecular entity re-
gardless of its (solute/solvent) role in the mixture. This unified processing is crucial
having in mind a further extension of the model to scenarios involving multiple com-
ponents. Additionally, and based on the performance of MOSCED and e-SolvGNN,
the integration of more complex molecular interaction representations is observed
to be beneficial, and hence desirable. In Section 4.1.2, the use of global-level fea-
tures to construct molecular graphs that could be used to more effectively capture
molecular interactions was presented. However, hydrogen-bonding information was
not explicitly incorporated as part of the global-level features despite its important
role on capturing the non-ideality behavior of mixtures. Instead, a specific mixture
representation was used to introduce this information: the mixture graph.

Mixture graph

Fig. 4.1.: Schematic illustration of a two-component mixture graph.

The concept of a mixture graph was initially introduced by [125] using the term
interaction network. The purpose of this graph is to capture a more informative
representation of both intermolecular and intramolecular interactions, particularly
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those involving hydrogen-bonding. Within this framework, nodes symbolize the
chemical entities within a mixture, while edges denote the interactions among these
entities or among themselves (in the case of self-loops). The construction of the
mixture graph leverages the molecular embeddings derived from an initial GNN,
now referred to as the molecular GNN. Therefore, nodes in the mixture graph are
attributed with the corresponding molecular embeddings obtained by the molecular
GNN and are concatenated to the final global-level embedding of the corresponding
molecular graph, as represented in Fig. 4.1. This concept allows for a more flexible
learning scheme to capture molecular interactions compared to concatenation of
the molecular embeddings used in Chapter 3 (cf. Section 3.3). Following the
methodology outlined by [125], hydrogen-bonding details are integrated as a single
edge feature within the mixture graph. For capturing potential intermolecular
hydrogen-bonding, a distinct feature, binter, is utilized. For binary mixtures, this is
determined by:

binter = min
(
NHBA

solv , NHBD
solu

)
+ min

(
NHBA

solu , NHBD
solv

)
(4.5)

where, NHBA represents the count of hydrogen-bond acceptors, and NHBD the
count of hydrogen-bond donors within a molecule, with subscripts solv and solu

indicating solvent and solute, respectively. Eq. 4.5 sums the lowest count of acceptor-
donor pairs across solvent and solute, effectively estimating the maximum number
of feasible hydrogen-bonding sites.

For intramolecular hydrogen-bonding, this concept is similarly applied to self-loop
edges in the mixture graph by employing bintra, calculated as:

bintra,r = min
(
NHBA

r , NHBD
r

)
(4.6)

with the subscript r denoting the compound in focus, either as solvent or solute. This
method quantifies the intramolecular hydrogen-bonding capacity by evaluating the
minimum between the available acceptor and donor sites for the specific molecule.

Serial architecture

The proposed GH-GNN model architecture consist of a hybrid GNN model con-
structed in a serial (or sequential) arrangement. First, for each message-passing
layer, the molecular GNN model transforms the molecular graphs (enriched with
global-level features) through the following 3-steps scheme:
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1. Edge features update. Each vector of edge features, bv,w, within the molecular
graph undergoes an update by using the embeddings from the nodes it connects
(i.e., nodes v and w), its own embedding, and the global-level embedding. This
process is mathematically expressed as

b(l+1)
v,w = ϕ

(l)
b

(
a(l)

v ∥ a(l)
w ∥ b(l)

v,w ∥ u(l)
)

(4.7)

where, ∥ symbolizes the concatenation of the vectors, while ϕb represents the edge
updating function, which here it is a single hidden-layer neural network with the
ReLU activation. Figure 4.2 graphically depicts this edge updating mechanism for
the specified edge highlighted in purple color.

Fig. 4.2.: Schematic illustration of the molecular GNN in the Gibbs-Helmholtz Graph Neural
Network.

2. Node features update. Subsequently, the embedding of each node av is trans-
formed by using the latest edge attributes b(l+1)

v,w associated with it, its existing
embedding, and global-level embedding, resulting in
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b̂(l)
v =

∑
w∈N (v)

b(l+1)
v,w (4.8)

â(l+1)
v = ϕ(l)

a

(
a(l)

v ∥ b̂(l)
v ∥ u(l)

)
(4.9)

where, b̂v is the vector of aggregated edge embeddings for all edges connecting
node v to its neighbors w ∈ N (v). The function ϕa, denoting the node update
mechanism, employs a single hidden-layer neural network with ReLU activation for
processing. An illustration of this node update mechanism is depicted in Figure 4.2
for the green-colored node.

3. Global features update. Finally, the global embedding u undergoes an update by
concatenating its current state with the information from all newly updated nodes
and edges within the molecular graph, as delineated by

ã(l) = 1
na

∑
v∈V

â(l+1)
v (4.10)

b̃(l) = 1
nb

∑
e∈E

b(l+1)
k (4.11)

u(l+1) = ϕ(l)
u

(
u(l) ∥ ã(l) ∥ b̃(l)

)
(4.12)

where, ã and b̃ symbolize the average node and edge embeddings across the
molecular graph, respectively. The function ϕu, stands for the global update function,
and is implemented through a single hidden-layer neural network equipped with the
ReLU activation. Fig. 4.2 visually illustrates this global updating process for the entire
molecular structure of the hypothetical solvent colored in blue. Although updating
global features alter their direct physical interpretations, such as polarizability and
molecular polarity, this procedure enables the GNN to assimilate significant cross-
structural information across the complete graph. In all equations in the previously
described 3-step updating process, the superscript (l) stands for the states at the
message passing layer l, that go from the initial features (0) to the final layer (L).

For the proposed GH-GNN model, only 2 message-passing layers are used with an
intermediate graph normalization, as proposed by [30], computed as
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a(l+1)
v =

â(l+1)
v − β

(l+1)
3 ⊙ E

[
â(l+1)

v

]
√
V ar

[
â(l+1)

v − β
(l+1)
3 ⊙ E

[
â(l+1)

v

]]
+ ϵ

⊙ β
(l+1)
1 + β

(l+1)
2 (4.13)

where, E[·] and V ar[·] represent the expectation and variance operators, ϵ is a small
number added for numerical stability, ⊙ denotes element-wise multiplication and
β

(l+1)
1 and β

(l+1)
2 are learnable vector parameters that scale and shift the normalized

node embeddings.

Compared to the batch normalization (Eq. 3.3) used in Chapter 3, the graph
normalization used here introduces and extra vector of learnable parameters β

(l+1)
3

that weights the amount of information that needs to be preserved from the mean
value of the node embeddings. This parameter allows for an adaptive scaling of
features, which can help in preserving node-specific information that might be
important for the downstream task. This information could be lost in the case of
a standard batch normalization process. Moreover, the expectation and variance
operators in the batch normalization from Chapter 3 are calculated from the training
mini-batch, while, here, they are computed for each individual graph. It has been
observed that this type of graph normalization decreases the influence of the batch
noise and increases the expressiveness of the graph representation learning process
[30].

After L message-passing layers, a global pooling operation is conducted (for each
molecular graph) that averages the final node embeddings to compute a molecular
graph embedding

ag = 1
na

∑
v∈V

a(L)
v (4.14)

After this, the mixture graph is constructed as explained in Section 4.1.3, where
nodes are attributed by the concatenation of the corresponding graph embedding ag

and the final global-level embedding u(L)

a(0)
mg = ag ∥ u(L) (4.15)

where, the subscript mg indicates that the node embedding corresponds to the node
in the mixture graph. And edges are attributed with the features obtained from Eq.
4.5 or 4.6, depending on whether they interconnect the nodes or connect the node
with itself, respectively.
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Once the mixture graph is constructed, the node embeddings are mapped to the
dimensions of the second GNN, referred to as the mixture GNN, using a linear
transformation followed by a ReLU activation as follows

a(l)
mg = ReLU

(
W(0) · a(0)

mg + q(0)
)

(4.16)

where, W(0) and q(0) are learned as part of the training process.

Then, the mixture GNN implements a message passing scheme similar to the one
proposed in [52] and to the one used in Eq. 3.2, which can be written as

a(l+1)
mg = GRU

W(l) · a(l)
mg +

∑
w∈N (v)

(
ϕ

(l)
E (bvw) · a(l)

w + q(l)
) (4.17)

where, ϕ(l)
E is a single hidden-layer neural network with the ReLU activation function,

which processes the edge feature vector bvw between nodes v and w ∈ N (v). Notice,
that in the case of the mixture graph, which contains self-loop connections, the node
in question is also part of the sets of neighboring nodes, i.e., v ∈ N (v). The GRU
stands for the gated recurrent unit and acts here as the update function.

Fig. 4.3.: Schematic illustration of the mixture GNN in the Gibbs-Helmholtz Graph Neural
Network.

Finally, the updated node embeddings of the mixture graph are passed through a
global pooling operation according to

amix = a(L)
mg,solv ∥ a(L)

mg,solu (4.18)

where, ∥ denotes concatenation and the subscripts solv and solu refer to the solvent
and solute nodes, respectively. This mixture embedding amix is used to regress the
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parameters of Eq. 4.2 through two separate MLP models consisting of 2-hidden
layers with the ReLU activation function. This provides the physical framework
to introduce the temperature dependency into the IDAC modeling. Therefore, the
proposed GH-GNN model can be broadly understood as the sequential connection of
the molecular GNN (depicted in Fig. 4.2), the mixture GNN and the Gibbs-Helmholtz
derived expression given by Eq. 4.2 (both depicted in Fig. 4.3).

4.1.4 Multi-task pre-training

To fully exploit the use of Eq. 4.2 for introducing the temperature dependency, the
training of GH-GNN incorporates a two-step process leveraging transfer learning.
Initially, the model undergoes pre-training in a multi-task framework aimed at
predicting the parameters K1,i and K2,i from Eq. 4.2. This phase employs the sum
of mean squared errors as its loss metric, and it uses the pre-calculated values for
these parameters through linear regression (previously calculated to validate the
assumption of constant h̄iE,∞ over temperature). This pre-training step mirrors
the methodology of the matrix completion method (MCM) outlined by [33]. The
same normalization of K1,i and K2,i procedure as described by [33] was here used.
Subsequently, the model is fine-tuned on the complete training set to predict ln γ∞

i ,
utilizing the parameters refined during pre-training.

Distinct from the MCM, which limits its training scope to systems observed across
a minimum of three temperatures [33], GH-GNN is able to use the entirety of the
available IDAC data as part of the fine-tuning phase. This enables the model to
simultaneously learn the variation of IDACs over temperature for different systems,
while also capturing broader solute-solvent interactions from the data. For example,
for systems observed at only one temperature, where MCM would exclude them,
the GH-GNN model incorporates these data points to broaden its learning across a
broader array of molecular compounds. It then infers the temperature dependency
from the collective information of other systems measured under various tempera-
tures. This approach ensures the maximum utilization of all experimental data, a
highly desirable characteristic given its scarcity.

4.1.5 Model performance

To evaluate the performance of the proposed GH-GNN model, a series of compar-
isons against the phenomenological model UNIFAC-Dortmund and against other
GNN models were conducted. Moreover, the proposed GH-GNN model was tested
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for a diverse set of prediction tasks, including the inter-/extrapolation to other
temperatures, and the inter-/extrapolation to other chemical compounds. These
comparisons are detailed in the following Subsections.

Performance on DECHEMA data set

The performance of the GH-GNN model on the test set was compared to 3 other
GNN-based models, and to UNIFAC-Dortmund. Each of these GNN-based models is
described below highlighting the differences compared to the GH-GNN model and
the main reasons that inspired the comparisons for this analysis.

GNNCat. This model is analogous to GH-GNN by following the same architecture.
The key distinction lies in the treatment of the mixture embedding, amix. After
computing amix, GNNCat augments it by concatenating the normalized temperature,
T , of the mixture, resulting in a vector defined as:

aCat
mix = amix ∥ T (4.19)

In contrast to employing 2 MLPs, GNNCat utilizes a single MLP that receives aCat
mix

as its input for predicting ln γ∞
i . This design choice facilitates a direct comparison,

aimed at evaluating the efficacy of integrating the IDAC temperature dependency into
the calculation using Eq. 4.2 versus incorporating the temperature as an additional
input parameter to the MLP. The latter approach has been used by [132] for the
prediction of IDACs in systems containing ionic liquids. To ensure an equitable
comparison between the GH-GNN and GNNCat models, the number of trainable
parameters were set the same for both models. This was achieved by doubling
the number of neurons in the first layer of the single MLP of GNNCat, aligning the
models’ learning capacities for a fair evaluative basis.

GH-SolvGNN. This model is an adaptation of the SolvGNN model, initially intro-
duced by [125] and used in the additional isothermal studies described in Section
3.5. This adaptation extends the original SolvGNN, which was designed to process
only isothermal conditions, to also accommodate temperature variations using Eq.
4.2. Similar to the GH-GNN model, GH-SolvGNN employs two MLPs for predicting
the parameters defined in Eq. 4.2. One of the limitations of the original SolvGNN ar-
chitecture was its inability to integrate global-level features within molecular graphs.
To address this, GH-SolvGNN enhances the node embeddings of the mixture graph by
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Tab. 4.4.: Performance comparison of GNN-based models and UNIFAC-Dortmund for the
prediction of temperature-dependent IDACs.

Entire test data set
Model MAE ↓ AE ≤ 0.1 ↑ AE ≤ 0.2 ↑ AE ≤ 0.3 ↑

GNNCat 0.13 64.97% 84.44% 91.47%
GH-GNN (w/o pre-training) 0.15 58.7% 81.4% 89.66%

SolvGNNCat 0.13 65.55% 84.15% 90.85%
GH-SolvGNN (w/o pre-training) 0.14 63.52% 82.72% 89.72%

GH-GNN 0.12 73.68% 87.13% 92.22%
UNIFAC (Do) feasible systems in the test data set

GNNCat 0.13 63.91% 84.05% 91.29%
GH-GNN (w/o pre-training) 0.15 57.84% 80.71% 89.40%

SolvGNNCat 0.14 65.02% 83.66% 90.47%
GH-SolvGNN (w/o pre-training) 0.15 62.97% 82.21% 89.27%

GH-GNN 0.12 72.37% 86.20% 91.75%
UNIFAC (Do) 0.60 33.10% 51.76% 64.32%

Other models in other data sets
MCM[33] - - - (76.6%)
SPT[166] (0.11) - - (94%)

concatenating the global-level features described in Table 4.3. The objective of con-
trasting GH-GNN with GH-SolvGNN is to determine the extent to which the choice
of GNN architecture influences the accuracy of predicting temperature-dependent
IDACs.

SolvGNNCat. This model is designed analogously to GNNCat, but with respect
to the GH-SolvGNN framework. In the same way, this adaptation simplifies the
predictive mechanism of GH-SolvGNN by utilizing a single MLP instead of two.
This MLP processes the mixture embeddings concatenated with the normalized
temperature, as outlined in Equation 4.19, to predict ln γ∞

i directly. The purpose
of including this model in the comparison is to broaden the observations into how
different strategies for incorporating temperature information affects the model’s
performance.

The hyperparameters of the GNN-based models were optimized using Optuna [5] over
100 trials using 10-fold cross-validation on the training set. The final hyperparame-
ters, the ranges explored and further details on the hyperparameter optimization
process are available in Appendix A.13. The MSE was used as the loss function
and AdamW [101] as the optimizer. All the numerical studies were performed on a
single NVIDIA Tesla P100 GPU (16 GB).

Table 4.4 showcases the comparative analysis of the GNN-based models and the
UNIFAC-Dortmund method. The comparison is based on the MAE and the proportion
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of predictions within specified absolute error margins (0.1, 0.2, and 0.3). The table
distinguishes between models trained directly to predict ln γ∞

i , marked as "(w/o
pre-training)" to denote the absence of the preliminary multi-task training phase, and
models trained using the 2-step transfer learning process described in Section 4.1.4.
The performance is given for the complete test set, and for the subset of systems
in the test set that UNIFAC-Dortmund is capable of predicting, which constitutes
approximately 84% of the original test data set. Additionally, the table includes the
performances of other state-of-the-art data-driven approaches, namely the matrix
completion method (MCM) [33] and the SMILES-to-Property-Transformer (SPT)
[166], which also aim to predict ln γ∞

i across different temperatures. It is important
to note, as further detailed in Section 3.5.1, that both MCM and SPT were evaluated
on distinct, and considerably smaller, data sets compared to the one considered here.
Therefore, the values are provided for an overview purpose rather than for a direct
comparison. The best value for each comparison is highlighted in bold.

The performance comparison reveals that models trained with temperature con-
catenation (i.e., GNNCat, SolvGNNCat) outperform their counterparts developed
without the pre-training step. This discrepancy suggests that models based on Eq.
4.2 struggle to attain optimal parameter sets during training as opposed to the more
flexible approach of temperature concatenation. However, with the inclusion of the
multi-task pre-training step, the GH-GNN model surpasses all other models across
all metrics. Considering the experimental uncertainty estimation of the logarithmic
IDAC being between 0.1 and 0.2 [33], the GH-GNN model accurately predicts over
87% of systems within this range. If a similar multi-task pre-training step is imple-
mented for GH-SolvGNN the accuracy and robustness would likely increase similarly
to GH-GNN.

As discussed in Section 3.5.2, the relatively high MAE exhibited by UNIFAC-Dortmund
is attributed to its severe mispredictions for systems containing pyridines, quinolines,
and water. Despite this, UNIFAC-Dortmund’s performance remains inferior to GNN-
based models in terms of accurately predicting systems within the error thresholds,
a more robust metric against outliers compared to MAE.

To assess the impact of the polarity and polarizability information included in the
modeling framework, the performance of a GH-GNN model that uses randomly
generated global-level descriptors during pre-training and fine-tuning was also
measured. The GH-GNN model with random global features yielded a test MAE
of 0.15, with 89.43% of points having an absolute error below 0.3. This suggests
that besides hydrogen-bonding information, including polarizability and polarity
increases the accuracy of IDAC predictions. This might be related to the effective
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capturing of weaker (but still relevant) molecular interactions, such as "dipole-
induced dipole" and "induced dipole-induced dipole" interactions. Notably, the
GH-GNN model trained with random global features performed worse than GNNCat,
underscoring the importance of including such descriptors for prediction quality.

Although not directly comparable, the SPT model’s performance [166] appears to
be on the same order of that of GH-GNN. However, the GH-GNN model achieves
its performance across a broader and more diverse chemical space, as detailed in
Table 3.6. Moreover, while SPT relies on computationally intensive pre-training
procedures involving millions of COSMO-RS-simulated data points followed by
fine-tuning using experimental data, the proposed GH-GNN model is trained directly
on experimental data. Integrating a similar pre-training step utilizing COSMO-RS
data could potentially further enhance the GH-GNN’s accuracy. Additionally, the pre-
trained GH-GNN model’s performance without the fine-tuning phase (i.e., trained
solely for predicting the K1,i and K2,i parameters of Eq. 4.2) results in 78.86% of
systems predicted with an absolute error (AE) of ≤ 0.3, a performance level similar
to that reported by the MCM model (cf. Table 4.4) in their considered data set.

Performance on predicting IDACs at other temperatures

In order to assess the ability of the proposed GH-GNN model to generalize to
temperatures beyond those encountered during training, three different scenarios
were considered. First, the interpolation performance was examined. For this, all
solute-solvent systems in the test set that have a temperature T∗ and that are also
present in the training set at temperatures T1 and T2, such that T1 ≤ T∗ ≤ T2

were included in the analysis. Second, the extrapolation to high temperatures
was examined. Here, systems in the test set with temperature Thigh that are also
contained in the training set, but only at temperatures lower than Thigh are included.
Third, the extrapolation to low temperatures was studied. In this case, systems
in the test set with temperature Tlow that are also contained in the training set,
but at temperatures higher than Tlow are analyzed. Table 4.5 show the MAE and
the percentage of points predicted below an absolute error of 0.3 achieved by the
GH-GNN model in the test set in each of these scenarios. For comparison, the
performance of the GNNCat model is also shown. The best value is highlighted in
bold. Moreover, the number of included data points and the proportion to the total
test set are shown for each scenario.

It can be seen that the GH-GNN model generally outperforms GNNCat in both
interpolating and extrapolating tasks to various temperatures. Notably, both models
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Tab. 4.5.: Performance of the GH-GNN and GNNCat models for predicting IDACs while
interpolating among temperature values, extrapolating to lower temperatures
and extrapolating to higher temperatures.

Model MAE ↓ AE ≤ 0.3 ↑ # data points % of test set
Interpolation

GNNCat 0.11 93.12 3025
36.41%

GH-GNN 0.10 92.99 3025
Extrapolation to Thigh

GNNCat 0.11 94.06 1684
20.27%

GH-GNN 0.10 94.54 1684
Extrapolation to Tlow

GNNCat 0.14 91.30 1954
23.52%

GH-GNN 0.11 93.54 1954

excel in predicting IDACs of solute-solvent systems that were observed as part of the
training but at different temperatures. Nevertheless, even when both models succeed
on predicting IDACs at different temperatures, the fact that the GH-GNN model uses
Eq. 4.2 for introducing the temperature allows for a faster computation of IDACs
of a system at various temperatures compared to the approach of GNNCat. This
advantage might be small in scenarios where direct IDAC predictions are needed,
but it is significant in scenarios where iterating over temperatures is needed (e.g., in
computations of isobaric vapor-liquid equilibria).

Fig. 4.4.: Parity plot between the experimental and the predicted IDAC values by the GH-
GNN while interpolating to other temperatures.
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Fig. 4.5.: Parity plot between the experimental and the predicted IDAC values by the GH-
GNN while extrapolating to temperature Thigh.

Fig. 4.6.: Parity plot between the experimental and the predicted IDAC values by the GH-
GNN while extrapolating to temperature Tlow.
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For a clearer illustration, Figures 4.4, 4.5 and 4.6 show the parity comparison
for each of the scenarios described above. The color map indicates the minimum
Euclidean distance between the temperature of the system in the test set and that
in the training set. From the parity plots of the three cases it is clear that the
accuracy of the predictions is not directly correlated to the distance of temperature
inter-/extrapolation. This is confirmed by the multiple mispredictions that have a
relatively small temperature distance to the training data. Instead, the accuracy
of the predictions is more related with the amount of data in the specific regime,
and the type of chemicals being involved. Since data for highly non-ideal systems
(i.e., ln γ∞

i ≥ 10) is very scarce (cf. Appendix A.11) predictions of such systems
tend to be deficient. Moreover, the mispredictions observed at ln γ∞

i < 10, involve
systems with a protic solvents, such as water and methanol. Therefore, studying
the performance of the GH-GNN model, or any GNN-based model tailored for IDAC
predictions, for the prediction of different chemical species appears to be more
important to accurately assess the capacities and limitations of the model.

Performance on predicting IDACs of different binary-systems

In order to test the performance of the GH-GNN model on predicting IDACs of
systems that have not being explicitly seen during training, two different tasks were
designed. First, the interpolation among binary-systems was tested. This refers to
predicting systems were both the solute and the solvent species are contained in
the training set, but not in the precise combination as in the test set. This task is
akin to the matrix completion problem [33], in which the predictions are strictly
limited to species that have been seen during training. Second, the performance of
the GH-GNN model is tested when predicting systems were either the solute or the
solvent have not been seen during training at all. This could be thought as predicting
IDACs outside of the rows (or columns) of the solute-solvent matrix defined during
training, and it is here referred to as extrapolating to different binary systems.

