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1. Introduction

In classical mechanics [8, 54], the motion of a system of rigid bodies is described by a
function

q : I ⊂ R→ Rn, n ∈ N,

representing the generalised coordinates of the system at time t ∈ I := [0, T ] , T > 0. If
q is twice continuously differentiable with respect to t - which is a common assumption -
then the first derivative v := q̇ : I → Rn characterises the velocity and a := v̇ : I → Rn

the acceleration of the mechanical system. Already in the early stages of mechanical en-
gineering, it was recognised that mechanical systems including contact and impact forces
as well as friction forces could not be depicted by continuously differentiable trajectories.
The benchmark problem of the bouncing ball will easily underline this claim.

1.1. Motivating Benchmark Problem

Example 1.1 (Bouncing ball [2, 39, 59, 80, 88]) From an initial point q(0) := q0 ∈ R+,
a ball with mass m ∈ R+ and initial velocity v(0) := v0 ∈ R is dropped to a ground
obstacle (see Figure 1.1). Using variational principles [54], the motion in free flight can
be described without consideration of air friction as a differential equation with respect
to the position q and the velocity v

q̇(t) = v(t), mv̇(t) = −mg + λ(t), t ∈ I. (1.1)

q
g

λ

Figure 1.1.: Bouncing
ball.
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Figure 1.2.: Bouncing ball: Exemplary trajectories.

Here g is the gravitational acceleration and λ(t) ≥ 0 is the contact force acting in case of
hiding the obstacle. Over the whole time interval I, the ball can not penetrate the ground
such that the inequality q(t) ≥ 0 has to be satisfied additional to (1.1). If this constraint
is active, i.e. q(t) = 0, the force λ(t) ≥ 0 in (1.1) avoids penetration. If the constraint is
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not active this contact force is zero. The summarised problem has the form

0 ≤ q(t) ⊥ λ(t) ≥ 0, (1.2)

where the mathematical formulation 0 ≤ a ⊥ b ≥ 0 is equivalent to

a, b ∈ Rn, a⊤ · b = 0, ai, bi ≥ 0, i = 1, . . . , n.

and is called complementarity problem (CP). Such problems, their properties und numer-
ical treatment are analysed in Appendix B.

An active constraint symbolises a contact of ball and ground which are of special interests
when discussing the dynamics of mechanical systems. In the moment the constraint
becomes active at time τ ∈ I, the left-side limit of the velocity satisfies

v−(τ) = q̇−(τ) := lim
s↑τ

q̇(s) ≤ 0,

because the ball falls down to the ground. In order to sustain the principle of non-
penetrability of the ball and the ground, the right-side limit of the velocity must simul-
taneously fulfil the condition

v+(τ) = q̇+(τ) := lim
s↓τ

q̇(s) ≥ 0.

Hence, the velocity function jumps maybe from a non-positive value v−(τ) to a non-
negative value v+(τ) in τ . This is caused by the impact force which works in the moment
where the ball and the ground get in contact. For the sake of uniqueness, the system
consisting of equations (1.1) and (1.2) has to be completed by an impact law to describe
the relationship between v− and v+ in such impact points. In this thesis the simple impact
law of Newton

q(τ) = 0 ⇒ v+(τ) = −ϵv−(τ), ϵ ∈ [0, 1], (1.3)

is used. The resolution number ϵ describes the elasticity of the impact. Alternatives are
the impact law of Poisson or energy based models [88].

In Figure 1.2 the solution trajectories of (1.1)-(1.3) with parameters

q0 = 1 m, v0 = 0
m

s
, m = 1 kg, ϵ = 0.8, g = 2

m

s2

are plotted. It can be observed that the position q is not longer differentiable in the
impact points and so does not define a classical derivative v. In the same time points v
is not continuous anymore.

1.2. Literature Survey and Outline

The motion of mechanical systems with impacts is a complex physical topic which will be
analysed from a mathematical point of view in this thesis. Developments in mathemati-
cal and physical research are often closely related. Physical problems can be formulated
and investigated in mathematical language. Theoretical results of mathematics in turn
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influence physical experiments, views and findings. Non-smooth analysis and mechanics
with inequality constraints are one exemplary pair for this constant exchange of physics
and mathematics.

