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Summary 

Ensuring that climate neutrality, the bioeconomy, and economic competitiveness go hand in hand has 

become a key European goal for future sustainable development. Germany, as one of the leading countries 

in the modern bioeconomy, aims to boost its bioeconomy as a key strategy to achieve the Sustainable 

Development Goals (SDGs). The transition to bioeconomy depends not only on a sufficient biomass supply 

but also on supporting technological and institutional innovations. In Germany, the role that technological 

innovation can play in carbon emissions reduction in the agricultural system is far from clear. Currently, 

Germany has low R&D productivity due to a general production factor mismatch and low allocation 

efficiency. Additionally, little is currently known about the performance of institutional innovation in the 

bioeconomy. Therefore, a better understanding of the real impacts of technological and institutional 

innovation on sustainable development is critical for supporting policymaking and guiding the transition to 

bioeconomy. 

This dissertation focuses on the bioeconomy in Germany, examining the mechanisms by which 

technological and institutional innovations influence, promote, and support its development. Specifically, 

this dissertation i) evaluates the potential impact of R&D investments on carbon emissions through the 

dynamic interactions among agricultural carbon subsystems using a system dynamics modelling approach 

based on sectoral data (Chapter II), ii) estimates the potential mitigation effects of technological innovation 

on carbon emissions using an extended Spatial Durbin Model based on 401 NUTS-3 level panel data 

(Chapter Ⅲ), and ⅲ) examines the impacts of bioclusters, representing regional institutional innovation in 

Germany, on sustainable performance through the use of a super slacks-based measure (super-efficiency 

SBM), a series of quasi-natural experiments, and a mediating model based on 401 NUTS-3 level panel data 

(Chapter Ⅳ).  
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Chapter II reports the modelling and analysis of various scenarios, where the simulations of the dynamic 

interactions in the agricultural carbon system from 2020 to 2050 suggest that R&D investments can have a 

mitigation effect on agricultural carbon emissions both directly and indirectly, with the direct effect being 

more significant. The result suggests that increasing the fallow land, improving the circular economy, and 

increasing R&D investment are effective strategies for reducing net carbon emissions. These strategies can 

provide an efficient and more sustainable pathway for the transition to bioeconomy in Germany. 

In Chapter III, the results of the study regarding the implication of a forest-based bioeconomy on carbon 

emissions are presented and suggest that technological innovations in a forest-based bioeconomy can reduce 

carbon emissions through promoting industrial upgrading and creating job opportunities related to the 

bioeconomy in local areas. Additionally, it can lower carbon emissions indirectly in neighbouring areas 

through the spillover effects of industrial upgrading and the size of the bioeconomy. These findings 

highlight the need for a coordinated approach to align technological innovation (as indicated by the number 

and application of patents), employment population, and industrial transition strategies. 

Chapter IV investigates the potential effects of bioclusters on green total factor productivity (GTFP), and 

the results indicate that developing bioclusters, including both Bioregions and green clusters, would have 

positive effects on GTFP, both directly and indirectly, essentially through technological innovation and 

market agglomeration. Furthermore, it reveals that different types of bioclusters have heterogeneous 

impacts on GTFP, with the greatest contribution arising from chemical green clusters. 

By analysing various aspects of the bioeconomy development and its implications, the findings in this 

dissertation contribute to the field and provide insights that can inform and support ongoing and future 

scientific and policy actions that guide the transition to bioeconomy in Germany. 

 

Keywords: Bioeconomy; Technological innovation; Institutional innovation; Bioclusters; Carbon 

emissions; Mitigation effects; Dynamic interactions; Spillover effects; GTFP; Germany 
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Zusammenfassung 

Die Sicherstellung, dass Klimaneutralität, Bioökonomie und wirtschaftliche Wettbewerbsfähigkeit Hand in 

Hand gehen, ist zu einem zentralen europäischen Ziel für eine nachhaltige Zukunftsentwicklung geworden. 

Deutschland, als eines der führenden Länder in der modernen Bioökonomie, zielt darauf ab, seine 

Bioökonomie als Schlüsselstrategie zur Erreichung der Ziele für nachhaltige Entwicklung zu fördern. Der 

Übergang zur Bioökonomie hängt nicht nur von einer ausreichenden Biomasseversorgung ab, sondern auch 

von der Unterstützung technologischer und institutioneller Innovationen. In Deutschland ist die Rolle, die 

technologische Innovation bei der Reduzierung von landwirtschaftlichen Kohlenstoffemissionen spielen 

kann, noch unklar. Derzeit weist Deutschland eine geringe F&E-Produktivität aufgrund eines allgemeinen 

Missverhältnisses der Produktionsfaktoren und einer niedrigen Allokationseffizienz auf. Zudem ist wenig 

über die Leistungsfähigkeit institutioneller Innovationen in der Bioökonomie bekannt. Daher ist ein 

besseres Verständnis der tatsächlichen Auswirkungen von technologischen und institutionellen 

Innovationen auf die nachhaltige Entwicklung entscheidend für die Unterstützung der politischen 

Entscheidungsfindung und die Steuerung des Übergangs zur Bioökonomie. 

Um die genannten Punkte zu adressieren, konzentriert sich diese Dissertation auf die Bioökonomie in 

Deutschland und untersucht die Einflussmechanismen technologischer und institutioneller Innovationen bei 

der Förderung und Unterstützung der Bioökonomie. Konkret bewertet diese Dissertation: (1) den 

potenziellen Einfluss von F&E-Investitionen auf die Kohlenstoffemissionen durch die dynamischen 

Interaktionen zwischen landwirtschaftlichen Kohlenstoffsubsystemen mithilfe eines Systemdynamik-

Modellierungsansatzes auf Grundlage sektoraler Daten (Kapitel II), ii) die potenziellen Minderungseffekte 

technologischer Innovationen auf Kohlenstoffemissionen mithilfe eines erweiterten Spatial Durbin-

Modells basierend auf Paneldaten auf NUTS-3-Ebene (Kapitel III); und iii) die Auswirkungen von 

Bioclustern, die regionale institutionelle Innovationen in Deutschland repräsentieren, auf die nachhaltige 
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Leistung durch den Einsatz eines Super Slacks-basierten Maßes (super-effizientes SBM), eine Reihe von 

quasi-natürlichen Experimenten und ein Mediationsmodell basierend auf Paneldaten auf NUTS-3-Ebene 

(Kapitel IV). 

Kapitel II berichtet über die Modellierung und Analyse verschiedener Szenarien, bei denen die 

Simulationen der dynamischen Interaktionen im landwirtschaftlichen Kohlenstoffsystem von 2020 bis 2050 

darauf hinweisen, dass F&E-Investitionen sowohl direkt als auch indirekt eine Minderung der 

landwirtschaftlichen Kohlenstoffemissionen bewirken können, wobei der direkte Effekt signifikanter ist. 

Das Ergebnis legt nahe, dass die Erhöhung der Brachfläche, die Verbesserung der Kreislaufwirtschaft und 

die Erhöhung der F&E-Investitionen wirksame Strategien zur Reduzierung der Netto-

Kohlenstoffemissionen sind. Diese Strategien können einen effizienten und nachhaltigeren Weg für den 

Übergang zur Bioökonomie in Deutschland bieten. 

In Kapitel III werden die Ergebnisse der Studie über die Auswirkungen einer wald-basierten Bioökonomie 

auf die Kohlenstoffemissionen präsentiert und legen nahe, dass technologische Innovationen in einer wald-

basierten Bioökonomie die Kohlenstoffemissionen durch die Förderung der industriellen Aufwertung und 

die Schaffung von Arbeitsplätzen im Zusammenhang mit der Bioökonomie in lokalen Gebieten reduzieren 

können. Zudem können sie indirekt die Kohlenstoffemissionen in benachbarten Gebieten durch die 

Spillover-Effekte der industriellen Aufwertung und die Größe der Bioökonomie senken. Diese Erkenntnisse 

unterstreichen die Notwendigkeit eines koordinierten Ansatzes zur Abstimmung von technologischer 

Innovation (angezeigt durch die Anzahl und Anwendung von Patenten), Beschäftigung, Bevölkerung und 

industriellen Übergangsstrategien. 

Kapitel IV untersucht die potenziellen Auswirkungen von Bioclustern auf die grüne totale 

Faktorproduktivität (GTFP) und die Ergebnisse zeigen, dass die Entwicklung von Bioclustern, 

einschließlich Bioregionen und grünen Clustern, positive Auswirkungen auf die GTFP sowohl direkt als 

auch indirekt haben würde, im Wesentlichen durch technologische Innovation und Marktagglomeration. 
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Ferner zeigt sich, dass verschiedene Arten von Bioclustern heterogene Auswirkungen auf die GTFP haben, 

wobei der größte Beitrag von chemischen grünen Clustern stammt. 

Durch die Analyse verschiedener Aspekte der Bioökonomie-Entwicklung und deren Implikationen leisten 

die Ergebnisse dieser Dissertation einen Beitrag zum Fachgebiet und liefern Erkenntnisse, die laufende und 

zukünftige wissenschaftliche und politische Maßnahmen unterstützen können, die den Übergang zur 

Bioökonomie in Deutschland steuern. 

 

Schlagwörter: Bioökonomie; Technologische Innovationen; Institutioneller Innovationen; Clustern; 

Kohlenstoffemissionen; Minderungseffekte; dynamischen Interaktionen; Spillover-Effekte; GTFP; 

Deutschland 
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1 Introduction 

Developing the bioeconomy has become a key strategy for facilitating the transition towards sustainability 

in the European Union (EU) and in many other regions worldwide. Many countries have launched 

bioeconomy strategies, ranging from dedicated bioeconomy strategies to be-related strategies and dedicated 

be-strategies (see Figure 1.1). Figure 1.1 displays an overview of the distribution of bioeconomy strategies 

around the world, indicating countries where strategies are already in place or are under development. 

Germany is included in the figure as one of the countries that has already launched a dedicated bioeconomy 

strategy.  

 

Figure 1.1: Bioeconomy strategies in place or under development around the world 

Source: bioökonomierat (2018). “International bioökonomiestrategien”. 

https://bioökonomierat.de/bioökonomie/international. 
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Although the term “bioeconomy” first started to become popular in the early 2000s, the concept of the 

bioeconomy is still relatively new and it is considered to still be in its early growth stage. The concept of 

the bioeconomy has a multifaceted breadth and depth of meaning, varying across paradigms, disciplines, 

and countries. While definitions of the bioeconomy may differ, they typically share many similarities 

(Wesseler and von Braun, 2017). According to the United Nations Food and Agriculture Organisation 

(FAO), the bioeconomy refers to “the production, use, and conservation of biological resources, including 

related knowledge, science, technology, and innovation to provide information, products, processes, and 

services to all economic sectors with the aim of moving towards a sustainable economy” (FAO, 2018). The 

bioeconomy was defined by McCormick and Kautto (2013) as an economy where the basic building blocks 

for materials, chemicals, and energy are derived from renewable biological resources. In the policy 

framework of the European Union, the bioeconomy is regarded as a key component for attaining smart and 

green growth (EC, 2012). According to the European Commission, the bioeconomy “encompasses the 

production of renewable biological resources and their conversion into food, feed, bio-based products, and 

bioenergy. This includes agriculture, forestry, fisheries, food, pulp, and paper production, as well as parts 

of the chemical, biotechnological, and energy industries” (EC, 2012). This definition is widely accepted by 

academic and political communities all around the world. With the goals of ensuring food security, 

managing depleting natural resources sustainably, reducing the dependence on non-renewable resources, 

adapting to climate change, and creating job opportunities, the bioeconomy aims to contribute to intelligent, 

sustainable, and inclusive growth that will allow the transition towards a green economy (OECD, 2011a, b; 

2016). 

1.1 Background: The transition towards bioeconomy in Germany 

1.1.1 The bioeconomy in Germany  

The development of the bioeconomy in Germany is being driven by policy initiatives aimed at modernizing 

the economy in a sustainable, environmentally responsible and societally sensitive manner. With the aim 

to develop a cross-sectoral, knowledge and bio-based economy, the bioeconomy in Germany began with 
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the establishment of the Bioeconomy Council in January 2009. The council was established by the Federal 

Ministry of Education and Research (BMBF) and the Federal Ministry of Food, Agriculture, and Consumer 

Protection (BMELV) and was regarded as an independent advisory board for the German Federal 

Government. In 2010, Germany published the National Research Strategy Bioeconomy 2030, which was 

designed by the Bioeconomy Council, becoming one of the first countries to outline its national bioeconomy 

strategy. In 2013, Germany implemented the National Policy Strategy Bioeconomy, setting another 

important milestone for the bioeconomy. In early 2020, Germany launched the new National Bioeconomy 

Strategy, which laid down guidelines for policies on the bioeconomy as well as the measures for 

implementation.  With these and later initiatives, Germany has set a pioneering pace as one of the first 

countries to formally set out and pursue a bioeconomy strategy in line with the EU Framework Programme 

for Research and Innovation and later in 2012, the EU Bioeconomy Strategy.  

Although revolutionary in their ambition to sustainably transform the entire society, these strategies started 

with a step backwards, namely by revisiting the potential of plant-based biomass. In April 2009, the 

National Biomass Action Plan was launched (BMELV/BMU, 2009; Goven and Pavone, 2015; Hagemann 

et al., 2016). Alongside 2009 amendments to the Renewable Energy Sources Act and a boom in renewable 

electricity uptake, this plan defined forest and agricultural biomass as one of the most promising domestic 

renewable energy sources that could significantly contribute to value creation, especially in rural areas 

(Troost et al., 2015). The plan envisaged a large-scale expansion of bio-based energy, including agricultural 

fuels. Recent European Union strategy papers on biodiversity (EC, 2020b) and food systems (EC, 2020c), 

along with recommendations by the National Academy of Sciences (Leopoldina, 2020), have further 

clarified the role of biomass in the bioeconomy.  

Alarmed by the increasingly pessimistic projections for climate development, soil, water, and air quality, 

as well as by the noticeable consequences of unsuitable development paths, recent debate has begun to shift 

the focus from alternative models of economic growth to prioritizing environmental protection. The 

Biodiversity and Food to Fork strategies (EC, 2020b; 2020c), the core components of the European Green 
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Deal (EC, 2019), set time-bound targets for the expansion of nature conservation areas, with the aim of 

achieving farmland biodiversity and land degradation neutrality within a decade. The Leopoldina stresses 

the major role of agriculture in reducing carbon emissions and biodiversity loss and recommends even more 

profound and immediate actions are needed (Leopoldina, 2020). These recommendations, including 

minimizing the use of fertilizers, pesticides, and herbicides, a large-scale shift to organic farming, and 

limiting farmland for biofuels and animal feed production, have direct implications for non-food biomass 

production. 

Despite the conflicting goals of sustainability and economic growth reflected in regional, national, and 

supranational agendas, the bioeconomy is gaining momentum along various dimensions (Bell et al., 2018). 

In 2005, the share of the bioeconomy in Germany accounted for 3.9% of gross value added and 5.2% of the 

labour force, while in 2019 these figures had risen to 19.9% and 13.5%, respectively (Bioeconomy Council, 

2010; BMBF, 2020). This growth has been driven by significant research funding (EUR 20.3 billion in 

2020, cf. BioStep (2016)), invested in “mapping and engineering the uncharted territories” of the technical 

and biotechnological knowledge and making them marketable (Aguilar et al., 2018). The transformation of 

the economy and especially of the chemical sector away from fossil-based resources (Schütte, 2018), along 

with the promotion of bioclusters and technology parks (Scarlat et al., 2015; BioSTEP, 2016), could 

accelerate this process by demanding more high-quality biomass (Budzinski et al., 2017; Efken et al., 2016). 

However, the envisaged production of high-value biomass-based goods and materials with economic and 

non-economic benefits may prove an unattainable vision (Brar et al., 2013), considering the already high 

imports of biomass for material and energy use (Leopoldina, 2012).  

1.1.2 Technological innovation in the agricultural system in Germany 

In the context of Germany, the role of technological innovation in reducing agricultural carbon emissions 

is still unclear, as the agricultural system is complex and the productivity of R&D is difficult to estimate. 

By comparison, while Germany’s business R&D spending has increased by 3.3 % per year over the last 

decades, R&D productivity has fallen by an average of 5.2% per year (Boeing and Hünermund, 2020). This 
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aligns with the findings that R&D productivity is decreasing in Germany, particularly outside the 

bioeconomy context (Schäfer, 2014; Ugur et al., 2016). In 2016, the total public R&D funding for the 

bioeconomy in Germany amounted to around EUR 120 million (Imbert et al., 2017). Through R&D 

investments, a number of local biotech innovation networks and bioeconomy clusters in Germany have 

integrated biomass producers within a circular economy to support innovation and coupled subsystems 

(Kaiser and Prange, 2004; Mennicken et al., 2016; Wilde and Hermans, 2021). This highlights the 

interaction between innovation and coupled subsystems in the German plant-based bioeconomy. In addition, 

Germany aims to fulfil all its electricity needs from renewable sources by 2035, with two-thirds expected 

to come from bioenergy (Frondel et al., 2010; Mohmmed et al., 2019). The projected decrease in energy-

based emissions by 2030 with this energy transition due to the political incentives promoting renewable 

energy (754.883 Mt CO2, cf. Mohmmed et al., 2019) underscores the relevance of coupled subsystem for 

renewable energy and the agricultural production subsystem in the plant-based bioeconomy. 

1.1.3 Forest-based bioeconomy in Germany 

The forest-based bioeconomy, encompassing the entire forest value chain, is considered to be a key player 

in the arena of promoting the bioeconomy for achieving decarbonization of the economy. In Germany, it 

has exhibited great potential for climate change mitigation by reducing carbon emissions (Hagemann et al., 

2016; Purkus et al., 2018). Up to 2016, 570 policy documents linked to carbon-mitigation strategies, 

covering the whole value chain of the forest-based bioeconomy, have been launched at the EU level (Rivera 

León et al, 2016). It is argued that the forest-based bioeconomy can play both direct and indirect roles (e.g., 

carbon sequestration by the forest and soil, and substitution effects from bioenergy replacing fossil fuel, 

respectively) in carbon emission reduction (Seppälä et al., 2019; Jonsson et al., 2020; Kumeh et al., 2021).  

Forests, a key resource input and support system for the forest-based bioeconomy, are a main source of 

carbon sinks. It has been reported that forests and harvested wood products together sequester the equivalent 

of circa 10% of the EU’s greenhouse gas emissions (EU, 2022). Apart from forests and traditional wood 

products, the forest-based bioeconomy also covers efforts directed towards bioenergy, biochemicals, 



6 

 

textiles, cellulose and lignocellulosic bioplastics, packaging products, etc. (Wolfslehner et al., 2016). It can 

also contribute to climate change mitigation by promoting the use of wood to substitute fossil fuels and 

other materials (EU, 2022). However, this substitution process occurs at the sacrifice of more forest biomass. 

It is evident that without sufficient afforestation and forest resources, the mitigation strategies focusing on 

enhanced carbon storage in wood products and the substitution of fossil fuels and energy-intensive materials 

require biomass removals; thereby, in most cases, decreasing the carbon sequestration potential of the 

forests (Lindner et al., 2017). Thus, the real mitigation effects of the forest-based bioeconomy on carbon 

emissions require a better understanding. 

1.1.4 Bioclusters in Germany 

Bioclusters are a special kind of clusters that operate with the explicit goal of promoting sustainable 

development by fostering the transition to a bioeconomy (Hermans, 2018). Bioclusters can play an 

important role in the sustainable transition to bioeconomy, especially in Germany. At the same time, 

bioclusters are characterized by coupled production systems, leading to stronger horizontal and vertical 

implications for industrial integration (Wesseler and von Braun, 2017). The circular production mode is 

prevalent in bioclusters carries a high expectation for linking innovation with climate neutrality (Biber‐

Freudenberger et al., 2020). This can help to tranform the prevalent linear production mode to a no-linear 

production mode for the whole of society as well. Furthermore, close cooperation among biotech companies, 

research institutes, technology parks, etc., can create sufficient scientific outputs and innovations to support 

the emerging bioeconomy. Especially for Germany, bioclusters, characterized by the heavy concentration 

of stakeholders and organizations, are proving to be important new technology impulse givers in this respect 

(Dorocki, 2014). The thriving bioclusters in Germany, with more than 770 biotechnology companies 

involved in 2021, have created substantial scientific outputs, offering opportunities to promote green 

efficiency and productivity at large (FMEACA, 2022). 
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1.2 Motivation and research gap 

1.2.1 Carbon emissions in the plant-based bioeconomy 

Agriculture is one of the backbones of the European Union (EU)’s bioeconomy, given its role as a key 

biomass supplier and a potential contributor to carbon emissions reduction (EC, 2018; Haddad, 2019). In 

2018, emissions from the agriculture sector accounted for 17% of global anthropogenic greenhouse gas 

(GHG) emissions (FAO, 2020). Nonetheless, the sector has an immense potential to reduce these emissions 

following a transformative bioeconomy strategy (Koondhar et al., 2022). Germany, a leader in this 

endeavour, is championing the bioeconomy as a pathway towards achieving carbon neutrality by 2045 and 

meeting the Sustainable Development Goals (SDGs) (EC, 2020). The 2020 National Bioeconomy Strategy 

of Germany aspires to cultivate a knowledge-based, greener, more sustainable, and inclusive bioeconomy 

in the country (Hall and Zacune, 2012; EC, 2020). This strategy places significant emphasis on agriculture, 

highlighting the essential role it can play in the reduction of carbon emissions. 

The agricultural carbon system within the framework of bioeconomy is intricately connected with 

ecosystem services and other industries. It encompasses carbon emissions from farming activities and 

industries, and carbon sequestration resulting from land-use changes and plant photosynthesis (Pataki et al., 

2006; Wang et al., 2012; Gutzler et al., 2015). However, it is challenging to quantify the actual mitigation 

effects of a plant-based bioeconomy on carbon emissions. In addition, technological innovation intended to 

support the plant-based bioeconomy could inadvertently increase carbon emissions due to the rebound 

effect (Zhou et al., 2017; Li et al., 2022; Pahle et al., 2022). This introduces uncertainty regarding the role 

of technological innovation in reducing carbon emissions within the agricultural carbon system. Therefore, 

achieving a sustainable transition to a bioeconomy necessitates a deeper understanding of the carbon 

emissions in a plant-based bioeconomy and their connection to the agricultural carbon emission system.  

Technological innovation, driven by scientific and technological knowledge and achieved through R&D 

investment, is a cornerstone of the bioeconomy (Schütte, 2018). Many studies hold the view that 

technological innovation has the potential to reduce carbon emissions by improving agricultural 
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productivity, reducing cultivated land supply, raising innovation efficiency, and promoting the circular 

economy (Xiong et al., 2016; Frank et al., 2019; Balsalobre-Lorente et al., 2019; Nwakae et al., 2020). For 

example, Frank et al. (2019) showed that agriculture could significantly contribute to global carbon 

emission reductions, potentially achieving a reduction of 0.8–1.4 Gt of CO2-equivalent by 2050 through 

applying emission-reducing technologies (e.g., new animal feed supplements, nitrification inhibitors, or 

anaerobic digesters) and making structural changes (e.g., changes to the crop and livestock production 

portfolio). Frank et al. (2019) studied the roles of technology and structural changes in carbon reduction 

measured and found that the innovation subsystem has become an integral part of the agricultural carbon 

emissions system. Additionally, increasing studies have found that R&D investments not only stimulate 

technological innovation but also foster the development of both the innovation subsystem and the coupled 

production subsystem within the plant-based bioeconomy as they also improve production efficiency 

through promoting the recycling and reuse of agricultural residues, e.g., biorefinery and renewable energy 

(Lebuhn et al., 2014; Gutzler et al., 2015). This also makes the innovation subsystem and coupled 

production subsystem more relevant. 

However, some agricultural literature insists that the increase in carbon emissions caused by technological 

innovation is larger than the decrease in carbon emissions that such innovation enables. This is because, 

with the applications of technological innovation (e.g., new biotechnology and breeding technology), more 

biomass and energy are required to support the transition to bioeconomy (Henle et al., 2008; Fleiter et al., 

2012; Iris and Lam, 2019). The increasing demand for biomass can lead to land use conflicts, biodiversity 

loss, and an overuse of chemicals and energy (Deininger, 2013; Liobikiene et al., 2020). In particular, land 

use conflicts and biodiversity loss can impair the ecological services previously provided by the land system, 

thereby diminishing its carbon absorption capacity, which can directly increase carbon emissions during 

productions. As technological innovation can also alter labour structures and promote a sustainable increase 

in gross domestic production in the socioeconomic subsystem, labour and capital inputs in agricultural 

production can be affected; thus, this results in higher carbon emissions as well as the need for increased 
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capital investment in technological innovations (Tian et al., 2014; Xiong et al., 2020; Fu et al., 2021). 

Therefore, agricultural carbon emissions are closely linked to agricultural production, socioeconomic 

development, and land-use changes. Whether technological innovation can effectively reduce carbon 

emissions depends on the interactions among agricultural production, socioeconomic activities, and the 

environment’s carrying capacity, which may be primarily represented by the carbon emissions from land-

use changes or emissions per unit of GDP (Garrone and Grilli, 2010; Wen et al., 2021). These complex 

interactions within the agricultural carbon system and their effects on net carbon flow have recently 

attracted increasing academic attention (Fong et al., 2009; Fu et al., 2015; Zhao et al., 2018; Benbi, 2018; 

Ghiat et al., 2021).  

1.2.2 Sustainable economic growth and the decoupling of carbon emissions 

While there is a growing body of literature on the potential of the forest bioeconomy to mitigate carbon 

emissions (Hetemäki, 2014; Giurca, 2018; D'Amato et al., 2018), most of the studies are qualitative analyses 

conducted at the macro-level (Luhas et al., 2021; Jonsson et al., 2021; Kumeh et al., 2021; Rebolledo-Leiva 

et al., 2023). Although these studies indicate the good potential for the forest-based bioeconomy to lead to 

carbon emissions reduction, whether from path dependence in the framework of the sustainable 

bioeconomy or from the use of state-of-the-art technology (Luhas et al., 2021; Heiskanen et al., 2022), they 

lack identified actions. Among the few quantitative analyses, there are increasing studies evaluating the 

role of technological innovations (e.g. as indicated by patent applications) in the forest-based bioeconomy 

in climate-change mitigation (Lovrić et al., 2020; Ladu et al., 2020; Harrahill et al., 2023). Such literature 

suggests that the context of applying technological innovation in forest-based bioeconomy and the diffusion 

pathway of technological innovation are important, because technological innovations in the forest-based 

bioeconomy can affect emissions differently (positively or negatively), in different countries and at 

different levels with different approaches taken (Ganda, 2019; Giurca and Befort, 2023). At the same time, 

the estimation of carbon emissions and their drivers in the same region may produce different results 

depending on the aggregation level of data used (Wen et al., 2021). However, how innovation diffusion in 
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the forest-based bioeconomy affects carbon emission and how carbon emission fluxes in the ecosystem in 

one area affect the adjacent and distant regions through spatial interaction and diffusions are still unknown.  

The spatial pattern of carbon emissions and the mechanisms of emissions reduction have so far been studied 

by decomposing the influence of urban agglomerations, technological innovation and industrial upgrading 

on carbon emissions, e.g., with the Logarithmic Mean Divisia Index (Kalnay and Cai, 2003; Bianco et al., 

2024) and Spatial Durbin Model (SDM) (Wen et al., 2021; Chen et al., 2023). Although it is recognized 

that carbon cycles in the bioeconomy system reflect emissions changes concomitant with land-use change 

(Wang et al., 2023), the role of inter-regional interactions and their spillover effects remains less scrutinized. 

