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Advancing Anticancer Drug Discovery: Leveraging
Metabolomics and Machine Learning for Mode of Action
Prediction by Pattern Recognition

Mohamad Saoud, Jan Grau, Robert Rennert, Thomas Mueller, Mohammad Yousefi,
Mehdi D. Davari, Bettina Hause, René Csuk, Luay Rashan, Ivo Grosse, Alain Tissier,
Ludger A. Wessjohann,* and Gerd U. Balcke*

A bottleneck in the development of new anti-cancer drugs is the recognition of
their mode of action (MoA). Metabolomics combined with machine learning
allowed to predict MoAs of novel anti-proliferative drug candidates, focusing
on human prostate cancer cells (PC-3). As proof of concept, 38 drugs are
studied with known effects on 16 key processes of cancer metabolism,
profiling low molecular weight intermediates of the central carbon and cellular
energy metabolism (CCEM) by LC-MS/MS. These metabolic patterns unveiled
distinct MoAs, enabling accurate MoA predictions for novel agents by
machine learning. The transferability of MoA predictions based on PC-3 cell
treatments is validated with two other cancer cell models, i.e., breast cancer
and Ewing’s sarcoma, and show that correct MoA predictions for alternative
cancer cells are possible, but still at some expense of prediction quality.
Furthermore, metabolic profiles of treated cells yield insights into intracellular
processes, exemplified for drugs inducing different types of mitochondrial
dysfunction. Specifically, it is predicted that pentacyclic triterpenes inhibit
oxidative phosphorylation and affect phospholipid biosynthesis, as confirmed
by respiration parameters, lipidomics, and molecular docking. Using
biochemical insights from individual drug treatments, this approach offers
new opportunities, including the optimization of combinatorial drug
applications.
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1. Introduction

Anti-cancer drug discovery usually starts
with in vitro viability assays using cancer
cell line models, which identify cytotoxic
chemicals with high anti-proliferative ca-
pacity. At that early stage, knowledge re-
garding the mechanisms by which cell
growth is inhibited is limited. Therefore,
early characterization of the mechanism of
action (MeA) or mode of action (MoA) of
a drug has the potential to advance the
drug development process.[1] MeA refers
to the specific biochemical interaction be-
tween a compound and its molecular tar-
gets, while MoA refers to the physiological
effects caused by the compound of study.
Metabolomics can help delineating MoAs
by identifying metabolic changes in cells
upon drug exposure, which are reflected in
complex metabolic patterns (metabotypes).
Prediction of the MoA for uncharacterized
compounds is based on the hypothesis that
drugs with similar targets will have simi-
lar effects on the metabolome.[2] Machine
learning (ML) can then be employed to
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predict the MoA(s) of a compound by using reference drugs with
known MoA as training set, as has been recently demonstrated
for antimicrobial compounds.[2–4] While the focus of this study
is on the MoA of potential anti-cancer drugs, machine-learning
methods have previously been applied to understand the influ-
ence of perturbations on metabolic networks in the context of
anti-bacterial drugs and nanoparticles.[5,6] Notably, the machine
learning methods applied show similarities to those considered
in this study, namely k-nearest neighbor classifiers and Random
Forests.[6]

In cancer biology, such comprehensive studies of drug re-
sponses at the metabolites level are just beginning to emerge.
Using prostate cancer cell lines, cell viability assays, and
metabolomics, Lu et al. screened synergistic effects of a glutam-
inase inhibitor and a library of 292 anti-cancer compounds.[7]

Lately, multi-omics data of 54 cancer cell lines involving
metabolomics analysis were used to correlate transcriptional reg-
ulation of tumor growth with metabolism.[8] Anglada-Girotto
et al. combined CRISPRi and metabolomics to annotate drug
libraries in E.coli.[9] In implementing this combined approach,
also human A549 alveolar cancer cells were exposed to 14 anti-
cancer drugs. In this side study, a strong accumulation of dUMP
was observed only for those drugs targeting thymidylate synthase
(TYMS), which was associated with a strong and selective simi-
larity of metabolite patterns between genetically and chemically
induced suppression of TYMS. This supports our hypothesis that
using suitable analytical techniques, metabolomics can reveal
crucial insights into the regulation of the central carbon and en-
ergy metabolism (CCEM).

The discovery that cancer cells exhibit abnormal regulation of
central metabolic pathways led to the creation of highly specific
tumor inhibitors.[10–14] These inhibitors primarily target cancer
cells by disrupting key processes such as glucose and glutamine
uptake or metabolism, as well as blocking serine synthesis.[15–17]

Furthermore, in many cancers, pathological cell proliferation is
associated with increased biosynthesis of nucleotides, acyl- and
prenyl-lipids. Therefore, metabolic inhibitors of cancer cell pro-
liferation affect essential metabolic pathways such as de novo
biosynthesis of NAD, the oxidative pentose phosphate pathway
(OPP), fatty acid synthesis or the mevalonate pathway.[18–20]

Some chemotherapeutics such as taxol, vincristine or etopo-
side modify non-metabolic targets like the cytoskeleton or affect
DNA replication.[21,22] The PI3K/AKT/mTOR signaling pathway
is another prominent target for cancer treatment since it controls
the metabolic activity of key CCEM pathways.[23,24] Since these
targets may, therefore, have indirect effects on the CCEM, it is
crucial to investigate whether metabolic patterns derived from
cell treatments with microtubule inhibitors, topoisomerase in-
hibitors, or PI3K/AKT/mTOR inhibitors accurately predict their
MoAs.

In this study, we employed a multi-targeted approach to an-
alyze 188 hydrophilic metabolites of the central carbon and en-
ergy metabolism (CCEM).[25] We sought to predict the MoA(s) for
new anti-proliferative compounds in the cancer cell model PC-3
using a combination of machine learning and CCEM reference
profiles derived from treatments with well-known cytotoxins or
anti-cancer drugs. Two probabilistic prediction models were de-
veloped and are discussed in view of their ability to predict single
or even complex MoAs. Additionally, the analysis of metabolite

signatures enhances our comprehension of regulatory principles
in the CCEM upon drug treatment, with a focus on mitochondrial
inhibitors. To validate selected model predictions, we performed
wet lab tests and enzyme docking simulations, using pentacyclic
triterpenes as an example.

2. Results

2.1. Training of Metabolic Patterns Allows MoA Prediction

In order to establish a reference framework for metabolic re-
sponses in the central carbon and energy metabolism (CCEM),
we utilized IC50 treatments for 48 h in the PC-3 prostate cancer
cell model using 38 reference compounds with known mecha-
nisms of action (MeA) (Table S1, Supporting Information). We
selected the set of 38 compounds based on their diverse drug
targets that impede PC-3 cell growth, sufficient MeA knowledge,
and inclusion of at least two drugs for each MeA.[11–14] In order
to ensure data comparability and reproducibility, we opted to uti-
lize the individual IC50 drug concentrations predetermined for
all treatments. This approach ensures that all cell samples are
expected to be in a comparable state prior to metabolomics anal-
ysis, both in terms of growth phase and growth inhibition. In
addition, the use of IC50 concentrations was a good compromise
between lower concentrations, such as IC20, which might not suf-
ficiently capture subtle metabolic changes, and higher concen-
trations, such as IC80, which could obscure results with patterns
of apoptosis and necrosis while not providing the minimum re-
quired sample material.

A novel methodological approach to obtain the cellular
metabolome, as unbiased as possible, was to harvest the cells
by using high-field ultrasound after carefully removing the dead
cells, so that the live cells could be dispersed in situ in a cold
quenching solution instead of trypsinizing or manually scrap-
ing them off[26,27] (Figure S1A, Supporting Information). We an-
alyzed 188 hydrophilic metabolites from cell extracts, with 117
quantified reliably. These were normalized to ensure the sum
of signals was proportional to cell counts (Figure S1B, Support-
ing Information), and then we assessed the similarity across
all obtained metabolic profiles (Tables S2 and S3, Supporting
Information).[25]

For the majority of MoA training groups (95%), hierarchical
clustering of the metabolic profiles revealed co-segregation of
those training compounds addressing the same target (Figure 1).
Interestingly, the dendrogram identifies two main clusters: one
harboring compounds affecting mitochondrial electron trans-
port processes, oxidative phosphorylation, glutamate and NAD
metabolism (cluster I); the second one comprising MoA patterns
of other metabolic processes, some of them known to proceed
in the cytosol (e.g., hydroxymethylglutaryl-CoA reduction (HMG-
CoAr; EC 1.1.1.88), or fatty acid biosynthesis by fatty acid syn-
thase (FASN, EC 2.3.1.85) (cluster II).[19,28] Other inhibitors as-
signed to this cluster are known to impair microtubule forma-
tion or degradation, to inhibit topoisomerases, or to modulate
PI3K/AKT/mTOR signaling.

