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1. General Introduction

1.1 The origin and economic importance of wheat and barley

Both bread wheat and barley have their evolutionary origins in the ecologically highly successful and
economically important Poaceae family. A short generation time facilitated by an energy-rich
endosperm and the lack of investment in woody anatomical structures, high climatictolerance enabled
by C3 and C4 photosynthesis and underground perennial buds that survive frost and fire, and a high
diversity of dispersal units due to the variable shape of spikelets that enable migration over long
distances are some of the functional characteristics that account for the ecological success of the
Poaceae, which manifests itself in a great species richness and presence in almost all climatic zones
inhabited by plants (Linderet al., 2018). These are also the characteristics that were used by the first
farming humans when bread wheat and barley were domesticated, and thereby fundamentally

changed the shape of human existence.

The Poaceae family includes sugar cane, corn, rice, wheat, and barley, the world's most important
crops. Cereals, in particular, are the most important share on the global food market with maize,
wheat, rice, and barley accounting for ca. 40 %, 28 %, 19 %, and 5 % respectively (FAO, 2022). The
domestication of barley began about 10,000 years ago in the fertile crescent region (Haas et al., 2019a),
where itwas apopularfoodand feed. Nevertheless, archeological evidence suggeststhe use of ground
barley over 17,000 years ago in the Nile Valley (Wendorf etal., 1979). The cultivated form of barley is
derived from Hordeum vulgare ssp. spontaneum, to which it still looks morphologically very similar
(Haas et al., 2019b). In ancient times, barley was valued for its high energy contentand, according to
tradition, was the staple food of gladiators, who were therefore also called " hordeari" (Percival, 1921).
In particular, in the last two centuries, the use of barley as a food source has receded in favor of its
further use as malt and animal feed. Ingeneral, barley has a lowerand more difficult-to-digest starch
content than corn, but it has more protein, which makes it an attractive feed for poultry, pigs, and
cattle (Dehghan-banadaky et al., 2007; Jacob & Pescatore, 2012; Meints & Hayes, 2019). Various
initiatives are underway to improve the digestibility of barley to advance its suitability as feed, for
example through chemical and physical processing (Dehghan-banadaky et al., 2007) or breeding
(Meints & Hayes, 2019).

Unlike barley, wheat plays a consistently important role in the food industry because of its good food
processing and product development qualities. Wheat was domesticated in the fertile crescent shortly
after barley. The first domesticated form of wheat was einkorn ( Triticum monococcum) (Weiss &
Zohary, 2011). It was cultivated in the geographicregion of the Balkan Peninsulaaround 6,000 BC, and
later spelt wheat (Triticum spelta) and bread wheat (Triticum aestivum) achieved expansion

throughout the Mediterranean region (Bonjean et al., 2001). Even before the Romans, the Chinese
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Empire of the Shang Dynasty elevated wheat to an essential pillar of society, where it was revered as
a sacred plant, just like barley (lgrejas etal., 2020). Wheatis used for the production of various pasta
products in almost all parts of the world. In addition, it is used as animal feed and for the production
of alcoholic beverages. Inthe food industry, wheatis used for the extraction of starch, leaving gluten,

which in turn can be used as feed or to produce other food products (Igrejas et al., 2020).

1.2 Line breeding in barley and wheat

In general, the term breeding refers to various methods of generating, selecting, and fixing favorable
phenotypesthat lead to the development of new varieties that meet the needs of consumers and
producers (Moose & Mumm, 2008). The simplest and probably oldest method to increase crop
productivity might be phenotypicselection. Since then, breedingitself has undergone an evolutionary
process which, according to Fernie & Yan (2019), can be divided into three further phases: the era of
hybridization, the era of biotechnologies such as marker-assisted selection, genome-wide selection,
transgenics and bioinformatics. Finally, there is the era of breeding by designing genotypes according
to end-users' demands using genome editing and precision breeding through big data, which allows,

for example, the prediction of genotype characteristics under certain environmental conditions.

Both barley and wheat tend to self-pollinate, with outcrossing rates of up to 1.8% observed in wild
barley and barley landraces (Abdel-Ghaniet al., 2004). No self-incompatibility exists in either species
and the mature anthers shed their pollenin the usually unopened flower, resultingin self -pollination.

This circumstance facilitates line breeding, which has been used in commercial breeding programs.

Even before Gregor Mendel began experimenting with peas in the 1850s, Vilmorin began line breeding
based on a pedigree approach in the 1840s (Gayon & Zallen, 1998). In the pedigree approach, the
progeny of a cross is sownin a plot with ample spacing between each plantto determine differences.
Beginning in the first segregating F, generation, ears from particularly promising individuals are
harvested and the corresponding seeds are sowninrow plotsin the following generation. In this way,
offspring can be compared against the background of their pedigree and performance in terms of
certain traits in orderto selectthe best. Overseveral seasons, fewer genotypes are evaluated through
the selection process. At the same time, the number of available seeds increases, so that first yield
tests can be carried out with potent progeny of a cross in the F, 3 generation. Multi-environment trials
follow, and as the breeding process progresses, uniformity increases, so that 93.75% homozygosity can
be expected in the F; generation (Hallauer et al., 2010), implying that a certain stability over

generations is present.

Another classic method for line breeding is bulk breeding. Similar to the pedigree approach, the
progeny of a crossis sownin a plot. However, selections are not made on the basis of individual plants

within the plot, but those plots are selected whose plants perform particularly wellwith respect to the
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target traits. Again, the plants achieve more homozygosity and uniformity with each generation. With
sufficient uniformity and homozygosity, the development of lines can now begin by selecting individual
earsorplants. Forthis purpose, the seed of selected ears or plants is sown in rows. A further evaluation
step can take place before the plants selected in this step are harvested. Yield tests can now be carried

out from this seed.

The advent of double haploid technology has led to a revolution in line breeding over the past three
decades (Kalinowskaetal., 2019). Double haploids are genotypes that result when haploid cells double
their chromosome set. This phenomenon can be induced, for example, by hybridization with another
species and the addition of chemical agents. Double haploid technology allows the creation of fully
homozygous genotypes after only one generation. In this way, the development of lines can take place,
for example, after the F, generation. From this point on, seed multiplication and evaluation of
genotypes can take place. Double haploid technology has become a routine tool in both barley and
wheat. In wheat in particular, the success of double haploid production depends heavily on parental
genotypes. Therefore, approaches for rapid breeding have recently come more and more into focus

(reviewed in Srivastava & Bains, 2018).

1.3 Heterosis

The term heterosis was coined by George Shull's in the course of his studies on corn breeding (Shull,
1908, 1914). Heterosis describesthe higher performance of genotypesresultingas F, from a cross of
two homozygous, complementary parental lines. It manifestsitself in particular in a higher fitness and
vigor of the hybrid genotype (Lamkey & Edwards, 1999; Shull, 1952) . Although research on heterosis
has been ongoing for more than a century, the biological mechanisms behind the phenomenon are
not yet fully understood. The genetic effects causing heterosis can be explained by dominance,

overdominance, and epistasis.

When recessive alleles are masked by dominant alleles, this leads to an increase in performance with
respectto the trait of interestin the case of positive dominance. This observation is summarized in the
dominance hypothesis and identifiedas one possible cause of heterosis (Bruce, 1910; Davenport, 1908;
liang et al., 2017; Jones, 1917; Keeble & Pellew, 1910). The epistasis hypothesis explains part of the
performance gains observed in hybrids by interactions between different loci, i.e. epistasis (Jiang et
al., 2017; Schnell & Cockerham, 1992). Digenic epistasis can be described by three forms of
interactions: additive times additive interactions, additive times dominance interactions, and
dominance times dominance interactions (Jiang et al., 2017). The overdominance hypothesis
substantiates the superiority of hybrids in that the effect of heterozygosity at some loci is more
beneficialthan that of one or the otherallele when homozygous (Crow, 1948; East, 1936; Hull, 1945;

liang et al., 2017). Most likely, all of the three forces described play a role in the action of heterosis,
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although the importance of each componentis likely to depend on the investigated species (Schnable

& Springer, 2013) and the genetic architecture of the trait.

One way to describe heterosis in a quantitative framework is mid-parent heterosis, which is defined
as the deviation of a hybrid from the mean of its homozygousparents (W.Schnell, 1961). Better-parent
heterosis, on the other hand, represents the difference between the hybrid and the better-performing
parent. From an economic point of view, commercial heterosis is more important: it compares the

performance of hybrids with the best line variety on the market.

Heterosis is the basis of hybrid breeding and especially in cross-pollinated species it can bring
significant advantages. In maize, for example, a better parent heterosis of 15% was found (Duvick,
1999). Inrye, similar values for heterosis could be observed as in maize, ranging from 15-20%. In winter

oilseed rape, an average better parent heterosis of 50% was reported for yield (McVetty, 1995).

1.4 Hybrid breeding in wheat

Also in autogamous crops, there has been a great interestin implementing hybrid breedingfora long
time. In wheat, hybrid varieties are noted for higheryield while showing higheryield stability (Longin
et al., 2012). By crossing two parent lines with complementary resistance to diseases, they can be
combined much more easily (Longin etal., 2012). In this way, it is also possible to respond more quickly
to changing pathogen populations, for example. From an economic point of view, it is important to
note that hybrid varieties have a higherreturn on investment, since the illegal reproduction of se ed is

not possible without a massive loss of quality (Hallauer et al., 1988).

Commercial heterosis of wheat hybrids can reach up to 1 Mg ha. In line breeding, this would
correspond to about 15 years of breeding progress (Laidig et al., 2014; Zhao et al., 2015). The mid-
parent heterosisamountsto 10% in wheat (Longin et al., 2012). In 2022, the descriptive variety list of
the Bundessortenamt was topped by a hybrid variety in both treated and untreated yield tests
(Bundessortenamt, 2023). In addition, there is the lower susceptibility to biotic and abiotic stressors

observed in wheat (Longin et al., 2013).

The advantage conferred by heterosis can be released through targeted breeding strategies and the
eventualrelease of hybrid varieties. Continuousimprovementof populations of genotypes suitable for
hybrid breeding can be achieved through recurrent selection. Recurrent selection is the cyclically
repeating selection of potent genotypes and the subsequent intercrossing of these genotypes. The
implementation of recurrent selection in hybrid breeding was already proposed by Comstock et al.
(1949). By performing recurrent selection, heterosis can be used with a continuing selection gain to

improve a population in terms of its combining ability.
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Despite the compelling advantages of hybrid breeding in wheat, hybrid wheat breeders are faced with
some obstacles, essentially involving the allogamous flowering biology of wheat, which significantly
complicates seed production (Whitford et al., 2013). Genotypes with good flowering properties must
first be found at great expense. By backcrossing, flowering properties can be introduced into an elite
background, which involves a great expenditure of work. In addition, cross-pollination is also
dependent on environmentalfactors such as humidity, temperature, and time of day (Pickett, 1993).
The nature of the relatively heavy wheat pollen precludes its transport over longer distances, added
to which it is short-lived. These factors complicate the production of hybrid seed in wheat. To be
competitive in the market, wheat hybrid varieties must compensate for the high production costs
through performance. Effective breeding strategies can contribute to the development of attractive

and competitive hybrid varieties.

1.5 Genome-wide selection

The advent of genetic markers has fundamentally revolutionized plant breeding. One element of this
new facet of plant breeding is genome-wide prediction and the resulting genome-wide selection. In
genome-wide prediction, aset of genetic markers sufficiently covering the genome is used to predict
the performance of non-phenotyped genotypes based on genotypes with known phenotype.
Generally, the set of genotypes on which the modelfor genome -wide predictionis based is called the
training set. The genotypes whose performance is to be predicted are called the test set. Genome-
wide selectionis the selection of promising genotypes whose performance is evaluated using genome-
wide predictions or genomic estimated breeding values from their marker profile. The concept of
genome-wide selection wasintroduced two decades ago (Meuwissen et al., 2001) and was associated
with the goal of performing selections for complex traits controlled by many small effect genes with
high precision. Heretofore, other studies have successfully predicted the phenotypic performances of

maize hybrids based on their genetic similarity (Bernardo, 1994, 1996).

A major advantage of genome-wide selectionis the reduced effort that must be invested to evaluate
genotypes based on their performance. This eliminates the need for some of the genotypes in the
breeding program to be phenotypically evaluated and multiplied, only to be discarded because other
genotypes were more promising. Instead, only those genotypes that have promising genomic-
estimated breeding values (GEBVs) regarding a set of desired characteristics are comprehensively

tested.

For a successful breeding program, the efficient and sustainable exploitation of two resources is
crucial: i) Genetic diversity, the reservoir of heritable factors that are optimally combined in the
breeding process for the purpose of increasing performance, and ii) time and experimental plots that

ensure highly accurate phenotyping to maximize selection intensity and precision. The essence of this
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principle is summarized in the breeder’s equation (Lush, 1937): The effectiveness of genome-wide
prediction lies in a significant reductionin the time required fora breeding cycle and the reduction of
genotypes to be phenotyped, while maintaining a constant selection gain (Heffner et al., 2010). One
of the first successful studies on genome-wide selection was published for dairy cattle and predicted a
92% cost reduction from the laborious process of determining the breeding value of a bull based on
the milk yield of its progeny (Schaeffer, 2006). In crop plants, genome-wide prediction has been
successfully implemented in maize (Massman et al., 2013), wheat (He et al., 2016), barley (Philipp et
al., 2016), oat (Asoroetal., 2011), rye (Wangetal., 2014), rice (S.Xuetal., 2014), sugarbeet (Hofheinz
etal., 2012; Wiirschum et al., 2013), canola (Jan et al., 2016), and sunflower (Reif et al., 2013).

1.6 Parental selection in line breeding

The concept of the breedingvalue originates from cattle breeding, where the value of a male animal
is estimated by the performance of its progeny. This common problem in animal breedingis very
similar to the selection of the most potent parents forthe creation of a breeding population in plants.
It seems obvious that a high performing offspring population can be produced by combining two
particularly high performing parents. Nevertheless, thisis only half the truth: a single high-performing
genotype produced by a breeding population can justify the entire effort of a breeding program. It is
quite possible that a breeding population with a lower mean value will still be more successful,
provided that only one genotype performs sufficiently well. Ideally, a breeding population is
characterized by a high population mean and a high variance with respectto the trait of interest. These

considerations were summarized in the usefulness concept (Schnell & Utz 1975).

1.7 Parental selection in hybrid breeding using genome-wide prediction

Finding well-suited parents for the generation of superior hybrids is one of the core tasks in hybrid
breeding. For this purpose, inbred lines that can be considered as parental crossing partners can be
characterized based on general combining ability (GCA) and specific combining ability (SCA) effects.
The concept of GCA and SCA effects date back to Sprague & Tatum (1942), and were first used in hybrid
corn breeding. To determine GCA, potential parental lines are crossed against a set of inbred lines
referredto as testers. Each of these crosses resultsin hybrids in the F; generation whose performance
is evaluated forthe trait of interest. The average performance of all hybrids resulting from these test
crosses is referred to as GCA. While the GCA of a parent line remains constant in a defined set of
testers, the SCA depends on the combination of the parent line with a specific tester. The difference
betweenthe GCAof aparentline and the realized performance of the parentline with a specifictester
is called SCA. GCA is essentially driven by additive genetic effects, whereas SCA is due to dominance

effects and additive times dominance, or dominance times dominance epistasis.
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SCA can be usedto select the optimal combination of crossing partners, but it cannot be addressed in
breedingterms because it is not due to additive genetic effects. Therefore, the focus of the breeder’s
interestis to maximize GCA. Only in the last step the suitable parents are selected forthe generation
of a hybrid based on their SCA. Multi-location tests are necessary for reliable determination of GCA
and SCA. In addition to the field trials themselves, seed production represents a high workload.
Therefore, efforts are directed at increasing the efficiency of hybrid breeding programs through

genome-wide prediction (Albrecht et al., 2011; Reif et al., 2013; Zhao et al., 2015).

In hybrid breeding, the formation of heteroticgroups has been established in maize. A heterotic group
is a group of genotypes that have similar combining abilities when crossed with genetically distinct
othergenotypes (Melchinger & Gumber, 1998). A heterotic patternis defined as two heteroticgroups
whose genotypes, when crossed, optimally exploit heterosis with respect to a trait. A reasonable goal

of hybrid breeding is to maximize heterosis for a specific heterotic pattern.

1.8 Recurrent genomic selection

The term recurrent selection was coined by Jenkins (1940) for intrapopulation improvement, later
extendedto populationsimprovement usinga tester (Hull et al., 1945, Hallauer etal., 1988, Hallauer
et al.,, 2010). In contemporary terminology, recurrent selection defines cyclically recurring, i.e.
returning selections of outstanding genotypes and the subsequent crossing of these genotypes with
each other(Hallauer et al., 2010; Lonnquist, 1949). The improvement of the population is achieved by
increasing the frequencies of beneficial alleles. The improved population can then be used to derive
inbred lines that can either be released directly as varieties or used to produce hybrid varieties. The
implementation of genome-wide selection in recurrent selection has been proposed to shorten the
time required to complete a selection cycle by reducing the needfor phenotyping (Gorjancetal., 2018;
Miller et al., 2017, 2018) but an application-oriented validation study for the implementation of

genome-wide selection in hybrid breeding is missing.

1.9 Objectives

The main objective of the presented work was to evaluate genome-wide selectionacross the breeding
cycle to identify opportunities toincrease the efficiency of the same. For this purpose, for each of the
most important categories of cereal population improvement, namely hybrid breeding and line
breeding, aconcept presented in the scientificcommunity but not yet tested in practice was evaluated

in application-oriented experiments. In particular, the objectives were to:

1) provide an overview of experimental and simulation-based studies exploring the possibilities
to integrate genome-wide prediction into recurrent selection in the context of hybrid wheat

breeding;
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2)

3)

4)

5)

6)

7)

discuss possibilities to make use of recurrent selection for inter-population improvement in
wheat;

investigate the utility of genomic selection to identify superior females through genomic
estimation of the general combining ability effects in wheat;

evaluate the selection gain for grain yield achieved by recurrent selection forinter-population
improvement in wheat,

examine the impact of genotype-by-environment interaction effects on the effectiveness of a
long-term breeding strategy;

analyze a commercial barley line breeding program for the possibilities and limitations of
implementing genome-wide selection; and

testthe potential of genomic prediction for the population mean, variance and the usefulness

criterion using data from an applied breeding population for winter barley.
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2. Peer-reviewed scientific articles

2.1 Reciprocal recurrent genomic selection: an attractive tool to leverage hybrid

wheat breeding

Published in Theoretical and Applied Genetics. 2019 Mar;132(3):687-698.
Reproduced with permission from Springer Nature.
DOI: 10.1007/s00122-018-3244-x

Authors: Maximilian Rembe, Yusheng Zhao, Yong Jiang, and Jochen C. Reif

Abstract

Despite the technological advance of methods to facilitate hybrid breeding in self -pollinating crops,
line breedingis still the dominating breeding strategy. This is likely due to a higherlong-term selection
gain in line compared to hybrid breeding. In this respect, recent studies on two-part strategiessplitting
the breeding program into a population improvement and a product development component could
mark a trend reversal. Here, an overview of experimentaland simulation-based studies exploring the
possibilities to integrate genome-wide prediction into recurrent selection is given. Furthermore,
possibilities to make use of recurrent selection for inter-population improvement are discussed.
Current findings of simulation studies and quantitative genetic considerations suggest that long-term
selection gain of hybrid breeding can be increased by implementing a two-part selection strategy based
onreciprocal recurrent genomicselection. This would strengthen the competitiveness of hybrid versus
line breeding facilitating to develop outstanding hybrid varieties also for self-pollinating plants such as

wheat.
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Abstract

Key message Using a two-part breeding strategy based on a population improvement and a product development
component can leverage hybrid wheat breeding.

