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Abstract

Magnetic resonance imaging (MRI) is a widely used diagnostic tool in medicine, which allows
for the acquisition of cross-sectional images with a wide range of contrasts. However, because
MRI emerges as a line scanning method in Fourier space, the data acquisition is relatively slow.
Over the past decades faster acquisition techniques and image reconstruction methods have been
proposed which mostly exploit undersampled datasets for accelerated imaging.

In this thesis, multiple gradient-echo MRI techniques have been translated from conventional
settings to the conditions encountered for highly accelerated real-time MRI. The underlying data
acquisition scheme is based on radial FLASH sequences, while corresponding iterative image
reconstructions are accomplished with the use of a regularized nonlinear inversion (NLINV) as
recently developed for real-time MRI using single gradient echoes. Here, both the - for radial
MRI rather critical - gradient delay correction and various aspects of the image reconstruction
method were extended to multi-echo radial data.

A �rst multi-echo radial FLASH application addressed here refers to T ∗2 mapping, where the
in�uence of motion on single-echo and multi-echo real-time acquisitions was investigated with
the use of a motion phantom. Since the MRI physics of moving spins are well understood,
the experimental �ndings could accurately be explained. As a possible medical application
preliminary estimates of cardiac T ∗2 in real-time reveal a T ∗2 variation during the cardiac cycle,
which may be attributed to di�erences in cardiac perfusion, tissue oxygenation and myocardial
motion.

A second multi-echo radial FLASH technique which could be modi�ed for real-time MRI is
water-fat separation. A variety of water-fat separation methods were successfully implemented
and experimentally tested, including saturation methods, Dixon methods and advanced echo-
time independent methods. Water or fat saturation in real-time is accomplished by saturation
pulses not before each measured k-space line, but between each frame. Due to the longer T1 of
water protons, the saturation approach favours water saturation, although fat saturation is also
possible. The dependence of T1 on magnetic �eld strength allows for an improved saturation at
a �eld strength of 7T.

Most of the implemented multi-echo water-fat separation methods were capable of generat-
ing correctly separated water and fat maps. However, for moving objects a reliable water-fat
separation in real-time required the incorporation of prior knowledge. In this thesis, the use of
temporal continuity was found to be very e�ective, leading to temporal phase unwrapping for
the Dixon methods. In the two most promising water-fat separation methods, i.e. 'Analytical
water/fat separation with a safest-�rst region-growing scheme' (ASR) and 'Iterative Decompo-
sition of water and fat with Echo Asymmetry and Least-squares' (IDEAL), temporal continuity
was successfully implemented using a coherent region growing with consideration of the previous
frame in case of ASR. For IDEAL the �eld inhomogeneity map from the previous frame was
exploited as initial guess. These methods in conjunction with NLINV reconstruction could be
optimized for a qualitative water-fat separation in real-time. With respect to fat quanti�cation
a further method based on the optimized real-time IDEAL is proposed, which takes into account
several confounding factors for fat quanti�cation.

Phase unwrapping of in vivo images is a complex task, but was required for water-fat sepa-
ration methods when moving to real-time MRI. As another clinically relevant application, spa-
tiotemporal phase unwrapping was developed for velocity-encoded phase-contrast data. This
allows for real-time �ow MRI and was complemented by an automatized segmentation and anal-
ysis software. This strategy o�ered the possibility to reduce the velocity encoding gradient and
achieve a corresponding increase in velocity-to-noise ratio.
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In summary, in the �rst part of this thesis a robust physical gradient delay correction was de-
veloped for multi-echo radial real-time MRI sequences. As a technical prerequisite, this achieve-
ment then allowed for the successful adaptation of advanced techniques such as T ∗2 mapping,
water-fat separation and �ow quanti�cation to the growing real-time MRI regime.
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Zusammenfassung

Die Magnetresonanz-Tomographie (MRT) ist ein weit verbreitetes Verfahren der diagnostischen
Bildgebung in der Medizin, mit dem Querschnitte des menschlichen K�orpers in vielen unter-
schiedlichen Kontrasten aufgenommen werden k�onnen. Durch die zeilenweise Datenaufnahme im
Fourierraum ist die MRT jedoch im Prinzip eine relativ langsame Messtechnik, welche durch
die Entwicklung von schnellen Messsequenzen und Rekonstruktionsalgorithmen, die erfolgreich
auf stark unterabgetasteten Daten angewendet werden k�onnen, mittlerweile stark beschleunigt
wurde.

In dieser Doktorarbeit werden konventionelle Multi-Echo Methoden auf Verfahren der Echt-
zeit-MRT �ubertragen. Die Messdaten werden mit einer auf die Bedingungen der Echzeit-MRT
zugeschnittenen radialen FLASH Sequenz aufgenommen und mit einer zeitlich regularisierten,
nicht-linearen Inversion (NLINV) rekonstruiert. Die Bildrekonstruktion und die f�ur radial orts-
kodierte Messungen unverzichtbare Korrektur der physikalischen Gradientenverz�ogerung wurden
auf die Multi-Echo Messdaten angepasst bzw. weiterentwickelt.

Eine erste Anwendung der radialen Multi-Echo FLASH-Technik ist die T ∗2 Kartierung. Dazu
wurde systematisch der Ein�uss von Bewegung auf Einzel- und Multi-Echo Messungen an einem
Bewegungsphantom untersucht. Da die zugrundeliegende Physik der MRT auch in Gegenwart
von Bewegungen vollst�andig verstanden ist, kann die beobachtete T ∗2 Verk�urzung bei Bewegung
exakt erkl�art werden. Eine m�ogliche Anwendung ist die T ∗2 Kartierung am Herzen und die damit
verbundene Messung der Durchblutung des Herzmuskels in Echtzeit. Die vorl�au�gen Ergebnis-
se zeigen eine periodische Ver�anderung der T ∗2 Werte w�ahrend des Herzschlages, die auf eine
Variation der Durchblutung, der Sauersto�s�attigung und der Bewegung des Herzens deutet.

Eine zweite Anwendung der radialen Multi-Echo FLASH-Technik ist die Wasser-Fetttrennung.
Von den beschriebenen Verfahren wurden unter anderem die S�attigungsmethoden, die Dixon
Methoden und fortgeschrittene Methoden umgesetzt, die von der Wahl bestimmter Echozeiten
unabh�angig sind. Die klassische S�attigungsmethode s�attigt entweder Wasser oder Fett vor der
Aufnahme jeder Linie aus dem Fourierraum. Durch die kurze Aufnahmedauer der Echtzeit-MRT
gen�ugt es, vor jedem Bild die Wasser- oder Fettprotonen zu s�attigen, wobei die lange T1 Rela-
xationszeit von Wasser die Wassers�attigung beg�unstigt. Die l�angeren T1 Relaxationszeiten bei
einer Feldst�arke von 7T verbessern dabei die Qualit�at der Wasser- und Fettges�attigten Bilder.

Die implementierten Wasser-Fetttrennungsalgorithmen liefern gute Wasser- und Fett-Bilder,
jedoch muss bei Echtzeit-Anwendungen der zeitliche Zusammenhang zwischen den Daten genutzt
werden, um auch bei Bewegung korrekte Trennungen zu erhalten. Bei den Dixon-Methoden wurde
daher ein zeitliches Phase Unwrapping entwickelt. Bei den zwei vielversprechendsten Algorithmen
'Analytical water/fat separation with a safest-�rst region-growing scheme' (ASR) und 'Iterati-
ve Decomposition of water and fat with Echo Asymmetry and Least-squares' (IDEAL) wurde
der zeitliche Zusammenhang einerseits �uber das Region Growing unter Ber�ucksichtigung des
vorherigen Bildes (ASR) und andererseits durch die Verwendung der vorherigen Feldinhomoge-
nit�atskarte als Anfangswert (IDEAL) ber�ucksichtigt. Diese beiden Methoden wurden zusammen
mit der NLINV Bildrekonstruktion optimiert. In dem IDEAL Algorithmus f�ur die Echtzeit-MRT
wurden zus�atzliche Korrekturen implementiert, die eine Quanti�zierung des Fettanteils erlauben.
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Schliesslich wurde f�ur geschwindigkeitskodierte Phasenkontrast-Messungen in Kombination
mit einer automtischen Gef�aßsegmentierung ein r�aumlich-zeitlicher Phase Unwrapping Algo-
rithmus entwickelt. Mit dieser Technik kann die Geschwindigkeitskodierung reduziert werden,
was f�ur quantitative Flussmessungen in Echtzeit zu einem erh�ohten Geschwindigkeits-zu-Rausch
Verh�altnis f�uhrt.

Zusammenfassend wurde in der vorliegenden Arbeit eine robuste Methode f�ur die physikali-
sche Gradientenver�ogerungskorrektur entwickelt, die f�ur die radiale Multi-Echo FLASH MRT in
Echtzeit unverzichtbar und eine wesentliche technische Voraussetzung ist. Auf dieser Grundlage
konnten mehrere spezi�sche MRT-Verfahren wie die T ∗2 Kartierung, die Wasser- und Fetttren-
nung und die quantitative Flussmessung erfolgreich auf die exprimentellen Bedingungen der
Echtzeit-MRT umgesetzt werden.
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Chapter 1

Introduction

The development of nuclear magnetic resonance (NMR) traces back to the early 20th century
when Sir Joseph Larmor found the Larmor equation. Later, in 1946, Edward Purcell and Felix
Bloch discovered that certain nuclei are able to absorb electromagnetic energy when placed into a
magnetic �eld and jointly received the Nobel Prize in Physics for the measurement of precessional
signals of spins in water and para�n samples. Felix Bloch also developed a phenomenological
equation of motion for a classical magnetic moment in a magnetic �eld.

In 1974 Paul C. Lauterbur and Sir Peter Mans�eld developed the spatial localization of the
NMR signal by the use of magnetic �eld gradients. Their discoveries laid the foundation for
magnetic resonance imaging (MRI) which was awarded with the Nobel Prize in Medicine in
2003. Another important step was made by Richard Ernst, who realized that Lauterbur's back-
projection image reconstruction can be replaced by the Fourier transform if switched gradient
�elds are used.

Today MRI is widely used in medicine as a noninvasive tool for diagnostic imaging. It allows
for the acquisition of cross-sectional and even three-dimensional images of humans and animals
with a wide range of di�erent contrasts. However, since MRI is a line scanning method in
Fourier space, data acquisition is relatively slow. First major speed-ups were achieved with the
invention of echo-planar imaging (EPI, [1]) and later by the fast-low angle shot sequence (FLASH,
[2]). A second more recent speed-up came with the advent of parallel imaging, extreme data
undersampling, and the development of corresponding iterative image reconstruction algorithms
[3�7].

With these fast data acquisitions and advanced image reconstructions methods, both data
acquisition and image reconstruction may be performed within a few tens of milliseconds [8,
9]. However, many of the so far developed real-time techniques are limited to single-echo data
acquisitions [8]. Multi-echo acquisitions o�er access to more contrasts, quantitative parameters
like T2 or T ∗2 and image-based water-fat separation, all of which are active research areas in the
MRI community, even without the challenges emerging from real-time MRI.

The focus of this thesis is to provide multi-echo methods for real-time MRI, thereby o�ering
less patient restrictions, faster examination times and possibly dynamic diagnostics. The chosen
real-time MRI technique relies on a radial FLASH sequences and serial image reconstruction by
regularized nonlinear inversion (NLINV) [6, 8, 10].

The NLINV algorithm and a previous in-plane gradient delay correction for radial MRI [11]
are extended to deal with multi-echo data. Additionally, the gradient delay is further developed
to cope with asymmetric gradient echoes [12] as well as to estimate the physical gradient delays
using the slice orientation, thereby improving the gradient delay correction.

Similar to T2, T
∗
2 may serve as a biomarker representing normal or abnormal microstrucures

[13�15], or even provide access to tissue perfusion via the oxygenation of blood [16�18]. Besides
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that, T ∗2 is already widely used as a marker for liver iron concentration to guide chelation therapy
in transfusion dependent patients [19, 20]. The developement of T ∗2 mapping in real-time in this
thesis starts with the evaluation of di�erent T ∗2 �tting models, in particular with regard to the
large amount of acquired data. Furthermore, simulations are performed to evaluate the precision
and accuracy of the di�erent possible T ∗2 �tting algorithms. The in�uence of motion on single-
and multi-echo real-time acquisitions is investigated with the use of a motion phantom. Since the
physics of MRI are well understood in the presence of motion, the observed e�ects are explained
in detail. As a possible clinical tool cardiac T ∗2 mapping in real-time and its potential relation
to cardiac perfusion are investigated in preclinical applications.

Water-fat separation MRI allows to measure qualitatively and quantitatively the fat deposi-
tion in organs like liver, heart and muscles [21�23], where it must be considered for non-alcoholic
fatty liver disease or diabetes. Furthermore, the current standards for fat quanti�cation are
magnetic resonance spectroscopy and biopsy, both are only local measurements neglecting a
non-uniform fat distribution [22�24]. With MRI, water and fat images of the whole organ may
be obtained and analysed, eliminating �aws from non-uniformity. The major challenge for water-
fat separation is either the homogeneous suppression of water/fat [25] or the accurate estimation
of the �eld inhomogeneity map for multi-echo separation methods [26, 27]. Additional challenges
like motion and the processing of large amounts of data arise for water-fat separation in real-
time. This thesis investigates many methods, including saturation methods, the Dixon methods
[28�31] and advanced echo-time independent methods [32�34] for their suitability for water-fat
separation in real-time. The limitations of the most promising water-fat separation method for
real-time MRI are investigated with the parameter space of the NLINV image reconstruction.
Knowledge of the confounding factors of fat quanti�cation [22] allows their consideration and - if
possible - implementation into the real-time water-fat separation methods. The saturation and
echo-time independent water-fat separation methods are also investigated at a �eld strength of
7T, facing much stronger �eld inhomogeneities, even larger data sets and prolonged T1 values
compared to a �eld strength of 3T.

As a third method phase unwrapping is investigated, which is necessary for most applications
deriving parameters from the phase of the complex images, e.g. phase-contrast �ow MRI or
�eld inhomogeneity mapping. Due to the periodicity of the complex exponential function, the
phase values can only be determined within the range of −π and π, which gives rise to phase
wrapping. In general, phase unwrapping is a complicated task due to the presence of noise and
fundamentally unwrappable phase poles [35]. Therefore, many phase unwrapping algorithms
have been proposed, the most common classes are minimum norm and path integration methods
[35]. Phase unwrapping in real-time faces the challenges of increased noise, the fundamental
phase poles and the amount of data. These challenges are tackled with the use of a simple and
fast path integration method [36] and the incorporation of prior knowledge arising from real-time
water-fat separation and real-time phase-contrast �ow MRI.

In summary, this thesis addresses the feasibility of a variety of conventional MRI techniques
like T ∗2 mapping, water-fat separation and phase-unwrapping in real-time MRI.
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Chapter 2

Theory

The chapter develops the basic theory of magnetic resonance imaging, including the physics of
signal generation and decay, spatial encoding and the di�erence between water and fat which can
be used for separating both. Furthermore, sampling schemes and standard image reconstructions
are presented. For more comprehensive information the reader is referred to the textbooks from
Haacke [37], Slichter [38], Abragam [39], Lauterbur [40] and Bernstein [41].

2.1 Physics of Nuclear Magnetic Resonance

2.1.1 Single Spins in a Constant Magnetic Field

Consider a spin ~s in a constant magnetic �eld ~B. According to quantum physics, the magnetic
�eld splits the degenerated angular momentum quantum states into the allowed spin states, which
is the Zeeman e�ect. Examples of elements usable for nuclear magnetic resonance (NMR) are
given in table 2.1.

Nucleus Spin Magnetic Moment Gyromagnetic Ratio Abundance in
in MHz/T human body

Hydrogen 1H 1/2 2.793 42.58 88M
Deuterium 2D 1 0.879 6.53 13mM
Sodium 23Na 3/2 2.216 11.27 80mM
Phosphorous 31P 1/2 1.131 17.25 75mM

Table 2.1: List of selected NMR usable elements and some of their properties.

The potential energy operator U of a spin in a magnetic �eld is given by

U = −~µ · ~B (2.1)

with the magnetic moment operator ~µ and the magnetic �eld ~B. The magnetic moment operator
is de�ned as

~µ = γ ~J = γ
(
~L+ ~S

)
(2.2)

with the angular momentum ~J composed of the orbital angular momentum ~L and the spin ~S
and the gyromagnetic ratio γ.

The quantum mechanical equation of motion for a particle in a magnetic �eld is given by the

Schr�odinger equation with Hamiltonian operator H = ~p2

2M + U .

HΨ = i~
∂Ψ

∂t
(2.3)
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2.1. PHYSICS OF NUCLEAR MAGNETIC RESONANCE

A general solution for a �xed angular momentum state j of the linear time-independent Schr�odinger
equation is

Ψ(~r, t) =

+j∑
mj=−j

Cmjψj,mj (~r)e
− i

~Emj t (2.4)

with the complex coe�cients Cmj , determined by the boundary conditions. The sum goes over
the possible spin quantum states mj ∈ {−j, . . . , j} and ψj,mj (~r) is the corresponding wave
function and Emj is the corresponding energy. The energy levels of a spin in a magnetic �eld
are then

Emj = −γmj~B0 (2.5)

and the energy di�erence between two adjacent magnetic spin states is ∆E = ω0~ with the
Larmor frequency ω0 = γB0. To understand what happens over time with a stationary hydrogen
spin in a constant magnetic �eld the expectation value of the magnetic moment operator ~µ is
calculated, yielding

〈µy〉 =
γ~
2

sin θ sin (φ0 − ω0t) (2.6)

〈µx〉 =
γ~
2

sin θ cos (φ0 − ω0t) (2.7)

〈µz〉 =
γ~
2

cos θ (2.8)

These expectation values represent a vector precessing around the z-axis at the angle θ, which is
given by the constants Cm, which in turn are determined from the initial values of the Schr�odinger
equation (as well as the initial phase φ0).

The results for the expectation value of the magnetic moment match the classical results,
obtained from the solution of the equation of motion:

d~µ

dt
= γ~µ× ~B (2.9)

2.1.2 Multiple Spins in a Magnetic Field

For an atom with spin 1/2 in a magnetic two energy levels are open, either parallel or anti-parallel
to the magnetic �eld orientation and the probability to �nd an atom in one of the possible state
at thermal equilibrium is given by the Boltzmann factor P (E):

P (E) =
e−E/kBT∑
E e
−E/kBT

(2.10)

with the energy E, the Boltzmann constant kB and the temperature T . In thermal equilibrium,
the investigated system is in thermal contact with the background reservoir, which has a given
temperature, as well as an energy state and is large compared to the system under investigation.
Considering N spins in the volume V , the number of spins in one speci�c energy level is given
by

NE = NP (E) = NP (E(mj)) = Nmj (2.11)

According to the previous section, the quantization axis is de�ned to be the z-axis. The ex-
pectation values of the magnetic moments of single spins in a magnetic �eld are already known.

4



2.1. PHYSICS OF NUCLEAR MAGNETIC RESONANCE

However, the thermal equilibrium value of N spins in a magnetic �eld B0 parallel to the z-axis has
not yet been calculated. The thermal equilibrium value for ~M is the sum over the expectation
value of all N spins

Mz = Nθ
~2γ2j(j + 1)

3kBT
B0︸ ︷︷ ︸

:=M0

cos θ = M0 cos θ (2.12)

My = M0 sin θ sin(φ0 − ωt) (2.13)

Mx = M0 sin θ cos(φ0 − ωt) (2.14)

However, with the assumption that the initial phase for every spin is di�erent, the net magneti-
zation in the x-y-plane vanishes and only the magnetization along the z-axis remains.

2.1.3 Magnetization in a Time-Dependent Magnetic Field

The application of a circular polarized magnetic �eld rotates the magnetic moment µ into the
transversal plane. To derive this result two coordinate systems are considered, the reference
frame which is �xed and a rotating laboratory frame, the primed frame, denoted as (x′, y′, z′).
The rotating frame rotates around the vector ~Ω of the �xed coordinate system.
Any vector ~C in the static frame, which is not parallel to ~Ω rotates in the rotating frame by

d~C

dt
= ~Ω× ~C (2.15)

The consideration of the d~C
dt with respect to the rotating coordinate frame where the basis vectors

also change with time leads to

d~C

dt
=

3∑
i=1

dVi′(t)

dt
~ei′(t) +

3∑
i=1

Vi′(t)
d~ei′(t)

dt
(2.16)

=

(
d~C

dt

)′
+ ~Ω× ~C (2.17)

Rearranging equation 2.17 after the time derivative in the primed coordinate frame gives for the
magnetic moment (

d~µ

dt

)′
=
d~µ

dt
− ~Ω× ~µ = γ~µ×

(
~B +

~Ω

γ

)
= γ~µ× ~Be� (2.18)

Equation 2.18 means that the equation of motion does not change in the rotating frame, but the
magnetic �eld responsible for the torque is an e�ective �eld given by ~Be� = ~B + 1/γ · ~Ω.

A left circular polarized magnetic �eld in the x-y plane of the laboratory frame is given by

~B1 = B1 (cos (ωt)~ex − sin(ωt)~ey) (2.19)

After transformation into the rotating frame, using the rotation matrix Rz(θ(t)) the magnetic
�eld becomes

Rz(θ(t)) ~B1 =

 cos θ(t) − sin θ(t) 0
sin θ(t) cos θ(t) 0

0 0 1

 cos(ωt)
− sin(ωt)

0

 =

 B1 cos(θ(t)− ωt)
B1 sin(θ(t)− ωt)

0

 (2.20)

In equation 2.20 the resonance condition is visible. If the frequency ω of the circular polarized
magnetic �eld matches the rotational frequency of the rotating frame (rotating around Ω with
the angular frequency θ(t)), a constant magnetic �eld vector is obtained in the rotational frame,
exerting a maximum torque on the magnetic moment.
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2.1. PHYSICS OF NUCLEAR MAGNETIC RESONANCE

2.1.4 Spin-Lattice Interaction

The multiple spin system is in thermal equilibrium and in contact to the environment, which
is very large providing a continuum of energy states with which spins exchange energy. The
quantum mechanical probability of an operator A to change from one state ψα into an other
state ψβ is given by Fermi's Golden Rule.

Wαβ =
2π

~
|〈ψα|A |ψβ〉|2 (2.21)

Due to energy conservation each change of a state must be accompanied by the inverse change
of states. The thermal equilibrium value of the z-magnetization is dominated by the population
change of the di�erent quantum states. In the previous section, a constant population of the
quantum states was assumed.

dMz(t)

dt
= γ~

∑
mj

mj
dNmj

dt
(2.22)

The rate of change of a population of an energy level is given by the master equation:

dPα
dt

=
∑
β

(WαβPβ −WβαPα) (2.23)

If Pβ = P ′β −P 0
β and Pα = P ′α−P 0

α is inserted in equation 2.23, the equation describes the trend

of a system to its thermal equilibrium values p0
α and P 0

β .

dPα
dt

=
∑
β

[
Wαβ

(
P ′β − P 0

β

)
−Wβα

(
P ′α − P 0

α

)]
(2.24)

For a spin 1/2-system with only two energy states and the same exchange rates W+ 1
2
,− 1

2
=

W− 1
2
,+ 1

2
= W , it is

dP+ 1
2

dt
= W

[(
P ′− 1

2

− P 0
− 1

2

)
−
(
P ′

+ 1
2

− P 0
+ 1

2

)]
(2.25)

dP− 1
2

dt
= W

[(
P ′

+ 1
2

− P 0
+ 1

2

)
−
(
P ′− 1

2

− P 0
− 1

2

)]
(2.26)

Inserting equations 2.25, 2.26 into equation 2.22 and evaluating the sum over the two states
m = −1/2 and m = +1/2

dMz(t)

dt
= γ~

[
−1

2
N
dP (−1

2)

dt
+

1

2
N
P (+1

2)

dt

]
(2.27)

= −1

2
γ~

[
dN+ 1

2

dt
−
dN− 1

2

dt

]
(2.28)

= −W
[
γ~N

(
P ′

+ 1
2

− P ′− 1
2

)
− γ~N

(
P 0

+ 1
2

− P 0
− 1

2

)]
(2.29)

= − 1

T1
[Mz(t)−M0] (2.30)

With the longitudinal relaxation time T1 = 1
W and the longitudinal magnetizationMz(t) at time

t and at thermal equilibrium M0:

Mz(t) = γ~N
(
P ′

+ 1
2

− P ′− 1
2

)
(2.31)

M0 = γ~N
(
P 0

+ 1
2

− P 0
− 1

2

)
(2.32)
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2.1. PHYSICS OF NUCLEAR MAGNETIC RESONANCE

2.1.5 Spin-Spin Interaction

The spin-spin interaction is purely quantum mechanical and may be derived from the equation
of motion for the density matrix σ which describes the quantum mechanical system of spins and
lattice.

dσ

dt
= −i [σ,H] (2.33)

with the Hamiltonian H = H0 + F + H1(t), consisting of the system Hamiltonian H0, the
"lattice" Hamiltonian F and the interaction or perturbation Hamiltonian H1(t). However, the
exact calculation is quite complicated and lengthy, therefore only the macroscopic equation for
the spins along the x-direction is presented.

d

dt
〈Ix + Sx〉 = − 1

T2
〈Ix + Sx〉 (2.34)

where

1

T2
= γ4~2I(I + 1)

[
3

8
J (2)(2ωI) +

15

4
J (1)(ωI) +

3

8
J (0)(0)

]
(2.35)

A similar result is obtained for 〈Iy + Sy〉. The spin-spin interaction causes an exponential decay
of the transverse magnetization. However, the T2 relaxation was derived for only two spins, if
more spins are considered, the single exponential decay is only approximately true. Additionally,
the spin-spin interaction is not the only relaxation mechanism, so the single exponential decay
remains only an approximation.