In the 18th century, physicists tried to describe the motion of systems consisting of sev-
eral rigid bodies mathematically and found a suitable way in Hamilton’s principle, for
example [54]. As a result, differential equations were obtained that describe the dynamics
of mechanical systems through one single function. One advantage of this principle was
that constraining forces can be easily included in the approach. Due to its simplicity and
versatility, scientists in various application areas tried to use this modelling method. The
problem was that frictional, contact and impact forces can only be described with the
help of inequalities. At this time, it was not known if the combined formulation of dif-
ferential systems with inequalities has solutions and of which nature the solutions could
be. Therefore, it was not possible to assess whether the modelling approach correctly
captured the behaviour of mechanical systems with contact and impact forces.

In the year 1798, Fourier published a paper in which he investigated contact problems
that are very close to the understanding of non-smooth mechanics of today [73]. He com-
bined Hamilton’s principle with inequalities representing contact condition and dealt with
the solvability of the analytical problems for the first time. However, since other areas
of research were the focus of interest in the field of mechanics at that time, this was not
yet the major breakthrough for multibody systems with contact forces. For a long time,
there were no more theoretical investigations in this field. Mainly the much acclaimed
mathematical publications by Moreau from the 1970s and 1980s [64, 65] awakened not
only the interest in non-smooth analytical problems, but also again in unilaterally con-
strained mechanical systems. He established modelling with variational inequalities and
introduced for the first time the comprehensive formulation of the equations of motion
of mechanical systems as measure differential inclusions (MDI). Together with Jean and
Panagiotopuolos, Moreau [50, 51, 66, 68] formulated important theoretical results using
convex and non-smooth analysis. These mathematical research areas developed rapidly
at that time, which was largely driven by optimisation. Additionally, the three pioneers
developed first powerful numerical methods for MDIs. The simulation results matched
very good to the experimental achievements for mechanical systems. Further theoreti-
cal treatises like solvability, boundedness or uniqueness on the complex field of MDI can
nevertheless only be found sporadically, e.g. by Monteiro-Marques and Stewart [63, 87].
Much literature on non-smooth mechanics still refers to these basic explanations. This
thesis contains a lot of new or advanced theoretical results.

In the field of engineering and numerical mathematics, greater interest in non-smooth me-
chanical systems and faster developments of theoretical investigations could be observed.
The most common application areas for mechanical systems with inequalities are vehi-
cle construction, biotechnology, electrical engineering, robotics or mechanical engineering
[41, 84, 88] and all these areas of application were in the strong focus of science at the time
of Moreau’s, Jean’s and Panagiotopuolos’ publications and after that. Glocker and Pfeiffer
[41, 73] reformulated the equations of motion as a MDI on velocity and acceleration levels
with the help of linear complementarity problems. This facilitated the access to simulation
and development of numerical methods immensely. A multitude of application problems
were mathematically captured by these formulations [35, 39, 73]. Until today, new meth-



1. Introduction 8

ods for MDIs are constantly being developed and analysed [1, 2, 24, 53, 70, 71, 80, 87, 91].

To get an overview on mechanical systems with inequality constraints, the modelling
process of the motion of mechanical systems with impacts and contacts is described in
Chapter 2. Two aspects of modelling and applications are particularly focused on:

A1 Modelling without a minimum number of coordinates or minimum necessary con-
straints. This aspects results from simplifications of the modelling process to save
time and computational effort. Redundant constraints or dependent variables are
the consequences. This efficiency approach is increasingly observed in practice
[14, 17, 47, 49, 92].

A2 The occurrence of infinitely many impacts in a finite time interval. The resulting
accumulation point of velocity jumps - as already observed in Example 1.1 - poses a
complex analytical challenge and is known in the literature as the Zeno phenomenon
[59, 70, 82].

For both aspects, academic examples are given at the end of the second chapter with the
two-masses oscillator [17] and the slider-crank mechanism [82]. They will be examined in
all further chapters of the thesis.