Abstract Despite the technological advance of methods to facilitate hybrid breeding in self-pollinating crops, line breeding
is still the dominating breeding strategy. This is likely due to a higher long-term selection gain in line compared to hybrid
breeding. In this respect, recent studies on two-part strategies splitting the breeding program into a population improvement
and a product development component could mark a trend reversal. Here, an overview of experimental and simulation-based
studies exploring the possibilities to integrate genome-wide prediction into recurrent selection is given. Furthermore, pos-
sibilities to make use of recurrent selection for inter-population improvement are discussed. Current findings of simulation
studies and quantitative genetic considerations suggest that long-term selection gain of hybrid breeding can be increased
by implementing a two-part selection strategy based on reciprocal recurrent genomic selection. This would strengthen the
competitiveness of hybrid versus line breeding facilitating to develop outstanding hybrid varieties also for self-pollinating
plants such as wheat.

Abbreviations
SNP  Single nucleotide polymorphism
ST  Single trait

Introduction

Increasing crop yield is a global challenge to produce suf-
ficient food, feed, and fuel for a growing human population.
Hybrid breeding is a promising strategy to increase grain
yield through the maximal exploitation of heterosis (Duvick
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2001). A successful implementation of hybrid breeding has
been realized for outcrossing species such as maize (Troyer
1999), rye (Geiger and Miedaner 1999), sugar beet (Li et al.
2010), or sunflower (Reif et al. 2013). In contrast, the selfing
species wheat is bred as pure line varieties with stagnating
yield growths (Zhao et al. 2015a). Consequently, the goal
of several wheat breeding programs is to implement hybrid
breeding in order to boost yield (Zhao et al. 2015b) and yield
stability (Miihleisen et al. 2014).

Plant breeders face many challenges when they shift from
line to hybrid breeding in selfing species (Longin et al. 2012;
Whitford et al. 2013; Ma and Yuan 2015). One major bottle-
neck is to produce hybrid seeds economically, which entails
the development of techniques for hybrid seed production
including a re-education of selfing into outcrossing spe-
cies (Whitford et al. 2013; Tucker et al. 2017). Moreover,
hybrids must significantly outperform released line varie-
ties. One key component contributing to the competitive-
ness of hybrid breeding is the establishment of genetically
complementary heterotic groups (Melchinger and Gumber
1998). Zhao et al. (2015a) developed a genome-based three-
step strategy to identify high-yielding heterotic patterns. In
this three-step approach, genome-wide predictions are used
to compile a full diallel matrix of hybrid performances, a
simulated annealing algorithm is applied to identify the

) Springer
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highest yielding heterotic pattern, and optimal sizes of het-
erotic groups are determined balancing short- and long-term
selection gain, and the approach is focused on grain yield but
can be expanded to consider also an index of relevant traits.

Hybrid wheat breeding profits from around 10% of mid-
parent heterosis (Longin et al. 2012; Jiang et al. 2017) but
suffers from longer lasting cycles compared to line breeding
(Longin et al. 2014). A central task is therefore to shorten
the cycle length in hybrid wheat breeding. The introduc-
tion of genome-wide prediction (Meuwissen et al. 2001)
has paved the way to accelerate hybrid breeding (Zhao et al.
2014, 20154, b). Experimental findings in wheat populations
showed that accuracies of hybrid prediction are encouraging
for grain yield (Zhao et al. 2013, 2015a), disease resistances
(Miedaner et al. 2013; Gowda et al. 2014), and quality traits
(Liu et al. 2016). Nevertheless, cycle lengths of genomics-
aided hybrid wheat breeding are still longer lasting com-
pared to line breeding (Longin et al. 2014).

Gaynor et al. (2017) proposed for inbred lines a two-part
strategy by splitting the breeding progress into a recurrent
genomic selection and a product development component.
The population improvement relies on rapid recurrent
genome-wide mass selection in a population of heterozy-
gous genotypes and results in a fast increase in the mean
value of the population. Advanced seeds from selected het-
erozygous plants enter the product development to identify
superior potential pure line varieties. The product develop-
ment corresponds to classical pure line breeding schemes
including genome-wide predictions. Genome-wide predic-
tion models are updated using the phenotypic and genomic
data generated in the course of the product developing.
Performing computer simulations and assuming a restricted
budget Gaynor et al. (2017) showed that long-term genetic
gain from the two-part strategy increased by a factor of 1.31
times compared with the best performing standard genomic
selection strategy. The authors anticipated that completing
one cycle of recurrent genomic selection was accomplished
within half a year, which could be reduced dramatically for
spring wheat by applying speed breeding (Watson et al.
2018) enhancing selection gain.

Due to the increased genetic gain, recurrent genomic
selection is not only for intra-population but in particular
also for inter-population improvement of interest (King-
horn et al. 2010; Cros et al. 2015) and may boost long-term
selection gain in hybrid wheat breeding. Recurrent genomic
selection for inter-population improvement is denoted as
reciprocal recurrent genomic selection and aims to increase
the hybrid performance of two populations. Owing to its
potential, empirical studies on the possibilities of recipro-
cal recurrent genomic selection are underway, such as in the
frame of a comprehensive German public—private hybrid
breeding initiative called “Zuchtwert.” This stimulated us to
review the quantitative genetic theory underlying reciprocal

@ Springer

recurrent genomic selection. We introduce the basis of recur-
rent genomic selection for inbred line breeding programs and
discuss the potential and limits of this new breeding strategy
in intra-population improvement. Afterward, we summarize
principles underlying reciprocal recurrent genomic selection
of a hybrid population and highlight future research needs.

Definition of breeding values in recurrent
genomic selection for breeding pure lines

A genotype passes only gametes from one to the next gen-
eration because of recombination during meiosis. This is
considered in the concept of breeding values, which allows
measuring the potential contribution of a genotype to the
performance of the next generation when crossed with a
random sample of genotypes of the population under con-
sideration (Falconer and Mackay 1996). The breeding value
reflects the additive component of the genetic effect that can
be exploited in a recurrent manner, and is therefore relevant
for recurrent genomic selection.

The breeding value in the context of pure line breeding
operating at a fully homozygous level depends on the allele
frequencies of the population under consideration and on
the additive (a) effects of all quantitative trait loci (QTL)
underlying the trait. Please note that the dominance (d)
effects cancel out if the population comprises individuals
with an inbreeding coefficient of one (Wricke and Weber
1986). Consider the one-locus case with two alleles B and
b occurring with frequency p and 1 —p, then the average
effect of allele B and b is (1 —p)a and — pa, respectively,
and the breeding value of a genotype is then the sum of the
average effect of its two alleles. For a population in linkage
equilibrium, the breeding values of single loci are summed
up yielding the breeding value of a genotype. The breeding
value weighs the additive effects with the allele frequencies,
and thus, favorable rare alleles are given more value in recur-
rent genomic selection.

Estimating the breeding values in recurrent
genomic selection

Additive effects of relevant QTL are often not known but can
be estimated applying genome-wide prediction (Meuwissen
et al. 2001). One popular approach for estimating marker
effects is ridge regression best linear unbiased prediction,
but a plethora of further models has been proposed (Desta
and Ortiz 2014). Design matrices for the marker effects
can be implemented applying the F metric (Falconer and
Mackay 1996) in order to predict not only additive but also
non-additive effects such as additive-by-additive epistasis.
For recurrent genomic selection, additive effects are used in
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conjunction with the allele frequencies to estimate the breed-
ing values and to select superior parents for the next cycle
of selection. In contrast, the aim in product development is
to identify individuals with high genotypic values includ-
ing additive and non-additive effects. Experimental studies
revealed that non-additive effects play arole in wheat grain
yield (He et al. 2017; Jiang et al. 2018) and should therefore
be included in the genome-wide prediction models (Jiang
and Reif 2015) in order to identify superior varieties.

Persistency of prediction accuracy
in recurrent genomic selection

The potential of recurrent genomic selection for long-term
population improvement has been investigated so far exclu-
sively based on computer simulations (Muir 2007; Jannink
2010; Yabe et al. 2016; Gaynor et al. 2017; Miiller et al.
2017, 2018; Gorjanc et al. 2018). The studies focused on
closed populations, simulated mostly additive gene actions
while ignoring epistasis, assumed constant and often-known
marker effects, analyzed the persistency of prediction accu-
racies, and determined the long-term genetic gain. In a nut-
shell, the simulation studies revealed that the persistency of
the prediction accuracy depends on: (1) Effective size and
extent of linkage disequilibrium of the ancestral population
from which genotypes were sampled for recurrent genomic
selection (Schopp et al. 2017); (2) the size of the training
population used to (re)calibrate the genome-wide predic-
tion model (Meuwissen 2009) and its relationship to the test
set (Miiller et al. 2017); (3) the number of parents sampled
to initiate the recurrent genomic selection program (Miiller
et al. 2017); (4) the marker density (Schopp et al. 2017), and
(5) the statistical model used to estimate the marker effects
(de los Campos et al. de los Campos et al. 2013; Schulthess
et al. 2017; Varona et al. 2018). The above-mentioned fac-
tors are interacting and determine wether the prediction
accuracies are driven by linkage between QTL and SNPs in
the base population (Meuwissen et al. 2001), cosegregation
between QTL and SNPs due to sample linkage disequilib-
rium (Habier et al. 2007; Schopp et al. 2017), or pedigree
relationships (Habier et al. 2007).

Gaynor et al. (2017) simulated a scenario that reflects
an integrated approach of recurrent genomic selection and
variety development. The benefit of this integrated approach
is an economic strategy to update the genome-wide predic-
tion model during product development. Prediction accu-
racy converged for a complex trait toward 0.2 (Gaynor et al.
2017). This value is lower compared to accuracies observed
for grain yield in wheat within one cycle, which mostly
ranged between (.50 and 0.60 (Heslot et al. 2012; Nakaya
and Isobe 2012; Isidro et al. 2015; He et al. 2016). In con-
trast, the reported prediction accuracy of 0.2 (Gaynor et al.

2017) was comparable to estimates in the case of unrelated
training and test populations of wheat hybrids, which was
observed within one cycle of selection (Zhao et al. 2015a).
Hence, experimental studies are needed to validate ulti-
mately the level and persistency of the prediction accuracies
in recurrent genomic selection.

Strategies to maintain the genetic variance
in recurrent genomic selection

Maintaining the genetic variance of the population has a
strong impact on the long-term genetic gain. Selection that
is entirely based on the genomic estimated breeding val-
ues causes an erosion of the genetic variance as revealed by
simulation studies (Jannink 2010). Consequently, modified
selection criteria have been proposed to preserve the genetic
variance in long-term recurrent genomic selection programs
(Fig. 1). Goddard (2009) suggested to weigh the allele sub-
stitution effects with the frequencies of the favorable alleles,
so that beneficial rare alleles are preferred, which increased
long-term selection gain (Jannink 2010). A further option is
to select parents not on their (weighted) estimated genomic
breeding value but on their optimal haploid (Daetwyler et al.
2015) or expected maximum haploid breeding value (Miiller
et al. 2018). Both criteria search for a compromise between
the candidate’s genomic estimated breeding value and its
segregating variance when the genotype is selfed (Miiller
et al. 2018). In contrast to the optimal haploid value, the
expected maximum haploid breeding value assumes finite
population sizes and takes the difficulties to combine favora-
ble haplotypes due to a restricted number of recombination
events into account (Miiller et al. 2018). Goiffon et al. (2017)
generalized the optimal haploid value and introduced the
optimal population value selection. In optimal population
value selection, a group of genotypes is searched that maxi-
mizes the selection limit defined by favorable haplotype
blocks segregating in this selected subpopulation possess-
ing a predefined size. In contrast, genotype building selec-
tion aims to identify a minimal subpopulation, for which all
favorable haplotype block alleles are segregating (Kemper
etal. 2012).

Alternative concepts developed in the context of
animal breeding are optimal contribution selection
(Meuwissen 1997), its extension genomic optimal con-
tribution selection (Sonesson et al. 2012), and optimal
cross-selection (Kinghorn 2011). Here, genetic gain is
balanced versus the need to maintain genetic diversity
(Woolliams et al. 2015). This can be accomplished, for
example, by maximizing genetic gain at a predefined
rate of population inbreeding (Meuwissen 1997) or by
maximizing a weighted index that balances genetic gain
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Fig.1 Schematic overview of
selection criteria proposed for
recurrent genomic selection

versus inbreeding (Carvalheiro et al. 2010), expected het-
erozygosity (de Beukelaer et al. 2017), or maintaining
rare alleles (de Beukelaer et al. 2017).

No simulation study exists, which compares all sug-
gested selection criteria under relevant scenarios. Nev-
ertheless, taking findings of individual comparisons
together (Jannink 2010; Daetwyler et al. 2015; Goiffon
et al. 2017; Miiller et al. 2018; de Beukelaer et al. 2017;
Gorjanc et al. 2018; Akdemir and Sanchez 2016) sug-
gests that the proposed modified criteria boost long-term
but sometimes reduce short-term genetic gain in the first
selection cycles (Miiller et al. 2018). Further extensive
simulation studies are needed to guide a proper choice
of selection criteria in recurrent genomic selection pro-
grams. Moreover, it is of interest to consider scenarios
that also take the introgression of novel variation into
account, which is in contrast to animal breeding common
in plant breeding programs.

@ Springer

Weights allele substitution effect so that rare alleles
are preferred

Optimal Haplotype Value aims to identify the best
possible gamete

Estimated Maximum Haplotype aims to identify the
best possible gamete in a finite breeding population

Selection of a subpopulation to maximize the sum of
estimated allelic effects across chromosomes at each
haplotype block

Selection of the best possible progeny produced by a
breeding population, with markers segregating in
haplotype blocks

Maximises genetic gain limiting the rate of inbreeding
estimated based on pedigree records or genomic data

Maximizes an index that balances genetic gain and
inbreeding

Maximizes an index that balances genetic gain and
expected heterozygosity or maintaining rare alleles

Find mating pairs that maximize genetic gain limiting
the rate of inbreeding

Targeted introgression of novel variation

in recurrent genomic selection programs
is difficult

Wheat breeders make use of the breeders’ right and utilize
released elite varieties, exotic elite material, and in rare
cases also genetic resources as parents for their crossing
programs. Consequently, selection gain of competitors is
exploited and breeding profits from a diverse population.
For recurrent selection, the challenge is how to manage
the introgression of novel lines into the else closed breed-
ing population. In wheat breeding, information is avail-
able only on the per se performance of novel inbred lines
but not on their breeding values. Reliable estimates of the
breeding values profit from using the novel lines inten-
sively in breeding programs before integrating them in the
recurrent selection programs, which would allow taking
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the performance of derived progenies into account. Alter-
natively, genomic best linear unbiased prediction (Van-
Raden 2008) and its extension to epistasis (Jiang and Reif
2015) can be used to decompose the genetic value into the
breeding value and epistatic components based on the per
se performance of the novel inbred lines. Nevertheless, the
precision of the estimate of the breeding value for geno-
types not embedded in the closed population can be quite
low in wheat (Zhao et al. 2015a) and epistasis seems to be
relevant (He et al. 2017) hampering their targeted intro-
gression in recurrent genomic selection programs.

Multi-trait recurrent genomic selection
profits from multi-stage selection

Recurrent selection can target grain yield or be expanded to
consider an index of relevant traits (Moll 1994). This works
fine for polygenic traits such as Fusarium head blight resist-
ance (Yang et al. 2000). Mono- and oligogenic traits can
be improved by genomic or marker-assisted selection (Dek-
kers 2007) or by combining both approaches (Zhao et al.
2014; Bernardo 2014). An efficient combined recurrent
genomic and marker-assisted selection most likely entails
multi-stage selection. In the first step, marker-assisted selec-
tion is economically beneficial to screen large populations
for instance for disease resistances based on a limited set
of diagnostic markers. In the second step, genomic selec-
tion based on genome-wide markers can target complex
traits. The logistic required for implementing such a two-
step marker-assisted and genomic selection in a short time
interval before flowering is challenging in wheat. A further
problem is the temporal dynamics of the effects of diagnos-
tic markers for disease resistances, which can breakdown
in the case of mono- or oligogenic mode of inheritance. A
promising solution to face these temporal dynamics is high-
throughput precision phenotyping screens based on detached
leaf assays, which allow assessing the disease resistance for
single plants using steadily updated pathogen populations
(Douchkov et al. 2014). Further research is required to refine
high-throughput precision phenotyping screens for recurrent
genomic selection, which is an attractive field of coordinated
international activities.

Definition of breeding values in reciprocal
recurrent genomic selection for breeding
hybrids

Schnell (1965) defined the breeding values for a hybrid
population. Here, the allele frequencies in both heterotic
groups f (p; and g;) and m (p,, and g,,) have to be con-
sidered. We first define the effect a, as a+ (g, —p.)d.

The breeding values of the three female genotypes Fgpg,
Fpy, and Fy, are then: Fpp=2¢; ay,, Fp,=(q;—py) oy,
and Fyy=-2p; a,. The breeding values of the three
male genotypes Mgg, Mgy, and My, are: Mg =24,
ap, Mgy=(Gm—Pm) @ and My =-2 p. a; with
ar=a+(qg;—ppd.

We illustrated the interpretation of breeding values for
a hybrid population in numerical examples with varying
degrees of dominance, i.e., k=d/a, and allele frequencies
focusing on the breeding values of the female genotypes
(Fig. 2). In “Appendix” section, a detailed mathematical der-
ivation of the interpretation of breeding values for different
degrees of dominance can be found. Briefly, for 0 < k < 1,
the breeding values represent an excellent framework to find
a compromise between a and d effects and the allele fre-
quencies in the male and female heterotic group. The breed-
ing value of the favorable genotype Fyg is increasing with
decreasing frequency of the favorable allele in the female
pool, which is more pronounced with increasing degree of
dominance. Moreover, Fyy is higher when the favorable
allele occurs with low frequency in the male heterotic group.
The selection will fix the favorable allele in both heterotic
groups (“Appendix” section, Situation A). For k> I, the
selection directions are elusive but will eventually lead to
the desirable situation, i.c., a fixation of different alleles in
the two heterotic groups. Nevertheless, in the case that the
frequencies of the favorable allele in both heterotic groups
(py, and py) are above or below the threshold (k + 1)/2k, the
selection goal is reached with a delay. The reason is that the
selection will start from simultaneous increasing or decreas-
ing the frequencies of the favorable allele in both heterotic
groups until one of them passes the threshold. Then, the
selection direction will be reversed in one heterotic group
and finally fixes different alleles in the two groups (“Appen-
dix” section, Situation B).