2.1.6 Bloch Equations

In 1946 Felix Bloch proposed the description of the magnetization in external �elds based on
simple equations derived from phenomenological arguments. The Bloch equations cannot explain
every phenomena in detail, but showed quantitative accuracy in liquids. The assumptions are as
follows:

1. The equation of motion for an ensemble of free spins with magnetization ~M in a homoge-
neous magnetic �eld B0 is

d ~M

dt
= γ ~M × ~B0 (2.36)

2. In a static magnetic �eld ~B0 = B0~ez, the trend of the magnetization Mz towards its
equilibrium value M0 is governed by

dMz

dt
= −Mz −M0

T1
(2.37)

with the longitudinal relaxation time T1.

3. If the magnetization is given a transverse component, this magnetization relaxes with the
transverse relaxation time T2 due to interactions of the spins between themselves and their
surroundings.

dMx

dt
= −Mx

T2
(2.38)

dMy

dt
= −My

T2
(2.39)
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2.2. MAGNETIC RESONANCE

4. All the previous e�ects can be superimposed in the presence of a large constant magnetic
�eld and a much smaller RF magnetic �eld yielding the Bloch Equation.

d ~M

dt
= γ ~M × ~B − Mx~ex +My~ey

T2
− Mz −M0

T1
~ez (2.40)

The magnetic �eld ~B consists of the homogeneous main magnetic �eld ~B0 and a left circular
polarized, much smaller magnetic �eld ~B1. The left circular polarized magnetic �eld is at rest in
the rotating coordinate system, which is denoted with a prime, e.g. ~ex′ and rotates around the
z-axis. The e�ective magnetic �eld in the rotating frame is then

~Be� =

(
B0 −

ω

γ

)
~ez′ +B1~ex′ (2.41)

In an inhomogeneous magnetic �eld, where not only a single resonance component is present,
but a spread of Larmor frequencies ∆ω the steady state solution of the transverse magnetization
decays faster. This faster T ∗2 decay is composed of T2 and an additional parameter T ′2 which is
determined by the spread ∆ω.

1

T ∗2
=

1

T ′2
+

1

T2
(2.42)

A di�erential equation for the transverse magnetization, de�ned by Mtranv = Mx + iMy, may be
introduced:

dMtransv

dt
= −Mtransv

T ∗2
(2.43)

2.2 Magnetic Resonance

2.2.1 Signal Detection

The magnetic �ux Φ generated by ~M(~r, t) through a coil with a receive �eld ~Brec(~r) in the volume
V is given by

Φ(t) =

∫
V

~Brec(~r) · ~M(~r, t)dV (2.44)

According to Faraday's Law, a change in the �ux Φ induces a voltage U in the coil and this
voltage is regarded as the raw NMR signal.

U(t) =
d

dt

∫
V

~Brec(~r) · ~M(~r, t)dV (2.45)

Inserting in the Bloch equations, interchanging the integration and the di�erentiation and ne-
glecting Mz, since it varies much slower compared to the fast rotating transverse magnetization,
the NMR signal is

U(t) =

∫
V

[
Bx,rec(~r)

d

dt
|Mxy(~r, 0)| e−t/T2(~r) cos (−ω(~r)t+ φe(~r)) (2.46)

+By,rec(~r)
d

dt
|Mxy(~r, 0)| e−t/T2(~r) sin (−ω(~r)t+ φe(~r))

]
dV
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2.2. MAGNETIC RESONANCE

The change of coordinate systems for the Bloch equation were done with the exact rotation
frequency (on-resonance), so that ∆ω = 0 and φe(~r) is the initial phase of the transverse mag-
netization.

Performing the time derivative allows to neglect the terms proportional to 1
T2(~r) , since ω(~r)�

1
T2(~r)

U(t) =

∫
V
−ω(~r)

[
|Bxy,rec(~r)| |Mxy(~r, 0)| e−t/T2(~r) sin (−ω(~r)t+ φe(~r)− φr(~r))

]
(2.47)

With Bx,rec(r) = |Bxy,rec(r)| cosφr(~r) and By,rec(r) = |Bxy,rec(r)| sinφr(~r).
Equation 2.47 is the basic signal equation for the raw NMR signal and to simplify detection, the
signal is demodulated with a demodulation frequency Ω. Demodulation means that the signal is
multiplied by a reference signal 2 cos Ωt. After demodulation the signal is low-pass �ltered.

Flow [2V (t) cos Ωt] =∫
V
ω(~r)

[
|Bxy,rec(~r)| |Mxy(~r, 0)| e−t/T2(~r) cos

(
(Ω− ω(~r)) t+ φe(~r)− φr(~r) +

π

2

)]
dV

The signal can be also demodulated with a sine-function and regarding the demodulated signals
as orthogonal components, they can be combined to a complex signal. With the de�nition
∆ω(~r) = ω(~r)−Ω and neglecting the term proportional to ∆ω(~r), since ∆ω(~r)� Ω the following
signal equation is obtained.

S(t) =

∫
V

Ω
[
|Bxy,rec(~r)| |Mxy(~r, 0)| e−t/T2(~r)+i((−∆ω(~r))t+φe(~r)−φr(~r)+π

2 )
]
dV (2.48)

With the de�nition of |Bxy,rec(~r)| e−iφr(~r) = B∗⊥,rec(~r) and |Mxy(~r, 0)| eiφe(~r)−t/T2(~r) =

M⊥(~r, 0)e−t/T2(~r) = M⊥(~r, t) the signal equation becomes

S(t) =Ωeiπ/2
∫
V

[
B∗⊥,rec(~r)M⊥(~r, t)e−i∆ω(~r)t

]
dV (2.49)

If the magnetic �eld changes with time, so does the Larmor frequency and ∆ω(~r)t needs to be
replaced by an integral:

∫ t
0 ∆ω(~r, τ)dτ .

2.2.2 Echoes

Due to the Spin-Spin interactions the NMR signal decays and dephases. The phase of the NMR
signal is de�ned as

φ(~r, t) = −
(∫ t

0
∆ω(~r, τ)dτ + φe(~r)− φr(~r)

)
(2.50)

In the ideal case without spatial dependence, the phase depends only on time and is zero at
t0 = 0. In this ideal case the signal is maximal at time t0 and decays with time but an echo can
be formed if the phase is driven back to zero. The condition for forming an echo is therefore

φ(~r, t) = 0 (2.51)

A common way to generate echoes is the use of magnetic gradient �elds. With a gradient
Gx(t) along the x-direction, the phase of the NMR signal is

φ(~r, t) = −
∫ t

0
Ω− γ (B0 +Gx(t)x) dt (2.52)
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2.2. MAGNETIC RESONANCE

with the demodulation frequency Ω. If the gradient is switched constantly on during the time
[0, t1] the accumulated phase at the demodulation frequency Ω = γB0 = ω0 is

φ(~r, t) = Gxxt, for 0 < t < t1 (2.53)

In equation 2.53 the NMR signal accumulates linearly phase with time and position and decays
therefore much faster than predicted by T2 or T ∗2 . However, the dephasing can be reversed by
inverting the gradient polarity from +Gx → −Gx for the time interval [t1, t2].

φ(~r, t) = Gxxt1 −Gxx(t− t1) = Gxx(2t1 − t) for t1 < t < t2 (2.54)

At TE = 2t1 the phase is zero and a gradient (recalled) or �eld echo forms. In accordance with
the phase condition 2.51 a gradient echo is formed if the zeroth moment of the gradient vanishes.∫ t

t0

~G(t′)dt′ = 0 (2.55)

Gradient echoes can be recalled as long as the transverse magnetization has not completely
decayed, which is determined by T2 and T ∗2 for spin and gradient echoes, respectively.

2.2.3 Signal Localization

The NMR signal, as given by equation 2.48 measures a time dependent signal from a volume.
First, the excited signal is restricted to a slice, by the combination of a constant slice selective

gradient, e.g. Gz and a slice or frequency selective excitation pulse like a sinc-pulse, which only
excites frequencies in a de�ned interval, corresponding to z-positions in a de�ned interval.

Second, after the excitation of a slice, the signal is resolved in two dimensions using again
the spatial dependence of the frequency in the presence of constant magnetic �eld gradients. If
the Gy gradient is turned on for the time t1 < t < t2 the NMR signal gets a phase proportional
to the length of the time interval, the gradient strength and the y position, which is called phase
encoded. If then the Gx gradient is switched on for t > t2, the signal oscillates with a frequency
f = γGxx, which is called frequency encoded. The signal equation with phase and frequency
encoded positions after slice selection is shown in equation 2.56.

S(t) = Ωeiπ/2
∫
A
M⊥(~r)e−iγGxxt+Gyy(t2−t1)dxdy (2.56)

In the derivation of the signal equation, components along the z-axis were neglected under the
assumption of a slice selective excitation. However, it is possible to excite a whole volume and
to image a three dimensional volume, the signal equation is then the Fourier transform of the
magnetization weighted with the receive coils.

S(t) = Ωeiπ/2
∫
V

~Brec(~r) ~M(~r)e−i2π
~k(t)~rdV (2.57)

The acquired data is k- or Fourier-space data and ~k(t) is the trajectory - controlled by the
gradients - with which the data is acquired.

2.2.4 Phase-Contrast Flow Encoding

An isochromat moving inside the imaged volume has a time dependent position which changes
according to the velocity ~v

~r(t) = ~r0 + ~vt (2.58)
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In the case of constant velocity and gradients the phase of an isochromat is

φ(t) = −γ ~G~r0t− γ ~G~v
1

2
t2 t ∈ [0, τ ] (2.59)

The static spins generate a linear phase with time, which is used for position encoding at MRI,
while �owing spins generate a phase which evolves quadratically with time. The dependence of
the phase on velocity may be used to encode the velocity with bipolar gradients or to null the
phase of the �owing spin, which is called �ow compensation.

However, the phase evolution due to velocity causes signal loss due to the dephasing of the
signal if the �ow within a voxel is not uniform.

2.3 K-Space Sampling

In this section either constant or known magnetic receive �elds are assumed, so that they can be
absorbed into the magnetization. The Fourier transform operator F and its inverse F−1, as well
as the trajectory operator Pk, which is a projection onto the k-space trajectory are used. The
comb operator Ø(kx) = ∆k

∑+∞
q=−∞ δ(kx − q∆k) represents the discrete sampling with spacing

∆k of a continuous signal. The rectangular function rect(x) = Π(x/W ) = Θ(x + W/2) · Θ(x −
W/2) with the Heavyside function Θ(x) crops the data onto a symmetric interval of width W
around zero. With the de�ned operators the imaging process of the magnetization M(~r) is

S(k) = PkF−1 [M(~r)] (k) (2.60)

Common trajectories are Cartesian, Radial, Propeller, Rosette or Spiral, but in this work only
Cartesian and radial trajectories are presented. Cartesian sampling because it is the most com-
mon and simplest sampling scheme and radial because it is used for the real-time data acquisition.

2.3.1 Cartesian Sampling

The trajectory operator for Cartesian sampling is

Pk(kx, ky) = Π(kx/W ) Ø(kx) Π(ky/W ) Ø(ky) (2.61)

The data is sampled on a rectangular grid of width W and with spacing ∆k. After an RF
excitation either a single or multiple k-space lines are acquired. If multiple lines are acquired,
either the same line may be repetitively acquired or with each echo another line may be acquired.
The �rst acquisition scheme yield fully sampled k-spaces for each echo, while the second scheme
yields only a single k-space consisting of multiple echoes with image contrast mainly determined
by the central k-space line.

2.3.2 Radial Sampling

For radial sampling, the Cartesian sampling trajectory is transformed to polar coordinates
(x, y)→ (r, θ).

Pk(r, θ) = Π(r cos(θ)/W ) Ø(r cos(θ)) Π(r sin(θ)/W ) Ø(r sin(θ)) (2.62)

The signal equation is after coordinate transformation

S(k, θ) =

∫
V
ρ(r, φ)e−i2πkr cos(φ−θ)rdrdφ (2.63)
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with the de�nitions

G =
√
G2
x +G2

y and θ = arctan

(
Gy
Gx

)
(2.64)

Gx = G cos θ and Gy = G sin θ (2.65)

for the gradients and similar for the k-space vectors.

The radial sampling according to equation 2.63 allows to use an arbitrary number of lines, or
spokes. Enforcing the Shannon Sampling theorem (as derived in the next section), a radial fully
sampled dataset requires more spokes than the corresponding Cartesian data set. However, radial
sampling is more tolerant to undersampling compared to Cartesian sampling [42]. Furthermore,
since the k-space center is sampled with each spoke, radial sampling is more robust to motion
compared to Cartesian sampling [42]. Moreover, each spoke has equal information content,
perfectly suited for continuous sampling.

2.3.3 The Sampling Theorem

The Shannon sampling theorem states that a bandlimited function can be reconstructed perfectly
from its sampled values taken uniformly at an interval not exceeding the reciprocal of twice the
signal bandwidth [40]. For a bandlimited function with bandlimit fmax the sampling theorem
requires that the sampling frequency fs is

1

fs
= ∆t ≤ 1

2fmax
(2.66)

For a space limited object with limits Lx and Ly along the x- and y-direction, the sampling
theorem requires to sample with

∆kx =
1

Lx
and ∆ky =

1

Ly
(2.67)

for Cartesian sampling. This means that the �eld of view (FOV) mus be at least Lx and Ly
because the FOV along each direction is given by the product of k-space sampling points and
the voxel size.

The distance between the k-space sampling points for a Cartesian trajectory is

∆kx =
γ

2π
|Gx|∆t (2.68)

∆ky =
γ

2π
∆GyTpe (2.69)

with the sampling interval ∆t, read-out gradient strength Gx and the duration of each phase
encoding step Tpe and the increment of the phase encoding gradient ∆Gy. Substituting equations
2.67 into equations 2.68, 2.69 the conditions for the timing for frequency encoding and the
gradient amplitude for the phase encoding are obtained.

∆t ≤ 2π

γ |Gx|Lx
(2.70)

∆Gy ≤
2π

γTpeLy
(2.71)

For the radial sampling trajectory a space and frequency limited object is considered. The object
is limited by radius R and Rk in image and in frequency space, respectively. The sampling
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conditions for ∆k and ∆φ are

∆k =
γ

2π
G∆t ≤ 1

2R
(2.72)

∆φ ≤ 2π

2 (2πRRk + 1) + 1
(2.73)

The radial sampling condition is similar to the Cartesian sampling condition. The azimuthal
sampling condition is simpli�ed if the number of samples per line Nk and their relation to the
number of spokes Nφ is considered.

Nφ ≈
π

2
Nk (2.74)

E.g. for 256 k-space samples per line, a radial fully sampled data requires 403 spokes, which is
actually more than in the Cartesian case.

2.3.4 Image Resolution and Bandwidth

The image resolution in MRI is determined by the point spread function from the �lters which
are applied to the measured the data. Both, the sampling and the truncation of the data are
considered as �lters. Their associated point spread function is the inverse Fourier transform of
the �lter.

hw(x) = F−1 [rect(k/W )] = W sinc (πWx) (2.75)

If the data is only truncated but sampled continuously, each data point is spread by a sinc-
function of width 1/(πW ).

Secondly, the point spread function of the sampling is

hs(x) = F−1 [Ø(kx)] = ∆k
+∞∑
q=−∞

e−2πiq∆krx (2.76)

which is an in�nite sum of repeated copies with distance ∆k between them. The combination
of both �lters is obtained by either calculating the Fourier transform of the combined �lters or
simply by restricting the in�nite sum in 2.76 to a �nite sum, yielding

hws(x) = ∆k
n−1∑
q=−n

e−2πiq∆krx = W
sinc (πWrx)

sinc (π∆krx)
e−iπ∆krx (2.77)

The resolution in MRI is de�ned as the blur of the imaging �lters, yielding that the achievable
resolution ∆xMRI is limited by the sampling range W in k-space.

∆xMRI =
1

hws(0)

∫ W/2

−W/2
hws(x)dx =

1

2n∆k
=

1

W
(2.78)

Equation 2.78 gives the image resolution for equidistant sampling in one dimension. For Cartesian
imaging, the point spread function is the same for x- and y-direction, yielding the same resolution
for each direction.

hCartesian(x, y) = hws(x) · hws(y) (2.79)
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In case of radial imaging, the point-spread function for continuous radial sampling with a limited
number of projections Nθ has been calculated and is given in equation 2.80 [43].

PSFradial(r, θ) = 2∆Kθ

Nθ−1∑
n=0

(
cos(an(r, θ)kR) + an(r, θ)kR sin(an(r, θ)kR)− 1

a2
n(r, θ)

)
(2.80)

with an(r, θ) = 2πr cos(n∆kθ − θ), kR the maximum sampled radial k-space point and ∆kθ =
2π/Nθ the angular increment depending on the maximum number Nθ of projections. The analyt-
ical exact blur has not yet been calculated. Azimuthal undersampling produces the well known
streak artefacts which do not necessarily lead to a reduction in image resolution [43]. However,
image details may be obscured by streaking artefacts cutting through the object.

2.4 Image Reconstruction

2.4.1 Cartesian Image Reconstruction

The product of magnetization and magnetic receive �eld is related to the spin density ρ and can
be obtained by a Fourier transform of the measured signal.

ρ̂(~r) =

∫
k
S(~k(t))e2πi~k~rd3k (2.81)

In case of Cartesian sampling, the discrete Fourier transform yields directly the spin density ρ.

2.4.2 Non-Cartesian Image Reconstruction

The data acquired on non-Cartesian trajectories is interpolated onto a rectangular grid on which
the discrete Fourier transform is applied, yielding the desired spin density. Instead of the ideal
sinc-kernel, an approximation by the Kaiser-Bessel kernel with compact support is used as in-
terpolation kernel.

KKB(d) =

{
1
LI0(β

√
1− (2d/L)2) |d| ≤ L

2

0 |d| > L
2

(2.82)

with I0 the zero-order modi�ed Bessel function, L the desired kernel width and the shape factor
β. The measured samples are convolved with the interpolation kernel and evaluated at the
"smeared" desired k-space positions. Due to the interpolation with a �nite size interpolation
kernel, the image exhibits an undesired modulation with the Fourier transform of the kernel,
which is called roll-o� e�ect. The roll-o� e�ect is removed by dividing the image by the Fourier
transform of the Kaiser-Bessel window, which is called roll-o� correction.

F{KKB}(x) ≈MKB(x) =
sin
√

(πLx)2 − β2√
(πLx2)− β2

(2.83)

Due to the use of a �nite size interpolation kernel and the discrete sampling, aliasing happens.
To avoid aliasing, the interpolation is performed with increased resolution, shifting the aliased
copies further away from the center. Usually an increase of factor two is su�cient. Afterwards
the image is cropped to the original size. Further a density compensation is necessary, since
the center is sampled more densely than the outer regions. For the radial trajectory the density
compensation function is a Ram-Lak �lter

DRL(k) =

{ ∣∣∣~k∣∣∣ /ns |k| 6= 0

1/ (2ns) |k| = 0
(2.84)

14



2.4. IMAGE RECONSTRUCTION

Thus the gridded data is obtained by

GRDS(~k) =
(
M−1

KB · F
−1 ·Ø ·KKB ∗DRL · Pk

)
S(k) (2.85)

with the convolution denoted as ∗, the projection on the trajectory Pk, the density correction
DRL, the interpolation with the Kaiser-Bessel function KKB, the sampling Ø, the inverse Fourier
transform F−1 and the roll-o� correction M−1

KB.
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Chapter 3

Materials and Methods

3.1 MRI System

All measurements were performed on commercially available MRI scanners, which are described
in the following sections. Most of the measurements were done on the TimTrio scanner, including
the measurements for water-fat separation, T ∗2 estimations and �ow measurements for phase
unwrapping. Additional water-fat separation measurements were performed in Magdeburg at
the 7T scanner of the Leibniz Institute for Neurobiology. The gradient delay correction for
asymmetric echoes and multiple echoes was investigated using data from the Prisma MRI system.

3.1.1 TimTrio

The used TimTrio system (MAGNETOM, TimTrio System, Siemens AG, Erlangen, Germnay)
has a bore length of 142 cm and an inner diameter of 60 cm with a possible Field of View (FOV)
of 50 cm around the isocenter. The main magnet is helium cooled and superconducting with
a �eld strength of B0 = 2.89T. The TimTrio system contains a single channel body coil for
RF excitation and reception as well as a gradient system with a maximum gradient strength
of Gmax = 38mT/m for each physical axis. The raster time of the gradients is 10µs and
the maximum slew rate is 170Tm−1 s−1. The volunteer measurements were performed with
anatomically matched receive coil arrays and the phantom measurements were performed with
the 32 channel (ch) head coil due to superior signal-to-noise ratio (SNR).

3.1.2 Prisma

With the beginning of the year 2014 our MRI system was upgraded from the TimTrio system to
the Prisma system (MAGNETOM, Prisma System, Siemens AG, Erlangen, Germnay). Except
for the magnet everything else was exchanged. The Prisma system has XR gradients which
have the same raster time but an increased maximum amplitude of Gmax = 80mT/m and an
increased maximum slew rate of 200Tm−1 s−1. Also the body coil has changed from a single to
a two-channel excitation and reception coil. Only the 32 and 64 channel head coils haven been
used for the measurement with the Prisma MRI system.

3.1.3 7T

The 7T high-�eld MRI system in Magdeburg was used to investigate the water-fat separa-
tion in real-time. The 7T MRI system is manufactured from Siemens (Siemens AG, Erlangen,
Germnay), has a bore size of 60 cm and is equipped with SC 72 gradients which provide a
maximum amplitude of Gmax = 70mT/m and a maximum slew rate of 200Tm−1 s−1. The
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3.2. MRI DATA ACQUISITION

measurements were performed with a 28-channel knee coil which provides only limited space for
motion of the leg.

3.2 MRI Data Acquisition

In this section the fast low-angle shot (FLASH) MRI sequence [44, 45] and the used k-space
trajectory are described. Although many other sequences and variation of the k-space trajectory
exist, only the FLASH sequence with a radial trajectory is used throughout this work.

3.2.1 FLASH Sequence

The FLASH sequence is a fast imaging sequence which allows for short echo and repetition times,
both in the order of milliseconds. Depending on the echo time, �ip angle and repetition time
di�erent contrasts can be achieved with varying SNR and contrast-to-noise ratios (CNR) [46].
Due to the build-up of transverse coherences [47] the transverse magnetization are eliminated by
RF spoiling before the next RF excitation.

The FLASH sequence allows for single-echo and multi-echo acquisition schemes as presented
in �gure 3.1. Both acquisition schemes show the acquisition of a single spoke where data is
acquired during the �at-top time of the logical x- and y-gradients. Multi-echo gradient sequences
may be used for T ∗2 mapping [48�50] while single echo sequences may be used for imaging with
T1 or T ∗2 contrast.

Figure 3.1: Gradient switching schemes for single (left) and multi-echo (right) FLASH sequence.

Furthermore, the FLASH sequence allows to encode velocity into the phase of an image [51,
52]. The used phase-contrast sequence acquires two images, one with and one without velocity
encoding from which the velocity can be calculated [53]. The velocity-encoding gradients are
switched before the read-out gradient, here a bipolar encoding gradient is used. The sequence
diagram is shown in �gure 3.2.

The reduction of the prephasing and read-out gradients as shown in �gure 3.2 leads to asym-
metric echoes. Asymmetric echoes allows for even shorter echo and repetition times at the cost
of reduced SNR .

3.2.2 K-Space Trajectory

The data acquisition in this thesis uses a FLASH sequence in combination with a radial trajectory
[54], which is optimally suited for real-time imaging due to the following four facts [42]:

1. Oversampling of k-space center: Each encoding line crosses the k-space center, therefore
each line (or spoke) contains equally important information.
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Figure 3.2: Schematic �ow sequence without and with bipolar velocity encoding gradient (left)
and asymmetric echo sequence (right).

2. Tolerance to undersampling: According to Nyquist a fully sampled radial k-space contains
Nφ = π/2 Nk spokes with Nk samples on the spoke. However, even with standard gridding
reconstruction a certain reduction of spokes is possible without losing too much image
quality.

3. Continuous data acquisition: New data with equally important amount of information can
be acquired continuously by using a turn based acquisition scheme as shown in �gure 3.3
or with a golden angle acquisition.

4. Gradient Delay correction: The logical and physical gradient delays can be obtained directly
from the measured data without any calibration measurement.

Figure 3.3: Radial acquisition scheme with 5 turns.

A typical radial acquisition with Nt = 5 turns is shown in �gure 3.3. With each turn each
acquired spoke is rotated by β = 360/Ns/Nt with Ns the number of spokes, until after Nt the
turns are repeated.

The k-space trajectory of a single line contains an even number Nk of sampling points and
the gradients are switched in a way that the echo is sampled at the Nk/2 + 1 sample point for
the odd echoes and at Nk/2− 1 for the even echoes.

3.3 Image Reconstruction

Image reconstruction for data measured with a Cartesian acquisition scheme may be done by
applying the Fourier transform to the data. With the advent of non-Cartesian trajectories the
data must be gridded onto a rectangular grid before Fourier transformation. State of the art
image reconstructions like SENSE [3], GRAPPA [4, 55] and NLINV [6, 8] for undersampled
real-time data acquisitions are available.
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3.3.1 NLINV

A detailed and mathematical description of the regularized non-linear inversion (NLINV) is
presented in the thesis of Martin Uecker [7] and his publications [6, 8, 10], here only a short
summary is presented.