As Example 1.1 motivates, the equations of motion of such mechanical systems with im-
pacts are differential systems complemented by complementarity problems [41, 88]. The
example trajectories provide a hint that the solution space of such mathematical problems
does not correspond to the set of arbitrarily often continuously differentiable functions,
also called smooth functions. An introduction to the basics of non-smooth analysis is
the beginning of the the second chapter. The absolutely continuous functions and the
functions of bounded variation are introduced. These sets of functions form physically
plausible spaces from which the position and velocity functions can originate. It is possi-
ble to define generalised derivative concepts both for absolutely continuous functions and
for functions with bounded variation. These are needed to be able to relate position and
velocity function and to obtain a general concept of acceleration.

The two mentioned function spaces are the solution spaces of certain non-smooth analytic
problems such as MDIs. These are also introduced in more detail in Chapter 2, since the
equations of motion of the non-smooth mechanical systems used in this thesis can be
classified in this class of problems [65]. In addition, Chapter 2 presents known analytical
and numerical results on MDIs which are developed further in the latter chapters

One open problem in previous investigations is that there is no generally valid existence
result for applications that satisfy both A1 and A2. In order to guarantee the correct-
ness of the modelling approaches, the existence proof of solutions and the proof of their
boundedness are carried out under weak assumptions in Chapter 3. It is worth men-
tioning, that there are already existence results in the literature on which the mentioned
results base. When considering applications that satisfy A1 but not A2, one can decom-
pose the relevant time interval along the finitely many impact times. In the open intervals
in between, one obtains differential-algebraic equations (DAE) or differential complemen-
tarity problems with redundant conditions or dependent variables. Both for the first [6]
and for the second problem class [17] existence results have already been proved. Among
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others in [63, 87], the equations of motion of applications satisfying A2 but not A1 were
considered in reverse. Solvability results could be derived there as well. In Chapter 3, two
new analytical results on the existence of solutions and their boundedness are presented,
which are also applicable to problems satisfying both A1 and A2. So far, no similar
result could be found in the literature. The examples from Chapter 2 are taken up again
and it is proven that they fulfil the assumptions of the theoretical investigations.

Chapter 4 then focusses on further analytical properties of non-smooth mechanical sys-
tems. In particular, the focus is on the mathematical pendulum with an obstacle [18].
First, two new theorems regarding the existence of periodic solutions are presented. In
the second part, stability properties for equilibria and periodic solutions are discussed.
This is done by generalising the theory of invariant limit cycles for ordinary differential
equations (ODEs) to MDIs and using known stability results of [59] for non-smooth sys-
tems.

Periodic solutions are also important for the final Chapter 5. Often it is not possible to
obtain the exact solution of the equations of motion due to the complexity of the model.
For this purpose, in Chapter 5 we present numerical algorithms for non-smooth problems
that compute approximate solutions [2, 91]. Since our focus is on problems with the
Zeno phenomenon, so-called time-stepping methods [1, 80] must be used for the numer-
ical solution, as it will be explained. One problem of this class of methods is that the
classical comparison tool, the convergence order, does not work for non-smooth problems
[80]. In order to nevertheless be able to assess the approximation quality of time-stepping
methods for non-smooth mechanical problems, we explain another comparison tool with
the orbital convergence in Chapter 5. However, this is only applicable to problems with
invariant limit cycles. This criterion is applied numerically to all applications of the chap-
ters before. Finally, we prove that the orbital convergence is a suitable tool for certain
time-stepping methods.

At the end of this thesis, the analytical and numerical results will be summarised once
again and classified in terms of their relevance for practice. In the appendix, the basics of
measure theory and convex analysis are summarised, which are relevant for our investiga-
tions but are not found in all mathematical studies. In addition, two further application
examples that fulfil aspects A1 and A2 are described in the appendix. However, they are
not examined further in the thesis.