Figure 4.7 shows the parity comparison of the GH-GNN predictions when tasked with
interpolating among binary-systems. The number of systems in the test set that fall
into this prediction task are 1,568 (18.87% of the test set). Remarkably, as pointed
out in Table 4.6, the GH-GNN model achieves a MAE of 0.13, with 88.84% of the
systems exhibiting an absolute error below 0.3. By comparison, the MCM, operating
on a smaller solute-solvent matrix, achieves a lower performance, predicting only
76.6% of the systems below an absolute error of 0.3 [33] (cf. Table 3.6). Moreover,
Table 4.6 shows the performance of the UNIFAC-Dortmund model on all feasible
systems and excluding its worst 9 predictions (indicated by “w/o"). It is evident that,

4.1 Gibbs-Helmholtz Graph Neural Network (GH-GNN) 77



Fig. 4.7.: Parity plot between the experimental and the predicted IDAC values by the
GH-GNN and the UNIFAC-Dortmund models while interpolating among binary-
systems. The results for UNIFAC-Dortmund are shown for all feasible systems in
the test set excluding the worst 9 predictions.

when considering the task of interpolating to other binary-systems, the GH-GNN
model outperforms UNIFAC-Dortmund in terms of prediction accuracy (measured by
the MAE), prediction robustness (measured by the percentage of predicted systems
with an error below 0.3) and number of feasible systems that is able to predict. This
is true even when the worst outliers of UNIFAC-Dortmund are excluded from the
analysis.

Tab. 4.6.: Performance of the GH-GNN and UNIFAC-Dortmund models for predicting IDACs
while interpolating among binary-systems. Results excluding the worst 9 predic-
tions are indicated by “w/o".

Model MAE ↓ AE ≤ 0.3 ↑ # feasible data points % feasible systems
UNIFAC (Do) 0.79 64.41 1270 80.99%

UNIFAC (Do) (w/o) 0.36 64.87 1261 80.42%
GH-GNN 0.13 88.84 1568 100%

Table 4.7 show the results of the GH-GNN and the UNIFAC-Dortmund models when
extrapolating to other binary-systems. As can be seen the performance of the
predictions worsen considerably. However, it is important to note that the number
of systems that were available within the test set to test the extrapolation to other
systems is very limited (i.e., only 77 systems). Therefore, the generalization of this
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comparison has to be considered with care. Despite this, for the systems analyzed
here, the GH-GNN model outperforms UNIFAC-Dortmund in accuracy, robustness
and feasibility, even when removing the worst 9 predictions of UNIFAC-Dortmund.
It is important to highlight that approximately half of the systems analyzed in this
extrapolation study involve water. Predicting water-containing systems has been
particularly challenging due to the strong interactions that water molecules engage
in, which results in a broad range of possible IDAC values [85, 166]. If one removes
all water-containing systems, the MAE achieved by the GH-GNN model comes down
to 0.25. In contrast, the UNIFAC-Dortmund predicts such systems with a MAE of
0.44.

Tab. 4.7.: Performance of the GH-GNN and UNIFAC-Dortmund models for predicting IDACs
while extrapolating to other solutes or solvents. Results excluding the worst 9
predictions are indicated by “w/o".

Model MAE ↓ AE ≤ 0.3 ↑ # feasible data points % feasible systems
UNIFAC (Do) 2.41 23.61 72 93.51%

UNIFAC (Do) (w/o) 1.26 26.98 63 81.82%
GH-GNN 1.11 46.75 77 100%

Given the limited number of systems available for testing extrapolation, a new
data set was constructed specifically for testing the extrapolation capabilities of the
GH-GNN model to other mixtures. This new data set, here referred to as the external
data set was constructed from the experimental IDAC data originally gathered by
[26] and further cleaned by [166]. For the purposes of this analysis only organic
systems were included. Also, any system containing molecules with atomic or bond
features that were not feasible by the features established in Tables 4.1 and 4.2 were
discarded. Additionally, only systems where either the solute or the solvent was not
present in the DECHEMA training set were kept, and repeated measurements were
averaged to obtain a single value per system at a specific temperature. The resulting
external data set consists of 2,058 data points.

The GH-GNN model achieved a MAE of 0.43 on the external data set, with 56.90%
of the data being predicted below an absolute error of 0.3. Figure 4.8 shows the
parity performance. Additionally, to illustrate how the accuracy of the predictions
is correlated with the rarity of the extrapolated system, the number of systems in
the training set that have the same solute-solvent chemical classes is shown as the
color map. It can be qualitatively observed that systems with popular classes in
training are better predicted compared to those containing chemical classes barley
seen during training.

The GH-GNN model attained a MAE of 0.43 on the external data set, with 56.90%
of the predictions having an absolute error of 0.3 or lower. The parity performance
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is depicted in Fig. 4.8. Moreover, to illustrate the correlation between prediction
accuracy and the rarity of extrapolated systems, the color map represents the
number of systems in the DECHEMA training set with the same solute-solvent
chemical classes. It can be observed qualitatively from the visualization that systems
belonging to commonly occurring classes in the training data tend to be predicted
more accurately compared to those with chemical classes that are less prevalent in
the training set.

Fig. 4.8.: Parity plot between the experimental and the predicted IDAC values by the GH-
GNN model on the external data set.

In order to have a more quantitative measure of how correlated the rarity of the
extrapolated systems is with respect to the prediction accuracy, an extrapolation
distance metric δs was computed for each extrapolated species s in the external data
set. This metric is defined as

δs = 1
|T |

∑
{ds,k | k ∈ T } (4.20)

ds,m = 1− Jaccard(FPs, FPm) (4.21)

Jaccard(FPs, FPm) = |FPs ∩ FPm|
|FPs ∪ FPm|

; ∀ m ∈M (4.22)
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where, T is the set of 10 shortest Jaccard distances ds,m between the fingerprint
FPs of the extrapolated species s and the fingerprint FPm of each species m in the
DECHEMA training setM. The Jaccard similarity measures the ratio of the size of
the intersection of two sets to the size of their union, representing the proportion of
elements that differ between them. The fingerprints were computed using the RDKit
fingerprint [127] (version 2021.03.1).

Fig. 4.9.: Progression of the mean absolute error (MAE) achieved by the GH-GNN model on
systems in the external data set that fall into different Jaccard distance thresholds.

Figure 4.9 illustrates the MAE progression achieved by the GH-GNN model across
systems in the external data set where δs is equal to or less than the specified
threshold. As evident, there exist a trend of increasing MAE with distance, which
aligns with the common understanding that the performance of data-driven models
deteriorates as they extrapolate further from training distribution. The pronounced
drops in MAE progression as the distance threshold tightens can be attributed
to the specific chemical diversity covered in the external data set compared to
the DECHEMA training data set. Interestingly, as the Jaccard distance threshold
approaches values below 0.3, some oscillation occurs. This happens particularly
around MAE values between 0.1 and 0.2, roughly corresponding to the experimental
uncertainty estimation of [33]. Despite these limitations in interpretability, the
accessibility of chemical class information and the observed correlation between
prediction accuracy and the proposed Jaccard distance metric, provide a valuable
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framework for model users to understand its applicability domain and gain insights
into its expected performance.

4.2 Extending the GH-GNN model to ionic liquids

In all previous discussions, the GH-GNN model was tested exclusively on organic
molecules. All systems containing ionic liquids (ILs) were excluded. However, ionic
liquids have encountered great interest in several chemical engineering applications
due to their particular thermophysical properties (e.g., very low vapor pressure,
high thermal stability), specially in separation processes [18]. In this Section,
the extension of the proposed GH-GNN model for predicting systems with ionic
liquids as solvents is presented. A GNN-based model and a MCM-based model were
reported in the literature recently [132] for predicting exactly this type of systems.
Therefore, the comparison of the extended GH-GNN model and those available from
the literature is also included. Moreover, the data-driven models are compared to
the phenomenological model UNIFAC-IL [32].

4.2.1 Data set

The data set utilized for the extension of the GH-GNN model corresponds to the
data available at the ILThermo (v2.0) database [80]. This data set has previously
been employed for developing the GNN and MCM models by [132], and for the
parametrization of the most extensive version of UNIFAC-IL [32]. It comprises 215
ionic liquids (ILs), consisting of 96 cations and 38 anions, alongside 112 solutes,
yielding a total of 41,553 experimental IDAC values. The temperatures covered in
this data set go from 288.15 to 448.15 K, with a median temperature of 338.15
K. For consistency, the same training and testing split utilized by [132] to assess
interpolation performance among binary systems was here utilized.

4.2.2 Extension strategies

Three distinct extension strategies were explored for applying the proposed GH-GNN
framework to ILs. The first strategy involved training a GH-GNN model directly on
IL data. The second strategy leveraged the GH-GNN model developed for organic
mixtures as a pre-trained model, which is later fine-tuned using the IL data. The
third strategy entailed re-training the model using the combined data from both
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organic systems and ILs simultaneously. The objective behind comparing these
strategies was to discern whether a GNN-based model tailored to specific system
types (in this instance, organic versus ionic) outperformed a more generalized
implementation capable of predicting both systems simultaneously. Consistent with
the original GH-GNN model, identical model architecture, hyperparameters, and
training specifications were maintained across all extension strategies, as delineated
in Sections 4.1.3 and 4.1.4. Only the multi-task pre-training step was excluded for
the different extension strategies to ILs.

Tab. 4.8.: Performance of different models for predicting IDACs of systems containing ionic
liquids (ILs).

Model
Organic systems IL systems

MAE ↓ AE ≤ 0.3 ↑ MAE ↓ AE ≤ 0.3 ↑
GH-GNN 0.12 91.75% 1.21 16.80%
GH-GNN (direct IL) 2.06 10.24% 0.09 94.31%
GH-GNN (pre-trained organic) 1.67 10.94% 0.09 94.12%
GH-GNN (simultaneous) 0.12 92.38% 0.09 93.98%
GNN [132] - - 0.09 93.84%
MCM [132] - - 0.09 94.14%
UNIFAC-Dortmund 0.60 64.32% - -
UNIFAC-IL [32] - - 0.49 50.53%

Table 4.8 shows the comparison performance of the original GH-GNN model (in-
cluding the multi-task pre-training step) and the models developed with the three
extension strategies explained before. Additionally, the performance of the GNN and
MCM models developed by [132] are shown. In order to compare the performance
of the developed models to phenomenological approaches, the UNIFAC-Dortmund
and UNIFAC-IL [32] models are also included. The comparisons are shown for the
test set of organic systems (i.e., DECHEMA test set) and for IL systems.

Several interesting insights can be observed from this extension to ILs. First, it is
evident, that the original GH-GNN model, even though performing excellent for
predicting organic systems, it cannot accurately extrapolate to IL systems. This is
expected, as ionic liquids participate in stronger electrostatic interactions compared
to organic molecules, and they tend to be larger in size than the organic counterparts.
A second insightful observation is that an analogous behavior is observed for the
GH-GNN model directly trained on the IL data. The model performs the best for
predicting IL systems, but it poorly extrapolates to organic systems. Therefore, if
a general data-driven model is to be build for predicting IDACs of organic and IL
systems simultaneously, both types of systems must be included into the training
data set.
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In the second strategy, transfer learning was used in which the original GH-GNN
model was used as the pre-trained model, which was later fine-tuned with IL
data. This model maintains a comparable performance when predicting IL systems
compared to the first strategy. Moreover, it also improves the performance on
predicting organic systems compared to the first extension strategy. Nevertheless,
the performance on organic systems is still poor, and considerably worse than
UNIFAC-Dortmund. This shows that, while some information about organic systems
is retained from the pre-trained model, the fine-tuning phase mostly guide the model
away from the original organic space towards the IL space.

Fig. 4.10.: Cumulative distribution of the absolute prediction error of the extended GH-
GNN and the UNIFAC-IL [32] models. The results are shown for the test set.

The third strategy is particularly interesting. The fact that both type of systems
are used during the model training, allows the GH-GNN model to simultaneously
predict IDACs of organic and IL systems both with remarkable accuracy. In fact, it
can be observed that the most general GH-GNN model (i.e., from the third strategy)
achieves a higher percentage of systems predicted with an absolute error below 0.3
compared to the GH-GNN model tailored for predicting only individual system types
(i.e., the GH-GNN model from Section 4.1). This occurs even when the most general
GH-GNN model did not include the multi-task pre-training step as opposed to the
original GH-GNN model. From this, one can conclude that GNN-based models highly
benefit from having access to an increased amount of data that is also chemically
diverse. The reason for this is that the model is presented with more instances of
similar molecular interactions besides expanding its realm to new electrostatic ones,
which appears to facilitate the learning of data patterns much better.
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The GNN and MCM models reported by [132] perform similarly to the general
GH-GNN model. However, these methods are constrained to IL systems as opposed
to the most general framework developed here. In both organic and IL systems the
UNIFAC-based models perform the worst, excluding the specifically tailored GH-GNN
instances for organic and IL systems. For illustration, Fig. 4.10 shows the cumulative
percentage of systems predicted at various absolute errors for the UNIFAC-IL and
the extended GH-GNN models. It is clear that the GH-GNN model is able to predict
most systems more accurately than UNIFAC-IL. This is surprising, specially when
considering that UNIFAC-IL [32] was, in great part, parameterized from IDAC data.
Again, this showcase how the fragmentation and tedious parametrization of UNIFAC-
based models can be effectively replaced by the end-to-end approach of GNN-based
models (made possible by the advances in automatic differentiation and enhanced
computing power that it is available nowadays). This shows the potential that
machine learning-based models in general, and GNN-based models in particular,
have for developing alternative strategies to the classical predictive thermodynamic
methods, which hopefully could contribute to the acceleration towards a sustainable
world.

4.3 Extending the GH-GNN model to polymer solutions

In previous Sections, the performance of the proposed hybrid model, GH-GNN, for
predicting temperature-dependent IDACs of organic and IL systems was presented.
The results suggest that the proposed methodology is able to learn distinct molecular
interactions for these types of systems, in general outperforming UNIFAC-based
models in the prediction of IDACs. In this Section, the GH-GNN model is extended
to yet another realm of relevant mixtures: polymer solutions. Polymer solutions are
integral to modern life, notably in plastics production, which has surpassed nearly
all other materials in production volume [50]. Predicting IDACs of polymer-small
molecule systems is crucial for the advancement of industrial processes towards
sustainability, where predictive models can aid in selecting more environmentally
friendly compounds [89, 37].

In the realm of polymer solutions, defining molar-based activity coefficients γ
becomes ambiguous due to the distribution of a polymer’s molecular mass rather
than a precise value. Furthermore, the disparity in molecular masses between
a polymer j and a smaller molecule i hinders the use of the molar fraction as a
concentration unit [110]. Consequently, in light of these challenges, [117] suggested
employing a weight fraction activity coefficient, which is defined as
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Ωi = γi
Mj

Mi
(4.23)

where M refers to the molar mass of the compound. In the present extension of
GH-GNN to polymer solutions ln Ω∞

i was used. To exemplify the usefulness of the
weight-based definition of the activity coefficient, one can observed the following
expression used for determining IDACs via inverse gas chromatography [117]:

ln γ∞
i = ln

(
273.15 ·R

V 0
g ·Mj · P sat

i

)
− P sat

i · (Bi − Vi)
R · T

(4.24)

where, R represents the universal gas constant, T represents the system’s absolute
temperature, V 0

g signifies the specific retention volume of the carrier gas corrected
to 273.15 K, P sat

i stands for the vapor pressure of the small compound i, and Bi and
Vi denote its second-virial coefficient and molar volume, respectively. By introducing
Eq. 4.23 into Eq. 4.24, the explicit dependency on the polymer’s molar mass Mj is
effectively by-passed, enabling the direct measurement of the weight-based IDAC
from the retention volume:

ln Ω∞
i = ln

(
273.15 ·R

V 0
g ·Mi · P sat

i

)
− P sat

i · (Bi − Vi)
R · T

(4.25)

The molecular graphs used in this extension of the GH-GNN model are defined by
the same node and edge features given in Tables 4.1 and 4.2, respectively. However,
a distinction was made between the polymer graph and the small molecule graph
regarding their global-level features vector. While for the small molecule graph the
same global-level features, as described in Table 4.3, were used, the vector of global-
features for the polymer graph was extended to also accommodate the polymer
number average molecular mass Mn and/or the weight average molecular mass
Mw depending on the available polydispersity information. Further details on the
polymer graph are given in Section 4.3.2. Once again, the same model architecture,
hyperparameters, and training specifications as with the original GH-GNN model
were maintained for the present extension to polymer solutions. However, to
accommodate the distinct dimensions between the initial global-level features of
the small molecule graph, u ∈ R3, and that of the polymer graph, u ∈ R{4,5}, two
different initial message-passing layers were used within the molecular-level GNN,
one in charge of processing the small molecule graph, and the other the polymer
graph.
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Tab. 4.9.: Information of the three distinct data subsets used for the extension of the GH-
GNN model to polymer solutions.

Information
Data subset

Mn Mw Mn/Mw

# points 2532 2763 1666
Polymers 42 28 22

Small molecules 137 122 107
% of matrix observed 10.71 16.04 16.19

The extended GH-GNN model presented here was compared to the UNIFAC-based
models UNIFAC-ZM [171] and Entropic-FV [90]. These phenomenological models
incorporate a free-volume factor or an adjustment in the polymer volume parameter
to accommodate the significant variations in molecular sizes inherent in polymer
solutions. The performance of the extended GH-GNN model was tested while
interpolating among the chemical compounds considered during training, and for
the task of extrapolating to other small molecules.

4.3.1 Data set

The data set employed for the extension of the GH-GNN model to polymer so-
lutions comprises experimentally collected ln Ω∞

i values obtained via inverse gas
chromatography, available from Vol. XIV of the DECHEMA Chemistry Data Series
[66]. Specifically, only systems involving homopolymers are considered in this study.
Through the digitization process of the data using OCR and meticulous manual
verification, errors in the original data collection have been detected and rectified,
as detailed in Appendix A.14. Data points lacking polydispersity information were
eliminated, and repeated measurements were averaged to derive a single data point
for the same binary system at the same state conditions.

The resulted curated data set encompasses 48 different homopolymers and 150
small molecules. Some of the data points report either the Mn, the Mw or both
values regarding polydispersity. Therefore, three different subsets are constructed,
one collecting all data points with available Mn information, the second for the ones
having Mw information and the third collecting data points with both polydispersity
values. Table 4.9 presents the number of data points, distinct polymers, and distinct
small molecules in each data subset, along with the percentage of polymer-small
molecule observations relative to all possible combinations of the corresponding
polymer-small molecule matrix. It is important to note that, across all three data
sets, over 77% of observations correspond to the top 8 most prevalent polymers
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Fig. 4.11.: Graph polymer representations used in the extension of the GH-GNN model to
polymer solutions.

within each data subset. Similarly, approximately 50% of observations correspond
to the top 15 most common small molecules.

4.3.2 Polymer representations

Polymers have been historically represented by their monomer structures on UNIFAC-
based models [110, 90, 171]. However, this representation lacks the information
about the polymerization points of the molecule, which makes it possible for a single
monomer structure to represent multiple polymers [152]. In this study, four primary
graph representations have been used and compared: monomer, repeating unit,
periodic unit and oligomer. The monomer corresponds to the chemical species used
in the synthesis of the polymer (e.g., ethylene glycol for polyethylene glycol). The
repeating unit [7] corresponds to the repeated molecular segment in the polymer
chain. The periodic unit refers to a special graph representation in which the
repeating unit is enlarged with an extra edge between the polymerization points.
Finally, the oligomer representation refers to the a block of n repeated units, in which
n denotes the polymerization degree. In this study, n = 10 as it was observed to be a
good compromised between computational efficiency (due to the size of the graph)
and information difference compared to larger oligomers. Fig. 4.11 schematically
illustrates these four polymer representations exemplified by polybutadiene.

4.3.3 Interpolating among systems

To assess the comparative utility of the four graph representations of polymer species,
90% of the polymer-small molecule pairs from each subset were designated for
training the GH-GNN model. The remaining data points were allocated for testing,
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ensuring the test set solely comprises interpolation cases. Any mixture featuring an
unseen polymer or small molecule was reassigned to the training set. This process is
iterated 10 times using distinct random seeds to achieve ten distinct train/test splits
that are used for a more robust evaluation of the model’s performance. Across all
three data sets (i.e., Mn, Mw, and Mn/Mw), the proportion of training points was
maintained at an average of 90.5%.

Fig. 4.12.: Mean absolute error (MAE) achieved by the extended GH-GNN trained with
different polymer representations on each subset.

Fig. 4.12 shows the MAE achieved by the GH-GNN model on each subset and for
each graph representation. The values correspond to the average value of the 10
independent runs and the error bars are determined by the standard deviation of
them. As can be noted, no statistical significant difference can be observed when
comparing different polymer representations on the same subsets (i.e., comparing
bars of same color). The same is true when comparing the different models trained
using different polydispersity information (i.e., comparing bars of the same polymer
representation). While on average, the models trained using both Mn and Mw

perform the best, the performance’s variation of each case stays within each others.

The fact that no significant advantage could be observed among different polymer
representations and data subsets is attributed to the specific data set analyzed in this
extension. This data set is relatively limited in terms of polymer diversity (cf., Table
4.9), which makes it difficult to distinguish the benefits and pitfalls of each specific
representation. This contrasts with the findings reported by [7] on a different (and
much more chemically diverse) polymer-property prediction task, which reported
that the periodic unit tends to preserve the information much better allowing models
to learn the data patterns better. This suggests that in scenarios with limited data
availability, the exact polymer representation may not impact the model accuracy
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Tab. 4.10.: Interpolation performance achieved by the extended GH-GNN model (with and
without pre-training on organic systems) and the random forest baseline using
the periodic unit representation. The standard deviation is shown in between
parenthesis.

MAE ↓ Interpolation
Mn Mw Mn/Mw

Random forest 0.27 (0.07) 0.22 (0.03) 0.27 (0.07)
GH-GNN 0.17 (0.03) 0.15 (0.02) 0.15 (0.02)

GH-GNN (pre-trained organic) 0.13 (0.02) 0.13 (0.02) 0.13 (0.03)

R2 ↑ Interpolation
Mn Mw Mn/Mw

Random forest 0.72 (0.13) 0.79 (0.05) 0.69 (0.17)
GH-GNN 0.90 (0.04) 0.91 (0.03) 0.92 (0.03)

GH-GNN (pre-trained organic) 0.94 (0.02) 0.94 (0.01) 0.94 (0.03)

as much compared to situations with abundant data. However, this observation
is contingent upon the inherent limitations of certain polymer representations, as
previously discussed.

