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Abstract 

In the realm of agricultural sustainability, the utilization of plant genetic resources for enhanced disease resistance is 
paramount. Preservation efforts in genebanks are justified by their potential contributions to future crop improvement. 
To capitalize on the potential of plant genetic resources, we focused on a barley core collection from the German ex situ 
genebank and contrasted it with a European elite collection. The phenotypic assessment included 812 plant genetic 
resources and 298 elites, with a particular emphasis on four disease traits (Puccinia hordei, Blumeria graminis hordei, 
Ramularia collo-cygni, and Rhynchosporium commune). An integrated genome-wide association study, employing both 
Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) and a linear mixed model, was per-
formed to unravel the genetic underpinnings of disease resistance. A total of 932 marker–trait associations were identi-
fied and assigned to 49 quantitative trait loci. The accumulation of novel and rare resistance alleles significantly bolstered 
the overall resistance level in plant genetic resources. Three plant genetic resources donors with high counts of novel/
rare alleles and exhibiting exceptional resistance to leaf rust and powdery mildew were identified, offering promise for 
targeted pre-breeding goals and enhanced resilience in future varieties. Our findings underscore the critical contribution 
of plant genetic resources to strengthening crop resilience and advancing sustainable agricultural practices.

Keywords:   Barley, core collection, disease resistance, genome-wide association analysis, plant genetic resources, rare and 
novel alleles.
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Introduction

Barley (Hordeum vulgare L.) is one of the oldest domesticated 
crops, and ranks fourth in cereal production behind wheat 
(Horsley and Hochhalter, 2004). Its versatility extends beyond 
its traditional uses as malting and feed, encompassing diverse 
food and beverage applications (Langridge, 2018). Despite its 
prominence, barley production encounters diverse challenges, 
primarily due to the persistent threat of diseases. Significant 
yield and economic losses have been reported worldwide 
(Havis et al., 2015; Ababa et al., 2023; Dracatos et al., 2023), due 
to many different diseases, such as leaf rust (caused by Puccinia 
hordei), powdery mildew (caused by Blumeria graminis hordei), 
leaf spots (caused by Ramularia collo-cygni), and scald (caused 
by Rhynchosporium commune), necessitating innovative strategies 
for sustainable control. The landscape of barley diseases is dy-
namic, marked by the breakdown of host resistance, evolving 
pathogen strains, and the emergence of threats once deemed 
to be minor. Fungicide insensitivity further compounds the 
complexity of disease management, underscoring the urgent 
requirement for effective and sustainable approaches. In this 
context, resistance breeding, an economic and environment- 
friendly approach, is critical for sustainably controlling these 
pathogens (Mundt, 2014). Plant disease resistance can be clas-
sified into qualitative resistance and quantitative resistance: the 
qualitative resistance determined by single loci [genes and/or 
quantitative trait loci (QTLs)] can often be easily overcome by 
new strains of a pathogen, whereas resistance conferred by the 
accumulation of quantitative resistance genes with a complex 
genetic architecture, although not absolute, tends to be more 
durable over time (Miedaner and Korzun, 2012; Walters et al., 
2012; Camenzind et al., 2024).

In the past few decades, many major resistance genes and 
QTLs have been identified and deployed against barley patho-
gens (Havis et al., 2015; Park et al., 2015; Kusch and Panstruga, 
2017; Zhang et al., 2020; Gou et al., 2023). Nevertheless, the 
ever-changing nature of pathogens requires continuous adap-
tation. Despite this challenge, modern breeding programs rely 
largely on recycling elite materials (Nelson et al., 2018), leading 
to a relatively narrowed genetic diversity and strong selection 
at the resistance loci, thereby limiting the potential for discov-
ering useful novel genes (Chełkowski et al., 2003). Expanding 
beyond these constraints lies the promise of delving into the 
vast genetic reservoirs present within plant genetic resources 
(PGRs; Khoury et al., 2010). This untapped potential holds 
great significance for biodiversity assessment and maintenance 
efforts. A strategic core collection approach becomes instru-
mental in maximizing genetic diversity and unearthing novel 
sources of resistance that can navigate the challenges posed by 
evolving pathogen strains.

Our study addresses these challenges by focusing on a 
spring and winter barley core collection, including 812 PGRs 
selected from the Federal ex situ Genebank for Agricultural and 
Horticultural Crop Plants maintained at IPK in Gatersleben, 

Germany, and 298 European elite varieties. The entire popu-
lation was phenotyped in multienvironmental trials for three 
agronomically important traits: plant height (PH), heading 
date (HD), and lodging (LOD), and four disease traits: Puccinia 
hordei (PUC), Blumeria graminis hordei (BLU), Ramularia collo-
cygni (RAM), and Rhynchosporium commune (RHY), with the 
aim to harness valuable genes and alleles as a means to en-
hance disease breeding programs. In particular, our objectives 
were to (i) evaluate the phenotypic variability of 1110 diverse 
barley genotypes for the aforementioned traits, (ii) detect loci 
associated with resistance against the disease traits, (iii) identify 
rare and novel candidate resistance alleles with low frequencies 
in the elite group, and (iv) select the most promising resistant 
PGR donors that maximize the number of rare and novel can-
didate resistance alleles that can be further utilized in future 
pre-breeding programs.

Materials and methods

Plant material and phenotypic data analysis
This study utilized a total of 1110 genotypes that covered diverse ge-
ographic origins (Fig. 1; Supplementary Table S1). The collection was 
systematically categorized into four subgroups: elites in winter (Elite_
Winter, n=170) and spring type (Elite_Spring, n=128), together with 
PGRs in winter (PGR_Winter, n=288) and spring type (PGR_Spring, 
n=524). With the aim to capture a good representation of the barley 
diversity space, the PGRs were thoughtfully selected from a previously 
described barley core 1000 collection (Oppermann et al., 2015; Milner 
et al., 2019), based on their performance during seed regeneration. The 
812 PGR pool originated from 57 countries spanning five continents, 
while the remaining 298 elite lines were exclusively from Europe. The 
field trials were conducted in eight environments throughout Germany 
in three consecutive years: 2020, 2021, and 2022, following a generalized 
alpha lattice design and considering two-row plots (1 m2) as the exper-
imental unit.