2. Preliminaries

In this chapter, the theoretical and practical setting of the present thesis will be intro-
duced. The exemplary trajectories of the bouncing ball in Example 1.1 motivate a study
of non-smooth dynamical systems. Such problems are often of set-valued structure and
their solution spaces include non-differentiable or even discontinuous functions. In Section
2.1., possible solution spaces and suitable generalised derivative concepts are introduced.
Subsequently, a little survey to non-smooth dynamical systems is given. In Section 2.2.,
the equations of motion for mechanical systems with contact and impact forces are de-
rived. A special issue of this thesis will be theoretical investigations on applications with
singular mass matrices and redundant constraints. Because of that some examples of such
kind complete this chapter.

2.1. Non-Smooth Analysis

In all following considerations, I ⊂ R ist a real time interval [0, T ] with T > 0.

Definition 2.1 (Smooth function) A function

f : I → Rn, t 7→ f(t)

is called smooth on I if it is continuously differentiable up to any order for all t in the
interior of I. If f is at least for one t in the interior of I not continuously differentiable
we call f non-smooth.

Smooth functions play an important role in many analytical studies, e.g., in the theory
of ordinary differential equations (ODEs)

f(t, q, q̇) = 0

They describe the devolopment of a function q : I → Rn and its first derivative v := q̇
using a smooth function f . Classical and simple mechanical problems like an oscillator or
a pendulum can be captured as an ODE since their motion is only influenced by smooth
forces like gravitational, weight and spring forces. Contact and impact forces can not be
described by continuously differentiable functions as mentioned before. Such forces are
non-smooth.

Nevertheless, the motion of a mechanical system, which is influencend by non-smooth
forces, can also be described by a position function q. But this function is in general not
differentiable, such that the velocity and the acceleration can not be a classical first and
second derivative. In this section suitable function spaces for the generalised coordinate
and velocity function of non-smooth mechanical systems are introduced with the abso-
lutely continuous functions and the functions of bounded variation. They form the base
to understand the behaviour of solutions of the mechanical models and to investigate in
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further analytical studies like existence, boundedness or stability questions. For a more
detailed introduction to the topic of non-smooth analysis, we refer to [9, 26, 56, 63, 65].

2.1.1. Generalised Continuity and Derivative Concepts

The following definition is a generalistion of continuity and permits Lebesgue integrability.
It is a suitable function space for the position function q and preserves the possibility of
relating velocity and q via the fundamental theorem of calculus.

Definition 2.2 (Absolutely continuous function) A function q : I → Rn is called abso-
lutely continuous if for all ϵ > 0 a δ > 0 exists such that

m∑
i=1

∥q(ti)− q(si)∥ < ϵ

for all disjoint partitions (si, ti) ⊂ I, i = 1, . . . ,m, with
∑m

i=1(ti − si) < δ. Notation:
q ∈ AC(I,Rn).

Example 2.3 (Lipschitz continuous function) A subclass of AC(I,Rn) are the Lipschitz
continuous functions [59] which play also an important role in the theory of ODEs. A
function q : I → Rn is Lipschitz continuous with the Lipschitz constant L > 0 if

∥q(s)− q(t)∥ ≤ L|s− t|, ∀ s, t ∈ I.

A function q ∈ AC(I,Rn) is continuous, but not mandatory differentiable. But the
set of all time points in which the first derivative does not exist is a Lebesgue null-set
(see Appendix A, Definition A.4. and Example A.8). A Lebesgue null-set has Lebesgue
measure zero. For example, a countable set is a Lebesgue null-set. This property of q is
the prerequisite for the plausibility of the following theorem.

Lemma 2.4 (Fundamental theorem of calculus) Let q ∈ AC(I,Rn). Referring to [30,
Theorem 4.14, Corollary 4.6], the function q is almost everywhere differentiable. Hence,
w ∈ L1(I,Rn) exists pointwise with

q(t) = q(s) +

∫
[s,t]

w(τ) dτ, ∀ s, t ∈ I, s ≤ t.

The function w is said to be the weak derivative of q and can be denoted by q̇.

Proposition 2.5 (Banach space AC(I,Rn)) The space AC(I,Rn) is a Banach space
with the weak norm

∥q∥1,∞ := max (∥q∥∞ , ∥q̇∥∞) ,

where ∥q∥∞ := supt∈I ∥q(t)∥ is the supremum norm and ∥.∥ an arbitrary norm on Rn [38].