Table 4.10 shows the performance of the extended GH-GNN model in the interpo-
lation task in terms of the MAE and the R2 coefficient. The results are shown for
the models trained using the periodic unit. Moreover, the performance of a second
GH-GNN model is shown, which uses the original GH-GNN model as a pre-trained
step that is later fine-tune using the polymer solution data. For comparison, the
performance of a baseline random forest model (100 estimators and expanded to
full purity) is shown. This random forest was trained on the concatenated Morgan
fingerprints (radius 4 and 2048 bits) of the small molecule and the polymer peri-
odic unit. The temperature and polydispersity information was also included via
concatenation.

The GH-GNN model pre-trained on organic systems outperforms the baseline in all
metrics and all subsets, and it also outperformed the GH-GNN model trained directly
on the polymer solution data. This, showcases the benefits of transfer learning when
dealing with limited data. As opposed to the ionic liquid case (i.e., Section 4.2),
a simultaneous approach was not attempted here, given the significant disparity
in the amount of data available for organic systems compared to that of polymer
solutions. It should be also noted that, in almost all cases, the variation of the
predictions decrease for the pre-trained model compared to the direct approach.
This also shows that transfer learning does not only increases the model’s accuracy,
but also its robustness.
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Tab. 4.11.: Extrapolation performance achieved by the extended GH-GNN model (with and
without pre-training on organic systems) and the random forest baseline using
the periodic unit representation. The standard deviation is shown in between
parenthesis.

MAE ↓ Extrapolation
Mn Mw Mn/Mw

Random forest 0.26 (0.07) 0.31 (0.05) 0.24 (0.08)
GH-GNN 0.24 (0.14) 0.26 (0.06) 0.18 (0.06)

GH-GNN (pre-trained organic) 0.15 (0.05) 0.20 (0.07) 0.15 (0.05)

R2 ↑ Extrapolation
Mn Mw Mn/Mw

Random forest 0.63 (0.23) 0.45 (0.35) 0.66 (0.15)
GH-GNN 0.66 (0.46) 0.64 (0.18) 0.86 (0.08)

GH-GNN (pre-trained organic) 0.90 (0.09) 0.81 (0.14) 0.89 (0.07)

4.3.4 Extrapolating to other small molecules

To assess the GH-GNN model’s performance when extrapolating to unseen small
molecules, a list of all small molecules in each subset is initially compiled. Subse-
quently, a random selection comprising 90% of these unique molecules is conducted.
The training set is then constructed, comprising all polymer-small molecule pairs
containing any of these selected small molecules, while the testing set consists
of the remaining unique mixtures not present in the training set. Similar to the
interpolation scenario, the models undergo evaluation via 10 independent splits
utilizing different random seeds, with reported metrics representing averages across
these 10 splits. On average, the proportion of training points across all three data
subsets (Mn, Mw, and Mn/Mw) amounted to 88.9%.

Table 4.11 shows the outcomes obtained for the extrapolation task. An important
observation arises when comparing the GH-GNN model’s performance between the
interpolation (Table 4.10) and extrapolation (Table 4.11) tasks. It becomes evident
that the accuracy of the model diminishes during extrapolation, and the predictions’
variability increases. This trend simply remarks that extrapolating to unknown
chemical species is a more challenging task compared to interpolating within the
chemical space observed during training. As discussed earlier in this Chapter IDAC
interpolation tasks can be even achieved with remarkable accuracy using matrix or
tensor completion techniques, which do not necessitate explicit information about
the chemical structures and interactions [33, 74, 34]. Similarly to the interpolation
task, transfer learning consistently improves the model’s accuracy and robustness.

In order to benchmark the performance of the extended GH-GNN model against
the phenomenological models UNIFAC-ZM [171] and Entropic-FV [90], a collection
of systems was gathered from the literature [115] classified into athermal systems,
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Tab. 4.12.: Comparison between the phenomenological models UNIFAC-ZM [171] and
Entropic-FV [90] against the GH-GNN model extended for polymer solutions.

Systems # points UNIFAC-ZM Entropic-FV GH-GNN (pre-trained organic)
Athermal 53 11.1 9.3 4.0

Polar 66 22.6 11.2 6.4
Associated 21 27.9 33.8 22.3

polar systems and systems with association. The performance of the GH-GNN model
corresponds to the ensemble of 10 models trained for extrapolation (for the case
including pre-training in organic systems). The performance, as shown in Table 4.12,
is measured by the MAPE on the unscaled Ω∞

i values. Only systems contained in
the test set of each model in the ensemble are included in the comparison. The best
performance is shown in bold.

For both phenomenological models, temperature-dependent interaction parameters
were used as they were found to perform better than temperature independent
ones [115]. For the athermal scenario, the studied systems included polyethylene,
low-density polyethylene, and polyisobutylene, alongside linear, branched, and
cyclic alkanes. In polar systems, the comparison encompassed poly(ethyl methacry-
late), poly(methyl acrylate), poly(methyl methacrylate), poly(n-butyl methacrylate),
poly(vinyl acetate), polybutadiene, and polystyrene, with solvents such as ketones,
esters, chlorinated hydrocarbons, benzene, and toluene. Concerning systems involv-
ing associations, the data includes poly(ethylene oxide), poly(methyl methacrylate),
polybutadiene, and polystyrene, along with monohydroxy alcohols and acetic acid.
The extended GH-GNN model consistently demonstrated lower MAPE values across
all three system types compared to the UNIFAC-based models. This, once again,
showcases that hybrid GNN-based models are promising alternatives to construct
predictive thermodynamic models across different types of systems achieving state-
of-the-art accuracy.

4.4 Chapter summary

This Chapter introduces the Gibbs-Helmholtz Graph Neural Network (GH-GNN)
employing a hybridization strategy that combines mechanistic and machine-learning
submodels. Initially, a GNN operating at the molecular level learns embeddings
directly from molecular graphs, incorporating information on polarity and polariz-
ability via global-level features. Building on this, a mixture graph is constructed to
capture hydrogen-bonding information as originally proposed by [125], enhancing
the model’s capacity to learn mixture representations via a secondary mixture-level
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GNN. Utilizing the Gibbs-Helmholtz equation and the assumption of temperature-
independent partial molar excess enthalpy, an expression is derived to introduce
temperature-dependency into the IDACs.

The GH-GNN undergoes a pre-training phase in a multi-task fashion to predict the
temperature-independent parameters of the derived Gibbs-Helmholtz expression
before fine-tuning on all available IDAC data. This approach outperforms incorpo-
rating temperature as an additional input parameter. Extensive testing demonstrates
the model’s accuracy across various temperatures and chemical species, particularly
within the training mixture space, surpassing the UNIFAC-Dortmund model [59].
However, performance outside the training mixture space is influenced by chemical
proximity, quantified through the proposed Jaccard distance metric. Notably, the
GH-GNN exhibits superior prediction accuracy compared to state-of-the-art UNIFAC
models in organic systems (UNIFAC-Dortmund [59]), ionic liquids (UNIFAC-IL [32]),
and polymer solutions (UNIFAC-ZM [171] and Entropic-FV [90]), highlighting the
potential of GNN-based models for predictive thermodynamic modeling, particularly
in temperature-dependent IDAC predictions.

In addition to the significant enhancements in IDAC prediction accuracy achieved by
the proposed GH-GNN model over UNIFAC-based models, it is crucial to underscore
an additional advantage. The implementation time for constructing GNN-based mod-
els tailored to specific prediction tasks is (arguably) considerably shorter compared
to the development of traditional group-contribution strategies. The main reasons
for this is that the recent advances in automatic differentiation, open-sourced deep
learning frameworks and modern GPU computing allow for a fast implementation
of end-to-end solutions by-passing the previously manual task of molecular frag-
mentation followed by the model parametrization. In this same spirit, additional
efforts were dedicated for the collection, digitization and cleaning of data sources
that allowed for the open-sourcing of the models presented and investigate in this
Chapter.
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Predicting Activity
Coefficients

5

„...one doesn’t bet against deep learning.

— Ilya Sutskever
Computer scientist

In Chapter 3 the simplest case of predicting isothermal IDACs using hybrid GNN-
based models was explored. Following, Chapter 4 extended the case for predicting
temperature-dependent IDACs. In this Chapter, the next logical step is taken: intro-
ducing the composition dependency to predict the most general activity coefficients
γi.

Similarly to the Gibbs-Helmholtz equation (Eq. 2.25) that establishes the tempera-
ture dependency of activity coefficients, there exist a thermodynamic relationship
that constraints the composition dependency. This relationship is the Gibbs-Duhem
equation (Eq. 2.27), which establishes that the activity coefficients of the compo-
nents in a given mixture are not independent from each other. For binary systems,
the Gibbs-Duhem relation can be written as

0 = xid ln γi + xjd ln γj (5.1)

where, x refers to the molar fraction of the corresponding species.

This Chapter explores the extension of the proposed Gibbs-Helmholtz Graph Neural
Network (GH-GNN) to include the composition dependency of activity coefficients
ensuring thermodynamic consistency. Moreover, it explores the performance of the
proposed general framework when predicting activity coefficients of binary systems
in vapor-liquid equilibrium (VLE) conditions. A comprehensive comparison to the
UNIFAC-Dortmund model is also provided. Additionally, some insights into the
performance of the proposed model for predicting VLEs of ternary mixtures are
included.
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5.1 From infinite to finite using the Margules equation

One has to bear in mind that activity coefficients can be calculated from the molar
excess Gibbs energy of the mixture (cf. Eq. 2.29). This implies that if an expression
for this excess property is available, all activity coefficients of the mixture components
can be computed. However, the concept of excess Gibbs energy, as briefly discussed
in Section 2.1.1, is founded on the notion of refining/correcting the predictions of
an ideal model, specifically the ideal solution model (Raoult’s law). Hence, rather
than being an intrinsic physical property of matter, the molar excess Gibbs energy
(and consequently the activity coefficients) represents a theoretical construct aimed
at modeling the physical behavior of condensed matter. Consequently, various
expressions can be proposed to model this function, known as gE models. The only
requirement for such expressions is that they must satisfy the limiting condition
outlined in Eq. 2.30.

The simplest gE model for the simplest mixture (i.e., binary mixture) that can be
proposed corresponds to the Porter model [56]

gE = Axixj (5.2)

where, the parameter A should be fitted to experimental data.

However, a more general framework can be constructed by considering the extended
Margules equation [108], which approximates the gE function using a pth-order
Taylor polynomial. This model can be applied to mixtures of n components (complete
derivation in Appendix A.15). For binary systems the gE Margules model can be
expressed as follows:

gE = xixj(xiwji + xjwij) (5.3)

As shown in Appendix A.15, all the coefficients of the Margules model (e.g., wij

and wji in Eq. 5.3) can be fully determined by the binary-system IDACs of all
pair combinations of the mixture components. The gE Margules model not only
satisfies the boundary condition of excess properties (Eq. 2.30), but also is consistent
with the Gibbs-Duhem relationship (Eq. 2.27). For a binary-mixture, the extended
Margules equation computes the activity coefficients as
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ln γi = 2wjixixj + x2
jwij − 2gE (5.4)

ln γj = 2wijxjxi + x2
iwji − 2gE (5.5)

wji = ln γ∞
j (5.6)

wij = ln γ∞
i (5.7)

Therefore, by incorporating the extended Margules equation into the GH-GNN
framework developed in Chapter 4, thermodynamic consistent activity coefficients
at varying temperatures and compositions can be predicted as soon as the corre-
sponding IDACs are available (in this case predicted via the GH-GNN model from
Chapter 4). In this way, the hybrid serial model GH-GNN is here further extended
by including the phenomenological Margules model also in a sequential manner.
Fig. 5.1 shows a schematic representation of the proposed hybrid serial model for
predicting activity coefficients. In the following Sections, the performance of such
GH-GNN-Margules hybridization strategy is discussed when predicting fluid phase
equilibria.

Fig. 5.1.: Schematic illustration of the proposed hybrid serial model consisting of the
GH-GNN model and the extended Margules equation for predicting activity coeffi-
cients.

5.2 Predicting binary vapor-liquid equilibria

The accurate prediction of VLE behavior is important for designing and modeling
thermal separation processes, particularly evident in applications such as distillation
columns, which are the most popular separation technique in the chemical industry
[103]. Given its widespread usage, distillation has undergone extensive study, with
VLE data being the most measured equilibrium property of mixtures [56]. However,
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despite decades of research, the available VLE data remains limited, with only
a small fraction, estimated at merely 1.2% for binary systems of interest being
experimentally measured [56]. Data for mixtures exceeding two components is even
scarcer. Hence, the significance of predictive methods, such as the one proposed
in this work, that leverage binary data exclusively, becomes apparent. The GH-
GNN-Margules approach introduced in this Chapter further refines its requirements
by relying solely on experimental binary-system data at infinite dilution for select
mixtures.

The VLE of systems with a vapor phase that behaves close to ideality can be model
using Eq. 2.23. In this expression the activity coefficient can be approximated
directly from the experimental VLE data by

γi = yiP

xiP sat
i

(5.8)

Therefore, by estimating the activity coefficients using the proposed GH-GNN-
Margules approach, and by having access to the vapor pressure of the mixture
components, one can solve Eq. 5.8 to estimate the VLE behavior of a mixture directly
from the binary IDAC information. This approach is explored in this Chapter for
the cases of binary isothermal and isobaric VLEs. Additionally, some insights on the
performance of the proposed model for predicting VLEs of mixtures containing ionic
liquids and ternary VLEs are provided. Since, in all these cases the vapor phase is
assumed to be ideal, the discussion and conclusions are limited to systems under
low to medium pressures (approx. ≤ 500 kPa).

5.2.1 Data set

For testing the performance of the proposed GH-GNN-Margules hybrid model a
collection binary VLE experimental data was gathered from the Korean Data Bank
[91]. A cleaning pre-processing step was carried out for filtering out data points
containing typographic errors (e.g., misplacement of the decimal point, composition
values greater than 1). The standardization of the measurement units of all experi-
mental subsets was also carried out. Only systems at a pressure of 500 kPa or less
were considered, as this supports the assumption of ideal vapor phase.

Moreover, pure component data (in specific CAS-RN number and vapor pressure cor-
relation coefficients) were gathered from the Korean Data Bank [91]. SMILES strings
were collected from PubChem [123] using the CAS-RN identifiers and conserving

98 Chapter 5 Predicting Activity Coefficients



Tab. 5.1.: General information of the KDB data set consisting of binary VLE experimental
measurements.

Description Information
Number of data points 26,323
Number of compounds 213
Number of unique binary combinations 887
Number of isobaric subsets 745
Number of isothermal subsets 852
Number of random subsets 28
Pressure range (kPa) 0.01 - 499.50
Temperature range (K) 255 - 576.93

the isomeric information in case isomeric SMILES were available. For compounds
without CAS-RN identifier, the SMILES were retrieved using the name of the com-
pound from OPSiN [111]. All systems with compounds that do not have available
vapor pressure information were discarded. Also, systems at a temperature outside
the applicability bounds of the available vapor pressure correlation parameters
were discarded. The vapor pressure was estimated using the Korean Data Bank
correlation

ln (P sat
i ) = Ai ln(T ) + Bi

T
+ Ci +DiT

2 (5.9)

where, the pressure is given in kPa and the temperature in K. Furthermore, only
data points with reported liquid and the corresponding vapor molar fractions were
included. Systems with compounds with atomic or bond features different than the
ones considered by the GH-GNN model (cf. Tables 4.1 and 4.2, respectively) were
discarded.

The compounds contained in the KDB data set are classified into specific chemical
classes available also at the Korean Data Bank [91]. This classification was used
here to study the performance of the GH-GNN-Margules framework across different
mixtures of chemical classes. To constrain the application of the methodology to
systems where the GH-GNN is expected to produce relative accurate estimations
of the IDACs, a Jaccard distance metric threshold of 0.6 (as mentioned in Section
4.1.5) was used to filter-out systems outside of the applicability domain of the model.
In total, 1,963 data points were discarded due to having a high Jaccard distance
metric. A summary of the information of the cleaned data set, here referred to as
the KDB data set, is presented in Table 5.1.
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5.2.2 Isothermal vapor-liquid equilibria

In the case of isothermal systems contained in the KDB data set, the number of data
points reduces to 12,427, covering measurements of 166 compounds in 503 unique
binary combinations. The temperature range covered goes from 260.93 to 573.15 K.
As shown in Equations. 5.4 to 5.7, for computing the activity coefficients of a binary
mixtures using the extended Margules equation, the two corresponding IDACs are
necessary. Therefore, the number of IDACs necessary for calculating the isothermal
VLEs of the 503 binary combinations is 1,006. For 120 (23.8%) binary systems,
out of the total 503, both IDACs were observed during training. For 360 (71.6%)
systems, the GH-GNN model has to perform an interpolation for at least one of the
two IDACs needed, and for the rest, 23 (4.6%) systems, the GH-GNN would need
to extrapolate for at least one of the two necessary IDACs. The latter is a result of
having 12 compounds (out of the 166 compounds contained in the isothermal VLE
data) that were not present at all during the training of GH-GNN. This discussion
shows that, even when the extended Margules equation can be (and should be,
when possible) applied directly to experimental IDACs, the small availability of
experimental measurements is still a significant challenge and a strong motivation
for developing predictive methods.

Algorithm 1: Isothermal vapor-liquid equilibrium of binary mixture using the
GH-GNN-Margules model
Data: System’s temperature, vapor pressure parameters for components i and j,

parameters K1,ij , K2,ij and K1,ji, K2,ji from the GH-GNN model, molar
fraction xi in the liquid phase.

Result: Molar fraction yi in the vapor phase.
1 Compute wij = ln γ∞

ij and wji = ln γ∞
ji using Eq. 4.2;

2 Compute γi and γj using Eqs. 5.4 - 5.5;
3 Compute vapor pressures P sat

i and P sat
j using Eq. 5.9 at the system’s

temperature ;
4 Compute partial pressures using Eq. 5.8 (e.g., pi = xiγiP

sat
i ) ;

5 Compute system’s pressure as P = pi + pj;
6 Compute molar fraction of i in the vapor phase as yi = P/pi

Algorithm 1 shows the procedure to compute isothermal vapor-liquid equilibria of
binary mixtures using the proposed GH-GNN-Margules model. Fig. 5.2 shows the
performance of the proposed GH-GNN-Margules framework when predicting the
isothermal KDB data (according to the predicted molar fraction in the vapor phase)
of all different binary chemical classes. It can be seen that overall, the GH-GNN-
Margules model, which only uses information at infinite dilution, is able to predict
various types of systems with significant accuracy. For illustration, Fig. 5.3 shows the
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Fig. 5.2.: Heatmap of the mean absolute error achieved by the GH-GNN-Margules model
on all KDB isothermal data according to binary chemical classes. The number on
each cell indicates the number of data points in each subset.

percentage of binary classes that are predicted within different mean absolute error
thresholds for systems that can be also predicted by UNIFAC-Dortmund. Around
60% of the 98 binary classes are predicted with a MAE less or equal to 0.02 when
using GH-GNN-Margules.

In general, systems containing acids are difficult to predict for the GH-GNN-Margules
model, specially in combination with halogenated species and amides. This can
be attributed to the fact that these types of species participate in strong hydrogen-
bonding and dipole-dipole interactions that could still be difficult to model with
the information given to the GH-GNN model or that might require higher order
polynomials on the Margules expression. Alcohols/Amines systems also appear to
be predicted with poor accuracy. Moreover, systems containing water (categorized
within the “Inorganic" class in Fig. 5.2) together with amines and other nitrogen
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Fig. 5.3.: Cumulative percentage of binary classes predicted by the GH-GNN-Margules and
UNIFAC-Dortmund models within different mean absolute error thresholds. The
errors are calculated according to the predicted molar fraction in the vapor phase
on the isothermal vapor-liquid equilibria KDB data. Only feasible systems for
UNIFAC-Dortmund are considered.

derivatives also were predicted with relatively large errors. By contrast, systems
containing esters, ethers or aldehydes tend to be well-predicted. Aromatics and
unsaturated hydrocarbons are also observed to be predicted with relatively high
accuracy.

Overall, the model is able to predict, as shown in Table 5.2, 76.04% of all isothermal
data points with an absolute error of less than 0.03. Table 5.2 also categorizes the
performance based on the systems that were predicted from entirely observed IDACs
(denoted with “Observed"), from interpolated IDACs (denoted with “Interpolated")
and from extrapolated IDACs (denoted with “Extrapolated"). However, one should

Tab. 5.2.: GH-GNN-Margules and UNIFAC-Dortmund performance on predicting isothermal
binary vapor-liquid equilibria data. The metrics are shown with respect to the
predicted molar fraction in the vapor phase.

# points # binary classes MAE ↓ R2 ↑ AE ≤ 0.03 ↑
All data 12,427 98 0.0277 0.962 76.04%
Observed data 3,588 39 0.0341 0.943 69.43%
Interpolated data 8,265 92 0.0250 0.966 79.23%
Extrapolated data 574 13 0.0258 0.985 71.43%

Feasible systems for UNIFAC (Do)
UNIFAC (Do)

12,231 98
0.0192 0.968 87.37%

GH-GNN-Margules 0.0278 0.961 75.96%
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bear in mind that, in fact, the GH-GNN-Margules model is extrapolating in all cases
from the infinite dilution regime to the finite concentration space.

It is interesting to note that the performance of the GH-GNN-Margules model for
systems with all necessary IDACs being observed is slightly worse than for systems
where interpolation is necessary. This is attributed to the difference between the
number of binary classes covered for each case. While “observed" systems involve
only 39 binary classes, the “interpolated" systems covered 92. While for some type
of binary classes the GH-GNN-Margules model can predict accurate results (cf. Fig.
5.2), for others the performance is relatively poorer.

Fig. 5.4.: Isothermal vapor-liquid equilibria diagram of two systems that could not be
predicted with UNIFAC-Dortmund, but were predicted by GH-GNN-Margules.
Markers denote experimental measurements.

The comparison between the UNIFAC-Dortmund and the GH-GNN-Margules model,
shown in Table 5.2, indicates that UNIFAC-Dortmund predicts most of the isothermal
VLE systems more accurately than the proposed model. This same conclusion can be
drawn by looking at the cumulative percentage of binary systems that are predicted
within different MAE errors (as illustrated in Fig. 5.3). Perhaps, this result does
not come as a surprise given that extensive VLE data was used for parametrizing
UNIFAC-Dortmund [59]. By contrast, the GH-GNN-Margules model achieves such
performance by utilizing only experimental data in the infinitely diluted region. And,
as a predictive method, the GH-GNN part of the proposed methodology is able to
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predict all necessary IDACs for the extended Margules equation to estimate the finite
concentration behavior of the mixture.

Moreover, as already discussed in Chapters 3 and 4, many systems simply cannot
be predicted by UNIFAC-Dortmund due to missing interaction parameters. In this
isothermal VLE study, this type of systems are limited but still present (cf. 12,231
feasible points out of the 12,427 points in Table 5.2). As an example, Fig. 5.4 shows
the vapor-liquid equilibria diagram for two of the systems that UNIFAC-Dortmund is
not able to predict. Both of these systems correspond to “interpolated" systems for
the GH-GNN-Margules model. It is also remarkable that, as shown for the system
“1,1,2-trichlorotrifluoroethane / methyl acetate" in Fig. 5.4, the GH-GNN-Margules
model is able to capture the azeotropic behavior with excellent precision without
including this type of experimental data, as opposed to UNIFAC-Dortmund which
was also parameterized using dedicated azeotropic data [59].