The phenotypic data encompass three agronomy traits (HD: measured 
in days from 1 January for winter types and from the sowing date onward 
for the spring types, PH, and LOD), and four disease traits (PUC, BLU, 
RAM, and RHY) evaluated under natural infection. The disease severi-
ties were scored using an ordinal scale from 1 (fully resistant) to 9 (fully 
susceptible) referring to the German Federal Plant Variety Office guide-
line (Bundessortenamt, 2000).

Statistical analysis was separately conducted for spring and winter 
barley phenotypic data. An initial step involved removal of outliers using 
Tukey’s method (Anscombe and Tukey, 1963). Subsequently, a linear 
mixed model (LMM) was employed to analyze the generated data across 
environments:

yijkm = µ+ Em + gi + gi × Em + Em : rj : bk + eijkm�  (1)

where yijkm is the vector of phenotypic records for the ith genotype (g) 
tested in the kth bock (b) nested in the jth replication (r) in the mth en-
vironment (E), μ was the common mean, and e denoted the error term of 
the model. We assumed that all random effects followed an independent 
normal distribution with different variance components. In model (1), all 
terms except µ and gi were treated as random to compute the best linear 
unbiased estimations (BLUEs) across environments, whereas all terms 
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except µ were modeled as random to estimate variance component and 
broad-sense heritability as:

h2 =
σ2
g

σ2
g +

σ2
g×E

nE
+

σ2
e

nR

,

�  (2)

where σ2
g , σ

2
g×E , and σ2

e  are the estimates of the corresponding geno-
typic, interaction of genotype and environment, and residual variances, 
respectively. nR  is the number of replications per genotype, and nE  is 
the average number of environments in which the genotypes were 
phenotyped.

All LMM equations were fitted using the ASReml-R package (version 
4; Butler et al., 2023). The estimated BLUEs were then used to conduct 
a genome-wide association study (GWAS). Pearson’s correlation coeffi-
cients between traits were further analyzed using the R package corrplot 
(version 0.92; Wei and Simko, 2017). In order to investigate the rela-
tionships between the traits, path analysis incorporating a multiple linear 
regression model (MLRM) was conducted using the R package lavaan 
(version 0.6-16; Rosseel, 2012), and visualized using the R package sem-
Plot (version 1.1.6; Epskamp, 2015).

Genotypic data and diversity analysis
Whole-genome sequencing (WGS) data of the 1110 genotypes were 
generated at IPK Gatersleben using the Illumina NovaSeq 6000 plat-
form (Jayakodi et al., 2024, Preprint). Raw sequencing reads were 
trimmed using cutadapt (version 3.3; Martin, 2011) and aligned to the 

MorexV3 reference genome (Mascher et al., 2021) using Minimap2 
(version 2.20; Li, 2018). The resultant alignment records were sorted 
with Novosort (V3.09.01; http://www.novocraft.com). On average, 
the coverage was 4.7× across all samples, with a minimum of 0.5× 
and a maximum of 22.6×. A total of 149 380 812 single nucleotide 
polymorphisms (SNPs) were initially outputted by BCFtools (version 
1.9; Li, 2011).

Genome-wide linkage disequilibrium (LD) analysis of the four sub-
groups was carried out separately by determining the pairwise squared 
allele frequency correlations (r2) with previously described formulas re-
ported by Hill and Robertson (1968). LD within a specific genomic re-
gion (2 Mb) was calculated and visualized by PopLDdecay (version 3.40; 
Zhang et al., 2019). In order to validate the population structure of spring 
and winter barley accessions, principal coordinate analysis (PCoA) was 
conducted using the R package ape (v5.7-1; Paradis and Schliep, 2019) 
based on pairwise Rogers’ distance among genotypes.

Afterward, SNP markers were individually filtered with the index of 
minor allele frequency ≥0.05 and missing rate <0.05 on the basis of the 
four subgroups. After this filtering, the remaining missing values were 
phased and imputed by Beagle (version 5.2; Browning et al., 2018). 
Subsequently, an r2 cut-off of 0.2 was set to prune markers PLINK (ver-
sion 1.9; Purcell et al., 2007) with a sliding window size of 50 kb, and a 
step size of 10 kb. The final number of SNPs available for GWAS differed 
in the four subgroups due to the aforementioned quality control process: 
710 855 of Elite_Spring, 945 074 of Elite_Winter, 2 321 327 of PGR_
Spring, and 1 775 972 of PGR_Winter. For each tested SNP, homozy-
gous for the most frequent allele, heterozygous, and homozygous for the 
alternative allele were coded as 0, 1, and 2, respectively. The correlation 
between Rogers’ distance and the absolute trait differences (Euclidean 

Fig. 1.  Geographical distribution of the collection of 1110 barley genotypes. Geographical distribution of elite lines in spring type (A), elite lines in winter 
type (B), plant genetic resources in spring type (C), and plant genetic resources in winter type (D). The color of a country reflects the number of genotypes 
originating from there.
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distance) in each subgroup was tested through a Mantel test implemented 
in the vegan R package (v2.6-4; Oksanen et al., 2022).

Genome-wide association analysis by mixed models
A GWAS was conducted based on the integration of genotypic infor-
mation of the four subgroups with their corresponding phenotypic 
data. In order to avoid possible overcorrection of associations, BLINK 
(Huang et al., 2019) and LMM were used to identify significant SNPs 
for the seven traits. The two models were implemented using the 
statistical genetics R packages Genome Association and Prediction 
Integrated Tool (GAPIT; Lipka et al., 2012) and Genome-wide 
Efficient Mixed-Model Association (GEMMA; Zhou and Stephens, 
2012), respectively. The top three eigenvectors in a principal compo-
nent analysis (PCA) and the kinship matrix were computed using the 
pipelines embedded in GAPIT and GEMMA, respectively, to control 
the population structure for GWAS, and hence reduce the inflation of 
false-positive associations.