Only a few reference compounds in our analysis targeting
the same MeA did not co-cluster, for example, the inhibitors
of the oxidative pentose phosphate pathway (OPP), 6-AN (6-
aminonicotinamide) and G6PDi, both causing accumulation
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Figure 1. Hierarchical cluster analysis of metabolic patterns induced by 38 reference compounds inhibiting different molecular targets modulating the
metabolism of prostate cancer cells (PC-3). Aggregated leaves of hexuplicate experimental data are presented. Metabolic patterns of AKT inhibitors
were so similar that individual replicates of the inhibitors PR and OR co-clustered with each other. For this reason, we defined a mixed group “PR/OR”.
A complete cluster analysis of all individual training samples is presented in Figure S2 (Supporting Information). Compounds: BETA – betulinic acid,
MASA – maslinic acid, BOWA – boswellic acid, EMOD – emodin, 2DNP – 2,4-dinitrophenol, CCCP – carbonyl cyanide chlorophenylhydrazone, HEXA –
hexachlorophene, BITN – bithionol, CYAN – potassium cyanide, AZID – sodium azide, MALO – malonic acid, 3-NP – 3-nitropropionic acid, AMYC – an-
timycin A, ATOV – atovaquone, METF – metformin, ROTN – rotenone, GNE – GNE-617, GMX – GMX1778, FK866 – FK866, 6-AN – 6-aminonicotinamide,
WRTN – wortmannin, RAPA – rapamycin, ALPL – alpelisib, PTXL – paclitaxel, VINC – vincristin, MITO – mitoxantrone, CMPT – camptothecin, DOXO
– doxorubicin, IRIN – irinotecan, PRFN (PR) – perifosine, ORID (OR) – oridonin, ETOP – etoposid, EGCG – epigallocatechin gallate, APIG – apigenin,
GPDi – glucose-6-phosphate dehydrogenase inhibitor, LOVA – lovastatin, ATOR – atorvastatin, FLUV – fluvastatin. MoA: AKT – protein kinase B (AKT),
Antimicrotubule, CPLX I – complex I, CPLX II – complex II, CPLX III – complex III, CPLX IV – complex IV, FAB – fatty acid biosynthesis, GDH – glutamate
dehydrogenase, HMG-CoAr – HMG-CoA reductase, mTOR – PI3K/mTOR signaling, NAMPT – nicotinamide phosphoribosyltransferase, OPP – oxidative
pentose phosphate pathway, PLB – phospholipid biosynthesis, TopoI – topoisomerase I, TopoII – topoisomerase II, Uncoupler – uncoupling of oxidative
phosphorylation.

of 6-phosphogluconate, the substrate of 6-phosphogluconate
dehydrogenase (6-PGDH, EC 1.1.1.44) (Figure S3, Support-
ing Information). However, their drug-induced metabolic pat-
terns in PC-3 showed different clustering behavior. 6-AN’s pat-
tern co-segregated with nicotinamide phosphoribosyltransferase
(NAMPT, EC 2.4.2.12) inhibitors, while G6PDi’s pattern showed
higher similarity with protein kinase B (AKT, EC 2.7.11.1) and
fatty acid biosynthesis (FAB) (Figure 1). Another interesting find-
ing was that etoposide did not cluster with four other topoiso-
merase inhibitors tested, suggesting unique metabolic interac-
tions resulting in a distinct metabotype.

2.1.1. Inhibition of Mitochondrial Functions Produces Distinctive
Metabotypes

Although cancer cells mainly produce ATP by enhancing gly-
colytic flux, they still require functional mitochondria,[29–31] not
least since oxidative phosphorylation (OXPHOS) is connected
to seven ubiquinone (CoQ)-dependent mitochondrial dehydroge-
nases with essential functions in CCEM.[32] Consequently, target-
ing different stages of OXPHOS has specific effects on various
metabolic processes linked to these CoQ-dependent mitochon-
drial dehydrogenases.

Initially, we observed that OXPHOS inhibitors lead to spe-
cific patterns of metabolites that are categorized into cluster I
(Figure 1). These patterns further subdivide into distinct sub-
clusters depending on which complex (CPLX) of the respiratory
chain is inhibited. When CPLX I to IV are inhibited, a consis-
tent pattern becomes evident in certain TCA cycle metabolites.
Specifically, levels of cis-aconitate (ACT), isocitrate (ISOCIT), and
succinyl-CoA (SUC-CoA) are depleted (Figure 2). This pattern is

not observed in the case of uncouplers. Remarkably, specific to
CPLX I inhibition, neither the accumulation of succinate (SUC)
nor the strong depletions of fumarate (FUM) and malate (MAL)
that are typical of CPLX II-IV inhibition is observed (Figure 3).

In the cytosol, OXPHOS inhibitors and uncouplers gener-
ally induce the accumulation of glycerol 3-phosphate (Glc3P)
(Figure 2). However, just as observed in the TCA cycle, sugar
metabolism also displays distinct characteristics when CPLX I
inhibition is compared to CPLX II-IV inhibition. Notably, dihy-
droxyacetone phosphate (DHAP) showed an up to eight-fold de-
pletion after CPLX I inhibition but was increased after inhibi-
tion of CPLX II-IV (Figure S4, Supporting Information). Ele-
vating Glc3P synthesis could potentially rescue complex I defi-
ciency by the provision of reducing equivalents to CoQ by the
Glc3P shuttle.[33] Nevertheless, both CPLX I inhibitor treatments,
rotenone, and metformin, consistently lead to the depletion of
numerous glycolytic and pentose phosphate pathway intermedi-
ates, inferring suppressed sugar metabolism in PC-3 cells and
limited substrate availability for the Gl3P shuttle (Figure 2).

In contrast, inhibiting CPLX II-IV leads to a different gly-
colytic pattern compared to inhibiting CPLX I, with fructose
1,6-bisphosphate (FBP), DHAP, and Glc3P accumulating while
lower glycolysis metabolites are depleted (Figure 2). This sug-
gests that the glycerol phosphate shuttle responds differently to
severe energy depletion in these two cases. It is worth noting that
CPLX I contributes to 40% of ATP synthesis through the pro-
ton motive force, as reported by Wang et al.[14] Although, ATP
levels did not decrease significantly after inhibiting OXPHOS,
the depletion of energy-conserving phosphocreatine was much
more pronounced after CPLX I inhibition (up to 196-fold decline)
compared to CII-CPLX IV inhibition (five to nine-fold decline)
(Figure S3, Supporting Information).
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Figure 2. Relative abundance of selected CCEM intermediates after OXPHOS inhibition of the complexes I-IV, application of uncouplers, inhibition of
nicotinamide phosphoribosyltransferase (NAMPT), and the oxidative pentose phosphate pathway. Data depict average log2-fold changes of cell number-
normalized peak areas obtained after 48 h drug treatment (n = 6) relative to vehicle control (n = 6). Legends of MoA and compound labels are given in
Figure 1 and Tables S1 and S2 (Supporting Information).
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Figure 3. Relative abundance of selected intermediates from the pentose phosphate pathway, TCA cycle and pyrimidine biosynthesis in response to CPLX
I-IV inhibition. The heatmap displays the log2 fold changes of these metabolites compared to untreated controls across treatments with inhibitors of CPLX
I, II, III, and IV, respectively (from left to right). The mitochondrial coenzyme Q junction links pyrimidine nucleotide biosynthesis to the mitochondrial
ETC. In order to fuel ATP formation, OXPHOS generates a proton gradient across the inner mitochondrial membrane through the electron transfer chain
(ETC), which involves four protein complexes (CPLX I-CPLX IV). Both CPLX I and CPLX II transfer electrons to ubiquinone (coenzyme Q, CoQ) in the
inner mitochondrial membrane resulting in ubiquinol (UQH2) reconstitution. By contrast, CPLX III is responsible for the reoxidation of ubiquinol to
ubiquinone, which is important not only for the function of CPLX I and CPLX II. CPLX IV then transfers the electrons to molecular oxygen. Metabolite
abbreviations are given in Table S2 ((Supporting Information)). This graph was created with BioRender.com.