Furthermore, the forest-based bioeconomy covers all sectors of the value chain. Although some studies 

have estimated the effect of substituting non-food biomass for fossil fuels at the sector level using life cycle 

assessment (LCA) (Phan-huy et al., 2023), the substitution effect may be offset by the carbon emissions 

generated during the regional production process. This may lead to double accounting when calculating 

carbon emissions in the eco-economic system. 

1.2.3 Innovation and green productivity 

Bioclusters can play an important role in the sustainable transition to bioeconomy, especially in Germany. 

On the one hand, bioclusters are characterized by coupled production systems, leading to a stronger 

horizontal and vertical implication for industrial integration (Wesseler and von Braun, 2017). The circular 

production mode, widely embraced in bioclusters, is highly anticipated to allow bridging innovation with 

climate neutrality (Biber‐Freudenberger et al., 2020). This can also facilitate the transition from a linear 

to a non-linear production model. Furthermore, the close cooperation among biotech companies, research 

institutes, technology parks, etc., creates sufficient scientific outputs and innovations to support the 

transition to bioeconomy. Especially for Germany, bioclusters, which are characterized by a high spatial 

concentration, are emerging as important new technology impulse givers in this respect (Dorocki, 2014). 

Germany's thriving bioclusters, comprising over 770 biotechnology companies in 2021, have created 

substantial scientific outputs, offering opportunities to promote green efficiency and productivity at large 
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(FMEACA, 2022). Although Germany is a leading country in promoting the bioeconomy, it has been found 

to have low R&D productivity due to a mismatch of production factors and a lack of focus on the efficient 

allocation of resources. Additionally, the role of innovation in reducing carbon emissions has been 

overlooked. Thus, there is a need to enhance green productivity in Germany. 

Given this, a sustainable development of the bioeconomy requires a better understanding of the implications 

of establishing bioclusters, as an institutional innovation, on green productivity. The literature suggests that 

green productivity has certain advantage over R&D productivity (Du et al., 2012; Li et al., 2019; Wang and 

Jiang, 2020). Unlike the productivity in the traditional linear production model that aims to increase 

production and economic efficiency only and results in high pollution, green productivity takes the 

environmental performance into account and allows a whole picture to be considered for achieving harmony 

between economic development, resources, and the environment (Zhao et al., 2022). To measure green 

productivity, this calls for some reconsideration about the input-output relationship. So far, approaches like 

Data Envelopment Analysis (DEA) and Super-efficiency DEA, have been used to estimate green 

productivity (Guo and Yuan, 2020; Lee and Lee, 2022). Among them, the super slacks-based-measure 

(super-SBM) model with undesirable outputs proposed by Tone (2002) is widely applied due to its 

advantages of allowing effectively ranking multiple efficient DMUs. In addition, urban carbon emissions, 

the primary contributors to global warming, are, in many cases, generated from the process of economic 

value creation (Amin et al., 2020; Li et al., 2021). Recent studies, therefore, tend to account for carbon 

emissions as an undesirable output (Gao et al., 2020; Song et al., 2022). So far, the Porter hypothesis has 

been used to examine the positive impact of institutional innovation on technological innovation (Gimenez 

and Sanau, 2007; Chhetri et al., 2012; Donbesuur et al., 2020). The close linkage between technological 

innovation and green productivity has been evaluated empirically as well (Du et al., 2019; Jiakui et al., 

2023). However, there is a gap in understanding the mechanisms of institutional innovation on green 

productivity, especially the performance of institutional innovation in the bioeconomy, which needs to be 
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measured empirically. Thus, empirical evidence on whether and how the establishment of bioclusters 

affects green productivity is needed. 

1.3 Research objectives and questions 

The overarching aim of this dissertation is to explore the implication of the bioeconomy on sustainable 

development. The guiding research question in this dissertation, therefore, is whether and how the transition 

to bioeconomy can promote sustainable development. Since sufficient technological innovation and 

political support are two pillars of bioeconomy, the influencing mechanisms of technological and 

institutional innovation are estimated in this dissertation. Consequently, three specific objectives and 

associated research questions are identified and addressed in each of the proceeding three chapters, 

respectively.  

Research Objective 1 (Chapter II): The first objective of this dissertation is to estimate the potential 

mitigation of technological innovation on carbon neutrality, which is one of the most important indicators 

for sustainability under the transition to bioeconomy.  

Research question: Will the transition to a plant-based bioeconomy reduce carbon emissions?  

To deal with the mitigation effect of agriculture on carbon emissions, this chapter aims to contribute to 

projecting agricultural emissions by detailing the impact of R&D investments on carbon emissions. 

Focusing on the agricultural sector in Germany, this dissertation applies a system dynamics (SD) modelling 

approach to simulate the potential impact of R&D investment on carbon emissions through dynamic 

interactions among agricultural carbon subsystems. This dissertation evaluates the net effect of R&D 

investments on carbon emissions, incorporating carbon sinks from land use and plant production, as well 

as carbon reductions achieved through the re/upcycling of agricultural residues and by-products. 

Research Objective 2 (Chapter Ⅲ): The second objective is to analyse the direct and indirect impacts of 

the forest-based bioeconomy on carbon emission. 
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As biomass sources mainly originate from agriculture and forest, the mitigation effects of forest and 

agriculture sectors on carbon emissions are distinguished.  

Research question: Will the transition of a forest-based bioeconomy reduce carbon emissions”?  

Given that there is currently limited understanding of the impact of the forest-based bioeconomy on carbon 

emissions in Germany, this dissertation aims to estimate the spatial impact of the forest-based bioeconomy, 

especially the role of technological innovation in the forest-based bioeconomy on carbon emissions. Using 

an extended Spatial Durbin Model and 401 NUTS-3 level panel data from 2000 to 2021, this dissertation 

measures the intra-regional and spillover effects of technological innovation, the size of the bioeconomy, 

industrial upgrading and their interactions on carbon emissions empirically. 

Research Objective 3 (Chapter IV): The third objective of this dissertation is to measure the impact of 

bioclusters on sustainable performance where carbon emissions are considered as an undesired output.  

Research question: Will the establishment of bioclusters promote green productivity”?  

Given the research gap about the mechanisms of institutional innovation’s effects on green productivity, 

this dissertation, focusing on Germany at the NUTS-3 level, aims to estimate the causal effects of 

bioclusters on green productivity mediated by technological innovation. The dissertation uses a quasi-

natural experiment, including a series of methods, like difference in differences (DiD), Staggered 

DiD(SDiD), PSM-SDiD, and difference in difference in differences (DDD), and a mediating model to 

estimate the impact of establishing bioclusters on green total factor productivity (GTFP) in Germany.  

1.4 Structure of the dissertation 

This dissertation examines the implications of developing the bioeconomy for promoting sustainable 

development in Germany, analysing it from two perspectives and three influencing mechanisms. One 

perspective is obtained from an impact evaluation. Using NUTS-3 panel data from 2000 to 2021, this 

dissertation examines the impacts a bioeconomy in Germany would have on carbon emission reduction and 
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green productivity empirically, providing empirical evidence regarding the efficiency of the bioeconomy 

strategy for policymakers and contributing to the relevant body of literature. The other perspective is 

obtained from a scenario simulation process. This dissertation anticipates the potential mitigation effect of 

technological innovation on agricultural carbon emissions as well as the dynamic interactions among 

subsystems from 2020 to 2050, with the simulation period chosen to fit in Germany’s goal of attaining 

carbon neutrality by 2050. Three influencing mechanisms are proposed covering structural changes in the 

production factors, namely changes in land use and labour, and industrial structure; technological 

innovation and its spatial diffusion; and institutional incentives in the bioeconomy. 

The remainder of the dissertation is organized as follows. Chapter Ⅱ and Ⅲ discuss the potential mitigation 

effects of agriculture and forestry under the transition to bioeconomy on carbon emissions, respectively. 

Chapter Ⅳ analyses the influences of institutional innovations in the bioeconomy on the green total factor 

productivity, while the final chapter presents the conclusion part (Chapter Ⅴ) with some policy suggestions 

and methodological implications. The structure of the dissertation is illustrated in Figure 1.2. 
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Figure 1.2: Structure of the dissertation 

Source: Own operations. 
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2 Potential mitigation effects of technological innovation in the plant-based 

bioeconomy on carbon emissions1 

2.1 Objectives and theoretical framework 

2.1.1 Background and organization  

Agriculture is the cornerstone of the European Union’s bioeconomy due to its role as a primary biomass 

supplier and as an important sector with great potential for carbon emission reduction. Agriculture can both 

generate carbon emissions through farming activities and industrial processes and at the same time act as a 

carbon sink via plant photosynthesis and land use changes (Pataki et al., 2006; Wang et al., 2012; Gutzler 

et al., 2015). This dual role complicates the measurement of agriculture’s actual impact on carbon emissions. 

The introduction of technological innovation, which is achieved through R&D investment and is an 

important pillar in the bioeconomy (Schütte, 2018), further adds to the difficulty. This is because such 

innovation can reduce carbon emissions by improving resource efficiency and enhancing carbon 

sequestration, but it can also increase emissions due to the rebound effect. 

So far, there is little knowledge about whether and how R&D investments can mitigate agricultural carbon 

emissions with the transition to the bioeconomy. Many studies suggest that technological innovation has 

the potential to reduce carbon emissions by improving agricultural productivity, reducing the need for 

cultivated land, enhancing innovation efficiency, and promoting a circular economy (Xiong et al., 2016; 

Frank et al., 2019; Balsalobre-Lorente et al., 2019; Nwakae et al., 2020). R&D investment, often used as 

an indicator of technological innovation, has the potential to reduce carbon emissions by advancing 

biotechnological innovations, improving the production efficiency of biorefineries, and promoting 

 
1 Author statement: Lanjiao Wen (conceptualization, methodology, software, writing-original draft, and revision); Dr. 

Zhanli Sun (conceptualization, revision and supervision); Dr. Lioudmila Chatalova (conceptualization and revision); 

Prof. Dr. Anlu Zhang (conceptualization); Prof. Dr. Alfons Balmann (revision and supervision). 
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bioenergy (e.g., biogas). However, some agricultural literature argues that the increase in carbon emissions 

caused by technological innovation may exceed the reductions they offer. This is because the application 

of certain technologies, such as biotechnology and breeding, requires more biomass and energy to support 

the transition to a bioeconomy (Henle et al., 2008; Fleiter et al., 2012; Iris and Lam, 2019). The growing 

demand for biomass can also lead to land use conflicts, biodiversity loss, and an overuse of chemicals and 

energy (Deininger, 2013; Liobikiene et al., 2020). 

With the transition to the bioeconomy, the agricultural carbon emission system becomes more complex, 

comprising the land use subsystem, agricultural production subsystem, innovation subsystem, coupled 

subsystem (including resource recycling and upgrading use), and the socioeconomic subsystem. 

Specifically, in the plant-based bioeconomy, the productivity of technological investments can be affected 

by many factors, like the input-output relationship, industrial integration, biomass recycling/upcycling use, 

and innovation efficiency. This not only makes the agricultural carbon system more complex and 

challenging to quantify, but also highlights the roles of the innovation subsystem and coupled production 

subsystem, as well as the dynamic interactions among subsystems in carbon emission reduction. 

Furthermore, the decreasing R&D productivity has been reported in Germany (Schäfer, 2014; Ugur et al., 

2016), which makes the role of technological innovation in reducing carbon emissions within the 

agricultural system even less clear. Therefore, understanding how R&D investments impact carbon 

emissions through the dynamic interactions among subsystems in the agricultural system is a major question 

that needs to be answered. 

The present study aims to contribute to projecting agricultural emissions by detailing the impact of R&D 

investments on carbon emissions. Focusing on the agricultural sector in Germany, this study applies a 

system dynamics modelling approach to simulate the potential impact of R&D investments on carbon 

emissions through considering the dynamic interactions among the agricultural carbon subsystems. To 

present the net effect of R&D investments on carbon emissions, this study takes carbon sinks and carbon 
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emission reduction into account, including, e.g., carbon sequestration from land use and plant production, 

and carbon reduction from re-/upcycling of agricultural residues and by-products.  

The rest of this chapter is organized as follows. Section 2.1.2 outlines the relationship among carbon 

emissions, carbon sinks, and carbon emission reduction in the agricultural system. Section 2.2 introduces 

the data and methodology used for simulating net carbon emissions and the dynamic interactions in the 

agricultural system. Section 2.3 describes the design of scenarios for the simulation. The results and policy 

implications are summarized and discussed in section 2.4, while the last section 2.5 concludes the analysis. 

2.1.2 Theoretical framework 

Figure 2.1 illustrates an overview of the subsystems considered under the nexus between agricultural 

sustainability and carbon emissions. Crop production and animal husbandry are the main agricultural 

activities and carbon sources as well. Their production involves input and output flows and is associated 

with carbon emissions from both the farm processes and livestock, while carbon sequestration saved by the 

green landscape and the recycling and reuse of biomass can reduce the emissions to some degree, forming 

an agricultural carbon cycle. Since the agricultural carbon cycle is associated with the production process, 

economic environment, land use cover change, technological level, and producing structure (Lu and 

Guldmann, 2012; Gu et al., 2019), five subsystems in the plant-based bioeconomy are defined and modelled 

in the present study. The five subsystems, namely the land use subsystem, agricultural production 

subsystem, innovation subsystem, coupled production subsystem (including resource recycling and 

upgrading use), and the socioeconomic subsystem (see Figure 2.1), closely interact with each other.  
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Figure 2.1: Overview of the subsystems 

Source: Own operations. 

R&D investment can significantly improve technological innovation and industrial integration (e.g., 

vertical integration) (Wesseler et al., 2015; Wesseler and von Braun, 2017). Thus, the innovation subsystem 

is crucial in the plant-based bioeconomy. Along with industrial integration, value chain integration through 

cascading or circular resource utilization can facilitate agricultural production by switching from a 

traditional linear mode to a non-linear mode, making the interactions between the agricultural production 

subsystem and coupled production subsystem more relevant to each other. As R&D investment can promote 

a cascading use efficiency for biomass, e.g. by promoting its use for biogas production, while new patents 

and biorefineries can contribute to secondary GDP (GDP-2) (Sorda et al., 2013; Grando et al., 2017), they 
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closely link the circular economy with R&D investment in the plant-based bioeconomy (Theuerl et al., 

2019; Kardung et al., 2021). This implies that the innovation subsystem closely interacts with the coupled 

production subsystem and socioeconomic subsystem. 

In addition to the innovation subsystem and coupled production subsystem, the agricultural production 

subsystem, socioeconomic subsystem and land use subsystem are the basic components in the agricultural 

carbon system. Reverting agricultural land use with natural/perennial vegetation (for instance, fallow land) 

is regarded as one of the most efficient ways to accumulate organic carbon in soil (Post and Kwon, 2000; 

Schulp et al., 2008). Thus, sustainable farmland policies, such as the Common Agricultural Policy (CAP) 

and greening reform of the CAP, have been adopted in Germany to improve the biodiversity of farmland. 

Especially, the greening reform of the CAP introduced ecological focus areas (EFAs). Even though EFAs 

have not yet been evidenced to have a positive effect on improving biodiversity as researchers expectated 

(Pe'Er et al., 2017), they have proven to be effective for carbon sequestration (Ottoy et al., 2018). Therefore, 

the EFA is considered in the agricultural carbon emission system. 

In this study, the land use subsystem mainly includes farmland (cropland and grassland) and green land. 

Green land is the sum of the fallow land, ecological focus area (EFA), and grassland, which is associated 

with a net carbon sink. As arable land is associated with the socioeconomic and agricultural production 

subsystems, the land use subsystem directly interacts with the socioeconomic subsystem and agricultural 

production subsystem. The agricultural production subsystem covers the planting and livestock, and also 

their associated carbon emissions. Ploughing and irrigation, which are positively related with the arable 

land area, together with the capital inputs involved in planting (fertilizer, pesticides, and diesel) are 

positively related to carbon emissions. Agricultural production subsystem interacts with all the other 

subsystems directly. This is because agricultural production provides biomass and agricultural residuals for 

the coupled production subsystem, and R&D investment overall (R&Dvest) and R&D investment 

specifically in agriculture (AR&D) from the innovation subsystem are beneficial for improving agricultural 

productivity. Additionally, the basic input factors, such as capital (agricultural investment) and labour, are 
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associated with the socioeconomic subsystem, while the agricultural land is part of the land use subsystem. 

The innovation subsystem is mainly represented by R&D investment overall (R&Dvest), R&D investment 

specifically in agriculture (AR&D), R&D staff, and patents. The coupled production subsystem includes 

bioenergy production and other secondary industries that use biorefineries for production. As it depends on 

the biomass supply and technological investments, this subsystem directly interacts with the innovation 

subsystem and agricultural production subsystem. The socioeconomic subsystem is denoted by GDP, 

secondary GDP (GDP-2), tertiary GDP (GDP-3), labour, population, social investment (Invest) and 

agricultural investment (Ainvest). It directly interacts with the agricultural production subsystem, land use 

subsystem and innovation subsystem. This subsystem may not produce agricultural carbon emissions 

directly, but the activities associated with other subsystems can generate carbon emissions and sequester 

carbon at the same time. 

The effects of the dynamic interactions among R&D investments, land use change and innovation efficiency 

on agricultural carbon emissions are studied in four scenarios in addition to the base scenario, namely (1) 

land effect, (2) structure effect, (3) technological effect and (4) their combined effect. All of them are 

simulated for the period from 2020 to 2050 (see Figure 2.2). 
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Figure 2.2: Simulation progress for net carbon emissions 

Source: Own operations. 

 

2.2 Methodology 

With a system dynamics (SD)approach, the net carbon emissions from 2020 to 2050 and the dynamic 

interactions in the system are simulated. The net carbon emissions over these three decades are projected 

as Germany aims to attain carbon neutrality by 2045. 
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2.2.1 Data source and assumptions 

The carbon emissions data used in this study were calculated on the basis of land use data and emission 

parameters for different land use types and different agricultural activities at the federal level in Germany. 

The historical period was from 2000 to 2019 since the concept of knowledge-based bioeconomy originated 

in the 2000s (Patermann and Aguilar, 2018). The emission parameters were derived from the 

Intergovernmental Panel on Climate Change (IPCC) (2019) and related studies. The land use data from 

2000 to 2019 were collected from the statistics of the German Federal Ministry of Food and Agriculture 

(BMEL), Federal Office of Statistics and Thünen-Institut für Ländliche Räume. The other secondary data, 

such as socioeconomic data, for 2000–2019 were collected from the European Statistical Office (Eurostat), 

Federal Office of Statistics, and BMEL.  

This study assumes that R&D investments have a mitigation effect on agricultural carbon emissions mainly 

through internal interactions with regard to the land use subsystem and innovation subsystem. In addition, 

R&D investments are assumed to be positive with social investment and GDP. Besides, agricultural R&D 

investments are assumed to be positive with R&D investments. 

2.2.2 Structure of the SD model 

The SD model developed by Jay W. Forrester is a decision-making tool that has been widely used to 

simulate the complicated behaviour and feedback of real systems (Forrester, 1970). It involves the use of 

stocks, flows and feedback loops to represent the interdependencies within a system. As an advanced 

simulation tool, it provides enhanced capabilities for visualization, scenario analysis, and user interactivity, 

supporting multi-method modelling and combining system dynamics with agent-based modelling. Owing 

to the complexity discussed previously, the SD model is employed in this study for simulating carbon 

emissions over the period from 2020 to 2050. The reason for choosing this model is that it offers advantages 

for integrated and quantitative simulation in the short and medium term (Fong et al., 2009; Fu et al., 2015; 

Gu et al., 2019).  
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Figure 2.3 displays the subsystems, variables and their interactions in the SD model for the agricultural 

carbon emission system. As shown in Figure 2.3, ploughing and irrigation in the agricultural production 

subsystem, which are positively related to the area of arable land, together with the capital inputs in planting 

(fertilizer, pesticides and diesel) are positive with regard to carbon emissions from plant farming (CE-1). 

The carbon emissions from animal products (CE-2) include enteric fermentation from cows, sheep, and 

pigs. According to the majority of plants that support the bioeconomy in Germany (Eurostat, 2020), wheat, 

barley, maize, silage maize, sugar beet, potato, and rapeseed are included in the agricultural production 

subsystem, denoted as plant-1 to plant-7, respectively. The agricultural investment (Ainvest), labour in 

agriculture (Alabor), and R&D expenditure in agriculture (AR&D) contribute to the total agricultural output 

(GDP-1). Also, arable land is set to be equal to the product of average arable land per capita (ArabR) and 

population. The socioeconomic subsystem includes GDP, secondary GDP (GDP-2), tertiary GDP (GDP-

3), labour, population, social investment (Invest), and agricultural investment (Ainvest), where Invest is 

positively related to Ainvest. While in the innovation subsystem, AR&D is positively related to agricultural 

output (GDP-1), and R&D investment (R&Dvest) can improve the production efficiency of biogas by 

providing advanced pretreatment technologies (Costa et al., 2013; Hagman et al., 2018). The biorefineries 

and biogas production (biogas) comprise the coupled production subsystem. Due to the fact that residues, 

byproducts or waste are no longer disposed but treated as a resource and supplied to biorefineries with the 

support of technological innovation, biorefineries (Biorefinery) and the number of patents (Patents) 

contribute to GDP-2. Also, agricultural waste for biogas, animal manure, and R&D investment (R&Dvest) 

promote the production of biogas. The SD model was implemented using VensimPlus software (Figure 

2.3). The cause-effect relationships among the variables in Figure 2.3 reveal the interactions among 

subsystems. A list of abbreviations of the main variables in the SD model is given in Table A.1. 
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Figure 2.3: SD model of the agricultural carbon emission system 

Note: Variables represented with rectangle boxes are level variables (or stock variables, where the level or 

stock may vary), and variables without boxes are auxiliary variables or constants. 

The specific causal relationship between R&D investment and net carbon emissions is shown in Figure 2.4. 

As R&D investment can reduce carbon emissions by improving biogas production, it has a direct impact 

on decreasing carbon emissions. It can also affect agricultural productivity through influencing agricultural 

R&D investment, and thus it has an indirect impact on carbon emissions. 

 

Figure 2.4: Causal tree for the effect of R&D investment on net carbon emissions 
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2.2.3 Estimation of the net carbon emissions in agriculture 

Net carbon emissions (NCEi) for year i are calculated as the sum of the carbon emissions (CEi), carbon sink 

(CSi), and the amount of carbon emissions reduction (CRi): 

𝑁𝐶𝐸𝑖 = 𝐶𝐸𝑖 − 𝐶𝑆𝑖 − 𝐶𝑅𝑖                                                                                                           (2-1) 

where CRi represents the displacement effect of biogas from a reference system based on fossil-based 

resources (Bachmaier et al., 2010). An increasing number of studies have pointed out the role of the 

replacement effect of bioenergy in reducing carbon emissions (Gustavsson et al., 1995; Weiser et al., 2014; 

Baležentis et al., 2019; IEA, 2020). Referencing Weiser et al. (2014), carbon emission reduction from 

biogas (CRi) in this study is calculated by the emissions of the fossil energy carrier (EFi), the annual 

production of biogas (Ei) and the emissions of the bioenergy carrier (EBi). The fossil energy carrier accounts 

for a mix of natural gas and heating oil for heat provision in Germany and the bioenergy carrier accounts 

for straw-based energy applications in Germany. 

𝐶𝑅𝑖 = (𝐸𝐹𝑖 − 𝐸𝐵𝑖)/𝐸𝐹𝑖 ∗ 100 ∗ 𝐸𝑖                                                                                                   (2-2) 

Unlike the agricultural GHG emissions estimated by the Federal Environment Agency (Umweltbundesamt, 

2019), carbon emissions in this study are estimated by carbon equivalent. Therefore, carbon emissions (CEi) 

for each year i are defined as: 

𝐶𝐸𝑖 = ∑ 𝜂𝑗 ∙ 𝐴𝑖𝑗 + ∑ 𝑇𝑘 ∙ 𝑀𝑖𝑘                                                                                                          (2-3) 

where 𝜂𝑗 (j=1,2,3,4) is the carbon emission parameter for the fertilizer, irrigation, ploughing, and pesticide, 

and Aij is the corresponding area for each type of farming activity j. 𝑇𝑘  (k=1,2,3) denotes the carbon 

emission parameter for manure management for the digestate from cattle, sheep, and pigs, and Mik is the 

corresponding coefficient for the three kinds of animals. 

The carbon sink (CSi) comprises the carbon sequestration in soils and plants. It is calculated as the product 

of the carbon sink parameters 𝛿𝑎, carbon absorption rate 𝛽𝑏, plant harvest index 𝐻𝑏(the ratio of plants’ 
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economic yield to the biological yield), land size Sia for land use type a and economic yield Yib, given by 

the following equation. 

𝐶𝑆𝑖 = ∑ 𝛿𝑎 ∙ 𝑆𝑖𝑎 + ∑ 𝛽𝑏 ∙ 𝑌𝑖𝑏/𝐻𝑏                                                                                                    (2-4) 

where a=1,2,3, representing grassland, fallow land, and the ecological focus area (EFA), and 

b=1,2,3,4,5,6,7, representing wheat, barley, maize, silage maize, sugar beet, potato, and rapeseed.  

All the relevant parameters are shown in Table 2.1. As fallow land has a similar ecoservice function as 

grassland, its sink parameter is set as 0.191. The EFA is composed of buffer strips, field margins, catch 

crops, green cover, hedges, agro-forestry, and so on, among which the former four types dominate the whole 

area. Its carbon sink parameter is also set as the same with grassland.  

Table 2.1: Coefficients for carbon emissions calculation 

Category Activities Items and units Coefficients Source 

Carbon 

emissions (CE) 

Farming Fertilizer (kg CE/kg)  0.8956 ORNL 

 Pesticide (kg CE/kg) 4.9431 ORNL 

 Irrigation (kg CE/ha) 266.48 West, Marland (2002) 

 Ploughing (kg CE/km3) 312.6 IPCC 

Livestock Cattle (kg CE/head•a) 415.91 IPCC 

 Sheep (kg CE/head•a) 35.1819 IPCC 

 Pig (kg CE/head•a) 34.091 IPCC 

Carbon sinks 

(CS) 

Land use Grassland (t CE/ha) 0.191 IPCC 

 fallow land (t CE/ha) 0.191 Own estimation 

 Ecological Focus Area 

(EFA) (t CE/ha) 

0.191 Own estimation 

Crops Wheat (Plant-1) (%) 𝛽=0.4144,H=0.45 IPCC 

 Barley (Plant-2) (%) 𝛽=0.4144,H=0.45 IPCC 
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 Maize (Plant-3) (%) 𝛽=0.4709,H=0.4 IPCC 

 Silage maize (Plant-4) (%) 𝛽=0.4709,H=0.4 IPCC 

 Sugar beet (Plant-5) (%) 𝛽=0.4072,H=0.7 IPCC 

 Potato (Plant-6) (%) 𝛽=0.4226,H=0.7 IPCC 

 Rapeseed (Plant-7) (%) 𝛽=0.45,H=0.25 IPCC 

Carbon 

reduction (CR) 

 EFi (g CO2-eq.MJ-1) 825 Weiser et al. (2014) 

 EBi (g CO2-eq.MJ-1) 133.1 Weiser et al. (2014) 

Note: ORNL is short for the Oak Ridge National Laboratory in the USA. 

2.3 Model validation and scenario designs 

2.3.1 Validation of the SD model 

Validation is essential for SD modelling as it ensures the validity of the model and assesses how trustful of 

the model is (Barlas, 1996; Gu et al., 2019). In this study, nine key variables, including net carbon emissions 

(NCE) and other variables (e.g. CE, CS, CR and FL), are chosen for validation checking (see Table 2.2). 