In equation 2.57 the signal for only a single receive coil is presented, however, using multiple
coils, multiple signals are available containing the same underlying spin density. Switching to
inverse problems, the measured data y is the result of the forward operator F applied onto the
generalized spin density ρ and the receive coil sensitivities cj .

F : x 7→

 PkF (ρc1)
...

PkF (ρcN )

 = y with x =


ρ
c1
...
cN

 (3.1)

Equation 3.1 is expanded using the Taylor expansion around xn with the Jacobian DF (xn) and
linearized.

DF (xn)dx+ F (xn) = y (3.2)

The lineaized problem is symmetrized by multiplication with the adjoint of the derivative and
solved subsequently using a conjugate gradient algorithm. Regularization is added to coun-
terbalance the bad conditioning of the lineaized equation, yielding the Levenberg-Marquardt
algorithm. To improve the stability the regularization is changed from the update, to the result
of the update. Reformulating the Gauss-Newton method into a functional, whose minimum is
exactly the solution of the Gauss-Newton method yields

‖DF (xn)dx− (y − F (xn))‖2 + αn ‖xn + dx− x0‖2 (3.3)

The problem in equation 3.1 is highly underdetermined, as can be seen by multiplying ρ with any
complex functions g and dividing the coil sensitivities by the same function g which gives another
solution but has the same signal y. Therefore the algorithm can shift information between the
image ρ and the coil sensitivities cj . The prior knowledge of smooth coil sensitivities pro�les
allows to restrict the solution space and is incorporated into NLINV by a preconditioning matrix
W

x̂ = W−1x =



I (
1 + s

∥∥∥~k∥∥∥2
)l/2
F

. . . (
1 + s

∥∥∥~k∥∥∥2
)l/2
F




ρ
c1
...
cN

 (3.4)

leading to a rede�nition of the forward operator F as F1x̂ = FWx̂. The new functional to solve
is

‖DF1(x̂n)dx̂− (y − F1(x̂n))‖2 + αn ‖x̂n + dx̂− x̂0‖2 (3.5)

For quantitative imaging, not only the spin density, but also the coil pro�les must be evaluated,
therefore the �nal image is the following combination

ρ�nal = ρ

√√√√ N∑
i=1

‖ci‖2 (3.6)

20



3.4. REAL-TIME MRI

Multi-echo acquisitions require an adaptation of the NLINV algorithm. The spin density and
coil sensitivities are estimated for the �rst echo, all following echoes use the coil sensitivities from
the �rst echo to estimated the spin density, which reduces to a linear problem for known coil
sensitivities. The temporal regularization is applied only to the �rst echoes.

For the phase-contrast data, �rst two image series ρ0 and ρ1 are calculated with J coil pro�les
c0j and c1j , where the index 0 and 1 refer to the velocity encodings. Weighted images ρi,j are
calculated

ρi,j =
ρicij√∑J
k=1 cik c̄ik

i ∈ {0, 1} and j ∈ {1, . . . , J} (3.7)

and used for derivation of a phase di�erence image ρ̂pc.

ρ̂pc =

J∑
j=1

ρ0j ρ̄1j (3.8)

In order to deal with the enormous amount of data from real-time acquisitions, the data is
compressed using principal component analysis (PCA) [56, 57] before image reconstruction. The
image reconstruction is speeded up to the acquisition frame rate by using graphic processing
units (GPU) and specialized software [9, 58] which unleash the full parallel power of the GPUs.

All further processing of the data, like T ∗2 mapping, water-fat separation or phase unwrapping
is performed directly on the reconstructed spin densities and coil sensitivities.

3.4 Real-Time MRI

Real-time MRI refers to the continuous data acquisition and image reconstruction of moving
objects in real time. However, MRI is an intrinsic slow technique due to the large number of
excitations needed to acquire a fully sampled k-space. Undersampled data is acquired faster but
complexity of and computational demand for the image reconstruction increases. The complexity
of the reconstruction is re�ected in the non-linear nature of the image reconstruction problem,
which is properly treated by NLINV, yielding even for highly undersampled data high quality
images [6, 7]. The computational demand for the image reconstruction is taken care of by 2x4
GPUs (sysGen/TYAN Octuple-GPU, 2x Intel Westmere E5620 processor, 48GB RAM, Sysgen,
Bremen, Germany) and an optimized version of NLINV [9, 58]. The whole process is fully
integrated into the reconstruction pipeline of the commercial MRI system.

Using the radial FLASH sequence, movies with a temporal resolution of 20 to 30ms can be
acquired and reconstructed at frame rates of about 11 frames per second [9, 54]. Although the
frame rate of the reconstruction is lower than the image acquisition rate, the integration into the
commercial MRI system allows for online display of the acquired data, allowing real-time MRI.

The limits of the real-time data acquisition and a post processing median �lter have been
evaluated by Jens Frahm, the author and others within the research group [59]. The application of
the median �lter keeps edges but smooths peaks out [60, 61]. For the phase of the phase-contrast
data, water-fat separation, phase unwrapping and T ∗2 mapping the median �lter is deactivated
and may be applied after the respective operation. The reconstructed images can further be
improved if a motion estimation is applied during the reconstruction [62].

In this thesis, real-time MRI refers primarily to the data acquisition and only secondly to
the image reconstruction and display in real time. The image reconstruction and display in real
time is a huge engineering task which may only be solved after robust image reconstructions at
reduced frame rates have been developed. Furthermore, T ∗2 , water/fat maps and phase-contrast
�ow analyses of real-time MRI data are usually performed o�ine after the image acquisition and
reconstruction.
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3.5 Software

3.5.1 In-house Software

The NLINV image reconstruction as developed by Martin Uecker and speeded up by Sebastian
Schaetz was used extensively and extended to multi-echo data. The reconstruction is written in
C/C++ and CUDA, depending on which hardware it is supposed to run. A Matlab version of
NLINV was written by Housen Li, which was used to test and change the image reconstruction.
Due to the slow reconstruction speed of the Matlab NLINV, the Matlab NLINV was soon replaced
by a Matlab callable GPU version of NLINV.

The ArrayShow software is developed by Tilman Sumpf [63, 64] and was used to display the
multidimensional MRI data. Many features like displaying the phase as an overlay, switching
between magnitude, complex, real, imaginary and phase visualization, ROI evaluation simplify
the development of new techniques.

The improvement of the gradient delay correction requires access to the raw data which is
provided by dat2coo. dat2coo was initially written by Martin Uecker and converts the raw data
as stored in the dat-�le into a Matlab readable coo. Aaron Niebergall and myself rewrote dat2coo
so that no input arguments except the dat-�le are needed.

A simple software for the measurement of the rotation velocity of the motion phantom using a
webcam and the MRI manufacturers video surveillance camera was written by Sebastian Schaetz
and myself [9, 59, 65]. The software uses either one or two red dots on the rotating disk and by
extracting the number of red pixels from the webcam data, which in turn captured the images
from the manufacturers video surveillance screen, intensity curves were created. Using either
the peak position or the rise time the repetition frequency of the red dot(s) can be determined
using the cameras frame rate. Veri�cation of this method was performed using phase-contrast
measurements.

3.5.2 Out-house Software

The major work of this thesis was done in Matlab (MathWorks, Natick, NA) due to its enormous
functionality and simplicity. If speed becomes an increasingly important factor, Matlab o�ers
mex-�les, which provide an interface faster C/C++ binaries. Some mex-�les have been produced
to replace time-consuming Matlab code.

Another important software is the CAIPI (Integrated Processing of Multimodal Cardiac
Image Data) software [66], which was used for the analysis for the phase-contrast data and the
ROI segmentation for the phase unwrapping.

3.5.3 Exponential Fitting

An exponential function of the form

y(x) = AeBx (3.9)

is easily lineaized by taking the logarithm

log y(x) = logA+Bx (3.10)

and directly �tted in a least-square sense. However, the solution in equation 3.10 gives greater
weight to small y values and to weight the points equally the following function must be minimized
[67]

f(a, b) =

n∑
i=1

y(xi) (log(y(xi))− a− bxi)2 (3.11)
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The least-squares solution is

a =

∑n
i=1

(
x2
i yi
)∑n

i=1 (y(xi) log(y(xi)))−
∑n

i=1 (xiy(xi))
∑n

i=1 (xiy(xi) log y(xi))∑n
i=1 y(xi)

∑n
i=1

(
x2
i y(xi)

)
− (
∑n

i=1 xiy(xi))
2 (3.12)

b =

∑n
i=1 y(xi)

∑n
i=1 (xiy(xi) log y(xi))−

∑n
i=1 (xiy(xi))

∑n
i=1 (y(xi) log(y(xi)))∑n

i=1 y(xi)
∑n

i=1

(
x2
i y(xi)

)
− (
∑n

i=1 xiy(xi))
2 (3.13)

with b = B and A = exp a.

3.6 Phantoms and Volunteers

3.6.1 T ∗2 Phantoms

The T ∗2 phantoms were produced using agarose in di�erent concentrations doped with CuSO4.
Usually, 2% agarose gives a T2 value around 50ms, which may be shortened further [68�71]. How-
ever, the production of T ∗2 phantoms is not well investigated because T ∗2 depends on the magnetic
�eld as well as the shape and structure of the phantom and its interfaces. The T ∗2 phantoms
were produced similarly as describe in [72]. Due to the evaporating water from the agarose �uid
the containers must be sealed airtight to keep their properties for at least 12 months [72].

3.6.2 Motion Phantom

The motion phantom has been developed by Aaron Niebergall, Sebastian Schaetz and myself in
order to analyse the capabilities of our image acquisition and reconstruction [59, 65, 73]. The
motion phantom is a low-cost phantom, consisting of a rotating disk which is driven by air
pressure, see �gure 3.4. The measurement of the rotational velocity is described in 3.5.1 and
in [73]. The phantom has two di�erent interchangeable plastic disks, one disk for small vials
and another disk for petri dishes. The petri dishes can be �lled e.g. with agarose containing
holes. Besides the evaluation of our real-time framework the phantom was used to investigate
the e�ects of motion onto T ∗2 and the signal intensity, see chapter 5.

Figure 3.4: Motion Phantom with its di�erent specimen holder and the experimental setup (left)
and the �ow phantom (right).
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3.6.3 Flow Phantom

The �ow phantom has been developed by Arun Joseph and described in detail in his thesis,
various publications and conference contributions [53, 74�76]. In short, a voltage controlled
pump allows to produce pulsatile �ow at di�erent duty cycles and velocities. The �uid is pumped
through a long tube that enters a water �lled half disk and exits it after a u-turn and enters it
again but with a reduced diameter, performs another u-turn and exits the phantom, see �gure
3.4. The tubes continue within the half disk, so that the �owing �uid cannot mix with the static
�uid. The �ow phantom was used for the real-time �ow phase unwrapping investigations, see
chapter 7.

3.6.4 Numerical Phantoms

Numerical �ow phantoms were produced from measured data with a velocity encoding (VENC)
where no phase wraps occurred. Simulated phase wraps were generated by retrospectively reduc-
ing the phase interval from [−π, π] to [−π/2, π/2]. Values above π/2 (below −π/2) were added
(subtracted) by π, while all values within [−π/2, π/2] remained unchanged. To obtain wrapped
phase data within [−π, π] all values were subsequently multiplied by two. The corresponding
datasets with arti�cially decreased VENC were unwrapped and analyzed the same way as ap-
plied for the original data and the results were compared to the evaluations of the original data
without phase wraps (ground truth). An example is shown in �gure 3.5.

(a) original data (b) simulated wrapped data

Figure 3.5: Simulated phase (wrapped) data in and the respective original phase data.

A numerical gradient delay phantom was developed based on the theory for gradient delay
[77] and the Shepp-Logan phantom [78]. The ideal gradient switching for all three gradients is
simulated in the logical gradient system, according to our radial FLASH sequence (see �gure
3.1). The RF pulse is assumed to be a δ-pulse for simplicity and because the trajectory can only
be in�uenced if any MR signal has been excited. Knowing the gradients in the logical gradient
system they are transformed according to the slice orientation into the physical gradients where
the actual delay takes place. The simulation implements any slice orientation and individual
delays for each physical gradient axis. After the physical gradients are delayed they are trans-
formed back into the logical gradient system to generate the delayed trajectory. The delayed
trajectory can be used with the analytical k-space Shepp-Logan phantom[78] to generate delayed
k-space data.
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Figure 3.6: Gradient Delay Phantom with ideal logical gradients (green), delayed physical gra-
dients (red), delayed logical gradients (blue) and delays [∆Gx ∆Gy ∆Gz] = [5 3 1] (in k-space
points) for an oblique slice orientation.

3.6.5 Volunteers

Humans without known illness and contraindications for MRI were recruited as volunteers. Each
measurement was approved by the institutional review board and written informed consent was
obtained from each subject before MRI.
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Chapter 4

Gradient Delay Correction

Gradient delays are the temporal deviations of the actual gradients from the ideal gradients.
Gradient delays are common in MRI acquisition and produce artifacts degrading the image
quality. Possible causes include eddy currents in the MRI coils [79] (main bore, gradient and
shim coils and RF coils) and timing errors caused by system imperfections [80]. However, all
these e�ects can be modeled as gradient delays [77] and gradient amplitude alterations. The
delayed gradient waveform is shifted by a time delay td and distorted in the amplitude with
respect to the ideal or intended gradient waveform. The shift of the gradient waveform leads
to a shifted k-space trajectory (see �gure 4.1), which is in general not a problem for Cartesian
imaging unless multi-echo sequences like EPI are considered [80]. For non-Cartesian imaging the
trajectory shift poses a major problem [77, 81].

Modern MRI systems are equipped with two main systems in order to prevent gradient de-
lays [41]. The �rst protection mechanism are shielding coils, which produce an additional �eld
opposed to the main coil and reduce the �eld outside of these two coils, preventing eddy currents
in other conducting structures. The second protection mechanism is the gradient waveform pre-
emphasis. The gradient waveform is distorted prior to the input to the gradient coil, giving an
outputted gradient waveform which is closer to the ideal waveform. Calculating the preempha-
sized waveform requires accurate knowledge of the eddy currents (magnitude and decay time)
and is generated by adding a high-pass �lter to the gradient ampli�er input [41]. These two main
systems reduce the shifts in the k-space trajectory largely but are not able to correct the shifts
completely [82] and therefore trajectory or gradient delay corrections before the reconstruction
must be applied in radial imaging.

The gradient delay correction using three almost antiparallel asymmetric echoes acquired
in real-time phase-contrast �ow MRI, as presented in this chapter, has been published by the
author [12].

The chapter starts with a theory section for the gradient delay of radial trajectories as devel-
oped by Peters [77]. The theory section explains in detail the logical gradient delay estimation
from Block and Uecker [11] as well as the newly developed physical gradient delay estimation.
Tolerance to radial and azimuthal undersampling and noise based on a numerical gradient delay
phantom is evaluated and presented in the results section. The in�uence of motion, temporal
changes of the gradient delays and consequences for multiple echo measurements are presented.
The chapter closes with a discussion of the results and a conclusion.
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(a) Sequence gradient delay (b) Delayed trajectory

Figure 4.1: Sequence gradient delays for a single spoke from a slice perpendicular to the z-axis
and the corresponding trajectory.

4.1 Theory and Results

4.1.1 Radial Gradient Delay Model

According to Peters [77] the radial gradient delay in the logical coordinate system is

Gdel
log = RTT [RGlog] (4.1)

with the ideal gradients Glog, the rotation matrix R and its transposed RT de�ned by the slice
orientation and the time delay operator T . The error between the ideal and delayed trajectory
is calculated as the di�erence between the ideal and delayed trajectory.

∆k(τ) =
γ

2π

∫ τ

0
Gdel
log(t)dt−

γ

2π

∫ τ

0
Glog(t)dt (4.2)

The shifts ∆k of the delayed trajectory with respect to the ideal trajectory in the logical coor-
dinate system are in terms of perpendicular, parallel and z-shift

∆k‖(θ) = Gread
γ

2π

[
cos2(θ)tg1 + sin2(θ)tg2 + 2 cos(θ) sin(θ)tg3

]
−Gslice

γ

2π
[cos(θ)tg4 + sin(θ)tg5]

(4.3)

∆k⊥(θ) = Gread
γ

2π

[
cos2(θ)tg3 − sin2(θ)tg3 + cos(θ) sin(θ)tg6

]
−Gslice

γ

2π
[cos(θ)tg5 − sin(θ)tg4]

(4.4)

∆k3(θ) = Gread
γ

2π
[cos(θ)tg1 + sin(θ)tg3]−Gslice

γ

2π
[tg7] (4.5)
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with the spokes angle θ, the read gradient Gread, the slice gradient Gslice and the global delays
tg1, ..., tg7.

tg1 =txR
2
11 + tyR

2
21 + tzR

2
31 (4.6)

tg2 =txR
2
12 + tyR

2
22 + tzR

2
32 (4.7)

tg3 =txR11R12 + tyR22R21 + tzR32R31 (4.8)

tg4 =txR11R13 + tyR21R23 + tzR31R33 (4.9)

tg5 =txR12R13 + tyR22R23 + tzR32R33 (4.10)

tg6 =txR
2
12 + tyR

2
22 + tzR

2
32 − txR2

11 − tyR2
21 − tzR2

31 (4.11)

tg7 =txR
2
13 + tyR

2
23 + tzR

2
33 (4.12)

For an exact derivation of these shifts see A.1.

4.1.2 Two-Spokes Estimation

Block and Uecker presented a simple method for the gradient delay estimation parallel to the
spoke as given in equation 4.3 [11]. The antiparallel spokes must be inverted to generate consis-
tent data, because the antiparallel spoke is in reverse order to reference spoke, see �gure 4.2.

Figure 4.2: Illustration for the generation of data consistency by �ipping the second, or the
almost antiparallel spoke.

The shift between two antiparallel measured spokes is calculated from their cross correlation,
which gives an accuracy of integral sampling points. However, using the translation property of
the Fourier transform, subpixel accurate shifts from the phase can be calculated. The Fourier
transform of the correlation C(Sθ1 , Sθ2) between the spoke Sθ1 with shift α1 from the reference
spoke S0 and the antiparallel spoke Sθ2 with shift α2 is called g and is:

g[k] = ω(α1+α2)kF [S0] [k]F [S0] [k] (4.13)

with the unit root ωjk as used for the discrete Fourier transform. In this simple example the
phase of the g-function depends only on the shift of the spokes. The phase of the g-function is
�tted by a weighted �t to a linear function without o�set f(k) = mk and from the slope m and
the de�nition of ωik the shift is extracted.

Shift = α1 + α2 = −mN
2π

(4.14)
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The shift estimation is even in the presence of noise very exact as demonstrated in �gure 4.3.
The calculation of this shift can be done for multiple spokes at di�erent angles. The parallel
shift of two antiparallel spokes is:(

∆k‖(θ) + ∆k‖(θ + π)
)

= 2GRead
γ

2π

[
cos2(θ)tg1 + sin2(θ)tg2 + 2 cos(θ) sin(θ)tg3

]
(4.15)

Equation 4.15 shows that the three global delays tg1, ..., tg3 in�uence the result of the gradient
delay estimation between two antiparallel spokes. In �gure 4.3 the excellent performance of the
shift estimation even in the presence of noise is demonstrated.
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Figure 4.3: Magnitude, phase and �t to the phase of the g-function from two antiparallel spokes
with di�erent noise levels. The magnitude has been scaled to 1.

4.1.3 Three-Spokes Estimation

In [11] an extension to the case where exactly antiparallel spokes are not available is mentioned.
This extension is explained here in more detail.

Figure 4.4: Reference spoke and its nearest neighbor spokes used for estimation of the gradient
delay.

Considering three spokes for the shift estimation, then two almost antiparallel spokes Sθ1 and
Sθ2 at angles θ1 and θ2 which encompass the reference spoke Sθ at angle θ as illustrated in �gure
4.4 are used. The Fourier transforms of the cross correlations C(Sθ, Sθ1)[k] and C(Sθ, Sθ2)[k] are
calculated and added subsequently, yielding with some approximations the following shift

∆ktheory = 4
(
tg1 cos2 θ + tg2 sin2 θ + 2tg3 sin θ cos θ

)
(4.16)

Equation 4.16 is the theoretical model, which the estimated shift from three spokes follows and
allows to �t the three global delays tg1, tg2, tg3 from the estimated shifts of all spokes.
However, during the previous calculations two weaknesses of the presented method appeared:
�rst the angular separation between the reference spoke and the two almost antiparallel spokes
must be small. And second, it was assumed that all, the shifted reference and the shifted almost
antiparallel spokes have the exact same shape determined by S0, which is in general not true.
For the general case the g-function is

g[k] = F [S0][k]F [Sθ+1][k]
[
ω(α+α1)k

]
+ F [S0][k]F [Sθ+2][k]

[
ω(α+α2)k

]
(4.17)
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which does not allow a straight forward calculation of the shift between the spokes. However,
if the angular separation between the spokes is small, simulations show that the shift can be
estimated correctly. For the simulation, a reference spoke at angle θ = 0 and two antiparallel
spokes Sθ1 and Sθ2 with an angular di�erence to the reference spoke ranging from 0− 90◦ were
selected from the numerical gradient delay phantom. The result is shown in �gure 4.5, where
the change of the estimated parallel gradient delay depending on the angular separation to the
reference spokes is plotted.

0 20 40 60 80
0.5

0.55

0.6

0.65

0.7

angle to reference spoke

es
t. 

pa
ra

lle
l s

hi
ft

Figure 4.5: Dependence of the parallel shift
estimation on the angular separation. Blue
crosses represent the estimated delays at
these angle deviations from the reference
spoke and the black line is the reference.
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Figure 4.6: In�uence of the perpendicular
shift to the estimation of the parallel shift.

4.1.4 Physical Gradient Delay Estimation

The parallel shift is not enough to fully describe the gradient delay. In �gure 4.6 the shift is
estimated from a noiseless phantom using three spokes without angular separation. Clearly for
the x- and y-axis the correct parallel delay is estimated, but if the perpendicular shift increases,
the parallel shift cannot be longer estimated accurately. However, if the slice orientation with
respect to the physical coordinate system is known, then the physical gradient delays can be
calculated by using only the �rst three equations from 4.6 - 4.12, rewritten in matrix formulation. tg1

tg2
tg3

 =

 R2
11 R2

21 R2
31

R2
12 R2

22 R2
23

R11R12 R22R21 R32R31

  tx
ty
tz

 = A

 tx
ty
tz

 (4.18)

By inverting A, the physical delays tx, ty, tz can be calculated, allowing the calculation of all
global delays using equations 4.6 - 4.12. tx

ty
tz

 =

 R2
11 R2

21 R2
31

R2
12 R2

22 R2
23

R11R12 R22R21 R32R31

−1  tg1
tg2
tg3

 = A−1

 tg1
tg2
tg3

 (4.19)

To further improve the estimation of the physical delays, the perpendicular shift is calculated
and then the parallel shift is re�tted with a weighting function from the perpendicular shift. The
used weighting function is

fw(∆k⊥) = exp

{
−
(
s
|∆k⊥ −∆k⊥,min|
|∆k⊥,max −∆k⊥,min|

)p}
(4.20)
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and produces a weighting between zero and one and the two parameters s and p determine the
weighting of the perpendicular delay. The behavior of the weighting function is presented in
�gure 4.7 based on simulations of the gradient delay phantom. The parameters for the weighting
function can be selected from �gure 4.8, e.g. s = 1.5 and p = 5. The trajectories calculated
with the physical gradient delay correction and the parallel gradient delay correction are shown
in �gure 4.9. The physical gradient delay correction estimates a trajectory almost identical to
the ideal trajectory, whereas the parallel gradient delay correction estimates a trajectory with
minor deviations.
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Figure 4.7: Weighting function for an axial and oblique slice orientation with parameters s = 1.5
and p = 5.
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(b) y-axis physical delay
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Figure 4.8: Estimated physical gradient delay values depending on the weighting function pa-
rameter s and p. Reference values are [∆Gx ∆Gy ∆Gz] = [0.7 0.4 0.2]

4.1.5 g-Function Calculation

The g-function can be calculated using either the complex values, magnitude values or squared
magnitude values of the spoke. With the complex values of the spokes, the real and imaginary
parts are separately correlated. This might be problematic because the phase in�uences the real
and imaginary parts and in MRI not only the spatial location but many other e�ects may be
encoded unintentionally into the phase.

The di�erent g-function calculations were compared based on data generated from the nu-
merical gradient delay phantom.

A comparison of the di�erent calculation methods is presented in �gure 4.10 and table 4.1 for
the x-y-slice and in �gure 4.11 and table 4.2 for an oblique slice orientation. The complex and the
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Figure 4.9: Trajectory deviations and possible corrections with the proposed method for an axial
and oblique slice.

squared magnitude calculation accurately reproduced the input delays for both slice orientations
as shown in tables 4.1 and 4.2. In the presence of noise the squared magnitude calculation is
superior to the complex calculation of the g-function in terms of the reduced scattering of the
individual estimated shifts per spoke, see �gures 4.10, 4.11. The reduced scattering indicates
that the squared magnitude estimation is more robust for higher radial undersampling factors.
The exact determination of the shift for any given spoke in a slice with oblique orientation
requires the knowledge of almost all global delays, however the presented shift estimation for
the individual spokes is only able to estimate the �rst three global delays. The estimated shifts
of the individual spokes follow the theoretical shift given only by the �rst three global delays
quite accurately (red crosses in �gures 4.10, 4.11) which is in case of an oblique slice orientation
incorrect. The usage of the physical gradient delay estimations allows for calculation of all global
delays and a correct estimation of the individual spoke shifts (red line in �gures 4.10, 4.11). The
estimation of the physical gradient delay of the slice selection gradient is not possible for axial
slices, because the slice selection gradient is not used during the data acquisition and only the
�rst three global delays are needed.