Moreover, pyrimidines showed reduced concentrations when
OXPHOS was inhibited at CPLX I-IV but not when inhibited
with uncouplers (Figure 2). Pyrimidine biosynthesis in mam-
mals starts with CAD, a large trifunctional enzyme (composed
of carbamoyl phosphate synthetase (CPS2), aspartate transcar-
bamoylase, and dihydroorotase). The impact of different modes
of OXPHOS inhibition on CAD-associated metabolites revealed
discernible differences between CPLX III and the other respi-
ratory complexes (Figure 3). For instance, inhibition of CPLX I
and CPLX II led to a significant decrease (by 33 to 132-fold) in
carbamoylaspartate (CA), while inhibition of CPLX III resulted
in 13–45 times higher levels than in control cells. Similarly, di-
hydroorotate (DHO), the product of the third step catalyzed by
CAD, accumulated strongly (20-36 fold) only after CPLX III in-
hibition. The following biosynthetic enzyme, dihydroorotate de-
hydrogenase (DHODH, EC 1.3.1.14), located in the mitochon-
drial membrane, oxidizes dihydroorotate to orotate (ORO) in a
CoQ-dependent manner.[31,32] Interestingly, OXPHOS inhibition
generally caused a general decrease in orotate levels despite the
contrasting CA and DHO patterns.

Moreover, in cancer cells, glutamine/glutamate catabolism is
a major source to fuel the citric acid cycle with carbon and to pro-
vide energy via OXPHOS. Glutamate dehydrogenase (GDH) is
a mitochondrial enzyme, which catalyzes the reversible conver-
sion of glutamate to the TCA cycle intermediate 2-oxoglutarate
and ammonium. Consequently, co-segregation of metabolic pat-
terns after GDH inhibition as compared with the inhibition of
other mitochondrial functions in sub-cluster IA makes sense
(Figure 1).

Metabolic patterns of treatments with pentacyclic triterpenes
likewise emerge in cluster I. Several pentacyclic triterpene
acids have been extensively studied for their anti-cancer prop-
erties, including inhibition of cell proliferation and apoptosis
induction.[34] They target various genes and pathways such as
Bcl-2, NF-kB, and PI3K/Akt/mTOR, as reviewed by Petrenko
et al.[35] Indication that such triterpenoids also affect phospho-
lipid biosynthesis (PLB) has been provided by micelle models
mimicking mitochondrial membranes, where membrane rigid-
ification and increased membrane permeabilization were in-
duced in a dose-dependent manner.[36] A recent study investi-
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gated the MeA of ursolic acid in human prostate cancer models
and found an accumulation of intermediates of PLB.[37] Never-
theless, the precise impact of pentacyclic triterpenoids on cancer
cell metabolism remains hitherto only partially understood.

To further investigate these effects at the metabolic level we
assessed the metabotypes of 11-keto-𝛽-boswellic acid (BOWA),
maslinic acid (MASA), and betulinic acid (BETA) in PC-3 cells.
Our data suggests that pentacyclic triterpenoids affect mitochon-
drial metabolism, exhibiting metabolic patterns akin to uncou-
plers and GDH inhibition (Figure 1). Despite sharing some char-
acteristics of OXPHOS inhibition in their metabolic profiles, they
differ from conventional OXPHOS inhibitors, which are further
investigated below.

2.1.2. Inhibition of NAD Salvage Leads to Severe ATP Starvation

In cancer cells, NAD is mainly synthesized from nicotinamide
via NAD salvage.[38] NAMPT is the rate-limiting enzyme in the
NAD salvage and is therefore a popular therapeutic target.[39] Ex-
pectedly, NAMPT inhibition results in a metabolic pattern, which
is characterized by strong depletion of NAD and NADP but also
of their cleavage products ADP-ribose (ADPR) and ADP-ribose
2′-phosphate (ADPPR) (Figure 2). NAD(P) depletion, however,
has several consequences leading to a specific metabolic pattern
(Figure 1, sub-cluster IB), one of them is a strong depletion
in ATP (Figure 2; Figure S3, Supporting Information). Despite
significant cell growth inhibition throughout these experiments,
we noticed consistent intracellular levels of three pivotal metabo-
lites within the CCEM. Across all investigated MoAs, except for
NAMPT inhibition affecting ATP, a balanced state is maintained
for three metabolites: ATP, acetyl-CoA (AcCoA), and citrate
(CIT) (Figure S3, Supporting Information). Intracellular ATP
homeostasis is normally maintained under moderate energy
deprivation by activation of creatine kinase (EC 2.7.3.2) and
adenylate kinase (EC 2.7.4.3). Consistently, for MoAs affecting
energy metabolism, we observed reduced levels of energy-storing
phosphocreatine (CREA-P), and changes in the levels of inosine
monophosphate (IMP) and adenylosuccinate (Adenylo-Suc),
the latter two being involved in the purine nucleotide cycle
that balances the equilibrium of adenylate kinase (Figure S3,
Supporting Information).

Limited availability of NAD also impairs the glycolytic ATP
generation in cancer cells since NAD is a required coenzyme
of the enzyme glyceraldehyde-3-phosphate dehydrogenase which
fosters the diversion of the carbon flow into upper glycoly-
sis and pentose phosphate pathway (PPP).[20,40] Accordingly,
the metabolic patterns of three NAMPT inhibitors consistently
show very strong accumulation of fructose 1,6-bisphosphate
(FBP) and triose phosphates, accompanied by a depletion of in-
termediates of the lower glycolysis such as 3-phosphoglyceric
acid (3-PGA), phosphoenolpyruvate (PEP) and pyruvate (PYR)
(Figure 2). Lack of NAD(P) also affects intermediate levels of the
non-oxidative pentose phosphate pathway, resulting in increased
levels of pentose phosphates and sedoheptulose-7-phosphate
(S7P), whereas 6-phosphogluconate (6-PG) levels of the OPP re-
main unaffected (Figure 2; Figure S3, Supporting Information).
This discriminates NAMPT inhibitors from OXPHOS inhibitors,
which do not accumulate pentose or heptulose phosphates,

and from direct OPP inhibitors, which strongly accumulate
6-PG.

However, the metabolic patterns of both OPP inhibitors tested
diverged, with only 6-AN sharing similarities with the metabolic
patterns detected after NAMPT inhibition. Notably, the second
OPP inhibitor tested, G6PDi, was previously described to inhibit
only glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49),
while 6-AN is known to inhibit also the second line of NADPH
producing enzymes in the OPP, 6-PGDH.[41,42] Until today, it has
not been described whether 6-AN acts as nicotinamide analog
in NAD salvage via NAMPT converting 6-AN to 6-amino-NAD.
However, it is known that 6-amino-NAD(P) are potent inhibitors
of metabolic processes requiring NAD(P) such as glycolysis and
OPP.[43] Therefore, strong commonalities between NAMPT in-
hibitors and 6-AN indicate that 6-amino-NAD might act as a
NAMPT inhibitor as well.

In summary, inhibitors of NAD biosynthesis and OXPHOS in-
hibitors share great similarities in their metabolic patterns. Since
both have a strong influence on cellular energy metabolism, their
patterns are also grouped together in a common cluster (cluster
I, Figure 1).

2.1.3. Metabolite Patterns Specific for Non-Mitochondrial Targets

In Figure 1, similarity cluster II comprises MoAs that are not
directly associated with mitochondrial targets such as micro-
tubules, fatty acid biosynthesis (FAB) or hydroxymethylglutaryl
CoA reductase (HMG-CoAr). Despite the absence of a direct
impact on energy metabolism, compounds in cluster II are
grouped according to their MoAs, with patterns that reflect spe-
cific influence on central carbon and energy metabolism (CCEM)
(Figure S5, Supporting Information).

Cluster analysis further unveiled two sub-clusters, IIA and
IIB. Surprisingly, the metabolic patterns of mTOR inhibitors
and AKT inhibitors, both targeting the PI3K/AKT/mTOR path-
way, did not cluster in the same sub-cluster. Even though both
AKT and mTOR inhibitors influence the same signaling path-
way, their distinct patterns led us to employ orthogonal partial
least square analysis (oPLS-DA) for differentiation. This analy-
sis effectively distinguishes mTOR inhibitors (rapamycin, wort-
mannin, alpelisib) from AKT inhibitors (oridonine, perifosine)
(Figure S6, Supporting Information). Notably, the most signif-
icant differences between these MoAs arise from lower lev-
els of 6-PG, GLc3P, and thymidylates with mTOR inhibitors
compared to AKT inhibitors. Conversely, mTOR inhibitors ex-
hibit higher levels of ATP and aspartate compared to AKT
inhibitors.

Except of etoposide (ETOP), topoisomerase I and II inhibitors
induce a specific metabotype in PC-3 cells, where several gly-
colytic intermediates (2-PGA, 3-PGA, FPB) and pentose phos-
phate pathway intermediates (6-PG, R5P, Ru5P + XU5P, and
S7P) were depleted compared to the untreated control. Although
Jaccard clustering was unable to further distinguish between the
two topoisomerase subtypes, we observed an accumulation of
several coenzyme A esters with the topoisomerase I inhibitors
camptothecin and irinotecan, which is absent when using topoi-
somerase II inhibitors mitoxantrone and doxorubicin (Figure S5,
Supporting Information, panels A–D).