The relative errors of the selected variables shown in Table 2.2 indicate that most of the values simulated 

by the SD model are close to the historical observations from 2015 to 2019, except for EFA and biogas 

production, implying a valid simulation. As EFA was introduced in 2015, its short-term data structure 

makes the simulation less robust. Due to the support from the Renewable Energies Act (EEG, introduced 

in 2004) and guaranteed feed-in tariffs, the number of biogas plants and the average plant capacity increased 

rapidly in Germany after 2006 (FNR, 2020), leading to a boom in biogas. As this policy support was phased 

out after 2020, it may be the cause for the high relative error seen for biogas. 
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Table 2.2: Relative errors in the simulation (%) 

Year 

Net carbon 

emissions 

(NCE) 

Carbon 

emissions 

(CE) 

Carbon 

sinks 

(CS) 

Carbon 

emissions 

reduction 

(CR) 

Fallow 

land 

(FL) 

Ecological 

focus areas 

(EFA) 

Output-1 Biogas R&Dvest 

2015 0.280 -0.016 0.023 -0.898 0.003 2.618 -0.334 0.148 -0.898 

2016 0.346 0.013 -0.045 -0.826 0.001 -0.564 -0.055 0.293 -0.826 

2017 0.418 0.053 -0.041 -0.758 -0.003 -0.519 -0.206 0.415 -0.758 

2018 

2019 

0.239 0.007 -0.055 -0.499 0.004 -0.420 -0.247 0.541 -0.499 

0.048 0.021 0.029 -0.048 0.005 -0.201 0.061 1.079 -0.048 

 

2.3.2 Scenario designs 

The increase rates observed for the parameters simulated from 2020 to 2050 in the base scenario (Base) are 

the same as the increase rates found in 2019. The differences in carbon emissions between the base scenario 

(Base) and the four simulated scenarios reflect their impacts on carbon reduction, specifically through the 

land effect, structural effect, technological effect, and combined effect. All the related scenarios and 

parameters are shown in Table 2.3 and the detailed scenario designs are covered in Table A.2. 

The land effect arises from the presented by the trade-off between farmland and green land conversion. 

Farmland involves agricultural R&D investment for biomass production and generates carbon emissions 

from farming, while its conversion to green land conversion means it acts as a carbon sink. The green land 

in this study includes grassland, fallow land, and EFA. Since grassland for livestock is a part of farmland 

and highly depends on the arable land and population, the potential for carbon sequestration by grassland 

is unclear (Jones and Donnelly, 2004; McSherry and Ritchie, 2013). As fallow land is an important element 

of the EFA (Pe'Er et al., 2017), sustainable land use management, therefore, is primarily represented by an 

increase in fallow land. In scenario 1 (Land), the share of fallow land (2.99% in 2019) is set to increase to 

5% of arable land in 2020. 
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In scenario 2, the structural effect is reflected by the development of circular economy. Due to the 

significant role of biomass in the circular economy and the target to minimize agricultural residues in 

agriculture (Sherwood, 2020; Sharma et al., 2021), the development of the circular economy is represented 

by the increasing supply of biomass and increasing share of agricultural residuals sent to the biorefinery. In 

the first subcase (Structure 2-1), all the plants are assumed to have faster increase rates than that in the base 

scenario. Alao maize, which usually generates a great number of agricultural residues, is set to have the 

highest growth rate (3%) from 2020 to 2050 among the plants for biogas production. In the second subcase 

(Structure 2-2), to highlight the role of biorefineries as raw materials for the industry sector, it is assumed 

that the share of agricultural residuals for biogas would reduce from 0.4 in 2020 to 0.2 in 2050. Furthermore, 

in Structure 2-3, both cases are considered. 

 Direct R&D investment can not only improve production efficiency in the agricultural production 

subsystem, but also promote the scale of the circular economy by elevating the level of residues 

pretreatment and the resource use intensity for biorefineries (Amidon et al., 2011; Tayeh et al., 2020). To 

display the role of R&D investment in the agricultural production subsystem and coupled production 

subsystem, R&D investment in agriculture (AR&D) and the general R&D investment (R&D) are taken into 

account in scenario 3. In Tech 3-1, the share of agricultural R&D (AR&DR) is set to increase to 6% in 

2020. At the same time, in Tech 3-2, the share of R&D investment in GDP (R&DR) is assumed would 

increase to 0.06 in 2020. Combining Tech 3-1 and Tech 3-2, AR&DR and R&DR are set to increase in 

Tech 3-3. The scheme in the Combine 4 scenario includes the Land scenario, Structure 2-3, and Tech 3-3. 
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Table 2.3: Scenario schemes for different scenarios 

Scenario Schemes 

Base scenario  Base: Ratios are set as same as that in 2019 

Scenario 1-Land effect  Land: Increasing the ratio of fallow land to 0.05 in 2020 

Scenario 2-Structural 

effect 

Structure 2-1: Increasing the supply of agricultural biomass;  

Structure 2-2: Increasing the share of agricultural wastes for biorefineries 

(decreasing the share of waste for biogas from 0.4 in 2020 to 0.2 in 2050); 

Structure 2-3: Increasing both agricultural biomass and the share of 

agricultural wastes for biorefineries 

Scenario 3-

Technological effect 

Tech 3-1: Increasing the share of agricultural R&D in R&D investment 

(AR&DR) to 0.05 in 2020; 

Tech 3-2: Increasing the share of R&D investment in GDP (R&DR) to 

0.06 in 2020; 

Tech 3-3: Increasing both AR&DR and R&DR 

Scenario 4- Combined 

effect 

Combine: Increasing the increment ratio of fallow land to 0.05 in 2050, 

increasing both agricultural biomass and the share of biorefinery, and 

increasing both AR&DR and R&DR 

 

2.4 Results and analysis 

2.4.1 Historical tendency of net carbon emissions 

Figure 2.5 shows the historical tendencies of the Net carbon emissions (NCE), carbon emissions (CE), 

carbon sinks (CS), and carbon emissions reduction (CR) in German agriculture during the period 2000 to 

2019 varying by years. Despite the agricultural carbon emissions fluctuating from 10.5 million tons to 9 

million tons from 2000 to 2019, an overall downward trend could be observed. This is likely because of the 

reducing use of fertilizer and ploughing and the decreasing number of cattle and sheep due to technological 
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improvements in the production for farming and husbandry (Jantke et al., 2020). Furthermore, the 

agricultural carbon sink amount decreased slightly from 1.25 million tons in 2000 to 1.07 million tons in 

2013. After 2014, this figure increased gradually; especially after 2015, whereby it increased rapidly to 1.36 

tons in 2019. Biogas had a minor replacement effect on carbon emission reduction at the beginning of the 

period (2000-2005) when the biogas electricity production was relatively low (445 Mio. kWh in 2000 and 

1696 Mio. kWh in 2005), but such production grew robustly after 2006, reaching 29,245 Mio. kWh in 2017. 

This contributed to a rapid growth in carbon emissions reduction, increasing from 0.28 million tons in 2006 

to 2.41 million tons in 2019 (see Figure 2.5). 

Net carbon emissions (NCE) in German agriculture kept decreasing in the period 2000 to 2019. This 

tendency was similar to the tendency for carbon emissions from 2000 to 2006, as the carbon sink and carbon 

emissions reduction remained nearly constant during this period. Since 2006, NCE has declined gradually 

but in the opposite direction with that of carbon emissions due to the rapid increase in carbon emission 

reduction. Due to the policy reforms promoting biogas, such as guaranteed feed-in tariffs, biorefineries are 

encouraged to produce biogas. During the period from 2006 to 2019, the net carbon emissions decreased 

by almost a third, from 7.79 million tons in 2006 to 5.34 million tons in 2019.  
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Figure 2.5: Net agricultural carbon emissions, carbon emissions, carbon sink and carbon emissions 

reduction from 2000 to 2019 

2.4.2 Scenario analysis 

Using the SD model, the net carbon emissions in the agricultural system are simulated under different 

scenarios for the period 2020 to 2050 (see Figure 2.6). According to Figure 2.6, net carbon emissions are 

projected to decrease rapidly during the period from 2020 to 2050. Net carbon emissions under the Structure 

2-1 (increase agricultural biomass), Structure 2-3 (increase both agricultural biomass and biorefinery), and 

Combine (combined effect) scenarios will remain positive during 2020 to 2050. The results from Structure 

2-1, Structure 2-3, and Combine imply that increasing biomass production may support the circular 

economy, but the increased carbon emissions during the production process cannot be offset by the reduced 

carbon emissions through R&D investment alone. Compared with the Base scenario, the net carbon 
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emissions under the Land (increase the ratio of fallow land), Structure 2-2 (increase the share of 

biorefineries), Tech 3-2 (increase the share of R&D investment), and Tech 3-3 (increase both agricultural 

R&D investment and R&D investment) scenarios are smaller. The result of net carbon emissions under 

Tech 3-2 is the lowest (-2.82 Mt in 2050). This highlights the role of R&D investment in mitigating carbon 

emissions directly. While the results for Land and Structure 2-2 not only indicate that increasing the amount 

of fallow land and developing the circular economy can reduce carbon emissions, but also imply that R&D 

investment can indirectly mitigate carbon emissions through improving the production efficiency of 

biorefineries and by increasing the amount of green land. 

The agricultural carbon emissions calculated in this study correspond to nearly one sixth of carbon dioxide 

equivalents reported by the Thünen institute (61.8 Mt in 2019, cf. Rösemann et al., 2021). This big 

difference may result from two aspects: Once, as mentioned previously, the calculation by Rösemann et al. 

(2021) includes all the GHG emissions from German agriculture, with all kinds of agricultural activities 

and animals of livestock taken into consideration, whereas fewer production management activities (e.g., 

fertilizer, ploughing and irrigation) and only three kinds of animals (caw, sheep, and pig) are considered in 

this study; Second, the carbon emissions calculated by Rösemann et al. is based on carbon dioxide 

equivalents, while our results are based on carbon equivalents. 



34 

 

 

Figure 2.6: Net agricultural carbon emissions under different scenarios from 2000 to 2050 

The agricultural carbon emissions and their causal tree during 2000 to 2050 are shown in Figure 2.7. The 

obtained results show that agricultural carbon emissions will gradually decrease from 2020 to 2050. The 

similar tendencies for CE-1 (carbon emissions from plant farming) and carbon emissions in the causal tree 

(in the right of Figure 2.7) indicate that agricultural carbon emissions are mainly caused by farming 

activities. This adds to the body of the relevant literature by uncovering the mechanism of the technological 

effects on emissions reduction. Specifically, it shows that R&D and AR&D investments can significantly 

lower agricultural carbon emissions. The amount of carbon emissions under Structure 2-1 is the lowest 

(decreasing to 4.33 Mt in 2050), and the figures under Combine (4.44 Mt in 2050) and Structure 2-3 (4.78 

Mt in 2050) are less than that under the Base case (5.12 Mt in 2050), illustrating their greater impacts on 

carbon emissions from the improved circular economy with the increasing biomass supply. 



35 

 

 

Figure 2.7: Carbon emissions and their causal trees under different simulation scenarios from 2000 to 

2050 

Carbon sinks, as stimulated in Structure 2-2, scenario 3 (Tech 3-1, 3-2, and 3-3), and in the Base case, are 

predicted to continuously increase from 2020 to 2050 (see Figure 2.8). While carbon sinks under scenario 

1 (Land) and 4 (Combine) first grow rapidly after 2020, they are then forecast to show a sharp decline in 

2033, before gradually increasing again from 2034 to 2050. This sharp change is mainly related to the 

carbon sinks by green land (CS-1), according to the causal tree. Due to the maximum restriction of the EFA, 

the simulation equation for the EFA changes after 2033 (see the equations in Table A.1). The higher values 

in the Land scenario (6.83 Mt in 2050) suggest that sustainable land use management and increasing 

biomass supply will aid the amount of carbon sinks available. 
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Figure 2.8: Carbon sinks and their causal trees under different simulation scenarios from 2000 to 2050 

The observations from the projected carbon emissions reduction from biogas support the findings that 

biogas production has the potential to improve carbon emission reduction if R&D investment leads to 

cleaner production (Meyer et al., 2012; Ersoy and Ugurlu, 2020). The projected carbon reduction decreases 

gradually after 2020. This arises from the replacement effect of bioenergy on the carbon emission reduction. 

Comparison among the different scenarios indicates that the combined effect has the greatest impact on 

carbon emissions reduction (1.87 Mt in 2050). The values under Tech 3-2 and Tech 3-3 show stable 

decrease (1.3 Mt in 2050). This implies that R&D investment can promote the carbon emission reduction 

at large (see Figure 2.9). 
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Figure 2.9: Carbon emissions reduction under different simulation scenarios from 2000 to 2050 

2.4.3 Sensitivity analysis 

The sensitivity of R&D investment’s impact on net carbon emissions is shown in Figure 2.10. In order to 

test the sensitivity, the change rate for the share of R&D in GDP (R&D-to-GDP ratio) is set to increase and 

decrease by 25%, 15%, 10%, and 5%. The change rates of net carbon emissions represent the percentage 

difference between net carbon emissions at varying R&D-to-GDP ratios and net carbon emissions under 

the base scenario. Figure 2.10 shows that most of the net carbon emissions are similar when the change rate 

of R&D-to-GDP ratio is changed from -25% to 25%. This implies our results are relatively reliable. The 

negative relationship between the change rates of net carbon emissions and the change rates of the R&D-

to-GDP ratio illustrates that net carbon emissions are sensitive to R&D investment. Regarding the tendency 

of the change rates of net carbon emissions, the tendency showed a decrease from 2000 to 2011 and then 

an increase afterwards. Among simulated rates, the change rate is the largest when the change rate of R&D-

to-GDP ratio increased to 25%, reaching  290% in 2011 and returning to 8.7% in 2019. This may be because 

of the model restriction to carbon emissions reduction. 
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Figure 2.10: Result of the sensitivity analysis 

2.5 Discussion and conclusions 

2.5.1 Discussion 

The above analysis shows that R&D investment can contribute to a reduction in agricultural carbon 

emissions during 2020 to 2050, helping realize carbon neutrality at the sector level ahead of 2045. The 

findings regarding the decline in carbon emissions simulated by the SD model under different scenarios 

add to the body of relevant literature by projecting the impact of R&D investments on carbon emissions 

and uncovering the dynamic interactions among the various subsystems in the plant-based bioeconomy. 

Methodologically, the SD model is a cutting-edge approach to understanding and managing the 

complexities of agricultural practices and their impact on carbon emissions. Unlike general projection 

models, such as time series regression (e.g. ARIMA) and back-propagation networks, which require strict 
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data stationarity and often function as opaque "black boxes", the SD model has fewer data stationarity 

requirements and excels at illustrating the interactive influences and feedback mechanisms (Forrester, 1987; 

Bala et al., 2017). By simulating the diverse interactions within the comprehensive agricultural carbon 

system, this study delves into the dynamic nature of agricultural carbon systems in the framework of a 

plant-based bioeconomy. It offers valuable insights for policymakers for forming mitigation strategies in 

the agricultural sector. 

The biggest value difference in the projected agricultural emissions between 2020 and 2050 is simulated 

under the Tech 3-2 scenario (8.47 Mt), and indicates that increasing R&D investment can significantly 

lower agricultural carbon emissions directly. The results suggest that this action can more effectively aid in 

reducing net agricultural carbon emissions than simply increasing agricultural R&D, the amount of fallow 

land, and the cascade/upcycling use of agricultural residues. This is because R&D investment promotes 

biogas production and secondary GDP, linking agriculture and industry through innovation and coupled 

production subsystems (Ehrenfeld and Kropfhäußer, 2017; Popp et al., 2021). The significantly negative 

effect of R&D investment on carbon emissions during the projected period (2020-5050) reveals that with 

the support of appropriate technologies (e.g. biological pretreatments and waste-to-energy technologies), 

the upgrading and cascade use of agricultural residues can be promoted and can stimulate biogas production 

and then reduce carbon emissions (Zhong et al., 2011; Lovrak et al., 2020). The simulated results extend 

the findings in other recent studies that suggest a negative effect of technological investment on carbon 

emissions from agriculture value-added in the bioeconomy (Wang et al., 2020), institutional innovation 

(Huisingh et al., 2015), and the land-energy-carbon nexus (Zhao et al., 2018).  

However, the smaller effect of agricultural R&D investment (-1.99 Mt under Tech 3-1 in 2050) on carbon 

emissions compared with that of total R&D investment may be at variance with the evidence that advanced 

agricultural bio-technologies can help reduce carbon emissions (Subramanian and Qaim, 2009; Galliano et 

al., 2018). This is because agricultural R&D investment can improve the productivity of biomass production. 

Without agricultural R&D investment, just increasing the biomass alone can lead to a worse result, as shown 
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by the simulation performed under Structure 2-1 (1.05 Mt in 2050). In this scenario, while sufficient 

biomass would be available to support the circular economy in the agricultural carbon emission system, the 

higher biomass production generates more carbon emissions if the agricultural productivity remains 

unchanged. This implies that without improving the production efficiency, the coupled production 

subsystem may be incompatible with the productivity aspects related to the production factors (Giampietro, 

2019). However, enlarging the share of agricultural wastes for biorefineries can not only help develop the 

circular economy and contribute to secondary GDP, but can also reduce carbon emissions at large (-2.42 

Mt under Structure 2-2 in 2050). While it is found that increasing biomass and the share of agricultural 

wastes for biorefinery at the same time, the effect of the circular economy on carbon emissions would drop 

off a lot (0.42 Mt under Structure 2-3 in 2050). Since patent productivity, and hence innovation, depends 

on R&D staff, and as both patents and the utilization of agricultural waste for biorefinery contribute to 

secondary GDP, the impact of the circular economy on carbon emissions also underscores the role of R&D 

productivity in reducing carbon emissions. This calls for an improvement in the efficiency of carbon 

emission reduction (Xiao et al., 2021). The effect of the circular economy on carbon emissions found in 

this study is in line with reports on the recycling of agricultural waste for biogas in India (Kapoor et al., 

2020), as well as waste recycling use in other relevant production activities, such as the agro-food industry 

(Kumar and Singh, 2020). 

Green land helps reduce carbon emissions and interacts with R&D investment indirectly through the 

socioeconomic, coupled production and agricultural production subsystems, providing carbon sinks to 

further decrease emissions. If agricultural productivity and the circular economy are improved by R&D 

investments, it will lead to a growth in GDP. The increase in GDP can, in return, increase the level of R&D 

investment, which can increase production efficiency so that less farmland will be needed for production 

and more agricultural land can be converted to fallow land (Ersoy and Ugurlu, 2020). Compared with other 

scenarios, the higher value gap of carbon sinks between 2020 and 2050 simulated in the Land scenario (5.07 

Mt) shows that green land is the main source of carbon sinks. Although increasing the supply of biomass 



41 

 

can increase carbon sinks from the plants, it will be offset by the carbon emissions from the production 

process. This leads to a lowest increase in carbon sink (1.01 Mt during 2020 to 2050 in Structure 2-1). 

Furthermore, although the EFA has been proven to be ineffective at increasing biodiversity (Pe'Er et al., 

2017), it helps to reduce carbon emissions by increasing the carbon sinks, which has been especially noted 

since 2015 when the EFA was introduced to the CAP.  

Yet, compared with other studies, the relatively high error in simulating biogas production may lead to less 

accurate estimates of carbon emission reduction. The results simulated by Horschig et al. (2016) show that 

the savings in carbon dioxide equivalents can be extended to 4.483 Mt in 2025 (equal to 1.22 Mt of carbon), 

which is lower than the amount in 2025 noted from scenario 1 (1.6 Mt), which was the lowest value for 

carbon emission reduction among the projected results. This is due to the boom in biogas that was 

experienced in Germany after 2006, stimulated by the European Environment Agency (EEA), and setting 

of guaranteed feed-in tariffs (Appel et al., 2016; Scarlat et al., 2018). Unlike some studies focusing on 

biogas production with life cycling assessment (Hijazi et al., 2016; Feiz et al., 2020), this study considers 

the interactions among subsystems through a system dynamics approach. From this perspective, the 

simulated results advocate the importance of substitution effect of renewable bioenergy on fossil fuel and 

its potential to support agricultural emissions reduction at the sector level. 

The decreasing tendency for net carbon emissions and increasing tendency for carbon sinks and carbon 

emission reduction from 2000 to 2019 not only show that carbon sinks and carbon emission reduction have 

contributed to the decline in carbon emissions but also underline the role of biogas production and green 

land in reducing carbon emissions. The simulated results further confirm that increasing R&D investment 

directly, developing the circular economy, and converting farmland to green land are efficient strategies for 

reducing carbon emissions.  

Still, this study has some limitations to note. First, due to the limited availability of data, especially for 

waste biorefineries for other chemicals, physicals materials, and other industrial sectors, biorefinery 

production is considered here only for a share of agricultural residuals for biorefinery. Thus, our findings 
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need to be verified by further research, accounting also for the implications of other activities in the coupled 

production subsystem with sufficient data support. Moreover, the short-term time series of some data, for 

instance, EFA, can also make the equations less accurate. This can be adjusted with long-term stable data 

sets in the future. Additionally, most of the carbon emission coefficients were obtained from previous 

studies and the IPCC. This might lead to some uncertainty to some extent (Gu et al., 2019). 

2.5.2 Conclusions 

With the transition to a plant-based bioeconomy, R&D investment can reduce carbon emissions directly by 

improving R&D productivity and indirectly by affecting agricultural productivity, economic growth, and 

land use conversion in relevant subsystems, respectively. This chapter simulated the mitigation effect of 

R&D investment on agricultural carbon emissions by establishinhg an agricultural carbon emission system 

with five subsystems–agricultural production subsystem, land use subsystem, socioeconomic subsystem, 

innovation subsystem and coupled production subsystem–and estimating the interactions among the 

subsystems during 2020 to 2050. Four scenarios are considered to represent the land use effect, structural 

effect, technological effect and integrated effect, respectively. The analysis arrived at five main conclusions. 

First, the decline in net carbon emissions highlighted the direct and indirect effect of R&D investment on 

reducing agricultural carbon emissions. Specifically, increasing R&D investment directly and promoting 

R&D productivity can contribute to carbon emission reduction. Second, the lowest net carbon emissions 

simulated by increasing the share of R&D investment in GDP indicates that the direct effect of R&D 

investment on agricultural carbon emissions is larger than the indirect effect obtained through the land 

effect (Land), structural effect (Structure) and integrated effect (Combine). Third, R&D productivity can 

mitigate carbon emissions by increasing carbon sequestration in plants and the soil, and by increasing 

carbon emission reduction in coupled production subsystem. As R&D productivity is crucial for industrial 

integration, investment in R&D staff and R&D productivity will matter in the future for carbon neutrality. 

Fourth, the dynamic interactions in the agricultural carbon emission system suggest that increasing the 

amount of fallow land, improving the circular economy, and increasing R&D investment are efficient 
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strategies for lowering net carbon emissions. Finally, the historical tendency for net carbon emissions 

implies that efforts to increase the amount of carbon sinks and enhance carbon emissions reduction may be 

more efficient than actions solely focused on reducing carbon emissions. This also reveals that it is 

necessary to calculate the net agricultural carbon emissions by considering more carbon sinks and carbon 

emission reduction in the plant-based bioeconomy. 

The findings point out that appropriate R&D investment has good potential to contribute to net agricultural 

emissions reduction, shedding light on how an economically sustainable agricultural sector can contribute 

to lowering carbon emissions with the transition to the bioeconomy. The study thus advocates for a 

transition to a sustainable plant-based bioeconomy with increased R&D investment to reduce agricultural 

carbon emissions, while highlighting the interactions among subsystems. It also proves the win-win 

outcomes of such integration for the economy and the environment, encouraging sustainable modes of 

agricultural production and more industrial cooperations in the future. The provided insights into the direct 

and indirect effects of R&D investment on agricultural emissions can alert policy-makers to align the 

existing sustainability, land management (e.g. the greening of CAP), and innovation strategies to 

successfully realize carbon naturality at the agricultural sector level (Jantke et al., 2020; Beer and Heise, 

2020). The identified interactions among the studied subsystems and the simulated negative net carbon 

emissions from 2020 to 2050 strongly indicate that German agriculture could achieve carbon neutrality 

before 2045 (EU, 2020). Additionally, it can contribute to societal carbon neutrality by providing carbon 

sinks and reducing carbon emissions.  
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3 Potential mitigation effects of forest-based bioeconomy on carbon emissions2  

3.1 Objectives and conceptual framework 

3.1.1 Background and organization  

The bioeconomy “encompasses the production of renewable biological resources and their conversion into 

food, feed, bio-based products, and bioenergy. This includes agriculture, forestry, fisheries, food, pulp, and 

paper production, as well as parts of chemical, biotechnological and energy industries” (EC, 2012). The 

forest-based bioeconomy, including the entire forest value chain, is particularly considered as a key player 

in the arena of promoting the transition to a bioeconomy for achieving decarbonization. 

Although there is more and more literature discussing the mitigation potential of the forest bioeconomy on 

carbon emissions (Hetemäki, 2014; Giurca, 2018; D'Amato et al., 2018), most of the studies are largely 

qualitative analyses performed at the macro-level (Luhas et al., 2020; Jonsson et al., 2021; Kumeh et al., 

2021; Rebolledo-Leiva et al., 2023). Among the few quantitative analyses, there are increasing studies 

evaluating the role of technological and institutional innovations (e.g. patent applications and industrial 

integration) in climate mitigation (Ladu et al., 2020; Lovrić et al., 2020; Harrahill et al., 2023). However, 

still little is known about how innovation diffusion through industries affects carbon emission and how 

carbon emission fluxes in the forest bioeconomy in one area affect the adjacent and distant regions through 

spatial interaction and diffusions. Thus, the real contribution of technological and institutional innovation 

in the forest bioeconomy as well as their spillover effects on carbon reduction are not clear. 

To bridge the research gaps, this chapter, focusing on the forest bioeconomy in Germany, seeks answers to 

the following three questions: 1) Whether the size of the bioeconomy is decoupled from the carbon 

 
2 Author statement: Lanjiao Wen (conceptualization, methodology, software, writing-original draft, and revision); Dr. 

Zhanli Sun (conceptualization, revision and supervision); Dr. Ir. Frans Hermans (data curation); Prof. Dr. Alfons 

Balmann (revision and supervision). 



45 

 

emissions in the regional eco-economic system from 2000 to 2021 in Germany? 2) How does the diffusion 

of technological innovation in the forest-based bioeconomy affect carbon emission at the county level? 3) 

How does the spatial spillover effect of technological innovation in the forest-based bioeconomy determine 

the emissions reduction potential and direction? By addressing these points, the present study aims to 

contribute to the currently limited knowledge about the impact of the forest-based bioeconomy on carbon 

emissions in Germany.  

The remainder of this chapter is organized as follows. Section 3.1.2 outlines the relationship between carbon 

emissions and the forest-based bioeconomy in Germany. Section 3.2 introduces the methods and data 

sources. The results are summarized in Section 3.3. The last section (3.4) concludes this part of the work.  

3.1.2 Conceptual framework: Carbon emissions and the forest-based bioeconomy in Germany 

Human activities rely on land-related ecosystem services, necessarily affecting the ecosystem’s carrying 

capacity. Anthropogenic impacts–from unavoidable changes in land cover for creating living and 

production space to avoidable environmental harms–are associated with carbon emissions (Pataki et al., 

2006). Land use change driven by socioeconomic dynamics such as urbanization and industrialization is 

one of the largest contributors to carbon emissions today. At the same time, it directly affects the 

ecosystem’s capacity to sequester carbon in soils, the forests, and geological formations (Bockstael et al., 

1995; Pataki et al., 2006). The carbon cycle is further affected by physical processes in the lithosphere, 

which are, however, largely outside of human control. Figure 3.1 illustrates carbon emissions production 

and regulation in a stylized eco-economic system, representing the economic activities that may occur in a 

regional eco-economic system. 