Negative dominance effects have been reported for the
selfing model species Arabidopsis thaliana (Reif et al. 2009;
Oakley et al. 2015) and were therefore considered in the fol-
lowing. For k <0, selection should aim to avoid genotypes
that carry the unfavorable allele. This desirable selection
direction can be achieved from the breeding values for loci
with — 1 <k <0 (“Appendix” section, Situation C). However,
for loci with k < — 1, the selection direction is complicated.
Only when the frequency of the favorable allele in both het-
erotic groups (p,, and py) is above the threshold (k+ 1)/2k,
the selection guarantees to fix the favorable allele in both
heterotic groups. In contrast, when both p,, and p; are below
the threshold, the selection will fix the unfavorable allele in
both heterotic groups, which is not desired. In case that the
threshold (k+ 1)/2k lies in between p,, and p, the selection
will eventually lead to one of the two aforementioned cases,
depending on the initial values of p,, p; and the selection
intensity (“Appendix” section, Situation D).
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Fig.2 Breeding values of the three genotypes of female lines (Fpp,
Fgy. and Fy,) as a function of the degree of dominance (we set the
additive a=1 and varied the dominance effect d) and the allele fre-

Summarizing, the concept of breeding values in hybrid
populations as defined by Schnell (1965) provides a frame-
work to combine information on the a and d effects as well
as on the allele frequencies of both heterotic groups under
the assumption of partial and complete dominance. Additional
weighing of the allele substitution effects with the frequen-
cies of the favorable alleles in the vein of the suggestions of
(Goddard 2009) represents an approach to increase long-term
selection gain. For positive or negative overdominance, selec-
tion theory has to be revised in order to optimize reciprocal
recurrent genomic selection programs. Moreover, alternative
selection criteria have to be developed, which facilitate to
prevent an erosion of the genetic variance in the course of
the reciprocal recurrent selection. The strategies proposed in
the context of intra-population improvement (Jannink 2010;
Daetwyler et al. 2015; Goiffon et al. 2017; Miiller et al. 2018)
represent entry points to tackle this challenge.
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quency of the favorable allele B in the male and female pool for inter-
population improvement

Persistency of the prediction accuracy
in reciprocal recurrent genomic selection

To our knowledge, no study has been published so far inves-
tigating the persistency of the prediction accuracy in the
reciprocal recurrent genomic selection considering additive
and dominance effects. Nevertheless, if the allele frequencies
of the opposite heterotic group remain unchanged, recipro-
cal recurrent genomic selection behaves like a model with
purely additive gene action assuming the absence of epista-
sis. In this case, results of simulation studies performed for
recurrent genomic selection presented above are also rel-
evant for the reciprocal recurrent genomic selection. The
assumption of constant allele frequencies of the opposite
heterotic group, however, is not reflecting the relevant situ-
ation for long-term inter-population improvement.
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To gain first insights into the persistency of the predic-
tion accuracy considering additive and dominance effects,
we performed a simulation study building upon the genetic
makeup of a comprehensive hybrid wheat population (Zhao
et al. 2015a). We assumed the absence of epistasis and gen-
erated phenotypic data (Y) for the 15 male and 120 female
lines and their 1604 single-cross hybrids simulating additive
and dominance effects of the 17,372 SNPs, which have been
observed in the panel of 135 parental lines, applying the
following model:

Y=u+G,+Gs+e,

where y is the population mean, G, are the breeding values,
G are the dominance deviations, and ¢ are the remaining
errors. Please note that the female and male lines do not
belong to two divergent populations (Zhao et al. 2015a), and
hence, a=a;=a,,. This assumption can be relaxed, and
marker effects can be modeled as specific for each parental
population (Technow et al. 2012). The prediction accuracies,
however, are only marginally affected (Technow et al. 2012),
but the genome-wide prediction model is more appropriated
for initiating reciprocal recurrent genomic selection in the
case of divergent subpopulations. The variance of the

breeding value was defined in our simulation study as

2 = var(G, ), and the variance of dominance deviations is
o; = var(G;). The additive and dominance effects were
independently sampled from normal distributions. We simu-
lated directional dominance reflecting 10% of midparent
heterosis as observed for grain yield in wheat (Zhao et al.
2015a). We varied the ratio of i—“ from 0.05 to 1, with inter-

vals of 0.05 and set the error variance to 62 = 62 + o2, which
resulted in a broad-sense heritability of 0.5. For each simula-
tion run, the accuracy of genomic best linear unbiased pre-
diction exploiting « and § effects [for details on the imple-
mentation, see Zhao et al. (2015a)] was assessed as the
correlation between the predicted breeding values, domi-
nance deviations, and hybrid performance and the corre-
sponding true values using a chessboard-like validation. The
chessboard-like validation was performed as follows: The
training sets comprised a random selection of 80 out of 120
female and 10 out of 15 male parental inbred lines as well
as 610 hybrids derived from them. From the remaining
hybrids, three test sets were formed. Test sets included only
hybrids not assigned so far that had both parents (72), one
female (T1A) or male parent (T1B) or no parent (70) in

Fig.3 Prediction accuracies for
hybrids obtained using genomic

best lincar unbiased prediction e

0.8 -

for different ratios of variance
due to dominance deviations
and breeding values (63/c2).
The training sets comprised a
random selection of 80 out of
120 female and 10 out of 15
male parental inbred lines as
well as 610 hybrids derived
from them. From the remain-
ing hybrids, test sets with three
successively decreasing degrees
of relatedness to the training set
were formed. Test sets included
only hybrids not assigned so
far that had both parents (72),
one female (71A) or male
parent (T1B) or no parent (70)
in common with the hybrids

in the corresponding training
set. The genetic variance (GV)
is indicated as red triangles,
the variance of the dominance
deviations (DV) is indicated as
blue squares, and the variance
of the breeding values (BV) is
indicated as green dots (color
figure online)
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common with the hybrids in the corresponding training set.
For each ratio of Z—“ the simulation was repeated 50 times.

The factorial mating design used to generate the mapping
population resulted in higher degrees of freedom for G; than
G, (Hallauer et al. 2010). Prediction accuracies of G, were
lower than for G, for the full range of % when inspecting the

related test sets T1A, T1B, and T2 (Fig. 3). For the unrelated
70 scenario, which is the most relevant for the persistency
on a long term, prediction accuracy of G is only comparable
to G, for aratio of :— approaching one but else lower. Experi-

mental studies in wheat reported ratios of Z—“ in the range of

0.25 (Longin et al. 2013). Consequently, predicting § versus
a effects is less precise, which very likely hampers the devel-
opment of complementary heterotic groups through recipro-
cal recurrent genomic selection. Nevertheless, further exten-
sive computer simulations are needed to study this in more
detail.

Increasing the competiveness of hybrid
versus line breeding with the use

of a two-part selection strategy based

on reciprocal recurrent genomic selection

A larger long-term selection gain is crucial for the effective-
ness of hybrid versus line breeding. The long-term selection
gain is a function of the selection intensity, and the addi-
tive genetic variance exploited and the heritability (Cochran

Fig.4 Schematic representa-
tion of the two-part inter- and
intra-population improvement.
Germplasm in inter-population
improvement is split in heterotic
group 1 (HG1) and heterotic
group 2 (HG2) and profits from
the heterosis effect (AH). Both,
inter- and intra-populations
improvement breeding benefits
from a recurrent selection
genetic gain (G), which results

‘ Population ‘

improvemen

Two-part intra-population improvement

(1951). Longin et al. (2014) observed that line breeding out-
performed hybrid breeding on a long term for scenarios with
a restricted budget. Assuming the absence of epistasis and
dominance, the superiority is mainly driven by the fact that
line breeding makes use of up to twice as much additive
genetic variance than hybrid breeding (Longin et al. 2012;
Gowda et al. 2012). As outlined above, long-term selection
gain in pure line breeding can be increased even by the two-
part selection strategy (Gaynor et al. (2017). The benefit
results from the rapid cycles in the population improvement
component, which causes a faster increase in the popula-
tion mean compared to the conventional pure line breeding
schemes applying genomic selection. Interestingly, the selec-
tion gain is enhanced in the population improvement com-
ponent although only half of the genetic variance (inbreed-
ing coefficient is 0 instead of 1) is exploited compared to
conventional pure line breeding. Consequently, it is very
likely that the selection gain of a two-part selection strategy
is comparable for hybrid and line breeding because both
strategies make use of a similar amount of additive genetic
variance. Considering that hybrid wheat breeding profits
from an additional 10% of midparent heterosis suggests
that a two-part hybrid breeding program based on recipro-
cal recurrent genomic selection is competitive compared to
line breeding (Fig. 4). The above considerations rely on the
assumption that the persistency of the prediction accuracies
is similar for inter- and intra-population recurrent genomic
selection. To the current knowledge, this scenario is likely
but further research is essential to support this theory. Sum-
marizing, current findings of simulation studies and quanti-
tative genetic consideration suggest that the competiveness

Two-part intra-population improvement

from the population improve-
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of hybrid versus line breeding can be increased through the
implementation of a two-part selection strategy based on
reciprocal recurrent genomic selection.
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Appendix

In reciprocal recurrent genomic selection, the aim is to
develop complementary heterotic groups yielding high
hybrid performance. The degree of dominance, i.e., k=d/a
with d referring to the dominance and « to the additive
effects, at each single locus plays a crucial role to select
for complementarity. In order to exploit successfully the
dominance effects in hybrid breeding, selection directions
have to be chosen carefully. For positive overdominance,
the favorable allele should be fixed in one heterotic group
but eliminated in the other. In contrast, in the presence of
negative or partial dominance, heterozygous genotypes are
disadvantageous compared to the homozygous genotypes.
Therefore, the aim should be to fix the favorable allele in
both heterotic groups so that the hybrid offspring is homozy-
gous at the locus of interest.

Schnell (1965) introduced a concept of breeding value
for hybrid populations. Let us denote the favorable allele B
and the unfavorable allele B. Assume a male (i) and female
heterotic group (f). Following Schnell (1965), the breeding
values of genotypes that are homozygous for the favorable
allele (BB) are defined for the male and the female heterotic
group as:

{ FBB = 2qfam

8 a,=a+ d(q =D )
with o e 0
My = 24,04 {

@ = a+d(q;— py)

Fgg and Mgg refer to the breeding values for the
genotypes in the female and the male heterotic group,

respectively, carrying the favorable allele. The frequency
of the favorable allele B is denoted as p, and the frequency
of the unfavorable allele 4 is denoted as ¢. The subscripts m
and fidentify allele frequencies of the male and female het-
erotic group, respectively. The question arises whether the
concept of Schnell (1965) is suited for long-term reciprocal
recurrent genomic selection. In the following, we studied the
direction of selection for different k in dependency on the
allele frequencies in the two heterotic groups. We assume
that the initial allele frequencies ¢; and g,, are nonzero, i.e.,
the favorable allele has not been fixed in either of the two
heterotic groups. We further assume that k# 0, otherwise the
breeding value is purely contributed by a, and the favorable
allele will be fixed through selection in both heterotic groups
just like in line breeding.

Situation A 0<k<1.

Suppose Fpg <0, then we have o, <0, which is equivalent to
Pm > S5 But, X2 > 1since 0 <k < 1. This implies p,, > 1,
which is impossible. The same arguments hold true when
supposing My < 0. Thus, Fiy; and My, will always be posi-
tive. So in this situation the selection will eventually fix the

favorable allele in both heterotic groups, which is desirable.

SituationB % > 1
There are four possible combinations of positive and nega-
tive Fpg and Mgg:

Situation B1 Fy5 <0 and M <0

This means p,, > %' and p; > %‘ Since Fgg <0, the selec-
tion will aim to decrease the frequency of genotypes that are
homozygous for the allele of interest, and thus decrease py.
In parallel, as My <0, the selection will aim to decrease
P Thus, in both heterotic groups the frequencies of the
allele of interest will be decreased until one of them goes
below the threshold % Then, it changes to Situation B2 or
B3, depending on the allele frequency p of which heterotic

groups decrease below the threshold first.

(i) Situation B2, Fiy; <0 and My >0
This means p,, > % and p; < % Since Fgp <0,
the selection will aim to decrease the frequency
of genotypes that are homozygous for the allele of
interest, and thus decrease p. Because p; < % a
decrease in p; will not change the sign of Myg. Thus,
we still have My >0, implying that the selection in
the male group will further increase p,,. As p,,, > 5:'71
the sign of Fyg will also stay negative. Hence, My
will always favor genotypes carrying two alleles
of interest, while Fp will constantly discriminate
against these very genotypes. This process finally
leads to p,, = 1, and p;=0. This is a desirable con-
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stellation that allows to produce hybrid offspring that
is heterozygous for the allele of interest.

(ii) Situation B3, FBB >O and Myg <0
This means p,, < =, and p; > &L Since Fgp>0,
the selection will mcrease the frequency of geno-
types that are homO/ygous for the allele of interest.
Because p; > %L the breeding value of these very
genotypes w1ll stay negative in the male heterotic
group. Then, the selection in the male group will fur-
ther decrease p,,, implying that Fgj; will stay positive.
Eventually, this process leads to p; = 1, and p,,=0.
This is a desirable constellation that allows to pro-
duce hybrid offspring that is heterozygous for the
allele of interest.

(iii) Situation B4, Fgp >O and Mg >0
This means p,, < “2, and p; < %L, Since Fg>0
and Mpg >0, the selecuon will alm n to increase the
frequency of genotypes that are homozygous for the
allele of interest in both heterotic groups. As soon
as the frequency of these very genotypes goes above
the threshold of ‘;’—L' in one heterotic group, the sign
of the breeding value in the opposite heterotic group
will change the sign, and thus, the selection direction
will be reversed here, leading back to Situation B2 or
Situation B3 and the allele of interest will be fixed
in one heterotic group and eliminated in the other.
Finally, both heterotic groups are in a complementary
genetical constitution.

SituationC — 1<k <0

Suppose Fgg <0, which is equivalent to p,, < &1 Since
—1<k<0, we have — “1 < 0. This implies p,, < 0 which
is impossible. The samc arguments hold true if we suppose
My < 0. Thus, Fiy and My, will always be positive. So as
in Situation A, the selection will eventually fix the favorable
allele in both heterotic groups.

SituationD k<-1
There are four possible combinations of positive and nega-
tive Fyp and Myy:

Situation D1 FBB < 0 and MBB < 0

This means p,, < £, and p; <L k L Since Fyp <0, the selec-
tion will aim to decredse the frequency p; of the favorable
allele B. In parallel, as My <0, the selection will aim to
decrease p,,.. Both, p,,, and p; will eventually reach zero. This
is problematic because the favorable allele will be elimi-
nated, while the unfavorable allele will be fixed in both het-
erotic groups.

@ Springer

Situation D2 Fy5 <0 and Mpp>0

This means p,, < A;—k' and p; > ‘:—Al Since Fgp <0, the selec-
tion will aim to decrease the frequency of the genotypes
carrying the favorable allele in the female heterotic pool, and
thus decrease p;. Here, the selection intensity heavily influ-
ences how the selection directions behave. When p; > %
and low selection intensity is applied, a small decrease in p;
will not change the sign of M. This leads to an increase in
Pm and eventually Fyp will change the sign, which leads to
Situation D4. If the selection intensity is large enough, then
ps < T As a consequence, Mgy will change the sign, e.g.,
Mgg <0, which leads back to Situation D1.

Situation D3 Fyp>0and Mg <0

This means p,, > ‘:’A , and py < 2L, Since Fyy <0, the
selection will aim to increase the frequency of the geno-
type carrying the favorable allele 1n the female heterotic
pool, and thus increase pf If PR — L the increase in pscan
eventually lead to p¢ > &l and ﬁnally to a positive breed-
ing value of genotypes Ldrrymg favorable allele in the male
heterotic group, e.g., Mg > 0. This will lead to Situation
D4. If p; < M1 4 small increase in pr may not change the
sign of Mgy. As long as Mg is smaller than zero, p,,, will be
decreased. If selection intensity in the male heterotic pool is
higher enough, then p, decrease below the threshold before
Mgy change its sign, Fyp will change to negative, which
leads back to Situation DI.

Situation D4 F;; >0 and My >0
This means p,, > —-, and p; > '%' Since Fyi>0 and
My >0, the selection will aim to increase the frequency of
the genotype carrying the favorable allele in both populations,
until p,,=1 and p;=1. This is the ideal constitution of heter-
otic groups in the presence of negative overdominance as it
leads to hybrids that are homozygous for the beneficial allele.
As a final remark, note that in the above discussion
we have assumed that the selection is first applied to the
female group and then to the male group. Assuming the
opposite (that the selection is first applied to males and
then to females) will lead to similar results. However, if
the selection is applied simultaneously to both groups, the
conclusions are slightly different. More precisely, in Situ-
ation B1 and B4, there is an additional case that p,, and
pg could simultaneously change from above to below the
threshold % and back and forth. Similarly, in Situations
D2 and D3, there is an ddditional case that the frequencies
change from p, ﬁA L pp < —to P < u s Pr> = ”' and
back and forth. These dddltl()ndl cases are undeslrdble as
the selection goal will be either delayed, or even can never
be achieved.
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Abstract

Reciprocal recurrent genomic selection is a breeding strategy aimed at improving the hybrid
performance of two base populations. It promises to significantly advance hybrid breeding in wheat.
Againstthis backdrop, the main objective of this study was to e mpirically investigate the potentialand
limitations of reciprocal recurrent genomic selection. Genome-wide predictive equations were
developed using genomic and phenotypic data from a comprehensive population of 1,604 single
crosses between 120 female and 15 male wheat lines. Twenty superior female lines were selected for
initiation of the reciprocal recurrent genomic selection program. Focusing on the female pool, one
cycle was performed with genomicselection steps at the F, (60 out of 629 plants) and the F; stage (49
out of 382 plants). Selection gain for grain yield was evaluated at six locations. Analyses of the
phenotypic data showed pronounced genotype-by-environment interactions with two environments
that formed an outgroup compared to the environments used for the genome-wide prediction
equations. Removing these two environments for further analysis resulted in a selection gain of 1.0 dt
ha!compared to the hybrids of the original 20 parental lines. This underscores the potential of
reciprocal recurrent genomicselection to promote hybrid wheat breeding, but also highlights the need

to develop robust genome-wide predictive equations.
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Reciprocal recurrent genomic selection is a breeding strategy aimed at improving
the hybrid performance of two base populations. It promises to significantly advance
hybrid breeding in wheat. Against this backdrop, the main objective of this study was
to empirically investigate the potential and limitations of reciprocal recurrent genomic
selection. Genome-wide predictive equations were developed using genomic and
phenotypic data from a comprehensive population of 1,604 single crosses between 120
female and 15 male wheat lines. Twenty superior female lines were selected for initiation
of the reciprocal recurrent genomic selection program. Focusing on the female pool,
one cycle was performed with genomic selection steps at the F» (60 out of 629 plants)
and the Fs stage (49 out of 382 plants). Selection gain for grain yield was evaluated
at six locations. Analyses of the phenotypic data showed pronounced genotype-by-
environment interactions with two environments that formed an outgroup compared to
the environments used for the genome-wide prediction equations. Removing these two
environments for further analysis resulted in a selection gain of 1.0 dt ha~1 compared to
the hybrids of the original 20 parental lines. This underscores the potential of reciprocal
recurrent genomic selection to promote hybrid wheat breeding, but also highlights the
need to develop robust genome-wide predictive equations.

Keywords: grain yield, hybrid b ing, long-term gain, g ype-ti Y i ion, abiotic stress

INTRODUCTION

Since the discovery of the advantages of hybrid breeding through increased performances due to
the exploitation of heterosis (Shull, 1908), it has proven to be a successful strategy in allogamous
species such as maize (Troyer, 1999), sunflower (Reif et al., 2013), sugar beet (Li et al., 2010), and
rye (Geiger and Miedaner, 2015). Besides, hybrids display higher yield stabilities (Miihleisen et al.,
2014), especially in marginal environments (Hallauer et al.,, 1988) and facilitate the stacking of
major genes (Longin et al., 2012). These advantages stimulated investments in the implementation
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of hybrid breeding also in autogamous species, with the
main challenge to develop economically competitive varieties
that can compete against the line varieties on the market as
the autogamous biology makes economic seed production
challenging. Therefore, hybrid varieties must outperform
significantly line varieties and the yield surplus must compensate
for the higher costs in seed production. Recent advances enabled
the introduction of hybrid breeding in autogamous species such
as barley (Miihleisen et al., 2013), wheat (Melonek et al., 2021),
and most successfully rice (Huang et al,, 2017) but a major
challenge is the selection gain per unit time: Classical hybrid
breeding uses heterosis but exploits less additive variance and the
breeding schemes are longer compared to line breeding (Longin
etal., 2012).