Adv. Sci. 2024, 11, 2404085 2404085 (6 of 14) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Furthermore, three statins – lovastatin (LOVA), fluvastatin
(FLUV), and atorvastatin (ATOR) – produced a specific metabo-
type in PC-3 cells with HMG-CoA accumulation and reduction
of mevalonate 5-pyrophosphate, which is downstream of HMG-
CoA reductase, as expected (Figure S5, Supporting Information,
panels E–G). This pattern comprises a variety of yet unknown
metabolic consequences, primarily the inhibition of thymidylate
synthesis (lower dTMP and dTTP) accompanied by decreased lev-
els of CA, DHO, and ORO in the early pyrimidine biosynthesis.
Further investigation of this link between mevalonate pathway in-
hibition and pyrimidine biosynthesis would be crucial, not least
because the mevalonate pathway is the source of ubiquinone, an
essential molecule for pyrimidine biosynthesis, and the electron
transport chain.

In summary, in cluster I, co-segregated metabolic patterns
strongly suggest mitochondrial dysfunction, distinguishing be-
tween OXPHOS inhibition and NAD metabolism inhibition.
These differ distinctly from MoA patterns in cluster II, which aid
in identifying MoAs affecting non-mitochondrial targets or indi-
rectly influencing metabolism.

2.1.4. Evaluation of Different Machine Learning (ML) Approaches to
Predict Metabolic Patterns

We apply machine learning with the goal of predicting the MoA of
new drugs based on their normalized CCEM profile. Since train-
ing data (i.e., CCEM profiles of drugs with known MoA) are of
high quality but rather sparse (2-3 drugs per MoA), we needed to
resort to methods that can accomplish classification under these
constrains (Tables S1 and S3, Supporting Information). Specifi-
cally, we used Random Forests for classification as they provide
reliable results with sparse training data. Additionally, Lasso re-
gression was used to explain an unclassified CCEM profile based
on a limited selection of classified profiles in the training set.
Random Forests are specifically designed for classification prob-
lems and aim to avoid overfitting by repeated sampling from the
variables considered in decision trees and bootstrapping on the
training samples. The Lasso-based approach fits coefficients for
the CCEM profiles of all drugs in the training set to explain the
CCEM profile of a test drug (response variable), while regulariza-
tion yields coefficients different from zero only for those training
CCEM profiles that contribute to the fit substantially. The MoAs
of training CCEM profiles that obtain large coefficients in the fit
and, hence, contribute the most to explaining the test CCEM pro-
file are considered for predicting the MoA of the test drug. As dif-
ferent drugs of the training set may obtain coefficients different
from zero, the Lasso-based approach is expected to handle inter-
mediate/mixed MoAs more appropriately. To establish a baseline,
we also incorporated a simple k-nearest neighbor classifier based
on Euclidean distance to train CCEM profiles.

Limitations of the quantity of high-quality training data avail-
able render partitioning into dedicated training and test sets for
evaluating the alternative approaches unreasonable. To establish
a performance evaluation across all drugs and associated MoAs,
nonetheless, we follow a leave-one-out cross-validation strategy.
Here, the data are partitioned such that all replicates of one
drug (test partition) excluded from the training set, the respec-
tive method is trained on the CCEM profiles of the remaining

drugs in the training set, and the MoA of the individual repli-
cates of the left-out drug is predicted. By excluding all replicates
of the test drug from the training set, we avoid data leakage in the
same manner as for dedicated training and test sets (Tables S4
and Data S1, Supporting Information).

Initially, prediction accuracy (classification rates) was averaged
over all drugs sharing the same MoA and then across all MoAs.
We found that the baseline model (k-nearest neighbor) achieved
a mean accuracy of 0.655, while the Lasso-based approach and
the Random Forest yielded substantially improved mean accu-
racy values of 0.854 and 0.864, respectively (Figure 4A; Table S4
and Data S1, Supporting Information). Hence, we consider the
Lasso-based and the Random Forest approaches similarly suited
for predicting MoAs of novel drug candidates.

Subsequently, the predictions of both approaches were eval-
uated on the level of MoAs to achieve a more fine-grained pic-
ture of prediction performance. We found notable differences
as to the prediction accuracy of individual MoAs (Figure 4B,C).
Certain MoAs, such as CPLX I, III, and IV, GDH, HMG-CoAr,
and NAMPT, can be well predicted using either approach. Other
MoAs (OPP, TopI, TopoII, Uncoupler) show reduced prediction
performance by either approach, although to a varying degree. Fi-
nally, antimicrotubule, CPLX II, and PLB inhibitors can be classi-
fied almost perfectly by only one of the two approaches. Misclas-
sification can be considered from two perspectives. First, repli-
cate CCEM profiles of drugs from a certain MoA (e.g., TopoII)
may be classified into multiple different MoAs. Second, some
MoAs (e.g., AKT with Lasso, CPLX IV with Random Forest) co-
classify with other MoAs, which might be explained by the lack
of unique metabolic patterns that allow discrimination between
these MoAs. Finally, not all effects of a training inhibitor (“drug”)
may be known yet for the cell line used.

2.2. ML Predicts MoAs of Novel Cytotoxic Compounds with
Anti-Cancer Potential

Next, both ML approaches were applied to predict the MoAs
of 5-fluorouracil (5-FU), one semi-synthetic, and three plant-
derived drug candidates (Table S1, Supporting Information). The
novel compound AAHR, composed of triterpene asiatic acid and
rhodamine B, has demonstrated robust cytotoxicity, and the ca-
pacity to conquer drug resistance in human preclinical tumor
models.[44] In contrast to glycyrrhetinic acid (GLYA, a pure pen-
tacyclic triterpenoid acid derived from licorice roots), AAHR has
a higher toxicity toward PC-3 prostate cancer cells (Table S1, Sup-
porting Information). Breastin (BRST) is a defined cold-water
extract from leaves of Nerium oleander. Phytochemical charac-
terization revealed several monoglycosidic cardenolides as ma-
jor constituents.[45] Cucurbitacin B (QQrB) is a highly toxic
tetracyclic triterpene drug derived from Cucurbitaceae plants
(Table S1, Supporting Information).

2.2.1. The Triterpene-Rhodamine Conjugate AAHR is a Potent
OXPHOS Inhibitor

ML approaches suggest that AAHR inhibits multiple targets, of
which four out of five point to the inhibition of mitochondrial

Adv. Sci. 2024, 11, 2404085 2404085 (7 of 14) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

 21983844, 2024, 47, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/advs.202404085 by Fak-M

artin L
uther U

niversitats, W
iley O

nline L
ibrary on [24/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 4. Performance evaluation and MoA prediction by machine learning approaches. A) Mean accuracy of k-nearest neighbor classifier (kNN), Lasso-
based approach (Lasso), and Random Forest classifier (Random Forest) in leave-one-out cross-validation over the drugs in the training set. B,C) Mean
accuracy per MoA, where entries on the main diagonal correspond to correct classification and off-diagonal elements indicate alternative MoA (row),
B-Lasso, C-Random Forest. D,E) Normalized prediction scores for the MoAs of four cytotoxic compounds obtained by D-Lasso-, and E-Random Forest
classifier. An alternative visualization of the prediction results is provided in Figure S12 (Supporting Information), which shows the fraction of replicates
assigned to a specific MoA according to the largest prediction score. MoA abbreviations are listed in Figure 1, GLYA – glycyrrhetinic acid, AAHR – asiatic
acid homopiperazinyl rhodamine B conjugate, BRST – Breastin (patented Nerium oleander cold water extract), QQrB – cucurbitacin B. The R source code
to generate Figure 4A–C is provided in Data S1 (Supporting Information).

processes (Figure 4D,E; Figure S7, Supporting Information). Wet
lab studies using lipid profiling, Seahorse cell analysis, and CoQ
measurements confirmed this prediction showing that AAHR re-
sults in acylcarnitine accumulation, reduced mitochondrial res-
piration and ATP formation, and depletion of cellular CoQ lev-
els (Figures S8,S9A, and S10 and Table S5, Supporting Informa-
tion). In addition, confocal laser scanning microscopy revealed
co-localization of AAHR with the mitochondrial membrane in
PC-3 cells stained with MitoTracker Green (86% fluorescence
co-localization) (Figure S11, Supporting Information). To under-
stand precisely how AAHR inhibits mitochondrial respiration,
we modified the Seahorse assay by replacing individual OXPHOS
inhibitors with AAHR (Figure S9B, Supporting Information).
Based on the pattern of oxygen consumption rate (OCR) and ex-
tracellular acidification rate (ECAR), AAHR does not act as an
uncoupling agent or complex V inhibitor. Rather, it inhibits mi-
tochondrial respiration by targeting complex I-III and/or by an
indirect MoA affecting cell respiration.