5.2.3 Isobaric vapor-liquid equilibria

From the KDB dataset, 13,528 data points are given at isobaric conditions. These
data points involve 148 distinct compounds arranged in 501 different binary systems.
The pressure in this isobaric subset ranges from 1.33 to 496.63 kPa. The number of
systems where both IDACs were observed during the training of the GH-GNN model
is 106 (21.2%). Similarly, the number of systems where the GH-GNN model has
to perform IDAC interpolation is 388 (77.4%), and for only 7 (1.4%) systems an
extrapolation is necessary because 5 (out of the 148) compounds were not present
at all during the training of GH-GNN.

When calculating isobaric VLEs an optimization problem has to be solved for min-
imizing the difference between the calculated system’s pressure and the actual
system’s pressure. The optimization problem is here implemented as

min
T

|P − P̂ (T )|

s.t. P̂ (T ) = xiγi(T )P sat
i (T ) + xjγj(T )P sat

j (T )

{γi(T ), γj(T )} ← Model(T )

Tmin ≤ T ≤ Tmax

(5.10)

where, P and P̂ stand for the actual and predicted system’s pressure, Model refers to
the specific model being used to compute the activity coefficients (in this case the GH-
GNN-Margules or UNIFAC-Dortmund), and Tmin and Tmax refer to the optimization
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bounds for the temperature. In this case, the temperature bounds are determined as
the minimum temperature range in which the vapor pressure correlation (Eq. 5.9)
remains feasible.

Algorithm 2 shows how to compute isobaric VLE calculations of binary mixtures using
the proposed GH-GNN-Margules model. The while loop in Algorithm 2 is essentially
solving the Optimization Problem 5.10. In this work, this is implemented using the
SciPy library [158] with the Brent’s method using maximum 2,000 iterations and a
tolerance of 1.48× 10−8.

Algorithm 2: Isobaric vapor-liquid equilibrium of binary mixture using the GH-
GNN-Margules model
Data: System’s pressure, vapor pressure parameters for components i and j,

parameters K1,ij , K2,ij and K1,ji, K2,ji from the GH-GNN model, molar
fraction xi in the liquid phase, temperature bounds Tmin and Tmax.

Result: Molar fraction yi in the vapor phase.
1 Take a random initial T guess;

while |P − P̂ (T )| > ϵ do
2 Compute wij = ln γ∞

ij and wji = ln γ∞
ji using Eq. 4.2;

3 Compute γi and γj using Eqs. 5.4 - 5.5;
4 Compute vapor pressures P sat

i and P sat
j using Eq. 5.9 at the system’s

temperature ;
5 Compute partial pressures using Eq. 5.8 (e.g., pi = xiγiP

sat
i ) ;

6 Estimate system’s pressure as P̂ = pi + pj ;
if termination condition is not met then

7 Estimate next T candidate using the Brent’s method;
end

end

Table 5.3 shows the performance of the GH-GNN-Margules model in the isobaric
data. Similarly to Section 5.2.2, the results are shown for all isobaric systems and
for systems where the necessary IDACs were observed, interpolated or extrapo-
lated. Additionally, the comparison to UNIFAC-Dortmund is provided. As with the
isothermal systems, UNIFAC-Dortmund outperforms the GH-GNN-Margules model
for predicting isobaric VLEs of binary systems. As explained in the previous Section
this is expected given the difference in available experimental information that both
models had during training.

Fig. 5.5 shows the MAE that the GH-GNN-Margules model achieves on predicting the
molar fraction in the vapor phase for each binary combination of chemical classes.
The first thing to note is that, compared to the isothermal data, different binary
classes are now considered. For instance, data for the combinations acids/alcohols
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Tab. 5.3.: GH-GNN-Margules and UNIFAC-Dortmund performance on predicting isobaric
binary vapor-liquid equilibria data. The metrics are shown with respect to the
predicted molar fraction in the vapor phase.

# points # binary classes MAE ↓ R2 ↑ AE ≤ 0.03 ↑
All data 13,528 72 0.0339 0.950 66.41%
Observed data 3,551 30 0.0294 0.967 67.73%
Interpolated data 9,789 66 0.0353 0.945 66.03%
Extrapolated data 188 7 0.0443 0.924 61.17%

Feasible systems for UNIFAC (Do)
UNIFAC (Do)

13,512 72
0.0270 0.969 82.55%

GH-GNN-Margules 0.0339 0.950 66.37%

Fig. 5.5.: Heatmap of the mean absolute error achieved by the GH-GNN-Margules model
on all KDB isobaric data according to binary chemical classes. The number on
each cell indicates the number of data points in each subset.

and acids/acids is available at isobaric conditions, but not at isothermal conditions.
In total, 14 new binary classes are present in the isobaric data that were not present
in the isothermal data. As with the isothermal case, many binary classes at isobaric
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Fig. 5.6.: Isobaric vapor-liquid equilibria diagram of system “pyridine/1,2,3,4-
tetrahydronaphthalene" at 26.66 kPa predicted with GH-GNN-Margules
and UNIFAC-Dortmund.

conditions are predicted with relatively low errors. In fact, out of the 745 isobaric
systems considered here, 175 systems are on average better predicted with the
GH-GNN-Margules model rather than with UNIFAC-Dortmund. To illustrate this Fig.
5.6 shows the VLE diagram for the system “pyridine/1,2,3,4-tetrahydronaphthalene"
at 26.66 kPa. It is clear that the GH-GNN-Margules model predicts the VLE behav-
ior closer to the experimental observations compared to UNIFAC-Dortmund. The
same can be observed in the second example shown in Fig. 5.7, for the system
“tetrachloroethylene/furfural" at 101.325 kPa. For both of these systems, the GH-
GNN model has to interpolate at least one of the two IDACs needed. This shows
that, despite UNIFAC-Dortmund outperforming the proposed model in most cases,
counter-examples can also be found.

It is important to highlight that, since the parameters K1,i and K2,i of the GH-GNN
model are temperature independent, they need to be predicted only once for each
binary combination. As a result, the optimization problem that needs to be solved for
isobaric cases (cf. Algorithm 2), is computationally cheaper compared, for instance,
to approaches where the temperature dependence is part of the highly parametric
deep learning model (e.g., models in [132, 165]).
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Fig. 5.7.: Isobaric vapor-liquid equilibria diagram of system “tetrachloroethylene/furfural"
at 101.325 kPa predicted with GH-GNN-Margules and UNIFAC-Dortmund.

Tab. 5.4.: GH-GNN-Margules and UNIFAC-Dortmund performance on predicting all binary
vapor-liquid equilibria data contained in the KDB data set. The metrics are shown
with respect to the predicted molar fraction in the vapor phase.

# points # binary classes MAE ↓ R2 ↑ AE ≤ 0.03 ↑
All data 26,323 112 0.0302 0.957 71.76%
Observed data 7,264 44 0.0314 0.954 69.01%
Interpolated data 18,277 108 0.0297 0.957 72.95%
Extrapolated data 782 17 0.0287 0.977 69.56%

Feasible systems for UNIFAC (Do)
UNIFAC (Do)

26,089 112
0.0206 0.966 85.27%

GH-GNN-Margules 0.0302 0.957 71.71%

5.2.4 Overall performance on binary vapor-liquid equilibria

In order to provide a more comprehensive overview of the performance of GH-GNN-
Margules in predicting binary VLEs, the prediction results on the complete KDB
data set are provided in Table 5.4. This includes all isothermal and isobaric systems,
and all random measurements. The performance on the subset of systems that are
feasible for UNIFAC-Dortmund is also provided.

Moreover, to have a more detailed overview of what are the few binary classes that
GH-GNN-Margules tends to predict better than UNIFAC-Dortmund, the best model
per binary combination is shown in Fig. 5.8. The performance of each binary class is
taken as MAE across all data points of the same binary class. The predictions are
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Fig. 5.8.: Matrix of binary classes contained in the KDB data set that are feasible to predict
with UNIFAC-Dortmund. The color shows whether UNIFAC-Dortmund or GH-
GNN-Margules achieve a lower mean absolute error (MAE). The number on each
cell indicates the number of data points in each subset.

measured with respect to the molar fraction in the vapor phase. Once again, it is
evident that the UNIFAC-Dortmund model performs better for most binary classes.
However, some binary classes appear to be better predicted with GH-GNN-Margules.
For instance, the binary class "amines/aromatics", which includes the system shown
in Fig. 5.6, tends to be better predicted with the proposed model. Nevertheless, it
is important to highlight that the comparison here is limited to the overall MAE of
the predictions. Other important criteria should ideally also be considered based on
its relative relevance in applications to process engineering (e.g., the accuracy on
predicting azeotropes).
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5.3 Predicting ternary vapor-liquid equilibria

The extended Margules equation is not limited to binary-systems, it can also be
applied to multi-component systems. For the case of ternary systems it is written
as

ln γi = 2(xixjwji + xixkwki) + x2
jwij + x2

kwik + xjxkcijk − 2gE (5.11)

ln γj = 2(xjxkwkj + xjxiwij) + x2
kwjk + x2

iwji + xkxicjki − 2gE (5.12)

ln γk = 2(xkxiwik + xkxjwjk) + x2
iwki + x2

jwkj + xixjckij − 2gE (5.13)

gE = xixj(xjwij + xiwji) + xixk(xkwik + xiwki) (5.14)

+ xjxk(xkwjk + xjwkj) + xixjxkcijk

cabc = 1
2(wab + wba + wac + wca + wbc + wcb)− wabc (5.15)

wab = ln γ∞
ab (5.16)

(5.17)

where, the subscripts a, b and c correspond to the different components in the
mixture (either i, j or k) according to the specific case. In this work, the resulting
ternary interaction parameter wijk is assumed to be zero. However, notice that
the ternary parameter cabc is non-zero, but determined completely from the binary
IDACs.

Tab. 5.5.: Ternary vapor-liquid equilibria data used for evaluating the performance of the GH-GNN-
Margules model.

Comp. 1 Comp. 2 Comp. 3 # points Constant state Ref.
Acetone Chloroform Methanol 71 101.325 kPa [70]
Hexane Benzene Sulpholane 14 101.325 kPa [126]
Benzene Heptane Dimethylformamide 50 101.325 kPa [21]
Benzene Heptane Acetonitrile 12 101.325 kPa [155]
Acetone Chloroform Benzene 53 101.325 kPa [84]
Benzene Cyclohexane Hexane 108 101.325 kPa [130]
Acetone Tetrachloromethane Benzene 57 101.325 kPa [149]
Ethanol Benzene Heptane 50 53.329 kPa [109]
Hexane Methanol Acetone 54 313.15 K [112]

Chloroform Methanol Benzene 70 101.325 kPa [92]

A collection of 10 distinct ternary VLEs were collected from the literature to get
some insights for the performance of GH-GNN-Margules in mixtures of more than
two components. Table 5.5 shows some relevant information of the specific systems
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studied here. In these mixtures, several chemical classes are represented. For exam-
ple, aromatics, paraffinic hydrocarbons, nitriles, ketones, alcohols and halogenated
and sulfur derivatives. In total, 539 data points were evaluated.

Fig. 5.9.: Ternary vapor-liquid equilibria for the system “chloroform/methanol/benzene" at
101.325 kPa. Experimental tie lines are taken from [92].

The performance results of GH-GNN-Margules for all ternary systems is shown in
Table 5.6 grouped into isobaric and isothermal cases. A comparison to the UNIFAC-
Dortmund model is also provided. Similarly to the case of binary systems presented
in Section 5.2, UNIFAC-Dortmund is able to provide more accurate estimations
of the ternary VLEs analyzed here. Despite this, the predictions of the GH-GNN-
Margules model tend to also agree with the physical behavior of the mixtures. And,
in fact, as with binary mixtures, the GH-GNN-Margules predictions of some systems
align more closely to the experiments compared to the predictions of UNIFAC-
Dortmund. Specifically, for the 10 ternary systems analyzed here, the GH-GNN-
Margules model achieves a lower MAE than UNIFAC-Dortmund for the systems:
“benzene/heptane/dimethylformamide" (MAE of 0.0296, compared to UNIFAC-
Dortmund achieving 0.0297), “benzene/heptane/acetonitrile" (MAE of 0.0084,
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Tab. 5.6.: GH-GNN-Margules and UNIFAC-Dortmund performance on predicting ternary
vapor-liquid equilibria. The metrics are shown with respect to the predicted
molar fractions of components 1 and 2 in the vapor phase.

Isothermal Isobaric
MAE ↓ R2 ↑ AE ≤ 0.03 ↑ MAE ↓ R2 ↑ AE ≤ 0.03 ↑

UNIFAC (Do) 0.0059 0.995 100% 0.0123 0.991 89.07%
GH-GNN-Margules 0.0568 0.394 37.96% 0.0330 0.925 66.60%

compared to UNIFAC-Dortmund with 0.0114) and “acetone/chloroform/benzene"
(MAE of 0.0047, compared to 0.0184). For the other systems, the overall predictions
of UNIFAC-Dortmund have lower MAE. However, even when the overall UNIFAC-
Dortmund prediction of a specific system is better, at some conditions for that specific
mixture, the predictions of the GH-GNN-Margules might outperform. An example of
this is shown in Fig 5.9 for the system “chloroform/methanol/benzene" at 101.325
kPa.

Fig. 5.10.: Ternary vapor-liquid equilibria for the system “hexane/methanol/acetone" at
313.15 K. Experimental tie lines are taken from [112].
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For illustration, also the ternary diagram containing some points of the isothermal
system analyzed here is shown in Fig. 5.10. In this case, the superior performance
of UNIFAC-Dortmund is evident. Still, the general trend of the VLE is conserved by
the GH-GNN-Margules. For systems, where UNIFAC-Dortmund is unable to provide
predictions due to a lack of interaction parameters, the GH-GNN-Margules model
can provide a first step approximation of the behavior that could be used in early
stages of molecular and process design.

5.4 Chapter summary

This Chapter builds upon the framework established in Chapter 4, where the GH-
GNN model was introduced, to now include the composition dependency of the
activity coefficients. This extension is performed by further hybridization of the
GH-GNN model with the extended Margules equation. The Margules equation
is used in a sequential manner after the GH-GNN model, and predicts the most
general activity coefficient γi exclusively from the predicted IDACs predicted by
the GH-GNN. This means that the proposed framework, here referred to as the
GH-GNN-Margules model, is capable of estimating activity coefficients by originally
utilizing only available IDAC information for some limited systems during training.

The extended Margules equation approximates the molar excess Gibbs energy of the
mixture using a Taylor polynomial. The expressions for the activity coefficients are
then derived from the differential thermodynamic relationship of the molar excess
Gibbs energy with respect to the number of moles of the corresponding chemical
species. As a result, the resulting activity coefficients are thermodynamically consis-
tent with the Gibbs-Duhem equation. Furthermore, the parameters of the Margules
equation are expressed in terms of the IDACs of all binary mixtures that can be
formed by the original mixture components, allowing the framework to depend
solely on (scarce) experimental IDAC values.

The predictive performance of the proposed GH-GNN-Margules model is analyzed
using an extensive collection of experimental binary vapor-liquid equilibria data.
Isothermal and isobaric scenarios are considered, and the results show that the GH-
GNN-Margules model is able to consistently predict many types of binary systems
with remarkable accuracy. However, in this case, UNIFAC-Dortmund provides
a more accurate estimation of the VLE behavior. This is directly attributed to
the significant discrepancy in the available experimental data at the moment of
parametrizing UNIFAC-Dortmund compared to the GH-GNN-Margules model. While
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UNIFAC-Dortmund was parameterized using extensive IDAC, VLE, liquid-liquid
equilibria (LLE), solid-liquid equlibria (SLE), azeotropic and caloric experimental
measurements [59], the proposed GH-GNN-Margules model is able to predict VLEs
solely from limited IDAC data. This disparity in data availability explains the accuracy
gap, but it also shows the potential that GNN-based models might have if more
experimental information is used during training.

A few ternary systems are also predicted with the proposed GH-GNN-Margules model,
and compared to UNIFAC-Dortmund. Once again, UNIFAC-Dortmund outperforms,
but exceptions on some systems can also be found despite the very limited number
of systems considered and the popularity of the involved molecules. For those
systems the proposed framework provides better estimates than UNIFAC-Dortmund.
This also shows the potential that hybrid GNN-based models have in the context
of predicting properties of multi-component mixtures from (limited) binary data
alone. In a future step, the incorporation of various types of data (e.g., VLE, LLE,
caloric) will be fundamental for the development of competitive and more efficient
fluid-phase equilibria models by means of modern approaches like GNNs.
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Applications to Separation
Processes

6
„...the machine at [Roger Sargent’s] disposal had

only 15 memories, each capable of storing 12
decimal digits...

— Costas Pantelides
Professor of Chemical Engineering

In this Chapter, the GH-GNN model introduced in Chapter 4, and the GH-GNN-
Margules model introduced in Chapter 5 are applied in the context of early stage
separation process design. As discussed in previous Chapters, these models are
able to estimate with remarkable accuracy the activity coefficients of a large set
of components in liquid mixtures. This capability can be leveraged to assist the
design of distinct separation processes. In specific, this Chapter focuses on the task
of solvent screening for extractive separation systems. Moreover, the usefulness of
GNN-based models is also exemplified in the context of biomass separation process
design by estimating the solubility of biomass in different solvents.

6.1 Pre-selecting solvents for extractive distillation

Paradoxically, for some types of mixtures, the process of separation becomes easier
if a new more “complex" mixture is created. This more “complex" mixture simply
refers to a mixture with additional components. Here, a component (or multiple
components) is added to the original mixture in order to modify the thermodynamic
behavior of the system, and make the separation of the compounds of interest more
practically viable.

A specific case of this type of processes occurs in extractive distillation systems. Let’s
assume that a liquid binary mixture of components i and j needs to be separated.
While many separation routes can be possible, distillation is by far one of the
most common choices for splitting mixtures in the chemical industry. However, if
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the composition gap between the liquid and the vapor phases of the hypothetical
mixture is very small, the separation through traditional distillation becomes very
challenging. In fact, if the hypothetical mixture forms an azeotrope within the
composition range of interest, the separation via traditional distillation becomes
impossible [98]. The ease of separation through distillation of a mixture with key
components i and j is given by the relative volatility

αij = yi/xi

yj/xj
= γiP

sat
i

γjP sat
j

(6.1)

where, P sat
i stands for the vapor pressure of pure component i, and similarly for

component j. By introducing a solvent k, also called entrainer, the ratio of the
activity coefficients of components i and j is modified. This ratio, in the presence of
the entrainer, is called the selectivity

Sijk =
(
γik

γjk

)
k

(6.2)

Therefore, different solvent candidates can be ranked according to their Sijk value.
The characteristics of the entrainer k should be such that when added to mixture
i/j its relative volatility is increased by increasing the selectivity. It has to be also
easy to recover in the downstream recovery distillation column, so that it can be
recirculated back to the extraction column.

Energy efficiency is not the only important factor when selecting a good solvent.
Many other aspects need to be considered within this complex task. For instance, the
environmental impact of the new component k needs to be considered across many
factors (e.g., toxicity, eutrophication, carcinogenicity, mutagenicity). Also, process
safety considerations need to be taken into account (e.g., flammability, reactivity),
along with socio-economic aspects (e.g., community impact).

Despite the high complexity of the solvent selection process, the increase in rela-
tive volatility induced by the candidate solvent is an important aspect that needs
to be considered early on to rank solvent candidates, and to focus on the most
promising candidates for further screeening on other categories (e.g., environmental
impact, cost, safety). For this reason, a pre-selection step based on relative volatility
performance is relevant in early stages of separation process design.

Since for computing the selectivity values of different solvents only an estimation of
the activity coefficients is needed, the previously proposed GH-GNN-Margules model
can be effectively used for assisting this task. Moreover, if the selection process is
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taken at infinite dilution conditions, the proposed GH-GNN model alone can be used
for estimating the necessary IDACs.

In this Section, both models are used for the solvent pre-screening of three main
types of challenging mixtures:

• Aromatic/aliphatic: represented by the binary mixtures of benzene with
either hexane, heptane, octane, nonane or decane.

• Paraffin/olefin/: represented by the mixtures hexane/1-hexene, heptane/1-
heptene and propane/propene.

• Mixtures of oxygenated compounds: represented by the mixtures of hexane
with either methanol, ethanol, n-propanol, 2-propanol, acetone or 2-butanone.

The pre-selection calculations were performed considering an operating pressure
of 101.325 kPa. The screening was conducted within the temperature range of
the key component’s normal boiling points using 5 evenly spaced values. The final
ranking was obtained from the average performance among the 5 temperatures.
Only solvents with a boiling point of at least 40 K higher than the highest boiling
point of the two key components are considered to be feasible. The reason for
this is that in the solvent regeneration step after the extraction column the process
commonly becomes energetically attractive only if this difference in boiling points is
present [97].

The pre-selection process was implemented considering a total of 700 candidate
solvents. These 700 solvents were collected from [125] considering only organic
molecules commonly used as solvents as indicated in [64]. The normal boiling point
of each solvent was retrieved using the Chemicals library [14] giving preference to
available experimental data. In case, the experimental normal boiling point was not
available, an estimation was used from the Joback group contribution method [78].
The goal for this study is to identify whether the proposed pre-selection framework
based on the proposed GNN-based models is able to produce solvent rankings that
are consistent with the available information in the literature.

6.1.1 Selection based on selectivity at infinite dilution

The selectivity (Eq. 6.2) measures the relative impact that the addition of a solvent
has on the non-ideal behavior of the two key components of the mixture. The
maximum impact of this addition occurs when the key components are infinitely
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diluted in the solvent. At this conditions, one can write the selectivity at infinite
dilution as

S∞
ijk =

(
γ∞

ik

γ∞
jk

)
k

(6.3)

where, γ∞
ik denotes the IDAC of i infinitely diluted in k.

The selectivity S∞
ijk is commonly used as a ranking criteria for solvents in extractive

separation processes [25]. When the experimental IDAC values are available, one
can use them in Eq. 6.3 to effectively perform a solvent pre-selection based on the
expected modification of the mixture’s key components relative volatility. However,
as shown in Chapters 3 and 4, the available experimental IDAC data is very scarce
when compared to the enormous chemical space of binary combinations that could
be of potential interest. As a result, predictive methods can be used to estimate
S∞

ijk, allowing for the exploration of broader chemical and mixture spaces which
might result in the discovery of better alternative solvents for extractive separation
processes. Here, the GH-GNN model (introduced in Chapter 4) is used to estimate all
the necessary IDAC values for screening over the 700 solvents mentioned before.

6.1.2 Selection based on relative volatility at infinite dilution

Screening solvents using the selectivity at infinite dilution (S∞
ijk) ignores the relative

effect of temperature changes in the relative volatility caused by the relative change
on the key component’s vapor pressure (cf. Eq. 6.4). When the range of temperatures
considered during the screening is small, the contribution of the vapor pressures
is small. In those cases, screening solvents using S∞

ijk or α∞
ijk becomes equivalent.