In line with the European Commission, Germany has an ambition to develop a bioeconomy that depends 

largely on the forest-based sector (Giurca and Späth, 2017). The forest-based bioeconomy in Germany not 

only produces traditional wood products, such as woodwork, pulp and paper, and wood for bioenergy 

(Jochem et al., 2015), but also aims to maximize value increment in the whole value chain, which should 

result in high-value products and offering more job opportunities. Technological innovation is regarded as 
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a key pillar for the forest-based bioeconomy. Both policy makers and scholars acknowledge that slow 

technological development can hinder the development of the forest-based bioeconomy (BMBF, 2011) and 

thus confine many relevant technological developments to the laboratory and pilot scale (Hagemann et al., 

2016).  

According to the theory of endogenous growth, knowledge spillover through learning by doing has a 

significant positive effect on economic growth (Arrow, 1962). As an endogenous input factor, technological 

innovation in the forest-based bioeconomy together with other production factors, such as labour, land, and 

capital, can promote new resource allocation efficiency and economic growth. This will increase the 

productivity and competitiveness of local industries in the value chain of the bioeconomy. The knowledge 

spillover effect driven by technological innovation among the value chain will also stimulate industrial 

integration and labour division through optimizing the factor substitution efficiency, facilitating bioclusters 

and spatial industrial patterns to develop.  

Due to the spatial diffusion of innovations, a higher degree of technological innovation can also improve 

the competitiveness of adjacent areas (Vaitsos, 1978). Industrial clusters can accelerate industrial upgrading 

by increasing the competitiveness of the involved industries and their capacities for value-added generation, 

economic diversification, and employment creation. From this perspective, intra-cluster competitiveness 

not only contributes to economic growth, but also leads to the reduction of carbon emissions (Gautam, 2014; 

Cui et al., 2021). While adjacent counties may provide abundant urban land for industrial growth (Guastella 

et al., 2017; Gao et al., 2020), they have the potential to offer extra job opportunities too, thus attracting 

labour to move to the areas.  
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Figure 3.1: Carbon cycle in a regionally integrated land use system 

Source: Own representation. 

3.2 Methodology 

In this research, the analysis entails three steps: First, the net carbon emissions are calculated for the period 

from 2000 to 2021. Next, the size of the bioeconomy at each county/city is quantified to assess the regional 

development of bioeconomy. Then, a Spatial Durbin Model is employed to estimate the impacts of the 

forest-based bioeconomy on net carbon emissions. 
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3.2.1 Estimations of the net carbon emissions at the county-level 

Net carbon emissions are calculated as the sum of carbon emissions and carbon sinks associated with the 

use of arable land and construction land, which have the highest energy consumption (Zhao et al., 2015; 

Zhang et al., 2015). In the present study, carbon emissions for construction land are calculated indirectly as 

the product of the energy consumption per unit of GDP (𝑇𝑖 ) and GDP of the secondary and tertiary 

industries (𝑀𝑖) in county i (Wen et al., 2021). Although crops produced on arable land can, to some extent,  

absorb carbon emissions, the use of fertilizers, agricultural machinery, and irrigation systems generate high 

net emissions (Yang et al., 2016). Therefore, carbon emissions (ECi) for each county/city are defined as: 

𝐸𝐶𝑖 = 𝜂𝑎 ∙ 𝐶𝑖 + 𝑇𝑖 ∙ 𝑀𝑖                                                                                                                        (3-1) 

where 𝜂𝑎 is the carbon emissions parameter for arable land and Cii is the arable land size. 

The carbon sink (ESi) of county i comprises the carbon sequestration in forests, grassland soils, and water 

areas, calculated as the product of the carbon emissions parameter 𝛿𝑗 and land size Sij for each land use type 

j: 

𝐸𝑆𝑖 = ∑ 𝛿𝑗 ∙ 𝑆𝑖𝑗                                                                                                                                   (3-2) 

where j=1,2,3 and represent forest, grassland and water, respectively. The net carbon emission (NECi) for 

county i is then:  

𝑁𝐸𝐶𝑖 = 𝐸𝐶𝑖 − 𝐸𝑆𝑖                                                                                                                            (3-3) 

3.2.2 Measuring the size of the bioeconomy 

The size of the bioeconomy varies depending on the definitions and approaches taken. As the majority of 

studies regarding bioeconomy are qualitative conceptual papers with different definitions, the 

measurements of the size of the bioeconomy differ accordingly. The diverse definitions and lack of 

harmonized approaches for comparison are major challenges for quantitative analysis of the contribution 

of the bioeconomy towards sustainability. Kuosmanen et al. (2020) concluded that there are basically four 
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types of approaches to measure the size of the bioeconomy, namely the output-based approach by nova-

JRC, Finnish bioeconomy statistics, the physical supply and use approaches developed by JRC, Statistics 

Netherlands–CBS, and the Thünen Institute’s methodology. Among these, Thünen’s approach not only 

offers the advantage in highlighting the role of resource-based materials flows in the process of production, 

which is consistent with the definition provided by the German bioeconomy strategy (BMEL, 2014), but 

also has the advantage of reflecting the direct socioeconomic contribution of the bioeconomy as it focuses 

on the sectoral level. For this, this study adopts the Thünen Institute’s approach to measure the size of the 

bioeconomy in Germany. Since “value added” has been proven to be preferable to that of gross output to 

avoid repeated calculations (Kuosmanen et al., 2020), this study measures the size of the bioeconomy by 

employing the Thünen Institute’s approach as reported by Iost et al. (2019) and considering the indicators 

gross value added and employment.  

According to Iost et al. (2019), the agricultural sector, including agriculture, forestry, and fishing, is 

considered to be 100% bio-based. For the manufacturing sector, the bio-based share used in this study is 

the average (𝑏𝑚
̅̅ ̅̅ ) of the different bio-based shares of the sub-manufacturing sectors (at the 4-digit level), 

including food and feed, textile, leather, wood and wood products, paper and paperboard, printing, 

chemicals, pharmacy, plastics, furniture, and others. As it is difficult to bring the service sector data in line 

with the NACE sectors, the average bio-based share (𝑏𝑜
̅̅ ̅) of other experimental developments based on 

natural science and engineering is used as the bio-based share for the service sector (the bio-based shares 

of relevant NACE sectors at the 4-digit level are shown in Table A.3). Two dimensionalities for the size of 

bioeconomy in Germany are calculated as below: 

𝐵𝑉𝑖 = 𝑉𝐴𝑖 + 𝑉𝑀𝑖 ∗ 𝑏𝑚
̅̅ ̅̅ + 𝑉𝑂𝑖 ∗ 𝑏𝑜

̅̅ ̅                                                                                                       (3-4) 

𝐵𝐸𝑖 = 𝐸𝐴𝑖 + 𝐸𝑀𝑖 ∗ 𝑏𝑚
̅̅ ̅̅ + 𝐸𝑂𝑖 ∗ 𝑏𝑜

̅̅ ̅                                                                                                       (3-5) 

where 𝐵𝑉𝑖 and 𝐵𝐸𝑖 are the value added of bioeconomy and the number of employees in the bioeconomy 

for county i respectively; VA, VM and VO denote the value added for the agriculture sector, manufacturing 
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sector, and service sector respectively; EA, EM and EO presents the number of employees in the agriculture 

sector, manufacturing sector, and service sector respectively. 

3.2.3 The Spatial Durbin Model 

A Spatial Durbin Model (SDM) is developed to estimate the impact of a forest-based bioeconomy on carbon 

emissions. Prior to modelling, the global spatial autocorrelation index (Moran’s I) is calculated to test for 

spatial autocorrelation and spatial heterogeneity (Odland,1988; Geniaux and Martinetti, 2018; Feng and 

Chen, 2018): 

𝑀𝑜𝑟𝑎𝑛′𝑠 𝐼 = ∑ ∑ 𝑊𝑖𝑘
𝑛
𝑘=1 (𝑁𝐶𝐸𝑖

𝑛
𝑖=1 − 𝑁𝐶𝐸̅̅ ̅̅ ̅̅ )(𝑁𝐶𝐸𝑘 − 𝑁𝐶𝐸̅̅ ̅̅ ̅̅ )/𝑉2 ∑ ∑ 𝑊𝑖𝑘

𝑛
𝑘

𝑛
𝑖=1                              (3-6) 

with the mean (𝑁𝐶𝐸 − 𝑁𝐶𝐸̅̅ ̅̅ ̅̅ ), variance of net carbon emissions (𝑉) and spatial weight matrix (Wik). The 

values of Moran’s I index are within the range of [-1, 1], indicating either positive or negative spatial 

correlation among counties (Bai et al., 2012; Anselin, 2013; Gao et al., 2020). If the value is zero, then the 

counties are not spatially correlated.   

Numerous studies suggest that carbon emissions, being affected by the natural environment and human 

activities, have regional spillover effects (Jun et al., 2017; Wang et al., 2018; Wang et al., 2019). The range 

of this effect, however, varies depending on the model in use. The advantage of the SDM is that–other than 

the spatial lag model (SLM) and the spatial error model (SEM)–it can capture the spatial correlation of 

dependent variables and the spatial spillover effects of independent variables (LeSage and Pace, 2010). 

Furthermore, the SDM usually has a higher level of goodness-of-fit compared with other spatial panel 

models (Wen and Liao, 2019). Since the null hypothesis of random effects is rejected (Prob>chi2=0.000 

according to Hausman’s test), a SDM with fixed effects is applied. 

The impact of the forest-based bioeconomy on carbon emissions is twofold. Apart from the size of the 

bioeconomy, the number of patents in the forest-based bioeconomy and its rate of application (as proxy for 

technological innovation), as well as their interactions with the size of bioeconomy are selected as the core 

variables. In accordance with Grossman and Krueger (1995), two dimensionalities of the size of the 
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bioeconomy in Germany, namely the value added of bioeconomy (BV) and number of employees (BE) in 

the bioeconomy, are used to estimate the impact of the bioeconomy scale on carbon emissions. The number 

of patents (Number) in the forest-based bioeconomy and their application rate in the current year (Rate) are 

used to present two aspects of technological innovation: the former denotes the intensity of technological 

innovation and the latter denotes the transformation efficiency of scientific achievements, respectively 

(Popp et al., 2003; Harrahill et al., 2023). By accounting for the socioeconomic control variables, namely 

industrial upgrading (Structure), which is the ratio of GDP of the tertiary sectors to GDP of the industrial 

sectors, the labour density (Labour), which is the amount of labour per ha, the size of urban construction 

area (Urban) and per capita GDP (PerGDP), the basic SDM in the present analysis can be written as SDM 

1: 

𝑙𝑛𝑁𝐶𝐸 = 𝜌𝑊𝑙𝑛𝑁𝐶𝐸 + 𝜕1𝑙𝑛𝐵𝑉 + 𝜕2𝑙𝑛𝐵𝐸 + 𝜕3𝑙𝑛𝑁𝑢𝑚𝑏𝑒𝑟 + 𝜕4𝑙𝑛𝑅𝑎𝑡𝑒 + 𝜕5𝑙𝑛𝐿𝑎𝑏𝑜𝑢𝑟 +

𝜕6𝑙𝑛𝑃𝑒𝑟𝐺𝐷𝑃 + 𝜕7𝑙𝑛𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 + 𝜕7𝑙𝑛𝑈𝑟𝑏𝑎𝑛 + 𝜑1𝑊𝑙𝑛𝐵𝑉 + 𝜑2𝑊𝑙𝑛𝐵𝐸 + 𝜑3𝑊𝑙𝑛𝑁𝑢𝑚𝑏𝑒𝑟 +

𝜑4𝑊𝑙𝑛𝑅𝑎𝑡𝑒 + 𝜑5𝑊𝑙𝑛𝐿𝑎𝑏𝑜𝑢𝑟 + 𝜑6𝑊𝑙𝑛𝑃𝑒𝑟𝐺𝐷𝑃 + 𝜑6𝑊𝑙𝑛𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 + 𝜑6𝑊𝑙𝑛𝑈𝑟𝑏𝑎𝑛 + 𝛾𝑙𝑛 + 𝜀  (3-7) 

With the spatial autocorrelation coefficient given by 𝜌, spatial weight matrix 𝑊, spatial lag of the dependent 

variable 𝑊𝑙𝑛𝑁𝐶𝐸, spatial lag of the explanatory variables 𝑊𝑙𝑛𝑋, matrix of the explanatory variables 𝑋, an 

n×1 vector of ones 𝑙𝑛, vectors of respective regression coefficients 𝜕, 𝜑, 𝛾 for X, 𝑊𝑙𝑛𝑋 and 𝑙𝑛 and the error 

term 𝜀. 

Growth-pole theory and empirical observations suggest that the more developed an area is, the stronger its 

spatial agglomeration effect on neighbouring regions (integration effect), because a higher development 

level creates centripetal forces on capital, technology and labour (Wen et al., 2016). The effect of 

technological innovation on net carbon emissions can, therefore, be mediated through the interacting input 

and output factors (resource allocation). In the extended model (SDM 2), this can be captured by accounting 

for interactions between the Number and mediating variables BV, BE, Structure, and PGDP:  
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𝑙𝑛𝑁𝐶𝐸 = 𝜌𝑊𝑙𝑛𝑁𝐶𝐸 + 𝜕1𝑙𝑛𝐵𝑉 + 𝜕2𝑙𝑛𝐵𝐸 + 𝜕3𝑙𝑛𝑁𝑢𝑚𝑏𝑒𝑟 + 𝜕4𝑙𝑛𝑅𝑎𝑡𝑒 + 𝜕5𝑙𝑛𝐿𝑎𝑏𝑜𝑢𝑟 +

𝜕6𝑙𝑛𝑃𝑒𝑟𝐺𝐷𝑃 + 𝜕7𝑙𝑛𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 + 𝜕7𝑙𝑛𝑈𝑟𝑏𝑎𝑛 + 𝜷𝟏𝒍𝒏𝑵𝒖𝒎𝒃𝒆𝒓 ∗ 𝒍𝒏𝑩𝑽 + 𝜷𝟐𝒍𝒏𝑵𝒖𝒎𝒃𝒆𝒓 ∗ 𝒍𝒏𝑩𝑬 +

𝜷𝟑𝒍𝒏𝑵𝒖𝒎𝒃𝒆𝒓 ∗ 𝒍𝒏𝑺𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆 + 𝜷𝟒𝑳𝒏𝑵𝒖𝒎𝒃𝒆𝒓 ∗ 𝒍𝒏𝑷𝒆𝒓𝑮𝑫𝑷 + 𝜑1𝑊𝑙𝑛𝐵𝑉 + 𝜑2𝑊𝑙𝑛𝐵𝐸 +

𝜑3𝑊𝑙𝑛𝑁𝑢𝑚𝑏𝑒𝑟 + 𝜑4𝑊𝑙𝑛𝑅𝑎𝑡𝑒 + 𝜑5𝑊𝑙𝑛𝐿𝑎𝑏𝑜𝑢𝑟 + 𝜑6𝑊𝑙𝑛𝑃𝑒𝑟𝐺𝐷𝑃 + 𝜑6𝑊𝑙𝑛𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 +

𝜑6𝑊𝑙𝑛𝑈𝑟𝑏𝑎𝑛 + 𝛾𝑙𝑛 + 𝜀                                                                                                              (3-8) 

where 𝛽 is a regression coefficient vector of the interactions. 

Considering the scale effects of GDP and labour on carbon emissions, the expected signs for BV and BE 

are positive (+). Technological innovation, denoted as the number of patents (Number) in the forest-based 

bioeconomy and the transformation rate (Rate) are assumed to have a negative impact on carbon emissions. 

Similarly, urban agglomeration (Urban and Labour) and economic growth (PGDP) will rather increase 

carbon emissions (Nakicenovic, 2000), suggesting the signs for Urban, Labour and PGDP are expected to 

be positive (+). Upgrading the industrial structure (Structure), by contrast, may lead to lower carbon 

emissions (-). Table 3.1 gives an overview of all the model variables. 

Table 3.1: Descriptions of the variables 

Name Units Obs Mean Std.Dev Min Max Sign 

NCE 106 tons 8822 610291.2 951385.7 62372.67 10600000  

BV million Euro 8822 1371.585 2056.334 133.294 27605.67 + 

BE 103 persons 8822 24.739 27.5 3.831 357.031 + 

Number - 8822 17.64 25.68 0 271 - 

Rate % 8822 0.18 0.218 0 1 - 

Structure % 8822 0.520 0.327 0.037 3.994 - 
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Labour 103 persons 8822 24.903 14.777 2.421 73.560 + 

PGDP 103 Euro 8822 31.280 14.646 11.209 195.809 + 

Urban ha 8822 11978.92 7479.399 1212 62906 + 

3.2.4 Data source 

The present study combined information from multiple data sources. The net carbon emissions, including 

direct carbon emissions and indirect carbon emissions as well as carbon sinks, were calculated on the basis 

of the land use data and emission parameters for different land use types at the county level. The emission 

parameters were derived from the Intergovernmental Panel on Climate Change (IPCC) (2021) data and 

related studies. The land use data from 2000 to 2021 were collected from the Thünen Land Atlas and 

Regional Database Germany. Due to the administrative division adjustment, some counties have been 

deleted and adjusted according to the counties/districts in 2021. For instance, Osterode am Harz has been 

adjusted as a municipality in the county of Göttingen since 2016, The annual socioeconomic data for 401 

counties from 2000 to 2021 were gathered mainly from the Federal Office of Statistics of Germany, 

Regional Database Germany, Eurostat Database, and Federal Agency for Agriculture and Food (BMEL). 

The patent data in the forest-based bioeconomy from 2000 to 2021 were collected from the Organization 

for Economic Co-operation and Development (OECD) statistics. 

3.3 Results and analysis 

3.3.1 Spatiotemporal distribution of net carbon emissions 

Figure 3.2 summarizes the results for net carbon emissions (NCE) in Germany and for its division in Eastern 

and Western Germany in the period from 2000 to 2021. The results show a gentle downward trend in net 

emissions in Germany. A rapid drop in carbon emissions in 2009 followed by a rise again in 2010 may be 

because of the impact of economic depression caused by the global financial crisis at the time. Later, due 

to the economic decline resulting from the Covid-19 pandemic, carbon emissions dropped during the 

pandemic but climbed again significantly in 2021 to erase the earlier drop. Further, the much higher carbon 
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emissions in Western Germany than in Eastern Germany reflects the higher economic growth and industrial 

development in the former, and hence its higher associated NCE. Western Germany shared the same 

tendency of carbon emissions with Germany while Eastern Germany had a relatively small and stable 

fraction of net carbon emissions.  

 

Figure 3.2: Net carbon emissions in Germany during the period 2000-2021 

Source: Own representation. 

The spatial distribution of net carbon emissions at the NUTS-3 level, as shown in Figure 3.3, changed in 

intensity over time. In addition to the city-states, like Berlin and Hamburg, the highest NCE (> 2000×103 

tons) was produced in the western counties, indicating clustering patterns in Western Germany, while the 

lowest NCE (< 500×103 tons) was produced in the eastern counties. Noteworthy, the rapid decline of NCE 
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in categories above 1000×103 tons during the period of 2016-2021 implies a faster NCE diffusion compared 

with that during 2000-2015. Across all the categories, there was a clear increasing tendency over time, 

especially after 2015.  

 

Figure 3.3: Spatial county/district-level distribution of net carbon emissions in 2000, 2005, 2010, 2015 

and 2021 

Source: Own representation. 

3.3.2 Spatiotemporal distribution of the size of the bioeconomy and the number of patents 

Figure 3.4 shows that the value added of bioeconomy increased gradually during 2000-2021, rising from 

EUR 435,340 million in 2000 to EUR 682,777 million in 2021. Suffering from the financial crisis and 
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COVID-19 pandemic, the value added of the bioeconomy experienced marked falls in 2009 and 2020, 

correspondingly. Compared with the value added to the bioeconomy, the number of employees in the 

bioeconomy in this time period fluctuated dramatically. The number decreased from 10 million in 2000 to 

9.615 million in 2006 and rose again to 9.884 million in 2008. After that, it declined to 9.73 million in 2010 

and slowly climbed to 10.175 million in 2016 but dropped to 10.036 million in the next year. After hitting 

its peak (10.248 million) in 2019, the figure showed a decreasing trend and was reduced to 9.944 million 

in 2021, which is lower than that in 2000. The difference between the trend for the value added of 

bioeconomy and trend in the number of employees in the bioeconomy points to lag effects of the financial 

crisis and COVID-19 pandemic. 

 

Figure 3.4: Value added of bioeconomy and number of employees in the bioeconomy in the period 

2000–2021 
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Source: Own representation. 

The spatial distribution of the value added of bioeconomy (Figure 3.5) revealed a strong economic radiation 

effect of urban counties on its surrounding areas in 2000—2021, supporting the main tenet of the growth-

pole theory (cf. Huang et al., 2015). In 2000, there were only 8 counties with a value added of bioeconomy 

of more than 4600 (Million euros), with all of them located in Western Germany. In 2010, 4 further counties 

reached these values. From 2010 to 2021, both the value added of bioeconomy and its spatial spillover 

effects continued to grow.  

 

Figure 3.5: Value added of bioeconomy in Germany in 2000, 2005, 2010, 2015, and 2021 

Source: Own representation. 
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The spatial distribution of employees in the bioeconomy (Figure 3.6) illustrates the number of employees 

were highly concentrated in the western counties, and they had a radiation effect on their surrounding areas 

in 2000-2021. This may be because the employees can migrate together with the locations of bio-based 

industries.  

 

Figure 3.6: Employees of bioeconomy in Germany in 2000, 2005, 2010, 2015 and 2021 

Source: Own representation. 

The spatial distribution of the numbers of patents related to the forest-based bioeconomy (Figure 3.7) 

showed a strong clustered pattern for the period 2000–2015. Higher numbers of patents in forest-based 

bioeconomy (e.g. higher than 30) were found in the western and southern counties, indicating a strong 

spatial diffusion to surrounding counties. In 2021, the number of patents within all categories decreased 

sharply, which may have been due to the decline in R&D investment caused by the Covid-19 pandemic.  
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Figure 3.7: Number of patents in forest-based bioeconomy in Germany in 2000, 2005, 2010, 2015, and 

2021 

Source: Own representation. 

3.3.3 Spatial integration effects on carbon emissions in Germany 

The results of the Moran’s I index test (cf. Equation 3-6) are summarized in Table 3.2 to illustrate the spatial 

autocorrelations in the observed time period. The low and positive values of all the univariate Moran’s I 

indices indicated a weak positive relationship between the counties/cities. A gradual decrease in the index 

values since 2007 suggests an emerging spatial diffusion, where counties with similar carbon emissions 
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displayed a greater diffusion tendency. This suggests that spatial effects contribute to the influence of 

technological innovation in the forest-based bioeconomy on carbon emissions.  

Table 3.2: Moran’s I values of net carbon emissions from 2000 to 2021 

NCE Moran’s I E(I) Sd(I) Z P-value 

2000 0.089 -0.003 0.029 3.143 0.001 

2001 0.090 -0.003 0.029 3.183 0.001 

2002 0.090 -0.003 0.029 3.183 0.001 

2003 0.092 -0.003 0.029 3.250 0.001 

2004 0.093 -0.003 0.029 3.268 0.001 

2005 0.092 -0.003 0.029 3.255 0.001 

2006 0.092 -0.003 0.029 3.239 0.001 

2007 0.096 -0.003 0.029 3.364 0.000 

2008 0.092 -0.003 0.029 3.252 0.001 

2009 0.088 -0.003 0.029 3.106 0.001 

2010 0.086 -0.003 0.029 3.053 0.001 

2011 0.088 -0.003 0.029 3.107 0.001 

2012 0.087 -0.003 0.029 3.070 0.001 

2013 0.083 -0.003 0.029 2.961 0.002 

2014 0.083 -0.003 0.029 2.957 0.002 

2015 0.084 -0.003 0.029 2.978 0.001 

2016 0.081 -0.003 0.029 2.877 0.002 

2017 0.077 -0.003 0.029 2.774 0.003 

2018 0.077 -0.003 0.029 2.762 0.003 

2019 0.072 -0.003 0.029 2.587 0.005 
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2020 0.071 -0.003 0.029 2.569 0.005 

2021 0.072 -0.003 0.029 2.614 0.004 

Source: Own calculation. 

Table 3.3 summarizes the results of the parameter estimations by using two versions of the spatial Durbin 

model, as described in section 3.2.3. The first model (SDM 1) includes the size of the bioeconomy, 

technological innovation, and socioeconomic parameters (cf. Equation 3-7), while its extensions control 

correspondingly for the effects of the interaction terms (SDM 2, cf. Equations 3-8). Varying the variables 

in two models reveal only insignificant effects, indicating the models’ stability and robustness. 

Table 3.3: Estimation results from the Spatial Durbin Model and its extensions 

 

Main effect on NCE (ρWlnNCE+∂lnX) Spillover effect of X on NCE (φWlnX)  

SDM 1 

 

SDM 2 

Interaction effect 

SDM 1 

 

SDM 2 

Interaction effect 

lnBV 

0.198*** 

(0.006) 

0.131*** 

(0.007) 

0.055*** 

(0.013) 

0.004 

(0.013) 

lnBE 

0.055*** 

(0.046) 

0.116*** 

(0.007) 

0.084*** 

(0.014) 

0.100*** 

(0.015) 

lnNumber 

0.002*** 

(0.005) 

-0.053*** 

(0.005) 

-0.002* 

(0.001) 

-0.021** 

(0.010) 

lnRate 

0.001*** 

(0.000) 

0.001* 

(0.000) 

0.001 

(0.001) 

0.001 

(0.001) 

lnPGDP 

0.680*** 

(0.008) 

0.024*** 

(0.002) 

-0.518*** 

(0.142) 

0.007 

(0.004) 

lnStructure 

-0.025*** 

(-3.24) 

-0.026*** 

(0.002) 

-0.013* 

(0.007) 

-0.0113** 

(0.004) 

lnLabour 

0.007*** 

(0.000) 

-0.009*** 

(0.002) 

0.001 

(0.002) 

0.004 

(0.003) 

lnUrban -0.102*** -0.001 0.115*** 0.003** 
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(0.007) (0.001) (0.012) (0.001) 

LnNumber* lnBV 

 0.716*** 

(0.008) 

 -0.465*** 

(0.016) 

LnNumber* lnBE 

 -0.0157*** 

(0.003) 

 -0.032*** 

(0.006) 

LnNumber* lnPGDP  

 0.00591*** 

(0.001) 

 0.001 

(0.002) 

LnNumber* lnStructure 

 -0.076*** 

(0.007) 

 0.063*** 

(0.011) 

ρ 
0.420*** 

(0.016) 

0.429*** 

(0.0135) 

  

R2 0.622 0.609   

lgt_theta 

-4.304*** 

(0.392) 

-4.302*** 

(0.392)  

  

sigma2_e 

0.001*** 

(1.07e-5) 

0.001*** 

(9.86e-6) 

  

Log-Likelihood 19610.264 19719.822   

Source: Own calculation. 

Note: t-statistics in parentheses; *statistical significance on p<0.10 level, ** p<0.05 level, *** p<0.01 

level; 8822 observations. 