Method ∆Gx ∆Gy ∆Gz
Complex 0.713 0.442 0
Magnitude 0.597 0.354 0
Sq. Magnitude 0.713 0.387 0

Reference 0.7 0.4 0.2

Table 4.1: Physical gradient delay from the
three di�erent calculation methods for a
slice in the x-y-plane.

Method ∆Gx ∆Gy ∆Gz
Complex 0.732 0.403 0.167
Magnitude -0.072 0.090 1.632
Sq. Magnitude 0.690 0.392 0.225

Reference 0.7 0.4 0.2

Table 4.2: Physical gradient delay from the
three di�erent calculation methods for an
oblique slice orientation.

4.1.6 Gradient Delay Correction for Asymmetric Echoes

Asymmetric echo data is not symmetric around the echo center and contains fewer samples than
a symmetric echo acquisition with the same nominal in-plane resolution. The asymmetric echo
data is cropped to a reduced but symmetric echo on which the gradient delay is estimated. The
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(a) complex calculation of g
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(b) magnitude calculation of g
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Figure 4.10: Comparison of the shift and �ts for the parallel and perpendicular delay obtained
from three spokes in the presence of 10% noise with a total of 255 spokes for a slice in the
x-y-plane.
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(a) complex calculation of g
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(b) magnitude calculation of g

0 50 100 150 200 250 300 350

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

θ / degree

S
hi

ft 
∆ 

k 
in

 k
−

sp
ac

e 
po

in
ts

 

 

est 3 spokes parallel shift
est perpendicular shift
est parallel weighed shift
est perpendicular weighted shift
reference parallel shift
reference perpendicular shift

(c) squared magnitude calculation of
g

Figure 4.11: Comparison of the shift and �ts for the parallel and perpendicular delay obtained
from three spokes in the presence of 10% noise with a total of 255 spokes for an oblique slice
orientation.

asymmetry factor a is de�ned as

a =
NA

2NB
(4.21)

with NA and NB the sampling points before and after the echo, with the sampling point of the
echo center belonging to NB. With this de�nition 50% asymmetry corresponds to a symmetric
echo, while 0% represents a half-echo acquisition. The robustness with respect to reducing the
number of sampling points was evaluated from the numerical gradient delay phantom. The
estimation of the physical delays is very robust as demonstrated in �gure 4.12. The estimated
global delays from measured asymmetric data with di�erent asymmetry factors are shown in
�gure 4.13. The change in the delays with increasing asymmetry is unknown and subject to
further research. The quality of the reconstructed images improved with the application of the
gradient delay correction, see �gure 4.14. The arising spurious signal intensity outside the object
was successfully removed.
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Figure 4.12: Gradient delay estimation with
di�erent number of sampling points. The
estimation is very stable, even for a low
number of sampling points. The k-space
data consisted of 75 spokes with a noise
level of 0.1%.

0.10.150.20.250.30.350.40.450.5
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

co
ef

fic
ie

nt
 v

al
ue

asymetry factor

 

 

c1
c2
c3
c4
c5
c6
c7

Figure 4.13: Estimation of the global delay
for di�erent asymmetric sampled echoes.

Figure 4.14: E�ect of the gradient delay correction on the reconstruction for di�erent asymmetry
factors (upper right corner). The top row shows image reconstructions without any gradient delay
correction and the bottom row shows the image reconstructions with gradient delay correction.

4.1.7 Simulations

Simulations were performed to evaluate the in�uence of noise and e�ects of azimuthal under-
sampling on the gradient delay phantom In �gure 4.15 the gradient delay estimation for di�erent
noise levels and number of spokes is shown. The gradient delay estimation is very robust with
respect to noise and degree of undersampling, i.e. the number of spokes available. In �gure 4.16
reconstructions of the gradient delay phantom with di�erent gradient delay correction methods
are presented. The full gradient delay correction is close to the perfect gradient delay correction.

35



4.1. THEORY AND RESULTS

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative noise level

G
ra

di
en

t d
el

ay

 

 
dG

x

dG
y

dG
z

est dG
x

est dG
y

est dG
z

(a) 75 Spokes

0 100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Spokes

G
ra

di
en

t d
el

ay

 

 
dG

x

dG
y

dG
z

est dG
x

est dG
y

est dG
z

(b) 5% noise level

Figure 4.15: Estimated Physical Gradient Delay values for 75 spokes and di�erent noise levels
(4.15a) and with respect to the available number of spokes and for noise level of 5% (4.15b).

Figure 4.16: NLINV image reconstruction with di�erent gradient delay corrections from data of
the gradient delay phantom with 19 spokes, no noise. Top row shows the reconstructed data
for di�erent correction methods (from left to right: reference, no correction, parallel correction,
parallel and perpendicular correction, ideal correction). In the bottom row the di�erence to the
reference for the respective correction method is displayed.

4.1.8 Time Evolution

Temperature changes in the gradient coils may causes the gradient delay to vary over time [83].
Therefore, measurement of 60 seconds duration of an axial slice was performed to investigate
gradient delay variation over time. The results for the physical gradient delays are shown in
�gure 4.17, but due to the axial slice orientation the z-axis delay cannot be estimated. However,
the z-axis delay is not expected to vary signi�cantly stronger than the x- and y-gradient delays
[84]. The relative change over the time is for the x-axis 11% and 4% for the y-axis, which seem
quite a lot but the absolute change is one order of magnitude smaller than the delay. Due to the
small absolute changes in the gradient delay, it is su�cient to estimate the gradient delay at the
beginning of the measurement and the same correction to all succeeding frames, at least for the
next 60 seconds.
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Figure 4.17: Estimated physical delays over a time of 60 seconds. The z-delay cannot be estimated
because the slice is axial oriented.

4.1.9 Multi-Echo Measurements

Mutli-echo measurements were acquired to investigate the possible di�erences of the gradient
delays between succeeding echoes. Applying the gradient delay estimation to di�erent echoes
yields a di�erent gradient delay between the odd and even echoes as summarized table 4.3. The
di�erent gradient delays between odd and even echoes generates a need for an individual gradient
delay correction for each echo. The individual gradient delay correction does indeed improve the
even echoes as demonstrated in �gure 4.18. The identical mutli-echo gradient delay correction
uses the estimated delays from the �rst echo for all echoes while with the individual correction
each echo is individually corrected. Both methods take advantage of the complementary turns
for gradient delay estimation.

Echo tx ty tz
1 -0.14 -0.70 0
2 -0.06 0.42 0
3 -0.13 -0.70 0
4 -0.08 0.40 0
5 -0.18 -0.73 0

Table 4.3: Estimated physical gradient from an axial slice.

With increased undersampling the gradient delay estimation becomes more di�cult, because
fewer spokes are available for the estimation as well as the angular separation between the spokes
increases. In �gure 4.18 the e�ect of undersampling for the gradient delay estimation with odd
and even echoes is presented, the number in the upper right represents the spokes per turn.
NLINV reconstructions with 41 spokes and more spokes show no artifacts independently of the
used multi-echo gradient delay correction method. Image reconstructions with the identical
gradient delay correction method and fewer then 21 spokes show artefacts for the even echoes,
which are successfully reduced with the individual gradient delay correction. Using only 7 spokes
per turn for image reconstruction and 35 spoke for gradient delay estimation is at the lower limit
of what is possible and challenging to both image reconstruction and gradient delay estimation.
The di�erence of the gradient delay between the odd and even echoes does not have physical
reason but is caused by the di�erent trajectories between the echoes. The reconstruction however,
uses the same trajectory for odd and even echoes, which leads to di�erences in the estimated
gradient delay values. The inclusion of an individual gradient delay correction is a possible way
to compensate for the wrong trajectory used in the reconstruction for the even echoes. Because
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Figure 4.18: Comparison of image reconstructions with di�erent gradient delay correction meth-
ods for representative odd and even echoes. The upper left number represents the number of
spokes from which the image is reconstructed. Note the increasing streaking artifacts for the
even echo.

the physical gradient delays should not change between the echoes, the trajectory for even echoes
should be corrected in the reconstruction.

4.1.10 Motion

Motion in�uences the estimation of the gradient delay, as displayed in �gure 4.19 where the
delay is estimated from the individual frames of a moving object. The change of the gradient
delays is caused by the correlation of di�erent projections, breaking the assumption that the
spokes are alike. Similar to the angular separation e�ect small di�erences are not a problem, but
large di�erences signi�cantly alter the gradient delay estimation and produce image artifacts.
However, the induced changes in the gradient delay values do not re�ect an actual change of the
gradient delay. The changes are merely a motion artifact. In order to obtain the best possible
image quality, the gradient delay should be estimated from data containing enough spokes and
only negligible motion.

4.2 Discussion

In this chapter the gradient delay model [77] with respect to the parallel, perpendicular and
z-shift was presented. Based on the estimation of the parallel delay [11] it was shown that the
physical delays and all global delays can be calculated. The improved accuracy of the trajectory
calculation, as well as the improvement in image quality was demonstrated in a numerical gradient
delay phantom and in real data. Multi-echo acquisitions have di�erent trajectories for the odd
and even echoes which is not considered during the gradient delay estimation, leading to di�erent
gradient delay values for odd and even echoes which required individual correction of each echo.
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Figure 4.19: Shifts of the spokes and the estimated global delays for a knee measurement where
the knee moves. The global delays are estimated from the spokes of each frame. The black lines
mark the beginning of a new frame.

Also the e�ects of undersampling along the radial and azimuthal direction, of asymmetric echo
sampling, of noise and of motion were investigated. The presented method is very robust with
respect to radial and azimuthal undersampling, asymmetric echo sampling and noise. Motion
during the data acquisition interferes with the gradient delay estimation and possibly wrong
values are estimated. The in�uence of the perpendicular shift is negligible for an angular spacing
of spokes of up to 5◦ and increases afterwards.

The presented method is computationally very e�cient but calculation of physical delays
requires knowledge about the slice orientation. Other trajectory correction methods estimate the
physical delays from calibration measurements [84, 85] or measure the trajectory directly [86�89].
While calibration measurements and trajectory measurements can probably estimate the physical
gradient delays as well as the trajectory with greater accuracy than the presented method,
an extra measurement is usually not desired. Recently, an iterative gradient delay correction
was proposed [90] which shifts the data from individual projections until all inconsistencies are
removed. The iterative gradient delay correction is e�ective but computationally intense. Ianni
et al. [91] included the gradient delay into the model of a model-based reconstructions and
obtained improved images, at the expense of long computation time.

The temporal constant gradient delay is estimated from initial data and used for trajectory
correction throughout the measurement. Such initial data could be replaced by measurements
along the physical gradient axes from which each physical gradient delay may be estimated
directly [11].

Apart from the displayed improvements in image quality by reducing streaking artifacts, a
correct gradient delay estimation becomes necessary for quantitative and o�-axis non-Cartesian
measurements [92�95].

With only some minor technical changes the presented gradient delay correction may be
applied to radial echo-planar imaging as presented by Silva [96]. However, care has to be taken
that the shape of the correlated echoes is not to di�erent, preventing erroneous calculation.

39



4.3. CONCLUSION

4.3 Conclusion

The presented method allows for a gradient delay correction for arbitrary slice orientations almost
independent of radial and azimuthal sampling. This improves the image quality buy reduction of
artefacts. The proposed method also behaves robustly in the presence of noise and little motion
and can be applied to multiple echoes.
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Chapter 5

Real-Time T ∗2 Mapping

In gradient echo imaging the transverse magnetization decays with T ∗2 , which depends on the
tissue speci�c parameter T2 and the magnetic �eld inhomogeneity. Because T ∗2 depends on
the magnetic �eld inhomogeneity, T2-weighted imaging is more widespread than T ∗2 imaging.
However, T2-weighted imaging requires longer acquisition times for single frames.

Similar to T2, T
∗
2 represents normal or abnormal microstrucures [13�15] and already serves

as a biomarker for liver iron concentration to guide chelation therapy in transfusion dependent
patients [19, 20]. Moreover, T ∗2 provides access to the relative oxygenation of blood [16, 17,
97�99] and in consequence to the perfusion of the tissue, which is used for functional MRI [18].

Myocardial perfusion measurements have been tried for rabbits in vivo and ex vivo using T2

changes and/or the BOLD e�ect [99�101]. Previous attempts to measure myocardial perfusion
in humans determined T ∗2 or the BOLD e�ect [102, 103]. Wendland was able to detect changes
in myocardial signal during breath hold [104], suggesting a dependence of myocardial signal
intensity on the oxygenation level of blood. Li determined the T ∗2 of arterial and venous blood
to be 199 ± 8 ms and 108 ± 6 ms, respectively [97, 98]. However, the oxygenation of blood is
not the only parameter that may determine cardiac perfusion. The vessel volume changes due to
the contraction of the heart as Judd and Levy found from arrested and dissected hearts during
diastole and systole [105].

Cardiac perfusion measurements using real-time T ∗2 mapping has not yet been tried, because
it poses major di�culties for data acquisition and image reconstruction. A su�cient number
of echoes to estimate T ∗2 must be acquired in short time, so that the cardiac cycle is sampled
accurately. Both is possible with a radial FLASH sequence with extreme undersampling in
combination with an advanced image reconstruction method such as NLINV.

The �rst section of the chapter presents possible decay and �tting methods and discusses
their suitability for real-time T ∗2 mapping. Simulations are performed for a T ∗2 decay model to
evaluate the precision and accuracy of the �t. In the 'Motion Phantom' section, single-echo and
multi-echo measurements are presented and discussed. The following sections present the results
of the real-time T ∗2 mapping of the human heart and possible interpretations.

5.1 T ∗2 Models and Fitting Methods

Depending on the imaged material and its structure, not only a single but multiple decay com-
ponents appear within a voxel [106�109]. However, such multi-exponential decays are usually
approximated by a single exponential decay, which is justi�ed, because if the multiple decay
parameters are similar, a weighted average with an e�ective T ∗2 decay is �tted. Additionally,
if only few echoes are acquired, the estimation of multiple parameters using non-linear �tting
becomes increasingly di�cult. The common T ∗2 decay �tting models are [48, 49]:
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• Simple Exponential Model (S-Exp):

S(t) = S0 exp{− 1

T ∗2
t} (5.1)

with the initial signal intensity S0 at time t = 0 and the decay time T ∗2 .

• Exponential model with constant (C-Exp):

S(t) = S0 exp{− 1

T ∗2
t}+ C (5.2)

with the same de�nitions as for the S-Exp model plus the o�set C.

• Bi-exponential model (Bi-Exp):

S(t) = S0,1 exp{− 1

T ∗2,1
t}+ S0,2 exp{− 1

T ∗2,2
t} (5.3)

with the two signal intensities S0,1 and S0,2 at time t = 0 and the two decay parameters
T ∗2,1 and T ∗2,2. For �tting the myocardium, 90% percent of the initial signal intensity is
accounted to the myocardium (S0,1 = 0.9S0) and 10% to the blood in the myocardium
(S0,2 = 0.1S0) due to the vascularization of the heart [104].

While nonlinear �tting algorithms are capable to �t all of the presented �tting models, the S-
Exp model and after subtraction of C the C-Exp model can be linearized and �tted with the
linear least-squares routine presented in chapter 3.5.3. The bi-exponential model can only be
�tted non-linearly and the �t resulted in inconclusive or unrealistic results given the acquired
data. Therefore and due to the long duration of the non-linear �tting procedure this model was
discarded. Fitting times for a complete frame are below 0.2 seconds using the least squares �t.

T ∗2 results with high precision and accuracy are obtained by calculating the squared magnitude
of each measurement point, subtracting the mean noise level from each measurement point and
�t the data with a nonlinear mono-exponential algorithm with initial values from a linear �t
[110]. However, the long calculation period of the nonlinear �tting routine favors the linear
�tting routine for large data sets as measured in real-time T ∗2 mapping. The linear �tting results
correlate with the nonlinear �tting results [111, 112] yielding, however, reduced precision and
accuracy [110].

Advantages and disadvantages between pixelwise or ROI analyses have been investigated,
yielding a strong correlation between ROI �tting and pixelwise �tting [111, 113]. However,
the pixel-based �tting approach produces less variation than ROI �tting, because the mono-
exponential model matches better to pixelwise data.

In conclusion, for real-time T ∗2 mapping the linear least-squares �tting approach must be
used. However, if the analysis is restricted to a ROI, the nonlinear �tting approach may be
applicable.

5.2 Simulations

Simulations to test the accuracy and precision of the least-squares T ∗2 �t in the presence of noise
and di�erent echo train lengths were performed. Data were simulated using the S-Exp model with
S0 = 1 and T ∗2 ranging from 10-60ms. Gaussian noise with zero mean and peak amplitudes of 0.05
(5% noise level) and 0.1 (10% noise level) was added to the data. The signal decay was simulated
for NEcho ∈ {5, 9, 13, 19, 25} echoes with an echo spacing of ∆TE = 0.96ms. The simulation
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5.3. MOTION PHANTOM MEASUREMENTS

last TE / ms Number TEs T ∗2 reference / ms T ∗2 �t with T ∗2 �t with
10% noise / ms 5% noise / ms

5.20 5 10 10.2± 1.5 10.1± 0.7
5.20 5 20 21.2± 5.3 20.2± 2.4
5.20 5 30 33.9± 14.8 30.8± 5.1
5.20 5 40 48.1± 146.8 41.8± 9.9
5.20 5 50 59.1± 774.5 54.2± 17.3
5.20 5 60 199.6± 4530.0 68.4± 28.8

9.04 9 10 10.0± 1.0 10.0± 0.4
9.04 9 20 20.2± 3.0 20.0± 1.0
9.04 9 30 30.6± 4.4 30.1± 2.1
9.04 9 40 41.1± 7.5 40.3± 3.7
9.04 9 50 52.3± 13.3 50.5± 5.7
9.04 9 60 65.0± 24.9 51.3± 8.2

18.64 19 10 9.9± 0.5 10.0± 0.3
18.64 19 20 19.9± 1.0 20.0± 0.5
18.64 19 30 30.1± 1.7 30.0± 0.9
18.64 19 40 40.1± 2.6 40.0± 1.4
18.64 19 50 50.2± 3.9 50.1± 2.0
18.64 19 60 60.7± 5.6 60.2± 2.7

Table 5.1: Simulation results for di�erent echo train lengths �tted to decays following the S-Exp
model with di�erent reference T ∗2 value and two noise levels.

was executed 1000 times for each reference T ∗2 value, adding di�erent noise for each run. Each
simulated decay was �tted linearly and the average and standard deviation of the obtained T ∗2
and S0 values were calculated. The results are given in table 5.1 as mean± standard deviation.

The results of the linear T ∗2 �t are generally accurate and increase in accuracy and precision
with increasing echo train length. If the last echo time TEN > 1

3T
∗
2,ref the standard deviations are

below 5% and the �t is considered to be precise. The results in table 5.1 show an overestimation
of T ∗2 values for TEN < T ∗2,ref and an underestimation for TEN ' T ∗2,ref.

In conclusion, �tting results with T ∗2 < 3 · TEN have an accuracy below 2ms and precision
of 5ms, while �tting results with T ∗2 > 3 · TEN may be accurate but are not very precise.
Furthermore, the reliability of the �tted T ∗2 values increases with increasing echo train length or
for shorter true T ∗2 values.

5.3 Motion Phantom Measurements

The motion phantom with a petri-dish of 9 cm diameter as described in section 3.6.2 is used for
the measurements presented in this section.

The NLINV image reconstruction jointly estimates spin density and coil pro�les [6, 7]. A
quantitative comparison between two NLINV reconstructions requires the multiplication of the
spin density with the coil pro�les, otherwise the di�erence may not only be attributed to di�er-
ences in the data but to di�erences in the image reconstruction. The multi-channel data obtained
after multiplication may be combined using the root sums of squares over the channels which
is SNR optimal [114]. Furthermore, the quantitative comparison between two real-time series
requires removal of the physical coil weighting, which is possible with an intensity correction.
The intensity correction is performed on all measurements before the data is analysed.
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5.3. MOTION PHANTOM MEASUREMENTS

Figure 5.1: Two views of the phantom with the imaging slice.

5.3.1 Single-Echo Measurements

The experimental setup of the agarose disk in the motion phantom is sketched in �gure 5.1. The
imaging slice is oriented parallel to the rotation axis yielding a through plane rotation of the
agarose disk. This through plane motion is analysed.

The isochromats within a radius of half the slice thickness stay inside the slice during rotation,
while the other isochromats leave and re-enter the slice. This leads to the de�nition of two regions,
the inner region Rin := {Isochromats with distance to rotataion axis ≤ Slice Thickness/2} and
the outer region Rout := {Isochromats with distance to rotation axis > Slice Thickness/2}.

Temporally and spatially averaged signal intensity pro�les of the agarose disk for �ve di�erent
velocities are displayed in �gure 5.2. The measurements show a low signal intensity in the center
of the pro�le and increasing signal intensity towards the outer parts of the disk. A comparison
between the signal intensity pro�les for the rotating and for the static phantom is shown in �gure
5.3.

The spatial variations of the signal intensity displayed in �gures 5.2 and 5.3 are caused by the
competitive e�ects of in�ow and motion dephasing of the isochromats. The isochromats move
along the x- and z-direction (see �gure 5.1) and dephase during the slice select gradient. A
possible dephasing during the read-out gradient would be rephased with a second echo. The
performed dual-echo measurements did not show such a rephasing. After the isochromats have
left the slice the longitudinal magnetization recovers, producing higher signal intensity as the
isochromats re-enter the slice on the other side of the rotation axis. The time an isochromat
spends in the slice is given by t1 = s

ωr with the slice thickness s, the rotational velocity ω and the
distance from the rotation center r. The phase φ an isochromat acquires due to the rotational
motion approximated as linear motion through the slice is for constant gradients G

φ(t1) =
1

2
Gωr · s2

ω2r2
=

1

2

Gs2

ωr
. (5.4)

Therefore the dephasing scales with ∝ 1
ωr and is less at the outer parts of the disk for a given

rotational velocity, as demonstrated in �gure 5.2. However, due to the approximation of a
constant linear velocity, equation 5.4 may break down close to the rotational axis.

The signal intensity dependence of the parameters slice thickness, repetition time and �ip
angle was analyzed, giving consistent results, explained by in�ow and dephasing. With an
increased slice thickness the 'dip' increases in width since the area in which the isochromats
experience no in�ow is increased, see �gure 5.3. A longer TR increases the incoherent steady
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Figure 5.2: Velocity dependence of the signal intensity (left) and a representative image frame
(right).
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Figure 5.3: Intensity corrected column of a frame with and without rotating disk for two di�erent
slice thicknesses.

state signal, while the dephasing remains unchanged, leading to an apparent reduction of the
dip in the normalized images, compare to �gure 5.4. The �ip angle changes the in�uence of
the T1-weighting of the in�ow e�ect. Up to the Ernst angle, the signal increases, since the
incoherent steady state increases, as seen in comparison with the static data, but not visible in
the normalized static or dynamic data. Instead of the signal increase in the outer region, the 'dip'
becomes deeper, see �gure 5.5. With extremely low �ip angles the T1-weighting and therefore
the in�ow e�ect vanishes, yielding identical signal intensities for the static and dynamic case, see
�gure 5.5.

5.3.2 Multi-Echo Measurements

The in�uence of motion on multi-echo measurements was investigated with dynamic (disk is
rotating) and static (disk is not rotating) measurements. Each measurement was acquired with
81 spokes per frame, to ensure that no undersampling artefacts contaminate the signal decay
after image reconstruction. A measurement with slice orientation perpendicular to the y-axis,
gives the T ∗2 distribution inside the disk, see �gure 5.6.

The asymmetry of T ∗2 values along the x- (sagittal) and z-axis (transversal) is due to the
inhomogeneous magnetic �eld. None of the tested shim versions could improve the homogeneity
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Figure 5.4: TR in�uence on the dip (left) in comparison to the static steady state (right).
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Figure 5.5: Flip angle measurements. Left are the di�erent �ip angles compared between each
other and on the right side with respect to their static signal intensity.

of the magnetic �eld inside the disk. The T ∗2 measurements of the static and rotating disk
have been performed with a sagittal slice orientation (y-z-plane in �gure 5.6). For each of the
rotational frequencies (0.24, 0.82, 1.25Hz) 20 frames have been acquired and the T ∗2 has been
estimated for each frame and subsequently averaged for better SNR. The spatial dependence of
the averaged T ∗2 values for each rotational velocity is shown in �gure 5.7, where a shortening
of T ∗2 in the outer parts of the disc with increasing rotational velocity is visible. The major
reduction of T ∗2 is caused by the motion of the isochromats through the inhomogeneous magnetic
�eld, as demonstrated in �gure 5.7. A minor reduction of T ∗2 is caused by dephasing due to
motion along the read-out gradients, which is also visible in �gure 5.7 as further shortening of
T ∗2 with increasing rotational velocity. Furthermore, the T ∗2 reduces with increasing distance from
the rotational axis, because the velocity increases, see �gure 5.7. As the isochromats move from
the slice outwards, the velocity component along the x-axis increases and so does the dephasing,
leading to a loss of signal. Consequently, longer echo trains will produce even more shortened
T ∗2 values.
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Figure 5.6: T ∗2 distribution inside the
disk for the motion phantom (static).
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Figure 5.7: T ∗2 pro�les through the agarose
disk of the motion phantom at di�erent ro-
tational velocities.