A promising approach to breed high-yielding hybrids is to
maximize the exploitation of beneficial heterosis. The concept
of reciprocal recurrent selection (RRS) was originally proposed
by Comstock et al. (1949) and optimizes the use of general
and specific combining ability by selecting genotypes from one
population based on the performance of their progeny resulting
from crosses with another population. Ideally, this selection
strategy results in a reciprocal shift in gene frequencies among
the two populations from which female and male genotypes shall
derive. Recurrent selection cycles are applied to further manifest
this tendency. The success of RRS has been demonstrated in
outcrossing species such as maize (Eyherabide and Hallauer,
1991; Tardin et al.,, 2007; Souza et al., 2010; Kolawole et al., 2018)
and sugar beet (Doney and Theurer, 1978; Hecker, 1985). To the
authors knowledge, no studies were published that investigate the
potentials and limits of RRS in autogamous cereals such as wheat.

A disadvantage of RRS compared to recurrent selection is
the elongation of breeding cycles due to the need to produce
sufficient progeny based on which genotypes can be rated. In
recurrent selection, the implementation of genomic selection has
the potential to shorten the length of selection cycles and raise
selection gain (Santantonio et al., 2020; Atanda et al., 2021), but
empirical studies providing insights into the long-term effect
in recurrent genomic selection are still missing. Research in
animal breeding has suggested to complement RRS with genomic
selection (Kinghorn et al., 2010). In oil palm, simulations have
shown that genomic selection could potentially reduce the
generation time of an RRS breeding cycle from 20 to 6 years (Cros
et al,, 2015). Integration of genomic selection into RRS would
furthermore allow the combination of RRS and speed breeding
approaches as proposed by Watson et al. (2018). Empirical
evidence of the superiority of reciprocal recurrent genomic
selection (RRGS) breeding programs, however, is still missing.

Many breeding programs are aimed at producing genotypes
adapted to so-called mega-environments. Mega-environments
are geographic regions that show similar growing conditions
limiting the variance of the interaction effects between genotype
and environments (Braun et al, 1996). In Germany, breeders
generally aim for genotypes that are capable to meet the
requirement criteria of the Federal Plant Variety Office
(Bundessortenamt, Hannover), to release registered varieties. The
Federal Plant Variety Office tests candidate genotypes in its
official trials at up to 15 locations representing wheat growing
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regions in Germany. It is important to note here that Germany
is not further subdivided in the Federal Plant Variety Office tests
into target mega-environments for wheat breeding.

This study provides the first empirical results on the
potential and limits of an RRGS breeding program in wheat
targeted for Germany. The objectives were to (1) investigate
the utility of genomic selection to identify superior females
through genomic estimation of the general combining ability,
(2) evaluate the selection gain for grain yield achieved by an
RRGS breeding strategy, and (3) examine the impact of genotype-
by-environment interaction on the effectiveness of a long-term
breeding strategy.

MATERIALS AND METHODS

Design of the Reciprocal Recurrent
Genomic Selection Program

We implemented an RRGS program based on genomic and
phenotypic data of a large hybrid wheat population (further
denoted as HYWHEAT population) presented in detail in
previous studies (Longin et al., 2013; Zhao et al., 2013, 2015;
Gowda et al,, 2014; Liu et al,, 2016, 2020a,b; Jiang et al., 2017;
Schulthess et al., 2018; Thorwarth et al., 2018, 2019). Briefly,
120 female and 15 male winter wheat lines adapted to Central
Europe were crossed using chemical hybridization agents (e.g.,
Croisor 100; Kempe et al., 2014) applying standard in house
protocols. 1,604 single-cross hybrids were produced. The 1,604
hybrids, their 135 parents, and 10 commercial varieties (As
de Coeur, Colonia, Genius, Hystar, JB Asano, Julius, Kredo,
Tabasco, Tobak, Tuerkis) were evaluated for grain yield in 11
environments, i.e., 5 and 6 locations (Adenstedt, Boehnshausen,
Hadmersleben, Harzhof, Hohenheim, and Seligenstadt), in the
growing seasons 2011/2012 and 2012/2013, respectively, in
Central Europe, resulting in high quality phenotypic data
(Supplementary Table 2 in Zhao et al., 2015). The 135 parental
lines were genotyped using a 90,000 SNP array based on an
Ilumina Infinium assay and after quality tests, 17,372 high-
quality SNP markers were retained. The phenotypic and the
genomic data were combined, and a ridge regression best linear
unbiased prediction (RRBLUP) model was trained fitting additive
and dominance effects using the package rrBLUP (Endelman,
2011) in the R software environment (R Core Team, 2020). The
implementation of the RRBLUP model was described in detail
elsewhere (Zhao et al., 2015). Briefly, the model was:

Y=1,u+ Zpa+ Zpd +e, (1)

where Y refers to the grain yield data of the 135 parent lines
and their 1,604 hybrids, 1 was the overall mean, 1, was an n-
dimensional vector of ones, @ and Z, denoted the additive effects
and the corresponding design matrix, and d and Zp denoted
the dominance effects and the corresponding design matrix. The
estimated a and d effects were used to predict the genotypic values
of the hybrid performances when crossed with the 15 male lines.

In the recurrent genomic selection program, we focused on
the female pool and selected 20 out of the 120 female lines.
The selection was based on the first-year estimates of general
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combining abilities and further criteria such as for example being
carrier of the dwarfing gene Rht2. The 20 female lines formed
the Cq cycle and were crossed following a single round robin
design (A x B, Bx C, Cx D, ..., T x A), ie., every line was
used in two crosses resulting in 20 Fy’s. The 20 F;’s were grown
in the following season and selfed to the F, generation in the
green house. Seeds were harvested and around 30 F; plants were
grown for each of the 20 biparental families amounting to a
total of 629 F; plants. The 629 F; plants were genotyped before
flowering using the above-mentioned SNP array. The general
combining abilities of the 629 F, plants when crossed with the
15 original male lines were estimated using the SNP profiles and
the above outlined RRBLUP model. The best 3 F, plants per
family, i.e., 60 F; plants in total, were selected and selfed toward
the F5 generation resulting in 2,886 Fs genotypes. Descendants
from each of the 20 initial crosses were represented in this panel
with a mean number of genotypes of 144, ranging from 76 to
277. Seeds of the 2,886 F5 genotypes were grown in single row
plots in the season 2016/2017 and a fraction of 382 Fs.¢ families
were visually selected based on overall agronomic performance
(disease resistance) and considering plant height and flowering
time to facilitate hybrid seed production when crossed with three
out of the 15 above outlined male lines. The 382 Fs.¢ families
were genotyped using the above-mentioned SNP array. The
general combining abilities of the 382 Fs. ¢ families when crossed
with the 15 original male lines were estimated using the SNP
profiles and the above outlined RRBLUP model. Based on the
estimated general combining ability effects, 50 outstanding Fs.¢
families were selected (denoted as C;S). All of the 20 biparental
F, families were represented in this set of families.

As further reference point besides Cy, 60 F, plants out of
the above outlined 629 F, plants of the 20 biparental families
were randomly selected. Here, a total of 3 F, plants were
randomly drawn from each of the 20 biparental families and
selfed toward the Fs generation resulting in 714 Fs genotypes.
Seeds of the 714 F5 genotypes were multiplied in single row plots
in the season 2016/2017. A subfraction of 30 F5.¢ families were
visually selected considering plant height and flowering time to
facilitate hybrid seed production when crossed with three out
of the above outlined 15 male lines. The subfraction of 30 F5.¢
families were denoted as CiR. The 30 genotypes of the C;R
cycle were genotyped using the above-mentioned SNP array.
The integrated data set was filtered by excluding markers with
more than 5% missing values, resulting in 4,031 unique and
polymorphic markers.

Evaluation of the Selection Gain in Field
Trials and Phenotypic Data Analyses

The data set comprised 376 genotypes, including 3 male lines
previously used to produce the 1,604 original F; hybrids,
20 female lines from Cj, 49 female lines (one out of the
above mentioned 50 lines were discarded because hybrid seed
production failed entirely) from C;S, 30 female lines from C|R,
267 F; hybrids, and 7 commercial varieties (Julius, Colonia,
Tobak, Elixer, RGT Reform, Hystar, and Genius). The hybrids
were derived by crossing the 99 female and the 3 male lines using
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a factorial mating design. For 267 of the potential 297 single-cross
hybrids, enough seeds were harvested for intensive field trials.

All 376 genotypes were evaluated in yield plots for grain yield
and plant height at 6 locations in the growing season 2018/2019.
The locations were Hadmersleben (latitude 51.98 N, longitude
11.30 E), Mintraching (latitude 48.95N, longitude 12.25 E),
Adenstedt (latitude 52.20 N, longitude 10.18 E), Sossmar (latitude
52.2N, longitude 10.08 E), Wohlde (latitude 52.8 N, longitude
9.98 E), and Boehnshausen (latitude 51.85N, longitude 10.95)
(Supplementary Table 1). The same seeding rate of 230 grains
per m? was used for both parental lines and hybrids. The
plot size ranged from 7.2 to 12 m* Harvesting was performed
mechanically and adjusted to a moisture concentration of 140 g
H,0 kg~!. The field design was an alpha lattice with block size
11 where each environment corresponded to one replication. The
yield trials were treated with fertilizers, fungicides, and herbicides
according to farmers practice for intensive wheat production.

The quality of the outlier-controlled phenotypic data from
each environment was assessed by estimating the genomic
repeatability employing the package BGLR (Perez and de los
Campos, 2014) in the software environment R (R Core Team,
2020). For this purpose, the following genomic prediction model
was used for lines:

y=lapn+g+e (2)

where y was the n-dimensional vector of phenotypic records of
each environment, 1,, was an n-dimensional vector of ones, u was
a common intercept, ¢ was an n-dimensional vector of additive
genotypic values and e was the residual term. It was assumed that
u was a fixed parameter, g ~ N(0, Go?2) and e ~ N(0, [,Inc?‘),
where I,, denoted the n x n identity matrix and G denoted the
n X n genomic relationship matrix among genotypes as proposed
by VanRaden (2008). For each environment, a 5-fold cross-
validation scheme was implemented. Therefore, the population
of tested lines was randomly divided into five subsets of equal
size. One subset was predicted after the model was trained based
on the phenotypic and genotypic data from the remaining four
subsets. The correlation between the observed and predicted
values defined the prediction ability. After performing 100 5-
fold cross-validations, genomic repeatability was obtained by the
mean of the prediction abilities.

For assessing the quality of the outlier-controlled phenotypic
data for the hybrids tested in each environment, genomic
repeatability was estimated employing the following model using
the package BGLR (Perez and de los Campos, 2014) in the
software environment R (R Core Team, 2020):

y=1lyu+Zya+Zpd+e, 3)

where y was the n-dimensional vector of phenotypic records of
each environment, 1,was an n-dimensional vector of ones, i
was the common intercept, a and Z4 denoted the additive effects
and the corresponding design matrix, and d and Zp denoted
the dominance effects and the corresponding design matrix. The
cross validation of hybrids was executed in the same manner as
described for lines.
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After outlier tests, the following model was used to obtain best
linear unbiased estimations (BLUEs) across environments:

Yijk = 1+ g+ 1j + b + ejjk (4)

where yj; referred to the phenotypic performance of the ith
genotype at the jth location in the kth block, p referred to the
intercept, g; referred to the genetic effect of the ith genotype, r;
referred to the effect of the jth location, by referred to the kth
block in the jth location and e;j; denoted the residual. Genotype
was treated as fixed and the remaining effects as random. Outlier
detection test was performed following the method M4r as
described by Bernal-Vasquez et al. (2016), where the standardized
residuals were used in combination with the Bonferroni-Holm
test to identify an outlier. The detected outliers (3 for grain
yield) were removed for further analysis. Moreover, we estimated
variance components with the following model:

Yimfuk = K +a+ Iy + by + pi +g'f +g"m +gfm
+& Dy + @D + @iy + Eminke (5)

where yig,ux referred to the phenotypic performance of the ith
genotype at the nth location in the kth block, I, referred to the
nth location, b, referred to the kth block at the nth location,
pi referred to the effect of the ith parental line, g/f referred to
the general combining ability (GCA) effect of the fth female
line, g, referred of the GCA effect of the mth male line, gz,
referred to the specific combining ability (SCA) effect of the finth
genotype, (g’l)ﬂ, referred to the interaction effect between the
GCA of the fth female and the nth environment, (g"1),,,,, referred
to the interaction effect between the GCA of the mth male and
the nth environment, (pl);, referred to the interaction effect of
the ith parental line and the nth environment e, referred to
the residual. Dummy variables were used to distinguish between
checks, lines, and hybrids. Based on the variance components,
heritability (h?) was estimated separately for lines and hybrids
ash? = é

oé-f—
of lines or hybrids, UéXE refers to the genotype-by-environment
variance o refers to the residual variance, and I denotes the
average number of environments in which the genotypes were
tested. Linear mixed models have been executed using ASReml
version 4.0 (Butler et al., 2017) in the software environment R (R
Core Team, 2020).

GCAFemale-by-environment interaction effects were estimated
by using the same model as in Equation (5) to further characterize
the environments in which the genotypes were evaluated. The
GCA female-by-environment interaction effects were estimated
for the experiments of the growing season 2018/2019 only and
furthermore in a combined data set consisting of the training
environments of the growing seasons 2011/2012 and 2012/2013
and the test environments of the growing season 2018/2019.
The GCAgemale-by-environment interaction effects were used
to perform principal component analyses (PCA) and obtain
Euclidean distances based on which the environments were
clustered in a complete-linkage approach.

<, where aé refers to the genetic variance
OGptoe
%Gk toE
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The observed response to selection was estimated as R,ps = S,
where § = I4sel — Kpop denoted the observed selection differential,
with i being the phenotypic mean of the selected genotypes
and /tpop being the mean of the population from which the
selected genotypes were drawn. The C; hybrids of the underlying
RRGS breeding program have been produced using female lines
deriving from a population of 629 genotypes. The capacity for all
of the 629 genotypes to produce hybrids has not been estimated
in field experiments but only through genomic prediction. For
this reason, the mean performance of the Cy hybrids evaluated
in the growing season 2018/2019 has been considered as an
approximation for pep.

The expected response to selection was estimated as Rexp =
i ® h ® 04, where i denoted the intensity of selection, h refers
to the square root of the heritability, and o4 denoted the
standard deviation of the breeding values. Selection intensity was
calculated as i (N,G) = i(a) — m, where N was the
number of selected genotypes, G was the size of the population
from which the selected genotypes were drawn, and i («) = i (%)
referred to the standardized selection differential according to
tabulated values (e.g., Becker, 1975).

Selection was performed in two steps. In the first step, 60 F,
plants were selected out of a population of 629, resulting in a
selection intensity of i (N, G) = i(60, 629) = 1.78. Since the
selection was based on genomic predictions of the GCA effects
of the female lines evaluated in the HYWHEAT experiments,
the relevant variance of breeding values corresponds to 02q, ,
estimated in the experiments of the growing seasons 2011/2012
and 2012/2013 (Zhao et al., 2015). The selection was performed
in a population of F; plants derived from crosses of genotypes
from the aforementioned population. Specifically, three F, plants
were selected from each family. From quantitative genetic theory,
it can be inferred that half of the genetic variance can be exploited
if a selection is performed within an F, family (Hallauer et al.,
2010). Tt follows that for the first step of selection, oGca F2 =

1/ %aéCA = 1.2. The square root of the heritability, h, was
assessed using as a conservative estimate the prediction abilities
obtained in a chessboard-like cross-validation considering two
out of the three different test sets Ty, T}, and Tp: T, test
sets included hybrids sharing both parental lines, T test sets
comprised hybrids sharing one parental line, and Ty test sets
contained hybrids having no parental line in common with the
hybrids in the related training sets. In the RRGS program, male
testers were not changed and thus, the C; lines reflected a mix
between the Ty and T, scenario with a prediction ability of 0.55
and 0.76, respectively. For simplicity, the mean of the prediction
abilities for scenarios T and T, was considered, resulting in
h = 0.66.

In the second step of selection, 50 plants were selected
from a population of 382 Fs.4 plants. While h is considered
equal to the first step, i(N,G) and ogcs changed, with
i(50,382) = 1.63. According to quantitative genetic theory

(Hallauer et al., 2010), the ogca exploited in the second step

cy ) B2 - - ;
amounted to 6CGAps.s = §%ccap = L1 The total response
to selection was the sum of the responses of the first and
second step.
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Characterization of Field Locations

In the recent decades, Germany has become more prone to
drought events with harmful effects to agro-ecosystems. Personal
communication with responsible field technicians indicated
adverse field conditions in some of the environments in which
the genotypes of the RRGS program were tested. Therefore,
GCAFpemale-by-environment interaction effects were obtained
from model (5) to estimate Euclidean distances between each pair
of environments.

To further investigate the range in which the environments
differed regarding physical stress, we used data from
meteorological and satellite-based approaches estimating
the plant available water and the condition of the regional
vegetation, respectively. The German drought monitor provides
data on plant available water beginning from 2015. Information
for the plant available water at each location was extracted
from the German drought monitor for the growing season
2018/2019 (Zink et al, 2016). In addition, the Vegetation
Condition Index (VCI) was employed to quantify the severity
of drought stress around the test locations. Geospatial data
sets based on the MODI13QIl images were accessed from the
Application for Extracting and Exploring Analysis Ready
Samples (https://Ipdaacsve.cr.usgs.gov/appeears/) by USGS. Data
from MOD13Q1 images were available for the growing seasons
2011/2012, 2012/2013, and 2018/2019, qualifying them for the
comparison of the HYWHEAT and RRGS environments. For
each location, an area of 500 ha centered for the coordinates
of the test site was selected. The VCI based on the Enhanced
Vegetation Index (EVI) was obtained from the equation:

EVI; — EVIyin

VClj= —t —mn
EVInax — EVlin

(6)

where VCI; referred to the VCI on day i, EVI; referred to the
EVI on day i, EVl, referred to the minimum EVI in the area
observed in the period 2010-2019, and EVIp,y referred to the
maximum EVIin the area observed in the period 2010-2019. The
recommended practice for drought monitoring using the VCI
was applied as suggested by the United Nations Office for Outer
Space Affairs (2021). The mean value of the selected area around
the test site was applied in further considerations.

Based on the data for PAW and VCI, matrices with
the individual weather profile of each environment were
constructed. From these matrices, principal component analyses
were performed, and complete-linkage clusters based on the
Euclidean distances were obtained to identify environments with
special conditions.

RESULTS

Analysis of Population Structure Revealed
Genomic Traces of Selection

The population structure of the 3 male tester lines, the 20
founder female lines (Co) of the RRGS program, their 30 resulting
randomly drawn (CR) recombined, and 49 selected progenies
(C1S) was analyzed based on 4,031 polymorphic SNP markers.
The principal component analysis derived from the eigenvectors
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FIGURE 1 | Principal Component Analysis (PCA) of the 20 founder wheat lines
(Cyp females), the 3 male lines, the 30 female lines drawn from random after
recombining the 20 founder lines (C1R), and the 49 female lines from the first
selection cycles (C1S). PCA were derived from the eigenvectors of the 3 male
and 20 female founder lines. The proportion of variance displayed by the
principal components (PC) were presented in brackets.

of the parental lines revealed that male and female lines tended
to be separated by the first principal component (Figure 1). With
respect to the second principal component, C;R was more widely
spread than C;S. Overall, C;S appeared to be more separated
from the male parents than C;R.