The results show that within SDM 1 the estimated carbon emissions (NCE) are positively correlated with 

the value added of the bioeconomy (BV), employees in the bioeconomy (BE), per capita GDP (PGDP), 

and labour density (Labour). This finding is in line with existing literature, arguing that economic factors 

are the main drivers of higher emissions (Wang et al., 2018; Zhang et al., 2020). An increase in urban 

construction land (Urban), in contrast, reduces NCE (-0.102***), because Germany is highly developed 

and has an advanced industrial division. German factories with high carbon emissions tend to be the less 

labour-intensive industries, while urban areas in Germany already have a high level of land development 

(Li et al., 2020). Industrial upgrading (Structure), as expected, drives down emissions significantly (-
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0.025***), because it stimulates industrial transition towards greater sustainability (Bai et al., 2023; 

Mehmood et al., 2024).  

Contrary to expectations, an increase in the number of patents in the forest-based bioeconomy (Number) 

and the ratio of patents applied for in the current year (Rate), seems to give rise to the higher carbon 

emissions, respectively (0.002*** and 0.001***, respectively). This can be explained by the fact that 

technological innovation of forest-based bioeconomy in Germany contributes to economic growth, which 

ultimately lead to higher NCE levels (Khan et al., 2023).  

Further, the coefficients of the spatially lagged independent variables suggest that the value added of 

bioeconomy (BV), employees in bioeconomy (BE), labour density (Labour) and urban construction land 

(Urban) have significantly positive spillover effects in terms of higher emissions on neighbouring 

counties. The spillover effects of Number, Structure, and PGDP are significantly negative, indicating that 

counties with high levels of GDP and technological innovation, and thus more developed industries 

attract more technological investment and natural resources from neighbouring counties (Gao et al., 

2020).  

The results for SDM 2 suggest that technological innovation in the forest-based bioeconomy can reduce 

net carbon emissions, given a stronger value added for the bioeconomy, and more jobs for employees in 

the bioeconomy, a higher per capita GDP, and industrial upgrading. The significantly negative spillover 

effect of Number highlights the role of spatial diffusion of technological innovation in the forest-based 

bioeconomy in reducing carbon emissions. As shown in Table 3.3, there is a strong interaction between 

Number and BV, BE, PGDP, and Structure compared to SDM 1. The significantly negative interactions 

between Number and BE and Structure reveal that, considering the impacts of BE and Structure on carbon 

emissions, an increase in technological innovation can start to reduce net carbon emissions. The 

significant positive interactions between Number and BV and PGDP indicate an opposite effect on 

emissions. Promoting technological innovation in the forest-based bioeconomy can consequently mitigate 

carbon emissions when combined with a greater number of employees in the bioeconomy and industrial 
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upgrading. The negative spillover effects of the interactions between Number and BV and BE on carbon 

emissions imply that an increase of technological innovation in the forest-based bioeconomy given the 

increase of BV and BE can reduce the carbon emissions in neighbouring counties, while the positive 

spillover effect of the interaction between Number and Structure reflects the opposite case. 

Table 3.4 displays the direct effect, indirect effect and the total effect of the parameters in SDM 1 and 

SDM 2. The total effect of Number on carbon emissions is negative whether in SDM 1 or SDM 2. This 

confirms the mitigation effect of technological innovation in the forest-based bioeconomy on carbon 

emissions. Further, the consistent direction of the direct effects of interaction between Number and BV, 

BE, PGDP, and Structure with their total effects not only implies their higher direct effects than direct 

effects but also stresses the combined action of technological innovation in the forest-based bioeconomy, 

labour structural change and industrial upgrading on carbon emissions.     

Table 3.4: Direct effect, indirect effect, and total effect of the model parameters 

 

SDM 1 SDM 2  

Direct Indirect Total Direct Indirect Total 

lnBV 

0.207*** 

(0.006) 

0.230*** 

(0.019) 

0.436*** 

(0.019) 

0.137*** 

(0.007) 

0.098*** 

(0.019) 

0.235*** 

(0.022) 

lnBE 

0.061*** 

(0.004) 

0.177*** 

(0.022) 

0.238*** 

(0.023) 

0.130*** 

(0.007) 

0.253*** 

(0.022) 

0.382*** 

(0.024) 

lnNumber 

0.002*** 

(0.001) 

-0.002 

(0.002) 

-0.000 

(0.003) 

-0.056*** 

(0.006) 

-0.074*** 

(0.016) 

-0.130*** 

(0.018) 

lnRate 

0.001*** 

(0.000) 

0.002 

(0.002) 

0.003 

(0.002) 

0.001* 

(0.000) 

0.002 

(0.001) 

0.003 

(0.002) 

lnPGDP 

0.664*** 

(0.009) 

-0.387*** 

(0.024) 

0.278*** 

(0.025) 

0.025*** 

(0.002) 

0.029*** 

(0.007) 

0.054*** 

(0.007) 

lnStructure -0.027*** -0.037*** -0.064*** -0.028*** -0.038*** -0.066*** 
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(0.003) (0.010) (0.011) (0.002) (0.007) (0.008) 

lnLabour 

0.007*** 

(0.001) 

0.006 

(0.004) 

0.013*** 

(0.004) 

-0.009*** 

(0.002) 

-0.001 

(0.005) 

-0.010 

(0.006) 

lnUrban 

-0.098*** 

(0.007) 

0.121*** 

(0.017) 

0.022 

(0.017) 

-0.001 

(0.001) 

0.004* 

(0.002) 

0.003 

(0.003) 

LnNumber* lnBV 

   0.701*** 

(0.009) 

-0.262*** 

(0.022) 

0.439*** 

(0.024) 

LnNumber* lnBE 

   -0.019*** 

(0.003) 

-0.064*** 

(0.008) 

-0.083*** 

(0.009) 

LnNumber* lnPGDP  

   0.006*** 

(0.001) 

0.005** 

(0.003) 

0.012*** 

(0.003) 

LnNumber* lnStructure 

   -0.074*** 

(0.008) 

0.050*** 

(0.017) 

-0.023 

(0.017) 

Note: t-statistics in parentheses; *statistical significance at p<0.10 level, ** p<0.05 level, *** p<0.01 

level; 8822 observations. 

3.4 Discussion and conclusions 

3.4.1 Discussion 

The analysis shows that technological innovation in the forest-based bioeconomy can contribute to 

decoupling economic development from emissions production. The obtained results are in line with recent 

studies, which found that technological innovation negatively affects carbon emissions (Erdoğan et al., 

2020; Zhao et al., 2021). The results contribute to the body of the relevant literature by showing that the 

forest-based bioeconomy, combined with technological innovation in the forest-based bioeconomy and the 

number of employees in the bioeconomy, can improve the net carbon emissions performance within a 

region and through spatial spillover effects empirically. As shown by the values of coefficients, the number 

of patents in the forest-based bioeconomy (-0.053***), its interactions (LnNumber*lnBE and 

LnNumber*lnStructure), industrial upgrading (-0.108***), and labour intensity (-0.009***) can significantly 
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lower net carbon emissions. Likewise, the value added of bioeconomy (0.131***), number of employees in 

the bioeconomy (0.116***), application rate of patents in the forest-based bioeconomy (0.001*), and PGDP 

(0.024***) can all aid in reducing emissions. This is consistent with the latest findings suggesting that the 

growth of the bioeconomy results in a higher demand for biomass, while carbon tax will accelerate market 

opportunities for bio-based alternatives (Philippidis et al., 2024). Technological innovation in the forest-

based bioeconomy also strengthens industrial upgrading (-0.026***), and enhances industry competition and 

labour division, contributing in this way to a more sustainable transition of industry and society (Bai et al., 

2023; Mehmood et al., 2024). 

The key effect of the forest-based bioeconomy on carbon emissions is shown to be twofold, determined by 

the substitution/complementarity of the resources exchanged and technological diffusion among the 

counties. Resource substitution can drive industrial upgrading and the optimization of resource allocation 

in counties with high levels of technological innovation and large numbers of employees in the bioeconomy. 

The resulting negative effect on carbon emissions spills over to their neighbouring counties. Resource 

complementarity, for its part, weakens administrative barriers and strengthens regional cooperation, which 

explains the inconsistent spatial diffusion of carbon emissions (Figure 3.4) and value added of bioeconomy 

(Figure 3.6). This requires an efficient regulation of technological innovation and resource allocation in the 

bioeconomy to prevent their negative externalities (Zilberman et al., 2013). 

Other than the studies by Jonssen et al. (2021), in which the climate-change mitigation effect of the forest-

based bioeconomy is investigated by considering the increased carbon storage in harvested wood products 

(HWP) at the EU level, the present analysis suggests that the contribution of the forest-based bioeconomy 

to carbon mitigation can not only be reflected by the carbon sinks in HWP but also through technological 

innovation as well as its spillover effects. The combinations of technological innovation and the number of 

employees in the bioeconomy and industrial upgrading further highlight their overlapping effects on carbon 

emissions. These observations allow concluding that an alignment of technological innovation with 
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industrial upgrading and a structural change in employment is needed to boost the forest-based bioeconomy 

to reduce carbon emissions (Halonen et al., 2022; Hetemäki et al., 2022).  

3.4.2 Conclusions 

The forest-based bioeconomy, accompanied by the demanding forest biomass, technological innovation 

and value-added production, affects both the carbon footprint of economic activities and the carbon sink 

capacity of the ecological environment. Boosting the forest-based bioeconomy to benefit from its potential 

to promote carbon emissions reduction is a priority in the series of bioeconomy strategies in Germany. The 

study estimated the spatial impact of a forest-based bioeconomy, especially technological innovation in the 

forest-based bioeconomy, on carbon emissions. The analysis used the Spatial Durbin Model and county-

level panel data for 401 counties/cities and arrived at four main conclusions, as described below. 

First, for the observed period 2000 to 2021, the carbon emissions of 401 counties/cities in Germany have 

been found to be spatially autocorrelated and exhibit clustering patterns in Western Germany, largely 

reflecting the regional economic development. Second, technological innovation in the forest-based 

bioeconomy reveals a significant negative spillover effect on carbon emissions, indicating a role of 

technological diffusion in reducing carbon emissions from the local county/city to the periphery. Yet, the 

inconsistent diffusion trajectory of carbon emissions and the number of patents in the forest-based 

bioeconomy implies a high emissions reduction potential of a forest-based bioeconomy. Third, 

technological innovation in the forest-based bioeconomy can reduce carbon emissions through industrial 

upgrading and increasing job opportunities in the bioeconomy. Fourth, it can also lower carbon emissions 

through the negative spillover effect of industrial upgrading and increasing the size of the bioeconomy.  
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4 Impacts of institutional innovation in the bioeconomy on green productivity3 

4.1 Background and objectives 

4.1.1 Institutional background of bioclusters in Germany 

German biocluster is an innovative strategy, serving as an institutional incentive for stimulating biotech 

industries and economic transformation. Bioclusters in Germany can date back to the 1970s when 

policymakers worldwide started to focus on biotechnology as a key innovation strategy (Fornahl et al., 2011; 

Dorocki, 2014). Despite Germany creating a national law on genetic modifications in 1978 to support 

biotechnology, it eventually fell well behind the global leaders in the following decades. It has been argued 

that Germany was the least biotechnology development-friendly country in the Western world in the early 

1990s (Dohse and Staehler, 2008). However, in 1995, the German Federal Ministry of Education and 

Research (BMBF) announced the BioRegio competition to speed up the late-starting biotech industry. At 

that moment, there were only 70 biotech companies in Germany (BMBF, 2004). In this programme, 

winning regions could get preferential access to federal funding to realize their biotech investment plans 

(Dohse, 2000). After this initial programme, several others followed, like BioFuture, BioProfile and 

BioChance (Fornahl et al., 2011). The launch of a series of strategies regarding developing bioclusters has 

helped Germany reclaim its leading role in the bioeconomy. The German Biotechnology Report 2011 

pointed out that the German biotech industry was back on a growth path in 2010, with 400 biotech 

companies and 809 million euros R&D expenditure (Ernst & Young, 2011).  

To better organize the Bioregions, the Council of BioRegions in Germany (AK-BioRegio) (also known as 

the alliance of the German Biotechclusters) was officially founded at the beginning of 2004 in Leipzig. The 

 
3 Author statement: Lanjiao Wen (conceptualization, methodology, software, writing-original draft, and revision); Dr. 

Zhanli Sun (conceptualization, revision and supervision); Dr. Ir. Frans Hermans (conceptualization, data curation and 

revision); Prof. Dr. Alfons Balmann (revision and supervision). 
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tasks of AK-BioRegio includes five parts, namely meta-networking, biotech partnering, developing a trend 

radar (analysis of trends in biotechnology), innovation promotion, the provision of know-how for political 

decision-makers, and best practice exchange. Before 2004, biocluster managers in the BioRegio 

competition were competitors for public funding. But after 2004, with the establishment of AK-BioRegio, 

they established a network for sharing experiences and mutual learning. This further strengthened 

innovation diffusion and cooperation among companies, institutes, universities, and other stakeholders in 

the value chain of the bioeconomy. At the same time, the funding source was broadened to include private 

R&D investment. Now 24 members from Bioregions have come together to optimize and coordinate their 

regional activities in the interests of German biotechnology. 

4.1.2 Objectives and organization 

The bioclusters, as an institutional innovation, create suitable ecosystems for the growth of the bioeconomy 

by linking biotech companies, research institutes and universities, technology parks, and relevant 

stakeholders in a geographic region together. As such, bioclusters can foster collaboration, innovation, 

knowledge exchange, and supply chain integration. Thus, bioclusters can greatly contribute to the 

development of the bioeconomy and facilitate the sustainable transition to the bioeconomy. To date, both 

national and supernational strategies have tended to focus on the sustainability of the bioeconomy, such as 

the EU Green Deal (“From Farm to Fork”, “Circular Economy Action Plan”, etc.). However, there is still 

little empirical evidence on whether and how the establishment of bioclusters affects green productivity. 

To fill in this research gap, this chapter, focusing on Germany at the NUTS-3 level, aims to estimate the 

causal effects of bioclusters on green productivity mediated by technological innovation. We attempt to 

answer the following research questions: 1) Does the establishment of bioclusters increase green 

productivity? If so, by how much? 2) How does the presence of bioclusters affect green productivity 

increases through technological innovation in the bioeconomy, and how can this effect be assessed through 

patent data?  
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The remainder of the paper is organized as follows. Section 4.2 outlines the background of bioclusters in 

Germany and provides the theoretical analysis and hypotheses. Section 4.3 introduces the study area, data, 

and methodology. The results are summarized and discussed in section 4.4. Finally, the discussion and 

policy implications are provided in section 4.5.  

4.2 Theoretical analysis and hypotheses  

This section discusses the direct effects and indirect effects of bioclusters on green total factor productivity, 

where the indirect effects include technological, agglomeration, and structural effects. As the purpose of 

implementing bioclusters is to cultivate new dynamics for economic growth and to promote green 

development through innovation, bioclusters may have a direct impact on green productivity. 

Simultaneously, the establishment of bioclusters can contribute to promoting technological innovation, 

clustering innovation factors, and the transformation of industry structures. Therefore, technological, 

agglomeration, and structural effects arise that can indirectly influence green productivity (see Figure 4.1).  
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Figure 4.1: Direct and indirect effects of bioclusters on GTFP 

Source: Own representation. 
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4.2.1 Direct effects 

Based on the well-known definition of a cluster from Michael Porter, bioclusters can be defined as a 

geographically proximate group of interconnected companies and associated organizations in the 

bioeconomy, linked by commonalities and complementarities (Porter, 1990; Hermans, 2021). With the 

German government stepping up investment in scientific research with an aim to catch up other EU 

countries, bioclusters achieved financial incentives to promote innovation, green growth and sustainable 

development (Hovardas, 2016). Specifically, it is believed that talent introduction, patent applications, and 

industrial integration supported by the funding in bioclusters would stimulate technological support, 

resource integration, and agents’ cooperation (e.g. industry–university–research cooperation), and then 

enhance the output and reduce the production costs and waste. The indicators related to the evaluation 

system for green total factor productivity (GTFP), such as production cost of land and labour, 

comprehensive energy consumption per unit of GDP, and carbon dioxide emissions, are typically directly 

improved in counties/cities with bioclusters. At the same time, bioclusters organized by specific 

organizations, such as AK-BioRegio, have a broad platform to advocate for a green and low-carbon life for 

residents and encourage low-carbon production for enterprises. Therefore, hypothesis 1 (H1) is put forward 

as below.  

H1: Bioclusters can improve regional green total factor productivity (GTFP) directly. 

4.2.2 Technological effects 

According to Baumol’s entrepreneurial talent allocation model (Baumol, 1996), a better innovation 

environment and higher innovation dividends via a sufficient supply of innovation factors and optimization 

of innovation sites can attract entrepreneurs to choose innovative production activities to obtain higher 

rewards. From this perspective, counties/cities with bioclusters have a great chance to gain extra R&D 

investment for technological innovation. Schumpeter's endogenous growth theory suggests that 

technological innovation is the primary driving force for economic growth (Schumpeter, 1935). 

Biotechnology created by bioclusters is at the core of the scientific and innovative foundations of the 
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bioeconomy (Aguilar et al., 2019), promoting innovative production and productivity. Innovative 

production activities can produce high-output and low-pollution technological effects (Hovardas, 2016; Lee 

and Malerba, 2017; Le et al., 2021). This is consistent with the goal of green productivity. As bioclusters 

are usually clustered in incubators and entrepreneurship parks dedicated to the bioeconomy, they can also 

provide new market opportunities for innovators and enterprises, bringing about technological innovation 

through innovative production activities in the bioeconomy (Amoako, 2011; Pradhan et al., 2018). The 

technological effects of innovative production activities in the bioeconomy will ultimately act on regional 

development and influence regional green productivity. Accordingly, hypothesis 2 (H2) is proposed as 

follows. 

H2: Bioclusters can generate technological effects on GTFP. 

4.2.3 Agglomeration effects 

Bioclusters concentrated geographically can attract an inflow of production factors, forming talents and 

capital aggregation. Enterprises in bioclusters can achieve increasing returns on investment (ROI) and lower 

marginal rate of transformation (MRT) due to the outward production possibilities frontier and the lower 

opportunity cost of production caused by technological innovation. This can accelerate the flow of 

production factors (such as labour and capital) from counties/cities without bioclusters to those with 

bioclusters during the process of urban development and industrialization (Fujita et al., 2001). 

Agglomeration effects refer to the geographical concentration of these factors, which increases the 

compatibility or decreases the costs of economic activities (Hoover, 1937). Duranton and Puga (2004) have 

summarized that agglomeration effects involve sharing, cooperation, and learning. When production and 

economic activities are grouped, bioclusters can save space and cost, optimize their resource allocation, 

shorten transportation distances, and reduce pollutant emissions, ultimately leading to green industry (Li et 

al., 2019; Tian et al., 2019).  

The agglomeration of technology, talented labour and capital resulting from bioclusters, in return, promotes 

greater cooperation among agents. The industry–university–research cooperation in bioclusters can 
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accelerate the transformation of innovation and improve production efficiency (Zhang et al., 2021). 

Meanwhile, cooperation among actors (e.g., enterprises), where enterprises gather to form industrial chains 

and industrial parks, can promote the reuse of intermediate products, improve the efficiency of raw 

resources, and reduce pollution in the process of production (Wang et al., 2023). Through networks 

established by bioclusters, like AK-BioRegio, the managers of bioclusters can learn from each other to 

overcome their common challenges and share the benefit of knowledge and technological innovation 

spillover. Through learning from more advanced ones, backward enterprises will adjust their production 

and management methods to improve their productivity (Henderson et al., 1995). Also, advanced 

enterprises can learn from each other to improve their technological productivity at the same time. As the 

externalities of agglomeration are influenced by the agglomeration degree of talent, capital, technology, 

and industry, the higher the agglomeration degree, the larger the agglomeration externalities will be (Zhang 

et al., 2022). Therefore, hypothesis 3 (H3) is put forward as below. 

H3: Bioclusters can generate agglomeration effects on GTFP through factor flows caused by technological 

innovation. 

4.2.4 Structural effects 

The technological innovation generated by bioclusters can lead to industrial upgrading and restructuring by 

optimizing the allocation of production factors. On the one hand, technological innovation can improve the 

marginal rate of substitution of labour and capital by technology, leading to structural changes in the 

production factors as well as the industries themselves. On the other hand, higher profits from innovation 

produced by bioclusters due to their high returns on investment can generate higher market competition 

pressure on traditional industries. Given the attraction of innovative profits, the pressure from market 

competition, and the incentive of government policies (e.g., funding support), traditional industries will 

also seek to introduce new biotechnologies for their industrial upgrading so that the traditional clusters can 

be transformed into high-efficiency industries themselves (Pan et al., 2020; Zhang and Wang, 2022). In that 

case, industrial upgrading increases the green efficiency of the traditional industrial land. However, the 
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large-scale construction of high-tech industries in bioclusters may also have a rebound effect, leading to 

massive energy consumption in the region (Sohag et al., 2015) and reducing the GTFP in return. Therefore, 

hypothesis 4 (H4) is put forward as below. 

H4: Bioclusters can bring about structural effects on GTFP through factor allocations caused by 

technological innovation. 

 

4.3 Methodology 

For the purpose of the present investigation, the regional green total factor productivity (GTFP) is calculated 

for the period from 2000 to 2021. Next, a natural experiment—staggered difference in differences (DiD) is 

used to estimate the impact of bioclusters on GTFP. Considering the bioclusters established different year, 

a staggered difference in differences (SDiD) is employed to measure the impact of bioclusters on GTFP for 

Bioregions and green clusters, respectively. In this study, counties/cities with Bioregions or green clusters 

are considered the treatment group, while counties/cities without Bioregions or green clusters, excluding 

those neighbouring the counties/cities with bioclusters, are the control group. Then, a mediating model is 

employed to estimate the indirect effect of bioclusters on GTFP. 

4.3.1 Study area and data source 

The study area includes 401 counties/cities in Germany. We take counties/cities with bioclusters as the 

treatment group and the other counties/cities, excluding those neighbouring the counties/cities with 

bioclusters, as the control group. 24 bioclusters from Bioregions after the establishment of AK-BioRegio 

are considered in this study (Figure 4.2 (a)). Ranging from the local level (level-1) to the regional level 

(level-2) and the state level (level-3), these Bioregions are scattered across the whole Germany. Among 

them, bioclusters at the state level dominate the Bioregions, with 12 bioclusters at the state level, seven 

bioclusters at the regional level, and five bioclusters at the local level. Baden-Württemberg has six 
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bioclusters from Bioregions, all of which are at the regional and local level. Berlin, Munich and Jena are 

the most popular sites for Bioregions, as all of them have two bioclusters.  

Figure 4.2 (b) displays the spatial distribution of green clusters. Green clusters are bioclusters focusing on 

green development, and data on them here are collected from the European Cluster Collaboration Platform. 

According to Hermans (2021), the green clusters in this study are grouped into three types, namely 

agricultural agglomeration (Type-1), green chemistry clusters (Type-2), and bioeconomy districts (Type-3), 

based on their sectors and technological fields. For instance, green clusters that focus on agriculture, 

forestry, and fishing are identified by agricultural agglomeration (Type-1) due to their strong linkage with 

the regional primary sector. The detailed biocluster classification is provided in Table A.3. So far, there are 

29 green clusters in total. Green clusters are concentrated in southern and eastern Germany. Most of them 

are bioeconomy districts (type-3) and have a small scale of members (less than 100), as shown in Figure 

4.2 (b). The largest bioclusters, with over 200  200 members, are mainly located in Berlin, Potsdam, and 

Bayreuth. The biocluster-Cluster Transport, Mobility, and Logistics Berlin-Brandenburg in Berlin is the 

largest, with 530 members in total, including 80 large firms, 380 Small and medium-sized enterprises 

(SMEs), and 70 organizations.  
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Figure 4.2: Distribution of bioclusters in Germany 

Source: Own representation. 

Focusing on the implication of bioclusters on green productivity in Germany, we collected economic 

statistics data at the NUTS-3—city/county (Kreis in German, hereafter counties or cities) level from 2000 

to 2021. The data used in this study include the input–output data (urban land, labour, capital, energy 

consumption, GDP, and carbon emissions), the number of patents in the bioeconomy as well as its 

characteristics, and socioeconomic data, which were obtained from multiple data sources. The carbon 

emissions data used in this study were calculated on the basis of land use data and emission parameters for 

different land use types at the county level. The emission parameters were derived from the 

Intergovernmental Panel on Climate Change (IPCC) (2021) and related studies. The land use data from 

2000 to 2021 were collected from the Thünen Land Atlas and Regional Database Germany. The annual 

socioeconomic data for 401 counties from 2000 to 2021 were gathered mainly from the Federal Office of 

Statistics of Germany, Regional Database Germany, Eurostat Database, and Federal Agency for Agriculture 
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and Food (BMEL). The patent data in the forest-based bioeconomy from 2000 to 2021 were collected from 

Organization for Economic Co-operation and Development (OECD) Statistics. The records of bioclusters 

were from the German Trade and Invest survey (2022), which is supported by the Ministry of Education 

and Research and Federal Ministry for Economic Affairs and Climate Action, and the European Cluster 

Collaboration Platform. 

4.3.2 Measuring regional green productivity with Super-efficiency SBM 

A super-efficiency Slacks-based measure (super-efficiency SBM) model with undesirable outcomes was 

employed to estimate the GTFP. Based on Tone(2002), the model is specified as below. 

𝐺𝑇𝐹𝑃 = 𝑚𝑖𝑛
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where 𝐺𝑇𝐹𝑃 is the urban land green use efficiency, and o is the production decision unit (401 decision units 

in total). Each decision unit has n inputs, c1 desired outputs, and c2 non-desired outputs. xio presents the 

input i of decision unit o; �̅� denotes the redundancy of input; 𝑦𝑟𝑜
𝑑  and 𝑦𝑙𝑜

𝑛𝑑 are the desired and undesired 

outputs of the decision unit o, respectively. �̅�𝑑and �̅�𝑛𝑑are the redundancy of the desired and non-desired 

outputs, respectively, and 𝛾 is the weight vector.  

The inputs and outputs are shown in Table 4.1. The sizes of the urban areas, employment population and 

energy consumption are used to present the fixed capital input, labour input and energy input, respectively. 

Gross domestic product (GDP) is the desired output and carbon emissions are the undesired output. In this 

study, the carbon emissions are net carbon emissions and are calculated as the sum of carbon emissions and 

carbon sink associated with land use at the county level (Wen et al., 2021). 
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Table 4.1: Input-output indicators for GTFP 

Inputs Descriptions 

Capital Size of the urban areas, as the sum of the settlement area and transport areas, 

in each county. 

Labour Total employment population in each county. 

Energy consumption Energy use of companies in the manufacturing sector at the NUTS-3 level. 

Desired outputs  

GDP Gross domestic product at the NUTS-3 level. 

Undesired output  

Carbon emissions The net carbon emission (NECi) for county i is shown as below: 

𝑁𝐸𝐶𝑖 = 𝜂𝑎 ∙ 𝐴𝑖 + 𝑇𝑖 ∙ 𝑀𝑖 − ∑ 𝜂𝑗 ∙ 𝑆𝑖𝑗 , where 𝜂𝑎 is the carbon emissions 

parameter for arable land; Aii is the arable land size; j=1,2,3 and represent 

respectively forest, grassland and water; Sij is the land size for each land use 

type j; 𝜂𝑗 is the product of carbon emissions parameter collected from the 

IPCC (2021); 𝑇𝑖 is the product of the energy consumption per unit of GDP; 

and 𝑀𝑖  is the GDP of the secondary and tertiary industries in county i.  