Significant association thresholds were defined using the Bonferroni 
correction (Holm, 1979; 0.05/the number of SNPs) for each group to 
control false positives. Subsequently, Manhattan and combined quan-
tile–quantile plots were generated using the R package CMplot (ver-
sion 4.3.1; Yin et al., 2021). For calculating the proportion of variance 
in phenotype explained by a given SNP (PVE), sample size, minor allele 
frequency, effect size, and the standard error of each SNP were fitted into 
a linear regression model previously described by Shim et al. (2015).

QTL identification by the extent of linkage disequilibrium-based 
blocks
Since LD is extremely variable among different loci and the break-
down of LD is often discontinuous and presents a haploblock-like 
structure, the usage of the average r2 on the whole genome basis 
may distort the QTL identification of each locus (Daly et al., 2001). 
Therefore, the SNPs were clustered based on LD using the func-
tion of haplotype block estimation ‘--clump’ in PLINK (version 1.9), 
shifting the identification of a block from a given average distance 
on a chromosome to grouping significant SNPs that are inherited 
together into different blocks due to their tight LD. The function 
identifies independent blocks which are defined as a proximal set of 
SNPs with minimum pairwise LD that are larger than a pre-defined 
threshold (r2=0.2). A maximum distance threshold between SNP pairs 
was set as 10 Mb to avoid unrealistically large blocks. Markers that 
could not be assigned to any block were treated as individual blocks 
with just one SNP. The QTL was then defined as the significant mark-
ers’ corresponding blocks. The physical positions of all QTLs spanned 
by the haplotype block were determined by aligning their reference 
sequences to a barley reference genome MorexV3 (Mascher et al., 
2021) in order to explore annotated genes inside or overlapping with 
each QTL.

Resistance allele identification
In our study, the resistance allele denoted the allele that conferred 
enhanced resistance to each disease. More precisely, the effect of each 
significant marker was determined based on the output marker effects. If 
the marker effect is negative, the minor allele is deemed to decrease the 
disease severity, and is thus defined as the resistance allele. Conversely, if 
the marker effect is positive, the major allele was defined as the resistance 
allele. Afterward, all the significant markers were categorized for each 
growth habit to calculate their resistance allele frequency (RAF) within 
the elite and PGR pools separately. The aim was to filter out novel resist-
ance alleles (NRAs) where the RAF in the elite pool (RAFElite)=0, and 
rare resistance alleles (RRAs) where 0<RAFElite<0.05.

Results

Analyses of the barley core collection revealed broad 
genetic diversity and apparent population structure

The entire barley collection analyzed in this study comprised 
1110 lines that were genotyped using short-read whole-
genome skim-sequencing. Read mapping and variant calling 
against the MorexV3 reference provided a total of 149 380 812 
SNPs. Subsequent SNP filtering, conducted on a subgroup 
basis, resulted in a total of 57 559 591 unique SNP markers 
meeting criteria of a maximum 10% missing value rate and a 
minimum 5% minor allele frequency. The markers that passed 
filtration were then used to calculate the genome-wide mean 
LD for each corresponding subgroup, separately. At a distance 
of 2 Mb, LD decayed 1.2- and 1.1-fold faster in the PGR pool 
than in the elites for spring and winter types, respectively (Fig. 
2A). The slower LD decay in the elites may be due to genetic 
bottlenecks and/or high selection pressures that produce spe-
cific linkage between alleles that control specific phenotypes. 
The differences in LD decay, which mirror the genetic struc-
ture and an uneven level of relatedness within the associated 
panel, pose significant challenges leading to false association 
inflation in GWAS, thus, demonstrating the need to segregate 
the entire population into four subgroups.

The markers that passed the quality control process were 
further imputed and pruned, yielding 4 940 383 unique SNPs. 
Subsequently, the genetic structure was investigated by apply-
ing PCoA based on Rogers’ distance matrix on three levels: 
the entire collection, only spring barley, and only winter barley. 
A joint PCoA for the whole set (Fig. 2B) revealed that both 
PGR_Spring and PGR_Winter subsets covered the same di-
versity space. In the spring barley population, the elite lines and 
PGR accessions were clearly separated by the first two PCos, 
explaining together 11.66% of the total genetic variation (Fig. 
2C). Likewise, elites and PGRs showed clear patterns in the 
winter population with few instances of admixture (Fig. 2D). 
Within the elite population, which mostly comprises European 
varieties, distinct grouping among the two growth habit clus-
ters highlights the significant influence of geographical origin 
on the genetic structure of elite barley varieties (Fig. 2B).

Traits phenotyped across multiple environments 
showed substantial heritability

LMMS combined with rigorous quality assessment were 
implemented for the phenotypic data recorded for four dis-
eases (PUC, BLU, RAM, and RHY) and three agronomic 
traits (PH, HD, and LOD). The 1110 genotypes were phe-
notyped across eight locations over three consecutive years 
(2020, 2021, and 2022), resulting in a range of 3–22 envi-
ronments from different year×location combinations. Overall, 
a wide range of phenotypic variability among the elite and 
PGR groups for both spring and winter collections was 
observed, and the adjusted mean values across environments 
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appeared to be normally distributed. The PGRs were more 
susceptible than the elite materials in spring and winter pop-
ulations according to the mean severity scores for diseases 
(Fig. 3; Table 1). Furthermore, contrasting the disease scores 
of BLU and PUC between elites and PGRs, they appear sig-
nificantly more pronounced within the spring panel (P-value 

<0.001) compared with the winter panel. For instance, BLU 
showed reduced disease severity by almost two scoring points 
in spring as compared with the winter panel. This discrepancy 
could be attributed to the broader genetic diversity (Fig. 2B) 
and geographical distribution (Fig. 1) observed in the spring 
compared with the winter collection.