5.4 Cardiac Measurements

Although many researchers studied cardiac T ∗2 values, no methodological standard for T ∗2 mapping
has been developed. Furthermore, Positano showed that variations of T ∗2 exist along the circum-
ference of the myocardium as well as from base to apex [49]. However, he found a correlation of
mid-ventricular T ∗2 values with the global T ∗2 , which was con�rmed by Yamamura [115], suggest-
ing the septum in a mid-ventricular short-axis slice as an indicator for global cardiac T ∗2 values.
Besides the correlation of septal T ∗2 with the global T ∗2 , the motion of the septum due to the
heartbeat and breathing is smaller than in other cardiac regions. The septal motion is further
reduced during breathhold measurements allowing easy ROI positioning and analysis without
complicated pixel tracking algorithm in cardiac real-time T ∗2 mapping. These factors render the
septum as an optimal choice for cardiac T ∗2 measurement and analysis.

Literature T ∗2 values for the septum in a mid-ventricular slice are given in table 5.2. Most
of them represent healthy subjects. A cut-o� at 20ms is used to distinguish between healthy
subjects and subjects with iron overload [116].

Reference Pathology Field Strength Cardiac T ∗2
Reeder 1998, [117] none 1.5T 26-41ms
O'Regan 2008, [118] none 3.0T 27.3 ± 6.4ms
Anderson 2001, [119] ventricular dysfunction 1.5T < 20ms
Anderson 2001, [119] none 1.5T 52 ± 16ms
Pepe 2006, [120] none 1.5T 36.4 ± 6.7ms
Di Tucci 2008, [121] anemia 1.5T 5.6 - 58.7ms
Positano 2007, [49] none 1.5T 38.6 ± 7.2ms
Smith 2011, [122] thalassaemia major 1.5T 4.5 - 43.8ms

Table 5.2: Cardiac T ∗2 values from di�erent studies.

As presented in section 5.2, depending on the sampling length of the decay, only a certain
range of T ∗2 values can be reliably estimated. The desired long echo train contrasts the high
temporal resolution required to resolve the cardiac phases properly [8]. A possible balance
between both requirements is achieved by strong undersampling, which, however, reduces the
SNR of the acquired data.

A region of interest with �xed position and small size to stay within the myocardium is
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selected for analysis, see �gure 5.8a. Keeping the ROI small and distant to the myocardial
borders, reduces the in�uence of the magnetic susceptibility changes from the blood pool to
the myocardium on T ∗2 estimation. The slice thickness for multi-echo measurements has been
increased to 8 mm to improve the SNR of each echo and therefore the T ∗2 estimation. The
measurement parameters are summarized in table 5.3.

Parameter Single Echo Multi-Echo

Resolution / mm2 2.0 x 2.0 2.0 x 2.0
Slice Thickness / mm 6 8
TE 1 / ms 1.29 1.29
∆TE / ms 0.96
TR /ms 2.00 5.96, 9.68, 9.68, 11.60
Number of Echoes 1 5,7,9,11
Number of Spokes 15 9,9,7,7
Temporal Resolution / ms 30 53.64, 87.12, 67.76, 81.20
Flip Angle / degree 8 15,17
Bandwidth / Hz·Px−1 1953 1953
FoV / mm 256 x 256 256 x 256
Breathhold yes yes

Table 5.3: Measurement parameters for the human heart.

After data acquisition a reordering of image frames according to their ECG time stamp may
be performed, yielding an 'arti�cial heart cycle' with extremely high temporal resolution, up to
2.5ms. Images with the same ECG time stamp are averaged during the arti�cial heart cycle
construction.

Binning and subsequent averaging of the arti�cial heart cycle yields an increase in SNR at
the drawback of reduced apparent temporal resolution. The binning yields a temporal resolution
corresponding to the width of the bins and inherently assumes that the cardiac cycles are similar.
The increase in SNR is required to compensate for the small ROI and the strongly undersampled
data.

5.4.1 Single-Echo Measurements

A representative temporal course of the signal intensity within a ROI of a single-echo measure-
ment is shown in �gure 5.8a. The signal intensity executes a periodic pattern with frequency of
the heartbeat, see �gure 5.8b. An example for an arti�cial heart cycles is displayed in �gure 5.8c,
where the signal intensity of the ROI is displayed. The outliers are due to the too short prepara-
tion scans where the magnetization has not reached the steady state when the image acquisition
starts. The signal increase during systole is because the heart contracts and simultaneously moves
up, bringing unsaturated isochromats into the imaging slice. Afterwards, during diastole relaxes
the heart and the partly saturated isochromats move back into the original position within the
imaging slice.

5.4.2 Multi-Echo Measurements

Representative T ∗2 maps of a full cardiac cycle obtained by pixelwise linear least squared �t to the
S-Exp model from a measured dataset with 9 echoes, 7 spokes and further parameters as given
in table 5.3 are shown in �gure 5.9. To increase the �tting performance, a mask is calculated
using Otsu's method [123] on the root sum of squares of all echoes. After �tting, the range of
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Figure 5.8: ROI (a) and signal intensity of the ROI over time (b). In (c) the data is sorted
according to the ECG time stamp into an arti�cial heart cycle and binned with a bin size of
30ms.

the �tted T ∗2 values is restricted to the interval [0, 100]ms excluding values with low accuracy
and precision.

Figure 5.9: T ∗2 maps of a full cardiac cycle from a volunteer measurement. Temporal resolution
is 67.76ms per frame and the colorbar represents the T ∗2 values in milliseconds.

Quantitative results for a manually selected ROI (see �gure 5.10a) in the septum are presented
in �gure 5.10. The pixel values in the ROI were averaged yielding only a single exponential decay,
which allows the use of the more accurate non-linear �tting algorithms. Sub�gures 5.10b, 5.10d,
5.10c and 5.10e show the �tting results for S0, T

∗
2 and their Fourier transforms, respectively. The

spectrum of the signal intensity shows a peak at around f = 1.1Hz, representing the average
heart beat. The T ∗2 time series does not show such a clear modulation as the signal intensity,
however, a modulation is visible. The spectrum of the T ∗2 time series shows a peak at the average
heartbeat frequency as obtained from the signal intensity spectrum, showing that periodically
T ∗2 changes exist within the ROI.
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Figure 5.10: Fitting results of the ROI in 5.10a and their Fourier transforms.

5.4.3 Fourier Analysis

Around 160 measurements from 12 volunteers with the parameters given in table 5.3 have been
performed. For each measurement a ROI was manually selected and �tted nonlinearly to the
S-Exp model. The Fourier transforms of the S0 and T ∗2 time series are displayed in �gure 5.11.
All S0 and T ∗2 spectra are normalized to 1 for better comparison. Since S0 changes periodically
with the heart beat, a strong peak in the S0 spectrum representing the heart rate is visible,
see �gure 5.11. The spectrum of T ∗2 has multiple peaks of di�erent amplitudes but shows also
a peak at the same frequency as the heartbeat. The peaks are observed at the same position
independent of the measured volunteer, the number of echoes or the acquisition time, see �gure
5.11. The measurements show that cardiac T ∗2 is modulated with the heartbeat.
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Fourier Transform of S0 Fourier Transform of T ∗2

Figure 5.11: Spectra of the �tted signal intensity S0 and the T ∗2 decay for 12 volunteers. The
data acquisition parameters are 5 echoes / 9 spokes (top row), 7 echoes / 9 spokes (second row),
9 echoes, 7 spokes (third row), 11 echoes , 7 spokes (bottom row). Both, S0 and T

∗
2 have a peak

at the same frequency around the typical heartbeat frequency of 1 Hz.
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5.4.4 Binning

Although the temporal resolution of the cardiac T ∗2 measurements is already between 50 and
100ms, the temporal resolution is not high enough to clearly resolve cardiac T ∗2 variations above
noise. An even higher temporal resolution is achieved by sorting the �tted T ∗2 values into an
arti�cial heart cycles. The following binning with a width of 50ms increases the SNR of the
arti�cial heart cycle but reduces the temporal resolution. The results are presented in �gure
5.12.

(a) 5 echoes (b) 7 echoes

(c) 9 echoes (d) 11 echoes

Figure 5.12: Binned T ∗2 values over the arti�cial heart cycle. Each color represents a di�erent
volunteer with multiple measurements.

The interpretation of the binned data is di�cult, because all estimated T ∗2 values larger
than 50ms are unreliable due to the short sampling of the decay, especially with only 5 echoes.
However, the measurements with 5 echoes exhibit the highest temporal resolution and thereby
yield the most accurate resolution of cardiac phases. The T ∗2 variation during the arti�cial
heart cycles are highly reproducible and independent of the volunteer. The estimations from the
measurements with 5 echoes show a clear variation of T ∗2 . The same variation is also visible
in measurements with more echoes but the reduced temporal resolution smooths the curves.
However, some binned arti�cial heart cycles show only minor variations of T ∗2 , which may be
attributed to noise.
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5.5 Discussion

Methods, confounding factors and results for cardiac T ∗2 mapping in real-time were presented.
Linear least-squares �tting is advantageous over nonlinear �tting for real-time T ∗2 mapping be-
cause the �tting is fast, avoids problems with the initial guess and avoids convergence into local
minima. The reduction in precision and accuracy is acceptable, due to only minor di�erences
to the nonlinear �tting [111, 112]. The accuracy and precision of the linear least-squares �tting
were evaluated with a simulated mono-exponential decay. The simulations showed that up to
three times the last echo time the T ∗2 estimation is accurate within 2ms and precise to 5ms.
However, up to four times the last echo time, the accuracy is still below 2ms, while the precision
has reached an almost unacceptable level of about 16%. Therefore, four times the last echo time
is considered as the maximum T ∗2 value which can be estimated.

Single and multi-echo measurements with the motion phantom have been performed to eval-
uate the in�uence of motion on the signal. The single-echo measurements of the phantom showed
a signal increase caused by the T1-weighted in�ow e�ect as well as signal decrease due to de-
phasing during the slice selection gradient. Both e�ects in�uence the �nal signal intensity of the
measurement and the strength of each e�ect depends on the distance from the rotational axis,
which determines the velocity and time outside the imaging slice.

The static T ∗2 measurements of the agarose disk showed an inhomogeneous T ∗2 distribution,
which could not be homogenized by the shim. T ∗2 decreases in the outer regions of the agarose disk
with increasing rotational velocity. The reduction has been qualitatively identi�ed as dephasing
by motion through inhomogeneous magnetic �elds as well as dephasing during the read-out gradi-
ent caused by the motion along the x-gradient. The dephasing by motion through inhomogeneous
magnetic �elds is stronger than dephasing produced by motion along the gradients.

The cardiac single-echo measurements showed a through-plane motion of the heart, which
allows an average heart beat determination from the acquired real-time data. The septum has
been selected as ROI for analysis in the cardiac multi-echo measurements because the septal
T ∗2 correlates with the global cardiac T ∗2 [49, 115]. Furthermore, the motion of the septum is
reduced during breathhold measurements, therefore being an optimal ROI for cardiac T ∗2 analysis.
The inherently low SNR of the cardiac multi-echo real-time acquisitions is increased with a ROI
analysis. Furthermore, the �tted T ∗2 are sorted into an arti�cial heart cycle with extremely high
temporal resolution and binned to improve the SNR even further.

The measured T ∗2 values in the septum are in general agreement with the literature. The
acquired data shows changes in the estimated T ∗2 with the periodicity of the heartbeat and
di�erences of T ∗2 between the post-systole and the end phase of the (arti�cial) cardiac cycle.
These results suggest an in�uence from blood volume and blood oxygen level. However, temporal
resolution, SNR and accuracy of the cardiac T ∗2 measurements and �ts are not high enough to
exactly determine cardiac T ∗2 variations. Furthermore, the T ∗2 estimation may be biased by
cardiac motion, as demonstrated with the motion phantom.

5.6 Conclusion

Real-time T ∗2 measurements with a temporal resolution below 100ms are possible. However,
care has to be taken that the signal decay is sampled long enough and that motion does not
induce a T ∗2 shortening. Cardiac T ∗2 measurements show T ∗2 changes with the periodicity of the
cardiac cycle. These changes in T ∗2 may be attributed to blood oxygenation and volume changes
as well as to cardiac motion. However, the exact cause is not yet determined. To investigate
cardiac T ∗2 further, faster acquisition methods like a multi-echo multi-spokes acquisition, higher
�eld strengths or model-based approaches are needed. Furthermore, a more detailed analysis of
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cardiac motion and its in�uence on T ∗2 is also needed.
Other applications, where the T ∗2 changes happen on a slower time scale are feasible. Such

studies include brain T ∗2 changes to blood oxygenation and volume or cartilage T ∗2 measurements
in the knee [13, 124] or calf muscles [125, 126] at rest and during motion.
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Chapter 6

Water-Fat Separation in Real-Time

MRI

Water-fat separation or suppression is common in clinical routine, because fat looks very bright
on T1-weighted images and can obscure pathologies. While MRI examinations usually require the
absence of motion due to Cartesian sampling, Siemens recently presented radial data acquisitions
which are more robust with respect to motion [127]. However, the advent of real-time MRI
triggers the investigation of water-fat separation with respect to imaging of moving objects. The
investigation includes the use of saturation pulses, the Dixon and other multi-echo methods as
well as single-echo water-fat separation.

The �rst section starts with a review of the chemical shift theory and its e�ects on MR images.
In the second section, the application of a saturation pulse is presented, followed by a novel water-
fat separation approach using repetitive saturation pulses and a correlation analysis. The next
section presents the classical Dixon method applied to real-time data, before the suitability of
echo-time independent multi-echo water-fat separation methods for real-time MRI is investigated.
The chapter proceeds with some single-echo water-fat separation methods and the presentation
of the confounding factors for fat quanti�cation. The following two sections explore the spatial
and temporal resolution limits as well as water-fat separation at 7T.

6.1 Theory

The separation of water and fat is possible because of slightly di�erent resonance frequencies
of hydrogen protons bound in water and fat molecules. The electronic shielding produced by
moving electrons reduces the e�ective magnetic �eld at the hydrogen nucleus producing a di�er-
ent resonance frequency. Each chemical environment with a di�erent number of electrons and
covalent bindings leads to a di�erent electronic shielding of the nuclei, called chemical shift.

The lipid spectrum is complicated and consists of numerous resonance peaks which correspond
to the di�erent chemical groups found in lipids [128, 129].

In the early days of water-fat separation only the major peak from the −CH2 groups of lipids
was considered [28, 29]. The frequency di�erence ∆ffw is given by the Larmor frequencies of the
hydrogen protons in fat ff and water fw:

∆ffw = ff − fw = −σfw
γ

2π
B0 (6.1)

with γ the gyromagnetic ratio for hydrogen andB0 the magnetic �eld. The chemical shift between
water and the major fat peak is expressed either as a dimensionless quantity σfw = 3.35−3.5 ppm
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or as frequency shift ∆ffw, which at B0 = 2.89T is ∆ffw = 412− 430Hz. Below, the water/fat-
signal is meant as the signal from the hydrogen protons in water or fat molecules.

Since the resonance frequencies are used to encode the position of the resonating hydrogen
atoms, misregistration artifacts appear after the image reconstruction for objects containing
water and fat [37]. The resonance frequency for the location of the object is given by

f(r) =
γ

2π
~G~r + ∆ffw(~r) (6.2)

with imaging gradient ~G and location ~r. Equation 6.2 shows that the misregistration shift in the
image is determined by the chemical shift frequency and the imaging gradient, which depends
on the bandwidth per voxel BWvx. With position of water rw and fat rf , the misregistration
shift in terms of the voxel size ∆r is

∆rshift = rw − rf =
∆ffw
γ
2πG

=
∆ffw
BWvx

∆r (6.3)

Thus, the signal intensity of fat is shifted by ∆rshift, with reference to the signal intensity from
water which remains at its position. The misregistration e�ect can be minimized by acquiring
data with a very high bandwidth per voxel. The misregistration e�ect occurs also for the slice
excitation and is minimized if the slice is excited with maximum gradient strength. Both con-
ditions are usually ful�lled in real-time MRI, because image acquisition time is minimized using
maximum gradient strength.

In Cartesian imaging the signal is shifted along the direction of the read-out gradient, shifting
all voxels in the same direction. For radial imaging this e�ect leads to blurring, because the read-
out gradient changes its direction for each measured spoke.

Another e�ect is the di�erent phase accumulation due to the di�ering resonance frequencies.
Today, the temporal signal evolution in the image domain is modeled as

S(t) =

We−R
∗
2,wt +

M∑
j=1

Fje
(2πi∆fw,fj−R

∗
2,fj

)t

 e2πiψt (6.4)

with the water component W , its relaxation R∗2,w = 1/T ∗2,w, the fat magnitude of the respective
fat peak Fj , j ∈ {1, ...,M}, its phase 2πi∆fw,fj t at time t with frequency shift ∆fw,fj , relaxation
component R∗2,fj = 1/T ∗2,fj and the phase introduced by the �eld inhomogeneity ψ. The model

in equation 6.4 is a very general model and several simpli�cations are possible [130] and used
for di�erent water-fat separation methods. Depending on the model W,Fj ∈ C (without initial
phase) or W,Fj ∈ R. The signal is measured at discrete time points tn with typical n ∈
{1, 2, 3, 6}.

In the ideal case of a single fat peak and no relaxation of the water and fat signals, equation
6.4 reduces to

S(t) =
(
W + Fe2πi∆ffwt

)
e2πiψt (6.5)

where only three parameters need to be determined.

6.2 Saturation Methods

Saturation pulses are usually applied before the excitation of each k-space line, which ensures
the suppression of unwanted signal during the data acquisition. Saturation pulses are spectrally
selective and therefore have a prolonged duration [41], which exceeds multiple TRs of a typical
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real-time acquisition. However, utilizing the speed of the real-time acquisition, a complete image
without the saturated chemical species can be acquired after a single saturation pulse. A more
homogeneous �eld improves the saturation of unwanted signals as shown in �gure 6.1, where
images from a water saturated real-time series are shown. The shim was performed in resting
position, as shown by the top row of �gure 6.1. Note the improvement from no shim (tune up)
over standard shim (single 3D excitation and optimization) to advanced shim (3x 3D excitation
and optimization) for the resting leg as well as during motion as depicted in the lower row of
�gure 6.1.

Tissue T1 / ms T2 / ms

Gray Matter 1820 99
White Matter 1084 69
Muscle 1412 50
Fat 366-429 53-133
Blood 1932 275

Table 6.1: T1 and T2 values at 3T for di�erent tissues [131�133].

Figure 6.1: Water saturated images from real-time acquisitions of a knee with di�erent shims.

Due to the short T1 of fat (see table 6.1), the transverse magnetization from fat recovers fast,
leading to incomplete fat suppression for longer acquisition times, see �gure 6.2.

Selected frames from a representative real-time water and fat saturation time series with a
saturation pulse between each frame are visible in �gures 6.3. The data was acquired with stan-
dard shim, leaving residual magnetization in the water saturation time series. The remaining
signal in the fat saturation time series is due to the standard shim and relatively long acquisition
time of 146.7ms per frame.
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Figure 6.2: Signal increase after fat saturation pulse (green line) applied after the �rst frame of
the image series for di�erent temporal resolution as given in the upper left corner of each series.
With shorter temporal resolution the fat saturation persist over more images, as visible in the
lower row.

Figure 6.3: Selected frames from a real-time data set with fat (top row) and water (bottom row)
saturation pulses applied between each frame (146.7ms/45 spokes).
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6.2.1 Correlation Water-Fat Separation

A water-fat separation method that uses repetitively applied saturation pulses was developed by
the author [134]. The principle is similar to functional MRI, where the activation of the brain is
correlated with an applied paradigm. In the correlation water-fat separation method saturation
pulses are applied repetitively, e.g. every 10th frame, according to a given paradigm. The
measured data is then pixelwise correlated with the paradigm. Here, the paradigm is calculated
from all pixels using the L2-norm of each image. An example of the paradigm is displayed in
�gure 6.4. Following the fMRI approach, each pixel time series is correlated with the paradigm
using the Pearson linear correlation coe�cient c. The p-value using a student's t-distribution
is also calculated. If the correlation is signi�cant (p < 0.05) and positive (c > 0), then the
magnitude of the logarithm of p is assigned to that pixel, otherwise the pixel value remains zero.
The logarithm reduces the large range of correlation values. The whole procedure is outlined in
�gure 6.4.

Figure 6.4: Outline of the correlation separation scheme, for detail see text.

Some representative results are presented in �gure 6.5, showing that the method works quite
well. However, the quality of the images corresponds to the quality of the saturation pulses. For
the hand, the head and the knee the saturation is very good and homogeneous, whereas for the
abdomen the saturation is inhomogeneous and noisy. The inhomogeneous saturation is caused
by an inhomogeneous B1 excitation. The noise in the water or fat images depends on the quality
of the correlation, which is in�uenced by motion and the duration of the measurement. Short
measurements combined with motion produce noisier maps than long measurements without
motion.

Although the correlation separation method works quite well on static objects it is not supe-
rior to conventional saturation or water-fat separation methods. A drawback is that although a
fast real-time data acquisition is used the imaged object must be static or a motion tracking or
correction algorithm has to be applied, rendering it unsuitable for real-time water-fat separation
of moving objects.
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(a) Water, Hand (b) Water, Head (c) Water, Knee (d) Water, Abdomen

(e) Fat, Hand (f) Fat, Head (g) Fat, Knee (h) Fat, Abdomen

Figure 6.5: Representative results of the correlation water-fat separation.

6.3 Dixon Methods

All Dixon water-fat separation methods investigated in the following sections use the same mea-
sured data set with three echoes, allowing a comparison between the methods. For the two-point
and extended two-point Dixon method the third echo was discarded. The measurement pa-
rameters are summarized in table 6.2 and the results are displayed in the respective sections.

Resolution /mm2 1.00 x 1.00

Slice Thickness /mm 5.00

Base Resolution 256

RepetitionTime /ms 6.00

Echo Times / ms 2.42, 3.63, 4.84

Bandwidth per Pixel / Hz 930

Flip Angle / degree 8

Field of View / mm 256

Acquisition time per
water/fat map

# Spokes Time / ms

25 150.00

Separation Method Dixon

Newton Steps 6

Table 6.2: Measurement parameters for the data used by the Dixon water-fat separation methods.
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6.3.1 Two-Point Dixon Method

The original idea was proposed by Dixon in 1984 [28]. He modeled fat as a single methylene
peak with a chemical shift of σf = 3.35 ppm (with respect to water) and suggested to acquire
only two images. One of the two images is acquired at 'in-phase' conditions and the other at
'opposed phase' conditions. At in-phase conditions water and fat components have the same
phase, whereas at opposed phase conditions, they have a phase di�erence of π. The in�uence of
the �eld inhomogeneity was neglected (ψ = 0), and the signal equations derived from equation
6.5 are

S(t1) = W + F in-phase (6.6)

S(t2) = W − F opposed phase (6.7)

From these two images, water and fat separated images can be easily calculated on a pixelwise
basis:

W =
1

2
(S(t1) + S(t2)) (6.8)

F =
1

2
(S(t1)− S(t2)) (6.9)

Typical results for a moving object measured with real-time water-fat separation using the two-
point Dixon method are shown in �gure 6.6. As visible in �gure 6.6, the �eld inhomogeneity
can not be neglected, leading to the extended two-point Dixon method proposed by Skinner [31]
and Coombs [135]. The �eld inhomogeneity is estimated using the argument of S(t2)2 [31] or
from arg (S(t1)S(t2))2 [135] with S(t2) = (W − F ) exp (2πiψt2). In both cases spatial phase
unwrapping might be necessary to obtain a correct �eld map. After the phase unwrapping, the
�eld inhomogeneity is removed and improved water-fat separation is obtained.

Results of the extended two-point Dixon water-fat separation without phase unwrapping are
shown in �gure 6.7. The water-fat separation is improved compared to the two-point Dixon
method, but the �eld map is not estimated correctly for every frame leading to water-fat swaps.

Figure 6.6: Real-time Water-Fat separation with the two-point Dixon method. Top row shows
the water images and the bottom row shows the fat images. Water-fat swaps are indicated by a
green circle.

In conclusion, both methods deliver real-time water-fat separated images with a negligible
reconstruction time. However, in the presence of motion the disregard of the �eld map or its
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Figure 6.7: Real-time water-fat separation with the extended two-point Dixon method. Top row
shows water images and the bottom row shows fat images. Water-fat swaps are indicated by a
green circle.

incorrect determination produces water-fat swaps, which may be resolved with phase unwrapping
or better �eld map estimations.

Besides these two-point water-fat separation method, many other methods for two-point
water-fat separation have been proposed [136�139]. Their main di�erence is how the �eld in-
homogeneity map is estimated and the restrictions of the echo times to in-phase/opposed-phase
conditions. The algorithms presented by Eggers [136] and Berglund [139] were implemented, but
they did not produce good water-fat separated images.

6.3.2 Three-Point Dixon Method

The three-point Dixon method was developed by Glover in 1991 [29]. It assumes as the original
two-point Dixon method only a single fat peak and acquires three images at in-, opposed- and
in-phase conditions. The phase φk = 2πi∆ffwtk, k ∈ {1, 2, 3} in equation 6.5 between water and
fat depends on the echo time tk and is set for in-phase acquisitions to φ3 ∈ 2πN0. At opposed
phase conditions the echo time t2 is selected so that φ2 ∈ {x : x = (2n+ 1)π, n ∈ N} yielding for
the signal equations

S1 = (W + F ) exp (iφ0) j ∈ {1, ..., N} (6.10)

S2 = (W − F ) exp (iφ0) exp (iψ) (6.11)

S3 = (W + F ) exp (iφ0) exp (i2ψ) (6.12)

withW and F the magnitude of water and fat signals, φ0 as phase o�set for both components and
ψ is the phase from magnetic �eld inhomogeneity for frame j of which N frames are measured.
With the switch function pc

pc = cos (arg (S2 exp (−iφ))) (6.13)

the fat-water separated images are

If =
1

2

(√
|S′1| |S′′3 | − pc

∣∣S′2∣∣) (6.14)

Iw =
1

2

(√
|S′1| |S′′3 |+ pc

∣∣S′2∣∣) (6.15)
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Representative results are displayed in �gure 6.8. The �eld map estimation is much better
than with the two-point Dixon water-fat separation methods, yielding less frames with water-
fat swaps and improved separation of pure water and fat voxels, e.g. the signal void in the
only-fat and only-water containing voxels is much darker than compared to the two-point Dixon
separation. However, the echo times are �xed, which imposes undesired restrictions to the image
acquisition. Moreover that water-fat swap free images are still out of reach with this approach.