Example 2.6 (Absolute value function |t|) The function h : I → R, t 7→ |t|, is an
absolutely continuous function. It is in all t ∈ I continuously differentiable except the
origin and for all a ∈ R the function

ḣa(t) :=


−1, t < 0,
a, t = 0,
1, t > 0
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defines a weak derivative in the sense of Lemma 2.4. The left- and right-side limit of these
functions in t = 0

ḣ−a (0) := lim
s↑0

ḣa(s) = −1, ḣ+a (0) := lim
s↓0

ḣa(s) = 1

exist and do not match for all a. A classical and application related approach of generalised
derivative concepts is to define the line segment [−1, 1] between both limits as the set of
possible values for ḣ(0). The set-valued function

∂h(t) :=


−1, t < 0,

[−1, 1] , t = 0,
1, t > 0

(2.1)

is a generalised derivative of h and is noted by Sign(t). All pointwise elements w(t) ∈
Sign(t), t ∈ R, are weak derivatives of |t| in the sense of Lemma 2.4.

Definition 2.7 (Clarke differential, [22]) Let co(C) be the convex hull of a set C and
f : I → Rn an absolutely continuous function. The set

∂Cf(t) := co

{
lim
ti→t

ḟ(ti) | (ti)i∈N ⊂ I : (ti → t) ∧ (∀ i ∈ N : ḟ(ti) exists)

}
(2.2)

is called the Clarke differential. If f is continuous and convex, the Clarke differential (2.2)
is equal to the subdifferential [30].

Example 2.8 (Indicator function) For a set D ⊂ Rn the function

ψD(x) :=

{
0, x ∈ D
∞, x /∈ D

is called the indicator function. It holds ∂CψD = ND(x) [59] where

ND(x) := {y ∈ D : y⊤(x∗ − x) ≤ 0,∀ x∗ ∈ D}

is the normal cone of D.

To study the generalised derivative concept (2.2) of Clarke, some properties of one-valued
functions should be generalised to set-valued functions. In the following, F maps from
Rn to the power set P (Rn). Henceforth, the image contains sets, not vectors.

Definition 2.9 (Monotone set-valued function) The function F : Rn → P (Rn) is said to
be monotone if for all x1, x2 ∈ Rn and y1 ∈ F (x1), y2 ∈ F (x2) the following relationship
is satisfied

(y1 − y2)
⊤(x1 − x2) ≥ 0.

Example 2.10 (The Sign- and Upr-function) The Clarke differential Sign(t) of |t| and
the unilateral primitive function

Upr(t) =


∅, t < 0,

(−∞, 0] , t = 0,
0, t > 0

(2.3)
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are monotone set-valued functions. Both functions are used to formulate physical laws
like frictional or impulsive ones as we will see in the following section.

|t|

t

Upr(t)

t

Sign(t)

t

Figure 2.1.: Absolutely continuous and monotone functions.

The following definition is a generalisation of piecewise continuity for one-valued functions
to set-valued ones.

Definition 2.11 (Upper semi-continuous set-valued function) Let ∅ ≠ D ⊂ X and X a
Banach space. A function F : D → P (X) is upper semi-continuous in x ∈ D if for all
ϵ > 0 there exists a δ > 0 with

y ∈ D ∩B(x, δ) ⇒ F (y) ⊂ F (x) +B(0, ϵ).

The set
B(z, r) := {y ∈ D : ∥y − z∥ < r}

is the open ball with the centre z and radius r. If F is upper semi-continuous in all x ∈ D,
it is upper semi-continuous on D.

Theorem 2.12 Let ∅ ≠ D ⊂ X and X be a Banach space. Referring to [26, Proposition
1.2], it is satisfied:

i) If F : D → P (X) is upper semi-continuous, then the set

graph(F ) := {(x, y) ∈ D ×X | y ∈ F (x)}

is closed.

ii) If graph(F ) ⊂ D ×X is compact, then F : D → P (X) is upper semi-continuous.