Phenotypic Data Indicated Pronounced
Interactions Between Genotypes and
Environments

Genomic repeatabilities were moderate to high, ranging from
0.13 in Wohlde to 0.51 in Hadmersleben with an average
of 0.34 in lines and ranging from 0.17 in Mintraching
to 0.58 in Adenstedt with an average of 0.34 in hybrids
(Supplementary Table 1). This underlines the overall high
quality of the yield trials. Interestingly, we observed that
correlations between grain yields in each environment were
low for some pairs (Table 1). For example, grain yields of lines
and hybrids studied at Wohlde and Hadmersleben were not
significantly correlated (r = 0.09; P > 0.36 for lines; and r =
—0.08; P > 0.20 for hybrids). The grain yield trial conducted
at Hadmersleben was not an outlier but correlated significantly
with the grain yield trial conducted at Boehnshausen (r = 0.51;
P < 0.001 for the lines; and r = 0.23; P < 0.001 for the
hybrids), a second location in Saxony-Anhalt. These pronounced
differences among locations were also visible in the contribution
of genotype-by-environment interaction effects (GxE) to the
phenotypic variance (Table2). Genotypic variances o were
significantly greater than zero (P < 0.01, Table 2) for lines as well
as hybrids, with 02 being 5.85-times smaller in hybrids than in
lines. The ratio of o /02 amounted to 0.81 in lines and the
ratio (’f”éCA(FemaIc)xE/”GCA (Female) t© 113 for general combining
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TABLE 1 | Pearson moment correlations between grain yield of 109 wheat lines (below diagonal) and 264 hybrids (above diagonal) evaluated at six locations in the year
2019 to assess the selection gain of the reciprocal recurrent genomic selection program.

Inbred/hybrid Adenstedt Boehnshausen Hadmersleben Mintraching Sossmar Wohlde
Adenstedt 1.00 -0.01 0.05 0.10 -0.02 0147+
Boehnshausen 0.42 1.00 0.23*** 0.15" 0.12* -0.07
Hadmersleben 0.22* 0.51** 1.00 0.13* 0.14* -0.08
Mintraching 0.29" 0.22* 0.26" 1.00 0.14* —0.01
Sossmar 0.54** 0.55** 0.39*** QAT 1.00 —0.01
Wohlde 0.447 0.12 0.09 0.32* 0.24* 1.00
", %, "%, and *** significantly different from zero at the 0.05, 0.01, 0.001, and 0.0001 leve! of probability.
TABLE 2 | Estimates of variance components (residual variance indicated as oe)
and heritability (h2) for winter wheat for grain yield (dt/ha). 0
Source Grain yield Grain yield
(dt/ha) (dt/ha) .
6 locations 4 locations iz
Lines
n
A 17.21 17.91
oineSE 14.01 10.05"
h?(Lines) 0.84 0.76 &
F1 hybrids i & g w = =
Zen 1,07 1.0 2 £ 3 < = g
Boae 6.86™ 7.50
"éf*vmm»m; 178" 214" FIGURE 2 | Dendrogram based on the Euclidean distances among six
oyv L 1,97+ .00 locations estimated using the GCAgsmais-by-environment interaction effects
SCA"F’“’““‘@“ ! ’ from the grain yield trials performed in the year 2019 to assess the selection
OGCAMale) 0.00 0.00 gain of the reciprocal recurrent genomic selection program. The locations were
GéCAxl,iMalc] 15708 1.95N8 ADE, Adenstedt; BOE, Boehnshausen; HAD, Hadmersleben; MIN,
U}Z’WER!DS 2.94 320 Mintraching; SOS, Sossmar; WOH, Wohlde.
R E 10.40 11.65
o2 573 577
h?(hybrids) 0.54 0.44

Parents and checks were grouped together as lines. The panel was evaluated at 6
locations and comprised 108 lines (7 checks, 99 females and 3 males) and 264 hybrids. In
a further analysis, only 4 locations with no stressful growing conditions were investigated.
NS, Not significant.

%, ", and *** significantly different from zero at the 0.01, 0.001, and 0.00071 level
of probability.

ability effects of the females, which was of special interest during
the selection. This underlines the substantial contribution of
genotype-by-environment-interaction effects to the phenotypic
variance. The estimated heritability (h?) was high for lines (0.84)
and moderate (0.54) for hybrids.

Drought Stress Was Associated With the
Pattern of Genotype-by-Environment
Interactions

The pronounced differences among locations encouraged us to
investigate the pattern of interaction effects between genotypes
and environments in more detail. Due to the exploitation of
additive effects in the recurrent genomic selection program, we
focused on the interaction effects between the GCA effects of
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females with environments and performed a cluster analysis.
The analysis revealed that the Boehnshausen and Hadmersleben
locations formed a distinct group, separate from the other
locations of the RRGS experiment (Figure2). We assessed
the clustering of the locations in more detail by analyzing
two published meteorological and satellite-based parameters:
the plant available water in the soil (PAW) and vegetation
condition index (VCI). Boehnshausen and Hadmersleben were
the locations with the lowest PAW during the early growing
season (Figure 3A) and both locations also clearly clustered
separately from the remaining locations when applying a
principal component analyses based on the PAW of the entire
growing season (Figure 3B). A similar picture was observed for
the VCI profiles. Boehnshausen and Hadmersleben showed low
VCI values throughout the growing season and distinguished
from the other locations in particular during the autumn and
winter months of the growing season (Figure 3C). The principal
component analyses based on the VCI profiles of the entire
growing season separated the Bochnshausen and Hadmersleben
locations from the remaining ones (Figure3D). Thus, the
pronounced genotype-by-environment interactions were most
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FIGURE 3 | Characterization of the locations used to assess the selection gain of the reciprocal recurrent genomic selection program. (A) Line plot of the plant
available water (PAW) in the soil and (B) a principal component analyses (PCA) based on the PAW profiles of the locations recorded in the growing season [September
1stin the year of sowing (2018) to September 1st in the year of harvest (2019)). (C) Line plot of the mean vegetation condition index (VCI), and PCA based on the
mean VClI profiles of the locations recorded in the growing season (D). The locations were indicated as ADE, Adenstedt; BOE, Boehnshausen; HAD, Hadmersleben;
MIN, Mintraching; SOS, Sossmar; WOH, Wohide.

likely caused by severe drought stress occurring in the region of
Saxony-Anhalt in the growing season 2018/2019.

Pattern of Genotype-by-Environment
Interactions for Integrated Phenotypic
Data of the Training and the RRGS
Populations

The HYWHEAT training population was phenotyped at five
locations in the 2011/2012 season and at six locations in the
season 2012/2013, and the RRGS program was evaluated at six
locations in the 2018/2019 season. Three overlapping locations
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albeit in different years were used for both, the HYWHEAT and
for the RRGS trials. Interestingly, for the overlapping genotypes
(27 for lines and 48 for hybrids) between the HYWHEAT and
the RRGS experiments, we observed a much higher correlation
between grain yield estimated in the growing seasons 2011/2012
and 2012/2013 within the HYWHEAT experiment (r = 0.49; P <
0.00 for lines and r = 0.43; P < 0.00 for hybrids) than between the
RRGS experiment and the HYWHEAT experiment in 2011/2012
(r = —0.04; P < 0.80, for lines and r = 0.08; P < 0.80, for
hybrids) and in 2012/2013 (r = 0.05; P < 0.40 for lines and r
= —0.17; P < 0.80, for hybrids). A closer look at the correlations
between grain yield of the RRGS experiment in each environment
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TABLE 3 | Correlations of phenotypic data from single environments of the RRGS experiments (2018-2019) with phenotypic data from HYWHEAT experiments and with
single years of the HYWHEAT experiment.

RRGS: 2018-2019 Hywheat: 2012 Hywheat: 2013 Hywheat: total
Lines Adenstedt 024 0.30 0.40*
Boehnshausen 0.04 —0.14 -0.11
Hadmersleben 0.03 -0.30 ~0.24
Mintraching 0.38 -0.07 0.11
Sossmar 0.1 -0.11 0.03
Wohlde 0.43* 0.41* 0.54"
Hybrids Adenstedt 0.37" 0.37™ 0.47
Boehnshausen -0.26" -0.27" -0.32*
Hadmersleben -0.20 -0.23 -0.32*
Mintraching -0.20 —-0.04 -0.13
Sossmar -0.09 -0.07 -0.07
Wohide 0.13 0:.27" 0.24
A number of 27 overiapping lines and 48 overlapping hybrids were included into the estimation.
“, %, %, and *** significantly different from zero at the 0.05, 0.01, 0.001, and 0.0001 level of probability.
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FIGURE 4 | Characterization of the environments of the HYWHEAT and RRGS experiments of the growing seasons 2011/2012, 2012/2013, and 2018/2019, based
on the phenotypic performances of overlapping tested hybrids. (A) Dendrogram based on the Euclidean distances among 17 location times year combinations
(location_year) estimated using the GCAfemaie-by-environment interaction effects from the grain yield trials performed in the year 2012 and 2013 for the training
population (HYWHEAT) and in the year 2019 to assess the selection gain of the reciprocal recurrent genomic selection program. (B) PCA based on the
GCAgemale-by-environment interaction effects of 16 location times year combinations. The locations were indicated as ADE, Adenstedt; BOE, Boehnshausen; HAD,
Hadmersleben; HAR, Harzhof, HOH, Hohenheim; MIN, Mintraching; SEL, Seligenstadt; SOS, Sossmar; WOH, Wohlde.

and the HYWHEAT experiments revealed strong interaction
effects with years (Table 3). The RRGS experiment conducted
in Wohlde and Adenstedt showed the highest correlations with
the HYWHEAT experiments with a decreasing trend toward
Mintraching, Sossmar, Boehnshausen, and Hadmersleben.

A complete-linkage clustering based on the Euclidean
distances estimated using the GCApep,l.-by-environment
interaction effects was performed to further investigate the
relationships among the environments of the HYWHEAT and
the RRGS experiments (Figure 4A). The location Seligenstadt in
2013, and Boehnshausen in 2012 and Harzhof in 2012 formed
outgroups. Apart from Seligenstadt in 2012, which grouped
together with the environments Seligenstadt, Boehnshausen,
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Hadmersleben, Sossmar, Mintraching, and Wohlde from the
RRGS experiment, the remaining HYWHEAT environments
constituted a distinguished cluster including the environment
of Adenstedt in 2019. A PCA based on the GCAg.male-
by-environment interaction effects showed that apart from
Seligenstadt in 2013, the environments of the HYWHEAT
experiment grouped together with the RRGS environments
Adenstedt, Mintraching and Wohlde in 2019 (Figure 4B). The

RRGS environments Boehnshausen, Hadmersleben and Sossmar

grouped separately from the remaining environments of the
RRGS and the HYWHEAT experiments.

A distance matrix obtained from the VCI profiles of the 17
environments of the RRGS and the HYWHEAT experiments
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was calculated. The comparison to the distance matrix derived
from the GCApgpale-by-environment interaction effects revealed
a correlation of 0.17 which was significantly different from
zero (P < 0.01) according to a Mantel test (Mantel, 1967).
The cluster which was derived from the VCI profiles of the
17 environments indicated the presence of two subgroups
among the HYWHEAT and RRGS experiments (Figure 5A). The
environments of the RRGS experiment grouped apart from the
HYWHEAT experiments, with the environment of Mintraching
in 2019 behaving exceptionally as it was situated within the
HYWHEAT experiments. Within the HYWHEAT experiments,
the location Adenstedt of the growing season 2011/2012
appeared as outgroup. The remaining HYWHEAT environments
formed two subgroups distinguished mostly by the year of the
evaluation. A PCA was executed based on the VCI profiles of
all environments in which the genotypes were tested during the
HYWHEAT and RRGS experiments (Figure 5B). This analysis
exposed shifts of the growing conditions across the growing
seasons in which the genotypes were evaluated. Based on the 1%
principal component, the environments in the RRGS experiment
showed to be largely separated from all remaining environments
from the HYWHEAT experiments. Only Mintraching situated
closely to some of the HYWHEAT experiments. The 2"
principal component separated the RRGS experiments into three
groups: Mintraching and Seligenstadt, Sossmar and Adenstedt,
and Boehnshausen and Hadmersleben. The first principal
component explained 32.71% of the variance, the second
principal component explained 16.78% of the variance.

Selection of Test Locations Affected the
Assessment of Breeding Success

Evaluation of effectiveness of RRGS was conducted at six
locations during the 2018/2019 growing season, between which
pronounced genotype-by-environment interaction effects were
observed. Moreover, the 2018/2019 growing season locations
showed high genotype-by-year interactions compared to the
HYWHEAT experiments conducted in the 2011/2012 and
2012/2013 growing seasons, based on which the genomic
selection model was trained. In particular, the Boehnshausen
and Hadmersleben locations of the 2018/2019 growing season
showed low correlations to the environments of the HYWHEAT
experiment (Table3). By comparing the BLUEs for the
overlapping genotypes of the RRGS experiment with the BLUEs
from the HYWHEAT experiment, correlations of 0.13 and —0.10
were observed for lines and hybrids, respectively. After excluding
the locations Boehnshausen and Hadmersleben from the RRGS
experiment, correlations between the RRGS experiment and
the HYWHEAT experiment based on overlapping genotypes
increased to 0.37 for lines and 0.21 for hybrids. Furthermore,
exclusion of the Boehnshausen and Hadmersleben locations
resulted in a drop of zréxE/aé from 1.13 to 1.02 for the
GCA of the female lines, indicating a lower proportion of
genotype-by-environment interactions among the remaining
locations of the RRGS experiment (Table 2). These findings
encouraged us to investigate the influence of genotype-by-
environment interactions on the selection gain of the RRGS
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breeding programs. To this end, we estimated the selection
gain based on phenotypic data collected in all six environments
of the RRGS experiment and alternatively we excluded two
environments with negative average correlations to the single
environments of the HYWHEAT data set and estimated the
selection gain based on the remaining four locations.

Including all six environments from the growing season
2018/2019, the randomly drawn female lines of the C; cycle
showed comparable (P > 0.1) average yields as the female parent
lines of the Cy cycle (Figure6A). The genomically selected
females showed no significant differences of 1.0 dt ha=! (P > 0.1)
average yields compared to the randomly selected female lines.
Surprisingly, genomically selected female lines of the C; cycle
showed lower (P > 0.1) average yields than the female lines of
the Cp cycle. Both differed by 1.15 dt ha™!. The average yield of
the Co-hybrids, the genomic-selected fraction of the C;-hybrids
(C1S) and the randomly drawn fraction of the C;-hybrids (CR)
did not show any significant (P > 0.1) difference. The midparent
heterosis was not significantly (P > 0.1) larger for C;S (10.3%)
as compared to C;R (9.7%) and Co-hybrids (9.8%) (Figure 7A).
The same was observed for better parent heterosis (Figure 7C).

Excluding the two outlier locations from the growing season
2018/2019, randomly drawn female lines of the Cy cycle showed
comparable (P > 0.1) average yields as the female parent lines
of the Cy cycle (Figure 6B). Genomically selected female lines
of the C; cycle and randomly selected female lines of the C;
cycle showed no significantly different (P > 0.1) grain yield
performance. The female parent lines of the C; cycle performed
comparable (P > 0.1) to the female parent lines of the Cy cycle.
While CR hybrids showed no significant difference (P > 0.1) in
average yield performance compared to Cy hybrids, C;S hybrids
outperformed (P < 0.05) Cp hybrids by 1.0 dt ha~!, achieving
a selection gain of 1%. Moreover, C;S hybrids outperformed (P
< 0.1) CiR hybrids by 0.7 dt ha~'. Midparent heterosis was
not significantly different (P > 0.1) in C;R (11.5%) compared
to Cp (11.3%), while C;S (12.8%) showed a clear advancement
and performed significantly better than Cy (P < 0.05) and C;R (P
< 0.05) (Figure 7B). A different pattern was observed for better
parent heterosis. Cp (11.3%) and C R performed comparable (P
> 0.1). C;S (10.0%) did not perform significantly different from
Co (P > 0.1) and CR (P > 0.1) (Figure 7D).

The observed selection differential and hence the observed
response to selection varied depending on which environments
were considered for the evaluation. When all six environments
were included, it amounted to Ry g = —0.4 dt ha=1.
When environments with severe stress conditions were excluded
and only four environments were considered, the observed
selection differential and hence observed response to selection
was Rops g = 1.0 dt ha 1.

DISCUSSION

We conducted one cycle of an RRGS program in wheat, including
field evaluation of the resulting hybrids, which took a total of
6 years from the first crosses. It is important to note that each
subsequent selection cycle lasts only one additional year at most,
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on satellite-based images. (A) Dendrogram based on the mean vegetation condition index (VCI) profiles of 16 location times year combinations (location_year) used to
perform grain yield trials in the year 2012 and 2013 for the training population and in the year 2019 to assess the selection gain of the reciprocal recurrent genomic
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FIGURE 6 | Grain yield performance depending on the status of genotypes evaluated in the 2019 experiment. (A) Performances of the fractions from the breeding

population with all six environments of 2018/2019 included. (B) Performances of the fractions from the breeding population with only 4 environments of 2018/2019
included. Status indicates the affiliation of each group of genotypes to a specific fraction within the breeding program. Female parent lines from the Cy cycle are
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C; cycle are indicated as C1 R, hybrids from the genomic-selected fraction of the C: cycle are indicated as C1S.

which illustrates the great opportunity to accelerate classical RRS
programs. The RRGS program focused exclusively on the female
pool and can be viewed as a special case of RRGS in which only
the allele frequencies in the pool of female parent lines have been
shifted with respect to the frequencies of favorable alleles in the
pool of male parent lines.

This situation implies consequences for the determination
of selection directions, especially in the case of overdominance,
k > 1, withk = g, where d denotes the dominance effect
and a denotes the additive effect. If overdominance is present
at a given locus, RRGS aims to fix different alleles in the pool
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of female parental lines and in the pool of male parental lines,
thus guarantees the desired complementarity among the two
heterotic groups. For loci with k > 1, at which the pool
of male parent lines has a fixed allele, RRGS will result in
the fixation of the complementary allele in the pool of female
parent lines. If the allele is not fixed in the pool of the male
lines, and no selection is applied to the pool of male parental
lines, complementarity among the heterotic groups cannot
be achieved.

If 0 < k < 1, i.e, in the presence of partial dominance, RRGS
aims to ultimately fix the favorable allele in both heterotic groups.
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In the case where the male heterotic group is not fixed for the
favorable allele, the optimal configuration cannot be achieved if
the male heterotic group is not subject to selection.

For loci that exhibit negative dominance, ie., k < 0, the
desired selection direction is to fix the favorable allele in both
heterotic groups. Complications arise when the unfavorable allele
is present in the male heterotic group. Furthermore, if k < —1,
i.e., negative overdominance is present, RRGS is directed toward
fixation of the favorable allele only if the frequency, p, of the
favorable allele is above the threshold p > (k + 1)/2k (Rembe
etal., 2019).