2.2.2. Pentacyclic Triterpenes are Potential Modulators of
Phospholipid Biosynthesis (PLB)

Both ML models predicted that the MoA of GLYA involves mod-
ulation of PLB (Figure 4D,E), which is consistently identified

as the most probable MoA of GLYA across all six replicates
(Figure S12, Supporting Information). This prediction was sup-
ported by a strong accumulation of CDP-choline and phospho-
ethanolamine (PEA) with several pentacyclic triterpenes, such as
BETA (Figure S5, Supporting Information, panel H). However,
CDP-choline accumulation was not observed for all training com-
pounds and neither for GLYA treatments. Nonetheless, the pre-
diction based on the “PLB”-metabotype is characteristic.

Accumulation of CDP-choline is expected when choline phos-
photransferase (CPT1, EC 2.7.8.1) or choline/ethanolamine
phosphotransferase (CEPT1, EC 2.7.8.2) is inhibited in the
Kennedy pathway. To further investigate this issue, we performed
in silico docking of pentacyclic triterpenes and the natural sub-
strate CDP-choline on CEPT1 as well as CPT1 and found that
pentacyclic triterpenoids could indeed be strong competitive in-
hibitors of both enzymes (Figure S12 and Table S6, Supporting
Information).

Therefore, we assumed that administration of pentacyclic
triterpenoids and AAHR would reduce cellular concentrations
of intact phosphatidylcholines (PC) and investigated this by per-
forming lipidomics. Instead of a general reduction, we found in-
dividually altered PC levels, reflecting large changes in the global
membrane lipid composition after BETA and AAHR treatment
(Figure S8, Supporting Information). Among the lipid groups
showing the highest alterations were PC and PE as well as

Adv. Sci. 2024, 11, 2404085 2404085 (8 of 14) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH
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sphingomyelins (SM), which derive from PC metabolism. In-
terestingly, BETA and AAHR treatment induced the formation
of lyso-phosphatidylethanolamines (LPE) and lyso-PC (LPC), re-
spectively, indicating membrane destabilization and exposure of
apoptosis-inducing “eat-me signals”.[46]

To further corroborate that triterpenoic acids inhibit PLB at the
enzymatic step of CPT1, we labeled PC-3 cells by replacing glu-
cose in the cell culture medium with U13C-glucose and concomi-
tantly added BETA in the treatments over 48 h, whereas in con-
trols no betulinic acid was added. Fractional enrichment clearly
demonstrates that less 13C carbon is incorporated into the three
most abundant PC when BETA is present (Figure S13, Support-
ing Information).

Because mitochondrial membranes account for a high pro-
portion of all PC and PE, changes in the composition of
both lipid groups could particularly be related to mitochondrial
dysfunction.[47] Mitochondrial dysfunction is strongly supported
by the profiles of free fatty acids (FA), acylcarnitines (CAR), and
triacylglycerides (TG), all of which were found to be increased
after treatment with BETA and AAHR. These compounds are in-
volved in energy replenishment in mitochondria, and their accu-
mulation suggests impaired OXPHOS.[48] Another indication of
impaired OXPHOS is the strong decrease of CoQ in PC-3 cells
after BETA treatment (Figure S10, Supporting Information).

However, for GLYA and AAHR, both ML models predict
additional modes of action besides PLB (Figure 4D,E). For
AAHR, OXPHOS inhibition clearly predominates among ML-
based model predictions, whereas both models predict OXPHOS
inhibition as a side effect for pure pentacyclic triterpenoic acids
(Figure 4D,E).

2.2.3. Breastin Impairs Microtubule Formation

For Breastin both ML approaches agree and assign the largest
scores to the antimicrotubule MoA with further considerable
scores for CPLX IV, PLB, and TopoII in case of Lasso and
non-zero scores for multiple MoA in case of the Random For-
est (Figure 4D,E). Recently, in a comparative analysis with 153
anticancer agents with known MoA on 74 tumor cell lines
of an Oncotest panel, Rashan et al. showed frequent corre-
lations of Breastin to mitosis-inhibiting and DNA damaging
drugs.[49] Consequently, the antimicrotubular activity of Breastin
was further explored using tubulin-GFP-transfected U2OS cells.
Confocal microscopy verified that Breastin acts as a tubulin-
depolymerizing agent, displaying behavior like paclitaxel, thus
confirming the machine learning prediction made here.[49]

2.2.4. Cucurbitacin B (QQrB) Inhibits Lipogenesis

Both ML models assigned QQrB to the MoA of fatty acid biosyn-
thesis (FAB) with the highest score (Figure 4D,E), also consid-
ering predictions per replicate (Figure S12, Supporting Infor-
mation). Cancer cells have various ways of maintaining their
fatty acid levels, including increased de novo FAB.[50] ATP cit-
rate lyase (ACLY, EC 2.3.3.8), acetyl-CoA carboxylase (ACC, EC
6.4.1.2), and fatty acid synthase (FASN, EC 2.3.1.85) are the key
enzymes responsible for lipogenesis via FAB and are targeted by

anti-proliferative therapies.[51] FAB inhibitors like epigallocate-
chin gallate (EGCG) and apigenin (APIG)impede lipogenesis at
the FASN stage.[52,53] Similarly, QQrB inhibits ACLY, which pro-
duces a comparable metabolite profile to EGCG and APIG.[54]

2.2.5. The MoA of 5-Fluorouracil (5-FU) Cannot be Predicted

While 5-FU, a recognized TYMS inhibitor, displays a distinct re-
sponse pattern with depletion of thymidinylates and elevated fo-
late levels (Figure S5i, Supporting Information), this mode of ac-
tion was not included in the training process. By concept, clas-
sification approaches cannot predict classes that are not repre-
sented in the training set. The lasso-based approach is partly ca-
pable of interpolating between MoAs present in the training data,
but nonetheless cannot predict MoAs beyond the training space.
Consequently, neither Lasso nor random forest can accurately
predict the MoA of 5-FU. Both ML methods show low prediction
scores for numerous MoAs (Figure 4D,E), however, allowing us
to identify such cases based on prediction outcomes for further
extension and improvement of our methodology.

2.3. Experimental Validation and Transferability of MoA
Predictions to Other Cancer Cell Models

To assess the general applicability of the methodology also to
other cancer cells beyond the PC-3 prostate cell line, we con-
ducted similar metabotyping experiments with two additional
cell lines: MCF-7 hormone receptor-positive breast cancer cells
and MHH-ES-1 Ewing’s sarcoma cells. Specifically, we examined
the effects of four compounds: atorvastatin (ATOV) and lovastatin
(LOVA), both inhibitors of HMG-CoA reductase (HMG-CoAr),
and bithionol (BITN) and hexachlorophorane (HEXA), both in-
hibitors of glutamate dehydrogenase (GDH). Utilizing cluster
analysis and partial least squares discriminant analysis (PLS-
DA) to classify the MoAs, we observed that the metabolite pro-
files after drug treatment exhibited significant similarities across
the three cancer cell models (Figure S14A,B, Supporting Infor-
mation). Moreover, variable importance in the projection (VIP)
metabolites, contributing most strongly to the separation of both
MoAs, showed consistent regulation independent of the cancer
cell model (Figure S14C,D, Supporting Information). Finally, we
attempted to predict the MoAs GDH and HMG-CoAr in both
additional cell lines using PC-3 data as a training set by using
both ML approaches. While the predictions of the Random For-
est classifier appear to suffer from cell line-specific base profiles,
the Lasso-based approach successfully predicts the correct MoA
for three out of four drugs and yields a widely consistent predic-
tion across replicates for HEXA, ATOR, and LOVA (Figure S14E,
Supporting Information).