 

4.3.3 Measuring the impact of Bioregions on green productivity with a staggered DiD 

The difference in differences (DiD) method is a widely-used quasi-experimental technique for estimating 

the effect of a specific intervention or treatment by comparing the changes in outcomes before and after the 

intervention (Goodman-Bacon, 2021). Considering the bioclusters established in different years, a 

staggered difference in differences (SDiD) is employed to compare the net effect on GTFP before and after 

the development of bioclusters. This approach addresses the limitation of traditional DiD that requires it to 

satisfy a stable unit treatment value assumption (SUTVA) while ignoring spillovers. To measure the 

treatment effect, counties/cites with bioclusters (Bioregions and green clusters in this study) are considered 
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as the treatment group and counties/cites without bioclusters, excluding those surrounding the 

counties/cities with bioclusters, are regarded as the control group with consideration of the spatial spillover 

effect. It assumes that the treatment and control groups display a parallel trend—the two groups would have 

followed similar trends over time (Slaughter, 2001).  

According to Hermans (2018), bioclusters are clusters that specialize in various fields of the bioeconomy 

with the explicit goal of promoting sustainable development. To better promote close cooperation among 

biotech companies, research institutes, and technology parks, Germany, one of the best environments for 

biotechnology R&D worldwide, has established the Council of BioRegions (AK-BioRegio) since 2004. 

The Bioregions of Germany are regional initiatives set up for the advancement of modern biotechnology in 

Germany. Up to 2022, there were 24 active members of Bioregions, ranging from those at the local level 

to state level. In the basic model shown in the following regression, counties/cites with bioclusters from 

Bioregions are the treatment group: 

𝐺𝑇𝐹𝑃 = 𝜕0 + 𝜕1𝐵𝑖𝑜𝑟𝑒𝑔𝑖𝑜𝑛𝑖𝑡 + 𝜕𝑐𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡 + 𝜇𝑖 + 𝜏𝑖 + 𝛿𝑖𝑡                                             (Model 4-1)    

with dummy variable Bioregion to show whether county/city i has a biocluster from Bioregions or not; 

control variable control; constant term 𝜕0; estimated parameters (𝜕1 and 𝜕𝑐); individual effect 𝜇𝑖 , time 

effect 𝜏𝑖, and random perturbation term 𝛿𝑖𝑡. Bioregion is denoted as Bioregion=dt×du, where du determines 

whether they are qualified as innovative cities (yes=1, no=0), and dt determines whether they have already 

been designated as innovative cities (yes=1, no=0). Specifically, policy assigns a value of 1 to a city in year 

t and onward if it attains recognition as an innovative pilot city; otherwise, it receives a value of 0. 

In model 4-2, the value added of bioeconomy (BV), and employees in bioeconomy (BE) are introduced to 

model 4-1 to further examine the heterogeneous effects of Bioregions on GTFP, as shown below with the 

estimated parameters (𝜕2 and 𝜕3 ). 

𝐺𝑇𝐹𝑃 = 𝜕0 + 𝜕1𝐵𝑖𝑜𝑟𝑒𝑔𝑖𝑜𝑛𝑖𝑡 + 𝜕2𝐵𝑉𝑖𝑡 + 𝜕3𝐵𝐸𝑖𝑡 + 𝜕𝑐𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡 + 𝜇𝑖 + 𝜏𝑖 + 𝛿𝑖𝑡 (Model 4-2)  
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The patent application rate in the current year (Ratio) and regional share (reg_share) are used to present 

the characteristics of technological innovation (see Model 4-3). The patent application rate in the current 

year (Ratio) is the proportion of the number of patents applied for in the current year, which is relevant for 

assessing the transformation efficiency of scientific research and achievements (Harrahill et al., 2023). The 

regional share (reg_share) means the share of addresses of inventors in cases where an address is allocated 

to more than one region, therefore indicating regional cooperation (Maraut et al., 2008; Maraut and 

Martínez, 2014). 

𝐺𝑇𝐹𝑃 = 𝜕0 + 𝜕1𝐵𝑖𝑜𝑟𝑒𝑔𝑖𝑜𝑛𝑖𝑡 + 𝜕2𝐵𝑉𝑖𝑡 + 𝜕3𝐵𝐸𝑖𝑡 + 𝜕4𝑅𝑒𝑔_𝑠ℎ𝑎𝑟𝑒𝑖𝑡 + 𝜕5𝑅𝑎𝑡𝑖𝑜𝑖𝑡 + 𝜕𝑐𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡 + 𝜇𝑖 +

𝜏𝑖 + 𝛿𝑖𝑡                                                                                                       (Model 4-3) 

4.3.4 Measuring the impact of green clusters on green productivity with a staggered DiD 

As bioclusters are heterogeneous entities, varying widely in structure, evolution, and goals (Zechendorf, 

2011), the impact of differential types of bioclusters on regional green productivity is considered in this 

study. To be specific, the green clusters that work in green sectors and/or technologies are selected from 

the European Cluster Collaboration Platform. According to Hermans (2018; 2021), green clusters operate 

with the goal of sustainable development, so they can be included as bioclusters and classified into four 

types, namely agricultural agglomeration, green chemistry clusters, bioeconomy districts and life science 

clusters. There are 29 green clusters chosen from the data European Cluster Collaboration Platform.   

The basic model of the SDiD is shown as below, where counties/cites with green clusters are the treatment 

group. 

𝐺𝑇𝐹𝑃 = 𝛽0 + 𝛽1𝐺𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + 𝛽𝑐𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡 + 𝜇𝑖 + 𝜏𝑖 + 𝛿𝑖𝑡                                                (Model 4-4)  

with dummy variable Gcluster to show whether county/city i has a green cluster or not. Gcluster is denoted 

as Gcluster =dt×du, where du determines whether they are qualified as innovative cities (yes=1, no=0), and 

dt determines whether they have already been designated as innovative cities (yes=1, no=0). Specifically, 
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policy assigns a value of 1 to a city in year t and onward if it attains recognition as an innovative pilot city; 

otherwise, it receives a value of 0. 

In the extended model 4-5, the value added of bioeconomy (BV) and the number of employees in the 

bioeconomy (BE) are introduced. 

𝐺𝑇𝐹𝑃 = 𝛽0 + 𝛽1𝐺𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + 𝛽2𝐵𝑉𝑖𝑡 + 𝛽3𝐵𝐸𝑖𝑡 + 𝛽𝑐𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡 + 𝜇𝑖 + 𝜏𝑖 + 𝛿𝑖𝑡                 (Model 4-5)  

When considering the technological innovation by adding the patent application rate in the current year 

(Ratio) and regional share (reg_share) in model 4-6, get the following form.  

𝐺𝑇𝐹𝑃 = 𝛽0 + 𝛽1𝐺𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + 𝛽2𝐵𝑉𝑖𝑡 + 𝛽3𝐵𝐸𝑖𝑡 + 𝛽4𝑅𝑎𝑡𝑖𝑜𝑖𝑡 + 𝛽5𝑅𝑒𝑔_𝑠ℎ𝑎𝑟𝑒𝑖𝑡 + 𝛽𝑐𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡 + 𝜇𝑖 +

𝜏𝑖 + 𝛿𝑖𝑡                                                                                                                                         (Model 4-6)  

4.3.5 Meditating model 

Based on Böckerman and Ilmakunnas (2009), a mediating model is developed to estimate the indirect effect 

of bioclusters on GTFP. With the introduction of the mediating variable 𝑀𝑖𝑡 (Equation 4-4) into model 4-

3, the extended SDiD model 4-7 is shown as below.  

𝑀𝑖𝑡 = 𝛼0 + 𝛼1𝐵𝑖𝑜𝑟𝑒𝑔𝑖𝑜𝑛 + 𝛼𝑐𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡 + 𝜇𝑖 + 𝜏𝑖 + 𝛿𝑖𝑡                                                 (4-4) 

𝐺𝑇𝐹𝑃 = κ0 + 𝜅1𝐵𝑖𝑜𝑟𝑒𝑔𝑖𝑜𝑛𝑖𝑡 + 𝜅2𝐵𝑉𝑖𝑡 + 𝜅3𝐵𝐸𝑖𝑡 + 𝜅4𝑅𝑒𝑔_𝑠ℎ𝑎𝑟𝑒𝑖𝑡 + 𝜅5𝑅𝑎𝑡𝑖𝑜𝑖𝑡 + 𝜅𝑚𝜕𝑐𝑀𝑖𝑡 +

𝜅𝑐𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡 + 𝜇𝑖 + 𝜏𝑖 + 𝛿𝑖𝑡                                                                                (Model 4-7)  

Where 𝛼 and 𝜅 are the respective regression coefficients. Similarly, adding 𝑀𝑖𝑡

′
 (Equation 4-5) into model 

4-6 gives the extended SDiD, as shown in model 5-8, with vectors for the respective regression 

coefficients 𝜉. 

𝑀𝑖𝑡

′
= 𝜁0 + 𝜁1𝐺𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + 𝜁𝑐𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡 + 𝜇𝑖 + 𝜏𝑖 + 𝛿𝑖𝑡                                                               (4-5) 

 

𝐺𝑇𝐹𝑃 = 𝜉0 + 𝜉1𝐺𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + 𝜉2𝐵𝑉𝑖𝑡 + 𝜉3𝐵𝐸𝑖𝑡 + 𝜉4𝑅𝑎𝑡𝑖𝑜𝑖𝑡 + 𝜉5𝑅𝑒𝑔_𝑠ℎ𝑎𝑟𝑒𝑖𝑡 + 𝜉𝑚𝑀𝑖𝑡

′
+ 𝜉𝑐𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡 +

𝜇𝑖 + 𝜏𝑖 + 𝛿𝑖𝑡                                                                                                                         (Model 4-8)  
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The indirect effect of bioclusters on GTFP encompasses three distinct effects: technological, agglomeration, 

and structural, denoted respectively by technological innovation (Patent), market capacity (MC), and 

industrial structure (ST). Usually, the number of patents (Patent) is denoted as the intensity of technological 

innovation, while the application rate of each patent can denote the transformation efficiency of scientific 

research and achievement (Popp et al., 2003; Harrahill et al., 2023). The number of patents (Patent) is used 

to signify the technological effect, as patent applications can serve as indicators of both the quantity and 

quality of innovations within a county/city during a specific timeframe (Liu et al., 2023). The ratio of the 

tertiary industry to the secondary industry (ST) serves as an indicator of industrial upgrading, whereby a 

higher ratio signifies a more advanced industrial structure within the county/city. Market capacity (MC) is 

utilized to represent the agglomeration effect, given that enterprises often gravitate towards regions with 

robust market potential, fostering the clustering of resources within such counties/cities (Wu and Shao, 

2016). MC is calculated using Equation 4-6. 

𝑀𝐶𝑖𝑡 =
𝑆𝑇𝐺𝐷𝑃𝑖𝑡

𝑑𝑖𝑡
+ ∑

𝑆𝑇𝐺𝐷𝑃𝑘𝑡

𝑑𝑖𝑘
𝑖≠𝑘 ; 𝑑𝑖𝑡 =

2

3
(

𝑎𝑟𝑒𝑎𝑖

𝜋
)

1

2
                                                                        (4-6) 

 

where 𝑀𝐶𝑖𝑡 denotes the market potential of county/city i. 𝑆𝑇𝐺𝐷𝑃𝑖𝑡 and 𝑆𝑇𝐺𝐷𝑃𝑘𝑡 denote the output value 

of secondary and tertiary industries in county/city i and k respectively in year t. 𝑑𝑖𝑡 denotes the internal 

distance of county/city i in year t, and areai denotes the urban area of city county/city i. 𝑑𝑖𝑘 is the distance 

between county/city i and k, calculated using latitude and longitude data. 

4.3.6 Variables 

Considering the positive contribution to economic output, the expected signs for BV and BE are positive 

(+). As the higher level of bioclusters, the more competitive the clusters are, the sign for the local level of 

biolcusters (Level-1) is expected to be negative, while for the regional and state level the signs are positive. 

Technological innovation in the bioeconomy is assumed to have a positive impact on regional green 

productivity, where the signs for the number of patents (Patent) and patents’ transformation rate (Ratio) are 

positive, while that for regional share (Reg_share) is negative. In terms of the type of green clusters, all 
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types are assumed to have a positive impact on green productivity. Among them, green chemical clusters 

(Type-2) may have the highest contribution. Similarly, upgrading the industrial structure (Structure), and 

number of De-domain (Domain) rather increase the regional productivity (Dierckx and Stroeken, 1999), 

suggesting the signs for Structure and Domain are expected to be positive (+). The development of the 

Internet has a significant effect on promoting improvements to GTFP in this region and the surrounding 

areas, but also suggests that the long-term effect is greater than the short-term effect (Yu, 2022). Table 4.2 

gives an overview of all the model variables. 

Table 4.2: Descriptive statistics of variables 

Name Units Mean Std.Dev Min Max Sign 

GTFP - 0.205 0.125 0.062 1.354  

BV 10 million Euro 1371.585 2056.334 133.294 27605.67 + 

BE 103 persons 24.739 27.5 3.831 357.031 + 

Bioregion  0.041 0.198 0 1 + 

Level-1  0.004 0.065 0 1 + 

Level-2  0.019 0.138 0 1 + 

Level-3  0.031 0.174 0 1 + 

Gcluster  0.037 0.190 0 1 + 

Type-1  0.002 0.040 0 1 + 

Type-2  0.007 0.084 0 1 + 

Type-3  0.033 0.177 0 1 + 

Patent  19.659 29.506 0 389 + 



84 

 

Ratio % 0.181 0.217 0 1 + 

Reg_share % 0.664 0.310 0 1 - 

Structure % 0.520 0.327 0.037 3.994 + 

Domain  27566.59 45225.02 0 630403 + 

 

4.4 Results and analysis 

4.4.1 Spatiotemporal distribution of net carbon emissions 

Figure 4.3 summarizes the results for the average annual GTFP in Germany in the period 2000 to 2021. 

The results show an upward trend in GTFP over the study period, indicating an increasing growth in 

regional green productivity. However, the average value for the GTFP stays below 0.5 during the study 

period, showing a relatively low green productivity in Germany. Specifically, the average GTFP from 2000 

to 2015 grew slowly, albeit with a slight drop in 2009 due to the delayed impact of the global financial 

crisis. After 2015, the average GTFP increased more rapidly, increasing from 0.21 in 2015 to 0.441 in 2021. 

In particular, during the period from 2018 to 2021, the GTFP grew at an even higher rate, despite the 

economic decline after the Covid-19 pandemic. The obtained results are not surprising, given the series of 

strategies from the government targeted primarily at boosting the bioeconomy to deal with the increasing 

climate crisis (BMBF, 2020). In addition, the COVID-19 pandemic also contributed to the reduction of 

carbon emissions, leading to the sharp increase of GTFP. 
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Figure 4.3: Average annual GTFP in Germany during the period 2000–2021 

The spatial distribution of GTFP at the county level, as shown in Figure 4, changed in intensity over time. 

Western and southern counties tend to have higher GTFPs. Counties in eastern Germany (e.g. Wittenberg 

and Salzlandkreis) have lower but increasing GTFPs observed. Noteworthy, here, most counties 

surrounding developed municipalities, like Frankfurt and Munich, have large development potential and a 

relatively high absorbing capacity for investments from more developed economic centres). As a result, the 

number of counties with the lowest GTFP (<0.2) declined steadily over the observed time period. In all 

other categories (> 0.2), there was a clear increase trend over time. By overlapping the spatial distribution 

of GTFP with bioclusters, we found that most counties with bioclusters (e.g., Potsdam) tend to have higher 

GTFPs. And they showed spillover effects on surrounding counties from 2000 to 2021. For instance, the 
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number of cities/counties around Düsseldorf with a GTFP greater than 0.2 gradually increased from 2000 

to 2021.  From 2015 to 2021, both the GTFP and its spatial spillover effects continued to grow sharply. 

 

Figure 4.4: Spatial county-level distribution of GTFP in 2000, 2005, 2010, 2015, and 2021 

4.4.2 SDiD regression results 

Table 4.2 summarizes the results of the parameter estimations using three versions of the SDiD model, 

developed and described in section 4.3.2. The first model (Model 4-1) only includes the treatment group 

(Bioregion) and the control variable (Domain), while its extensions control correspondingly for the effects 

of the size of the bioeconomy (Model 4-2) and of technological innovation (Model 4-3). Varying the 

variables, reveals relatively insignificant effects, indicating the models’ stability and robustness.  
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The significantly positive coefficients of Bioregion indicate that establishing bioclusters can improve GTFP 

at large. The negative coefficients of level, consistent with our expectation, show that the higher the level 

of bioclusters, the lower the GTFP is. This implies that a lower level of bioclusters may involve closer 

cooperation between firms and research institutions as bioclusters highly depend on industry-university-

research integration (Youtie and Shapira, 2008; Jeong et al., 2023). When introducing the size of 

bioeconomy, the much higher R2 reveals the better fitness and robustness of the model. The significantly 

positive effect of value added in bioeconomy on GTFP highlights developing the bioeconomy can promote 

regional green productivity. However, the number of employees in the bioeconomy, contrary to our 

expectation, has a negative effect on GTFP. This may result from technological innovation and labour 

division. When adding technological innovation, the number of patents in the bioeconomy surprisingly has 

a negative and significant effect, at the 1% significance level, on the county’s GTFP. This implies that 

applying more patents can promote both the desirable output and the undesirable output. The significant 

and positive effect of Ratio on GTFP illustrates the faster transformation capability of patents in the 

bioeconomy, which can lead to higher regional green productivity. The significant and negative effect of 

Reg_share on GTFP presents the role of cooperation across counties in promoting GTFP. Compared to the 

findings of Graf and Broekel (2020), which indicate that the Bioregion initiative increases the network size 

and innovation activities only during the funding period but not afterward, the present study demonstrates 

a sustained impact, further emphasizing the role of patent’s transformation efficiency in enhancing regional 

green productivity. The much significantly positive coefficients of Ratio and Reg_share suggest that 

technological innovation plays an important role in enhancing the local regional green productivity, thereby 

validating H1. 
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Table 4.3: Estimation results of SDiD model for Bioregions 

Variables 

GTFP 

(Model 4-1) (Model 4-2) (Model 4-3) 

Bioregion  0.080** 

(10.910) 

0.029*** 

(4.200) 

0.020*** 

(3.090) 

BV  

 

0.0001*** 

(35.310) 

0.0001*** 

(34.630) 

BE  

-0.005*** 

(-12.540) 

-0.005*** 

(-12.170) 

Ratio 

  

0.075*** 

(17.930) 

Reg_share 

  

-0.0346*** 

(-8.940) 

Domain 9.44e-7*** 

(18.830) 

0 3.41e-7*** 

(7.060) 

3.09e-7*** 

(6.590) 

Fe Yes Yes Yes 

N 6226 6226 6226 

R2 0.043 0.146 0.146 

Note: ***p<0.01, **p<0.05, *p<0.1. Bioregion denotes the key explanatory variable. Fe indicates time 

fixed and individual fixed. N indicates the total sample size. R2 denotes the coefficient of determination.  
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Table 4.4 reports the results of the parameter estimation obtained using three versions of the SDID model. 

The positive and significant effect of green clusters on GTFP not only indicates the green clusters can 

promote regional green productivity but also further indicates that the establishment of bioclusters can 

improve GTFP as all green clusters are bioclusters in nature. The other estimated coefficients are similar to 

those in models 4-1, 4-2, and 4-3, implying the results are robust. These results further confirm that 

technological innovation can help to increase regional green productivity. Eventhough the coefficients are 

small, they still make sense as the units of outputs are relatively large. 

Table 4.4: Estimation results of SDiD model for green clusters  

Variables 

GTFP 

(Model 4-4) (Model 4-5) (Model 4-6) 

Gcluster 0.052*** 

(5.73) 

0.020** 

(2.51) 

0.018** 

(2.32) 

BV  

 

0.0001*** 

(42.21) 

0.0001*** 

(41.69) 

BE  

-0.010*** 

(-24.98) 

-0.010*** 

(-25.03) 

Ratio 

  

0.078*** 

(19.65) 

Reg_share 

  

-0.032*** 

(-8.94) 
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Domain 1.41e-6*** 

(26.10) 

3.99e-7*** 

(7.52) 

3.29e-7*** 

(6.40) 

Fe Yes Yes Yes 

N 6512 6512 6512 

R2 0.030 0.258 0.260 

Note: ***p<0.01, **p<0.05, *p<0.1. Bioregion denotes the key explanatory variable. Fe indicates time 

fixed and individual fixed. N indicates the total sample size. R2 denotes the coefficient of determination.  

4.4.3 Parallel trend test 

The results of the parallel trend test in Figure 4.5 reveal that the coefficients of the time dummy variables 

for the three years before the establishment of the Bioregion are not significant. Therefore, there is no 

significant difference in GTFP between the treatment and control groups. In the second year of establishing 

the Bioregion, the difference appears but it is not yet stable. Six years after establising the Bioregion, the 

coefficients began to show a significant positive and increasing trend, indicating that the bioclusters have a 

positive and stable effect on GTFP with a time lag. A placebo test is provided in Figure A.2 (a). 
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Figure 4.5: Parallel trend test for the Bioregion 

Similar to the results in Figure 4.5, the results of the parallel trend test for the green clusters in Figure 4.6 

show that the coefficients of the time dummy variables for the three year before policy implementation are 

not significant. Eight years after establishing green clusters, bioclusters start to have a significant and 

positive effect on GTFP. A placebo test is provided in Figure A.2 (b). 
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Figure 4.6: Parallel trend test for green clusters 

Source: Own representation. 

4.4.4 Robust analysis using PSM-SDiD 

Although SDiD isolates the average treatment effect of bioclusters, the selection of bioclusters may not be 

random. Consequently, a multi-temporal propensity score matching (PSM)-SDiD test is conducted to match 

a comparable control group for the treatment group with the period-by-period matching approach from 

Böckerman and Ilmakunnas (2009). In this study, counties/cities are matched year by year to generate the 

panel data required for the regression analysis. The size of the bioeconomy, economic level, and 

technological innovation are used as matching variables (see Table 4.5). The effect of bioclusters on GTFP 

is re-estimated using SDiD after the balance of the matched data has been tested. Both estimated coefficients 

of the Bioregion and Gcluster remain positive and significant after performing the PSM, further confirming 
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that establishing bioclusters can improve the GTFP. Other coefficients show similar values, indicating a 

robust result.  

Table 4.5: PSM-SDiD regression results 

Variables GTFP 

Bioregion  0.020*** 

(3.090) 

 

Gcluster 

 

0.025*** 

(3.240) 

BV  0.0001*** 

(34.630) 

0.0002*** 

(45.390) 

BE 

-0.005*** 

(-12.170) 

-0.009*** 

(-23.970) 

Rate 0.075*** 

(17.930) 

0.071*** 

(18.150) 

Reg_share -0.035*** 

(-8.940) 

-0.032*** 

(-9.18) 

Domain 3.09e-7*** 

(6.590) 

6.70e-7*** 

(12.190) 

Fe Yes Yes 
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N 6226 6494 

R2 0.146 0.278 

Note: ***p<0.01, **p<0.05, *p<0.1. Bioregion denotes the key explanatory variable. Fe indicates time 

fixed and individual fixed. N indicates the total sample size. R2 denotes the coefficient of determination.  

4.4.5 Mediating effects of bioclusters on GTFP 

The three mediators for technological, agglomeration, and structural effects in Table 4.6 (0.008, 0.121, and 

-0.004, respectively) show that the agglomeration effect is much greater than the other two. It means 

bioclusters primarily promote GTFP by enhancing technological innovation and market capacity. Column 

(1) in Table 4.5 displays a positive and significant impact of bioclusters on local GTFP in the results for the 

SDiD base regression, providing a basis for the tests of the mediating effects (from column 2 to column 7). 

All the mediating effects passed the bootstrap tests. In column (3), the significant coefficients of Bioregion 

and Patent indicate there is a strong mediation effect (0.01), suggesting that bioclusters can promote 

technological innovation in the local city. Despite the coefficient of Patent being negative, the results from 

the bootstrap test confirm its validity ([0.201,0.275]). This contributes to the promotion of green production 

technology and pollution control technology, minimizing emissions, and consequently improving the GTFP. 

Thus, this finding supports H2. The mediating effect of industrial upgrading is negative because of the 

negative coefficient of ST in column (7). 

Table 4.6: Mediating regression results for Bioregions 

 Mediating model for Bioregions 

Variables 

GTFP 

(1) 

Patent 

(2) 

GTFP 

(3) 

MC 

(4) 

GTFP 

(5) 

ST 

(6) 

GTFP 

(7) 

Bioregion 0.020*** -0.236 0.022*** 175.498*** -0.009* -0.053*** 0.014** 
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(3.090) (-0.220) (3.090) (8.07) (-1.650) (-5.680) (2.170) 

Patent   

-0.001*** 

(-11.73) 

    

MC     

0.0002*** 

(51.230) 

  

ST       

-0.117*** 

(-12.910) 

BV        

BE        

        

Mediating 

effect 

  0.008  0.121  -0.004 

Control Yes Yes Yes Yes Yes Yes Yes 

Fe Yes Yes Yes Yes Yes Yes Yes 

N 6226 6226 6226 6226 6226 6226 6226 

R2 0.146 0.090 0.159 0.084 0.175 0.099 0.156 

Note: ***p<0.01, **p<0.05, *p<0.1. Bioregion denotes the key explanatory variable. Fe indicates time 

fixed and individual fixed. N indicates the total sample size. R2 denotes the coefficient of determination.  

The three mediators for technological, agglomeration, and structural effects in Table 4.7 (-0.002, 0.03, and 

0.005, respectively) show a similar result, whereby the agglomeration effect is much greater than the other 

two. It means bioclusters primarily promote GTFP by enhancing market capacity. Unlike the results in 
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Table 4.6, the coefficient of Gcluster in column (6) is negative. This implies that the establishment of green 

clusters can restrict industrial upgrading. This may be due to the external economies generated by green 

clusters, which boost the output value of secondary industries and increase their share in the overall 

economy. The coefficient of Gcluster in column (2) is significantly positive, indicating that green 

bioclusters can promote the intensity of technological innovation. However, the mediating effect of 

technological innovation on GTFP is negative, meaning that the force of green clusters that promote 

technological innovation is greater than its mediating effect through technological innovation on GTFP. 

These results align with the findings of Graf and Broekel (2020), who highlight the impact of Bioregion 

initiatives in promoting technological innovation only during the funding period. This may be because a 

simple financial injection into projects to support technological innovation is not able to cause the 

emergence of clusters for decoupling economic growth from pollution (Kamath et al., 2022). 

Table 4.7: Mediating regression results for green clusters 

 Mediating models for green clusters 

Variables 

GTFP 

(1) 

Patent 

(2) 

GTFP 

(3) 

MC 

(4) 

GTFP 

(5) 

ST 

(6) 

GTFP 

(7) 

Gcluster  

0.018*** 

(2.320) 

3.685*** 

(2.630) 

0.021*** 

(2.780) 

133.318** 

(4.98) 

-0.003 

(-0.45) 

-0.044*** 

(-3.87) 

0.013* 

(1.70) 

Patent   

-0.001*** 

(-13.07) 

    

MC     

0.0002*** 

(50.62) 

  

ST       

-0.111*** 

(-13.03) 

Mediating 

effect 

  -0.002  0.030  0.005 
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Control Yes Yes Yes Yes Yes Yes Yes 

Fe Yes Yes Yes Yes Yes Yes Yes 

N 6512 6512 6512 6512 6512 6512 6512 

R2 0.260 0.069 0.203 0.085 0.137  0.011 0.219 

Note: ***p<0.01, **p<0.05, *p<0.1. Bioregion denotes the key explanatory variable. Fe indicates time 

fixed and individual fixed. N indicates the total sample size. R2 denotes the coefficient of determination.  