In the present breeding program, the male heterotic group
was kept constant between the Cy and the C; cycle. As described
above, this approach would not be expedient to reach the
ideal allelic configurations between the two heterotic groups.
However, the applied selection scheme is capable to evaluate
the effectiveness of a selection that is conducted with respect to
the allele frequencies within both heterotic groups. Therefore,
the experimental design can serve as a model case for an RRGS
breeding program.

The results of the field trials indicate that heterosis increased
through RRGS (Figure 7). The selected fraction of the C;S
hybrids showed significantly higher midparent heterosis than
the Cy hybrids, but no significantly different better parent
heterosis. In contrast, the C;R hybrids did not show increased
midparent or better parent heterosis compared to the Cp
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hybrids. These findings highlight that the implemented selection
models, which focused on additive and dominance effects,
had an impact.

To evaluate the success of the RRGS program in more
detail, the expected response to selection was compared to
the observed response to selection. The expected response
considering genomic selection at the F, and Fs.¢ levels was
Rexp = 2.6 dt ha=', which was much lower than the
observed response considering all six environments (Rps ¢z =
—0.4 dt ha™ ') or the four environments (Rops_ ap = 1.0 dt ha™1).
The difference between R,ps g and Ryps g clearly suggests that
different growing conditions in the environments impacted the
assessment of the response to selection. But even R,y 45 Was
2.6 times smaller than the expected response of selection Rexp,
indicating that the implemented RRGS breeding program falls
short of expectations. This observation can be mainly attributed
to a high amount of genotype-by-year interactions between the
2011/2012,2012/2013, and 2018/2019 experiments as highlighted
in the detailed analyses of the interaction between genotypes and
years (Figures4, 5). Multi-year testing could be an option to
reduce the risk of unsuitable selection decisions.

So far, there are no experimental studies that have evaluated
the effectiveness of an RRGS breeding program in cereals.
In an RGS breeding program in wheat for the less complex
trait grain fructans compared to grain vyield, significant
genotype-by-environment interactions were observed with little
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effects on prediction accuracies (Veenstra et al, 2020). In
contrast, in an RRS program in tropical maize focusing
on grain yield, Kolawole et al. (2018) also observed that
genotype-by-environment interactions negatively affected the
observed response to selection.

As an alternative approach to estimate the expected response
of selection, realized prediction ability was examined as the
correlation between predicted average hybrid performances and
the observed average hybrid performance of the 30 randomly
drawn female parent lines from the C; cycle. When all six
environments of the season 2018/2019 were included in the
analysis, a realized prediction ability of 0.13 was observed.
Excluding environments with stressful growing conditions for
the 2018/2019 data set resulted in a realized prediction ability
of 0.27. These realized prediction abilities of the 2018/2019
growing season are substantially lower than the prediction
abilities estimated by cross validations based on the data
of the HYWHEAT experiment conducted in the 2011/2012
and 2012/2013 growing seasons (Zhao et al., 2015). This can
only partly be explained by the small sample size of 30
randomly drawn female parent lines from the C; cycle used
to estimate the prediction abilities. Moreover, it is unlikely that
the low realized prediction abilities have been caused through
recombination. More likely, the lower realized prediction abilities
are due to interaction effects between genotypes, locations,
and years.

When the prediction abilities estimated based on the 30
randomly drawn female parent lines from the C; cycle are used
to estimate the expected response to selection, the value decreases
to Reyp g = 0.09 dt ha=! and Rexp ap = 122 dt ha=!,
depending on whether stressful environments are included or
not. In this case, R,p; 4 Was only 1.22 times smaller than the
expected response of selection Reyp. Consequently, it is pivotal
to obtain genome-wide prediction models that are not biased
due to interaction effects between genotypes, locations, and
years. One promising approach to achieve this, is to account
for interaction effects between genotypes and environments
by implementing environmental cofactors into genome-wide
prediction models (de los Campos et al., 2020). This facilitates to
reduce the adverse effects due to interactions between genotypes
and environments and to develop more sustainable genome-
wide prediction models. In addition, aggregation of available
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development. Several proposals have beenmade to use genomics to support parental selection. These
have mostly been evaluated using theoretical considerations or simulation studies. However,
evaluations using experimental data have rarely been conducted. In this study, we testedthe potential
of genomic prediction for predicting the progeny mean, variance, and usefulness criterion using data
from an applied breeding population for winter barley. For thre e traits with genetic architectures at
varying levels of complexity, ear emergence, plant height, and grain yield, progeny mean, variance,
and usefulness criterion were predicted and validated in scenarios resembling situations in which the
described tools shall be used in plant breeding. While the population mean could be predicted with
moderate to high prediction abilities amounting to 0.64, 0.21, and 0.39 in ear emergence, plant height,
and grain yield, respectively, the prediction of family variance appeared difficult, as reflected in low
prediction abilities of 0.41, 0.11, and 0.14, for ear emergence, plant height, and grain yield,
respectively. We have shown that identifying superior crosses remains a challenging task and suggest
that the success of predicting the usefulness criterion depends strongly on the complexity of the
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Abstract: Parental selection is at the beginning and contributes significantly to the success of any
breeding work. The value of a cross is reflected in the potential of its progeny population. Breed-
ers invest substantial resources in evaluating progeny to select the best performing genotypes as
candidates for variety development. Several proposals have been made to use genomics to support
parental selection. These have mostly been evaluated using theoretical considerations or simulation
studies. However, evaluations using experimental data have rarely been conducted. In this study, we
tested the potential of genomic prediction for predicting the progeny mean, variance, and usefulness
criterion using data from an applied breeding population for winter barley. For three traits with
genetic architectures at varying levels of complexity, ear emergence, plant height, and grain yield,
progeny mean, variance, and usefulness criterion were predicted and validated in scenarios resem-
bling situations in which the described tools shall be used in plant breeding. While the population
mean could be predicted with moderate to high prediction abilities amounting to 0.64, 0.21, and
0.39 in ear emergence, plant height, and grain yield, respectively, the prediction of family variance
appeared difficult, as reflected in low prediction abilities of 0.41, 0.11, and 0.14, for ear emergence,
plant height, and grain yield, respectively. We have shown that identifying superior crosses remains
a challenging task and suggest that the success of predicting the usefulness criterion depends strongly
on the complexity of the underlying trait.

Keywords: usefulness criterion; variance prediction; long-term genomic selection; superior progeny

1. Introduction

An important step in breeding is the selection of promising parents to initiate
a breeding cycle [1]. Ideally, genetically complementary parents are crossed to initiate
a breeding population from which the best performing candidates are selected to bring
new varieties to market. The central question of optimal parental selection for breeding
programs is probably as old as breeding itself. Despite an increasing number of theoretical
considerations on strategies for selecting parents, few of them have found their way into
practice, and many breeders rather rely on basic concepts such as crossing best times best
genotypes [2]. Nevertheless, quantitative genetic considerations suggest that attention
should be paid not only to a high mean of a potential breeding population, but also to
a high variance and consequently response to selection. Both aspects are considered in the
usefulness criterion (UFC, ref. [1]) which is defined as UFC = p + i-h-0g, where y denotes
the mean of a breeding population, i denotes the intensity of selection to be applied in the
breeding population, /i denotes the square root of the heritability of a specific breeding
population, and ¢y denotes the genetic standard deviation of the breeding population
resulting from a particular cross. It follows from the definition of the UFC that a cross with
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a low mean can still be promising because of a greater selection response. There are some
pre-genomic studies that employed the UFC to empirically compare crossing strategies in
maize breeding as an example [3,4]. Nevertheless, the crucial aspect for parental selection,
the prediction of the usefulness of a cross, has remained an unsolved problem: While y can
be predicted with high confidence from the midparent value in an additive genetic model,
predicting o, for more complex traits has been challenging [5].

With the advent of low-cost genome-wide marker systems and the successful appli-
cation of genome-wide prediction in plant breeding [6-8], the prediction of family means
and variances based on marker effects, the components of UFC, returned to the forefront
of quantitative genetic research. Zhong and Jannink [9], in a pioneering study based on
computer simulations, investigated the potential and limitations of predicting means and
variances of crosses based on marker effects. The prediction of family means was deter-
mined as the average predicted value of parents. Variance was predicted as the sum of
the variances of the genetic effects across the segregating quantitative trait loci and twice
the summed covariances between all pairs of segregating quantitative trait loci. For the
prediction of variance, the recombination frequency of each pair of segregating quantitative
trait loci was considered [9].

Subsequent studies have presented approaches to predict family means and variances
by simulating progeny populations derived from specific crosses and determined the rele-
vant population parameters by predicting the performances of each genotype belonging
to the family based on marker effects [10]. Similar approaches for selecting parents based
on their simulated progeny were proposed by Mohammadi et al. [11], Lado et al. [12],
and Yao et al. [13]. Lehermeier et al. [14] derived family variances analytically as Bayesian
estimates of genetic variances, assuming known allele substitution effects at all quantitative
trait loci, and integrated this approach into the prediction of UFC [15]. The analytic ap-
proach of Zhong and Jannink [9] was implemented in a simulation study and a small-scale
empirical experiment [16,17]. All the aforementioned studies showed very promising
results but assumed that marker effects were known [10-12,14-16] or estimated marker
effects considering genomic and phenotypic data of the populations whose UFC should
be predicted [17]. In a study on cassava [18], marker effects and UFC were estimated in
separate training and testing populations, yielding disappointing results.

Here, we present a validation study for the analytical approach of Zhong and Jannink [9]
using four years of data from a barley breeding program. Our experiment aimed to evaluate
the benefit and ability to predict the family mean, the family variance, and the UFC for
selecting superior parents. The underlying data allowed us to design different validation
scenarios that resemble situations on the basis of which breeders make decisions. The
scenarios were implemented for three traits with different heritability and complexity.

2. Results
2.1. Quality of Phenotypic Data

In total, 4488 genotypes were phenotyped in 3840 environments, with the number
of genotypes per environment varying from 72 to 1163. On average, every genotype was
tested in 4.3, 3.5, and 3.2 environments for ear emergence, plant height, and grain yield,
respectively. All traits approximated a normal distribution and the repeatability estimates
ranged for ear emergence, plant height, and grain yield from 0.67 to 0.98, 0.61 to 0.96,
and 0.18 to 0.96, respectively (Figure 1). The BLUEs across environments ranged for ear
emergence from 47.8 BBCH [19] to 62.9 BBCH with a mean value of 55.7 BBCH, for plant
height from 72.0 cm to 115.4 cm with a mean value of 98.0 cm, and for grain yield from
62. 6 dt ha™! to 114.1 dt ha~! with a mean value of 91.7 dt ha~!. Heritability estimates
ranged from moderate (grain yield: #? = 0.49) to high (ear emergence I*> = 0.84; plant
height: W2 = 0.77). The coefficient of variation for families was lowest for ear emergence,
followed by plant height, and grain yield. Summarizing, for all three traits, the quality of
the phenotypic data was excellent, providing a solid basis for our study.
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Figure 1. Distribution of phenotypic records (A-C), distribution of repeatabilities at test
environments (D), heritabilities (E), and coefficients of variation (CV) of the families (F) for the
traits ear emergence (EE), plant height (PH) and grain yield (GDY).

2.2. Genome-Wide Prediction of Line Performances within and across Breeding Cycles

Five-fold cross-validations were executed for each trait with the complete data set
comprising all breeding cycles. Prediction abilities were 0.81 for ear emergence, 0.79 for
plant height, and 0.73 for grain yield. Furthermore, leave-one-cycle-out cross validations
were conducted and performances of the genotypes from one breeding cycle were predicted
based on phenotypic data from genotypes of the remaining cycles (Figure 2). The prediction
abilities for ear emergence ranged from 0.65 to 0.87, with the lowest prediction ability for
the cycle of 2018 and the highest prediction ability breeding cycle of 2015. For plant height,
the prediction abilities ranged from 0.55 to 0.73, with the minimum observed in the cycle of
2016 and the maximum prediction ability in the cycle of 2018. With a range from 0.14 to
0.46, the prediction abilities for grain yield were the lowest among the investigated traits.
The highest prediction ability was observed for the cycle of 2018 and the lowest for the

breeding cycle of 2016.
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Figure 2. Prediction abilities for the traits ear emergence (EE), plant height (PH) and grain yield
(GDY) across breeding cycles, where each breeding cycle was predicted based on a training set
comprising only genotypes from the remaining breeding cycles.
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2.3. Prediction of the Family Mean, the Family Variance, and the Usefulness Criterion

For the first scenario, the complete data set was used, and the training set was identical
to the prediction set. Moderate to high correlations were observed between the predicted
and the observed family means. The highest prediction ability was found for the trait ear
emergence and the lowest for plant height (Figure 3). The prediction abilities for family
means were (.64 for ear emergence, 0.21 for plant height, and 0.39 for grain yield. In all
cases, genomic predictions of the family means performed better than the prediction of the
family means based on the midparent value derived from phenotypic records of the parents
alone (no implementation of genomic prediction). For the latter, prediction abilities of 0.57,
0.18, and 0.17 were observed for ear emergence, plant height, and grain yield, respectively.

Mean I | Variance | | UFCu | | UFCp |
L —
EE PH  GDY EE PH  GDY EE  PH  GDY EE  PH  GDY

Trait

Figure 3. Prediction abilities for the population paramters family means, variances, usefulness
criterion (UFC) predicted by UFC (UFCu) and UFC predicted by the mean (UFCy) for the traits ear
emergence (EE), plant height (PH) and grain yield (GDY) with the training set being identical to the
test set employing the complete data set of the breeding program.

Low to moderate values were observed for the correlations between the predicted
and the observed family variance. The correlation between the predicted and the ob-
served variance was 0.41 for ear emergence, 0.11 for plant height, and 0.14 for grain yield
(Figure 3). Correlations between the predicted and observed usefulness criterion ranged
from —0.10 for grain yield to 0.61 for ear emergence (Figure 3).

In the second scenario, the final breeding cycle of 2019 was predicted based on
a training set consisting of all previous breeding cycles (Appendix A Table Al). The
prediction abilities for family mean ranged from 0.31 for grain yield to 0.64 for plant height.
For family variance, the prediction abilities ranged from 0.12 for plant height to 0.44 for ear
emergence. The prediction abilities for UFCu ranged from —0.15 for grain yield to 0.67 for
ear emergence. For UFCy, the prediction abilities ranged from —0.13 for grain yield to
0.68 for ear emergence.

To investigate the influence of population size on the prediction ability of family
means, family variances and the usefulness criterion (UFC), a leave-one-cycle-out val-
idation was performed for the final breeding cycle of 2019 using randomly sampled
training sets from the previous breeding cycles with population sizes ranging from 50 to
1000 genotypes (Figure 4). For ear emergence, prediction abilities improved with increased
training population size for means, variances, and the UFC. We observed that the prediction
abilities improved steadily for population sizes ranging from 50 to 200 genotypes and then
stagnated at a median value of approximately 0.67. Towards the maximum population size,
the variation in prediction abilities was smaller. For the prediction of the genetic variance,
a clear upwards trend in prediction abilities was observed at higher sizes of the training set.
Nevertheless, no clear trend was observed in the variations of prediction abilities. Similar
trends were observed for both ways of predicting UFC, either using predicted family means



Peer-reviewed scientific articles

Plants 2022, 11, 2564 5o0f 14

only or using predicted family means and variances: Prediction abilities increased from
a training set population size of 50 to 200, where they settle at a stable level. As the size of
the training population increased, the variation of prediction abilities decreased.
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Figure 4. Prediction abilities for family means, variances, usefulness criterion (UFC) predicted by
UFC (UFCu) and UFC predicted by mean (UFCy) for the traits ear emergence (EE), plant height (PH),
and grain yield (GDY). The population parameters of the last breeding cycle were predicted based on
data from the previous breeding cycles. Training populations of sizes ranging from 50 to 1000 were
randomly sampled five times.

For plant height, the trends for the prediction of means and both ways of predicting
the UFC were similar (Figure 4). A decreasing distribution of prediction abilities was
observed for the prediction of genetic variances, but absence of clear upwards trend of
prediction abilities with higher training set population sizes.

We observed a different situation for grain yield. While the trends for predicting
family means were similar to the findings for ear emergence and plant height, the trends
for the other measures to be predicted drew a more complex picture. As the size of the
test populations increased, the prediction abilities for genetic variances improved slightly.
In contrast, no clear trend was observed for the variation of prediction abilities. Both
methods for predicting the UFC showed a decrease in the variation of the prediction
abilities with increasing size of the training populations (Figure 4). The median values
showed neither an upward nor a downward trend and moved towards zero as the training
population increased.

3. Discussion

Besides the mean, the genetic variance of the family resulting from a cross is the
most important factor for its superiority and is therefore considered in the UFC. Despite
an increasing number of publications proposing to predict the family mean and variance for
a specific cross based on marker effects, proof of concepts based on comprehensive data sets
are scarce. A recent attempt used a dataset from a cassava breeding program and yielded
disappointing results [18]. In our study, we investigated the potential and limitations of
predicting the UFC to identify optimal parent combinations using a data set generated
in the course of commercial winter barley breeding. Despite the extensive population
size, the use of data from commercial breeding programs also has some drawbacks. For
a sufficiently precise study of the genetic variance of families, large and equal family sizes
are ideal. The population composition in the present study has not been designed for
scientific purposes, so family sizes vary. The contribution of parents to families also varies,
and phenotypic selections at early stages can bias estimates of population parameters. The
imbalanced nature of the data set made it impossible to consider family-specific genotype-
times-environment effects and heterogeneous residual variances which could as well be
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a source of bias in the estimation of within family variances. On the other hand, the
extensive data allow initial validation of the potential of predicting the UFC.

3.1. Leave-One-Cycle-Out Cross-Validations Revealed That Performances of Individual Genotypes
Can Be Predicted across Breeding Cycles

Five-fold cross-validations showed high prediction abilities for individual genotype
performances for all three traits and amounted to 0.81 for ear emergence, 0.79 for plant
height, and 0.73 for grain yield (Figure 2), which was consistent with similar findings
from experiments in an elite winter barley panel [20]. For leave-one-cycle-out validation,
prediction abilities were lower for most breeding cycles for all three traits, averaging
89% for ear emergence, 75% for plant height, and for grain yield 36% of the five-fold
cross-validation scenario that included all breeding cycles combined. For most traits,
within cycle genome-wide prediction abilities were reported to be higher than across cycle
genome-wide prediction abilities in sugar beet (Beta vulgaris L.) [21], maize (Zea mays L.),
wheat (Triticum aestivum L.) [22], and in rye (Secale cereale L.) [23]. Except for the breeding
cycle of 2015 including a relatively large number of frequently used parental genotypes,
which exceeded the prediction ability of the five-fold-cross-validation for ear emergence,
no breeding cycle showed higher prediction abilities compared to the five-fold cross-
validation. The relatively low prediction abilities for grain yield may be attributed to
the comparably low heritability. Additionally, it can be hypothesized that genotype-by-
environment interactions play a larger role in this trait, which was shown in a similar data
set for barley [24]. Summarizing, the findings indicated that genomic prediction of the
performance of individual genotypes is working well for the underlying data set.