Fig. 2.  LD decay and genetic diversity analysis for the collection of 1110 barley genotypes. (A) LD (r2) decay plot as a function of physical distance (kb) 
of the four subgroups. The principal coordinate analysis (PCoA) is portrayed in a bi-plot of the first two principal coordinates based on pairwise Rogers’ 
distance matrix for the whole collection (B), the spring population (C), and the winter population (D). PGR, plant genetic resource.
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Heritability estimates ranged from low (RHY, h2
spring=0.05; 

RAM, h2
winter=2.00E-06), to moderate (RAM, h2

spring=0.54), 
to high (from 0.77 to 0.96; Table 1). In order to provide a solid 
basis for the subsequent association analysis, we omitted the 
traits exhibiting low heritability (RHY, h2

spring=0.05; RAM, 
h2

winter=2.00E-06), since the low heritability is a limiting factor 
that reduces the power of GWAS to detect associations. The 
ANOVA showed that the genotypic variance was highly sig-
nificant (P≤0.0001) for all disease traits except for RHY of 

the spring population, and plant height of the winter pop-
ulation (Table 1). The coefficients of variation (CVs) ranged 
from 1.36% to 31.01%. In the spring population, environments 
accounted for the highest proportion of the total variation 
while genotypes and the genotype×environment interac-
tion were comparatively less than the overall variation for the 
highly heritable disease traits (BLU, PUC, and RAM), whereas 
for the winter population, variance components had almost 
comparable magnitude with few exceptions. The substantial 

Fig. 3.  The distribution of best linear unbiased estimates (BLUEs) of the elites and plant genetic resources in spring type (A) and winter type (B). PGR, 
plant genetic resources; BLU, Blumeria graminis hordei; PUC, Puccinia hordei; RHY, Rhynchosporium commune; RAM, Ramularia collo-cygni; HD, 
heading date; PH, plant height; LOD, lodging.
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phenotypic variance, in combination with the medium and 
high heritability, suggests that variation in the disease traits is 
governed by numerous genetic loci, rendering it suitable for 
GWAS analysis.

Pearson’s correlation coefficient was computed to assess the 
relationship among the studied traits within the spring and 
winter populations, separately. PUC and BLU were positively 
correlated (r=0.53, P<0.001; Fig. 4A) in the spring population. 
Nevertheless, RAM exhibited a modest negative correlation 
with both BLU and PUC, implying the independent evolu-
tion of these traits and subsequent alterations to their virulence 
patterns that do not align strongly. For the winter population 
(Fig. 4B), PUC is positively associated with RHY (r=0.42, 
P<0.001) and far less correlated with BLU (0.26, P<0.001). 
This correlation pattern suggests the contribution of common 
genetic factors influencing the resistance level of the diseases 
in question.

Disease resistance traits were also found to be correlated 
with some agronomical traits, indicating an association be-
tween plant phenology and disease progression. The cor-
relation between diseases and agronomical traits was more 
pronounced for most cases in the spring compared with the 
winter population. In the spring panel, lodging was pos-
itively correlated with BLU (r=0.60, P<0.001) and PUC 
(r =0.52, P<0.001), and plant height was positively cor-
related with BLU (r=0.33, P<0.001), but negatively cor-
related with RAM (r= –0.41, P<0.001). Heading date was 
negatively correlated with all BLU, PUC, and RAM, with 
values of –0.53, –0.61, and –0.31, respectively. In the winter 
population, the most pronounced correlation was observed 
between LOD and PUC (r=0.55, P<0.001), while heading 
date exhibited either negative or non-significant correla-
tions with the disease traits.

Genome-wide association analysis revealed QTLs 
associated with disease resistance traits in barley

The genotypic matrix for the entire collection was divided 
into four subgroups based on the growth habit and germ-
plasm origin. After quality assessment and the pruning pro-
cess, the final sets of 710 855 SNPs for Elite_Spring, 945 074 
SNPs for Elite_Winter, 2 321 327 SNPs for PGR_Spring, and 
1 775 972 SNPs for PGR_Winter, evenly distributed across 
all the seven chromosomes, were retained for the subsequent 
analysis (Supplementary Fig. S1). Given the pronounced diver-
sity in population profiles (Fig. 2), genome-wide association 
analysis was performed separately for the four subgroups using 
GEMMA and BLINK, mitigating the risk of overcorrection 
by the kinship matrix. The clustering of genotypes within each 
subgroup (Supplementary Fig. S2) was controlled by consid-
ering the kinship matrix (K) and population structure (Q) as 
covariance. The observed and expected P-values for the vast 
majority of markers matched, with a clear deviation of the 
observed values from the expected to the right end of the 
quantile–quantile plot, indicating that the Q+K model pro-
vided control for false-positive associations (Supplementary 
Figs S3–S9).

A total of 932 marker–trait associations (MTAs) were 
detected for the four disease resistance traits, showing an un-
even distribution across all seven chromosomes (Supplementary 
Figs S3–S9); the individual significant SNPs explained 0.01–
47.81% of the phenotypic variation (Supplementary Table 
S2; Supplementary Fig. S10). These MTAs were subsequently 
clustered into 49 individual QTLs by assigning them to the 
previously calculated haplotype blocks in the whole genome 
defined based on LD. GWAS results for the three agronomic 
traits were omitted here as they fall outside the scope of this 

Table 1.  ANOVA for the studied traits in spring and winter populations

Growth habit Trait σ2
g σ2

g×E σ2
e NE h2 CV (%)