4.4.6 Heterogeneity analysis with difference-in-difference-in-differences (DDD) 

In this study, the level of Bioregions and types of green clusters, are introduced to further explore the 

heterogeneous implications of bioclusters on regional green productivity. The DDD model is employed in 

the present study to identify causal effects by comparing differences in changes in outcome variables before 

and after the intervention between treatment and control groups. Through structuring a third dimension of 

the treatment group (Bioregion*Level and Gcluster*Type, respectively in this study), DDD is used to 

identify the heterogeneous treatment effects of intervention policies across groups. For Bioregions, three 

levels of Bioregions, namely local level (Level-1), regional level (Level-2), and state level (Level-3) are 

introduced. The results shown in Table 4.8 illustrate that even though all levels of Bioregions can contribute 

to the increase of GTFP, the regional Bioregions have a significantly positive impact on GTFP. The higher 

the level of the bioclusters, the lower the parameter is. This implies a lower level of bioclusters may involve 

a closer cooperation between firms and research institutions as bioclusters highly depend on industry–

university–research integration (Youtie and Shapira, 2008; Jeong et al., 2023). 

Table 4.8: Regression results of DDD model for Bioregions 

Variables GTFP 

Bioregion*Level-1 0.046 

(1.54) 
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Bioregion*Level-2 

 

0.032** 

(2.91) 

 

Bioregion*Level-3 

 

 0.010 

(1.25) 

BV  0.0001*** 

(35.63) 

0.0001*** 

(35.38) 

0.0001*** 

(35.03) 

BE 

-0.004*** 

(-12.09) 

-0.004*** 

(-12.06) 

-0.005*** 

(-12.12) 

Ratio 0.076*** 

(18.13) 

0.076*** 

(18.04) 

0.076*** 

(18.06) 

Reg_share -0.0348*** 

(-8.99) 

-0.035*** 

(-8.95) 

-0.035*** 

(-8.99) 

Domain 3.23e-7*** 

(6.91) 

3.13e-7*** 

(6.69) 

3.20e-7*** 

(6.83) 

Fe Yes Yes Yes 

N  6226  6226  6226 

R2 0.142 0.144 0.141 

Note: ***p<0.01, **p<0.05, *p<0.1. Bioregion denotes the key explanatory variable. Fe indicates time 

fixed and individual fixed. N indicates the total sample size. R2 denotes the coefficient of determination.  
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For green clusters, three types of green clusters, namely agricultural agglomeration (Type-1), green 

chemistry clusters (Type-2), and bioeconomy districts (Type-3) are introduced to estimate the heterogeneity. 

The results shown in Table 4.9 illustrate that all kinds of bioclusters can promote GTFP. Among them, the 

higher coefficient of green chemistry clusters (Type-2) indicates a greater contribution. The coefficients of 

the other variables are quite similar, showing the results are relatively robust.  

Table 4.9: Regression results of DDD model for green clusters  

Variables GTFP 

Gcluster*Type-1 0.019*** 

(1.31) 

 

 

Gcluster*Type-2 

 

0.077*** 

(3.78) 

 

Ccluster*Type-3 

 

 0.018*** 

(2.66) 

BV  0.0001*** 

(41.91) 

0.0001*** 

(42.11) 

0.0001*** 

(41.95) 

BE 

-0.009*** 

(-24.93) 

-0.009*** 

(-25.19) 

-0.009*** 

(-25.08) 

Rate 0.078*** 

(19.65) 

0.078*** 

(19.60) 

0.078*** 

(19.69) 

Reg_share -0.032*** 

(-8.94) 

-0.032*** 

(-8.88) 

-0.032*** 

(-8.95) 

Domain 3.48e-7 

(6.83) 

3.45e-7 

(6.78) 

3.27e-7 

(6.36) 

Fe Yes Yes Yes 
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N 6512 6512 6512 

R2 0.226 0.263 0.262 

Note: ***p<0.01, **p<0.05, *p<0.1. Bioregion denotes the key explanatory variable. Fe indicates time 

fixed and individual fixed. N indicates the total sample size. R2 denotes the coefficient of determination.  

4.5 Discussion and conclusions 

4.5.1 Discussion 

The analysis shows that the development of bioclusters, as an institutional innovation, can contribute to 

improving regional green productivity. The obtained results are in line with recent studies, which found 

that technological innovation caused by regulation policies can be a new engine to stimulate economic 

growth and protect the environment at the same time (Alvarez-Herranz et al., 2017; Balsalobre-Lorente et 

al., 2020). The results contribute to the body of the relevant literature by showing that the policy of 

developing bioclusters may improve the green total factor productivity directly and indirectly through 

mediating effects from technological innovation, factor agglomeration, and industrial upgrading. As shown 

by the values of coefficients in Table 4-5, both Bioregion (0.02***) and Gcluster (0.025***) as well as the 

value added of bioeconomy (0.0001*** and 0.0002***, respectively) and patent application rate in the 

bioeconomy (0.075*** and 0.071***, respectively) can significantly promote the increase of GTFP. The 

mediating effect of factor agglomeration is found to be the biggest, as shown in Tables 4-6 (0.121) and 4-7 

(0.03). 

Differing from Du and Li (2022), where the mediating effect includes government strategic leadership in 

addition to technological innovation and industry upgrading, this study instead considers the agglomeration 

effects. Specifically, the agglomeration effect is found to be the strongest mediating force when bioclusters 

affect GTFP. This highlights the roles of production factor flows and resource allocation in green urban 

efficiency, contributing new insights to the literature in this field (Rusiawan et al., 2015; Atesagaoglu et al., 

2017; Liu and Xin, 2019). Compared with previous studies where technological innovation is denoted by 

the number of patents or R&D investment (Du and Li, 2019; Luo et al., 2022), the present analysis suggests 
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that the regional share of patents and the ratio of patent applications that are highly linked with bioclusters 

can be extended to indicate the level of technological innovation. These observations allow the conclusion 

that an alignment of bioclusters with technological innovation, regional market capacity, and industrial 

structure is needed to promote green economic growth and sustainable transition to bioeconomy (Chen et 

al., 2021; Van Lancker et al., 2016; Wilde and Hermans, 2024).  

The heterogeneity analysis shows that the impact of bioclusters on GTFP varies with the types of bioclusters. 

The obtained results show that all kinds of bioclusters can promote GTFP, but chemical green clusters make 

the greatest contribution, which is in line with recent studies, which found that green technological 

innovation can promote GTFP (Liu et al., 2024; Zhang and Wang, 2022).  Methodologically, this study 

addresses the variation in treatment timing when employing DiD (Callaway and Sant’Anna, 2021) by 

combining SDiD and PSM in the exogeneity test and DDD in the heterogeneous analysis (Du and Li, 2022; 

Guo and Zhong, 2022). In this way, the mechanism and synergies behind regional green productivity, not 

detectable from federalor state-level data (Gurney et al., 2019; Li et al., 2020; Wang and Jiang, 2020), can 

be illuminated. In addition, the observed finding that a lower level of bioclusters has a larger impact on 

GTFP also implies that lower-level bioclusters are more efficient for improving regional GTFP. Using data 

at the NUTS-3 level can inform the development of tailored, regionally specific policy instruments for 

GTFP improvement.  

4.5.2 Conclusions 

In the context of the increasing demands for environmental and economic alignment in various countries 

worldwide, boosting the bioeconomy to improve regional productivity through technological innovation 

and institutional innovation is expected to be an efficient pathway towards future sustainable development. 

Focusing on the 401 NUTS-3 level (counties/cities) in Germany from 2000 to 2021, the study estimates the 

impact of bioclusters on green productivity mediated by technological innovation, industrial upgrading, and 

market capacity. We used a series of DiD models (SDiD, PSM-SDiD, and DDD) and mediating models, 

and arrived at four main conclusions. 
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First, for the observed period 2000 to 2021, the regional productivity of the 401 counties/cities were found 

to be spatially autocorrelated and exhibited clustering patterns, largely reflecting the overlap between 

bioclusters and regional productivity. Second, developing bioclusters, no matter as Bioregions or green 

clusters, has a positive effect on GTFP, both in a direct manner and indirect manner through technological 

innovation and market agglomeration. Third, different types of bioclusters have heterogeneous impacts on 

GTFP, with chemical green clusters making the greatest contribution. Furthermore, the larger the level of 

the bioclusters, the less contribution the bioclusters makes to GTFP. Fourth, regional GTFP can be 

improved through the positive effect of the value added of bioeconomy, while there are negative effects of 

the number of employees in the bioeconomy, regional share of patents in the bioeconomy, and the level of 

bioclusters.  

The findings point to a high potential of establishing bioclusters to improve the regional green total factor 

productivity performance. This potential can be realized if policy measures account for the regional 

heterogeneity in economic strength and resource endowment at a possibly reasonable spatial scale. The 

study thus advocates for the transition to a bioeconomy, while highlighting the role of different regional 

drivers of GTFP. Still, due to the limited availability of some county-level data, especially for R&D 

investment, and sectoral diversity, the findings need to be verified by further research, which should also 

account for the impact of the more recent programmes for bioclusters. 
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5 Synthesis 

5.1 Main findings 

Boosting the bioeconomy through technological and institutional innovation is expected to be an efficient 

way to achieve future sustainable development. Facing the challenges of an increasing demand for biomass 

and low R&D productivity in Germany, the transition to bioeconomy requires a better understanding of its 

real implication on sustainable development. This dissertation, focuses on the bioeconomy of Germany and 

assesses the mitigation effects of technological innovation on carbon emissions and the impact of 

bioclusters, which are defined as a regional institutional innovation, on green total factor productivity. In 

this dissertation, multiple approaches and methods are used in analysing the influencing mechanisms of 

technological and institutional innovation in the bioeconomy, including super-efficiency SBM, system 

dynamics, spatial Durbin model, Staggered DiD(SDiD), PSM-SDiD and difference in difference in 

differences (DDD) and mediating model. The main findings of the dissertation can be summarized as 

follows.  

First, R&D investments can effectively mitigate carbon emissions in the agricultural sector. Focusing on 

German agriculture, this dissertation measures the potential mitigation effect of R&D investments on 

agricultural carbon emissions by simulating the net agricultural carbon emissions with a consideration of 

the dynamic interactions in the agricultural carbon system. Using a system dynamics approach, the dynamic 

interactions among five subsystems during 2020 to 2050 are considered under four scenarios, where the 

direct effect of R&D investments on carbon emissions and indirect effect through land use management 

and the circular economy are investigated. The results show that R&D investments have a mitigation effect 

on agricultural carbon emissions both directly and indirectly; the direct effect of R&D investment is greater 

than the indirect effect. Given the role of R&D investment and its impacts in reducing agricultural carbon 

emissions, increasing the fallow land, improving the circular economy, and increasing R&D investment are 
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rather effective strategies for lowering net carbon emissions. This provides a sustainable pathway for the 

transition to a plant-based bioeconomy in Germany. 

Second, the forest-based bioeconomy and the associated technological innovation have enormous potential 

for mitigating carbon emissions directly and indirectly.  The dissertation uses an extended Spatial Durbin 

Model and NUTS-3 level panel data to estimate the impact of the forest-based bioeconomy on carbon 

emissions in Germany. Intra-regional and spillover effects of technological innovation, the size of the 

bioeconomy, industrial upgrading, and their interactions are measured from 2000 to 2021, covering 401 

counties/cities. The results show that the levels of carbon emissions in the 401 counties/cities are spatially 

autocorrelated and exhibit clustering patterns. Technological innovation in the forest-based bioeconomy 

reveals a spatially gradual diffusion from the local county/city to the periphery. This can reduce carbon 

emissions through industrial upgrading and increasing job opportunities in the bioeconomy in local areas 

and further lower carbon emissions through the negative spillover effect of industrial upgrading and the 

size of bioeconomy in neighbouring areas. The findings point to a high potential of a forest-based 

bioeconomy to improve the net emissions performance, suggesting the need for a combination approach to 

align the technological patents, employment population and industrial transition strategies. 

Third, bioclusters, including Bioregions and green clusters, have positive effects on GTFP directly and 

indirectly. The dissertation uses a quasi-natural experiment, including a slew of methods, such as staggered 

DiD(SDiD), PSM-SDiD, and difference in difference in differences (DDD) and a mediating model to 

estimate the impact of establishing bioclusters on green total factor productivity (GTFP) in Germany at the 

NUTS-3 level. Results of regional GTFP of 401 counties/cities in Germany during 2000 to 2021 measured 

by the super slacks-based measure (super-efficiency SBM) are found to be spatially autocorrelated and 

exhibited clustering patterns, largely reflecting the overlap between bioclusters and regional productivity. 

The results show that developing bioclusters, both as Bioregions and green clusters, can have a positive 

effect on GTFP directly and indirectly through technological innovation and market agglomeration. This 

dissertation also discovers that different types of bioclusters have heterogeneous impacts on GTFP, with 
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the greatest contribution being from chemical green clusters. The findings further point to win-win 

outcomes of developing bioclusters for both the economy and environment, encouraging support for more 

sustainable modes of regional development in the future, and suggesting the need for a coordinated 

approach to align the existing sustainability, industrial structure and bioeconomy strategies. 

These findings not only add to the body of relevant literature on the bioeconomy by revealing the 

influencing mechanism empirically but also contribute by providing insights into the scientific and policy 

actions that guide the transition of bioeconomy in Germany and other countries, as detailed below. 

5.2 Implications 

5.2.1 Policy implications 

This dissertation explores the implication of developing a bioeconomy on sustainable development by 

revealing the influencing mechanisms of technological and institutional innovation in the bioeconomy. The 

findings not only confirm that developing a bioeconomy through technological and institutional innovation 

is an efficient way to promote sustainable development, but also provide empirical evidences and scientific 

references and insights for policy makers. The dissertation illustrates that the process of the transition to 

bioeconomy is accompanied by consideration of the production factor flows and reallocations, as well as 

industrial upgrading and restructuring, and that just strengthening technological innovation (e.g. increasing 

R&D investment) may not be enough. In this regard, promoting the synergy of technological and 

institutional innovation will matter. Pilots’ construction and equipped policies and facilities are encouraged 

to improve the synergy of technological and institutional innovation. Furthermore, the strategies promoting 

the transition to a sustainable bioeconomy require a comprehensive and systematic consideration, calling 

for multi-party cooperation (e.g. industry–university–research) and the collaboration of many departments. 

Even though the bioeconomy can serve as a bridge linking carbon neutrality and competitiveness, the trade-

off between climate resilience and competitiveness needs to be considered in developing a bioeconomy. 

Some specific policy implications are shown below. 
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First, improving R&D investment and prioritizing the interaction between R&D investment and land use 

management and coupled production are required for reducing agricultural carbon emissions. The high 

potential of R&D investment to support net agricultural emission reduction found in this dissertation 

advocates the need for a transition to a sustainable plant-based bioeconomy with more R&D investment 

involved in agricultural carbon emissions system. The provided insights into the direct and indirect effects 

of R&D investment on agricultural emissions can alert policymakers to align the existing sustainability, 

land management (e.g. the greening of the CAP) and innovation strategies to successfully set up a route for 

the transition to a bioeconomy (Jantke et al., 2020; Beer and Heise, 2020).  

Second, boosting the forest-based bioeconomy by increasing the number of patents in the forest-based 

bioeconomy, increasing the number of employees in the forest-based bioeconomy, and promoting industrial 

upgrading is an efficient strategy to reduce carbon emissions. The observations about the combinations of 

technological innovation, employees in the bioeconomy, and industrial upgrading not only highlight their 

overlapping effects on carbon emissions, but also call for an alignment of technological innovation with 

industrial upgrading and a structural change in employment for boosting the forest-based bioeconomy to 

reduce carbon emissions (Halonen et al., 2022; Hetemäki et al., 2022). At the same time, stronger industry–

academic collaboration, such as establishing an industry–university–research regional linkage program and 

bioclusters (Pant et al., 2019; Ayrapetyan et al., 2022), is required for the sustainable development of a 

forest-based bioeconomy. 

Third, tailored and regionally specific policy instruments are required to promote bioclusters. The findings 

about the high potential of establishing bioclusters to improve the regional green total factor productivity 

further prove the win–win outcomes of developing bioclusters for both the economy and environment, 

encouraging more sustainable modes of regional development in the future. The insights into the combined 

regional effects of labour division, urban development, and industrial adjustments on green productivity 

may alert policymakers to align the strategies on enhancing the market capacity, industrial upgrading, and 

developing the bioeconomy in order to successfully set up the transition to a green economy (Lee, 2020). 
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In that case, providing subsidies to attract small and medium-sized enterprises to enter bioclusters and 

promoting collaboration among research institutions, industries, and government departments are effective 

policy incentives for developing bioclusters. In particular, project-based R&D subsidies for enterprises 

within bioclusters can be more effective in fostering technological innovation and promoting regional green 

development. 

5.2.2 Scientific implications 

In addition to policy implications, this dissertation also makes a few contributions to the scientific research 

field in the bioeconomy. First, the simulation method we used, i.e. SD, is a promising tool for estimating 

net carbon emissions across various intertwining sub-sectors in agricultural systems. Using SD, this study 

reveals the direct and indirect effects of R&D investment on agricultural carbon emissions by simulating 

the dynamic interactions in the agricultural carbon system in Germany. Additionally, the effects of R&D 

investment on agricultural carbon emissions highlight the importance of the substitution effect of renewable 

bioenergy replacing fossil fuel and carbon sinks in the agricultural system, calling for a reconsideration of 

carbon emissions calculations.  

Second, spatial dimensions and spatial method matter for estimating the impact of a forest-based 

bioeconomy on carbon emissions. Using an extended Spatial Durbin Model and NUTS-3 level panel data, 

this dissertation measures the degree and direction of intra-regional and spillover effects of technological 

innovation, the size of the bioeconomy, industrial upgrading, and their interactions empirically. The results 

advocate for spatial assessment of the mitigation effect of the forest-based bioeconomy and its spillover 

effects on carbon emissions on a more disaggregated scale. In this way, the mechanism and synergies behind 

net carbon emissions (Gurney et al., 2019; Li et al., 2020), usually not detectable from national-, state- or 

city-level data (cf. Feng and Chen, 2018; Zhang et al., 2020; Wang and Jiang, 2020), can be illuminated.  

Last but not least, the use of multiple and innovative natural experimental approaches can be effective in 

estimating the impact of institutional innovation on regional green productivity. This study addresses 

variations in the treatment timing when employing DiD (Callaway and Sant’Anna, 2021) by combining 
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SDiD and PSM in an exogeneity test and DDD in heterogeneous analysis (Du and Li, 2022; Guo and Zhong, 

2022). In addition, this dissertation establishes a theoretical framework to reveal the direct and indirect 

effects of institutional innovation on regional green productivity and empirically estimates these effects 

using a mediating model. The combination of quasi-natural experimental approaches and a mediating model 

enables a precise estimation of the impact of institutional innovation in the bioeconomy. The observed 

findings reveal that smaller levels of bioclusters have a larger impact on GTFP, confirming that a small 

scale is more efficient for improving regional GTFP.  

5.3 Outlook and future work 

The transition to a bioeconomy is integral to achieving climate neutrality, sustainability, and economic 

competitiveness in Europe, with Germany playing a pivotal and leading role. This dissertation has delved 

into the dynamics of technological and institutional innovations in the bioeconomy and their impacts on 

carbon emissions, and green productivity. However, several avenues remain open for future research to 

deepen our understanding and provide insights for policy formulation. 

First, the data used in this dissertation are mainly secondary data at the sectoral level and NUTS-3 level. 

While this allows figuring out the implication of the transition to bioeconomy on sustainable development 

at the middle and macro levels, it fails to demonstrate agents’ behaviours in the value chain of the 

bioeconomy. Future research should prioritize collecting primary data at the individual level from diverse 

stakeholders, including farmers, enterprises, and local communities, to illustrate the role of agents’ 

behaviours in shaping the transition to sustainable bioeconomy. With the help of farm-enterprise level data 

obtained by field investigation, how individual farms and enterprises are adapting to and benefiting from 

the transition to bioeconomy shall be analysed.  

Second, linking the findings to the green reform of the CAP will help in aligning national strategies with 

broader European goals. It has been found that the bioeconomy can reduce carbon emissions by increasing 

carbon sinks especially since 2015 when EFA was introduced to the CAP. The trade-off between ecological 
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compensation and non-food biomass supply in the decision making of farmers and their impacts on the 

structural change of agriculture should be measured in the future. Adding farmers’ behaviours under the 

transition to bioeconomy into the green reform of the CAP will facilitate a more cohesive and effective 

bioeconomic transition, but also promote a unified approach to sustainable development. 

Third, comparative studies between Germany and other countries with different bioeconomic strategies will 

be useful and yield valuable insights into best practices and potential pitfalls. This dissertation mainly 

focuses on the case of Germany, the leading country in promoting bioeconomy. However, many transition 

countries, like China and India, have launched bioeconomy strategies. Specifically, the bioeconomy in 

China got off to a late start and had a relatively small scale, but developed rapidly (the average annual 

growth rate has exceeded 20%). Up to 2018, China is the third largest bioethanol producer (2050 thousand 

tons in 2018) in the world after the United State (44100 thousand tons in 2018) and Brazil (21280 thousand 

ton in 2018) (FAO, 2018). In particular, there are 11 provinces that have been selected as pilot areas to 

promote the production and application of bioethanol. Therefore, a comparison between Germany and 

China may provide heterogeneous experiences for other countries around the world.   
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Appendix 

Table A. 1: Main variables and parameter indexes in the SD model during 2000-2050 

Subsystem 
Variable 

Abbrevia

tion 
Unit Equations 

Socioecon

omic 

subsystem  

Gross 

domestic 

product 

GDP 
Mill. 

Euro 
GDP-1+GDP-2+GDP-3 

Primary 

industry 

GDP 

GDP-1 
Mill. 

Euro 

EXP(-1.7991*LN(Alabor)+0.5956* LN(Ainvest)- 0.4973* 

LN(AR&D)+21.7535) 

(R2==0.7795, p-value=0.001) 

Secondar

y 

industry 

GDP 

GDP-2 
Mill. 

Euro 

EXP(-2.0605*LN(Patents)+0.2977* LN(Biorefinery)+32.389) 

(R2==0.5913, p-value=0.005) 

Tertiary 

industry 

GDP 

incremen

t rate 

coefficie

nt 

GDP-

3IRC 
-- 

WITH LOOKUP (Time, [(2001,-1)-(2050,1)], (2001,0.0421), (2002,-

0.0271), (2003,0.0083), (2004,0.0227), (2005,0.0134), (2006,0.0317), 

(2007,0.0345), (2008,0.0239), (2009,-0.0086), (2010,0.0164), 

(2011,0.0425), (2012,0.0174), (2013,0.0324), (2014,0.0399), (2015,0.0345), 

(2016,0.0295), (2017,0.0396), (2018,0.0349), (2019,0.0369)) 

Tertiary 

industry 

GDP 

incremen

t rate  

GDP-3IR % GDP-3IRC(Time) 

Tertiary 

industry 

GDP 

incremen

t 

GDP-3I 
Mill. 

Euro 
GDP-3*GDP-3IR 

Social 

investme

nt 

Invest 
Mill. 

Euro 
INTEG (Invest*InvestR, 16844.8) 

Increase 

of social 

investme

nt rate 

InvestR % 

WITH LOOKUP (GDP/Pop, [(0,-1)-(100,1)], (24.0757,0.0015),(24.3586, -

0.0919), (24.4825,-0.0563), (25.1630,-0.0746), (25.4455,0.0150), 

(26.5724,-0.0228), (27.7537,-0.0238), (28.3487,0.1667), (27.2459,0.2805), 

(28.3487,0.1667), (28.7191,-0.21497), (28.7191, -0.2150), (30.6695, 

0.1696), (31.3688,-0.0254), (32.5659,0.0078), (33.4158, -0.0511), 

(34.2742,0.0393), (35.5249, 0.1020), (36.4885,0.1143)) 

Populatio

n 
Pop 103 INTEG (Pop*PopR, 81457) 

Populatio

n 

incremen

t rate 

PopR % 

WITH LOOKUP (Time, [(2001,0)-(2050,1)], (2001, 0.0007), (2002,0.007), 

(2003,-0.0004), (2004,-0.0011), (2005,-0.0015), (2006,-0.002), (2007,-

0.0022), (2008,-0.0028), (2009,-0.0035), (2010,-0.0025), (2011,-0.0006), 

(2012, 0.0021), (2013,0.0023), (2014,0.0042), (2015, 0.0066), 

(2016,0.0109), (2017, 0.0038), (2018,0.0027), (2019,0.0022)) 

Ratio of 

Agricultu

ral GDP 

to GDP  

RGDP % 

WITH LOOKUP (Time, ([(2001,0)-(2050,1)], (2000,0.011), (2001,0.012), 

(2002,0.01), (2003,0.0092), (2004,0.0105), (2005,0.008), (2006,0.0082), 

(2007,0.0087), (2008,0.0093), (2009,0.0078), (2010,0.0089), (2011,0.0101), 

(2012,0.0094), (2013,0.0105), (2014,0.01), (2015,0.0076), (2016,0.0078), 

(2017,0.0092), (2018,0.0074), (2019,0.008)) 
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Subsystem 
Variable 

Abbrevia

tion 
Unit Equations 

Agricultu

ral 

investme

nt 

Ainvest 
Mill. 