Figure 6.8: Real-time water-fat separation with the three-point Dixon method. Top row shows
water images and the bottom row shows fat images. Water-fat swaps are indicated by a green
circle.

6.3.3 Temporal Phase Unwrapping

Temporal Phase Unwrapping suggested by the author is an extension to the three-point Dixon
(3PD) method, because the �eld map estimation su�ers from phase wrapping along the time
dimension of the real-time series. Each pixel time series was unwrapped using Itoh's method
[36], which adds the phase di�erences between temporally adjacent voxels to the initial voxel.
Because in real-time imaging motion may be encountered, each pixel time series is splitted into
regions of noise and signal and phase unwrapping is restricted to signal regions. Temporal
phase unwrapping fails in the presence of spatial phase wraps at the initial frame. These cases
require additional spatial phase unwrapping. Temporal phase unwrapping improves the water-fat
separation of the 3PD method further as shown in �gure 6.9. However, the approach of temporal
phase unwrapping must be extended to consider spatial phase in a local neighborhood to improve
phase unwrapping robustness.

6.4 Multi-Echo Methods

In this section results and extensions to real-time imaging of the multi-echo water-fat separation
methods 'Direct Phase Encoding' (DPE), 'Analytical water/fat separation with a safest-�rst
region-growing scheme' (ASR), 'Iterative Decomposition of water and fat with Echo Asymmetry
and Least-squares' (IDEAL) are presented. These water-fat separation methods relax the echo
time restrictions from in- and opposed-phase times to (almost) arbitrary echo times, providing
higher �exibility on the choice of acquisition parameters. A single data set was used for all
water-fat separation methods with acquisition parameters summarized in table 6.3.
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Figure 6.9: Real-time water-fat separation with the extended three-point Dixon method and
phase unwrapping of the �eld map. Top row shows water images and bottom row shows fat
images. Note the water-fat swap in the last frame from the incorrect phase unwrapping indicated
by the green circle.

Resolution /mm2 1.00 x 1.00

Slice Thickness /mm 5.00

Base Resolution 256

RepetitionTime / ms 5.95

Echo Times / ms 1.83, 3.35, 4.87

Bandwidth per Pixel / Hz 930

Flip Angle / degree 8

Field of View / mm 256

Acquisition time per
water/fat map

# Spokes Time / ms

45 267.75

Separation Method DPE, IDEAL, ASR

Newton Steps 6

Table 6.3: Measurement parameters of the data used by the multi-echo water-fat separation
methods.

6.4.1 Direct Phase Encoding

Direct phase encoding (DPE) was introduced by Xiang and An [32] and allows for water-fat
separation and identi�cation. The MRI signal may be sampled at arbitrary echo times, including
in-phase and opposed phase echo times. The spectral complexity of fat is not taken into account,
fat is assumed to have only the methylene peak. The used signal model is

S(t) = (W + F exp(i∆ωwft)) exp(iγ∆B0t+ iφ) (6.16)

with W and F the water and fat amplitudes as real quantities, ∆ωwf = 2π∆fwf the chemical
shift between water and fat, t the echo time, ∆B0 the �eld inhomogeneity and other phase
errors combined in φ. DPE requires equidistant echo times, which allow for the derivation
of a quadratic equation. The two solutions re�ect the ambiguity between water and fat which
can be resolved using the particular phase relation between water and fat. A local and global
orientation �lter are subsequently applied yielding corrected water and fat maps. These can be
improved in SNR with a second pass solution. Water and fat separated frames with DPE of a
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real-time series are displayed in �gure 6.10.

Figure 6.10: Water-fat separated frames with DPE and second pass solution. Top row shows
water and bottom row shows fat images.

The DPE works bettern than the 3PD for water-fat separation on real-time data. However,
the time DPE required to separate water and fat is long, denying the direct display of the water
and fat images. With the usage of a multi-peak fat model, the DPE algorithm fails to produce
swap-free water-fat separated images because the de�ned relationship between water and fat
is abandoned. Without the multi-peak model, DPE water-fat separation leads to incomplete
water and fat separation, denying fat quanti�cation [140]. Furthermore, DPE does not take
advantage of the available serial data since each frame is reconstructed by itself. A possible
way to include real-time data properties is the extension of the orientation �lters to temporal
neighboring frames, which should improve the robustness of the DPE water-fat separation.

6.4.2 ASR

The ASR algorithm was proposed by J. Berglund [33] in 2010 for whole body imaging. The
method uses a single-peak fat model and models the signal as

S1 = (W + a0F ) (6.17)

S2 = (W + a0aF ) b (6.18)

S3 =
(
W + a0a

2F
)
b2 (6.19)

with the complex water and fat signals W and F and the phasors

a0 = exp (2πi∆fwft0) (6.20)

a = exp (2πi∆fwf∆t) (6.21)

b = exp (2πiγ∆B0∆t) (6.22)

with chemical shift between water and fat ∆fwf, �rst echo time t0 and echo time spacing ∆t and
�eld inhomogeneity ∆B0.

A quadratic equation of the �eld inhomogeneity phasor is derived from equations 6.17-6.19
providing two possible solutions for each pixel. The correct �eld inhomogeneity map is coherently
grown from multiple seed pixels. The coherence between neighboring pixels is high if their phase
di�erence is small. Once the true �eld inhomogeneity map is grown, water and fat maps are
derived from equations 6.17-6.19.
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Extensions

For complete water-fat separation the spectral complexity of fat must be taken into account
[130, 140], but the publication of the ASR algorithm uses only a single-peak model for fat. The
extension of the ASR algorithm to the multi-peak fat model as developed by the author is straight
forward, only the phasors a and a0 must be adapted.

a0 =

M∑
j=1

Fj exp
(
2πi∆fw,fj t0

)
(6.23)

a =
M∑
j=1

Fj exp
(
2πi∆fw,fj∆t

)
(6.24)

with the resonance frequency di�erences to water ∆fw,fj and relative intensities Fj of the M fat
peaks. The values for the chemical shifts and relative intensities are given in table 6.5 [128].

A comparison between the single- and multi-peak fat model is shown in �gure 6.11, where no
di�erence between the two models is visible. However, a ROI analysis of structures containing
fat, shows increased signal intensity in the multi-peak fat map for each ROI as presented in table
6.4.

Figure 6.11: Representative fat maps of a ASR
water-fat separation with usage of the single-
peak fat model (left) and the multi-peak fat
model (right).

ROI Single-Peak Multi-Peak
Fat Model Fat Model

Femur(1) 69 104
Tibia(2) 68 103
Patella(3) 80 120
Subcutaneous(4) 110 164
Fat Pad(5) 79 118

Table 6.4: Signal intensity comparison of
lipid rich regions.

The reconstruction time is a crucial factor for real-time applications, due to the large amount
of acquired data. Although the reconstruction time could be signi�cantly reduced for the Matlab
implementation, only an implementation in C resulted in su�cient fast water-fat separations.

Real-time water-fat separation is possible using a sequential, framewise water-fat separation
as demonstrated in �gure 6.12. For the �rst frames the framewise ASR water-fat separation
delivers correctly separated water and fat images, but as the leg is bent the framewise ASR
real-time water-fat separation fails in regions where the �eld inhomogeneity is large.

The phase between the frames changes for each pixel smoothly over time, even in the presence
of motion, which is exploited in the ASR algorithm by performing an in-plane phasor coherent
region growing with additional consideration of the phasor from the previous, already determined
frame (see �gure 6.13). In detail, for each pixel the coherence is determined using not only the
in-plane neighbors but also the previous phasor value at the same pixel position. The approach
developed by the author is called 2.5D ASR because it uses the time as third dimension but only
in the backwards direction. The 2.5D ASR delivers water and fat images free of water and fat
swaps, as demonstrated in �gure 6.14.
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Figure 6.12: Framewise ASR water-fat separation. Top row shows water and bottom row shows
fat images. Note the severe water-fat swaps at the end of the time series (green circle).

Figure 6.13: Schematic outline of the 2.5D region growing process. The pixels marked in blue
are used for the 2.5D region growing of the red pixel.

Figure 6.14: 2.5D ASR water-fat separation with coherence calculation including the previous
frame. Top row shows water and bottom row shows fat images.

Rearranging the data into a 3D data set, with time as third dimension, as visualized in �gure
6.13, and running a 3D reconstruction is another possibility to use the temporal phase evolution.
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Figure 6.15: 3D ASR water-fat separation. Top row shows water and bottom row shows fat
images. The water-fat separation is good, however some areas show water-fat swaps (green
arrows).

The approach developed by the author called 3D-ASR and resulting water and fat images yield
only a small amount of water-fat swaps if any, see �gure 6.15. However, the 3D-ASR water-fat
separation is not as robust as the 2.5D-ASR water-fat separation. The distribution of the seed
pixels all over the data set without the use of temporal information is problematic and may result
in false selection of seed pixels yielding water-fat swaps.

6.4.3 IDEAL

Voxel Independent IDEAL

The IDEAL algorithm proposed in 2004 by Scott B. Reeder [34] is an iterative least-squares
estimation method independent of echo time. The signal is modelled as

s(t) =

 M∑
j=1

ρj exp
(
2πi∆fw,fj t

) exp (2πiψt) (6.25)

with the chemical shift ∆fw,fj of the chemical species j, of whichM di�erent species are present,
ρj is the spin density of the j-th chemical species, t the time and ψ the �eld inhomogeneity. If
N measurements are made at echo times tn, N di�erent signal equations are obtained:

sn = s(tn) =

 M∑
j=1

ρj exp
(
2πi∆fw,fj tn

) exp (2πiψtn) n ∈ {1, ..., N} (6.26)

In this system of equations are M + 1 complex unknowns, ρj , j ∈ {1, ...,M} and ψ, requiring
N+1 for exact solution. For example for fat and waterM = 2 and at least N = 3 measurements
are required.

The algorithm starts with an initial guess of the �eld inhomogeneity ψ0, which allows to
remove the contribution of the �eld inhomogeneity map. The obtained system of linear equa-
tions can be solved and an update ∆ψ for the �eld inhomogeneity is calculated. The iterative
estimation of ∆ψ is repeated until ∆ψ is less than a given threshold (e.g. 1Hz) or the maximum
number of allowed iterations is exceeded. Finally, an estimate of the chemical species with a
smoothed ψ is calculated.
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The framewise voxel independent IDEAL with a single fat peak (M = 2, N = 3) for real-time
data works quite well. Exemplary results are shown in �gure 6.16.

Figure 6.16: Framewise water-fat separation with the voxel independent IDEAL. Top row show
water images and the bottom row the fat images.

Multi-peak IDEAL

The multi-peak model was introduced to the IDEAL algorithm by Yu in 2008 [141]. It is a
simpli�cation of equation 6.4 without relaxation, but capable of including multiple fat peaks.
Inclusion of a multi-peak fat model o�ers two options for estimating the water and fat amplitudes.
First, a pre-calibrated fat model with known relative amplitudes and chemical shifts may be used.
The pre-calibrated fat model requires only three echoes to estimate the water and fat amplitudes.
Second, a self calibration version which estimates as many peaks as are allowed by the number
of acquired echoes, similar to the voxel independent IDEAL. The signal model for both options
is

S(t) =

ρw + ρf

M∑
j=1

αje
2πi∆fw,fj t

 e2πiψt (6.27)

with water and fat amplitudes ρw and ρf , M di�erent fat peaks with relative amplitude of
the j-th peak αj and other variables as de�ned for the voxel independent IDEAL. The relative

amplitudes of the fat peaks have as side condition
∑M

j=1 αj = 1. The extension of the voxel
independent IDEAL algorithm is straight forward, the signal equation in matrix notation is

S = D(ψ) ·A · ρ =


e2πiψt1 0 . . . 0

0 e2πiψt2 . . . 0
...

...
. . .

...
0 0 . . . e2πiψtk

 ·


1
∑M

j=1 αje
2πi∆fw,fj t1

1
∑M

j=1 αje
2πi∆fw,fj t2

...
...

1
∑M

j=1 αje
2πi∆fw,fj tK

 ·
[
ρw
ρf

]

(6.28)

Instead of only containing a single exponential term which represents a single fat peak, the second
column in the matrix A contains now the weighted sum of individual fat peaks. The system of
equations in 6.28 is solved almost exactly as in the IDEAL algorithm.

Second, a self-calibration IDEAL version, which estimates the relative fat amplitudes directly
from the measured data may be used. However, this approach requires many echoes to be
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measured and is inferior to the pre-calibrated IDEAL version. Relative fat peak amplitudes
and chemical shift frequencies for the pre-calibrated IDEAL for di�erent biological tissues are
summarized in table 6.5. The peak amplitudes of the fat spectrum vary depending on the
measured anatomy, �ip angle and repetition time of the FLASH sequence [142�144]. Therefore,
it may be advantageous to model the fat spectrum according to the measured anatomy and
acquisition parameters. However, the anatomical spectra are very similar and the amplitude
changes caused by imaging are small due to the extremely short repetition time and small �ip
angle. No qualitative di�erence between the di�erent spectra from table 6.5 were observed in
the water-fat separation. A comparison between the single- and multi-peak fat model is shown

Subcutaneous Fat: Yu et al. 2008 [141]

Chemical Shift / Hz -472 -420 -318 -234 -46 94
Relative Amplitude 0.06 0.62 0.15 0.03 0.04 0.10

Bone Marror: Ren et al. 2008 [128]

Chemical Shift / Hz -430 -381 -345 -264 -200 112
relative Amplitude 0.08 0.55 0.06 0.08 0.14 0.04

Subcutaneous Fat: Ren et al. 2008 [128]

Chemical Shift / Hz -430 -381 -345 -264 -200 112
relative Amplitude 0.08 0.62 0.07 0.09 0.06 0.06

Liver Fat: Hamilton et al. 2008 [129]

Chemical Shift / Hz -467 -400 -316 -116 -61 -67
relative Amplitude 0.09 0.54 0.17 0.05 0.04 0.10

Table 6.5: Chemical shift frequencies at 3T and amplitudes of the six major fat peaks.

in �gure 6.17, where no qualitative di�erence is visible. However, a ROI analysis of structures
containing fat, shows strongly increased signal intensity in the multi-peak fat map for each ROI as
presented in table 6.6. The signal intensity in the water images remained constant, independently
of the used fat model. The fourfold signal increase in the fat maps obtained with the multi-peak
fat model is also observed in the image noise and caused by convergence into di�erent �eldmap
minima. However, the strong increase in fat signal intensity does not lead to an overestimation
of fat fraction, instead fat fractions for the analysed regions increase into ranges comparable
literature [145].

Figure 6.17: Representative fat maps of an
IDEAL water-fat separation with usage of the
single-peak fat model (left) and the multi-peak
fat model (right).

ROI Single-Peak Multi-Peak
Fat Model Fat Model

Femur(1) 93 350
Tibia(2) 96 360
Fat Pad(3) 107 409
Subcutaneous(4) 130 488

Table 6.6: Signal intensity comparison of
lipid rich regions.
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Region Growing IDEAL

The water-fat ambiguity appears in IDEAL as di�erent minima to the iterative solution. With
an initial guess of the �eld inhomogeneity, the minimization process is likely to converge into a
nearby minimum [26, 27]. Without initial guess (ψ = 0) the voxel independent IDEAL converges
into a minimum near to 0, which is potentially wrong. To overcome this problem of the pixel
independent IDEAL, Yu suggested in 2005 the region growing IDEAL [27].

The region growing IDEAL consists of two steps: �rst, selecting a starting pixel and second
the region growing itself. The starting pixel is selected on a low resolution map and estimated
with the voxel independent IDEAL. The �eld map estimate is then used as initial guess in
the voxel independent IDEAL of the corresponding high resolution pixels. The �eld map is
then grown using a square-spiral trajectory, where the next initial value is extrapolated from a
weighted linear 2D �t of the already known �eld map pixels. With this initial value the voxel
independent IDEAL is run. The region growing approach ensures a connected �eld map without
jumps which are allowed by the pixel independent IDEAL.

Results for the framewise region growing IDEAL applied to real-time data are shown in �gure
6.18. The water-fat separation is superior to the framewise voxel independent IDEAL. However,
a frame is completely swapped, but otherwise correctly separated. Besides the water-fat swapped
images in the time series, the reconstruction time with the region growing IDEAL for a typical
real-time series is about 10 hours.

Figure 6.18: Water-fat separation with the framewise region growing IDEAL. Top row show
water time series and the bottom row the fat time series. Note the fat frame in the water series
and the water frame in the fat series (green frames).

Complex IDEAL

Yu proposed an extension of the the IDEAL algorithm which theoretically is able to additionally
estimate the T ∗2 [146]. The model from equation 6.25 is extended by a single T ∗2 component for
water and all fat peaks.

s(t) =

ρw + ρf

M∑
j=1

αj exp
(
2πi∆fw,fj t

) exp (2πiψt−R∗2t) (6.29)

A complex �eld map ψc = ψ+ iR∗2 is de�ned, leaving the signal equation almost the same as for
the multi-peak IDEAL, see equation 6.27.
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Results of the framewise real-time complex IDEAL are shown in �gure 6.19. The water-fat
separation works well for the frames with only small �eld inhomogeneities but fails in the cases
for larger �eld inhomogeneities. The T ∗2 map estimation however, does not provide robust re-
sults. For the initial frames of the time series where no motion is present negative T ∗2 values are
estimated outside the object which can be removed by thresholding. At the onset of motion the
algorithm fails to converge into a minimum and returns zeros, which are visible as large homoge-
neous gray areas in T ∗2 map of �gure 6.19. Without convergence not only the T ∗2 estimation but
also the water-fat separation fails. The missing convergence may be recovered if more echoes are
acquired, prolonging data acquisition.

Figure 6.19: Water-fat separation with the complex IDEAL. Water (top row) and fat (middle
row) images exhibit was fat swaps (green circles) in areas where the T ∗2 (bottom row) estimation
converged not or to a false minimum (yellow circles).

Phase-Constrained IDEAL I

The idea was published by Mark Bydder in 2011 [147]. He suggested to constrain the water and
fat phase to be the same at time t = 0ms after the RF pulse. To achieve this, a single-peak fat
model is used and the known �eld inhomogeneity is removed from the signal equation.

Sn = (W + F exp (−2πi∆ftn)) n ∈ {1, ..., N} (6.30)

The phase-constrained solution for equation 6.30 is

xpc = Re
(
AHA

)−1
Re
(
AHS exp (−iφ)

)
exp (iφ) (6.31)

with

φ =
1

2
arg
[(
AHS

)
Re
(
AHA

)−1 (
AHS

)]
(6.32)
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Selected frames from a water-fat separated real-time series are displayed in �gure 6.20. In
the beginning of the measurement, where the �eld inhomogeneity is not yet large, the water-
fat separation works �awlessly. However, as the �eld inhomogeneity increases water-fat swaps
appear in regions of strong �eld inhomogeneities, see �gure 6.20.

For the calculation of xpc, equation 6.31 is not splitted into real and imaginary parts as
in the original IDEAL, but uses a complex formulation similar to the complex IDEAL with
T ∗2 estimation. This increases the computational time per water and fat frame.

Figure 6.20: Water-fat separation with phase-constrained IDEAL I. Top row shows water images
and the bottom row fat images. Water-fat swaps are indicated by green arrows and circles.

Phase-Constrained IDEAL II

This phase-constrained algorithm was published by Yu in 2006 [148] together with Reeder. The
original IDEAL algorithm is modi�ed to estimate also the initial phase φ0 with signal model

Sn = (W + F exp (2πi∆ft+ θ0i)) exp (2πiψt+ iφ0) W,F, ψ, φ0,∆f, t, θ0 ∈ R (6.33)

The model treats W,F, ψ, φ0 as unknown variables and ∆f, t, θ0 as known variables and is
solved similarly as the voxel independent IDEAL. The results are shown in �gure 6.21, where
even at the beginning water-fat swaps are visible. The swaps expand with the increasing �eld
inhomogeneity although the algorithm is provided with an initial guess for the �eld inhomogeneity
map. In addition, the reconstruction time to separate a typical real-time water-fat acquisition is
long, questioning the use of phase-constrained IDEAL II in real-time imaging.

6.4.4 Optimized Sequential IDEAL

The optimized sequential IDEAL combines the favourite features of the presented IDEAL vari-
ations. Starting with the real region growing IDEAL for the �eld map estimation of the �rst
frame. Having a robust estimate of the �eld map the phase-constrained IDEAL I is used to
separate water and fat. For the second frame the �eld map from the previous frame is strongly
smoothed and provided as initial guess for the next frame. All successive frames use the real
voxel independent IDEAL for the �eld map estimation due to the fastest reconstruction time.
If more than two frames have been separated the initial �eld map for the next frame is extrap-
olated from previous �eld maps. If available, the last 5 frames are used for the extrapolation.
The water-fat separation for all frames is done with the phase-constrained IDEAL after the �eld
map has been estimated.
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Figure 6.21: Water-fat separation with the phase-constrained IDEAL II. Both water (top row)
and fat (bottom row) exhibit severe water-fat swaps.

The results of the sequential IDEAL are displayed in �gure 6.22. They show excellent water-
fat separation even in di�cult situations with a changing and strongly inhomogeneous �eld map.
The reconstruction time is reasonably fast with 1-4 seconds per frame for the C implementation,
except for the �rst frame, where the region growing IDEAL slows down the water-fat separation.

Figure 6.22: Water-fat separation with the optimized sequential IDEAL. Top row show water
images and the bottom row the fat images.

6.5 Single-Echo Methods

Instead of using multiple images for water-fat separation, methods using a single image have also
been developed [37, 148, 149]. These one-point methods use a single-peak fat model and data is
acquired at an echo time tE where the phase between water and fat is π/2.
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6.5.1 Quadrature Sampling

Sampling water and fat with a phase di�erence of π/2 is called quadrature sampling [37]. The
signal equation is

S(tE) = (W + iF ) e2πiψtE (6.34)

A small exponent in equation 6.34 can be neglected, yielding water as real and fat as imaginary
part of the reconstructed complex image. The exponent is small, if the product between the
echo time tE and the �eld inhomogeneity ψ is small. However, the echo time is limited to the
quadrature sampling values

2π∆ffwt = π/2 · (2n− 1) n ∈ N. (6.35)

with the three shortest echo times given in table 6.7.

n 1 2 3

Echo Time / ms 0.61 1.82 3.03
2π∆ffwt

π
2

3
2π

5
2π

Table 6.7: The three shortest possible quadrature sampling echo times at water-fat frequency
di�erence of ∆fwf = 412Hz (3T)

Due to the periodicity of the complex exponential function in equation 6.34 any echo time
ful�lling the quadrature sampling condition 6.35 is possible. However, with increasing echo time
even small values of the �eld inhomogeneity map lead to water-fat swaps, because water and fat
are rotated away from the real and imaginary axes. Besides the possible water-fat swaps the
signal decays with T ∗2 leading to a loss of signal intensity for late echo times.

Results for the quadrature sampling water-fat separation at echo time TE=3.03ms with
disregard of the �eld inhomogeneity map are shown in �gure 6.23. The quality of the water-fat
separation is poor, because of the disregarded �eld inhomogeneity map. In regions with low �eld
inhomogeneity values, like the posterior part of the brain, the water-fat separation works better
than in regions with high �eld inhomogeneity values, e.g. around the eyes.

Figure 6.23: Quadrature water-fat separation without calculating a �eld inhomogeneity map.
The left image shows water and the right image fat.

6.5.2 1-Point Plus Separation

The idea of the 1-Point Plus Separation was published by Yu in 2006 for the use of breast imaging
with contrast agents [148]. He proposed to use the 'Iterative Phase-Constrained IDEAL' (see
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section 6.4.3, [34, 148]) to estimate iteratively the �eld inhomogeneity map and the initial phase
of water and fat magnetization from a preparatory multi-echo measurement and subsequently
apply the �eld map and the initial phase on a single-echo measurement acquired in quadrature.

The description of the water and fat signals for the initial phase-constrained model with four
unknown variables according to [148] is

Sn = (|W |+ |F | exp (2πi∆ftn)) exp (2πiψ + iφ0) |W | , |F | , φ0, ψ ∈ R (6.36)

with the water and fat phase φW and φF at the time t = 0 after the RF pulse approximately
φW = φF = φ0. If the �eld inhomogeneity map and initial phase are known and removed from
the data, only water and fat remain. This is true for the multi-echo measurements as well as for
the single-echo measurements. It is then possible to separate water and fat from a single-echo
acquisition, if they have been acquired in quadrature. In this case water is the real and fat the
imaginary part of the demodulated data. Applying this method to real-time data, a further
assumption must be made: The �eld inhomogeneity map must be constant over time.

Single-echo measurements with echo time TE=1.78ms and 47 spokes have been acquired and
reconstructed. However, the estimation of the initial phase φ0 from the multi-echo measure-
ment failed for the in-vivo measurements of the abdomen and only poorly water-fat separated
images have been generated, see �gure 6.24. Additionally, motion in the images is accompanied
by a change of the �eld inhomogeneity map, violating the constant �eld inhomogeneity map
assumption.

Figure 6.24: Single echo water-fat separation with the use of a previously estimated �eld map
and initial phase. Note the inhomogeneous water-fat separation in each frame.