Spring BLU 1.49*** 0.98*** 2.48*** 17 0.91 31.01

PUC 0.96*** 0.84*** 3.53* 17 0.88 26.09

RHY 0.06NS 3.40NS 0.31*** 3 0.05 0.13

RAM 0.59*** 2.25*** 2.57*** 6 0.54 21.17

HD 11.53*** 8.15*** 71.17*** 22 0.96 1.36

PH 90.67*** 63.82*** 109.74NS 13 0.93 5.43

LOD 2.08*** 2.86*** 2.70*** 17 0.91 19.60

Winter BLU 0.68*** 1.87*** 2.93* 11 0.77 17.95

PUC 1.64*** 1.51*** 1.52* 12 0.92 12.53

RHY 1.31*** 1.52NS 0.66*** 10 0.89 15.43

RAM 2.15E-06*** 4.52E-07*** 5.56* 5 2.00E-06 54.43

HD 11.14*** 2.73NS 36.53*** 14 0.95 1.59

PH 113.50NS 7.61E-06NS 179.75*** 12 0.95 7.78

LOD 2.17*** 3.19* 0.96*** 12 0.89 1.68

σ2
g, genotypic variance; σ2

g×E, variance due to genotype by environment interaction; σ2
e, variance due to environment; NE, number of environments; 

h2, broad-sense heritability; CV, coefficient of variation; BLU, Blumeria graminis hordei; PUC, Puccinia hordei; RHY, Rhynchosporium commune; RAM, 
Ramularia collo-cygni; HD, heading date; PH, plant height; LOD, lodging. *P=0.05 and ***P=0.001; NS, not significant.
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study; however, we will still explore the intriguing possibility 
of overlapping MTAs, particularly in relation to heading date. 
The effect of each marker varied from –3.56 to 2.01. It is 
noteworthy that BLINK utilizes a set of pseudo-quantitative 
trait nucleotides as co-variables, effectively ensuring that the 
detected MTAs sit in different LD blocks. This setting leads to 
the identification of fewer and more spread out MTAs, distin-
guishing it from traditional LMMs (e.g. GEMMA; Liu et al., 
2023, Preprint).

Pearson’s correlation coefficients and a path analysis re-
vealed a positive association between BLU and PUC within 
the spring barley population (Fig. 4A; Supplementary Fig. S11) 
and a positive correlation between RHY and PUC within the 
winter barley population (Fig. 4B; Supplementary Fig. S12). 
This relationship is most likely to arise from the co-localization 
between QTLs and genes governing resistance mechanisms 
against two different diseases. For instance, the QTL qPUC2.2, 
detected in the PGR_Spring panel sand significantly associ-
ated with PUC, is co-located with mlo3 (mildew resistance locus 
o 3), known for its ability to mitigate the infection caused by 
Blumeria graminis hordei, thereby conferring durable resistance. 
Additionally, the QTLs qPUC5.1 and qPUC5.2, which exhib-
ited significant associations with PUC in both Elite_Spring 
and PGR_Spring panels, reside within the genomic region 
of two potential powdery mildew resistance genes: an mlo-like 
gene and an EDR2-like (enhanced disease resistance 2-like) 
gene. Furthermore, qBLU1.1, associated with BLU resistance 

in the Elite_Spring group, aligns with a high-confidence gene 
annotation encoding rust resistance protein (Rp1). Moreover, 
the two QTLs qBLU4.4 in Elite_Spring and qPUC4.1 in 
PGR_Spring were significantly associated with BLU and 
PUC, respectively. Notably, the genomic region of these two 
QTLs encompass two high-confidence genes: mlo-h1 (mlo-
homolog1) and mlo gene. The five QTLs, qRHY1.1, qRHY5.4, 
qRHY5.5, qRHY5.6, and qRHY5.7, associated with RHY in 
the Elite_Winter group were identified in the overlap region 
of previously reported QTLs associated with PUC (Case et al., 
2018; Gyawali et al., 2021). These overlapped genes or regions 
might be a promising target for further functional validation 
strategies to improve the cross-resistance of barley.

The accumulative effect of novel and rare resistance 
alleles enhanced the resistance level in plant genetic 
resources and elite materials

Resistance allele mining is a promising approach to take ad-
vantage of the PGR gene pools, offering a potential appli-
cation to enrich the resistant gene portfolio of the elite pool 
and improve the important agronomic traits of cultivars and/or 
modern varieties. In this study, we identified the resistance al-
lele of each significant marker. A resistance allele that is absent 
or rare in elite lines but present in plant genetic resources may 
hold untapped potential for barley disease resistance improve-
ment. Therefore, we calculated and filtered the frequency for 

Fig. 4.  Pearson correlation coefficients (r) among traits. (A) Pearson correlation coefficients in the spring barley (A) and winter barley (B) collection. The 
values above the diagonal represent Pearson’s r between traits, and the plots below the diagonal are the scatter plots for the respective traits. BLU, 
Blumeria graminis hordei; PUC, Puccinia hordei; RHY, Rhynchosporium commune; RAM, Ramularia collo-cygni; HD, heading date; PH, plant height; 
LOD, lodging; NS. not significant; *P<0.05; ***P<0.001.
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all the resistance alleles within each growth habit, to identify 
novel resistance alleles (NRAs) which are absent in elite lines 
[resistant allele frequency (RAFElite)=0], and rare resistance 
alleles (RRAs) (0<RAFElite<0.05) (Fig. 5).