Euro 
Invest*RGDP 

Land use 

subsystem 

Farmland Farm ha INTEG (FarmI, 16844800) 

Farmland 

incremen

t rate 

coefficie

nt 

FarmIRC -- 

WITH LOOKUP (Time, [(2001,-1)-(2050,1)], (2001,-0.0011), (2002,-

0.0039), (2003,0.0021), (2004,0.0010), (2005,0.0012), (2006,-0.0050), 

(2007,0.0002), (2008,-0.0018), (2009,-0.0021), (2010,0.0111), 

(2011,0.0010), (2012,-0.0032), (2013,0.0020), (2014,0.0014), 

(2015,0.0002), (2016,-0.0040), (2017,0.0018), (2018,-0.0026), 

(2019,0.0013)) 

Farmland 

incremen

t rate 

FarmIR % FarmIRC(Time) 

Farmland 

incremen

t 

FarmI ha Farm* FarmIR 

Arable 

land 
Arab ha Population*ArabR(Time) 

Average 

arable 

land per 

person 

ArabR 
ha/pers

on 

WITH LOOKUP (Time, [(2000,0)-(2050,1), (2000,0.144905), 

(2001,0.144915), (2002,0.144535), (2003,0.145028), (2004,0.146075), 

(2005,0.146346), (2006,0.146183), (2007,0.146644), (2008,0.147745), 

(2009,0.148418), (2010,0.147564), (2011,0.147595), (2012,0.147191), 

(2013,0.147371), (2014, 0.146669), (2015,0.145428), (2016,0.142843), 

(2017,0.142403), (2018,0.141529), (2019,0. 141005)) 

Grasslan

d 
Grass ha Farm-Arab 

Fallow 

land 
FL ha Arab*FLR(Time) 

Fallow 

land ratio 
FLR % 

WITH LOOKUP (Time, [(2000,0)-(2050,1)], (2000,0.0697), (2001,0.0719), 

(2002,0.0708), (2003,0.0794), (2004,0.0659), (2005,0.0667), (2006,0.0625), 

(2007,0.0546), (2008,0.0259), (2009,0.0206), (2010,0.0213), (2011,0.0193), 

(2012,0.0183), (2013,0.0168), (2014,0.0159), (2015,0.0262), (2016,0.0264), 

(2017,0.0270), (2018,0.0307), (2019,0.0299), (2050, 0.05) 

Ecologic

al Focus 

Area 

EFA ha 

IF THEN ELSE (100000<=Fallowland: AND: Fallowland<=1e+06: AND: 

2000<= Time: AND:Time<=2033, 

EXP(1.7386*LN(Fallowland)+0.125*Time-260.74), 6e+06) 

(R2=0.8731, p-value=0.000) 

Greenlan

d 
Green ha Grass+FL+EFA 

Carbon 

sink form 

land 

CS-1 Tons 0.191*Green 

Carbon 

sink from 

plants 

CS-2 Tons 

Plant-1*0.4144/0.45+ Plant-2*0.4144/0.45+ Plant-3*0.4709/0.4+ Plant-

4*0.4709/0.4+ 

Plant-5*0.4072/0.7+ Plant-6*0.4226/0.7+ Plant-7*0.45/0.25 

Carbon 

sink 
CS Tons CS-1+CS-2 

Agricultur

al 

production 

system 

Wheat 
Plant-1 103ton

s 
INTEG (Plant-1I, 21622) 

Wheat 

incremen

t rate 

Plant-1R % 

WITH LOOKUP (Time,[(2000,-1)-(2050,1)],(2001,0.0562), (2002,-

0.0885),  

(2003, -0.748), (2004,0.3202), (2005,-0.682), (2006,-0.0534), (2007,-

0.7134), 

(2008,0.2478), (2009,-0.0307), (2010,0.0559), (2011,-0.0421), (2012,-

0.0164), 

(2013,0.1165), (2014,0.1106), (2015,-0.0445), (2016,-0.0786), 

(2017,0.0007), 

(2018,-0.1723), (2019,0.1381), (2020,-0.03868), (2050,0.01)) 
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Subsystem 
Variable 

Abbrevia

tion 
Unit Equations 

Wheat 

incremen

t 

Plant-1I 
103ton

s 
Plant-1*Plant-1R(Time) 

Barley 
Plant-2 103ton

s 
INTEG (Plant-2I, 12106) 

Barley 

incremen

t rate 

Plant-2R % 

WITH LOOKUP (Time,[(2000,-1)-(2050,1)],(2001,0.1147), (2002,-

0.1902),  

(2003, -0.0304), (2004,0.2262), (2005,-0.1061), (2006,0.0304), (2007,-

0.1323), 

(2008,0.1524), (2009,0.0268), (2010,-0.1596), (2011,-0.1543), 

(2012,0.1897), 

(2013,-0.0045), (2014,0.1178), (2015, 0.0058), (2016,-0.0773), 

(2017,0.0114), 

(2018,-0.1169), (2019,0.2094), (2020,-0.0638) , (2050,0.01)) 

Barley 

incremen

t 

Plant-2I 
103ton

s 
Plant-2*Plant-2R(Time) 

Maize 
Plant-3 103ton

s 
INTEG (Plant-3I, 3324) 

Maize 

incremen

t rate 

Plant-3R % 

WITH LOOKUP (Time,[(2000,-1)-(2050,1)],(2001,0.0545), (2002,-

0.0665),  

(2003, -0.1027), (2004,0.2522), (2005,-0.0279), (2006,-0.2114), 

(2007,0.1829), 

(2008,0.3405), (2009,-0.1134), (2010,-0.0696), (2011,0.2308), 

(2012,0.0639), 

(2013,-0.2045), (2014,0.1721), (2015,-0.2273), (2016,0.0113), 

(2017,0.1319),  

(2018,-0.2647), (2019,0.0960), (2020,0.0578) , (2050,0.03)) 

Maize 

incremen

t 

Plant-3I 
103ton

s 
Plant-3*Plant-3R(Time) 

Silage 

maize 

Plant-4 103ton

s 
INTEG (Plant-4I, 52006) 

Silage 

maize 

incremen

t rate 

Plant-4R % 

WITH LOOKUP (Time,[(2000,-1)-(2050,1)],(2001,-0.0348), (2002,-

0.7836),  

(2003,3.1018), (2004,0.2298), (2005,0.0488), (2006,-0.0760), 

(2007,0.3029), 

(2008,0.0253), (2009,0.0367), (2010,-0.0191), (2011,0.3415), (2012,-

0.0207), 

(2013,-0.1745), (2014,0.2678), (2015,-0.1208), (2016,0.0558), 

(2017,0.0802), 

(2018,-0.2210), (2019,0.1188), (2020,0.0868) , (2050,0.2)) 

Silage 

maize 

incremen

t  

Plant-4I 

103ton

s 
Plant-4*Plant-4R(Time) 

Sugar 

beet 

Plant-5 103ton

s 
INTEG (Plant-5I,27870) 

Sugar 

beet 

incremen

t rate 

Plant-5R % 

WITH LOOKUP (Time,[(2000,-1)-(2050,100)],(2001,-0.1127), 

(2002,0.1251),  

(2003, -0.1476), (2004,0.1452), (2005,-0.0690), (2006,-0.1834), (2007,0), 

(2008,0.1141), (2009,0.1268), (2010,-0.0960), (2011,0.2623), (2012,-

0.0639), 

(2013,-0.1755), (2014,0.3031), (2015,-0.2412), (2016,0.1296), 

(2017,0.3358), 

(2018,-0. 2310), (2019,0.1350), (2050,0.02)) 

Sugar 

beet 

Plant-5I 103ton

s 
Plant-5*Plant-5R(Time) 



142 

 

Subsystem 
Variable 

Abbrevia

tion 
Unit Equations 

incremen

t 

Potato 
Plant-6 103ton

s 
INTEG (Plant-6I, 13193) 

Potato 

incremen

t rate 

Plant-6R % 

WITH LOOKUP (Time,[(2000,-1)-(2050,100)],(2001,-0.1281), (2002,-

0.0338),  

(2003, -0.1078), (2004,0.3155), (2005,-0.1089), (2006,-0.1370), (2007,0), 

(2008,0.1334), (2009,0.0276), (2010,-0.1318), (2011,0.1670), (2012,-

0.0989), 

(2013,-0.0934), (2014,0.2003), (2015,-0.1066), (2016,0.0388), 

(2017,0.0880), 

(2018,-0.2388), (2019,0.1884), (2020,0.0894) , (2050,0.01)) 

Potato 

incremen

t  

Plant-6I 
103ton

s 
Plant-6*Plant-6R(Time) 

Rapeseed 
Plant-7 103ton

s 
INTEG (Plant-7I, 3527) 

Rapeseed 

incremen

t rate 

Plant-7R % 

WITH LOOKUP (Time,[(2000,-1)-(2050,100)],(2001,0.1659), (2002,-

0.0732),  

(2003, -0.0669), (2004,0.4727), (2005,-0.0443), (2006,0.0583), (2007,0), 

(2008,-0.0300), (2009,0.2240), (2010,-0.0956), (2011,-0.3267), 

(2012,0.2551), 

(2013,0.2005), (2014,0.0816), (2015,-0.1977), (2016,-0.0867), (2017,-

0.0669), 

(2018,-0.1399), (2019,-0.2305), (2020,0.2439) , (2050,0.02)) 

Rapeseed 

incremen

t 

Plant-7I 
103ton

s 
Plant-7*Plant-7R(Time) 

Output of 

plants 

Output-1 103ton

s 
Plant-1+ Plant-2+ Plant-3+ Plant-4+ Plant-5+Plant-6+ Plant-7 

Irrigation 

area 

Irrigation 
ha 0.031*Arab 

Ploughin

g area 

Plough 
ha INTEG (PloughI, 823188) 

Ploughin

g area 

incremen

t 

PloughI 

ha 

WITH LOOKUP (Arab,[(0,-1000)-(35702000,1000)],(11813000,27.012),  

(11790910,-15.631), (11826880, 104.1008), (11898660, -154.277), 

(11903340,9.3938), 

(11866100,-52.6862), (11877000,-92.9), (11932500,-338.7), (11945100,-

63.9), 

(11847000,6.8), (11874100,-23.7), (11834000,-14.1), (11876000,-15.6),  

(11869200,-10.4), (11846400,121.6), (11771900,0.189), (11771900, 7.211), 

(11730900,42.2), (11731700,-9.7)) 

Fertilizer Fert tons INTEG (FertI, 3694499) 

Fertilizer 

incremen

t rate 

FertIR % 

WITH LOOKUP (Time,[(2000,-1)-(2050,1)],(2001,-0.1102), (2002,-7.65E-

05),  

(2003, -0.0293), (2004,0.0031), (2005,-0.0361), (2006,-0.0285), 

(2007,0.0255), 

(2008,0.0911), (2009,-0.1489), (2010,0.0217), (2011,0.1429), 

(2012,0.0088), 

(2013,0.0157), (2014,0.0794), (2015,0.0092), (2016,-0.1002), (2017,0.004), 

(2018,0.0069), (2019,-0.0495)) 

Fertilizer 

incremen

t 

FertI 

tons Fert* FertIR (Time) 

Pesticide 
Pestic  

tons 
EXP(0.6569*LN(Profit) +3.5412) 

(R2=0.8502, p-value=0.000) 

Cattle  Cattle 1000 INTEG (CattleI, 14537.93) 
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Subsystem 
Variable 

Abbrevia

tion 
Unit Equations 

Cattle 

incremen

t rate 

CattleIR % 

WITH LOOKUP (Time,[(2000,-1)-(2050,1)],(2001,0.0448), (2002,-

0.0421),  

(2003, -0.0246), (2004,-0.0328), (2005,-0.0122), (2006,-0.022), (2007,-

0.0048), 

(2008,0.0223), (2009,-0.0019), (2010,-0.0185), (2011,-0.014), (2012,-

0.0017), 

(2013,0.0143), (2014,0.0044), (2015,-0.0084), (2016,-0.0134), (2017,-

0.0149), 

(2018,-0.027), (2019,-0.0259)) 

Cattle 

incremen

t 

CattleI 

1000 Cattle* CattleIR(Time) 

Sheep Sheep 1000 INTEG (SheepI, 2743.304) 

Sheep 

incremen

t rate 

SheepIR % 

WITH LOOKUP (Time,[(2000,-1)-(2050,1)],(2001,0.0101), (2002,-

0.0179),  

(2003, -0.009), (2004,-0.0061), (2005,-0.0264), (2006,-0.031), (2007,-

0.0086),  

(2008,-0.0398),(2009,-0.0357), (2010,-0.1111), (2011,-0.2064), (2012,-

0.0101),  

(2013,-0.0433),(2014,-0.0196), (2015,-0.0131), (2016,-0.0035), (2017,-

0.0002),  

(2018,-0.0026),(2019,-0.0085)) 

Sheep 

incremen

t 

SheepI 

1000 Sheep* SheepIR(Time) 

Pig  Pig 1000 INTEG (PigI, 25633.36) 

Pig 

incremen

t rate 

PigIR % 

WITH LOOKUP (Time,[(2000,-1)-(2050,1)],(2001,0.0059), (2002,0.0124),  

(2003, 0.0089), (2004,-0.0256), (2005,0.0467), (2006,-0.0126), 

(2007,0.0228), 

(2008,-0.0162), (2009,0.0098), (2010,-0.0017), (2011,0.0186), 

(2012,0.0339), 

(2013,-0.007), (2014,0.0073), (2015,-0.0242), (2016,-0.01), (2017,0.0074), 

(2018,-0.0411), (2019,-0.0196)) 

Pig 

incremen

t 

PigI 

1000 Cattle* CattleIR(Time) 

Number 

of 

livestock 

Output-2 

1000 Cattle+Sheep+Pig 

Labor in 

agricultu

re 

Alabor 

1000 INTEG (AlaborI, 25633.36) 

Alabor 

incremen

t rate 

AlaborIR % 

WITH LOOKUP (Time,[(2000,-1)-(2050,1)],(2001,-0.0073), (2002,-

0.0074),  

(2003, -0.0074), (2004,-0.0103), (2005,-0.0104), (2006,-0.0098), (2007,-

0.0099), 

(2008,-0.0405), (2009,-0.0422), (2010,-0.044), (2011,-0.024), (2012,-

0.0245), 

(2013,-0.0252), (2014,-0.0263), (2015,-0.027), (2016,-0.0277)) 

Alabor 

incremen

t 

AlaborI 

1000 Alabor * AlaborIR(Time) 

Agricultu

ral profit 

Profit Mill. 

Euro 

EXP(0.3561*LN(Output-1)+0.2682*LN(AR&D)+4.8758) 

(R2=0.8512, p-value=0.000) 

Carbon 

emission

s from 

planting 

CE-1 

Tons 
0.8956*Fertilizer+266.48*Irrigation/1000+3.126*Plough/1000+4.9341*Pe

stic 
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Subsystem 
Variable 

Abbrevia

tion 
Unit Equations 

Carbon 

emission

s from 

livestock  

CE-2 

Tons 415.93*Cattle+35.1819*Sheep+34.091*Pig 

Carbon 

emission

s  

CE Tons CE-1+CE-2 

Coupled 

subsystem 

Agricultu

ral 

residues 

AR tons Plant-1*1.42+ Plant-2*1.42+ Plant-3*1.42+ Plant-4*1.42+ Plant-7*2.05 

Animal 

manure 
AM tons 0.07*Cattle/2+0.07*Sheep/2+0.06*Pig/2 

Waste 

for 

biogas 

Waste tons AR*Share of waste 

Share of 

agricultu

ral waste 

for 

biogas 

Share of 

waste 
% SMOOTH(0.4, -0.0001*Time) 

Agricultu

ral 

wastes 

for 

biorefine

ry 

productio

n 

Biorefiner

y 
tons AR*(1-Share of waste) 

Biogas 

productio

n 

Biogas 
Mio. 

kWh 

IF THEN ELSE (0<"R&Dvest":AND:"R&Dvest"<=70000, 

EXP(6.3519*LN(Animal manure) 

+11.5097*LN("R&Dvest")-0.6381*LN(Waste for biogas)-155.922),  

EXP(2.7776*LN(Animal manure)+1.0145*LN("R&Dvest")-

0.1158*LN(Waste for biogas)-19.8757)) 

(R2=0.9412, 0.8257; p-value=0.000, 0.053) 

Carbon 

reduction 
CR tons Biogas*(825-133.1)/825*100 

Innovation 

subsystem 

R&D in 

agricultu

re 

AR&D 
Mill. 

Euro 
INTEG (AR&DI* AR&D, 313.5)  

Increase 

rate of 

R&D in 

agricultu

re 

AR&DI % 

WITH LOOKUP (AR&DR*R&Dvest,[(0,-1)-(10000,1)], (1343.5359, 

0.02105),  

(1400.8330,0.0125), (1472.6282, 0.03363), (1406.5830,-0.0863), 

(1404.7186,0.0131),  

(1552.5295,0.0761), (1772.6756,0.1577), (2269.2674,0.4012), 

(2414.7095,0.0813), 

(2425.7134,-0.0093), (2626.3765,0.0952), (2382.7774,-0.0190), 

(2540.4166,0.0053), 

(2620.0314,0.0195), (2766.1400,0.0796), (31535.3337,0.1242), 

(3238.0567,-0.0082), 

(3779.1876,0.2548)) 

Share of 

agricultu

ral R&D 

in total 

R&D 

AR&DR % 

WITH LOOKUP (Time,[(2000,-1)-(2050,1)], (2000, 0.0295), 

(2001,0.0285),  

(2002,0.0289), (2003, 0.0299), (2004,0.0281), (2005,0.0278), 

(2006,0.0291),  

(2007,0.0275), (2008,0.0296), (2009,0.0378), (2010,0.0384), (2011,0.0357),  

(2012,0.037),(2013,0.0332), (2014,0.0335), (2015,0.0329), (2016,0.0333), 

(2017,0.0348), (2018,0.0342), (2019,0.0383), (2030, 0.05), (2050,0.05)) 

Research 

and 
R&Dvest 

Mill. 

Euro 
R&DR(Time)*GDP 
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Subsystem 
Variable 

Abbrevia

tion 
Unit Equations 

develop

ment 

investme

nt 

Share of 

R&D 

investme

nt in 

GDP 

R&DR % 

WITH LOOKUP (Time,[(2000,-1)-(2050,1)], (2000, 0.0241), (2001,0.024),  

(2002,0.0244), (2003, 0.0247), (2004,0.0244), (2005,0.0244), 

(2006,0.0247),  

(2007,0.0246), (2008,0.0262), (2009,0.0274), (2010,0.0273), (2011,0.0281),  

(2012,0.0288),(2013,0.0284), (2014,0.0288), (2015,0.0293), (2016,0.0294), 

(2017,0.0307), (2018,0.0313), (2019,0.0318), (2050, 0.06)) 

 
R&D 

staff 
R&Dstaff 1000 

WITH LOOKUP (Time,[(2000,-1)-(2050,1)], (2000, 0.0241), (2001,0.024),  

(2002,0.0244), (2003, 0.0247), (2004,0.0244), (2005,0.0244), 

(2006,0.0247),  

(2007,0.0246), (2008,0.0262), (2009,0.0274), (2010,0.0273), (2011,0.0281),  

(2012,0.0288),(2013,0.0284), (2014,0.0288), (2015,0.0293), (2016,0.0294), 

(2017,0.0307), (2018,0.0313), (2019,0.0318), (2050, 0.06)) 

 

The 

number 

of 

patents 

Patents 1000 
EXP(-0.2115*LN(R&Dstaff)+13.2032) 

(R2=0.6451, p-value=0.000) 

Net carbon emissions NCE tons CE-CS-CR 

Note: The figures changed for different scenario analysis are in blue.  
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Table A. 2: Scenario design 

Scenario Schemes Parameters 

Base scenario  - Same as 2019 

Scenario 1-land effect Increase the increment ratio of 

follow land to 0.05 in 2050 
FLR (2020, 0.05) (2050, 0.05) 

Scenario 2-structure 

effect 

2-1 Increase agricultural biomass  

Plant-1R (2020, 0.01) (2050,0.01); 

Plant-2R (2020, 0.01) (2050,0.01); 

Plant-3R (2020, 0.03) (2050,0.03); 

Plant-4R (2020, 0.02) (2050,0.2); 

Plant-5R (2020, 0.02) (2050,0.02); 

Plant-6R (2020, 0.01) (2050,0.01); 

Plant-7R (2020, 0.02) (2050,0.02) 
Scenario 3-techological 

effect 

3-1 Increase the share of 

agricultural R&D to 0.05 since 

2030 

AR&DR (2020, 0.05), (2050,0.05) 

3-2 Increase share of R&D 

investment in GDP to 0.06 in 2050 
R&DR (2020, 0.06), (2050, 0.06) 

3-3 Increase both AR&DR and 

R&DR 

AR&DR (2020, 0.05), (2050,0.05); 

R&DR (2020, 0.06), (2050, 0.06) 

Scenario 4- combined 

effect 

Increase the increment ratio of 

follow land to 0.05 in 2050 

Increase agricultural biomass 

Increase both AR&DR and R&DR 

FLR (2020, 0.05) (2050, 0.05); 

Plant-1R (2020, 0.01) (2050,0.01); 

Plant-2R (2020, 0.01) (2050,0.01); 

Plant-3R (2020, 0.03) (2050,0.03); 

Plant-4R (2020, 0.02) (2050,0.2); 

Plant-5R (2020, 0.02) (2050,0.02); 

Plant-6R (2020, 0.01) (2050,0.01); 

Plant-7R (2020, 0.02) (2050,0.02); 

AR&DR (2020, 0.05), (2050,0.05); 

R&DR (2020, 0.06), (2050, 0.06) 

 

Table A. 3: Biocluster classification at the 3 digit level 

Sector (3 digit) Fields description Types of bioclusters 

A01 Agriculture; Forestry; Animal Husbandry; Hunting; Trapping; 

Fishing 

AA 

A22-23, A24 Baking; Edible Doughs; Butchering; Meat Treatment; Processing 

Poultry or Fish; tobacco; Cigars; Cigarettes; Smokers' Requisites 

BD 

A23 Foods or Foodstuffs; their Treatment, not Covered by Other Classes MP 

A41-47 Wearing Apparel; Headwear; Footwear; Haberdashery; Jewellery; 
Hand or Travelling Articles; Brushware; Furniture; Domestic 

Articles or Appliances; Coffee Mills; Spice Mills; Suction Cleaners 

in General 

BD 

A61 Medical or Veterinary Science; Hygiene LC 

A62-63 Life-Saving; Fire-Fighting; Sports; Games; Amusements MP 

B01, B03-07 Physical or Chemical Processes or Apparatus in General; 

Separation of Solid Materials Using Liquids or Using Pneumatic 

GC 
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Tables or Jigs; Magnetic or Electrostatic Separation of Solid 

Materials From Solid Materials or Fluids; Separation by High-

Voltage Electric Fields; Centrifugal Apparatus or Machines for 

Carrying-Out Physical or Chemical Processes; Spraying or 

Atomising in General; Applying Liquids or Other Fluent Materials 

to Surfaces, in General; Generating or Transmitting Mechanical 

Vibrations in General; Separating Solids From Solids; Sorting 

B02 Crushing, Pulverising, or Disintegrating; Preparatory Treatment of 

Grain for Milling 

MP 

B08-09 Cleaning; Disposal of Solid Waste; Reclamation of Contamined 

Soil Soil 

MP 

B21-28 Mechanical Metal-Working Without Essentially Removing 

Material; Punching Metal; Casting; Powder Metallurgy; Machine 

tools; Metal-Working not otherwise provided for; Grinding; 

Polishing; Hand tools; Portable Power-Driven tools; Manipulators; 

Hand Cutting tools; Cutting; Severing; Working or Preserving 

Wood or Similar Material; Nailing or Stapling Machines in 

General; Working Cement, Clay, or Stone 

MP/BD 

B29 Working of Plastics; Working of Substances in A Plastic State, in 

General 

GC 

B30 Presses BD 

B31-33 Making Articles of Paper, Cardboard or Material; Worked in A 

Manner Analogous to Paper; Working Paper, Cardboard or Material 

Worked in A Manner Analogous to Paper; Layered Products; 

Additive Manufacturing Technology 

GC 

B41-44 Printing; Lining Machines; Typewriters; Stamps; Bookbinding; 

Albums; Files; Special Printed Matter B42Bpermanently Attaching 

together Sheets, Quires or Signatures; Writing or Drawing 

Implements; Bureau Accessories B43Kimplements for Writing or 

Drawing; Decorative Arts 

MP/BD 

B60-64, B66-

68 

Vehicles in General; Railways; Land Vehicles for Travelling 

otherwise Than On Rails B62Bhand-Propelled Vehicles, e.g. Hand 

Carts, Perambulators; Sledges; Ships or Other Waterborne Vessels; 

Related Equipment; Aircraft; Aviation; Cosmonautics; Hoisting; 

Lifting; Hauling; Opening, Closing {or Cleaning} Bottles, Jars or 

Similar Containers; Liquid Handling; Saddlery; Upholstery 

MP/BD 

B65 Conveying; Packing; Storing; Handling Thin or Filamentary 

Material 

GC 

B81-82 Microstructural Technology; Nanotechnology LC 

C01 inorganic Chemistry LC 

C02-04 Treatment of Water, Waste Water, Sewage, or Sludge; Glass; 

Mineral or Slag Wool; Cements; Concrete; Artificial Stone; 

Ceramics; Refractories 

MP/BD 

C05-11 Fertilisers; Manufacture thereof; Explosives; Matches; organic 

Chemistry; organic Macromolecular Compounds; their Preparation 

or Chemical Working-Up; Compositions Based thereon; 

Petroleum, Gas or Coke industries; Technical Gases; Containing 

Carbon Monoxide; Fuels; Lubricants; Peat; Animal And Vegetable 

Oils, Fats, Fatty Substances And Waxes; Fatty Acids therefrom; 

Detergents; Candles 

GC 

C12 Biochemistry; Beer; Spirits; Wine; Vinegar; Microbiology; 

Enzymology; Mutation or Genetic Engineering 

LC 
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C13-14 Sugar industry; Skins; Hides; Pelts; Leather MP/BD 

C21-23, C25 Metallurgy of Iron C21Bmanufacture of Iron or Steel; Metallurgy; 

Ferrous or Non-Ferrous Alloys; Treatment of Alloys or Non-

Ferrous Metals; Coating Metallic Material; Coating Material With 

Metallic Material; Chemical Surface Treatment; Diffusion 

Treatment of Metallic Material; Coating by Vacuum Evaporation, 

by Sputtering, by Ion Implantation or by Chemical Vapour 

Deposition, in General; inhibiting Corrosion of Metallic Material 

or incrustation in General; Electrolytic or Electrophoretic 

Processes; Apparatus therefor 

MP/BD 

C30 Crystal Growth  MP 

C40 Combinatorial Chemistry C40Bcombinatorial Chemistry; 

Libraries, e.g. Chemical Libraries 

GC 

D01 Natural or Artificial Threads or Fibres; Spinning GC 

D02-10 Yarns; Mechanical Finishing of Yarns or Ropes; Warping or 

Beaming; Weaving; Braiding; Lace-Making; Knitting; Trimmings; 

Non-Woven Fabrics; Sewing; Embroidering; Tufting; Treatment of 

Textiles or the Like; Laundering; Flexible Materials not otherwise 

provided for Ropes; Cables Other Than Electric; Indexing Scheme 

Associated With Sublasses of Section D, Relating to Textiles 

BD 

D21 Paper-Making; Production of Cellulose GC 

E01-06, E21 Construction of Roads, Railways, or Bridges; Hydraulic 

Engineering; Foundations; Soil Shifting; Water Supply; Sewerage; 

Building; Locks; Keys; Window or Door Fittings; Safes; Doors, 

Windows, Shutters, or Roller Blinds in General; Ladders; Earth 

Drilling; Mining 

MP 

F01-05 Machines or Engines in General; Engine Plants in General; Steam 

Engines; Combustion Engines; Hot-Gas or Combustion; product 

Engine Plants; Machines or Engines for Liquids; Wind, Spring 

Weight and Miscellaneous Motors; Producing Mechanical Power; 

or A Reactive Propulsive Thrust, not otherwise provided for; 

Positive Displacement Machines for Liquids; Pumps for Liquids or 

Elastic Fluids; Indexing Schemes Relating to Engines or Pumps in 

Various Subclasses of Classes F01-F04  

MP 

F15-16 Fluid-Pressure Actuators; Hydraulics or Pneumatics in General; 

Engineering Elements And Units; General Measures for Producing 

And Maintaining Effective Functioning of Machines or 

installations; thermal insulation in General 

MP 

F17 Storing of Distributing Gases or Liquids GC 

F21-28 Lighting; Steam Generation; Combustion Apparatus; Combustion 

Processes; Heating; Ranges; Ventilatin; Refrigeration or Cooling; 

Combined Heating And Refrigeration Systems; Heat Pump 

Systems; Manufacture or Storage of Ice; Liquefaction 

Solidification of Gases; Drying; Furnaces; Kilns; Ovens; Retorts; 

Heat Exchange in General 

MP 

F41-42 Weapons; Ammunition; Blasting MP 

G01-12 Measuring; Testing; Optics; Photography; Cinematography; 

Electrography; Holography; Horology; Controlling; Regulating; 

Computing; Calculating; Counting; Checking-Devices; Signalling; 

Education; Cryptography; Display; Advertising; Seals; Musical 

Instruments; Acoustics; Information Storage; Instrument Details 

MP 

G16 Information And Communication Technology [Ict]; Specially 

Adapted for Specific Application Fields 

LC 
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G21 Nuclear Physics; Nuclear Engineering MP 

H01-05 Basic Electric Elements; Generation; Conversion or Distribution of 

Electric Power; Basic Electronic Circuitry; Electric 

Communication Technique; Electric Techniques not otherwise 

provided for 

MP 

Y02, Y04, Y10 Technologies or Applications for Mitigation or Adaptation Against 

Climate Change; Information or Communication Technologies 

Having An Impact On Other Technology Areas; Technical Subjects 

Covered by former Uspc 

MP 

Note: AA=agricultural agglomeration (Type-1); GC=green chemistry clusters (Type-2); MP, BD and 

MP=bioeconomy districts (Type-2); LC=life science clusters. 
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Figure A. 1: Results for Placebo test 
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