3.2. Prediction Abilities of the Family Mean across Cycles Were Lower than Reported in Previous
Simulation Studies

In an additive model, it is expected that the mean performance of the parents, i.e.,
the midparent value, is equal to the mean of the progeny of the respective cross [25]. In
our study, the mean of a family was predicted based on the midparent value of genomic
estimated breeding values (GEBVs). The correlations were substantially lower than the
values reported from the literature. In previous studies, the family means have been
predicted based on midparent values based on GEBVs of parental lines for simulated
progeny populations [10,11]. In these studies, correlations between the predicted family
mean and the family mean of the simulated progeny population was 0.95 for silking
date and 0.91 for protein content in Zea mays [10], or 0.89 for deoxynivalenol and grain
yield in barley [11]. One drawback of these studies is the fact that the simulated progeny
populations which functioned as test set were generated based on the same prediction
models as the midparent GEBVs that were designed to predict the family mean. Clearly, this
concept does not reflect a situation a breeder faces before deciding which crosses to produce.
Osthushenrich et al. (2018) observed a correlation of 0.95 for grain yield in a 5 x 5 factorial
design tested in an augmented field design at 5 locations in one year, where the training set
was identical to the test set. Neyhart and Smith [26] reported moderate prediction abilities
in barley, amounting to 0.46 for Fusarium head blight, 0.62 for heading date, and 0.53 for
plant height. High prediction abilities of the family mean have been reported in maize
with 0.91 for plant height, 0.83 for ear height, and 0.80 for silking date [27]. In the present
study, the prediction ability of the mean was lower for all traits, even if the training set was
identical to the test set (Figure 3). This can be explained by varying sizes of families, an
unbalanced design of field tests, where parents have usually not been tested in the same
environments as the progeny populations, and in the case of grain yield by a relatively
low heritability.

In another scenario, mimicking the typical situation in breeding, the training set con-
sisted of genotypes from previous cycles and the test set consisted of genotypes from
the last cycle of the breeding program. For plant height, the prediction ability was higher
compared to the above-described scenario with the training set being identical to the test set
(Table Al). For ear emergence and grain yield, prediction abilities were comparable. To ex-
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amine the influence of the training set population size, 50, 100, 200, 400, and 1000 genotypes
were sampled from the previous cycles of 2016, 2017, and 2018 to predict the final cycle of
2019. At the maximum training population size of 1000 genotypes, the mean prediction
abilities for the family mean were 0.62 for ear emergence, 0.43 for plant height, and 0.33 for
grain yield (Figure 4). For larger sizes of training populations, the median values of the
prediction abilities approach \/hz , which corresponds to the theoretical limit of prediction
abilities [28].

3.3. Low Ability to Predict the Genetic Variance of Families

The prediction abilities for the genetic variance of families were lower compared to
the prediction ability for the family mean for all traits (Figure 3). This trend is consistent
with previous results from experiments predicting the genetic variance based on simulated
populations. In maize, the prediction abilities for plant height, ear height, and silking
date amounted to 0.03, —0.24, and 0.14 [27], and 0.01, 0.39, and 0.48 for Fusarium head
blight severity, heading date, and plant height, respectively [26]. In both studies, progeny
populations of potential crosses were simulated based on estimated marker effects obtained
from a training population, and validations were examined through phenotypic analysis of
families in subsequent field trials. The results presented in this study were used to validate
the prediction ability of family variance based on the analytic approach proposed by [16].
In a field trial-based validation of the analytical approach, this method led to prediction
abilities of 0.34 or 0.76 if downwards outliers were removed [17]. However, this scenario
does not reflect the scenario breeders typically face, as the training set and the test set
were identical.

3.4. Prediction of the Usefulness Criterion

Depending on the trait, the trends for the prediction abilities of the UFCu varied
strongly. While the prediction abilities for the family variance were lower than those for
the family mean in all cases, the prediction abilities for the UFCu were comparable to those
observed for family mean in ear emergence, higher for plant height, and even negative
and therefore lower for grain yield. Since both the mean and the variance determine
the value of the UFC, it is reasonable to assess the correlation of both measures. For all
investigated traits, the correlations between mean and variance were negative for the
observed (—0.28 for ear emergence, —0.26 for plant height, and —0.72 for grain yield),
as well as for the predicted values (—0.29 for ear emergence, —0.15 for plant height,
—0.47 for grain yield), and grain yield showed the lowest correlations in both cases. Several
studies report a triangular relationship of mean and genetic variance, where families with
extreme, i.e., very low and very high means are associated with low genetic variance, and
families with intermediate means are associated with high genetic variance [11,26]. This
phenomenon was not observed as clearly in the present study.

The coefficients of variation, i.e., the ratio of the standard deviation to the mean,
of the families for ear emergence was comparably low in the present breeding program
(Figure 1F). It can be presumed, that the influence of the family variance on the predicted
and the observed UFC was relatively low. This explains the small difference between the
prediction abilities for family mean and UFCu.

For plant height, the coefficients of variation of the families were higher compared to
the values observed for ear emergence. Consequently, for plant height, the contribution
of the family variance to the UFC should be larger compared to ear emergence. Even
though the prediction ability for family variance was lowest for plant height, the prediction
ability of the UFCu is larger compared to the prediction ability of the family mean. In
comparison to ear emergence and grain yield, the correlations between variance and mean
were highest for plant height for observed, as well as for predicted values. Together with
the relatively high heritability of the trait of h* = 0.82, these findings explain the relatively
high prediction ability observed for the UFCu.
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The highest coefficient of variation of the families were observed for grain yield.
Similarly, to plant height, this finding points to a relatively large impact of the family
variance on the UFC. Considering the notable low correlation between predicted family
mean and predicted family variance, it is not surprising to observe a major difference in
prediction ability of the LUIFCu compared to the prediction of the family mean. Furthermore,
in contrast to both previously discussed traits, the phenotypic records of grain yield
disclosed a relatively low heritability of #> = 0.49. The high complexity of the trait
grain yield, as well as the resulting quality of phenotypic data, lead to higher degrees of
uncertainty in the estimation of marker effects, which are known to play a larger role in
second degree statistics, e.g., family variance, as compared to first degree statistics which
include the family mean.

Because of the uncertainty in variance prediction discussed above and reported in the
literature [18], and the fact that the family mean generally contributes more to the UFC
than the standard deviation, which is multiplied by the square root of heritability and the
selection intensity, the UFC was furthermore predicted based on the family mean only, i.e.,
UFCp. In general, the prediction abilities of the UFCu and the UFCp deviated only slightly.
For ear emergence and grain yield, prediction abilities increased while it was comparable
for plant height (+10% for ear emergence, +3% for plant height, and +13% for grain yield).
The relatively low differences between both approaches of predicting the UFC are due to
the comparably low influence of the family variance on the UFC under the given conditions
of the breeding program.

To further elucidate the impact of the selection intensity and the square root of heri-
tability on the prediction abilities of both approaches of predicting the UFC, the product of
both constants was assumed as ¢ = i-l, with levels ranging from 0 to 5. For example, at
a heritability of 12 = 1.0, ¢ will be 0 if no selection is applied, 1 at a selection fraction of 38%,
2.5 at a selection fraction of 1.61%, and 5 at a selection fraction of 1 out of 1000,000. The
constant ¢ was used to calculate the observed UFC. Correlations between these hypothetical
values of the UFC and the predicted values indicate that for all three traits, under medium
to high selection intensities, prediction abilities will be higher for the UFCy than the UFCu.
Both approaches performed similarly for ear emergence and grain yield at very low selec-
tion intensities and for plant height at low to medium selection intensities (Figure 5). If at
all, a small benefit of the UFCu is only given for ear emergence and plant height under the
circumstance of low selection intensities. For grain yield, no benefit of predicting the UFCu
was observed under any selection intensity.

EE ] | PH ] [ GDY |

o =]
w ~
o v

Prediction ability
: o
N
w

=] =]
N =]
v =]

Prediction ® UFCu e UFCp

Figure 5. Prediction ability for the UFC varies depending on the complexity of the trait (ear emergence
(EE), plant height (PH), and grain yield (GDY)), and the product of the square root of heritability and
selection intensity given as the constant c. Two methods of predicting the UFC were applied: UFCu
(red) and UFCp (blue).

In a breeding program, predictions are based on the inference resting on genomic and
phenotypic data from previous cycles or genetically independent populations. Therefore,
a further scenario was considered in the present study, in which the performances of the
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final breeding cycle were predicted based on the information on the genotypes originating
from all previous cycles. In this scenario, UFCu performed slightly better than UFCp for
plant height. For the remaining traits, trends were similar to the scenario based on the
full data set with the prediction and test set being identical. Moreover, to elucidate the
influence of the population size, subsamples of the population sizes 50, 100, 200, 400, and
1000 genotypes were drawn which were then used as training set to calibrate models for
predicting the final breeding cycle. These experiments confirmed the previously discussed
findings of the present study, based on the full data set with the prediction and test sets
being identical. In general, larger training set population sizes led to decreased dispersion of
prediction abilities for all traits. For nearly all predicted population parameters, increasing
population size leads to higher prediction abilities except for grain yield, where both
approaches of predicting the UFC remain around zero for all training set population sizes.
In all cases, the difference between the prediction abilities of the UFCu and the usefulness
criterium predicted by the family mean was low.

The results presented in the underlying study largely correspond to findings obtained
from a cassava breeding program [18]. In cassava, median prediction abilities for the
usefulness criterion predicted by the UFC ranged from 0.1 to 0.83 in a cross-validated
scenario and 95% of the prediction abilities were greater than zero, assuming a heritability
of h* = 1 and varying selection intensities per family. Wolfe et al. [18] similarly described
low differences between the prediction abilities for the family mean and the UFC and
reported a high correlation of both.

4, Materials and Methods
4.1. Plant Material and Field Trials

The plant material used in this study is based on the winter barley breeding program of
KWS LOCHOW GmbH (Bergen, Germany) and comprises in total 4500 winter barley lines.
Each genotype was generated based on a double-haploid technology using two-, three-,
and four-way crosses. Double-haploids were generated using F; plants. Genotypes, which
originate from the same cross were denoted as a family. In total, a number of 347 families
were part of the barley breeding program. The underlying data comprise four breeding
cycles, corresponding to the year in which they were phenotyped for the first time. Barley
breeding in Europe is not based on closed second breeding within companies. The use of
lines also from other breeding programs in combination with the different time for doubled
haploid production due to an additional generation for 3- and 4-way crosses compared to
2-way crosses leads to a complex pedigree structure and the parents of the cycles do not
necessarily follow each other linearly.

Phenotypic evaluation took place in the years 2015, 2016, 2017, 2018, and 2019 for
the traits grain yield (dt ha™1), plant height (cm), and ear emergence (BBCH; [19]) in up
to 10 locations. The experimental design of the field trials followed alpha lattice designs.
A subset of 433, 1026, 1021, 1020, and 1000 lines were tested in the year 2015, 2016, 2017,
2018, and 2019 in two to four replications. Only sparse information was available for
the parents of the first breeding cycle (2015). The dataset was nevertheless considered
because it contained information on genotypes that were frequently used as parents in
subsequent cycles.

4.2. Genomic Data

An Illumina Infinium 5 k SNP array was used to genotype the lines [3,29]. The mean
rate of missing values was 1.4%. Markers with a minor allele frequency of 0.05 or less
were excluded. After quality control, SNP markers with a missing rate lower than 5% were
imputed based on the allele frequency. The original data set comprised 4501 markers from
which 2898 remained after quality control and were used for further analysis.
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4.3. Phenotypic Data Analysis

For the analysis of the phenotypic data, we implemented a two-stage approach. After
removing outliers following the method of Tukey and Anscombe [30], a linear mixed model
was used to analyze the data for each environment:

Y =Tlyu+ Zg+ Zgb + Zgr +e, ()

where y denoted the vector of phenotypic values for each genotype tested in the specific
environment, 1,, denoted the n-dimensional vector of 1’s and n denoted the number of
records in the specific environment, j was the common intercept, ¢ denoted the vector
of genotypic values of the lines tested in the specific environment and was considered as
random effect, r denoted the vector of replication effects, considered to be random, and
b was the incomplete block effect, which was considered as random effect, and e denoted
the random residual. Z, Zg, and Zg were design matrices for g, b, and r, respectively.
We assumed that all random effects followed an independent normal distribution with
different variance components for genotype, replication, and block effects. Repeatability
was estimated for each environment as:
o2
repeatability = —=3—, )
2. Te
& R

where USZ denoted the genotypic variance, UL,Z denoted the residual variance, and ng denoted
the average number of replications per genotype. The best linear unbiased estimations
(BLUES) for genotypes within each environment were obtained using model (1) assuming
fixed genotypic effects.

The BLUEs of the genotypes in each environment were used in a second step to fit
a further linear mixed model across the environments:

Y=1lup+2Zg+Zgu+e, 3)

where y denotes the vector of BLUEs that were calculated in the first step for the genotypes
in each environment. 1,, denotes a vector of 1’s with the length of m which refers to the total
number of genotypes across all environments, j denotes the common intercept, ¢ denotes
the vector of genotypic effects for all genotypes, 1 denotes the vector of environmental
effects, and e denoted the vector of residuals. Z and Zg denote corresponding design
matrices for ¢ and u, respectively. 4 was assumed to be a fixed parameter, while g, 1, and
e were assumed to follow an independent normal distribution. The resulting estimated
variance components were used to calculate the broad-sense heritability as:

2
9¢

W = @

2.4 92
G = nE
where ng denotes the average number of environments in which the genotypes were
evaluated. Furthermore, the genotypic effects were assumed to be fixed in model (3) in
order to calculate the BLUEs across environments.

The genetic variance of the families that were tested in the field was obtained by the
following model:

Yy=lap+ 28+ Zgu+ Zgpb + Zerr + e, 5)

The genotypic variances were estimated separately for each family by assuming

g ~ N(O, %B{:le), G = Ikaék nd aék was the genotypic variance for k-th family.

Zgp and Zgg were design matrices for block and replication effects nested into environ-

ments, respectively. A model considering family specific variance for genotype-times-
environment interaction effects and heterogeneous residual variance was attempted in
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the first place but did not converge. For all mixed linear models that were applied in the
phenotypic analysis, ASReml-R [31] was employed.

The UFC was estimated for each family as the sum of the family mean and response
to selection [1]. Response of selection was estimated assuming a selection intensity of
i = 1.27 and a fixed broad-sense heritability for all families observed in the phenotypic data
analyses, because the non-orthogonal data set led to convergence problems and prevented
the family-specific estimation of heritability.

4.4. Genome-Wide Prediction within and across Breeding Cycles

The ability of genomic prediction was evaluated using genomic best linear unbi-
ased prediction (GBLUP, [32]). The GBLUP model was given by y = 1,1 + g + ¢, where
y denoted the vector of BLUESs of the parental genotypes, 1,, denoted an n-dimensional vec-
tor of 1’s, n was the number of genotypes, # denoted the common intercept, ¢ denoted the

vector of genotypic values, e denoted the residual term. We assumed that § ~ N (O, GU%),

where G denoted the n-dimensional genomic relationship matrix [32] and ¢ ~ N(0, I¢2).

To assess the prediction abilities within the breeding program under study, five-fold
cross validations were performed for the entire data set across all breeding cycles. For this
purpose, the lines of the breeding program were randomly divided into five subsets, four of
which were used as training sets and the fifth as prediction set. The prediction ability was
examined as the correlation between BLUEs and predicted genotypic values for the test set.
This procedure was repeated 100 times and the mean prediction ability was obtained as the
final prediction ability, rgp.

The prediction ability between breeding cycles was investigated by dividing the full
data set into the single breeding cycles, i.e., 2015, 2016, 2017, 2018, and 2019. Subsequently,
the data of four breeding cycles were used as the training set to predict the genotypic
values of the remaining breeding cycle, which functioned as the test set. This procedure
was repeated for all breeding cycles.

To estimate the additive effects of single markers, an RRBLUP model with the form
¥y = 1,pu+ Xa + e was applied, where & was the vector of additive effects of markers
assuming a ~ N(0,1,02), ¢ ~ N(0,1,0?). I, and I, were identity matrices of order p and
n, with p being the number of markers and 1 being the number of genotypes.

4.5. Prediction of the Family Mean

The genomic estimated breeding values (GEBV) of each genotype were obtained by
the above-mentioned genomic prediction models, GBLUP. To predict the mean of a progeny
of a cross, the mean between the genotypes employed as parents was calculated, where the
parents were weighted for the expected proportion of contributed genome. For comparison,
the midparent value calculated from the phenotypic records of the parents alone was used
as a point of reference.

4.6. Prediction of the Family Variance

For the prediction of the family variance, the method suggested by [16] was applied.
Briefly, marker effects were estimated using the above-mentioned genomic prediction
model, RRBLUP. The predicted variance was then obtained from the estimated marker
effects by the following formula:

ot = var(s) = X0, ¥y, c00(, 1), ©

where S denotes the lines of a family, Sj is two times the additive effect of the maternal
or paternal allele, ¢ is summed over the number of chromosomes, j is summed over the
number of loci of a chromosome, and j, k is the sum of all locus pairs of a chromosome. The
covariance of two linked loci was given by
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cov (S, Sg) = (Eqik - Z) (mjmy + v — myo — vymy), @)

where 11; and 111 denote the effect of maternal alleles at the loci j and k, respectively and
v; and v denoted the effect of paternal alleles at the loci j and k, respectively. Following
Equation (20) of Osthushenrich et al. [16], the parameter g;; is a function of the linkage
disequilibrium between two loci and was calculated for each pair of linked loci assuming
zero generations of random mating.

4.7. Prediction of the Usefulness Criterion

The UFC was predicted for each family as the sum of the predicted family mean and
the predicted response to selection [1]. The response to selection was predicted using the
predicted family variance, and assuming a selection intensity of i = 1.27 as well as a fixed
broad-sense heritability for all families as outlined above. For predicting the UFC, square
root of heritability was assumed to be 1. To assess the prediction ability, the correlation of
the predicted and the observed UFC was calculated. This method of predicting the UFC is
referred to as UFCu. As a further point of reference, UFC was additionally predicted using
the predicted family means only, hereafter referred to as UFCy.

4.8. Validating Predictions of the Family Mean and the Family Variance

In the first step, a scenario similar to the study design of [17] was investigated. Marker
effects were estimated based on the full data set including all parents and families with
available genotypic and phenotypic information. Predictions were validated with data
from families derived from two-way crosses, assuming a minimum family size threshold
of at least 10 genotypes and an estimated genetic variance greater than 0.01. Data were
available from 66 families for ear emergence, 57 families for plant height, and 65 families
for grain yield. The correlation between the observed mean and variance and the predicted
mean and variance for the families was calculated.

Subsequently, methods for predicting the family means and variances were tested
employing a leave-one-cycle-out validation for the final breeding cycle of 2019. The marker
effects were estimated based on the full data set, excluding the data for the genotypes origi-
nating from the breeding cycle of 2019. The correlations between the observed mean and
the observed variance of the family and the predicted mean and variance were calculated
for the breeding cycle of 2019.

To elucidate the impact of the population size, an additional leave-one-cycle-out
validation was executed. This time, the variances and means of the families from the final
cycle of 2019 were predicted based on phenotypic data from the remaining cycles 2015,
2016, 2017, and 2018 with randomly sampled training sets comprising 50, 100, 200, 400, and
1000 randomly sampled genotypes.

5. Conclusions

The reliable prediction of the family variance and the UFC based on marker effects
remain the pinnacle of any breeding intention. While the prediction of the family mean
leads to acceptable or satisfying prediction abilities for all traits, the prediction of the
family variance seems to be impeded by several uncertainties. No benefits were obtained
for predicting the UFC based on analytic approaches, and in complex traits with low
heritability, predictions might even harmfully lead to the wrong direction. Our data
suggest that selections based on the UFC are not advisable in such cases. In accordance
with existing literature on the prediction of family variance and the UFC based on realistic
breeding scenarios, it can be concluded that the applied analytical methods are not well
enough developed to be trustworthily recommended to breeders or decisionmakers in the
breeding industry.
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Appendix A

Table A1. Prediction abilities of population parameters in a scenario where the test set corre-
sponds to the final breeding cycle of 2019 and the training set corresponds to a combination of
all previous cycles.