This resulted in 15 NRAs associated with BLU, 18 RRAs 
associated with BLU, and 4 RRAs associated with PUC 
(Supplementary Tables S4, S5) within the spring pool. For 
the winter pool, four NRAs were associated with RHY, one 
with PUC, and one with RHY (Supplementary Tables S4, S5). 
Combining alleles, also known as pyramiding or stacking, is 
pivotal for developing new varieties with enhanced and du-
rable disease resistance. To investigate the effect of pyramiding 
RAs, we assessed the accumulated contribution of NRAs and 
RRAs for each genotype on a subgroup basis. We sorted them 
by count, and subsequently analyzed the phenotypic differ-
ence between the 5% of genotypes that harbored the fewest 
resistance alleles (bottom5%) and the 5% of genotypes with 
the highest resistance alleles (top5%) using a t-test. As shown in 
Fig. 6A, PGRs carrying higher NRAs exhibited significantly 
greater resistance to spring BLU and winter RHY compared 
with PGRs with fewer NRAs. Likewise, for the RRAs within 
the spring barley (Fig. 6B), the genotypes harboring a greater 
number of resistance alleles demonstrated significantly higher 
resistance to BLU and PUC compared with genotypes with 
fewer resistance alleles in the elite and PGR groups, respec-
tively. This trend held true for the winter population for PUC 

and RHY in both elites and PGR groups (Fig. 6C). The results 
suggested that there is a huge potential of accumulating both 
NRAs and RRAs in future disease resistance breeding pro-
grams. For instance, two German spring type PGRs, HOR-
22190 and HOR-18711, and one French winter type PGR, 
HOR-10199, possess the highest counts for the total number 
of NRAs and RRAs and also exhibited exceptional resistance 
to powdery mildew and leaf rust (Supplementary Fig. S11). 
The three potential donors provide a robust groundwork of-
fering the potential for enhanced resilience in future varieties.

Discussion

Plant genetic resources are employed to introduce 
additional diversity into modern barley

Selecting donors that harbor favorable genes and alleles absent 
in existing varieties is crucial to complement elite recipients 
(Sanchez et al., 2023). While many programs introgressed val-
uable qualitative and quantitative alleles from PGRs into elite 
germplasm (Tarter et al., 2003; Fischer et al., 2010; Schulthess 
et al., 2022), linkage drag may discourage breeders from using 
PGRs in their breeding programs, necessitating pre-breeding 
efforts to retain desirable variability within barley genomes and 
reduce undesirable genetic load. Previous studies indicated that 
a substantial 60% of alleles identified in wild barley are absent 

Fig. 5.  Resistance allele frequency (RAF) of all the significant markers. RAF in elite (x-axis) and plant genetic resources (y-axis). The plot on the left side 
shows all the resistance alleles detected in the spring type subgroups; and the plot on the right side shows all the resistance alleles detected in the winter 
type subgroups. The vertical red dashed line corresponds to the threshold of the RRAs (RAFElite=0.05). PGR, plant genetic resources; BLU, Blumeria 
graminis hordei; PUC, Puccinia hordei; RHY, Rhynchosporium commune; RAM, Ramularia collo-cygni.
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in cultivated varieties (Ellis et al., 2000). This underscores the 
significant reservoir of genetic diversity inherent in wild barley, 
presenting valuable opportunities for diverse breeding initia-
tives. Therefore, mining the untapped resistance genes in PGR 
material remains indispensable, offering a continuous incor-
poration of novel genes or loci to bolster disease resistance 
within the elite pool. This purpose is best served by the core 
collection selection strategy that maximizes genetic diversity 
in the core relative to the entire genebank collections. High-
throughput genotyping is instrumental in this process, offering 
efficient, reliable, and cost-effective tools to collect large-scale 
sequencing data of entire genebank collections. These tools as-
sist in identifying genetic redundancy in core collections, thus 
demonstrating their capacity to unambiguously discriminate 

closely related accessions. In our study, we utilized a core col-
lection of 812 PGRs selected out of the 21 405 barley IPK 
genebank accessions and 298 European elite materials origi-
nating from 60 countries across five continents, representing 
global diversity in the context of the major barley row type 
and growth habit subpopulations. However, due to the ge-
neral lack of adaptation of most PGRs to the current agricul-
tural environments and pathogens (McCouch et al., 2020), it 
was anticipated that the majority would be susceptible to the 
adapted pathogen populations. Consequently, a limited pro-
portion of resistant PGRs was identified, underscoring the 
challenge of relying solely on diversity information rather than 
covering the phenotypic diversity of several traits in the se-
lection of new germplasm for resistance breeding. Therefore, 

Fig. 6.  Phenotypic distribution of genotypes containing novel resistance alleles (NRAs) and rare resistance alleles (RRAs). (A) Phenotypic distribution of 
plant genetic resources that harbored more NRAs (top5%) and fewer NRAs (bottom5%). Phenotypic distribution of genotypes with more RRAs (top5%) 
and fewer RRAs (bottom5%) in the spring subgroup (B) and the winter subgroup (C). Horizontal lines in the boxplots represent the lower quartile, median, 
and upper quartile, respectively. The horizontal red dashed line corresponds to the mean value of the trait. PGR, plant genetic resources; BLU, Blumeria 
graminis hordei; PUC, Puccinia hordei; RHY, Rhynchosporium commune. NS, not significant; **P<0.01; ***P<0.001.
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a trait-customized core collection strategy that balances cov-
erage of both the genotype and phenotype diversity space of 
a target trait is promising to maximize the success of detecting 
resistance-related alleles (Schulthess et al., 2022).

Pleiotropic markers/QTLs confer barley resistance to 
different diseases

The factors that influence the statistical power of GWAS de-
tection are already well known. While population size plays 
a crucial role (Alqudah et al., 2020), the ability to detect true 
GWAS signals can also be improved by a reduction in the cor-
relation between genetic and phenotypic similarity (Myles 
et al., 2009), coupled with an increase in the frequencies of 
rare alleles at functional loci (Soto-Cerda and Cloutier, 2012). 
In this respect, our approach of partitioning the total collec-
tion into four distinct subgroups based on the growth habit 
and germplasm origin decreased, in most cases, the corre-
lation between genetic (Rogers’ distance) and phenotypic 
distances (Euclidean distance), compared with the larger pop-
ulation based solely on growth habit (Supplementary Table S6). 
Therefore, we observed an increment in QTL detection power 
for these four subgroups despite the trade-off with the general 
power achieved through the initial full-sized population.