However, if the temperature range during the screening is large, the relative change
of the key component’s vapor pressures can affect the order of the solvent ranking.
For this reason, the pre-selection of the different mixtures considered here was also
performed using the relative volatility at infinite dilution in the presence of the
solvent α∞

ijk, which can be written as

α∞
ijk = γ∞

ik P
sat
i

γ∞
jkP

sat
j

(6.4)

and was compared to the solvent ranking produced by screening according to S∞
ijk.
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6.1.3 Selection based on minimum solvent-to-feed ratio

Both ranking metrics explained before (i.e., S∞
ijk and α∞

ijk) consider the state of the
system to be at infinite dilution in the solvent. However, such conditions are rarely
representative of most of the stages in the extractive distillation columns. In fact,
from an operational perspective, a small amount of solvent would be preferable.
The reason for this is that the energetic requirements of the extraction and recovery
columns decrease proportionally to the amount of solvent needed to carried out
the desired thermodynamic change in the mixture. Therefore, another plausible
and potentially more relevant criteria to rank solvents corresponds to the minimum
amount of solvent needed to modify the relative volatility of the mixture to a desired
threshold. This criteria is here referred to as the minimum solvent-to-feed ratio
minSF to achieve a relative volatility value of 3.

The specific relative volatility threshold (i.e., 3) was identified by [25] to be a
reasonable value for which the use of extractive distillation becomes attractive from
an energetic point of view. The energetic requirements to carried out a separation
via distillation decrease exponentially with the increase in relative volatility [20].
It has been reported that for relative volatility values greater than 3, the energy
savings of increasing the relative volatility further are less significant compared to
smaller values. Therefore, the same relative volatility threshold (i.e., αijk = 3) is
used here as the target value to calculate the minSF .

Since the computation of αijk requires the estimation of the activity coefficients at
finite compositions, the proposed GH-GNN-Margules model is employed here. For
each solvent, temperature and set of compositions, an optimization problem needs
to be solved in order to find the actual minSF that is required to achieve the desired
change in the relative volatility. Here, the optimization problem is written as

minSF = argmin
SF

( ¯αijk − ˆαijk(SF ))2

s.t. ˆαijk(SF ) = γikP
sat
i

γjkP
sat
j

{γik, γjk} ← GH-GNN-Margules(SF )

SFmin ≤ SF ≤ SFmax

(6.5)

where, ¯αijk = 3 refers to the relative volatility threshold described before, and ˆαijk

stands for the estimated relative volatility computed from the GH-GNN-Margules
model and the vapor pressure KDB correlation (Eq. 5.9). The bounds SFmin and
SFmax are specified here as 0 and 10,000, respectively.
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Algorithm 3: Solvent pre-selection using the GH-GNN-Margules model and the
minimum solvent-to-feed ratio criteria at standard pressure.
Data: List of solvents, vapor pressure parameters of key components i and j, normal

boiling points Tb,i and Tb,j .
Result: Ranking of solvents according to minSF .

1 Initialize set of evenly distributed temperatures from min(Tb,i, Tb,j) to max(Tb,i, Tb,j) ;
for solvent in list of solvents do

2 obtain K1 and K2 parameters for each binary pair of i, j and k ← GH-GNN model;
for temperature in set of temperatures do

3 P sat
i , P sat

j ← Eq. 5.9 ;
4 γ∞

ik , γ
∞
jk ← corresponding K1 and K2 parameters and Eq. 4.2 ;

5 α∞
ijk ← Eq. 6.4 ;

if α∞
ijk < 3 then

6 solvent is unfeasible at this temperature;
else

7 get w parameters for each binary pair of i, j and k ← GH-GNN model;
8 solve optimization problem 6.5 using the Brent’s method;

end
end

9 get the average performance across temperatures ;
end

10 rank solvents according to their minSF value

Multiple component composition combinations can be obtained for a given solvent-
to-feed ratio (SF ). Here, 100 different combinations are computed for a given SF
value using the following set of equations

xk =
[

SF

1 + SF

]100

a=1
(6.6)

xi =
[1− SF/(1 + SF )

100 · (a− 1)
]100

a=1
(6.7)

xj = 1− xk − xi (6.8)

where, xi, xj and xk are the ordered arrays of composition values for key components
i, j and solvent k, respectively. The estimated value ˆαijk in the optimization problem
6.5 is taken as the minimum ˆαijk value across all the 100 composition combinations
for the given SF . This is to ensure that the relative volatility threshold is met across
the entire range of possible compositions.

It is important to mention that for the solvent selection process carried out here,
a total of 21,695 distinct IDAC values are needed. Out of these, only 260 (∼
1.2%) were actually observed by the GH-GNN model during training. This, once
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again, shows the scarcity of available IDAC experimental data. As a result, the
GH-GNN model needs to either interpolate or extrapolate to other chemical species
in order to predict the necessary IDAC values. For comparison, at least 1,248
(∼ 5.7%) IDACs would be unfeasible to predict using UNIFAC-Dortmund due to
an unfeasible fragmentation of the molecules involved. This number is, however,
expected to increase when considering cases where the fragmentation is possible,
but the necessary binary interaction parameters are not available. Therefore, while
the solvent screening using UNIFAC-Dortmund cannot be performed for the entirety
of the 700 solvents considered here, the GH-GNN model is able to screen across all
solvents. The screening of solvents using experimental information, is of course much
more restricted. This shows the advantage of the proposed GNN-based framework
for exploring more extensive chemical spaces in early stages of separation process
design.

Algorithm 3 shows the solvent pre-selection procedure used in this work according
to the minSF criteria. The optimization problem in line 8 is solved using the
SciPy library [158] with the Brent’s method using maximum 2000 iterations and
a tolerance of 1.48 × 10−8. A Jaccard distance threshold of 0.7 (as introduced
in Section 4.1.5) was considered here for selecting solvents based on results that
are expected to be accurate, while still allowing for an extensive exploration of
the chemical space. Only 3 solvents would have been selected as part of the top
candidates that have a Jaccard distance metric above this threshold, and that are
here discarded.

6.1.4 Results of solvent pre-selection

Aromatic/aliphatic mixtures

Table 6.1 shows the top 5 solvents selected for the considered aromatic/aliphatic
mixtures according to the 3 criteria introduced before (i.e., selectivity at infinite
dilution S∞

ijk, relative volatility at infinite dilution α∞
ijk and minimum solvent-to-feed

ratio to achieve a relative volatility of 3 minSF ). By looking at the ranking of, for
instance the benzene/octane mixture, it can be observed that the selection obtained
from the S∞

ijk and α∞
ijk metrics is for the most part consistent, which reinforces the

fact that the influence of the vapor pressure across relatively small temperature
ranges is minimal. However, the solvent ranked at position 5 differs between both
metrics, which also shows that the vapor pressure estimation can sometimes change
the exact solvent performance evaluation relative to others.
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Tab. 6.1.: Top 5 solvents selected for the indicated aromatic/aliphatic mixtures. The number
between parenthesis indicates the value for the corresponding metric.

Rank
Selection criteria

S∞
ijk α∞

ijk minSF

Benzene/hexane
1 succinonitrile (16.7) succinonitrile (23.9) dimethyl sulfoxide (0.4)
2 formamide (16.6) formamide (23.6) tetramethylene sulfoxide (0.5)
3 ethanolamine (13.4) ethanolamine (19.2) tetramethylurea (0.6)
4 sulfolane (13.2) sulfolane (18.9) n,n-dimethyl acetamide (0.6)
5 tetramethylene sulfone (13.2) tetramethylene sulfone (18.9) 3,4-dimethyl phenol (0.6)

Benzene/heptane
1 ethylene glycol (28.4) ethylene glycol (16.4) dimethyl sulfoxide (1.8)
2 formamide (25.3) formamide (14.6) ethylene glycol (1.9)
3 dimethyl sulfone (20.4) dimethyl sulfone (11.8) formamide (2.6)
4 glycerol (18.2) glycerol (10.5) succinonitrile (2.8)
5 succinonitrile (15.2) succinonitrile (8.8) glycerol (2.8)

Benzene/octane
1 formamide (46.2) formamide (12.0) formamide (4.4)
2 ethylene glycol (30.3) ethylene glycol (7.9) ethylene glycol (4.9)
3 dimethyl sulfone (25.0) dimethyl sulfone (6.6) glycerol (6.7)
4 glycerol (24.5) glycerol (6.3) dimethyl sulfone (7.0)
5 sulfolane (20.9) tetramethylene sulfone (5.4) sulfolane (8.5)

Benzene/nonane
1 formamide (73.1) formamide (9.4) formamide (6.5)
2 ethylene glycol (39.4) ethylene glycol (5.1) ethylene glycol (12.4)
3 glycerol (33.6) glycerol (4.2) glycerol (21.8)
4 sulfolane (28.5) dimethyl sulfone (3.6) tetramethylene sulfone (34.1)
5 tetramethylene sulfone (28.5) tetramethylene sulfone (3.6) sulfolane (34.1)

Benzene/decane
1 formamide (108.5) formamide (7.5) formamide (10.6)
2 glycerol (65.2) glycerol (4.4) glycerol (27.2)
3 succinonitrile (38.1) succinonitrile (2.3)
4 malononitrile (33.5) malononitrile (2.2)
5 sulfolane (31.3) dimethyl sulfone (2.1)
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In general, the selection of the best solvents is consistent with the information that
can be found in the literature. For instance, sulfolane has been already reported
as a suitable entrainer for aromatic/aliphatic separations [154, 48]. Similarly, for
formamide and succinonitrile which have been reported for a relatively long time
as suitable solvents for extractive distillation of aromatic/aliphatic mixtures [16,
142]. Ethylene glycol has been also repeatedly selected as a promising solvent by
the proposed framework, which is in accordance of the reported patent of [29]
that suggests several glycols as potential solvents for aromatic/aliphatic separations.
These results suggest that the proposed methodology (based on the GNN-based
models for predicting activity coefficients) is able to rank solvents for extractive
distillation in a consistent manner when compared to the literature.

Fig. 6.1.: Effect on the relative volatility of the mixture benzene/heptane caused by different
solvent-to-feed ratios (SF ) of the top 5 solvents identified in the pre-selection
process.

The discrepancy between the rankings obtained by the metrics at infinite dilution
(i.e., S∞

ijk and α∞
ijk) and the one at finite concentrations (i.e., minSF ) is caused by

the different rate at which the amount of solvent affects the relative volatility of
the system. Fig. 6.1 exemplifies the different behavior of solvents in the mixture
benzene/heptane according to their relative amount in the mixture. First, it can
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be observed, as expected, that the maximum increase in relative volatility occurs
at infinite dilution (i.e., star markers in Fig. 6.1). The change in relative volatility
decreases with the decrease of the solvent amount in the mixture, as reflected by
the different solvent-to-feed ratios (SF ). It can be observed that, if the selection of
the solvents is carried out based on the relative volatility at infinite dilution (α∞

ijk),
ethylene glycol appears to be better than dimethyl sulfoxide by a significant margin.
However, when selecting solvents based on minSF it is dimethyl sulfoxide the one
outperforming the rest. This is reflected by the fact that the mixture’s relative
volatility trajectory in the presence of dimethyl sulfoxide crosses the threshold (i.e.,
αijk = 3) at a relatively smaller SF compared to the other solvents. In general,
this shows that a solvent’s impact on a given mixture’s relative volatility can decay
more rapidly than that of other solvents due to the complex interactions at different
concentrations. Hence, the selection of solvents based on metrics at infinite or finite
concentrations can differ from each other.

Nevertheless, what is important to highlight is the significant difference in the
relative ranking that the metrics S∞

ijk and α∞
ijk have when compared to the minSF

criteria. For instance, for the benzene/hexane case, while the first two metrics did
not classified dimethyl sulfoxide within the top 5 solvents, its performance according
to minSF suggests that is the most promising solvent to carry out the separation.
The suitability of dimethyl sulfoxide is confirmed by the patent [48], along with the
candidate n,n-dimethyl acetamide, which the first two metrics also did not classified
in the top 5. Dimethyl phenol has also been reported as promising solvent [15]. For
other mixtures, the solvent selection is more consistent across all selection criteria.
For example, by suggesting formamide as the most suitable solvent for the mixtures
of benzene with octane, nonane and decane.

It is also interesting to note that, as indicated in Table 6.1, only 2 solvents were
found to increase the relative volatility of the benzene/decane mixture above the
specified threshold. The solvents succinonitrile, malonitrile and dimethyl sulfone
are not able to increase the relative volatility of the mixture to the desired level even
at infinite dilution conditions. Since, the conditions at finite concentrations more
closely follow the actual state of extractive distillation columns, the minSF is here
recommended compared to the other two criteria. Even when the computation of
minSF is computationally more intensive than S∞

ijk or α∞
ijk, the difference is not

significant given the proposed framework. Specifically, while the screening across
the 700 candidate solvents considered here takes around 2 minutes for S∞

ijk and
α∞

ijk, the screening using minSF takes 6 minutes. This times are accomplished in an
AMD Ryzen 9 6900HS with 16.0 GB and a RTX GPU.
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Paraffin/olefin mixtures

Table 6.2 shows the top 5 solvents selected for each of the paraffin/olefin mixtures
considered here. In this case, the selection of the top 5 solvents according to S∞

ijk

and α∞
ijk correspond exactly to each other. For the mixtures hexane/1-hexene and

heptane/1-heptene no solvent was found to increase the relative volatility to at
least 3. This is expected given the difficulty of separating two compounds that only
differ by an unsaturated bond. Solvents that have been reported for the separation
of paraffin/olefin mixtures were selected by the framework, including dimethyl
sulfoxide [31], dimethyl formamide [141], acetonitrile [99] and similar compounds
like n,n-dimethyl acetamide [15]. The appearance of 2,6-dimethyl phenol among
the top solvents for separating heptane from 1-heptene aligns with the patent of
[17] reporting the use of a phenol-derived species for the same purpose. Moreover,
hydrogen-bond donor species, like glycerol and ethylene glycol, have been selected
by the proposed framework, which is supported by the use of similar species in the
context of deep eutectic solvents (DES) for extraction of paraffin/olefin mixtures
[62].

Tab. 6.2.: Top 5 solvents selected for the indicated paraffin/olefin mixtures. The number
between parenthesis indicates the value for the corresponding metric.

Rank
Selection criteria

S∞
ijk α∞

ijk minSF

hexane/1-hexene
1 succinonitrile (3.3) succinonitrile (2.8)
2 n,n-dimethyl acetamide (2.7) n,n-dimethyl acetamide (2.3)
3 quinoline (2.5) quinoline (2.1)
4 2-chlorocyclohexanone (2.5) 2-chlorocyclohexanone (2.1)
5 diketene (2.3) diketene (1.9)

heptane/1-heptene
1 ethylene glycol (3.2) ethylene glycol (2.8)
2 2-chlorocyclohexanone (3.2) 2-chlorocyclohexanone (2.7)
3 quinoline (2.8) quinoline (2.4)
4 2,6-dimethyl phenol (2.5) 2,6-dimethyl phenol (2.1)
5 dimethyl formamide (2.4) dimethyl formamide (2.0)

propane/propene
1 3-bromopropyne (6.9) 3-bromopropyne (5.4) glycerol (2.7)
2 glycerol (6.8) glycerol (5.3) dimethyl sulfoxide (3.4)
3 1,4-dichloro-2-butyne (6.2) 1,4-dichloro-2-butyne (4.8) 3-bromopropyne (6.6)
4 3-chloropropyne (6.2) 3-chloropropyne (4.8) acetonitrile (6.9)
5 1,1,2-trichloroethane (5.8) 1,1,2-trichloroethane (4.5) 1,4-dichloro-2-butyne (7.2)

Mixtures of oxygenated compounds

Similarly to the previous mixture types, Table 6.3 shows the top 5 solvents selected
for the mixtures considered here that include oxygenated compounds. The consis-
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tency of the selection between the S∞
ijk and α∞

ijk metrics is also clear, corresponding
exactly to each other in the ranking of the top 5 candidates. In general glycol species
(e.g., ethylene glycol, diethylene glycol, propylene glycol and triethylene glycol) are
consistently selected among the most promising solvents for the deoxygenation of
hexane mixtures. All of these species have high affinity for the oxygenated com-
pound (due to hydrogen-bonding), which causes them to entrain it in the mixture
facilitating the separation.

Tab. 6.3.: Top 5 solvents selected for the indicated mixtures containing oxygenated com-
pounds. The number between parenthesis indicates the value for the correspond-
ing metric.

Rank
Selection criteria

S∞
ijk α∞

ijk minSF

hexane/methanol
1 formamide (411.4) formamide (356.1) ethylene glycol (0.9)
2 ethylene glycol (255.3) ethylene glycol (221.0) triethylene glycol (1.0)
3 ethanolamine (171.0) ethanolamine (148.1) formamide (1.0)
4 glycerol (159.1) glycerol (137.7) triethanolamine (1.0)
5 diethanolamine (104.6) diethanolamine (90.5) diethylene glycol (1.0)

hexane/ethanol
1 formamide (256.6) formamide (364.4) triethylene glycol (0.6)
2 ethylene glycol (157.7) ethylene glycol (224.1) diethylene glycol (0.7)
3 ethanolamine (115.9) ethanolamine (164.8) triethanolamine (0.7)
4 glycerol (77.0) glycerol (109.4) ethylene glycol (0.7)
5 diethanolamine (75.0) diethanolamine (106.6) 1,4-butanediol (0.7)

hexane/n-propanol
1 formamide (120.1) formamide (334.4) triethylene glycol (0.4)
2 ethylene glycol (97.5) ethylene glycol (272.0) 1,4-butanediol (0.4)
3 ethanolamine (77.8) ethanolamine (217.7) diethylene glycol (0.4)
4 1,3-butanediol (46.2) 1,3-butanediol (128.4) triethanolamine (0.5)
5 dimethyl sulfoxide (44.1) dimethyl sulfoxide (124.2) diethanolamine (0.5)

hexane/2-propanol
1 formamide (173.7) formamide (286.0) triethylene glycol (0.5)
2 ethylene glycol (110.4) ethylene glycol (181.8) diethylene glycol (0.5)
3 ethanolamine (97.8) ethanolamine (161.3) 1,4-butanediol (0.6)
4 glycerol (69.3) glycerol (114.1) triethanolamine (0.6)
5 propylene glycol (53.7) propylene glycol (88.5) diethanolamine (0.6)

hexane/acetone
1 formamide (191.0) formamide (127.6) triethylene glycol (0.8)
2 glycerol (78.4) glycerol (52.4) diethylene glycol (0.8)
3 succinonitrile (73.5) succinonitrile (49.1) formamide (0.9)
4 ethanolamine (65.0) ethanolamine (43.4) triethanolamine (0.9)
5 ethylene glycol (55.4) ethylene glycol (37.0) diethylenetriamine (0.9)

hexane/2-butanone
1 formamide (92.4) formamide (130.2) triethylene glycol (0.4)
2 glycerol (37.6) glycerol (53.0) diethylene glycol (0.5)
3 succinonitrile (33.7) succinonitrile (47.5) triethanolamine (0.5)
4 ethylene glycol (32.1) ethylene glycol (45.3) 1,4-butanediol (0.5)
5 ethanolamine (28.7) ethanolamine (40.4) diethylenetriamine (0.5)

Dimethyl sulfoxide has been suggested as a promising candidate for the hexane/n-
propanol mixture according to the S∞

ijk and α∞
ijk metrics. This aligns with the patent
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of [135]. Furthermore, the selection of butanediol species and glycerol also aligns
with the results reported in the literature [172] were solvent design (instead of
solvent selection) was used. This further strengthens the value and effectiveness
of the proposed solvent pre-selection framework that utilize GNN-based models as
predictive tools during the screening process.

6.2 Pre-selecting solvents for liquid-liquid extraction of
caprolactam from ionic-liquid

This Section provides an additional example of how the proposed GNN-based
framework can be used for effectively pre-selecting candidate solvents for a liquid-
liquid extraction process to separate caprolactam from the ionic liquid ethyl-3-
methylimidazolium tetrafluoroborate ([EMIM][BF4]). This specific case-study was
selected based on a collaborative effort with Ann-Joelle Minor. My sole contribution
consisted in the solvent pre-selection process using the proposed GNN-based models,
and it is part of the work shown here.

The importance of separating caprolactam from [EMIM][BF4] is evident in the
context of chemical recycling of plastics, specifically the chemical recycling of
polyamide 6. In this process, ionic liquids have been recently investigated [79] as
promising candidates to carry out the solvolytic depolymerazation of polyamide 6
into caprolactam. The resulting stream contains mainly caprolactam and the ionic
liquid, which has to be separated into its (close to) pure components to be able to
recycle the ionic liquid back to the process and to re-utilize the caprolactam in a
circular economy fashion.

The solvent pre-selection was performed using the same 700 solvents considered
in Section 6.1. However, instead of considering temperatures between the boiling
points of the two key components (as in the previous Section dealing with extractive
distillation), here the temperature range for the solvent selection was selected as
298.15 to 313.15 K. This temperature range is chosen so as to approximate the
actual process conditions of the liquid-liquid extraction unit. As with the extractive
distillation process, 5 evenly spaced temperatures were considered within this range,
and the final solvent performance corresponds to the mean performance over these
5 temperatures.

6.2 Pre-selecting solvents for liquid-liquid extraction of caprolactam
from ionic-liquid
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For liquid-liquid extraction processes it is common to define a metric for the solvent
performance in the separation, this metric is usually refer to as the separation factor
Kα, which is defined as

Kα = γR
CLγ

E
IL

γE
CLγ

R
IL

(6.9)

where, the superscripts R and E refer to the raffinate and extract phases, respectively.
The subscripts CL and IL refer to caprolactam and [EMIM][BF4], respectively. Eq.
6.9 not only considers the effectiveness of the solvent at the extraction phase
(measured by the ratio γR

CL/γ
E
CL), but also at the solvent recovery phase (measured

by the ratio γE
IL/γ

R
IL).

In order to consider the solvent performance at both the extraction and recovery
phases, the solvent pre-selection was carried out by defining the following separation
factor at infinite dilution

K∞ =
γ∞

S,IL

γ∞
CL,S

(6.10)

where, the subscript S refers to the solvent. In this Equation, γ∞
S,IL approximates the

performance of the solvent at the recovery phase, where it has to be separated from
the extract phase that is rich in [EMIM][BF4]. Similarly, γ∞

CL,S measures the solvent
performance at the extraction phase, in which caprolactam has to be separated from
the solvent-rich mixture.

Therefore, for computing the necessary IDACs to calculate K∞, the extended GH-
GNN model trained simultaneously for predicting organic and ionic liquid solvents
(as presented in Section 4.2) was used. Additionally, the following filters were
applied to the candidate solvents: the solvent’s normal boiling point should be less
than or equal to 473.15 K, its molecular weight should be less than or equal to 135
g/mol and its Globally Harmonized System (GHS) signal classification should not
be “danger" or unclassified. The boiling point restriction is in place to facilitate
the downstream solvent’s recovery phase from the ionic-liquid-rich extract. The
molecular weight constraint is implemented to manage the solvent’s viscosity, which
is crucial for operational efficiency. Additionally, the GHS constraint guides the
selection of solvents that pose potentially lower risks to environmental, health and
safety considerations.