3. Discussion

Our results in PC-3 prostate cancer cells clearly show that the tar-
geted UPLC-MS/MS analysis of only 117 metabolites of CCEM
allows a reliable assignment of one or even several concomi-
tant MoAs through which a drug (candidate) acts on cancer
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cells, which in some cases also enables mechanistic insights.
Although the approach has a somewhat lower throughput than
solely HR-MS-based rapid screenings,[3,7,55] it avoids misclassi-
fication caused by poorly annotated and artefactual signals and
allows discrimination of important isobaric intermediates.[56]

Despite having a small training dataset, we could demon-
strate the predictability of the MoA of new drug candidates. Over-
all, the Random Forest approach resulted in more evenly dis-
tributed prediction scores across MoAs compared to the Lasso-
based approach, which usually decides on one or a few MoAs.
Because each decision tree in the Random Forest must decide
on exactly one MoA this can lead to different predictions if
the MoA of the drug does not match exactly with the training
drugs. In contrast, the Lasso regression aims to explain the ob-
served CCEM profile of the drug by a small subset of CCEM
profiles, leading to coefficients of many MoAs being pushed to-
ward zero. Thus, the Lasso-based approach can better represent
mixtures of MoAs because it considers additional MoAs as par-
tial contribution(s) (different from zero) to improve the overall
regression. In predictions across cell lines, the Lasso-based ap-
proach also shows to be robust with regard to cell line-specific
base profiles and predicts the correct MoA for three out of four
tested drugs.

When analyzing the transferability of the prediction method to
other cancer cell lines, we found characteristic metabolic patterns
associated with individual MoAs to be conserved, e.g. HMG-CoA
accumulates in all cell models after HMG-CoA reductase inhibi-
tion. Nevertheless, and not surprisingly, correct MoA prediction
based on PC-3 training data is associated with lower predictive
reliability in the two other cancer cell models investigated. Past
analyses of the metabolomes in up to 928 cancer cell lines re-
vealed significant variations in their basal metabolite profiles, pri-
marily stemming from distinct enzymatic regulations within the
CCEM. These variations are, in part, a result of epigenetic effects
or of genetic mutations specific to the respective cell lines.[55,57]

All three cancer cell models under exemplary investigation are
known to carry specific gene mutations in various oncogenes
affecting the CCEM (Figure S15, Supporting Information). The
impact of individual mutations or epigenetic alterations on drug
response in these models remains unknown. Thus, conducting
comprehensive studies with additional cancer cell models, large
drug libraries and machine learning will be crucial to under-
stand the effects of individual mutations and drug treatments on
metabolism.

The restricted predictability of TYMS inhibitor 5-FU also sug-
gests that training on a narrow selection of drugs with limited
diversity in MoAs will inevitably struggle to accurately align new
metabolic patterns unless the training data is expanded. More-
over, focusing on metabolomics analyzing only CCEM may fur-
ther restrict the method’s applicability. Nonetheless, many anti-
cancer drugs currently in use either directly target CCEM or ex-
hibit specific effects on downstream CCEM patterns, even when
they act on non-metabolic targets, as evidenced by MoAs such as
AKT or Antimicrotubule. Thus, the present study aims to show-
case the proof of concept of metabolomics and ML in preclini-
cal drug discovery, considering the aforementioned limitations.
Together, these results validate the approach, and its predictive
power will further improve as the number of compounds and es-
pecially cell types used in the training sets increases.

Beyond ML-based pattern recognition and MoA prediction,
drug-induced metabolic profiles contain important mechanistic
information that may not be uncovered to this extent using high-
throughput methods without chromatographic separation. We il-
lustrated this for different types of OXPHOS inhibition in rela-
tion to regulatory metabolic effects on cellular pyrimidine biosyn-
thesis. For example, antimycin A was recently found to stimulate
fumarate reduction by inhibiting CPLX III in 143B osteosarcoma
cells, leading to re-oxidation of ubiquinol to ubiquinone by CPLX
II and SUC accumulation.[58] In accordance with our study in PC-
3 cells, succinate (SUC) enrichment was also detected in CPLX
III or fumarase mutant cells but not after CPLX I inhibition.[59]

Stable isotope labeling of these CPLX III-compromised cells
demonstrated that pyruvate carboxylase (EC 6.4.1.1) contributes
to MAL and FUM formation, while SUC is produced from 2-OG
and from FUM, respectively, via clockwise and counterclockwise
fluxes of the TCA cycle. Thus, the different patterns observed
here for SUC, FUM, and MAL upon CPLX I compared with CPLX
III inhibition can be attributed to the fact that fumarate reduc-
tion is possible only upon inhibition of CPLX III, while at the
same time only a small fraction of FUM and MAL can be re-
plenished by the reductive pathway under conditions of energy
deficiency.[59] Inhibition of succinate dehydrogenase (SDH, EC
1.3.5.1) in CPLX II leads to depletion of FUM and MAL and ac-
cumulation of SUC, as SDH is responsible for the conversion of
succinate to fumarate. The activity of dihydroorotate dehydroge-
nase depends on the availability of CoQ as well as on its reduc-
tion state, i.e., the ratio of ubiquinone to ubiquinol (UQH2). This
ratio was assessed in isolated mitochondria of 143B osteosar-
coma cells, comparing partial SDH inhibition with pharmacolog-
ical CPLX III inhibition. Remarkably elevated UQH2/CoQ ratios
were exclusively observed with antimycin A-mediated CPLX III
inhibition but not with CPLX II inhibition alone.[58] These find-
ings align well with our observations, where CPLX III inhibition
distinctly influences CA and DHO patterns compared with up-
stream CPLX I and CII inhibitions (Figure 3).

In conclusion, our methodology allows to correlate the
metabolic impact of cytotoxic substances or even complex com-
pound mixtures with pre-defined MoAs, especially if these
directly or indirectly affect the central carbon and energy
metabolism. ML-based pattern recognition not only enables the
fine distinctiveness and prediction of MoAs, e.g. as shown by
the differentiability of individual respiratory chain complexes.
Mechanistic insights from metabolomics-based MoA studies im-
ply valuable opportunities for metabolic research, for example, to
identify drugs for the development of combination chemother-
apies. Therefore, our approach can significantly improve drug
discovery and development by directing MoA studies toward the
identification of specific molecular targets or pathways, and sub-
sequent medicinal chemistry improvements of the lead com-
pound, which is not restricted to cancer research.

4. Experimental Section
Cell Culture: Cell handling and assay techniques were described in

ref. [60]. The prostate cancer cell line PC-3 (ATCC, Manassas, VA, USA),
The estrogen receptor positivity (ER+) and HER2 negativity (HER2−)
breast cancer cell line (ATCC, Manassas, VA, USA), and the ewing’s sar-
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coma MHH-ES1 (DSMZ, Braunschweig, Germany) were maintained in
RPMI1640 basal cell culture medium supplemented with 10% FCS, 1%
L-glutamine and 1% penicillin/streptomycin. Cells were pre-cultured in T-
75 cell culture flasks in a humidified atmosphere with 5% CO2 at 37 °C.
The cells were routinely sub-cultured when reaching 85% confluency with
a maximum of six passages per batch. Adherent cells were washed with
PBS and detached by trypsin/EDTA (0.05% in PBS).

In Vitro Cell Viability Assays for IC50 Determination: Cells were seeded
in 96-well plates with a density of 6000 cells/100 μL medium per well and
were left to attach overnight. Cells were then exposed to compounds of
interest in a cell culture medium containing 0.5% DMSO using eight dif-
ferent concentration levels. These levels were compound-specific and nar-
rowed down to the range around IC50 specifically determined for each
compound in preliminary cell viability assays. In parallel, cells were treated
with 0.5% DMSO (negative control) and 100 μm digitonin (positive con-
trol, for data normalization, set equal to 0% cell viability). Each cell via-
bility assay was performed with two biological replicates each with techni-
cal quadruplicates. After 48 h incubation time, cells were washed once
with PBS before incubating with MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) solution (0.5 mg mL−1) for 1 h at 37 °C
and 5% CO2. Afterward, the MTT solution was discarded and DMSO was
added to dissolve the formed formazan whose absorbance was measured
at 570 nm in addition to a reference/background signal at 670 nm (Spec-
traMax M5, Molecular Devices, San Jose, CA, USA). For the crystal violet-
based cell viability assay (CV), the cells were fixed with 4% paraformalde-
hyde (PFA) for 20 min at RT after a single PBS wash. Then, they were dried
for 10 min and stained with 10% crystal violet for another 20 min. The ex-
cess stain was removed by water wash and the cells were dried overnight
at RT. The next day, acetic acid (33% v/v in aqua bidest.) was added to
dissolve the stain, and the absorbance was measured at 570 and 670 nm
as described before. The cell viability was calculated as a percentage in re-
lation to untreated control cells. For data analyses and IC50 calculations,
SigmaPlot 14.0 and Microsoft Excel 2013 were used. Mean values were
calculated by using the four-parametric logistic function.