The function q representing the generalised coordinates of a mechanical system with in-
equality constraints can be interpreted as an absolutely continuous function. The velocity
should be a weak derivative of q which is often introduced by set-valued force laws using
monotone upper semi-continuous functions. In the following, a suitable function space for
the generalised velocity, the weak derivative of q, is presented.

Definition 2.13 (Variation of a function) Let v : I → Rn. The non-negative number

var(v, I) := sup

p∑
i=1

∥v(ti)− v(ti−1)∥

is said to be the variation of v on I, where the supremum is taken over all increasing
monotone sequences (ti)i=0,...,p ⊂ I, and p ∈ N.
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Example 2.14 With ḣa, a ∈ R, defined in Example 2.6, it is

var(|t|, [−2, 2]) = 4 var(ḣa(t), [−2, 2]) = | − 1− a|+ |1− a|.

The variation is the sum of all jump heights and the differences of functional values from
one extreme value to another.

Definition 2.15 (Function of bounded variation) The function v : I → Rn is of bounded
variation on I (Notation v ∈ BV (I,Rn)), if

var(v, I) <∞.

Example 2.16 The functions gi : I → R, I = [−1, 1] , i ∈ {1, 2}, with

g1(t) :=

{
0, t = 0

sin
(
1
t

)
, t ̸= 0

g2(t) :=

{
1, t ∈ Q
0, t /∈ Q

are not of bounded variation on I since they have infinitely many montonicity changes
from −1 to 1 or infinitely many jumps of constant height.

Proposition 2.17 (Properties of v ∈ BV (I,Rn))

(i) The function v defines a right- and left-side limit in every point t ∈ I [65, Proposition
4.2]

v+(t) := lim
s↓t

v(s), v−(t) := lim
s↑t

v(s).

(ii) The function v has countable discontinuity points in a closed time interval [a, b] ⊂ I
[65, Corollary 4.4]. More precisely, it has a finite number of discontinuities or
accumulation points t∗1, . . . , t

∗
p, p ∈ N, of discontinuities with

lim
t→t∗d

(
v+(t)− v−(t)

)
= 0, d = 1, . . . , p.

This later case is called Zeno phenomenon and is of special interest in this thesis.

(iii) Following [65, p. 16] it is satisfied ∀ λ1, λ2 ∈ R, v1, v2 ∈ BV (I,Rn)

var(λ1v1 + λ2v2) ≤ |λ1|var(v1) + |λ2|var(v2).

(iv) All elements of AC(I,Rn) are also elements of BV (I,Rn) [30, Conclusion 4.12].

(v) Referring to [38], BV (I,Rn) is a Banach space with ∥v∥BV := ∥v(0)∥+var(v, I) for
every closed real time interval I.

Definition 2.18 (Critical set) Let v ∈ BV (I,Rn). The set

T ∗(v, I) :=
{
t ∈ I | v+(t) ̸= v−(t)

}
of all discontinuity points of v is called critical set of v on I.
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Lemma 2.19 Let v ∈ BV (I,Rn). Then the function q : I → Rn defined by

q(t) := q(0) +

∫
[0,t]

v(τ) dτ, t ∈ I,

with q(0) ∈ Rn is an absolutely continuous function [30, Theorem 4.14].

Remark 2.20 (The differential measure, [65]) Like absolutely continuous functions,
functions of bounded variation have a generalised derivative, the so called differential
measure. In the following, classical elements and notations of measure and integra-
tion theory (see Appendix A) are utilised to define this tool which was established by
Moreau [65]. Let v ∈ BV (I,Rn), ϕ ∈ C(I,R) be a continuous function on I, the values
0 = t0 < t1 < . . . < tp = T a sequence of time points in I and θi ∈ [ti−1, ti], i = 1, . . . , p,
intermediate values. Referring to Moreau [65, Proposition 6.1], the sum

H((ti)i=0,...,p, (θi)i=1,...,p, ϕ, v) :=

p∑
i=1

ϕ(θi)(v(ti)− v(ti−1))

converges for p→ ∞ to a limit being independent of (ti) and (θi). This limit∫
I

ϕ dv := lim
p→∞

H((ti)i=0,...,p, (θi)i=1,...,p, ϕ, v) (2.4)

corresponds to the Lebesgue-Stieltjes integral of ϕ with respect to dv. The function
dv : ϕ 7→

∫
ϕ dv is said to be the differential measure of v and describes the change of v

on I weighted by a function ϕ.