Table 6.4 shows the top 10 solvents to perform the separation according to the
performance metric given in Eq. 6.10, and after applying the previously described
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Tab. 6.4.: Top 10 solvents selected for the liquid-liquid extraction of caprolactam from
[EMIM][BF4] after considering the normal boiling point, molecular weight and
GHS classification filters. The raking metric used corresponds to Eq. 6.10. The
conventional solvent is marked with ∗.

Rank Solvent K∞ Jaccard distance metric
1 2-Octanol 11.945 0.122
2 6-Methyl-1-heptanol 11.783 0.286
3 2-Ethylhexan-1-ol 10.632 0.419
4 1-Octanol 9.702 0
5 Butylcyclopentane 7.677 0.149
6 Isobutyl acrylate 6.256 0.451
7 Butyl acrylate 6.190 0.362
8 1-Butoxy-2-propanol 6.176 0.390
9 Isoamyl acetate 5.822 0.256

10 Dibutyl ether 5.600 0.235
431 Ethyl acetate∗ 0.627 0.317

filters. Moreover, the performance of the conventional solvent (ethyl acetate) [79]
for this process is shown for comparison. The Jaccard distance metric (as given in
Section 4.1.5) is also shown for each solvent.

It is worth mentioning that for the case of ethyl acetate, its GHS signal classification
is “danger". Hence, this solvent would be discarded by the proposed set of filters.
However, even if the GHS criteria is ignored, the performance of ethyl acetate is
predicted to be significantly less promising than that of the other candidate solvents.
Various alcohol species appear among the most promising candidates. Specifically,
1-octanol and 2-octanol stand out by their low Jaccard distance metric, which, as
shown in Section 4.1.5, inversely correlates with the accuracy of the model. Among
these two, 1-octanol is available at a cheaper price compared to 2-octanol [105].

Therefore, in this collaborative work [105], the phase equilibrium of the proposed
1-octanol candidate solvent in the presence of caprolactam and [EMIM][BF4] was
analyzed experimentally. This is shown in Fig. 6.2. A comparison with the LLE
predictions of COSMO-RS (with BP86-TZVPD-FINE level of theory) is also available.
From the experiments it can be observed that at low concentrations of the solvent, the
system in the presence of 1-octanol contains solids at equilibrium. More importantly,
the predictions of COSMO-RS of the system in the presence of 1-octanol agree with
the experiments, and show that the miscibility gap is indeed larger than that of
the system in the presence of the conventional solvent (i.e., ethyl acetate). These
experimental observations agree with the solvent selection performed using the
extended GH-GNN model.

In order to compare the ranking of solvents as predicted by the GH-GNN model, the
UNIFAC-IL [32] model was also used to compute the metric in Eq. 6.10 and to rank

6.2 Pre-selecting solvents for liquid-liquid extraction of caprolactam
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Fig. 6.2.: Phase equilibrium behavior of the ternary system [EMIM][BF4], caprolactam and
the indicated solvent as predicted by COSMO-RS, and measured experimentally.
Adapted from [105].

the solvents accordingly. However, since UNIFAC-IL is restricted by the feasibility
of molecule fragmentation and availability of binary interaction parameters, the
necessary IDACs for only 349 (50%) out of the 700 solvents could be predicted by
UNIFAC-IL. These are the solvents included in this comparison.

Fig. 6.3 shows the comparison between the rankings obtained by these two methods.
While significant discrepancies in the ranking of the solvents can be observed when
comparing both models, a correlation exist between the rankings of both methods.
In this case, the Pearson’s correlation coefficient is 0.62. Since the accuracy of
the extended GH-GNN model on predicting IDACs tends to be higher than that of
UNIFAC-IL (cf. Section 4.2), it is expected that the solvent ranking produced by
the GH-GNN model is more accurate. Moreover, as pointed out earlier, the space of
the solvents that UNIFAC-IL can consider is more limited than that of the GH-GNN
model. These two are clear advantages of the proposed model for performing solvent
pre-selection when compare to UNIFAC-based methods.
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Fig. 6.3.: Comparison of solvent rankings according to the extended GH-GNN model and
UNIFAC-IL [32] for the extraction case-study of [EMIM][BF4] and caprolactam.

The replacement of the conventional solvent by 1-octanol not only increases the
modeled process efficiency, but also its overall profitability [105]. The effectiveness
of alcohol species to extract caprolactam (albeit not necessarily in the presence of
ionic liquids) has also been reported in the literature [134, 168], including examples
such as 1-octanol and 2-ethylhexan-1-ol, which are also selected by the extended
GH-GNN model. This suggests that, also for this case-study with presence of an
ionic-liquid, the obtained solvent ranking is able to suggest promising candidates
effectively. Therefore, this case-study exemplifies once again the utility of the
proposed hybrid GNN-based models in supporting the engineer or researcher in the
early stages of chemical process design.

6.3 Graph neural networks assisting the design of a
lignin fractionation process

This Section provides yet another example of how GNN-based models can be used
for supporting the design of separation processes. Specifically, this Section focus on
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supporting the design of lignin bio-refineries. However, distinct to the previous two
case-studies focusing on solvent screening for extractive distillation and liquid-liquid
extraction, the GNN model here is trained to predict the solubility of lignin in distinct
organic solvents. The work presented in this Section represents my contribution to a
collaborative effort led by Laura König-Mattern [88].

Distinct to phase equilibria problems, which were the main focus of this dissertation,
solubility refers to the ability of a solvent species to form a single homogeneous
mixture with the solute. Estimating the solubility of lignin in various solvents is
relevant for optimizing the so-called organosolv process, which is a promising path
towards the development of bio-refineries. The solvent selection process can be
carried out in the form of a solvent screening (as exemplified for other systems in
Sections 6.1 and 6.2), or in the form of a solvent design problem. In both cases, a
predictive model that is accurate for predicting the solubility of lignin is desired.

However, a significant challenge for developing predictive models for lignin solubility
is the scarcity of experimental data. For this reason, previous approaches have relied
on the predictions of COSMO-RS using a representative molecule of lignin consisting
in a trimer of guaiacyl connected with β-O-4 bonds [87]. This representative
molecule was used by my collaborator to compute the solubility in 3,314 distinct
solvents using COSMO-RS (with BP86-TZVPD-FINE level of theory) at 343.15 K.

Despite being a sole approximation of the lignin solubility, the resulting data set
could be used to rank the performance of the solvents considered. However, if an
additional solvent is to be screened, the corresponding quantum mechanical and
COSMO-RS calculations should be perform, which could be a considerably time-
consuming process. If the quantum mechanical calculations are not yet available for
the solvent of interest, such computation may span from one hour up to a week on
a typical CPU machine. This is an important limitation if a large chemical space is
desired to be explored.

With this motivation, a GNN model was trained to predict the solubility of lignin
in various solvents as predicted by COSMO-RS. In this case, since the accuracy
of the GNN model is bounded by the accuracy of the COSMO-RS predictions,
the GNN model acts as a plain surrogate to speed-up the solubility estimation
process. For developing the GNN, the data split was performed using the so-called
Butina clustering algorithm as implemented in RDKit [127] (version 2021.03.1).
This algorithm clusters the molecules into similar groups according to the Jaccard
distance of their fingerprints. In this case, the Morgan fingerprint was used with a
radius of 2 and a size of 2048 bits. Then, each of the resulting clusters was split
randomly with an 80/20 proportion to defined the train and test sets. In case a
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Tab. 6.5.: Atomic features defining the initial feature vector of nodes in the molecular
graphs constructed from the lignin solubility COSMO-RS calculations. The
dimension of the corresponding one-hot encoded feature is also shown.

Feature Description Dimension
Atom type [C, O, N, Cl, F, S, Si, Br, P, Se, I, B, As, Ge, Al] 15
Ring Is the atom in a ring? 1
Aromatic Is the atom part of an aromatic system? 1
Hybridization [sp, sp2, sp3, sp3d] 4
Bonds Number of bonds the atom is involved in. [0,1,2,3,4] 5
Charge Atom’s formal charge. [0, -1, 1, 3] 4
Attached Hs Number of bonded hydrogen atoms. [0,1,2,3] 4

Tab. 6.6.: Bond features defining the initial feature vector of edges in the molecular graphs
constructed from the lignin solubility COSMO-RS calculations. The dimension of
the corresponding one-hot encoded feature is also shown.

Feature Description Dimension
Bond type [Single, double, triple, aromatic] 4
Conjugated Whether the bond is conjugated 1
Ring Whether the bond is part of a ring 1

cluster consists only of 4 or less molecules, all of these were placed in the training
set automatically. Out of the training set, 15% of the data was randomly selected
and used for model validation.

The atomic and node features used for defining the solvent molecular graphs are
given in Tables 6.5 and 6.6, respectively. The GNN model consists of 3 message-
passing layers with a node embedding-size of 50. The GNN architecture is similar
to the one used for developing the GNN model for predicting isothermal IDACs
introduced in Section 3.3. The initial set of node features is transformed using Eq.
3.1, followed by the 3 message-passing layers computed by Eq. 3.2. The activation
function in the last message-passing layer was removed. The edge-transforming
function consisted of a single hidden-layer neural network of size 64 with the
ReLU activation. Batch normalization was also used according to Eq. 3.3 after
each message-passing layer. The final vectorial representation of the solvent was
computed using the global max operator that can be written as:

ag = Max({afinal
v |v ∈ V}) (6.11)

where the Max operation is applied element-wise across the set of node embeddings
of the graph.

6.3 Graph neural networks assisting the design of a lignin
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The resulting graph embedding ag is then fed to a multi-layer perceptron consisting
of 2-hidden-layers with dimensions 50 and 25. Dropout was used across the model
with a probability of 0.1. This GNN model was trained over 100 epochs with the
AdamW optimizer and with a learning rate of 0.001 using batches of 32 solvents to
minimize the MSE function. A linear learning rate scheduler was used with a factor
of 0.8 and a patience of 3 epochs.

The final model consist of an ensemble of 5 GNNs trained in the same fashion but
with different train/validation splits. The final prediction of the ensemble model
was obtained by averaging the predictions of these 5 GNNs.

Fig. 6.4.: Parity comparison between the predicted logarithmic lignin solubility in terms of
its mole fraction given by COSMO-RS and the GNN.

Fig. 6.4 shows the the parity comparison between the GNN predictions and the
COSMO-RS predictions. Overall, the GNN is able to estimate the solubility values
with a reasonable accuracy, achieving an R2 of 0.9 and a MAE of 0.32 on the test
set. However, a high discrepancy is observed in the case of solvents with very high
solubility as predicted by COSMO-RS. It is in this precise range of high solubilities
where COSMO-RS predictions tend to be less accurate [35]. This can explain the
discrepancy between the GNN predictions and the COSMO-RS predicted values in
this region. Despite this, the exploration of suitable solvent families for lignin can be
performed by exploiting the overall correlations of the molecular structural data of
all solvents.
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My collaborator designed an algorithm, called PSEvolve [88], which consists in a
graph-based genetic algorithm that sequentially performs graph transformations for
optimizing a given criteria (in this case lignin solubility). These transformations
include the addition or deletion of atoms and covalent bonds, the substitution of
atoms and bonds, the relocation of atoms in the molecule and the addition of
functional groups. A set of structural constraints are also considered by the PSEvolve
algorithm in order to maintain the chemical feasibility after each transformation.
However, for optimizing the molecular structure, an input-output mapping from the
molecular structure to the lignin solubility value is needed. This is the precise role
of the GNN model described in this Section.

With the task of doing solvent design for lignin solubility, the PSEvolve was initialized
with a population of 1,000 molecules, and the transformations were performed over
1,000 generations producing 100 candidate solvents at each generation. Therefore,
a total of 100,000 calls to the GNN were necessary to guide the optimization
process of the solvent molecular structure for maximizing the lignin solubility. Since
the prediction time of the GNN for each solvent is in the order of 1 millisecond
(in a typical CPU machine), the entire solubility estimation process required just
around a couple of minutes. By contrast, if such scheme were to be operated using
COSMO-RS as the input-output mapping, and assuming that each call requires a
quantum mechanical calculation that last only 30 minutes, approximately 5.7 years
of computational time would be necessary. This exemplifies how GNN-based models
can be also used as surrogate models of more expensive mechanistic models for
accelerating the exploration of large chemical spaces.

My collaborators identified several promising solvents for lignin using this GNN-
supported scheme, and verified various of these candidates experimentally [88].
Overall, the candidates selected by the PSEvolve algorithm coupled with the GNN
model were indeed achieving high solubilities experimentally when compared to
conventional solvents (e.g., dimethyl sulfoxide). Some discrepancies were also found
in the family of ethers. For example, while the GNN predicted that both diethylene
glycol dimethyl ether and diethylene glycol diethyl ether would have similar (low)
lignin solubilities, only the latter prediction aligned with the experiments (8.9 wt.%)
[88]. By comparison, the former species achieved a remarkable 51 wt.% solubility
experimentally. This shows a clear limitation in the ability of the GNN for accurately
predicting the actual behavior of distinct (but structurally similar) ethers.
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Attribution on molecular graphs

In order to provide the researcher with an additional tool for the task of selecting
promising solvents for lignin, the predictions of the GNN model can be used not for
mere solubility estimation, but also for attributing the predictions to specific parts
of the molecular graphs. In this way, the GNN model is used as an extra tool for
supporting the explanation and interpretation of the results. One of such attribution
techniques is the so-called integrated gradients [150]. This method satisfies two
axioms, which can be applied in the realm of graphs and GNNs as follows:

• The sensitivity axiom establishes that given a graph G and a baseline graph
Gbase that differ only in one feature, and that the prediction of a GNN is
different for each graph (i.e., GNN(G) ̸= GNN(Gbase)), then such feature
should be assigned a non-zero attribution.

• The implementation invariance axiom establishes that given two GNNs that
are functionally equivalent (i.e., that predict the same output given the same
input) their attributions should be identical, despite of the specific differences
in the architecture of the GNNs.

The integrated gradients attribution for node v in graph G with respect to baseline
Gbase can be computed as

IGv(G) = (av,G − av,Gbase
) ·
∫ α=0

1

∂GNN(Gbase + α · (G − Gbase))
∂av,G

(6.12)

where, av,G and av,Gbase
stand for the initial node feature vector of node v in graph G

and graph Gbase, respectively. The operations (Gbase + α · (G − Gbase)) are performed
element-wise for each of the features in the graphs.

In this work, for each solvent graph, its baseline corresponds to a graph with the same
connectivity, but with zeroth node features. The integrated gradients method was
computed using the Captum library (version 0.6.0) [86]. Since, the attribution scores
are intended for supporting the qualitative explanation of molecular substructures,
a second GNN was trained for this purpose. This second GNN acts as a classifier
between "promising" and “not-promising" solvents. The threshold used to define this
two categories across the data set of 3,314 solvents was log(x) = −1.5.

Fig. 6.5 shows the correspondence of the classification predictions of the second
GNN and the solubility regression predictions of the first GNN. As can be seen, very
few discrepancies occur across the two models, and mostly gathered around the
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Fig. 6.5.: Correspondence of the GNN for classification and the GNN for regression for
the logarithmic lignin solubility in terms of its mole fraction as predicted by
COSMO-RS.

solubility threshold. Overall, 97% of the solvents were correctly classified by the
GNN (94% for the test set). Moreover, around 82% of the solvents classified as
“promising" are indeed classified as such by the GNN. Therefore, the second GNN
(that acts as a classifier) coupled with the integrated gradients method is able to
provide a relatively accurate estimation that could be used for explainability of the
GNN solubility predictions.

Fig. 6.6 shows an example of the attribution scores for three molecules that were
classified as “promising" by the GNN. The attribution scores are normalized for
each molecule and depicted with darker color for high (importance) scores and
lighter color for low (importance) score. For diethyl sulfoxide, the most important
substructure for the GNN to classify it as “promising" corresponds to the sulfur atom
and the attached double bond to the oxygen. Similarly, high importance is assigned
to the sulfur atom in the case of thiazole. The aromatic ring, and specially the
aromatic nitrogen atoms in 4-methyl-pyrimidine are selected by the GNN as the most
important substructures for the prediction. In all these three cases, the predicted
high solubility was confirmed experimentally by my collaborators [88].

While these scores reflect the importance that the GNN assigns to certain molecular
motifs for solubility classification, it is important to highlight that they should be
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Fig. 6.6.: Depiction of the attribution scores (normalized to 0-1) for diethyl sulfoxide
(left), thiazole (middle) and 4-methyl-pyrimidine (right). The magnitude of the
attribution score is depicted proportional to the darkness of the color.

taken just as an extra tool to support the interpretation and exploration of the
results. However, their availability could, in principle, be used to guide the chemical
intuition of experts towards the selection of suitable solvents for complex systems
like lignin.

6.4 Chapter summary

This Chapter provides a set of 3 case-studies where the early stages of separation
process design are assisted by GNN-based models. Across these case-studies the
utility of the models proposed in this dissertation is showcase at the process-level.
In this way, the multi-scale framework presented in this dissertation that spans from
the modeling of atoms and covalent bonds as nodes and edges in graphs is taken
through the modeling of fluid phase phenomena (specifically the non-ideality of
fluid phase mixtures) to finally support the tasks of the chemical engineer at the
process-level scale.

The first case study covers the use of the proposed GH-GNN and GH-GNN-Margules
models (introduced in Chapters 4 and 5, respectively) for the pre-selection of solvents
for extractive distillation. Several representative mixtures where studied to represent
challenging separations across aromatic/aliphatic, paraffin/olefin and oxygenated
mixtures. The results show that the hybrid GNN models are able to suggest promising
solvents in all cases, that aligned well with the available literature.

The second case study also covers the selection of solvents, but now in the context of
liquid-liquid extraction for a specific system that includes the use of the ionic liquid
[EMIM][BF4] and caprolactam. In this case-study the extended GH-GNN model
(introduced in Section 4.2) is used for solvent ranking and selection. Through a
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collaboration led by Ann-Joelle Minor, the experimental suitability of the selected
solvent (1-octanol) was confirmed. Also, in this case, the ranking of solvents obtained
by the extended GH-GNN model agrees with the suggestions found in the literature
for the extraction of caprolactam from aqueous mixtures.

Finally, the third case-study exemplifies the use of similar GNN-based frameworks
for assisting the separation process design of complex systems, like the processing of
lignin. Given that experimental data is very scarce for such type of systems, the GNN
acts more as a surrogate model of more expensive mechanistic models (in this case
COSMO-RS) for facilitating its use in the context of solvent design. The use of the
GNN as a surrogate allowed for a significant speed-up in the solvent design process
that could otherwise have taken 6 orders of magnitude more time. Similarly to
the previous case-study, here the collaboration led by Laura König-Mattern allowed
for the confirmation of the results experimentally, showing an overall agreement
with the solvents design with the help of the GNN. Attribution is also presented as
an extra tool that could support the researcher in the difficult endeavor of solvent
selection.

In the future, various solvent performance metrics could be embedded into a multi-
objective optimization problem in which one or more GNNs could model relevant
(and yet difficult to accurately predict) properties. Moreover, the implementation
of a complete framework for molecular and process design assisted by GNN-based
models can be envisioned given the on-going efforts in merging common process
optimization software with GNNs [170].

6.4 Chapter summary 139





Conclusions 7
„One never notices what has been done; one can

only see what remains to be done.

— Marie Curie
(Nobel Prize in Physics, 1903 and Nobel Prize

in Chemistry, 1911)

Being able to predict mixture properties from the molecular structure of its compo-
nents is a problem that humanity has faced for a long time. The accurate prediction
of mixture properties is not only relevant for the task of separation, but also for the
task of mixture creation. The central challenge for this, resides in the enormous
chemical space that models have to deal with. In principle, a model has to be
predictive in nature so as to navigate the vast chemical space efficiently. This is
increasingly important when considering the pressing challenges caused by the
actual sustainability crisis. This also means that this type of models have to be
also efficient in terms of time and resources so as to be practical for engineering
applications.

One prominent example of such mixture properties is its phase equilibrium behavior.
The accurate and efficient prediction of mixtures’ phase equilibrium is necessary for
the design and operation of novel (bio)chemical processes that are more sustainable.
Such processes may span across scales, ranging from modeling the equilibrium in
a living cell, to the design and operation of novel bio-refineries. This work aims
at pushing the boundaries of knowledge in this precise direction. Specifically, it
centers around the issue of predicting activity coefficients in an accurate and efficient
manner by combining graph neural networks and mechanistic understanding into a
single hybrid approach.

7.1 Summary

Starting from the simplest case of predicting isothermal activity coefficients at infinite
dilution, Chapter 3 shows that GNN-based models are able to effectively predict
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isothermal IDACs across a relatively large chemical space. The accuracy of such
GNN-based models outperform that of models that have been the popular choice for
decades (e.g. UNIFAC and COSMO-RS). More interestingly, Chapter 3 also shows,
via a hybrid parallel approach, that these traditional methods incur in systematic
mismatches that can be effectively learn from the component’s molecular structure
alone. As a result, the proposed hybrid parallel GNN models show a better predictive
accuracy compared to the most popular phenomenological models.

Chapter 4 expands the use of this GNN framework towards the modeling of IDACs at
varying temperatures. This is achieved by the introduction of an expression derived
from the Gibbs-Helmholtz relation that controls the temperature dependency of
activity coefficients. The extensive testing of the resulting model, called Gibbs-
Helmholtz Graph Neural Network (GH-GNN) shows a more accurate predictions
across various temperature ranges and chemical classes than the popular UNIFAC-
Dortmund model, specially within the space of mixtures delimited by the available
training data. In this endeavor, extensive data curation and digitization was carried
out to promote the openness of research and the advancement of the field that could
only come from researchers and engineers around the globe despite their resource
availability.

Two extensions of the GH-GNN model are also studied in Chapter 4. The first,
towards including systems with ionic liquids. This extended GH-GNN model shows
better predictive performance than one of the latest versions of UNIFAC for ionic
liquids. And the second, towards mixtures of polymer solutions. Here, the extended
GH-GNN model also shows promising performance compared to UNIFAC-based
models specifically tailored for predicting this type of mixtures. Both of these cases
(i.e., mixtures with ionic liquids and polymers) are relevant for the discovery and
development of better separation processes.

Following this logical path, Chapter 5 takes the last step in generalizing the model to
activity coefficients at varying temperatures and compositions. This is achieved by
coupling the extended Margules equation with the proposed GH-GNN. The resulting
serial hybrid model is able to reproduce the vapor-liquid equilibria behavior of many
types of systems. Extensive binary mixtures were studied and some ternary mixtures
were also included in the analysis. While in this case UNIFAC-Dortmund overall
outperforms the performance of the GH-GNN-Margules model, the comparison has
to be made in the light of the type and amount of data that was accessible for
model development. On one hand, the UNIFAC-Dortmund model was parameterized
with extensive experimental data spanning vapor-liquid, liquid-liquid equilibria,
azeotropic, caloric and infinite dilution data. By contrast, the proposed GH-GNN-
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Margules framework only utilizes information at infinite dilution. This highlights a
critical point regarding the data accessibility: if better predictive models have to be
developed, the current issue of difficult data accessibility needs to be resolved.