Cell Treatment for Metabolomics Experiment: Cells were seeded as hex-
uplicates in T-25 cell culture flasks with a density of 0.5 million cells/5 mL.
After cell attachment overnight, cells were treated with the compound of
interest by applying it at IC50 final concentrations as obtained from ear-
lier viability assays. Treatments and vehicle controls had the same final
DMSO concentration (0.5%). After 48 h at 37 °C under 5% CO2, control
flasks without test compound reached 85% confluence. Then the cell cul-
ture medium of the T-25 flask was discarded and replaced by pre-warmed
PBS (37 °C) for a washing step that removed detached cells. Within a few
seconds, the washing solution was discarded and the remaining cells were
quenched with 1.5 ml cold acidic ethanolic solution (10% HCl of pH 1.4 in
ethanol, −80 °C). The T-25 flasks were sealed with watertight lids and then
immersed in an ultrasonic water bath, with the flasks weighted with lead
weights and centered in the ultrasonic field. Cells were quantitatively de-
tached by 5 min ultra-sonication (Bandelin Sonorex RK 106, 480 W, Berlin,
Germany). Additionally, packed dry ice was placed in the water bath to
maintain a low temperature close to 4 °C. Afterward, the suspension was
transferred from each T-25 flask into pre-chilled 2 mL Eppendorf tubes
kept on dry ice. These were subsequently placed in a sample concentrator
at 4 °C (TurboVap LV, Biotage, Uppsala, Sweden), where the volume was
reduced to 50 μL in an N2 stream. After volume reduction, two consecu-
tive centrifugation steps were performed at 10600 rcf for 5 min at 1 °C,
with another transfer of the supernatant to a fresh Eppendorf tube after
the first centrifugation. Finally, the supernatant after the second centrifu-
gation was transferred to an LC-MS vial with inserts, and samples were
frozen and stored at −80 °C until LC-MS measurement.

Metabolomics Assay: Separation of hydrophilic metabolites was per-
formed by ion-pairing chromatography on a Nucleoshell RP18 column
(2.1 × 150 mm, particle size 2.1 μm, Macherey & Nagel, GmbH, Düren,
Germany) using a Waters ACQUITY UPLC System, equipped with an AC-
QUITY Binary Solvent Manager and ACQUITY Sample Manager (5 μL in-
jection volume; Waters GmbH, Eschborn, Germany). Eluents A and B were
aqueous 10 mmol L−1 tributyl amine (adjusted to pH 6.2 with glacial acetic
acid) and acetonitrile, respectively. Elution was performed isocratically for

2 min with 2% eluent B, from 2 to 18 min with a linear gradient up to 36%
B, and from 18 to 21 min up to 95% B, and isocratically from 21 min to
22.5 min with 95% B, from 22.51 to 26 min again down to 2% B. The flow
rate was set to 400 μL min−1, and the column temperature was maintained
at 40 °C.

Mass spectrometric analyses of small molecules were performed by tar-
geted MS/MS via multiple reaction monitoring (MRM) by using a QTRAP
6500 (AB Sciex GmbH, Darmstadt, Germany) operating in negative ion-
ization mode and controlled by Analyst 1.7.1 (AB Sciex GmbH, Darmstadt,
Germany) (Table S2, Supporting Information). The source operation pa-
rameters were the following: ion spray voltage, −4500 V; nebulizing gas,
60 psi; source temperature, 450 °C; drying gas, 70 psi; curtain gas, 35 psi.

Peak integration was performed using the MultiQuant software version
3.0.3 (Sciex, Toronto, CA). To account for different cell numbers in treat-
ments and vehicle controls, individual CCEM peak areas were normalized
to the total peak area for each sample. Finally, each normalized metabo-
lite area in an individual sample was divided by the mean of the likewise
normalized signal area of all vehicle control samples of the respective ex-
perimental set. All area ratio data were logarithmized to the basis of 2. The
statistical analysis and graphical presentation were performed by Metabo-
Analyst 5.0 using the log2-normalized data and Range Scaling.[61]

Lipidomics Assay: PC-3 cells were quenched with 1.5 mL cold MeOH
(−80 °C) and dispersed by ultrasonication as described above. Cell debris
and solution were then transferred together into a new tube and were dried
in a nitrogen stream. After the addition of one steel bead (3 mm), three
steel beads (1 mm), and 200 mg of glass beads (0.75–1 mm), 700 μL MTBE
and 200 uL of water were added, and cryo bead milling for 3 × 20 s was
performed (MP24, Biomedicals Inc., 4.0 m s−1). Following phase separa-
tion by centrifugation (2 min, 10000 x g) the upper phase was collected and
stored on ice. The lower phase was re-extracted with another 700 μL MTBE
and, after centrifugation, the organic layers were combined and dried in
a nitrogen stream. For analysis, the dry residue was dissolved in 500 μL
MeCN/2-propanol/water (60/35/5).

Lipid separation on UPLC was performed according to ref. [62] with
the following modifications. Eluent A consisted of 60% MeCN and 40%
water, and eluent B consisted of 90% 2-propanol and 10% MeCN, both
with 10 mm ammonium formate and 0.1% formic acid. Separation was
carried out on a Nucleoshell RP18 (Macherey & Nagel, Dueren, Germany)
with the dimensions 2 mm × 150 mm × 2.7 μm. The gradient on a Waters
Acquity was: 0–1.5 min 32% B, 1.5–18 min linear gradient to 98% B, 18–
20 min 98% B, 20–24 min 32% B with 10 μL injection volume and 40 °C
oven temperature.

Separated lipids were ionized by electrospray ionization and analyzed in
positive ionization mode by HR QToF-MS/MS (Zeno7600, Sciex, Toronto)
using these source parameters: ion source gas 1, 60 psi; ion source gas
2, 70 psi; curtain gas, 35 units; CAD gas, 7 units; temperature 450 °C,
ion spray voltage floating, −5500 V. MS1 and CID-MS/MS spectra were
scanned from 65–1500 Da using 100 ms accumulation time for MS1 and
20 ms each for a maximum of 40 data-dependent MS/MS experiments.
For MS1 survey scans and MS/MS the declustering potential (DP) was
80 V with a spread of 50 V, whereas in MS1 the collision energy was fixed
to 10 V. MS/MS scans were acquired with a collision energy of 35 V, and a
spread of 25 V. Mass accuracy was recalibrated after every five samples us-
ing internal standards provided for ESI by Sciex. For lipidomics data anal-
ysis, raw data were processed by MS-Dial version 4.9 using the lipidomics
standard library embedded in the program.[63] Peak height tables with clas-
sified lipids were exported from MS-Dial, normalized to cell number, and
processed in GraphPad Prism 9.1.5.

13C Labeling: PC-3 cells were seeded in T-25 cell culture flasks as
described above. After 24 h of incubation, cell culture medium was ex-
changed against RPMI 1640 medium without glucose (Gibco, Darmstadt,
Germany), supplemented with 10% heat-inactivated dialyzed FBS (Gibco,
Darmstadt, Germany) and uniformly labeled D-glucose (U-13C6, 99%)
(Cambridge Isotope Laboratories, Inc., Massachusetts, USA) at a final
concentration of 2 g L−1. Simultaneously, samples were treated with BETA
at the IC50 concentration (Table S1, Supporting Information), whereas in
the control flasks no BETA was added. Isotopolog analysis was performed
using Lipidomics extraction 48 h post-treatment, following the protocol
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described above. The samples were analyzed using UPLC-ToF in positive
mode ESI with the chromatographic gradient as described. Isotopologs
of the three most abundant PC (m/z;r.t.: 760.5836; 12.65 min, m/z;r.t.:
788.6158; 13.59 min, and m/z;r.t.: 732.5521; 11.78 min) were area inte-
grated based on their theoretically expected [M+H] ions within a mass
tolerance of 10 ppm. The data analysis was done using Sciex OS. The per-
centual 13C incorporation was calculated as described in[64] and visualized
by GraphPad Prism 10.

CoQ Assay: Coenzyme Q10 was analyzed by UPLC-QToF with positive
mode ESI. The gradient was the same as described in the lipidomics sec-
tion. CoQ was determined by [M+H] of 863.692 with a mass tolerance of
2 ppm. The retention time and the MS/MS spectrum were compared to an
authentic standard (Merck). Peak area values of pentuplicate treatments
were normalized to the cell number.

Cell Counts: PC-3 cells of three parallel samples in each con-
trol/treatment group were detached by trypsination for 3 min in 0.05%
trypsin/EDTA and 37 °C. After trypsination stop with FCS-containing cul-
ture medium, the resuspended cells were stained with Trypan blue, and cell
counting was performed using a Neubauer counting chamber (Marien-
feld, Lauda-Königshofen, Germany).