In the current study, we detected 932 SNP markers, clus-
tered into 49 QTLs associated with four disease resistance 
traits, and 474 SNP markers clustered into 23 QTLs associ-
ated with three agronomic traits (Supplementary Table S3). 
Among the 49 disease resistance QTLs, six (PUC resistance: 
qPUC1.1, qPUC5.1, and qPUC5.2; RHY resistance: qRHY3.1, 
qRHY3.2, and qRHY3.4) overlapped with previously reported 
QTLs (Genger et al., 2003; Sayed et al., 2004; Case et al., 2018; 
Zhang et al., 2020; Gyawali et al., 2021). Fourteen QTLs were 
co-located with genes annotated to encode the disease resist-
ance proteins of the nucleotide-binding leucine-rich repeat 
sequence (NBS-LRR) and Toll-interleukin receptor (TIR)-
NBS-LRR family. Additionally, seven QTLs were co-located 
with genes annotated for disease resistance proteins such as 
resistance gene analog 2 (RGA2), downy mildew regulator 
RPP13, and RPM1. LRR proteins are resistance proteins 
encoded by the NBS-LRR gene in plants which plays a vital 
role in plant defense against many various pathogens (Jones 
and Jones, 1997). Notably, an LRR protein was identified to be 
involved in the barley defense mechanism against spot blotch 
(Cochliobolus sativus; Ameen et al., 2020, Preprint). These find-
ings underscore the effectiveness of GWAS in this study in 
pinpointing alleles associated with resistance to the four dis-
eases, and provide starting points for further genetic and func-
tional analysis.

Additionally, four QTLs associated with PUC also co-
located with mlo, mlo-like, or mlo-homolog genes. This observa-
tion aligns with the significant positive association observed in 
Pearson’s correlation coefficient (r=0.53, P<0.001) and path 
analysis (Supplementary Fig. S11) between PUC and BLU 

in the spring panel which has also been reported previously 
(Spielmeyer et al., 2005; Mago et al., 2011; Lillemo et al., 2018). 
While there is no evidence that any of the mlo alleles confer 
resistance to barley leaf rust, it has been demonstrated that 
the presence of various mlo alleles (mlo-1, mlo-3, and mlo-5) 
increases susceptibility to the rice blast fungus (Magnaporthe 
grisea), whereas the wild-type Mlo allele confers resistance 
(Jarosch et al., 1999).

For those aforementioned pleiotropic markers/QTLs, a fur-
ther validation process is necessary in different genetic back-
grounds before using them for the marker-assisted selection 
in barley disease resistance development, such as the Targeting 
Induced Local Lesions IN Genomes (TILLING) strategy 
(Talamè et al., 2008; Szurman-Zubrzycka et al., 2018; Rosignoli 
et al., 2022), and the development of kompetitve allele-specific 
PCR (KASP; Rasheed et al., 2016) assays.

Co-localization of disease resistance and agronomy 
trait QTLs

Considering together the GWAS results, it appears that three 
putative QTLs associated with agronomic traits overlapped 
with those identified from disease resistance traits. qHD2.1, as-
sociated with the heading date, shared five and one common 
significant markers with qPUC2.1 and qPUC2.2, respectively. 
These six common markers are enriched within ~0.3 Mb 
on the short arm of chromosome 2. Furthermore, the three 
aforementioned QTLs were co-mapped with the gene 
Photoperiod-H1 (Ppd-H1) which promotes flowering under 
long-day conditions (Turner et al., 2005). Additionally, qHD5.2, 
also found to be associated with the heading date, co-localized 
with qPUC5.1. Those observations suggest a strategic plant re-
sponse given that delayed heading allows plants to evade di-
sease infection through spatial or temporal adjustments. This 
dynamic alignment reflects the intricate interplay between 
phenology shifts and disease resistance, enhancing our under-
standing of the nuanced strategies employed by plants to thrive 
in complex environments. The observed negative correlation 
(r= –0.66, P<0.001) and the path analysis (Supplementary Fig. 
S11) between the heading date and PUC within the spring 
panel further support these results. A similar pleiotropic effect 
has been reported in oat (Portyanko et al., 2005; Acevedo et al., 
2010), suggesting a pivotal role for these regions exerting mul-
tifaceted control. Subsequent studies are needed to disentangle 
the effect of disease traits from the agronomy values and dissect 
these putative QTLs more comprehensively, given that a QTL 
for one trait can often be antagonistically coupled with other 
breeding targets.

Nevertheless, none of the QTLs detected for plant height 
and lodging overlapped with disease-resistant QTLs. The clos-
est signal was detected for heading date on chromosome 1 
(qHD1.2), ~3 Mb downstream of qBLU1.1. These two QTLs 
reside at a relatively large distance from each other, greater 
than the LD decay threshold we employed; hence, they are 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/75/18/5940/7699943 by M

artin-Luther-U
niversitaet H

alle-W
ittenberg user on 26 February 2025

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erae283#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erae283#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erae283#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erae283#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erae283#supplementary-data


Copyedited by: OUP

Capitalizing on genebank core collections to improve barley resilience  |  5951

considered different loci. The absence of overlapping QTLs 
among these traits suggests that distinct genetic mechanisms 
may govern disease susceptibility and the two agronomic traits 
in the tested material.

Novel and rare resistance allele accumulation 
empowered the selection of promising plant genetic 
resources for future barley disease resistance 
improvement

Our study showed that the phenotypic variability of the four 
assessed disease traits was governed by many minor effect QTLs 
(Supplementary Fig. S13). Thus, a strategy of combining those 
minor effect resistance alleles could provide durable resistance 
(Parlevliet and Zadoks, 1977). Resistance alleles inherited from 
the donors and subsequently fixed in modern varieties formed 
the basis of barley disease resistance, harnessing favorable al-
lele effects for enhanced genetic gain. Resistance alleles, ei-
ther absent or present at low frequencies in elite groups, are 
still underutilized in modern breeding programs and should 
be recognized as essential elements for genetic enhancement 
of disease resistance. In this study, we identified 15 NRAs and 
18 RRAs in the spring group, as well as four NRAs and two 
RRAs in the winter group. Also there was a significant trend 
where disease scores consistently decreased with the accumu-
lation of both NRAs and RRAs.