The dissertation concludes with a series of case-studies on Chapter 6, where the
utility of the proposed GNN-based models is exemplified for the relevant scenarios of
solvent pre-selection for extractive distillation and liquid-liquid extraction. Moreover,
the use of such type of GNN-based models is exemplified for the case of assisting
the task of solvent design for a lignin process. In all these scenarios the GNN-
based models allowed not only for an accurate estimation of the required mixture
properties, but perhaps more importantly, for the exploration of extensive chemical
spaces that could not be (as effectively) explored with traditional approaches.

7.2 Outlook

This dissertation extensively explored the use of GNNs for the prediction of activity
coefficients. Not only the use of standalone GNNs was studied, but also the hybrid
combination of GNNs with phenomenological or mechanistic models was analyzed
into two main arrangements: parallel and serial. This area of research is expected to
be highly relevant in the near future. The constant advancements in the realm of
machine learning and hardware development provides the chemical engineer with
an unprecedented myriad of tools that could assist and accelerate the solution of
pressing challenges. This requires the expertise of chemical engineers that are able to
fusion the power of chemical engineering mechanistic modeling and understanding
with the flexibility and efficiency of modern data-driven methods.

It is my believe that, just like Prof. Roger Sargent foresaw the potential of com-
putational methods for aiding process engineering, even when computing power
was far more restricted than it is today, modern machine learning techniques will
inevitably make a huge impact on process systems engineering overall. Specifically,
for advancing the accurate and efficient prediction of mixture properties. In this
path, there are several challenges. The first one being the educational challenge that
modern and future chemical engineers have to bear. They not only need to master
the fundamentals (e.g., thermodynamics, reaction, mass and energy transfer) but
also they need to cope with the ability to quickly adapt modern tools from computer
science to solve relevant problems. The second challenge is the availability and
decentralization of physicochemical experimental data. If data persists to be in the
hands of the minority, the advancement will not be as fast and abundant as it could
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otherwise be. The culture of the chemical engineering community needs to change
towards a more open and collaborative one if the benefits of the collective “mind"
are desired. Third, enforcing physical constraints into data-driven models is not yet
straightforward. The development of new hybrid modeling approaches is envisioned
in the form of physical prior injections and mechanistic knowledge embedding.

Overall, this is an exciting time for the modern chemical engineer. The unmovable
physical constraints of our Universe need to be mixed with the highly flexible (yet
powerful) data-driven models. Perhaps, these type of “mixture" models are the ones
needed to finally conquer the accurate and efficient prediction of how real mixtures
behave. Mixtures, everywhere present...

144 Chapter 7 Conclusions



Bibliography

[1]Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S Corrado, Andy Davis, et al. “Tensorflow: Large-scale machine learning
on heterogeneous distributed systems”. In: arXiv:1603.04467 (2016) (cit. on p. 4).

[2]Michael H. Abraham. “Scales of solute hydrogen-bonding: their construction and
application to physicochemical and biochemical processes”. In: Chemical Society
Reviews 22.2 (1993), pp. 73–83 (cit. on pp. 24, 181).

[3]Denis S. Abrams and John M. Prausnitz. “Statistical thermodynamics of liquid
mixtures: a new expression for the excess Gibbs energy of partly or completely
miscible systems”. In: AIChE Journal 21.1 (1975), pp. 116–128 (cit. on pp. 3, 16,
18).

[4]Subhash Ajmani, Stephen C. Rogers, Mark H. Barley, Andrew N. Burgess, and
David J. Livingstone. “Characterization of mixtures part 1: Prediction of infinite-
dilution activity coefficients using neural network-based QSPR models”. In: QSAR &
Combinatorial Science 27.11-12 (2008), pp. 1346–1361 (cit. on p. 25).

[5]Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
“Optuna: A next-generation hyperparameter optimization framework”. In: Proceed-
ings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 2019, pp. 2623–2631 (cit. on pp. 53, 72, 190, 192).

[6]David J. Andersen and Donald H. Lindsley. “A valid Margules formulation for an
asymmetric ternary solution: revision of the olivine-ilmenite thermometer, with
applications”. In: Geochimica et Cosmochimica Acta 45.6 (1981), pp. 847–853 (cit.
on p. 196).

[7]Evan R. Antoniuk, Peggy Li, Bhavya Kailkhura, and Anna M. Hiszpanski. “Repre-
senting polymers as periodic graphs with learned descriptors for accurate polymer
property predictions”. In: Journal of Chemical Information and Modeling 62.22
(2022), pp. 5435–5445 (cit. on pp. 88, 89).

[8]Adem R. N. Aouichaoui, Fan Fan, Jens Abildskov, and Gürkan Sin. “Application of in-
terpretable group-embedded graph neural networks for pure compound properties”.
In: Computers & Chemical Engineering 176 (2023), p. 108291 (cit. on p. 3).

[9]Zadja Atik, Detlef Gruber, Michael Krummen, and Jürgen Gmehling. “Measurement
of activity coefficients at infinite dilution of benzene, toluene, ethanol, esters,
ketones, and ethers at various temperatures in water using the dilutor technique”.
In: Journal of Chemical & Engineering Data 49.5 (2004), pp. 1429–1432 (cit. on
p. 61).

145



[10]Indra Bahadur, Byron Bradley Govender, Khalid Osman, Mark D. Williams-Wynn,
Wayne Michael Nelson, Paramespri Naidoo, and Deresh Ramjugernath. “Measure-
ment of activity coefficients at infinite dilution of organic solutes in the ionic liq-
uid 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate at T=(308.15,
313.15, 323.15 and 333.15) K using gas + liquid chromatography”. In: The Journal
of Chemical Thermodynamics 70 (2014), pp. 245–252 (cit. on p. 49).

[11]Joao C. Bastos, Manuela E. Soares, and Augusto G. Medina. “Selection of solvents
for extractive distillation. A data bank for activity coefficients at infinite dilution”.
In: Industrial & Engineering Chemistry Process Design and Development 24.2 (1985),
pp. 420–426 (cit. on p. 17).

[12]Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, et al. “Re-
lational inductive biases, deep learning, and graph networks”. In: arXiv:1806.01261
(2018) (cit. on p. 62).

[13]Hesam Ahmadian Behrooz and R. Bozorgmehry Boozarjomehry. “Prediction of lim-
iting activity coefficients for binary vapor-liquid equilibrium using neural networks”.
In: Fluid Phase Equilibria 433 (2017), pp. 174–183 (cit. on p. 25).

[14]Caleb Bell, Yoel Rene Cortes-Pena, and Contributors. Chemicals: Chemical properties
component of chemical engineering Design Library (ChEDL). https://github.com/
CalebBell/chemicals. Accessed: March 2024 (cit. on p. 117).

[15]Lloyd Berg. Separation of benzene from close boiling hydrocarbons by extractive
distillation. US Patent 5,458,741. 1995 (cit. on pp. 124, 125).

[16]Lloyd Berg. Separation of benzene from non-aromatic hydrocarbons by extractive
distillation. US Patent 4,514,262. 1985 (cit. on p. 123).

[17]Lloyd Berg. Separation of heptane from 1-heptene by extractive distillation. US Patent
5,443,697. 1995 (cit. on p. 125).

[18]Alain Berthod, Maria Jose Ruiz-Angel, and Samuel Carda-Broch. “Recent advances
on ionic liquid uses in separation techniques”. In: Journal of Chromatography A
1559 (2018), pp. 2–16 (cit. on p. 82).

[19]Christopher M. Bishop. Pattern recognition and machine learning. Springer New
York, 2006, p. 778 (cit. on p. 21).

[20]Marek Blahušiak, Anton A. Kiss, Katarina Babic, Sascha R. A. Kersten, Gerrald Barge-
man, and Boelo Schuur. “Insights into the selection and design of fluid separation
processes”. In: Separation and Purification Technology 194 (2018), pp. 301–318
(cit. on p. 119).

[21]Beatriz Blanco, Maria Teresa Sanz, Sagrario Beltrán, José Luis Cabezas, and José
Coca. “Vapor-liquid equilibria for the ternary system benzene + n-heptane + n,n-
dimethylformamide at 101.33 kPa”. In: Fluid Phase Equilibria 175.1-2 (2000),
pp. 117–124 (cit. on p. 110).

[22]Arnold Aaron Bondi. Physical properties of molecular crystals, liquids, and glasses.
John Wiley & Sons, Inc., 1968, p. 502 (cit. on pp. vii, 3).

146 Bibliography

https://github.com/CalebBell/chemicals
https://github.com/CalebBell/chemicals


[23]Esteban Alberto Brignole and Selva Pereda. Phase equilibrium engineering. Elsevier,
2013, p. 346 (cit. on p. 5).

[24]Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. “Geometric
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Appendices A
A.1 Relationship between partial molar properties and

state variables

In order to show the relationship between a state variable and the corresponding
partial molar properties, one has to rely on the Euler’s theorem in the context of
differential geometry. This theorem states that for any homogeneous function of
degree k, the following is true

x1
∂f

∂x1
+ x2

∂f

∂x2
+ · · ·+ xn

∂f

∂xn
= kf(x1, x2, . . . , xn) (A.1)

A homogeneous function of degree k is such that the following relationship is true

f(λx1, λx2, . . . , λxn) = λkf(x1, x2, . . . , xn) (A.2)

this is also true for the special case of k = 1, such that

f(λx1, λx2, . . . , λxn) = λf(x1, x2, . . . , xn) (A.3)

in which case we say that f is a homogeneous function of degree 1. Any extensive
state thermodynamic variable (e.g., mass, energy, volume) of a mixture is a homo-
geneous function of degree 1. The intuition behind this is that if one maintains
everything constant and just doubles the amount of each component ni in the mix-
ture, the extensive variable will double in value. Therefore, for any extensive state
variable, we can write

M(T, P, λn1, λn2, . . . , λnn) = λM(T, P, n1, n2, . . . , nn) (A.4)

If we differentiate Eq. A.4 with respect to λ we obtain that
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∂M

∂(λn1)
∂(λn1)
∂λ

∣∣∣∣
T,P

+ ∂M

∂(λn2)
∂(λn2)
∂λ

∣∣∣∣
T,P

+· · ·+ ∂M

∂(λnn)
∂(λnn)
∂λ

∣∣∣∣
T,P

= M(T, P, n1, n2, . . . , nn)

(A.5)

which is exactly the relationship between the state variable M and the corresponding
partial molar properties:

M =
∑

i

nim̄i (A.6)

or in terms of molar fractions

m =
∑

i

zim̄i (A.7)
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A.2 Chemical potential in terms of fugacity

Starting from fundamental equation of the Gibbs energy for a N -component system
with material exchange

dG = −SdT + V dP +
N∑
i

µidni (A.8)

one can compare it to the total differential of G

dG =
(
∂G

∂T

)
P,n

dT +
(
∂G

∂P

)
T,n

dP +
∑

i

(
∂G

∂ni

)
T,P,n̸=i

dni (A.9)

where n = [n1, n2, . . . , nN ] is the vector of number of mols for all components in the
mixture, and n̸=i stands for the vector of number of mols for all components except
component i; and then note that

S = −
(
∂G

∂T

)
P,n

(A.10)

V =
(
∂G

∂P

)
T,n

(A.11)

µi =
(
∂G

∂ni

)
T,P,n ̸=i

(A.12)

Given these primary relationships, and by applying the Schwarz theorem of differen-
tial calculus, one can also obtain that

−
(
∂S

∂P

)
T,n

=
(
∂V

∂T

)
P,n

(A.13)

−
(
∂S

∂ni

)
T,P,n̸=i

=
(
∂µi

∂T

)
P,n

(A.14)

(
∂V

∂ni

)
T,P,n̸=i

=
(
∂µi

∂P

)
T,n

(A.15)
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These relationships, known as the Maxwell relationships, apply to any multi-
component system with material exchange despite its state. Therefore, they also
apply for the ideal gas. In particular, if we consider the right-hand side of Eq. A.15
at the conditions of constant temperature T and constant number of mols n, the
derivative is in fact ordinary. Then, by using the ideal gas equation for obtaining the
derivative of the left-hand side of Eq. A.15 we obtain that

dµid
i = RT

P
dP (A.16)

which we can integrate from a reference pressure P 0 to the system’s pressure P at
constant T and z to obtain

µid
i (T, P, z) = µid

i (T, P 0, z) +RT ln P

P 0 (A.17)

where z is the vector of molar fractions of all mixture components.

In practice, Eq. A.17 would require the knowledge of the reference chemical
potential at many different compositions (depending on the composition of the
actual mixture). Therefore, this expression is not very practical or, better to say, this
reference state is not very practical. Instead, one might choose the reference state of
the pure component i as ideal gas where the following is true

µid
i (T, P 0, z) = µid,pure

i (T, p) (A.18)

notice that, from the ideal gas equation, p corresponds to the partial pressure of
component i in the system that is at pressure P 0 (i.e, p = ziP

0). And, by using the
same reference pressure P 0 for the pure ideal gas we obtain that

µid
i (T, P 0, z) = µid,pure

i (T, ziP
0) = µid,pure

i (T, P 0) +RT ln zi (A.19)

Therefore, Eq. A.17 can be written in terms of a more practical reference point as

µid
i (T, P, z) = µid,pure

i (T, P 0) +RT ln ziP

P 0 (A.20)

One idea for extending Eq. A.20 from ideal gases to real mixtures was proposed
by Lewis via the introduction of an auxiliary variable called fugacity. This auxiliary
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variable serves as a modified partial pressure, accounting for deviations from ideal
behavior. The general expression can then be written as

µi(T, P, z) = µpure
i (T, P 0) +RT ln fi(T, P, z)

f0,pure
i (T, P 0)

(A.21)
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A.3 Derivation of the dependency expressions of γi on
T , P and x

The differential expression relating γi to the mixture temperature T can be obtained
from the fundamental expression of the molar Gibbs energy in terms of the excess
properties

gE = hE − TsE = uE + PvE − TsE (A.22)

dividing both sides by RT , and taking the partial derivative with respect to T

∂(gE/RT )
∂T

∣∣∣∣
P

=
RT ∂hE

∂T

∣∣∣∣
P

−RTsE −RT 2 ∂sE

∂T

∣∣∣∣
P

−RhE +RTsE

(RT )2 (A.23)

simplifying

∂(gE/RT )
∂T

∣∣∣∣
P

= 1
RT

∂hE

∂T

∣∣∣∣
P

− 1
R

∂sE

∂T

∣∣∣∣
P

− hE

RT 2 (A.24)

and from the fundamental equation of hE and the total differentials of hE and sE

we know that

∂hE

∂T

∣∣∣∣
P

= T
∂sE

∂T

∣∣∣∣
P

(A.25)

therefore,

∂(gE/RT )
∂T

∣∣∣∣
P

= − hE

RT 2 (A.26)

If we now consider the multi-component case, and introducing Eq. 2.29, we know
that the previous relationship also holds for the partial molar properties of each
individual component i

∂(ḡE
i /RT )
∂T

∣∣∣∣
P,x

= − h̄E
i

RT 2 = ∂(ln γi)
∂T

∣∣∣∣
P,x

(A.27)
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and now, by using a change of variable u = 1/T and the chain rule, we obtain that

∂ ln γi

∂(1/T )

∣∣∣∣
P,x

= h̄E
i

R
(A.28)

Similarly, the expression for the pressure dependency can be derived by taking the
derivative of Eq. A.22 with respect to the system’s pressure P

∂gE

∂P

∣∣∣∣
T

= ∂uE

∂P

∣∣∣∣
T

+ vE + P
∂vE

∂P

∣∣∣∣
T

− T ∂s
E

∂P

∣∣∣∣
T

(A.29)

and by using the fundamental equation of the molar excess internal energy

PdvE = duE − TdsE (A.30)

and taking the change with respect to pressure at constant T , we have that

P
∂vE

∂P

∣∣∣∣
T

= ∂uE

∂P

∣∣∣∣
T

− T ∂s
E

∂P

∣∣∣∣
T

(A.31)

hence, we have that

∂gE

∂P

∣∣∣∣
T

= vE
i (A.32)

and, in terms of the partial molar properties

∂ḡE
i

∂P

∣∣∣∣
T,x

= v̄E
i (A.33)

We can then introduce Eq. 2.28 to obtain the final expression

∂ ln γi

∂P

∣∣∣∣
T,x

= v̄E
i

RT
(A.34)

Finally, the dependency of γi on the mixture’s composition can be obtained from the
fundamental equation of the partial excess molar Gibbs energy
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sEdT − vEdP +
N∑
i

xidḡ
E
i = 0 (A.35)

at constant T and P

N∑
i

xidḡ
E
i = 0 (A.36)

and introducing Eq. 2.28 we obtain the final expression

N∑
i

xid ln γi = 0 (A.37)
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A.4 Derivation of the relationship of excess chemical
potential and γi

The relationship between the excess chemical potential and the activity coefficient is
obtained by subtracting the chemical potential in the ideal solution ids (which is
analogous to Eq. A.20 for the ideal gas)

µids
i (T, P,x) = µpure

i (T, P 0) +RT ln xif
pure
i (T, P )

f0,pure
i (T, P 0)

(A.38)

from the chemical potential of the real mixture (Eq. 2.13) to obtain

ḡE
i (T, P,x) = RT

(
ln fi(T, P,x)
f0,pure

i (T, P 0)
− ln xif

pure
i (T, P )

f0,pure
i (T, P 0)

)
(A.39)

which simplifies to

ḡE
i (T, P,x) = RT ln fi(T, P,x)

xif
pure
i (T, P ) (A.40)

The ratio on the right-hand side of Eq. A.40 correspond to the activity coefficient (cf.
Eq. 2.18). Therefore, we arrive to the final expression

ḡE
i (T, P,x) = RT ln γi(T, P,x) (A.41)
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A.5 Solvation models: Hildebrand parameter, Hansen
Solubility Parameters and MOSCED

Here, the mathematical formulations of the models for predicting infinite dilution
activity coefficients (IDACs) that use the Hildebrand parameter [71] and the Hansen
solubility parameters [65] are presented. Moreover, the formulation of the Modified
Separation of Cohesive Energy Density (MOSCED) [153] model is introduced. All
these three models rely on the entropic and enthalpic contributions to non-ideality,
which, from the fundamental equation of the molar excess Gibbs energy, are additive.
These terms have been historically referred to as the combinatorial and residual
terms, for the entropic and enthalpic contributions, respectively.

ln γ∞
i = ln γ∞,C

i + ln γ∞,R
i (A.42)

Hildebrand model:
ln γ∞,C

i = ln Vm,j

Vm,i
+ 1− Vm,j

Vm,i
(A.43)

ln γ∞,R
i = χijΦ2

i (A.44)

χij = Vm,j

RT
(δi − δj)2 (A.45)

δ =
√
c =

√
∆Hvap −RT

Vm
(A.46)

where, Vm,j and Vm,i are the molar volume of the solvent j and solute i respectively,
R is the gas constant, T is the temperature, c is the cohesive energy density proposed
by Hildebrand and ∆Hvap is the enthalpy of vaporization.

Hansen model: This model attempts to improve the predictions of the Hildebrand
model by separating the solubility parameter δ into its contributions due to disper-
sion δD, polarity δP and hydrogen-bonding δHB, which are known as the Hansen
Solubility Parameters (HSP).
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δ2 = δ2
D + δ2

P + δ2
HB (A.47)

MOSCED model:

ln γ∞,C
i = ln

(
Vm,j

Vm,i

)A

+ 1−
(
Vm,j

Vm,i

)A

(A.48)

ln γ∞,R
i = Vm,i

RT

(
(λj − λi)2 +

q2
j q

2
i (τT

j − τT
i )2

ψj
+

(αT
j − αT

i )(βT
j − βT

i )
ξj

)
(A.49)

A = 0.953− 0.002314
(
(τT

i )2 + αT
i β

T
i

)
(A.50)

αT = α

(293
T

)0.8
(A.51)

βT = β

(293
T

)0.8
(A.52)

τT = τ

(293
T

)0.4
(A.53)

ψj = POL+ 0.002629αT
j β

T
j (A.54)

ξj = 0.68(POL− 1) + (3.4− 2.4 exp (−0.002687(αjβj)1.5)(
293
T )2

(A.55)

POL = q4
j (1.15− 1.15 exp (−0.002337(τT

j )3)) + 1 (A.56)

where τ is the polarity parameter, α and β are the hydrogen-bond acidity and basicity
parameters, λ is the dispersion parameter and q is the induction parameter.

A.5 Solvation models: Hildebrand parameter, Hansen Solubility
Parameters and MOSCED
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A.6 Group contribution models: UNIFAC,
UNIFAC-Lyngby and UNIFAC-Dortmund

Here, the mathematical formulations of the UNIFAC [47], UNIFAC-Lyngby [95, 81]
and UNIFAC-Dortmund [161, 57, 58, 59] models for predicting infinite dilution
activity coefficients (IDACs) are presented. All these three models rely on the
entropic and enthalpic contributions to non-ideality, which, from the fundamental
equation of the molar excess Gibbs energy, are additive. These terms have been
historically referred to as the combinatorial and residual terms, for the entropic and
enthalpic contributions, respectively.

ln γ∞
i = ln γ∞,C

i + ln γ∞,R
i (A.57)

Each group can have multiple subgroups.

UNIFAC model:

ln γ∞,C
i = 1− Vi + lnVi − 5qi

(
1− Vi

Fi
+ ln Vi

Fi

)
(A.58)

Vi = ri

rixi + rjxj
(A.59)

Fi = qi

qixi + qjxj
(A.60)

ri =
∑

k

ν
(i)
k Rk (A.61)

qi =
∑

k

ν
(i)
k Qk (A.62)

where, Rk and Qk are the relative van der Waals volume and surface area for
subgroup k, respectively. ν(i)

k is the number of subgroups k in molecule i. Therefore,
for computing the combinatorial part, the fragmentation of the involved molecules
into subgroups needs to be feasible, and the parametersRk andQk for each subgroup
need to be available. The residual part is calculated as
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ln γ∞,R
i =

∑
k

ν
(i)
k (ln Γ∞

k − ln Γ∞,(i)
k ) (A.63)

ln Γ∞
k = Qk

[
1− ln

(∑
m

ΘmΨmk

)
−
∑
m

ΘmΨkm∑
n ΘnΨnm

]
(A.64)

Θm = QmXm∑
nQnXn

(A.65)

Xm = ν
(i)
m xi + ν

(j)
m xj∑

n ν
(i)
n xi +

∑
n ν

(j)
n xj

(A.66)

ln Γ∞,(i)
k = Qk

[
1− ln

(∑
m

Θ(i)
m Ψmk

)
−
∑
m

Θ(i)
m Ψkm∑

n Θ(i)
n Ψnm

]
(A.67)

Θ(i)
m = QmX

(i)
m∑

nQnX
(i)
n

(A.68)

X(i)
m = ν

(i)
m xi∑

n ν
(i)
n xi

(A.69)

Ψnm = exp
(
−anm

T

)
(A.70)

where anm is the binary interaction parameter between group n and group m. By
definition, anm = 0 if n = m, and anm ̸= amn. T is the temperature. Xm is the
mole fraction of subgroup m in the mixture, and Θm is the surface area fraction of
subgroup m in the mixture. Γ∞

k stands for the infinite dilution activity coefficient of
subgroup k in the mixture (i.e, the summation terms are over all mixture subgroups),
and Γ∞,(i)

k stands for the infinite dilution activity coefficient of subgroup k in the
pure compound (i.e, the summation terms are over all subgroups in molecule i).