Localization of AAHR in PC-3 Cells: PC-3 cells were seeded in a 10-well
chamber slide with 1000 cells per well and allowed to grow at 37 °C and 5%
CO2 for 24 h. Cells were treated with 0.1 μm AAHR for 4 h followed by wash-
ing twice with PBS. Staining with 0.1 μm MitoTracker Green FM was done
for 15 min. After washing with PBS twice, fresh medium was added. Fluo-
rescence was recorded using an LSM900 (Carl Zeiss, Jena, Germany) with
ex/em 561 nm/576–700 nm for AAHR and ex/em 488 nm/490–540 nm for
MitoTracker Green. Co-localization of AAHR and MitoTracker Green was
analyzed using Zen Blue image analysis software (Zeiss).

Seahorse Analysis: To investigate the compound-induced alterations
in cellular energy metabolism, the Seahorse cell analysis technology plat-
form from Agilent was utilized, applying the Seahorse XF Cell Mito Stress
Test Kit (Agilent Technologies, Santa Clara, CA, USA). The analyses were
performed on a Seahorse XF 96 – Extracellular Flux Analyzer according to
instructions of the manufacturer. PC-3 cells were seeded in specific 96-well
plates at day 0 using a density of 12000 cells per well. Subsequently, start-
ing at day 1, the cells were treated with 20 nm and 100 nm of AAHR for 24 h
(a duration not yet causing apparent signs of cytotoxicity), or were left un-
treated, and finally were measured at day 2. Another sample of untreated
cells was used to assess mitochondrial function after acute compound
treatment. For this purpose, one of the standard chemicals was replaced
by AAHR, respectively.

The Seahorse XF Cell Mito Stress Test was performed, which was based
on the measurement of oxygen consumption rate (OCR) and extracellu-
lar acidification rate (ECAR) of viable cells during sequential manipulation
with specific chemicals to obtain information about mitochondrial func-
tion and to quantify cellular bioenergy levels (ATP).

To further explore the precise mechanism of inhibition of mitochondrial
respiration, the Mito Stress Test was modified to analyze the impact of
acute AAHR treatment on OCR and ECAR. The standard assay comprises
a consecutive treatment with oligomycin (complex V / ATP synthase in-
hibitor), FCCP (uncoupling agent), and rotenone/antimycin A (complex I
/ III inhibitors) leading to a reduction of OCR (increase of ECAR), strong
increase of OCR to a maximum, and complete decrease of OCR to a min-
imum, respectively.

Docking Studies: Molecular docking was performed in YASARA
software[65] version 20.12.24 by using the AutoDockLGA algorithm,[66]

and AMBER14 force field.[67] The cryo-EM structure of human CEPT1 com-
plexed with CDP-choline (PDB ID: 8GYW),[68] and the AlphaFold[69] model
for CPT1 which was obtained from UniProt (accession number Q8WUD6)
were utilized for molecular docking studies. The AlphaFill[70] server was
used to assign the Mg2+ ion in CPT1, while it (Mg2+) exists in the CEPT1
cryo-EM structure. The binding site was defined according to the loca-
tion of the ligand (CDP-choline) in the cryo-EM structure of CEPT1. Lig-
ands and protein structures were energy-minimized, and a simulation box
(10 Å) was defined around the Mg2+ ion. The validation of the docking pro-
tocol was performed by re-docking the ligand in the cryo-EM (CDP-choline)
of CEPT1 (Figure S16, Supporting Information), using the same parame-

ters. The results from 100 runs were clustered using an RMSD (Root Mean
Square Deviation) of 2.5 Å, and MOE (Molecular Operating Environment)
2020 software[71] was employed to investigate the interaction between the
ligands and the proteins.

Classification Methods and Prediction Analysis—Normalization of CCEM
Profiles: CCEM profiles were normalized per metabolite by subtracting
the mean across all drugs/replicates and dividing the result by the range
between the maximum and minimum values across all replicates, i.e.,

nm,r =
xm,r − x̄m

max
s

xm,s − min
s

xm,s
(1)

where xm,r denotes the input value for metabolite m in experiment r and

x̄m = 1
R

∑R
r = 1 xm,r

The same coefficients were also used for normalizing the data in the
prediction set to avoid re-scaling and subsequent re-training of models
when processing prediction sets. For predictions in other cell models, a
cell line-specific mean value was determined to account for different base
profiles.

Classification Methods and Prediction Analysis—Correlation Analysis of
Metabolites: For all pairs of metabolites, Pearson correlation was com-
puted between their profiles across all drugs/replicates. Visualization as a
heatmap and corresponding clustering of rows/columns was performed
using the pheatmap R package (v. 1.0.12).[72]

Classification Methods and Prediction Analysis—Hierarchical Clustering of
CCEM Profiles: Normalized CCEM profiles of all drugs/replicates were
clustered using Euclidean distance and the hclust R function with method
“ward.D”. The resulting cluster trees were visualized as dendrograms.
Here, leaves are annotated with the MoA of the corresponding drug. Inner
nodes of the cluster tree, under which all leaves belong to the same MoA
are annotated accordingly. To generate a more condensed view on the clus-
tering result, each sub-tree in which all leaves belong to the same drug was
aggregated into a single leaf. For all drugs, this results in a single leaf rep-
resenting all replicates of that drug, except for PRFN/ORID. The latter has
CCEM profiles so similar that replicates of both drugs appear intermixed.
Heatmaps of selected profiles were generated using MetaboAnalyst 5.0.
Peak integrated raw data were normalized to the sum of all signals as to
compensate for the different cell numbers. Log2-fold changes between six
replicate treatments per drug and six controls, both sampled after 48 h,
were rank-scaled (Table S3, Supporting Information).

Random Forest – Training: Random Forests were trained using the ran-
domForest function of the corresponding R package (v. 4.7–1.1)[73] using
1000 trees balancing between runtime and stability. Input data of the Ran-
dom Forest method were the CCEM profiles of all replicates of all drugs in
the training set. True class labels during training were the corresponding
drugs, i.e., the Random Forest was trained to distinguish individual drugs,
which in turn had been assigned to a specific MoA.

Random Forest – Prediction: Each normalized CCEM profile of each
replicate for each drug in the prediction set was considered independently,
and probabilities for individual drugs were predicted using the trained
Random Forest model using the predict method with parameter “type =
’prob’”. Returned probabilities were averaged across all replicate CCEM
profiles of each drug, and then averaged across all drugs with a common
MoA in the training set to yield the probability of a specific MoA (Table S3,
Supporting Information). The two-level averaging ensures that all drugs
have the same influence on the prediction result, irrespective of the num-
ber of replicate measurements.

Lasso-Based Approach – Training & Prediction: For the Lasso-based ap-
proach, the regression coefficients themselves were used to predict the
MoA of a new drug. Here, the CCEM profile of an individual replicate of
the drug in the prediction set was considered as the response variable,
and the CCEM profiles of all replicates of all drugs in the training set were
considered as the input matrix of a Lasso regression using the glmnet
function from the corresponding R package (v. 4.1–4).[74] Regression co-
efficients were limited to non-negative values by setting the parameter for
the lower boundary of regression coefficients to zero. The regularization
parameter was set to a fixed value within the range of auto-computed val-
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ues (𝜆= 0.025) and no intercept value was considered by setting “intercept
= FALSE”. Regression coefficients were obtained using the coef method.
Returned coefficients were averaged across all replicate CCEM profiles of
each drug, and then averaged across all drugs with a common MoA to
yield the prediction score of a specific MoA. For visualization purposes,
prediction scores were normalized to a sum of one across all MoAs since
each drug is represented by 5–6 replicates in the training set.

k-Nearest Neighbor – Training & Prediction: Predictions of the k-nearest
neighbor classifier were obtained from the function knn of the class R
package[75] using the CCEM profiles of each replicate of each drug in the
training set and corresponding MoA as reference. The number of nearest
neighbors was set to “k = 5” to account for the number of replicates per
drug.[74]

Leave-One-Out Cross Validation: For evaluating the prediction per-
formance of each approach on the training set, a leave-one-out cross-
validation over the drugs in the training set was performed. To avoid data
leakage from the training partition to the test partition within individual
iterations of the cross-validation, all replicates of a drug were excluded
from the training partition and used as the test partition in a leave-one-
out cross-validation. Specifically, all replicate CCEM profiles of one drug
with known MoA were considered as prediction partitions, and the repli-
cate CCEM profiles of all remaining drugs were used as the corresponding
training partition. For each replicate of the drug in the prediction partition,
predictions were obtained from the three alternative methods and those
were compared against its true MoA. R source code of the evaluation pro-
cedure is provided as Data S1 (Supporting Information).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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