6.6 Fat Quanti�cation

The fat fraction with water W and F signals is calculated according to

ηF =
|F |

|W |+ |F |
(6.37)

and has become an important alternative to spectroscopy or biopsy in the detection of liver
diseases [22]. However, for proper fat quanti�cation with MRI, the following confounding factors
must be considered and corrected [22].
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• Spectral Complexity:
The proton MR spectrum of fat has been measured accurately in humans and consists of
more than only the methylene peak [128, 129]. Therefore proper fat quanti�cation must
account for this spectral complexity, see e.g. equation 6.4 as suggested by Yu [141].
Reeder showed that both single-peak and multi-peak water-fat separations correlate with
magnetic resonance spectroscopy, however, the use of a pre-calibrated multi-peak fat model
had the highest correlation [140]. Similar result have been found by Guiu [150] with a three-
point Dixon water-fat separation method and correction for T1, T2 and T2∗.

• T1 bias
'T1 weighted sequences lead to an overestimation of fat due to the short T1 values of fat
compared to water' [151], which was demonstrated by Liu and Bydder [152, 153]. They
removed T1 bias by acquiring the images with a �ip angle of less than 5◦. Instead of using
a low �ip angle, the use of a long TR is also possible [153]. If none of the previous methods
is applicable, the T1 bias can be corrected by including T1 relaxation in the model [153] or
by using a dual �ip angle approach, which weights the water and fat signal according to
the �ip angle [152].

• T ∗2 decay:
The signal in multi-echo gradient-refocused imaging decays with T ∗2 and the change in
signal intensity over the echoes alters the water-fat separation if not accounted for. The
T ∗2 decay can be included into the model by assuming a complex �eld map ψ = ∆B0 +
iR∗2 as suggested by Yu et al [141, 146] for the complex IDEAL. For a magnitude �tting
model Bydder et al included the T ∗2 decay into the model [153] and showed that a system
with multiple peaks appears at low spectral resolution like a two component system with
shortened e�ective T ∗2 . Instead of including T ∗2 decay, measuring T ∗2 and correcting the
acquired images is also possible. Mostly, a combined T ∗2 for water and fat is assumed, but
not necessarily needed [154, 155].

• Noise Bias:
The noise bias occurs with the magnitude operation on the water and fat maps. Noise
in the complex images is Gaussian with zero mean and changes to a positive non-zero
value after the magnitude operation. Especially at low and high fat fractions noise bias is
evident [22, 152]. The noise bias can be removed with a magnitude discrimination after
initial water fat separation or with a phase-constrained water-fat separation method [152].

• Eddy Currents:
Eddy currents a�ect the phase of the acquired images. Performing magnitude water-fat
separation, these e�ects are naturally avoided [156, 157]. However, in general only the phase
of the �rst echo is corrupted and neglecting its phase by using a mixed magnitude/complex
water-fat separation method avoids this bias [156, 157].

The in�uence of these confounding factors onto the fat fraction estimation has been evaluated
in great detail in phantoms e.g. [151] as well as in volunteers e.g. [158, 159] and all of them
can be corrected for accurate fat quanti�cation. With regard to real-time imaging, almost all
confounding factor can be removed.

Except for DPE, all three-point water-fat separation methods are capable of using a multi-
peak fat model and thereby removing this confounding factor. T1 can e�ectively be removed with
the use of �ip angles with less than 5◦, which is easily achieved with the FLASH sequence. The
noise bias is taken care of by the phase-constrained water-fat reconstructions. For sequential
imaging, the �eld inhomogeneity map is estimated without the phase constraint and for the
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�nal water-fat separation the phase-constraint is applied. The T ∗2 and eddy current bias are
more di�cult to account for. With only three echoes the T ∗2 estimation is not very accurate
or even fails. Acquiring more echoes prolongs the data acquisition time and therefore reduces
the temporal resolution and degrades the water-fat separation quality in the case of fast motion.
Magnitude or mixed magnitude/complex water-fat separation have been not been investigated,
leaving the eddy current e�ect on the fat fraction map uncorrected in fast water-fat imaging.

Results of free breathing abdominal real-time water-fat separation with fat-fraction maps
are displayed in �gure 6.25. As visible in the fat fraction maps, this volunteer does not have
suspicious fat deposition in the liver.
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Figure 6.25: IDEAL Phase constrained water (top row) and fat (middle row) separated time
series and the corresponding fat fraction maps (bottom row). The colorbar indicates the fat
fraction with zero (black) and 100% (white).

6.7 Spatial and Temporal Resolution

The achievable spatial and temporal resolution and possible degree of undersampling for water-fat
separation in real-time has been investigated with knee measurements. The knee is a challenging
anatomy for water-fat separation in real-time due to strong �eld inhomogeneities and large
motion, as well as the necessity of high-resolution images. In �gures 6.26 (water) and 6.27 (fat)
the results for a knee measurement with 1.0mm2 in-plane resolution and di�erent number of
acquired spokes are displayed. For each data several image reconstructions with NLINV Newton
steps ranging from 5 to 11 and succeeding water-fat separations have been performed. The
sharpness of the reconstructed images increases with the number of Newton steps, as does noise.
Depending on the degree of undersampling (number of spokes) the reconstructed images are
increasingly contaminated with noise. Image reconstructions with 11 Newton steps exhibit even
for acquisitions with 125 spokes strong noise. However, independent of the Newton steps, noise
or the number of acquired spokes, the water-fat separation is �awless with these acquisition and
reconstruction parameters.
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The measurements with 0.75mm2 in-plane resolution show a di�erent behavior. Water-fat
separations from NLINV reconstructions with any odd number of Newton steps show water-fat
swaps. Five and six Newton steps produce blurry images which do not re�ect the measured
in-plane resolution. Artifact free water-fat separations are obtained from image reconstructions
with 8 and sometimes with 10 Newton steps. The presence of increased noise in the images
with 10 Newton steps favors water-fat separation on images reconstructed with 8 Newton steps.
However, with 15 spokes minor water-fat swaps appear, indicating the declined robustness of the
�eld map estimation at extreme undersampling combined with high in-plane resolution.

Figure 6.26: Water images from optimized sequential IDEAL water-fat separated time series at
an in-plane resolution of 1.0mm2.

A comparison for di�erent bending speeds of the knee was performed for a volunteer with an
in-plane resolution of 0.75mm2. Shortest possible echo times have been selected and acquisition
times of 1000, 500 and 250ms per frame corresponding to 151, 75 and 37 spokes per frame.

The results are presented in �gures 6.31, 6.30 and show that with faster acquisition times the
images regain sharpness, especially for faster motions. However, faster acquisitions require higher
undersampling which leads to increased streaking artefacts and noise. The highly undersampled
images with 37 spokes show the same details as the acquisition with more spokes. In conclusion,
data acquired with 37 spokes and reconstructed with 8 Newton steps captures motion su�ciently
fast without loss of image detail and avoids water-fat swaps from the reconstruction.

With an extreme undersampling of only 13 spokes real-time water-fat images at a temporal
resolution of about 51ms of the human heart have been acquired. Results are presented in �gure
6.32. The water-fat separation was artefact free independent of the Newton steps. However, an
increase from 6 to more Newton steps did not improve the image quality, nor is it needed to
reveal image details at an in-plane resolution of 2mm. Due to the temporal resolution of 51ms
the systolic phase is not accurately resolved, but the hyper-intense subcutaneous fat could be
removed from the water images yielding a more homogeneous image. Also due to the combination
of three images for the water and fat maps, they exhibit less noise than the original individual
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Figure 6.27: Fat images from optimized sequential IDEAL water-fat separated time series at an
in-plane resolution of 1.0mm2.

Figure 6.28: Water images from optimized sequential IDEAL water-fat separated time series at
an in-plane resolution of 0.75mm2.
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Figure 6.29: Fat images from optimized sequential IDEAL water-fat separated time series at an
in-plane resolution of 0.75mm2.

echo acquisitions.
Water-fat separation on real-time data has also been tested on the abdomen. Measurement

parameters include in-plane resolutions of 1.50, 1.00, 0.75mm2 at fastest possible echo times,
31-37 spokes yielding a temporal resolution of about 200ms. Results are presented in �gure
6.33. With increasing in-plane resolution the number of Newton steps was also increased from 6
to 8 to keep the sharpness constant. However, noise increased due to decreasing voxel size and
increasing Newton steps. The water-fat separation was successful despite the increasing noise,
only some gas bubbles in the gastrointestinal tract produced minor swap artefacts at the bubble
borders (green arrow) at in-plane resolutions of 0.75mm2.
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(a) slow motion

(b) medium motion

(c) fast motion

Figure 6.30: Water images after optimized sequential IDEAL water-fat separation with di�erent
bending speeds of the knee, acquired with di�erent number of spokes (number on the left).
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(a) slow motion

(b) medium motion

(c) fast motion

Figure 6.31: Fat images with optimized sequential IDEAL water-fat separation for di�erent
bending speeds of the knee, acquired with di�erent number of spokes (number on the left).
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(a) Single Multi-Echo Frame

(b) Water

(c) Fat

Figure 6.32: Representative heartbeat from a water-fat separated real-time series.
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(a) Water

(b) Fat

Figure 6.33: Sequential frames from an abdominal real-time water-fat separated time series with
45 spokes yielding 270ms per frame. Gas bubbles lead to incorrect water-fat separation (arrow).

85



6.8. RESULTS AT 7 TESLA

6.8 Results at 7 Tesla

Several measurements at a 7T scanner in Magdeburg have been performed, including the satu-
ration pulses approach and data for the echo-time independent multi-echo water-fat separation.

The saturation of water or fat works quite well due to the increased T1 relaxation times
of fat and water at higher �eld strengths [160], see �gure 6.34. However, the water saturated
images exhibit stronger blurring than the fat saturated or unsaturated images. The acquisition
parameters for a real-time saturation measurement include in-plane resolution of 0.75mm2, echo
time TE=1.68ms, repetition time TR=2.78ms and 25 spokes yielding a temporal resolution of
75ms per frame.

Figure 6.34: Real-time water (top row) and fat (bottom row) suppression at 7T.

The three-point water-fat separation methods operating successful on real-time data at 3T
like DPE, ASR and IDEAL failed to produce swap free water and fat separated images at 7T.
The failure is due to the false estimation of the �eld inhomogeneity map/phasor which is due to
the stronger �eld inhomogeneities and faster T ∗2 decay at 7T.

6.9 Discussion

Water-fat separation on real-time data reconstructed with NLINV was explored using conven-
tional saturation pulses between frames as well as Dixon water-fat and advanced separation
methods like DPE, ASR and IDEAL.

The e�ect of the saturation pulses depends strongly on the T1 relaxation time of the tissue,
favoring water over fat saturation due to the longer T1 of water. At 3T short acquisition times
(<100ms) for each image and a very good shim led to successful water/fat saturation.

Using saturation pulses and the signal recovery, a completely new water-fat separation method
based on correlation between each pixel time series and the saturation pattern was developed.
The quality of the correlation water-fat separation method depends on the quality of the satu-
ration pulses and the length of the data acquisition. However, this method is not suitable for
real-time water-fat separation because only a single water or fat image is obtained from the
whole time series. Furthermore, motion of the object requires pixel tracking before the time
series can be correlated to the saturation paradigm. Correlation separation may be favorable if
one is interested in either water or fat images.

The Dixon water-fat separation algorithms are simple and fast. However, with regard to fast
imaging the �xed echo times reduce the possible applications, since the usable temporal and/or

86



6.9. DISCUSSION

spatial resolution is restricted. Also, to separate water and fat compartments successfully, the
�eld map must be estimated correctly, which most likely involves phase unwrapping. A simple
temporal phase unwrapping approach has been implemented, yielding swap free water and fat
images, as long as the �rst frame is free of spatial phase-wraps and each pixel time series no
interrupted by noise.

The echo-time independent methods DPE, ASR and IDEAL are well suited for water-fat
separation. However, the reconstruction time for DPE is quite long, rendering DPE unfavorable
for fast water-fat separation despite the artefact free separation quality. Furthermore, DPE loses
its ability to successfully separate water and fat with the introduction of the multi-peak fat
model. The ASR and IDEAL algorithms are faster, ASR has already suitable reconstruction
time for real-time display of water and fat images. The current optimized sequential IDEAL
implementation needs 1-4 seconds per frame for the water-fat separation, excluding the �rst
frame where the region growing slows down the �eld map estimation. Such a reconstruction time
is not fast enough for displaying water and fat maps in real-time, however, the problem is easily
parallelized and ported to GPUs where the necessary speed-up can be achieved [161]. At the
current state the optimized sequential IDEAL emerges the most suitable method for real-time
water-fat separation, because it allows to correct for all confounding factors easier than the other
examined methods. However, proper estimation of the T ∗2 requires more than three echoes, in
practice at least 6 [146], prolonging the measurement and increasing the acquisition time. But
having more echoes available the estimation of the �eld map becomes more robust. For most
measurements the rt-IDEAL and ASR algorithms were able to obtain water and fat images of
good quality and showed a quite robust reconstruction behavior. However, in some cases the
water-fat separation fails and water-fat swaps in few temporally connected frames and small areas
containing only few pixels deteriorate the water and fat maps. The phase-constrained IDEAL
I works better than the iterative estimation of the initial phase (phase-constrained IDEAL II)
and is necessary for quantitative fat maps. Complex water and fat images may allow for access
to additional parameters encoded in phase, such as temperature or velocity.

The optimized sequential IDEAL was tested on various anatomies, including the knee, heart
and abdomen. For the knee, limitations of the water-fat separation have been evaluated. In-
creased undersampling does not lead to a loss in image quality but improved capturing of motion.
Higher in-plane resolution shows increased noise because more Newton steps are needed to re-
veal the measured in-plane resolution. This was already demonstrated by Uecker in his thesis
[7] and holds true together with water-fat separation. The water-fat separations for NLINV
image reconstructions with di�erent Newton steps show that for high-resolution images only 8
Newton steps lead to proper water-fat separation. This e�ect is con�ned to the high-resolution
knee image reconstructions, for the other measured parts of the body no failure of the rt-IDEAL
water-fat reconstruction was observed independent of the number of Newton steps.

Real-time imaging requires fast image acquisition to freeze the imaged object and reconstruct
it correctly [59], which is even more challenging for real-time water-fat acquisitions due to the
necessity of multiple echoes. However, good water and fat maps are obtained for relatively fast
moving objects with a variety of temporal resolutions. On the other hand, images of moving
objects are unable to resolve the same details as static data acquisitions, which is caused by
the prolonged acquisition, where small details change from one spoke to the next and therefore
cannot be reconstructed properly. With lower in-plane resolution this e�ect is reduced as shown
for the cardiac data and abdominal data.

The fastest water-fat separation methods are single-point methods, but here no correct water-
fat separation could be achieved, because of the false estimation of �eld inhomogeneity maps or
because of the incorrect assumption of a temporally constant �eld inhomogeneity map in case of
the 1-Point plus separation.

87



6.10. CONCLUSION

At 7 Tesla, where T1 is increased and the saturation holds longer, complete water and fat
saturation was achieved. With regard to real-time water-fat separation at 7T, saturation is the
favorable method, because the advanced echo-time independent water-fat separation methods
failed at 7T.

In principle, not only water and fat can be separated, but any chemical species. This was
demonstrated with an ethanol phantom and for water, fat and silicone separation in a volunteer
by An in 2001 [162] and for C13 imaging by Reeder et al [163]. The �ndings for water-fat
separation should be easily transferred to separation of arbitrary chemical species acquired with
fast imaging methods.

6.10 Conclusion

Real-time water-fat separation is feasible, not only with respect to the data acquisition but
also with respect to the image reconstruction and water-fat separation. For data from a 3T
scanner, two successful approaches were found, one approach employs saturation pulses between
every frame and the other approach uses an echo-time independent multi-point acquisition (three
echoes) and advanced water-fat separation algorithms. The 2.5D ASR algorithm has a recon-
struction time suitable for real-time display, but cannot correct for most confounding factors for
fat quanti�cation. The optimized sequential IDEAL on the other hand can correct for almost
all confounding facts, but must be implemented on GPUs to enable the display of water and fat
frames in real-time. For data from a 7T scanner, only the saturation pulses provided successful
water-fat separation. Furthermore, model-based approaches may allow to accurately estimate
T ∗2 with only three echoes, enabling even more accurate fat quanti�cation in real-time or more
robust water-fat separation.
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Chapter 7

Phase-Contrast Flow MRI Phase

Unwrapping

MRI acquires complex data in k-space and most image reconstructions yield complex images.
The magnitude represents the proton density weighted with the coils and object speci�c relax-
ation properties. Examples for information encoded in the phase are phase-contrast imaging,
where the velocity is encoded into the phase [51], or thermometry, where the proton resonance
frequency changes with temperature [164]. Since water and fat protons have slightly di�erent
resonance frequencies their signal intensities interfere, which is visible in in-phase and opposed-
phase images. The extraction of values from the phase may be di�cult because values can only
be determined within the interval of I = [−π, π] modulus 2π. Any value exceeding the phase
interval of I in any direction is wrapped back into I, thereby alterating the extracted values.
Another problem are points where the phase circles around, so called phase poles. Phase wraps
can sometimes be resolved if the phase is sampled accordingly well, but phase poles are a fun-
damental problem which cannot be unwrapped. Typically phase poles occur for complex �ow
patterns [165] or coil combination [166].

Aside from the general phase problems, real-time MRI data provides additional challenges.
The �rst challenge is that the large amount of measured data requires fast and simple algorithms.
This is especially true for phase measurements, since phase unwrapping algorithms can usually
not be parallelized. The second challenge is the presence of motion, which must be considered
during phase unwrapping of real-time MRI data.

Phase unwrapping algorithms have been developed for Dixon real-time water-fat separation
and real-time phase-contrast �ow MRI. The phase unwrapping algorithm for the Dixon real-
time water-fat separation is described in 6.3.3 as an extension to the Dixon water-fat separation
method.

The phase unwrapping method for real-time phase-contrast �ow MRI described in the fol-
lowing sections has been published by the author, including �gures 7.1, 7.2, 7.3, 7.5, 7.6 [165].

7.1 Theory

For phase unwrapping of real-time phase-contrast �ow MRI data a path integration method
along both the temporal and the spatial domain within a region-of-interest (ROI) is used. The
algorithm presented in �gure 7.1 and the following sections follows previous ideas that combined
temporal and spatial velocity-encoded MRI signals in the presence of vascular movements [167,
168].
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Figure 7.1: Schematic outline of the algorithm proposed for phase unwrapping of real-time
phase-contrast �ow MRI data.

7.1.1 Preprocessing

The ROI de�nition is obtained from a preprocessing step. The preprocessing of MRI data
starts with the manual de�nition of a ROI in a single diastolic magnitude image as depicted
in 7.2 (top row, left-most image). In this example the ROI covers the ascending aorta with
phase wraps during systole (7.2, second row). Its contours are automatically propagated to all
magnitude images and phase-contrast maps (7.2, third row). The underlying method is part
of the CAIPI (Integrated Processing of Multimodal Cardiac Image Data) prototype software
for the analysis of cardiovascular image data (Fraunhofer MEVIS, Bremen,Germany) and has
been described in detail [169, 170]. Brie�y, in order to transfer the delineation of the ROI to the
entire series of images, the vessel motion is estimated using the Morphon approach, a phase-based
registration method [170]. The calculated motion is used to propagate the vessel boundaries from
the reference frame through the image series. This process is implemented as a two-step approach
to minimize error propagation. First, the image series is split into individual heart cycles.
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Starting from the reference frame, in which the contour was drawn,corresponding time frames in
other heart cycles are identi�ed in accordance to the detected contraction phase. The Morphon
approach is applied to compensate for spatial displacements due to breathing between these
time frames. This non-rigid registration method estimates the deformation between two frames
from the phase di�erence between quadrature �lter responses, which are intensity-invariant and
proportional to the spatial change. This calculation is iterated in a scale space to handle both
noise and motion in di�erent orders of magnitude. In a second step, the contours of these reference
frames are propagated through each cardiac cycle using serial deformation �elds calculated with
the same method.

7.1.2 Phase Unwrapping

After propagation of the ROI and automatic separation of a real-time MRI series into successive
cardiac cycles for individual analyses, a �rst step refers to the identi�cation of pixels with a
continuous signal intensity time course within the previously de�ned ROIs R1, ..., Rn. These
pixels x are de�ned as

{x : x ∈
N⋂
i=1

Ri} (7.1)

and represent blood signal throughout the entire cardiac cycle. They mainly refer to the inner
area of a vessel which may be spatially displaced due to cardiac movements or free breathing.
Accordingly, pixels in the outer zones of each ROI eventually exhibit a discontinuous signal
intensity time course, in the sense that they represent aortic blood during one part of the cardiac
cycle and surrounding tissue outside the aorta at other times. Discontinuous pixels y are de�ned
as

{y : y ∈ Ri, i ∈ {1, ..., N}∧ /∈
N⋂
i=1

} (7.2)

The third row in 7.2 depicts the masks obtained for continuous (gray) and discontinuous pixels
(black). Continuous time series are unwrapped by a pixelwise application of Itoh's method: First
in a forward direction and secondly backwards with reverse temporal ordering. Itoh's method
relies on the initial identi�cation of a time point with correct phase value, i.e. without phase
wrapping. This condition is easily ful�lled as many phases during a cardiac cycle exhibit only low
�ow velocities. Respective diastolic frames are identi�ed using the co-registered ECG time stamp,
e.g. see the left-most frame in the second row of 7.2. Secondly, the phase di�erence between
the initial time point and the next time point is calculated and added to the initial phase. This
step is repeated with the newly unwrapped time point as initial value until the end of the time
course or path is reached. If the initial pixel has a correct phase and if all phase di�erences are
between −π and π, then all phases will be unwrapped correctly. In fact, this latter condition is
ful�lled if the phase values obtained by forward and backward propagation agree. An example
is shown in 7.3 (left column) for a real-time MRI study of the human aorta. Phase wrapping at
VENC = 100 cm s−1 was simulated using data of an acquisition at VENC = 200 cm s−1 which
served as ground truth. Residual pixels with continuous time courses but temporally inconsistent
phase values are sorted according to their distance from the center of gravity of already corrected
pixels. Starting with the most central uncorrected pixel, the phase di�erences with its already
corrected nearest neighbors (maximum of 4) are calculated. Unwrapping is then performed by
adding the minimum phase di�erence to the initial value (7.3 middle column). This approach
ensures � and inherently assumes � a very local (i.e., pixelwise) smoothness or spatial continuity
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of the phase (i.e., �ow) within a vessel, while moving from inner corrected pixels to outer still
uncorrected pixels. Subsequently, the same strategy is applied to all pixels with a discontinuous
time course, again by pursuing a �circular� growth from the inner zone of pixels with reliable
phase unwrapping to the periphery of the vessel lumen. The entire procedure is outlined in
7.3 depicting the treatment of two continuous signal intensity time courses with and without
identical phases during forward and backward treatment (left and middle column, respectively)
as well as a discontinuous time course (right column).

Figure 7.2: Real-time phase-contrast �ow MRI of the human aorta at VENC = 100 cm s−1

(simulated). (Top) Magnitude images with region-of-interest (ROI), (second row) phase-contrast
maps with phase wraps, (third row) masks obtained for pixels with a continuous (gray) and
discontinuous (black) signal intensity time course, (fourth row) continuous pixels with consistent
(gray) and inconsistent (black) forward and backward phase unwrapping, and (bottom) phase-
contrast maps after correction. Residual pixels (white arrow) lie outside the analyzed ROI and
most likely refer to the vessel wall.

7.2 Methods

7.2.1 Real-Time Phase-contrast Flow MRI

All studies were performed on a clinical 3T MRI system (Tim Trio, Siemens Healthcare, Erlan-
gen, Germany) using a cardiac coil with 16 anterior and 16 posterior elements. Flow evaluations
in real time were accomplished with the use of a highly undersampled radial FLASH sequence
with image reconstruction by regularized nonlinear inversion (NLINV) [8, 76]. The NLINV
method was modi�ed for phase-contrast �ow MRI to yield phase-sensitive reconstructions of two
series of di�erently �ow-encoded images, while phase-contrast maps were obtained without any
temporal �lter [53, 59, 76]. Magnitude images and phase-contrast maps were computed online
using a server with 2 x 4 graphics processing units (sysGen/TYAN Octuple-GPU, 2x Intel West-
mere E5620 processor, 48GB RAM, Sysgen, Bremen, Germany) which was fully integrated into
the reconstruction pipeline of the commercial MRI system [9, 50].

For both phantom and human studies two sequential images with and without a bipolar �ow-
encoding gradient were obtained from only 7 spokes within an acquisition time of slightly above
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20ms each [76]. In order to allow for a proper VNR analysis, the measurements with VENC =
200 cm s−1 were performed with the same temporal resolution of 43.4ms as required for VENC
= 100 cm s−1. The experimental parameters for phase-contrast �ow MRI were: repetition time
TR = 3.10ms, echo time TE = 2.21ms, �ip angle 10◦, nominal in-plane resolution 1.3 x 1.3mm2,
and slice thickness 6mm. Dynamic reconstructions of phase-contrast maps therefore correspond
to a rate of 23 frames per second.

The algorithm for phase unwrapping was developed in MATLAB (MathWorks, Natick, MA)
and a respective o�ine implementation was applied for analyzing the data of the present study.