UNIFAC-Lyngby model: The residual part is calculated as in the original UNIFAC
model. However, the binary interaction parameter anm is now made temperature
dependent. The combinatorial part removes the Staverman-Guggenheim correction
term and uses a (empirically determined) modified volume fraction term V ′

i as
follows

A.6 Group contribution models: UNIFAC, UNIFAC-Lyngby and
UNIFAC-Dortmund
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ln γ∞,C
i = 1− V ′

i + lnV ′
i (A.71)

V ′
i = r

2/3
i

r
2/3
i xi + r

2/3
j xj

(A.72)

UNIFAC-Dortmund model: The residual part is calculated as in the original UNIFAC
model. However, the binary interaction parameter anm is now made temperature
dependent. The combinatorial part retains the Staverman-Guggenheim correction
to a now empirically modified Flory-Huggins term

ln γ∞,C
i = 1− V ′′

i + lnV ′′
i − 5qi

(
1− Vi

Fi
+ ln Vi

Fi

)
(A.73)

V ′′
i = r

3/4
i

r
3/4
i xi + r

3/4
j xj

(A.74)
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A.7 Abraham model

Here, the mathematical formulation of the Abraham model [2] for predicting infinite
dilution activity coefficients (IDACs) is presented.

logKs = c+ eE + sS + aA+ bB + lL (A.75)

ln γ∞
i = ln RT

P sat
j Vm,jKs

(A.76)

where, the lowercase letters in Eq. A.75 are usually referred to as the descriptors of
the solvent, but, in fact, they are fitted to experiments via linear regression [114]. E
stands for excess molar refraction computed from refractive index measurements, S
is the solute dipolarity-polarizability obtained from gas-liquid chromatography, A
and B are the solute hydrogen-bond acidity and basicity, respectively, and L is the
solute gas-liquid partition coefficient measured with respect to hexadecane at 298
K. R and T correspond to the gas constant and the temperature, respectively. P sat

j

is the saturation pressure of the solvent j and Vm,j is the molar volume of j. The c
parameter is just another fitting constant.
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A.8 Hyperparameters for the isothermal-IDACs GNN
model

Some hyperparameters of the proposed isothermal GNN-based model for predicting
IDACs were fixed based on experience (Table A.1). The hyperparameters that
were tuned using Bayesian optimization are shown in Table A.2. The Bayesian
optimization was initialized with 7 samples from a Sobol sequence. Expected
improvement was chosen as the acquisition function. The optimization was run for
70 additional iterations. A different random seed was used at each iteration for the
random train/validation split using a proportion of 90/10. The hyperparameter
optimization was run using scikit-optimize [69]. The same node embedding size
was used for every message-passing layer. The same training configuration (i.e.,
Adam optimizer, number of epochs, batch size, learning rate scheduler) was used
for each trial in the hyperparameter optimization.

Tab. A.1.: Fixed hyperparameters based on experience.

Hyperparameter Value

MLP hidden layers 2
Number of epochs 200
Batch size 32

Tab. A.2.: Tuned hyperparameters using Bayesian optimization, exploration bounds and
final selected values.

Hyperparameter Exploration bounds Selected value

Learning rate Categorical(0.0001, 0.001, 0.01) 0.001
Dropout probability Categorical(0.05, 0.1, 0.3, 0.5) 0.1
Message-passing layers Integer(low=2, high=5) 5
Node embedding size Integer(low=16, high=64) 30
ϕ

(l)
E (·) hidden-layer neurons Integer(low=16, high=64) 64

Neurons first hidden-layer of MLP Integer(low=32, high=64) 50
Neurons second hidden-layer of MLP Integer(low=16, high=32) 25

182 Appendix A Appendices



A.9 Distribution of IDAC values in the isothermal 298.15
K data set

In Fig. A.1 the proportion of data points for the train and test sets are shown
according to their IDAC value for the data set used in Chapter 3. Additionally, the
proportion of IDAC values in the entire data set is shown. Each data set is divided
into 100 bins.

Fig. A.1.: Proportion of data points contained in the train and test data sets, as well as in
the entire data set.
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A.10 Errors in the Vol. IX of DECHEMA Chemistry Data
Series

During the digitization phase of the IDAC collection contained in Vol. IX of DECHEMA
Chemistry Data Series [55], some errors were noted and corrected. The following
is a description of them containing an internal ID that is used for the database
maintenance at the process systems engineering group at MPI-Magdeburg.

• Internal ID: 323 - The formula shown in pages 1599 and 1790 is wrong
(C7H12O). The correct formula of the compound according to the DDB
databank (DDB No.: 922) is C7H14O. This is also confirmed by PubChem
https://pubchem.ncbi.nlm.nih.gov/compound/1_2-Epoxyheptane.

• Internal ID: 475 - The formula shown in pages 1439 and 1805 is wrong
(C12H20O3). The correct formula of the compound according to the original pa-
per (https://doi.org/10.1016/S0021-9673(01)81586-7) is C12H20O2 which
name corresponds to Linalyl acetate in Table 2 of the mentioned paper.

• Internal ID: 490 - The formula shown in pages 1440 and 1806 is wrong
(C16H30O2). The correct formula of the compound according to original paper
(https://doi.org/10.1016/S0021-9673(01)81586-7) is C15H28O2 which
name corresponds to R4OCOCH3 in Table 1 of the mentioned paper.

• Internal ID: 964 - The formula shown in pages 2678 and 2729 is wrong
(C12H19F6N3O4). The correct formula of the compound according to the DDB
databank (DDB No.: 18162) is C12H19F6N3O4S2. This is also confirmed by the
name of the compound.

• Internal ID: 1012 - The formula shown in pages 2681 and 2730 is wrong
(C14H23F6N3O4). The correct formula of the compound according to the
name should include "S" in the formula. A search of the compound in the DDB
tool (http://www.ddbst.com/unifacga.html) also confirms that the formula
should be C14H23F6N3O4S2.

• Internal ID: 1182 - The formula shown in page 1816 is wrong (C5H8O2). The
correct formula of the compound according to the DDB databank (DDB No.:
32277) is C5H6O2.

• Internal ID: 1378 - The formula shown in page 1831 is wrong (C8H14O). The
correct formula of the compound according to the DDB databank (DDB No.:
22316) is C8H12O.
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• Internal ID: 1584 - The formula shown in page 2736 is wrong (C7H9F6N3S2).
The correct formula of the compound according to page 2147 and to the DDB
databank is C7H9F6N3O4S2.

• Internal ID: 1587 - The formula shown in page 2737 is wrong (C7H15N2O4S).
The correct formula of the compound according to the name should include
"P" in the formula. This is also confirmed in page 2160, showing the correct
formula: C7H15N2O4P.

• Internal ID: 1601 - The formula shown in pages 2262 and 2738 is wrong
(C9H18F6N2O4S). The correct formula of the compound according to the DDB
databank (DDB No.: 21225) is C9H18F6N2O4S2.

• Internal ID: 1622 - The formula shown in pages 2373 and 2739 is wrong
(C14H28BBrN2O). The correct formula of the compound according to the
DDB tool (http://www.ddbst.com/unifacga.html) indicates that the for-
mula should be C14H28BBrN2O2.

• Internal ID: 1626 - The formula shown in pages 2388 and 2739 is wrong
(C16H32BBrN2O). The correct formula of the compound according to the
DDB tool (http://www.ddbst.com/unifacga.html) indicates that the for-
mula should be C16H32BBrN2O2.

• Internal ID: 1627 - The formula shown in page 2739 is wrong (C16H32N2O4).
The correct formula of the compound according to the DDB databank (DDB
No.: 20036) is C16H32N2O4S. This is confirmed by the correct formula shown
in page 2389.

• Internal ID: 1644 - The formula shown in pages 2462 and 2740 is wrong
(C18H36BBrN2O). The correct formula of the compound according to the
DDB tool (http://www.ddbst.com/unifacga.html) indicates that the for-
mula should be C18H36BBrN2O2.

• Internal ID: 1674 - The formula shown in pages 2539 and 2741 is wrong
(C34H68F6NO4P). The correct formula of the compound according to the DDB
databank (DDB No.: 21227) is C34H68F6NO4PS2.
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A.11 Details of the DECHEMA data set of IDACs

Fig. A.2 shows the number of data points used in the construction of the DECHEMA
data set (i.e., including the repeated measurements of systems at the same condi-
tions) according to the experimental technique. The meaning of the experimental
technique identifiers is available in Table A.3.

Fig. A.2.: Number of data points used in the construction of the DECHEMA data set accord-
ing to the experimental technique.

Figures A.3 and A.4 show the distribution of logarithmic IDAC and temperature
values in the DECHEMA data set, respectively. The distribution of values is given for
the train and test data sets obtained from the stratified splitting.

Fig. A.5 shows the frequency of the 30 most popular chemical classes included in
the DECHEMA data set as calculated by the Classyfire [38] ontology. The rest of
least frequent classes are combined into the last bar in Fig. A.5 for visualization
purposes. However, all chemical classes were considered for the stratified splitting
as discussed in Section 3.5.1.

The compounds that were not assigned to a specific chemical class using Classyfire
[38] are shown in Table A.4 together with their corresponding “superclass" classifi-
cation obtained from Classyfire (if available). Most of them correspond to acetylides
which are compounds in which one or both hydrogen atoms of ethyne are replaced
by a metal or other cationic group.
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ID Meaning
DILU Dilutor technique
EBUL Ebulliometry
GLCI Gas-liquid chromatography with no gas phase correction
GLCN Gas-liquid chromatography with no specification of gas phase correction
GLCR Gas-liquid chromatography with gas phase correction
HENR Derived from Henry coefficients
LLCR Liquid-liquid chromatography
NSGC Non-steady-state gas-liquid chromatography
OTHR Other methods, e.g., isopiestic or dew point technique
PHEQ Derived from phase equilibrium data at low concentration
RADM Rayleigh distillation method
RGLC Relative gas-liquid chromatography
SOLU Derived from solubility data
STAT Static method

Tab. A.3.: Meaning of the experimental technique identifiers.

Fig. A.3.: Distribution of logarithmic IDACs in the DECHEMA data set.
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Fig. A.4.: Distribution of temperature values in the DECHEMA data set.

Tab. A.4.: Compounds in the DECHEMA data set that were not assigned to a specific
chemical class using Classyfire [38].

# Compound name Superclass
1 Propyne Acetylides
2 1-butyne Acetylides
3 Germane, tetramethyl Organometallic compounds
4 Silane, tetramethyl Hydrocarbon derivatives
5 1-pentyne Acetylides
6 1-hexyne Acetylides
7 1-heptyne Acetylides
8 1,6-heptadiyne Acetylides
9 1-octyne Acetylides
10 Silane, tetraethyl Hydrocarbon derivatives
11 1,8-nonadiyne Acetylides
12 1-nonyne Acetylides
13 1-decyne Acetylides
14 Propanephosphinic acid, dibutyl ester Organophosphorus compounds
15 Propanoic acid, 3-(2,2,3,3-tetrafluoropropoxy), nitrile -
16 Propanoic acid, 3-pentoxy, nitrile -
17 Decanoic acid, 10(9)-perfluorooctyl, methyl ester -
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Fig. A.5.: Number of compounds in the DECHEMA data set contained in the 30 most
frequent chemical classes computed by Classyfire [38].
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A.12 Hyperparameters for e-GNNprev and e-SolvGNN in
extended isothermal analysis

The tuning of hyperparameters for e-GNNprev was conducted with Optuna [5],
specifying 100 trials and utilizing the ranges and scales outlined in Table A.5. A
10-fold cross-validation approach was employed for the tuning process. The chosen
hyperparameters for each isothermal study are detailed in Table A.6. Mean Squared
Error (MSE) served as the loss function.

Tab. A.5.: Ranges used during the hyperparameter search of e-GNNprev in the isothermal
studies.

Hyperparameter Range Search scale
Message passing layers 2−5 integer

Dropout ratio 0.05−0.5 uniform
Hidden embedding size 16−256 integer

Learning rate 0.0001−1 loguniform
Units in message passing 8−64 integer

Epochs 100−300 integer
Batch size 4−64 integer

Jumping knowledge {last, sum, mean} categorical
Global pooling {sum, mean, max, set2set} categorical

Hidden layers final MLP 1−2 integer
Units in final MLP 16−128 integer

Tab. A.6.: Final selected hyperparameters for e-GNNprev in each isothermal study.

Hyperparameter Final value for T (K)
293.15 298.15 303.15 313.15 323.15 333.15 343.15 353.15 373.15

Message passing layers 4 3 4 2 3 3 4 3 5
Dropout ratio 0.13 0.05 0.13 0.05 0.05 0.06 0.05 0.07 0.07

Hidden embedding size 234 41 154 209 72 88 250 64 30
Learning rate 0.002 0.002 0.011 0.003 0.002 0.011 0.001 0.007 0.009

Units in message passing 21 31 18 37 12 42 37 39 10
Epochs 188 239 274 238 168 289 226 144 256

Batch size 39 59 62 44 53 44 42 53 62
Jumping knowledge last sum mean mean mean mean sum mean mean

Global pooling sum sum set2set sum sum sum sum sum mean
Hidden layers final MLP 2 2 1 2 2 2 2 2 2

Units in final MLP 105, 74 83, 30 125 110, 112 104, 126 113, 122 105, 18 97, 56 100, 30

Hyperparameter optimization for e-SolvGNN was performed with Optuna [5], employ-
ing 100 trials alongside the ranges and scales provided in Table A.7. The optimization
process utilized 10-fold cross-validation. The optimized hyperparameters for each
isothermal analysis can be found in Table A.8, with Mean Squared Error (MSE)
being the chosen loss function.
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Tab. A.7.: Ranges used during the hyperparameter search of e-SolvGNN in the isothermal
studies.

Hyperparameter Range Search scale
Hidden embedding size 16-256 integer

Learning rate 0.0001-1 loguniform
Epochs 100-300 integer

Batch size 4-64 integer

Tab. A.8.: Final selected hyperparameters for e-SolvGNN in each isothermal study.

Hyperparameter Final value for T (K)
293.15 298.15 303.15 313.15 323.15 333.15 343.15 353.15 373.15

Hidden embedding size 242 226 236 186 197 182 252 162 177
Learning rate 0.0004 0.0004 0.0001 0.0002 0.0006 0.0003 0.0006 0.0002 0.0006

Epochs 156 178 287 151 212 299 256 254 260
Batch size 5 12 4 4 9 7 8 4 4

A.12 Hyperparameters for e-GNNprev and e-SolvGNN in extended
isothermal analysis
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A.13 Hyperparameters for the GH-GNN, GH-SolvGNN,
GNNCat and SolvGNNCat models

The hyperparameters for the GNNCat and SolvGNNCat models were optimized using
the Optuna framework [5]. This optimization process entailed executing 100 trials,
with each trial spanning 50 epochs, using hyperparameter ranges as outlined in
Tables A.9 and A.10. The selected hyperparameters, after this optimization phase,
are also presented in these respective Tables. For the purpose of hyperparameter
tuning, 10-fold cross-validation was utilized. Upon determining the final set of
hyperparameters, the number of epochs was varied across the values 100, 150, 200,
250 and 300 to find the configuration that most significantly enhanced performance
on the validation set. For all models, 250 epochs was found as the best value.

For comparative analysis, the hyperparameters of GH-GNN and GH-SolvGNN were
assigned to be equal to those of their counterparts, GNNCat and SolvGNNCat,
respectively. To maintain an equivalent number of parameters across the models
being compared, the first hidden-layer size of the MLP in GNNCat and SolvGNNCat
was adjusted to double the intended hidden embedding size. The total number of
trainable parameters amounted to 2,483,580 for both GNNCat and GH-GNN, and
1,798,825 for SolvGNNCat and GH-SolvGNN.

Tab. A.9.: Hyperparameter details for GNNCat.

Hyperparameter Range Search scale Selected value
Hidden embedding size 16-256 integer 113

Learning rate 0.0001-1 log-uniform 0.0002
Batch size 4-64 integer 32

Tab. A.10.: Hyperparameter details for SolvGNNCat.

Hyperparameter Range Search scale Selected value
Hidden embedding size 16-256 integer 193

Learning rate 0.0001-1 log-uniform 0.00012
Batch size 4-64 integer 16
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A.14 Errors in the Vol. XIV of DECHEMA Chemistry Data
Series

During the digitization phase of the IDAC collection contained in Vol. XIV of
DECHEMA Chemistry Data Series [66], some errors were noted and corrected.
The following is a description of them containing an internal ID that is used
for the database maintenance at the process systems engineering group at MPI-
Magdeburg.

• Internal ID: 1 - The chemical formula for glycerol triacetate is presented as
C9H15O6. Nonetheless, the accurate formula ought to be C9H14O6.

• Internal ID: 2 - The polymer marked as "poly(ϵ-valerolactone)" should actually
be termed "poly(δ-valerolactone)," as indicated in the original paper from
which the data was extracted [131]. An error in Table 1 of this paper led to
the aforementioned typo, suggesting a potential propagation of the mistake
from there to the DECHEMA collection.

• Internal ID: 3 - The polymer previously labeled as "polyethylene low-density"
has now been annotated as a branched polymer, as indicated by note 86 of the
original DECHEMA collection.

• Internal ID: 4 - The polymer listed as "polystyrene, antishock" in the original
DECHEMA data collection is identified as a homopolymer. However, this
polymer is categorized as a copolymer, commonly referred to as "high impact
polystyrene (HIPS)."

• Internal ID: 5 - In the original data collection, the polymers "polyoxyethylene,
α,ω-dihydroxy" and "poly(ethylene oxide)" are presented as separate entities.
However, considering that one specifies the start and end groups, it is highly
probable that both refer to the same chemical structure.
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A.15 Derivation of the extended Margules equation

If one considers that the molar excess Gibbs energy gE of any mixture can be de-
scribed by a continuous function that is infinitely differentiable, gE can be expressed
as a Taylor series. We will assume here that gE can be sufficiently well-approximated
when truncating the series after the third term. Therefore, for a mixture of N
components, its molar excess Gibbs energy can be approximated by

gE(x) = a0 +
N−1∑
i=1

aixi +
N−1∑
i=1

N−1∑
j=1

aijxixj +
N−1∑
i=1

N−1∑
j=1

N−1∑
k=1

aijkxixjxk (A.77)

where, x is the vector of molar fractions of N − 1 mixture components, and a stands
for the corresponding polynomial coefficient according to the subscripts given.

We know from the boundary condition, given in Eq. 2.30, that gE = 0 when
xN = 1, and, hence, a0 = 0. Moreover, we know that (ai + aii + aiii) = 0 when
xi = 1 ∀ i ∈ {1, 2, . . . , N − 1}. Hence, we can reformulate Eq. A.77 as

gE(x) = −
N−1∑
i=1

(aii + aiii)xi +
N−1∑
i=1

N−1∑
j=1

aijxixj +
N−1∑
i=1

N−1∑
j=1

N−1∑
k=1

aijkxixjxk (A.78)

We can then, multiply the first and second summation terms of Eq. A.78 by 1
expressed as the sum of molar fractions to obtain

gE(x) = −
N−1∑
i=1

N∑
j=1

N∑
k=1

(aii + aiii)xixjxk +
N−1∑
i=1

N−1∑
j=1

N∑
k=1

aijxixjxk +
N−1∑
i=1

N−1∑
j=1

N−1∑
k=1

aijkxixjxk

(A.79)

To make the expression more concise, all crossed terms in the Taylor polynomial are
collected into a single term multiplied by the corresponding (and distinct) constant,
so as to have
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gE(x) = −
N−1∑
i=1

N∑
j=i

N∑
k=j

(aii + aiii)xixjxk +
N−1∑
i=1

N−1∑
j=i

N∑
k=j

aijxixjxk +
N−1∑
i=1

N−1∑
j=i

N−1∑
k=j

aijkxixjxk

(A.80)

This results in a general expression that can be applied to mixtures of N components.
The parameters of Eq. A.80 can be related to the binary IDAC values of all mixture
component pairs given the relationship

RT ln γ∞
i =

(
∂gE

∂xi

)
xj→1,j ̸=i

(A.81)

Here, we will derive two specific cases:

For binary mixtures (N = 2) Eq. A.80 reduces to

gE = −a111x
2
1x2 + (−a11 − a111)x1x

2
2 (A.82)

we can then apply Eq. A.81 on Eq. A.82 to determine the value of the constants
from the IDACs:

(
∂gE

∂x1

)
x2→1

= −a11 − a111 = w12 = RT ln γ∞
12 (A.83)(

∂gE

∂x2

)
x1→1

= −a111 = w21 = RT ln γ∞
21 (A.84)

Hence, the resulting expression for binary systems is

gE = x1x2(x1w21 + x2w12) (A.85)

To obtain an expression for the activity coefficients, we express Eq. A.85 in terms
of the excess Gibbs energy GE = MgE and then differentiate with respect to the
number of moles of the corresponding species:
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RT ln γ1 = ∂GE

∂n1
= w21

(
2n1n2
M2 −

2n2
1n2
M3

)
+ w12

(
n2

2
M2 −

2n1n
2
2

M3

)
(A.86)

RT ln γ1 = 2w21x1x2 + x2
2w12 − 2gE (A.87)

and similarly for component 2:

RT ln γ2 = 2w12x2x1 + x2
1w21 − 2gE (A.88)

Similarly, we can derive the expressions for a ternary system (N = 3):

gE = x1x2(x2w12 + x1w21) + x1x3(x3w13 + x1w31) + x2x3(x3w23 + x2w32) + x1x2x3c123

(A.89)

with cijk = 1
2(wij + wji + wik + wki + wjk + wkj) − wijk. The resulting ternary

interaction parameter wijk is here set to zero as in [6].

RT ln γ1 = 2(x1x2w21 + x1x3w31) + x2
2w12 + x2

3w13 + x2x3c123 − 2gE (A.90)

RT ln γ2 = 2(x2x3w32 + x2x1w12) + x2
3w23 + x2

1w21 + x3x1c231 − 2gE (A.91)

RT ln γ3 = 2(x3x1w13 + x3x2w23) + x2
1w31 + x2

2w32 + x1x2c312 − 2gE (A.92)
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Afterword

During the period of development of the work presented in this dissertation, several
publications were prepared. The following is a list that describe the publications
used as part of the content of this dissertation.

• The methodology presented in Chapter 3 is partially taken from [@5].

• The additional isothermal studies presented in Section 3.5, and the contents
of Section 4.1 are based on [@4].

• Section 4.2 and the case-study presented in Section 6.2 are partially based on
the work presented in [@2].

• Section 4.3 is based on [@3].

• The methodology presented in Chapter 5 and the case-study presented in
Section 6.1 are based on [@6].

• The case-study presented in Section 6.3 is partially taken from [@1].
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