Definition 2.21 (Step function) A function vS : I → Rn is called a step function if there
a monotone sequence 0 = t0 ≤ t1 ≤ . . . ≤ tp ≤ T on I and c1, . . . , cp, cp+1 ∈ Rn with

(i) I = (
⋃p

i=1 [ti−1, ti]) ∪ [tp, T ],

(ii) t1, . . . , tp ∈ T ∗(vS, I)

(ii) vS =
(∑p

i=1 ciχ[ti−1,ti)

)
+ cp+1χ[tp,T ].

The function χA is the characteristic function of a set A ⊂ I

χA(x) :=

{
1, x ∈ A,
0, x /∈ I\A.

and could also be defined using the Dirac measure of x

δx(A) :=

{
1, x ∈ A,
0, x /∈ A.

through χA(x) = δx(A).

Proposition 2.22 (Differential measure of a step function) Let vS ∈ BV (I,Rn) be a
step function. Following [65, Proposition 6.5] and using Definition 2.21, one has∫

I

ϕ dvS =

p∑
i=1

ϕ(ti)(v
+
S (ti)− v−S (ti))
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where t1, . . . tp ∈ T ∗(vS, I). The differential measure dvS is equivalent to

(v+S − v−S )
∑

t∈T ∗(vS ,I)

dδt

in the sense of∫
A

dvS =

∫
A

(v+S − v−S )
∑

t∈T ∗(vS ,I)

dδt =
∑

t∈T ∗(vS ,I)

∫
A

(v+S − v−S )dδt, A ⊆ I.

Following Example A.5, for a Dirac measure δs depending on t ∈ R it holds∫
A

ϕ dδs =

{
ϕ(s), s ∈ A
0 s /∈ A

Theorem 2.23 (Lebesgue decomposition, see Theorem A.37) For v ∈ BV (I,Rn) there
exists a decomposition v = vabs + vS + vsing with the Lebesgue decomposition of the
differential measure

dv = dvabs + dvS + dvsing.

The function vabs is absolutely continuous with a weak derivative v̇abs such that dvabs =
v̇abs dt meaning ∫

[c,d]

dvabs = vabs(d)− vabs(c), [c, d] ⊂ I.

The step function vS is discountiuous in the same time points like v and is almost every-
where constant. Following Proposition 2.22, this differential measure fulfils∫

[c,d]

dvS =
∑

t∈T ∗(v,[c,d])

v+(t)− v−(t).

The function vsing is singular and its differential measure dvsing is so singular to the
Lebesgue measure (see Appendix A Definition A.33). This means, that vsing is not zero
only on a Lebesgue null set. Since we consider differential systems which are formulated
with Lebesgue integrals, the parts belonging to vsing vanish.

As we will see in the next section, the velocity v of a mechanical system can be interpreted
as a function of bounded variation. The absolutely continuous part vabs describes the
behaviour in time intervals without impacts und vS the dynamics in impact points. The
singular part has no practical relevance in our abstract model. Therefore, in this thesis
only functions of bounded variation without a singular part are considered as it is often
done in literature considering non-smooth mechanical systems [41, 59, 80].

Definition 2.24 (Special functions of bounded variation) The set

SBV (I,Rn) := {v ∈ BV (I,Rn) | vsing ≡ 0}

of all functions of bounded variation without a singular part is the space of all special
functions of bounded variation. The set

SBV +(I,Rn) :=
{
v ∈ SBV (I,Rn) | v = v+

}
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is the space of all right-continuous functions in SBV (I,Rn).

Theorem 2.25 Following [3, Corollary 4.3], SBV (I,Rn) and SBV +(I,Rn) are closed
subspaces of BV (I,Rn).