Combining several resistance-conferring alleles in a variety, 
known as gene pyramiding or stacking, should strengthen the 
defensive barrier for one or more pathogens, thereby increas-
ing the challenge for them to overcome (Dong and Ronald, 
2019). The insights gleaned from the aforementioned find-
ings will serve as a foundation to identify superior performing 
PGRs that harbored the greatest number of novel and rare 
resistance alleles. Given that phenotypic selection alone can 
be misleading due to human errors (Svensson, 2023), selection 
based on the combination of phenotypic performance with 
the total number of target alleles will lead to target crosses 
with desired traits, ultimately contributing to the success of 
the breeding programs (Peleman and Van der Voort, 2003). 
This strategy has been widely used in the selection of resistant 
donors in barley (Hautsalo et al., 2021; Esmail et al., 2023), 
wheat (Luo et al., 2021), and cotton (Mei et al., 2013; Dai 
et al., 2019). Our study shed light on the potential benefits of 
accumulating together NRAs and RRAs in a few accessions, 
showcasing their ability to confer higher resistance to diseases. 
For instance, two German spring type PGRs, HOR-22190 
and HOR-18711, and one French winter type PGR, HOR-
10199, stood out by possessing the highest counts for the total 
number of NRAs and RRAs and exhibited exceptional resist-
ance to two diseases (Supplementary Fig. S11). These potential 
donors provide a robust grounding for targeted pre-breeding 
goals and offer the potential for enhanced resilience in fu-
ture varieties. To substantiate the effectiveness of novel and 
rare disease resistance alleles in variety development, doubled 

haploid populations have been constructed and will undergo 
rigorous evaluation in field conditions, confirming their po-
tential for broad-spectrum resistance capabilities and achiev-
ing durable resistance.

The follow-up strategy for barley resistance breeding: 
towards an integrated approach

Divergent approaches in introgression strategies often re-
volve around the distinctive contributions of genes or loci 
to phenotypic variation, so-called major or minor effect re-
sistance (R) genes or alleles. Major effect R genes derived 
from PGRs emerge as a robust strategy to make crops more 
resistant (Hospital and Charcosset, 1997; Servin et al., 2004; 
Dormatey et al., 2020; Abdelraheem et al., 2024; Attamah 
et al., 2024). However, the introgression of single major 
R genes into new varieties carries the risk of being over-
come by rapidly evolving pathogens. Therefore, it would be 
ideal, but challenging, to stack multiple major genes and, 
hence, minimize the likelihood of resistance breakdown. In 
contrast, while major genes offer immediate and dramatic 
phenotypic changes, the cumulative enhancement of resist-
ance traits through minor allele introgression often exerts 
less selection pressure on pathogen populations, making 
them less likely to induce pathogen adaptation, fostering re-
silient and enduring resistance in new varieties. However, 
the polygenic nature of minor alleles requires complicated 
breeding strategies to strike a balance between sustained re-
sistance and the challenges of managing multiple small effect 
alleles. Therefore, embracing a comprehensive approach that 
combines major and minor genes that have minimal adverse 
epistasis effects enables breeders to respond to evolution of 
the pathogen. This advocated approach requires integrating 
QTLome-based methods (such as marker-assisted selection, 
cloning, editing, and genetic engineering) with genomic 
selection-based approaches. By doing so, breeders can ef-
fectively utilize the gene-for-gene concept, which leads to 
specific interactions between a plant’s resistance gene and a 
pathogen’s avirulence gene. Major QTLs can significantly 
influence the expression of resistance traits, acting similarly 
to major R genes but often with a broader impact on the 
plant’s overall genetic makeup. The concept of the QTLome, 
which encompasses the totality of QTLs associated with the 
targeted disease resistance in a particular species, provides 
a comprehensive framework for utilizing these genetic re-
sources (Salvi and Tuberosa, 2015). By integrating major 
QTLs into breeding programs alongside major and minor R 
genes, breeders can develop more robust and adaptable di-
sease resistance strategies, enhancing both vertical and hori-
zontal resistance in new crop varieties.

On the other hand, to address the potential challenges of 
a significant performance gap between the PGR donors and 
elites, it is important to account for the complementarity be-
tween the donors and the elite recipient before the crossing 
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process. Allier et al. (2020) proposed a Usefulness Criterion 
Parental Contribution (UCPC) approach to predict the in-
terest of crosses between donors and the elite recipients, and it 
is necessary to consider a buffer population before the integra-
tion process, also referred to as a bridging population (Allier 
et al., 2020). Subsequently, the best progeny identified through 
the bridging process are introduced into the elite breeding 
population using several breeding methods, including recur-
rent selection and genomic selection. These proven approaches 
are reliable for accumulating alleles with relatively large and 
small effects, making them effective for achieving breeding 
objectives (Nelson et al., 2018).

While new technologies hold promise, a pragmatic balance 
must be struck between field management and the basics of 
plant breeding. The diversity of pathogens and their ongoing 
evolution makes resistance breeding nontrivial. Despite efforts, 
agrochemicals often lose effectiveness due to pathogen resist-
ance, leading to increased crop susceptibility and reduced agri-
cultural productivity. Therefore, an eco-evolutionary alternative 
is necessary by utilizing intraspecific diversity employing cul-
tivar mixtures or multi-lines with different levels of resistance, 
arrayed with random patterns (Mundt, 2002). This strategy not 
only reduces plant disease epidemics in the short term but also 
hinders pathogen evolution in the long run. It may thus min-
imize the overall impact of disease outbreaks and forestall the 
appearance of fungicide insensitivity. All this will contribute to 
improving the sustainability of agriculture worldwide (Papaïx 
et al., 2011).
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