Trait Mean Variance UFCu UFCu N° Families
o 064 044 067 068 21
emergence
Plant height 0.41 0.12 0.55 0.53 17
Grain yield 0.31 0.33 —0.15 =013 21
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3. General Discussion

The implementation of genome-wideselection in plant breeding programs can be considereda success
story (Marulandaetal., 2016), as reflected by the fact that it has become astandard part of the toolbox
of many breeding companies (e.g., He et al., 2017). Genome-wide prediction and selection has been
implemented across crop species in the past decade and a half, forexample in wheat (He et al., 2016),
maize (Massman etal., 2013), barley (Philipp et al., 2016), rice (Xu et al., 2014), and rye (Wanget al.,
2014). Here, genome-wide prediction is primarily applied to increase the efficiency of resource
allocation byinferring the performance of non-phenotypedgenotypes within abreeding cycle at early

stages of selection (Figure 1).

. . PS augmented by
HUIIe s s A ) genome-wide selection (GS)

Year
1
2 Doubled haploids Doubled haploids
3 Single plants Single plants
Genotyping
G5 model
a 1st multilocation field trial 1st multilocation field trial
Reduction of
phenotyping costs to
25% by predicting 75%
of genotypes using GS
model.
Locationl Location2  Location3 Location4  Locationl Location2 Location3  Location4

Figure 1. Graphical comparison of phenotypic selection (PS) and PS augmented by genome -wide
selection (GS). Accuracy of GS corresponds to 3-4field trials in complex traits. Costs can be reduced by

predicting performances of genotypes based on genome-wide prediction models.

In addition to the use of genome-wide prediction in early selection cycles, genome-wide approaches
could also bring competitive advantages in the planning of breeding decisions across breeding cycles.
In this case, the selection of promising parents (Heffner et al., 2009) as well as long-term selection
strategies (Jannink, 2010) are particularly attractive fields of application for genome-wide prediction.
In the past, there were several proposals for these areas of application, which were supported in
particular by arguments based on simulation studies (Allier et al., 2019; Lehermeier et al., 2017;

Osthushenrich etal., 2017). To determine the actual benefits of a selection strategy in the context of
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a user-oriented scenario, multi-yearfield studies are essential. Despite the absence of such validation
studies, breeding strategies are promoted in the literature as a cure-all to solve pressing problems

(Hickey et al., 2019; Watson et al., 2018), which can be misleading for recipient stakeholders.

In this work, two implementation options of genome-wide prediction were therefore investigated
using extensive experimental data with regard to their prospects of success in industry-relevant use
cases: genome-wide prediction of the performance of a cross to aid parental selection, and genome-
wide prediction to assist recurrent selection in a hybrid breeding context (Figure 2). The usefulness-
criterion is an established concept in quantitative genetics to assess the breeding value of a cross
(Longinetal., 2014). Several usefulness-criterion inference methods based on genome-wide prediction
have been proposed and tested in simulation studies (Allier et al., 2019; Lehermeier, de los Campos,
etal, 2017; Lehermeieretal., 2014; Lehermeier, Teyssédre, etal., 2017; Osthushenrich et al., 2017).
To investigate the applicability of one of these methods in plant breeding, it was testedin acommercial
barley breeding program as part of this work. Reciprocal recurrent genome -wide selection isa method
for simultaneous improvement of complementary heterotic groups (Rembe et al., 2019), where
selection decisions are made based on performance data from test crosses of genotypes from
complementary pools. In this work, reciprocal recurrent genomic selection based on theoretical
guantitative considerations was identified as a promising tool for increasing the efficiency of hybrid
breeding programs, especially in autogamous crops. However, field experiments conducted as part of

this work showed that the practical implementation of recurrent genomic selection is challenging.
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Figure 2: Comparison of two application scenarios of genome-wide selection in plant breeding:

parental selection and recurrent selection.

The experience gained in this work suggests the need of feasibility studies for the assessment of long-
term selection strategies. They prevent serious mistakes from becoming a risk for long-term
investments by society or private stakeholders when major research projects are set up, for example

for the utilization of genetic resources or in industrial applications in commercial breeding programs.

3.1 Parental selection strategies using genome-wide prediction in line breeding
In line breeding, the performance of the progeny population determines the value of the parents
(Gaynoretal., 2017). Therefore, predicting the performance of the progeny population is critical to
selecting promising parents. A progeny population is particularly suitable for the selection of high
performing genotypes if itis characterized by a high mean and a high variance with respect to the trait
of interest. This observation was formalized in the form of the usefulness criterion by (Schnell & Utz,

1975).

Based on the concept of the usefulness criterion, Zhong & Jannink (2007) developed a method for

predicting offspring populations, basically changing the formulation of the usefulness conceptso that
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the heritability was always 1. The authors of the study tested the method using simulations and found
that among the crosses, the variance of the means was substantially greater than the variance of the
standard deviations, making the prediction of the standard deviation or variance of the trait of interest

less relevant than the prediction of the mean (Zhong & Jannink, 2007).

First approaches to predict the mean and variance of progeny populations based on marker effects
were entirely based on simulations: genotypic values of individuals of the progeny population were
calculated as a function of the breeding values of their parents and optionally the prevailing linkage
disequilibrium. For the entirety of simulated progeny individuals, the population mean and population
variance were then calculated and used as a predictor for the actual population parameters to be
observed (Bernardo, 2014; Endelman, 2011; Lado et al., 2017, Mohammadi et al., 2015; Tiede et al.,
2015; Yao etal., 2018). Simulations are computationally and time intensive and, given the potentially
infinite size of progeny populations, there is a risk of sampling errors. On the other hand, simulations
of offspring populations allow the prediction of interactions, such as based on epistasis (Yao et al.,
2018) or based on interactions with the environment. However, simulations are always based on
marker effects and are therefore only as reliable as the estimate of these effects. The prediction of
higherdegree statistics is also subject to increasing uncertainty: the variance results from the squared
deviation of observations from the population mean. Therefore, it can be concluded that in the

prediction of variance, the error in the prediction of the mean is squared and also plays a role.

More recently, two methods were published for predicting the usefulness criterion, one based on
Markov chain Monte Carlo samples of marker effects from a whole-genome regression model
(Lehermeier, Teyssedre, et al., 2017) and the other based on an analytical approach that considers
linkage disequilibrium (Osthushenrich et al., 2017). Allier et al. (2019) expanded the approach of
(Lehermeier, Teyssedre, et al., 2017) for four-way crosses and showed high correlations between
predicted and observed trait mean and variance of simulated offspring populations. The approach of
Osthushenrich etal. (2017) also showed high correlations between predicted and observed population
means and variances in simulation studies, a finding that was further confirmed by field experiments

(Osthushenrich et al., 2018).

With regard to the validation based on simulation studies mentioned above, it must be criticized that
the performances of the genotypes of each progeny population were simulated based on known
marker effects. These effects were subsequently used to predict the population mean and the
population variance of the progeny. Nevertheless, this scenario does not correspond to the real-life
problem breeders face during a selection decision process. Similarly, regarding the field study by
Osthushenrich et al. (2018), it must be stated that training and test populations were always

congruent, i.e., that the populations to be predicted were always already used to calibrate the
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prediction models. This also does not correspond in any way to an application-oriented situation. It
should also be noted that Osthushenrich etal. (2018) do not report heritabilities for the traits studied
and removed outliers based on an unspecified procedure. Hence, the presented findings do not allow
users todraw any conclusions regarding the real suitability of the published methods for the prediction

of the usefulness criterion.

Our study allowed us to extensively test the approach of Osthushenrich et al. (2018) in an applied
mannerin the context of acommercial barley breeding program that spanned fouryears from 2016 to
2019 (Rembe etal., 2022). The present data set was well suited to investigate the applicability of the
usefulness criterion: phenotypicrecords and genomicinformation were of high quality for parents and
progeny populations, prediction abiblities were high, both within and betwe en breeding cycles and
across the entire data set. We have shown thatthe prediction abilities for the means and variances of
offspring populations were highly dependent on the complexity of the trait under study. In line with
the observation of Zhong & Jannink (2007), we found that variance played a minor role in the
prediction of the usefulness criterion. The results from Rembe et al. (2022) were consistent with the
observed results from Wolfe et al. (2021) showing low correlations between predicted and observed

variance of progeny populations for complex traits.

3.2 Selection strategies using genome-wide prediction toimprove heterotic poolsin

hybrid breeding

The goal of hybrid breeding is to optimize the exploitation of heterosis through selection and
recombination (Schulthess etal., 2017). If only additive effects are present, the progeny of a cross will
have a geneticvalue equal to the mean of the parent’s geneticvalues. With the presence of epistatic
and dominance effects, the genetic value of the progeny can deviate from the mean of the parent’s
geneticvalues (Falconer & Mackay, 1996; Hallauer et al., 2010). Thus, the task of hybrid breedingis to
configure additive, epistatic, and dominance effectsin the best possible way to come up with the ideal

hybrid genotype.

To make the best use of heterosis, it is usefulto group genotypes according to their heteroticresponse
when crossed with distinct material. The resulting group is called a heteroticgroup. When genotypes
of complementary heterotic groups are crossed with each other, some beneficial effect due to
heterosis can be expected depending on the combination suitability. Particularly well-matched
heterotic groups whose genotypes produce high-performing hybrids when crossed in a

complementary manner are referred to as a heterotic pattern (Melchinger & Gumber, 1998).

Methods to establish heterotic pools were provided by Zhao et al. (2015) and Boeven et al. (2016).

These steps are followed by the further development of the heterotic pools. Constant improvement of
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heterotic pools can be achieved by recurrent reciprocal selection (Comstock et al., 1949). In this
approach, two breeding programs are run in parallel, one for each heterotic pool. Test crosses of
complementary genotypes are then used to determine GCA, which in turn serves as a criterion for
selection decisions (Comstock et al., 1949). In the context of reciprocal recurrent selection, the
implementation of genome-wide prediction appears promising to reduce the cost and time required
to determine GCA (Rembe et al., 2019), as demonstrated by several simulation studies in different

crops (Ibanéz-Escriche et al., 2009; Kinghorn et al., 2010;Cros et al., 2015).

In this work, the efficacy of recurrentreciprocal genome-wide selection was investigated for the first
time under application-oriented conditions with extensive field trials (Rembe et al., 2021). A promising
accuracy of genome-wide prediction models for wheat hybrid performance has been reported in
earlier experiments for different scenarios of data availability (Figure 3A, B) (Zhao et al., 2015). Based
on these results an experimental breeding program focusing on the female heterotic pool based on
recurrentreciprocal genome-wide prediction was established. In the experiment described in Rembe
et al., (2021), increase in mid-parent heterosis was achieved, but better-parent heterosis was not
significantly increased. Furthermore, the realized selection gain fell short of the expected one (Rembe
et al.,, 2021). Because Rembe etal. (2021) focused only on improving the female heteroticpool, allele
frequencies of the male heterotic pool could not be optimized. In this case, the complementarity of
heterotic pools desired in overdominance cannot be achieved if the corresponding alleles are not
already fixed in the male pool (Rembe etal., 2019, 2021). Inthe case of partial dominance or negative
dominance, the favorable allele should be fixed in both heteroticpools (Rembe et al., 2019). Again, it
should be noted that if the male heterotic poolremains constant, the optimal configuration cannot be

achieved unless the corresponding alleles are already fixed (Rembe et al., 2021).
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Figure 3: Genome-wide prediction scenarios as reported in Zhao et al. (2015). A: In scenario T2, both
male parentlines and female parentlines have been evaluated phenotypically in the field. In scenario
T1 only female parent lines or only male parent lines have been tested phenotypically in the field. In
test set TO, neither female parent lines, nor male parent lines have been tested in the field (Zhao et
al., 2015). B: Prediction abilities for predicting performances of the test sets corresponding to the

respective scenarios.

An important aspect that Rembe et al. (2021) focus on to explain the low success of the described
breeding program is the low realized prediction accuracy of the models calibrated on 2012 and 2013
data (Zhao et al., 2015) for the performances of overlapping genotypes tested in 2019. Cros et al.
(2018) found, based on simulations, that prediction accuracies could be improved when calibrations
of the models relied on two preceding breeding cycles. In Rembe et al. (2021), prediction accuracies
were also low for those genotypes already included in the 2012 and 2013 training datasets (Zhao et
al., 2015). Therefore, itis likely that otherinfluences have had a negative impact on the effectiveness

of the breeding program.

Climate change and the growth of the world's population, as well as the shrinking land area available
foragricultural purposes associated with both events, demand higherand reliable yields with efficient
use of available resources (Lobell & Gourdji, 2012; Misra, 2014; Ray et al., 2019; Zabel et al., 2014).
Innovations from agricultural research, of which plant breedingis one, can be used to achieve the

ambitious goals associated with this.

Genetic gain is the increase in the average genetic value or in the average phenotypic value within a
population overseveral generations as aresult of selection (Hazel & Lush, 1942) and is sometimes also
referred to as response to selection. Maintaining geneticgain overas longa period of time as possible

is a basic requirement for long-term selection.
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Genome-wide selection is a tool that has been routinely used in commercial breeding programs for
severalyearsto increase geneticgain. One challenge for the long-term maintenance of geneticgain in
genome-wideselectionis the reduction of geneticdiversity within a population through high selection
intensity. However, genetic diversity is an essential prerequisite for long-lasting improvement
(Goddard, 2009). The impact of genome-wide selection on geneticvariance has been demonstrated in
simulation studies (Jannink, 2010). Different approaches to address this problem have been proposed
in the literature (Daetwyleretal., 2015; Goddard, 2009; Goiffon etal., 2017; Jannink, 2010; Miiller et
al., 2018) and contrasted in Rembe et al. (2019). Other approaches for implementing genome-wide
prediction in long-term selection include look-ahead selection (Moeinizade et al., 2019) and optimal
contribution selection with branching (Santantonio et al., 2020), which were summarized in Labroo et
al. (2021). Changing environmental conditions as a result of climate change are a further challenge to

the successfulness of long-term selection.

3.3 Genotype-by-environment interactions are expected to have a high impact on

the success of long-term breeding strategies

In the work presented, we were able to provide evidence that long-term strategies in plant breeding
can be complicated by large changes in environmental conditions (Rembe etal., 2021). Cross-validation
is commonly used to test the performance of prediction methods. The resulting prediction ability or
prediction accuracy is then used as a guide to estimate how reliable the predicted values are to be
used as selection criteria. For cross-validations, the population of genotypes studied is divided into a
training setand a testset. Based on phenotypicrecords and genomic information of the training data
set,amodelis calibrated, which in turnis used to predict the performance of the ge notypesof the test
set based exclusively on genomic information. Based on the correlation between the phenotypic
records of the test setand the predicted performances, the predictive ability or predictive accuracy is

determined.

Nevertheless, since in this approach genotypes of the test set and of the training set originate from
the same data set and are therefore produced under the same environmental conditions, the
suitability for long-term selection can only be derived from the predictive ability or predictive accuracy
to a limited extent. In the past, this circumstance was less relevant because of more stable
environmental conditions. Validation studies for long-term selection based on genome-wide
prediction were furthermore rare, as in the first decade of genome-wide prediction more attention

was focused on other applications of genome-wide prediction.

Recently, genotype-by-environment-times-year interactions have become increasingly important:
droughtyears are accumulating in Central Europe (Shorachi etal., 2022) and extreme weather events

with strong local limitation are occurring more frequently (Crespietal., 2020). When making selection
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decisions, a breeder must consider that future environmental conditions may affect his predictions
and thus his basis for decision-making. The requirement for validation studies must be that this
problem of potentialinequality of training environmentand test environmentisilluminated, and fora
fair comparison of prediction methods they must be tested under realistic, application-related

conditions.

3.4 Genome-wide prediction to overcome challenges in long-term selection

In the frame of climate change, the classical selection of suitable genotypes based on phenotypic
performance alone is increasingly moving into the background in favor of predictive breeding
approachesinvolving phenotype, genotype, environment and the interaction of these components (Y.
Xu et al, 2022). Large, multidimensional datasets consisting of structured and unstructured
information could play a role in the future to make breeding decisions based on big data and artificial
intelligence (Y. Xu etal., 2022). By merging different experimental datasets, prediction accuracies for
grain yield in hybrid wheat could be doubled (Zhao et al., 2021). Through the integrative use of in-
house and publicly available data sets, breeders could build their predictions on broader basis and,
thus, achieve more certainty in decision-making. Along with this, geneticdiversity could be exploited,
which supplements the gene pool used for breeding with valuable properties, such as adaptationsto
stress habitats or disease resistances (Schulthess et al.,, 2022). De los Campos et al. (2020)
demonstrated an approach to predict cultivar performances under simulated weather conditions to
overcome problems associated to genotype-by-environment interactions by a combined analysis of
phenotypic and genomic information with environmental cofactors obtained from weather stations,
and provided promising results from validating the method. Promising results were also obtained in
predicting the performance of crosses in a commercial hybrid maize breeding program by
incorporating weather data using random forest and optimization models (Ansarifar et al., 2020).
Approaches that add a component to genotype-by-environment interactions that will take into
account applied agronomic practices and, thus, shed light on genotype-by-environment-by-
management interactions have recently received greater interest and may facilitate breeders to

optimize customer-oriented selection decisions (Beres et al., 2020; Mahmood et al., 2022).

A core problem of using big data in plant breedingis the processing of differently structured datasets
with varying quality. Breeding companies have historically generated large data sets that, in addition
to the phenotypic performance of genotypes, sometimes provide comprehensive information on
environmental conditions prevailing at test locations, such as weather orsoil type. The integrative use
of these data could lead to more robust predictions involving genotype -by-environment interactions,

allowing more reliable long-term selection decisions.



Summary 63

4. Summary
Following the establishment of genome-wide selection in plant breeding programs, the search for

areas of application for this promising technology continues. Of particular interest is the use of
genome-wide selectiontoimprove populations across generations, for example in long-term breeding
programs or in parental selection. This work provides user-based experimental assessments of the
utility of genome-wide selection in parental selection in barley under usefulness criterion estimation,
and in reciprocal recurrent genomic selection for long-term improvement of complementary
populations for wheat hybrid breeding. Empirical evidence suggests that, despite promising
performance in theoretical and simulation-based environments, both concepts evaluated here present

challenges under application-oriented conditions.

Nachdem sich die genomweite Selektion in Pflanzenzuchtprogrammen etabliert hat, geht die Suche
nach Anwendungsbereichen fiir diese vielversprechende Technologie weiter. Von besonderem
Interesse ist der Einsatz der genomweiten Selektion zur Verbesserung von Populationen Gber
Generationen hinweg, z. B. in langfristigen Ziichtungsprogrammen oder bei der Elternselektion. Die
vorliegende Arbeit liefert anwenderbasierte experimentelle Bewertungen des Nutzens der
genomweiten Selektion beider Elternselektion von Gerste unter Schatzung des Usefulness Criterions
und bei der reziproken rekurrenten genomischen Selektion zur langfristigen Verbesserung
komplementéarer Populationen fiir die Weizenhybridzucht. Empirische Belege deuten darauf hin, dass
trotz vielversprechender Indikatoren in theoretischen und simulationsbasierten Umgebungen beide
hier evaluierten Konzepte unter anwendungsorientierten Bedingungen noch groRe

Herausforderungen darstellen.
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