7.2.2 Phantom Studies

The �ow phantom was made of acrylic glass and �lled with stationary water. It comprised two
tubes (i.e., 10 and 20mm diameter) performing a U turn in a coronal plane which resulted in
four areas of through-plane �ow (two tubes, two directions). The tubes are connected outside
the phantom and �ow is driven by a computer-controlled immersion pump (Lux Plus KTW270,
Herzog, G�ottingen, Germany). Pulsatile �ow as in the human aorta was generated by a repetitive
pump protocol with a brief period (0.4 s) of high velocity followed by a longer period (1.6 s)
of lower velocity (repetition cycle 2.0 s). High-�ow and low-�ow conditions referred to pump
voltages di�ering by a factor two [75]. During high-�ow conditions phase wraps occurred for
VENC = 100 cm s−1 but not for VENC = 200 cm s−1.

Human Studies

Ten young volunteers without known illness and contraindications for MRI participated in the
study. The study was approved by the institutional review board and written informed consent
was obtained from each subject before MRI. Blood �ow was measured during free breathing
and simultaneously in the ascending and descending aorta using a single plane perpendicular
to the ascending aorta at the level of the right pulmonary artery. For each volunteer phase-
contrast �ow MRI was performed with VENC = 100 cm s−1 (three measurements) and VENC =
200 cm s−1 (one measurement). Depending on where a phase wrap occurred, either the ascending
or descending aorta was unwrapped and analyzed.

7.2.3 Simulated Data

Simulations were performed using human �ow MRI data with VENC = 200 cm s−1 and no phase
wraps. Simulated phase wraps were generated by retrospectively reducing the phase interval
from [−π, π] to [−π/2, π/2]. Values above π/2 (below −π/2) were added (subtracted) by π,
while all values within [−π/2, π/2] remained unchanged. To obtain wrapped phase data within
[−π, π] all values were subsequently multiplied by two. The corresponding arti�cial VENC =
100 cm s−1 data sets were unwrapped and analyzed the same way as applied for the true VENC
= 100 cm s−1 phantom and human data and the results were compared to the evaluations of the
original VENC = 200 cm s−1 data without phase wraps (ground truth).

7.2.4 Velocity-to-Noise Ratio

For each time frame the phase-contrast �ow MRI reconstruction yields two di�erently �ow-
encoded sets of c = [1, . . . ,M ] complex images ρ1,c and ρ2,c where M denotes the number of MRI
receive channels. These sets of images are combined into a single complex phase-contrast map

ρpc =
M∑
c=1

ρ1,cρ̄2,c (7.3)
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where the bar represents the complex conjugate. The phase of ρpc is converted into a velocity
map. The VNR is calculated according

VNR =
|v|π
VENC

SNR (7.4)

where |v| is the mean value of the absolute velocity in a ROI and the SNR is taken from the
magnitude images of ρpc [171, 172].
Possible VNR improvements were evaluated in the phantom and all subjects using single frames
with high velocity in the selected ROI. In human subjects these frames referred to peak systole.
The SNR of the magnitude image was determined by segmenting the whole image using Otsu's
method [123] into a foreground and background signal. The SNR was then calculated by dividing
the mean of the foreground by the standard deviation of the background signal.

Figure 7.3: Phase unwrapping for three di�erent types of single pixels and real-time phase-
contrast �ow MRI of the human aorta (single cardiac cycle) at VENC = 100 cm s−1 (simulated).
(Left) Continuous signal intensity time course with and (middle) without identical phase values
for forward and backward unwrapping, (right) discontinuous signal intensity time course. (Top
to bottom) The individual traces correspond to the arti�cially wrapped time courses, forward
and backward phase unwrapping with Itoh's method (continuous time courses only), corrected
time courses after adding spatial continuity (if applicable), and ground truth obtained for VENC
= 200 cm s−1.

7.3 Results

The proposed method for phase unwrapping of real-time phase-contrast �ow MRI data resulted
in a robust correction of velocity-encoded phase values both in vitro and in vivo. Representative
results for an in vivo phase contrast measurement is shown in �gure 7.4. The reliability of the
approach was �rst validated using simulated data of a �ow phantom and the human aorta as
shown in 7.5, where phase wraps occur for �ow velocities larger than 100 cm s−1. The traces show
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Figure 7.4: Representative results from a real-time phase-contrast �ow MRI with VENC =
100 cm s−1. (Top) Magnitude images, (second row) phase-contrast maps with phase wraps, (third
row) masks obtained for unwrapped pixels, and (bottom) phase-contrast maps after correction.

the mean �ow rates averaged across the vessel lumen for the arti�cially wrapped and corrected
data in comparison to ground truth. Without correction the a�ected �ow rates (i.e., �ow volumes
per unit time) are reduced, whereas phase unwrapping restores correct velocities (not shown)
and �ow rates.

Complementing the results for single-pixel phase values (velocities) in 7.3, the time frames
shown in the bottom row of 7.2 depict corrected phase-contrast maps for the human aorta at
100 cm s−1 (simulated). In all cases, i.e. in all pixels of the propagated ROIs, phase unwrapping
exactly restored the phase values of the original acquisition at VENC = 200 cm s−1 (ground
truth). Residual pixels (bottom row of 7.2, white arrow) were found outside the analyzed ROI
and most likely refer to the vessel wall.

7.6 demonstrates the reliable performance of the phase unwrapping method for prospectively
acquired real-time phase-contrast �ow MRI data at VENC = 100 cm s−1. The example again
depicts corrected �ow rates for a phantom and the human aorta. The resulting improvement in
VNR was close to the expected value of 2 for a halved VENC value in almost all cases (see Table
1). Small deviations in individual subjects were due to variations in SNR of the magnitude images
and mean velocities within the ROI. On average, the mean VNR values ± standard deviation
were 9.6± 3.2 for VENC = 200 cm s−1 (no phase wraps) and 20.0± 5.8 for VENC = 100 cm s−1

(after phase unwrapping).

7.4 Discussion

This chapter describes a simple and robust approach to phase unwrapping of real-time phase-
contrast �ow MRI data which extends Itoh's method [36] by exploiting temporal and spatial
continuity. Previously, a method for temporal phase unwrapping, which treats all pixel intensity
time courses as continuous and only uses forward unwrapping, has been applied to ECG-gated
cine �ow MRI data [173]. This strategy ignores discontinuous pixel contributions due to motion
of the aorta, which seems to be acceptable for the analysis of a single time-averaged cine MRI data
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Subject VENC = 200 cm s−1 VENC = 100 cm s−1

without phase unwrapping with phase unwrapping

Phantom 15.4 30.0
1 13.0 26.3
2 9.1 20.2
3 5.1 13.3
4 8.0 20.0
5 5.6 10.9
6 9.2 19.0
7 9.6 20.9
8 12.2 29.5
9 15.5 24.3
10 8.9 15.4

Mean ± SD 9.6± 3.2 20.0± 5.8

Table 7.1: Velocity-to-noise ratio along the phase dimension for real-time �ow MRI. Values refer
to peak mean velocities at systole.

Figure 7.5: Real-time �ow rates for (left) a �ow phantom and (right) the ascending aorta (single
subject). (Top) Simulated phase-wrapped �ow MRI data at VENC = 100 cm s−1, (middle)
corrected data after phase unwrapping, and (bottom) ground truth for VENC = 200 cm s−1.

set from multiple cardiac cycles. However, in order to bene�t from real-time MRI advantages such
as free breathing and functional access to individual cardiac cycles, a more elaborate multi-step
method for phase unwrapping is required which includes a treatment of pixels with discontinuous
signal intensity time courses. On the other hand, the present method is less demanding than a
previous method for spatiotemporal phase unwrapping which attempts to track the exact path
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Figure 7.6: Real-time �ow rates for (left) a �ow phantom and (right) the ascending aorta (single
subject) using phase-contrast �ow MRI at VENC = 100 cm s−1. (Top) Phase-wrapped data and
(bottom) corrected data after phase unwrapping.

of pixel intensities throughout all frames of a cardiac cycle [168]. Provided the vascular ROI as a
whole is reliably propagated to cope with movement-related displacements, such a complex task
is indeed not necessary as quantitative �ow parameters are obtained by integrating phase values
across the entire vessel lumen.

A known limitation of the basic Itoh algorithm are higher-order phase wraps if the absolute
phase di�erence between two adjacent time points is equal to or larger than π [36]. In addition,
problems may occur for phase wraps in two or three dimensions which increase the degree of
complexity as well as the corresponding computational demand, e.g. see [35, 174�176]. It remains
to be seen whether these methods may be adapted to unwrap real-time phase-contrast �ow MRI
data. In general, the need for a phase correction, which is caused by a too low VENC value, should
not be confused with the occurrence of phase wraps which are due to the presence of turbulence or
other complex �ow patterns, e.g. in patients with a stenosis or valve dysfunction. In these cases,
phase errors are due to contributions from higher-order through-plane �ow (e.g., accelerated
�ow or jerk) or in-plane �ow components which should not be translated into false through-
plane velocities by phase unwrapping. Instead, it seems mandatory to minimize respective phase
contributions by adding motion-compensating magnetic �eld gradients to the phase-contrast
MRI acquisition technique rather than to seek a correction.

The computation time for the present phase unwrapping method, which was implemented
in MATLAB and applied o�ine, was about 10�15 s for a typical real-time phase-contrast MRI
data set of 370 frames. This duration can further be reduced by parallelizing the algorithm,
e.g. for multiple cardiac cycles, and by porting the code into a faster programming language
like C/C++. In addition, the current work�ow for phase unwrapping is tedious, because of the
sequential application of two di�erent software packages for segmentation/propagation and phase
unwrapping, respectively. However, the currently prepared integration of the phase unwrapping
algorithm into the CAIPI software will provide an easy-to-use tool for an almost completely
automatic analysis of real-time phase-contrast maps with low VENC values and high VNR based
on reliable phase unwrapping. This integration will facilitate more extended clinical trials of large
patient cohorts.
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7.5 Conclusion

In conclusion, the proposed phase unwrapping method for real-time �ow MRI allows for measure-
ments with reduced velocity encoding and increased VNR. By treating individual cardiac cycles
with temporal forward and backward unwrapping and by identifying pixels with and without
continuous support representing the same tissue throughout the cardiac cycle, the method ex-
ploits the true temporal continuity of a real-time MRI acquisition and o�ers robust performance
for moving vessels.
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Chapter 8

Summary and Outlook

8.1 Summary

In this thesis MRI methods for T ∗2 mapping, water-fat separation and phase-unwrapped �ow
quanti�cation have been extended to the experimental conditions of a real-time data acquisition
and corresponding image reconstruction. The transfer includes the development of a gradient
delay correction method for radial MRI with extension to multi-echo data as well as asymmetric
gradient echo data.

A basic version of the gradient delay correction has �rst been presented by Block and Uecker
[11]. The extension to multi-echo data is necessary because the trajectories of the di�erent
echoes are not considered during gridding. This can be compensated if individual gradient delay
corrections for each echo are performed. Considering asymmetric echoes, the data is cropped to
a much shorter but symmetric echo data for which the time shift and subsequently the gradient
delay is estimated. The robustness and accuracy of the methods were experimentally con�rmed.
Although motion excerted a strong in�uence on the gradient delay estimation, the obtained
corrections markedly improved the image quality compared to reconstructions from uncorrected
data.

For real-time T ∗2 mapping only the single-exponential model f(t) = S0 exp (−t/T ∗2 ) with
initial value S0 and decay parameter T ∗2 is able to �t the amount of real-time data in a reason-
able time of about 0.2 seconds per frame because the model can be linearized. Simulations of
the single-exponential �t demonstrated that the sampling length determines the accuracy and
precision of the estimated T ∗2 value. Up to three times the longest applied gradient-echo time,
T ∗2 values are estimated with a standard deviation below 5 %. For longer T ∗2 values, the stan-
dard deviation increases rapidly, producing unreliable �tting results. Switching from linear to
non-linear �tting, accuracy and precision improve [110] but the analysis must be restricted to a
region of interest for real-time T ∗2 mapping.

The in�uence of motion on T ∗2 mapping was investigated with a specially designed motion
phantom which rotates an agarose disk [73]. Dephasing during the slice selection gradient and
signal enhancement due to in�ow of fresh isochromats determine the signal intensity of a single-
echo measurement. The T ∗2 decay estimated from a multi-echo measurement is altered due to
the dephasing along the radial read-out gradients and the resulting T ∗2 shortening has been
experimentally con�rmed.

T ∗2 mapping in real-time was applied to the human heart. With a still limited temporal
resolution between 50− 100ms, cardiac T ∗2 maps have been obtained. The low SNR was partly
compensated for by using regions-of-interest rather than single pixels for the analyses applied to
cardiac T ∗2 data. These analyses comprised a Fourier analysis of T ∗2 and S0 time series and the
retrospective generation of a single arti�cial heart cycle at even higher temporal resolution. Both
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approaches revealed a periodic variation of T ∗2 during the cardiac cycle which apart from residual
motion e�ects may re�ect di�erences in myocardial perfusion and/or oxygenation in agreement
with earlier suggestions [16, 105].

Water-fat separation in MRI is possible in many di�erent ways. The most prominent methods
are saturation and multi-echo methods. In the conventional saturation method, a saturation pulse
is applied before each k-space line. However, utilizing the speed of real-time data acquisitions, a
complete frame may be acquired while the saturated magnetization has not completely recovered.
The regrowth of the saturated magnetization depends on T1 which favours water saturation over
fat saturation. Successful water/fat saturated MRI movies at a resolution of 0.75mm could be
acquired at 3 and 7T. A new water-fat separation method using repetitive saturation pulses,
continuous data acquisition and a correlation analysis was also developed.

Multi-echo water-fat separation methods separate into the Dixon method [28�31], which
requires �xed echo times at in-phase and opposed-phase conditions and echo-time independent
methods like 'Direct Phase Encoding' (DPE, [32]), 'Analytical water/fat separation with a safest-
�rst region-growing scheme' (ASR, [33]) and 'Iterative Decomposition of water and fat with Echo
Asymmetry and Least-squares' (IDEAL, [34]). All of these methods have been implemented for
water-fat separation in real-time MRI though with variable results. As in conventional appli-
cations, the quality of the �eld inhomogeneity map mainly determines the quality of water-fat
separation in real-time. Moreover, real-time variants have to exploit the temporal continuity be-
tween frames to estimate the �eld inhomogeneity correctly over time in the presence of motion.
In the Dixon method this was achieved by a simple one-dimensional temporal unwrapping of
the phase of the �eld inhomogeneity. For the echo-time independent methods, only ASR and
IDEAL allowed for a direct implementation of temporal information. In ASR the region growing
is performed framewise with consideration of the previous frame, ensuring a spatially and tem-
porally coherent region growing. In the IDEAL algorithm advantage of temporal information
was taken by providing the �eld map from the previous frame as initial guess of the current �eld
map estimation.

Because a quantitative assessment of fat has become increasingly important in clinical studies,
care was taken to correct for respective confounding factors. Because almost all problems could
be accounted for in the IDEAL algorithm, it resulted in the most promising real-time solution
with optimized spatial and temporal resolution. For example, separate water and fat MRI �lms
of the moving knee with 250ms per frame and in-plane resolution of 0.75mm could be acquired.

Phase unwrapping of complex MR images is a complicated task and many algorithms have
been proposed [35], but each algorithm encounters situations where it fails. This is mainly due to
the presence of noise or the occurrence of phase poles distributed over the image. However, real-
time phase-contrast MRI techniques acquire time series of slices with velocity encoding along the
slice direction and vessels intersecting the slice perpendicular. Phase-unwrapping can therefore
be restricted to the segmented vessel. The additional separation into individual cardiac cycles
allows then for a one-dimensional phase-unwrapping algorithm [36] along the temporal axis. The
algorithm has been veri�ed in numerical simulations and was demonstrated to correctly treat
data of a �ow phantom and healthy human subjects. Furthermore, the algorithm was published
by the author [165] and shown to allow for a reduced velocity encoding which increases the
velocity-to-noise ratio.

8.2 Outlook

In future implementations, the physical gradient delay correction should directly be applied
to measured data and therefore incorporated into the image reconstruction algorithm. Its use
may supersede an alternative phase correction method [93], as it does not compromise access to
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physiological parameters depending on phase.
Real-time T ∗2 mapping will further be explored in other anatomical locations like the knee.

In this context, the development of a multi-echo multi-spokes sequence will provide images with
T ∗2 contrast at higher temporal resolution than obtainable by multi-echo single-spoke acquisitions.
Together with the assessment of the functional anatomy of the heart T ∗2 measurements may
provide access to cardiac perfusion and tissue oxygenation. The development of a model-based
approach for T ∗2 estimation may also increase the accuracy of quantitative determinations.

Because water-fat separation in real-time is a computationally demanding task, respective
image reconstructions will be speeded up by porting the optimized IDEAL algorithm to graphical
processing units for online display of water and fat maps. A model-based water-fat separation for
real-time data which includes temporal information may further improve a quantitative water-fat
separation.

The developmental state of the spatiotemporal phase unwrapping technique represents a
proof of concept. The next step is the incorporation of the algorithm into the �ow analysis
software used for real-time MRI data in order to validate its robustness in clinical studies.
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Appendix A

Gradient Delay correction

A.1 Radial Gradient Delay Model

In this section the gradient delay model according to Peters [77] is presented. The radial gradient
switching scheme in the logical coordinate system is

Glog =

 G1

G2

G3

 =

 Gread(t) cos θ
Gread(t) sin θ
Gslice(t)

 (A.1)

with the readout angle of the spoke θ and Gread as a combination of the three physical gradients.
The readout spokes in an arbitrarily oriented slice of the physical coordinate system are rotated
by θ around the center of the slice. The delays caused by the physical gradients are found by
rotation from the logical coordinate system into the physical coordinate system. The rotation is
described by a rotation matrix Rij , i, j ∈ {1, 2, 3}, which is de�ned by the slice orientation.

Gphys(t) =

 Gx
Gy
Gz

 =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

 Gread(t) cos θ
Gread(t) sin θ
Gslice(t)

 (A.2)

The delay of the gradients is represented here by the time delay operator T :

T [Gphys(t)] :=

 Gx(t− td,x)
Gy(t− td,y)
Gz(t− td,z)

 (A.3)

The delayed physical gradients are calculated according to equation A.4.

Gdel
phys = T [RGlog] (A.4)

The physical gradient delays must be transformed back into the logical gradient delays, since
data is only measured in the logical gradient system.

Gdel
log = RTT [RGlog] (A.5)

The error between the ideal and delayed trajectory is calculated as the di�erence between the
two trajectories.

∆k(τ) =
γ

2π

∫ τ

0
Gdel
log(t)dt−

γ

2π

∫ τ

0
Glog(t)dt (A.6)
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The shifts of the delayed trajectory in the logical coordinate system are

∆k1(θ) = Gread
γ

2π

(
txR

2
11 cos(θ) + tyR

2
21 cos(θ) + tzR

2
31 cos(θ)+

+txR11R12 sin(θ) + tyR22R21 sin(θ) + tzR32R31 sin(θ)) +

−Gslice
γ

2π
(txR11R13 + tyR21R23 + tzR31R33) (A.7)

∆k2(θ) = Gread
γ

2π

(
txR

2
12 sin(θ) + tyR

2
22 sin(θ) + tzR

2
32 sin(θ)+

+txR11R12 cos(θ) + tyR22R21 cos(θ) + tzR32R31 cos(θ)) +

−Gslice
γ

2π
(txR12R13 + tyR22R23 + tzR32R33) (A.8)

∆k3(θ) = Gread
γ

2π

(
txR

2
11 cos(θ) + tyR

2
21 cos(θ) + tzR

2
31 cos(θ)+

+txR11R12 sin(θ) + tyR22R21 sin(θ) + tzR32R31 sin(θ)) +

−Gslice
γ

2π

(
txR

2
13 + tyR

2
23 + tzR

2
33

)
(A.9)

A rotation around the logical z-axis with the angle θ gives then the parallel and perpendicular
gradient delays ∆k‖ and ∆k⊥ of the spoke acquired at angle θ. ∆k‖

∆k⊥
∆k3

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ∆k1(θ)
∆k2(θ)
∆k3(θ)

 (A.10)

∆k‖(θ) = Gread
γ

2π
[ cos2(θ)

(
txR

2
11 + tyR

2
21 + tzR

2
31

)
+

sin2(θ)
(
txR

2
12 + tyR

2
22 + tzR

2
32

)
+

2 cos(θ) sin(θ) (txR11R12 + tyR22R21 + tzR32R31)]

−Gslice
γ

2π
[ cos(θ) (txR11R13 + tyR21R23 + tzR31R33) +

sin(θ) (txR12R13 + tyR22R23 + tzR32R33)] (A.11)

∆k⊥(θ) = Gread
γ

2π
[ cos2(θ) (txR11R12 + tyR22R21 + tzR32R31) +

− sin2(θ) (txR11R12 + tyR22R21 + tzR32R31) +

cos(θ) sin(θ)
(
txR

2
12 + tyR

2
22 + tzR

2
32 − txR2

11 − tyR2
21 − tzR2

31

)]
−Gslice

γ

2π
[ cos(θ) (txR12R13 + tyR22R23 + tzR32R33)

− sin(θ) (txR11R13 + tyR21R23 + tzR31R33)] (A.12)

∆k3(θ) = Gread
γ

2π
[ cos(θ)

(
txR

2
11 + tyR

2
21 + tzR

2
31

)
+

sin(θ) (txR11R12 + tyR22R21 + tzR32R31) ]

−Gslice
γ

2π
[ txR

2
13 + tyR

2
23 + tzR

2
33 ] (A.13)
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Introducing the global delays tg1, ..., tg7

tg1 =txR
2
11 + tyR

2
21 + tzR

2
31 (A.14)

tg2 =txR
2
12 + tyR

2
22 + tzR

2
32 (A.15)

tg3 =txR11R12 + tyR22R21 + tzR32R31 (A.16)

tg4 =txR11R13 + tyR21R23 + tzR31R33 (A.17)

tg5 =txR12R13 + tyR22R23 + tzR32R33 (A.18)

tg6 =txR
2
12 + tyR

2
22 + tzR

2
32 − txR2

11 − tyR2
21 − tzR2

31 (A.19)

tg7 =txR
2
13 + tyR

2
23 + tzR

2
33 (A.20)

simplify the gradient delays to

∆k‖(θ) = Gread
γ

2π

[
cos2(θ)tg1 + sin2(θ)tg2 + 2 cos(θ) sin(θ)tg3

]
−Gslice

γ

2π
[cos(θ)tg4 + sin(θ)tg5]

(A.21)

∆k⊥(θ) = Gread
γ

2π

[
cos2(θ)tg3 − sin2(θ)tg3 + cos(θ) sin(θ)tg6

]
−Gslice

γ

2π
[cos(θ)tg5 − sin(θ)tg4]

(A.22)

∆k3(θ) = Gread
γ

2π
[cos(θ)tg1 + sin(θ)tg3]−Gslice

γ

2π
[tg7] (A.23)

A.2 Three-Spokes Estimation

Considering three spokes for the shift estimation, then two almost antiparallel spokes Sθ1 and
Sθ2 at angles θ1 and θ2 which encompass the reference spoke Sθ at angle θ as illustrated in �gure
4.4 are used. The Fourier transforms of the cross correlations C(Sθ, Sθ1)[k] and C(Sθ, Sθ2)[k] are
calculated and added subsequently. Shift of α, α1, α2 are assumed for the three spokes Sθ, Sθ1
and Sθ2 .

g[k] = F [C(Sθ, Sθ1)] [k] + F [C(Sθ, Sθ2)] [k] = F [Sθ] [k]F [Sθ1 ] [k] + F [Sθ] [k]F [Sθ2 ] [k]

= F [S0] [k]F [S0] [k]
(
ω(α+α1)k + ω(α+α2)k

)
= F [S0] [k]F [S0] [k] ·

[
2 sin

(
2π

N

k

2
(2α+ α1 + α2)

)
cos

(
2π

N

k

2
(α1 − α2)

)
+2i cos

(
2π

N

k

2
(2α+ α1 + α2)

)
cos

(
2π

N

k

2
(α1 − α2)

)]
(A.24)

= F [S0] [k]F [S0] [k] ·
[
ω

1
2

(2α+α1+α2)k
]

cos

(
2π

N

k

2
(α1 − α2)

)
(A.25)

In equation A.25 everything except the ω-term is real and only the complex term contributes to
the shift calculation from the phase. The angle of the almost antiparallel spokes is speci�ed as
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θ1 = θ + π + ε1 and θ1 = θ + π − ε2, with ε1,2 ∈ R. The theoretical shift from three spoke is

∆ktheory = 2∆k‖(θ) + ∆k‖(θ + π + ε1) + ∆k‖(θ + π − ε2) (A.26)

= tg1

[
2 +

1

2
(2 cos(2θ) + 2 cos(2(θ + ε1 − ε2)) cos(ε1 + ε2))

]
(A.27)

+ tg2

[
2− 1

2
(2 cos(2θ) + 2 cos(2(θ + ε1 − ε2)) cos(ε1 + ε2))

]
(A.28)

+ 2tg3 [sin(2θ) + sin(2(θ + ε1 − ε2)) cos(ε1 + ε2)] (A.29)

+ tg4

[
2 cos θ + 2 cos(θ + π +

ε1 − ε2
2

) cos(
ε1 + ε2

2
)

]
(A.30)

+ tg5

[
2 sin θ + 2 sin(θ + π +

ε1 − ε2
2

) cos(
ε1 + ε2

2
)

]
(A.31)

With the assumption that |ε1 − ε2| � 1 and |ε1 + ε2| � 1 the arguments of the cosine can be
approximated to θ + π ε1−ε22 ≈ θ + π and ε1−ε2

2 ≈ 0. With the previous approximations the shift
due to the slice select gradient vanishes and only a shift from the read gradient remains.

∆ktheory = 4
(
tg1 cos2 θ + tg2 sin2 θ + 2tg3 sin θ cos θ

)
(A.32)
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