Theorem 2.26 (Variation and Differential measure, [63]) Let v ∈ SBV +(I,Rn). Then

var(v, I) =

∫
I

|dv| =
∫
I

|v̇absdt+ vS
∑

s∈T ∗(v,I)

dδs| =
∫
I

∥v̇abs∥ dt+
∑

s∈T ∗(v,I)

∥∥v+(s)− v−(s)
∥∥

where |dv| ist the variation of the Lebesgue-Stieltjes measure of v (see Appendix A,
Definition A.31).

2.1.2. Set-Valued Differential Systems

The function classes of the previous section are the solution spaces of certain analytical
systems that are special dynamical systems. These problems are used to describe real
world processes whose state evolves with time. Usually, this development is described by
an ODE

ẋ(t) = f(t, x(t)), t ∈ I. (2.5)

If the right-hand side f is continuous, a solution of system (2.5) exists and it is unique
if f is Lipschitz continuous. However for systems (2.5) with only piecewise continuous
functions f , a generalised solution concept should be introduced.

Example 2.27 (ODE with discontinuous right-hand side) A classical example for dif-
ferential systems with non-smooth nature are differential equations with a discontinuous
right-hand side f , for example

ẋ(t) = f(x(t)) =

{
1, x(t) < 0,

−1, x(t) ≥ 0,
t ∈ I,

with a piecewise constant right-hand side (compare Example 2.15 in [2]). Every solution
ends up in zero and can not leave this value. There is no solution in the classical sense.

Remark 2.28 (Solution concept of Filippov) In [34] a generalised solution concept for
differential systems is developed by replacing (2.5) by

ẋ(t) ∈ F (x(t)) :=
⋂
ϵ>0

⋂
λn(N)=0

co f((x(t) +B(0, ϵ))\N)

where λn is the Lebesgue measure of dimension n. This set-valued problem with respect
to a weak derivative of x is a differential inclusion. In Example 2.27, one obtains the
problem

ẋ(t) ∈ −Sign(x(t))

that has an absolutely continuous solution. If x(0) ̸= 0, the function x has a kink in the
time point in which it gets zero. General set-valued differential problems with absolutely
continuous solutions are called differential inclusions.
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Definition 2.29 (Differential inclusion) Let F : Rn → P (Rn) be a set-valued function.
The problem to find an absolutely continuous function x : I → Rn with

ẋ(t) ∈ F (x(t)), t ∈ I, x(0) = x0 ∈ Rn, (2.6)

is called a differential inclusion where ẋ : I → Rn is a weak derivative of x.

Theorem 2.30 (Smirnov [86]) The differential inclusion (2.6) has an absolutely contin-
uous solution x(t), if the set-valued function F is Lipschitz continuous, i.e.

∃ L ≥ 0 : F (x1) ⊂ F (x2) + L ∥x1 − x2∥B(0, 1), x1, x2 ∈ Rn,

and if the set F (x) is closed and convex for all x ∈ Rn. The set α · B,B ⊂ Rn, α ∈ R, is
equivalent to {α · b | b ∈ B}.

Theorem 2.31 (Deimling [26]) The differential inclusion (2.6) has an absolutely con-
tinuous solution x(t), if the set-valued function F is upper semi-continuous and linearly
bounded, i.e.

∃ c > 0 : ∥F (x)∥ ≤ c(1 + ∥x∥), x ∈ Rn,

and if the set F (x) is closed and convex for all x ∈ Rn.

Remark 2.32 (Survey to non-smooth analytical problems) Other methods to model
non-smooth dynamical systems are, inter alia, Moreau’s sweeping process [63, 64], evolu-
tion inequalities [60] or differential variational inequalities [69]. The solution of all these
problems is an absolutely continuous function. As it was described by Example 1.1, so-
lutions of non-smooth mechanical systems are not only non-differentiable, they are even
discontinuous. Therefore, Moreau [65] introduced the measure differential inclusions.

Definition 2.33 (Measure differential inclusion) Let F be a set- and measure-valued
function on I ⊂ R. That means

F : BV (I,Rn) → P (SI), SI := {ν : P (I) → Rn | ν is a signed measure on I}

A signed measure (see Appendix A Definition A.26) is a function that has all properties
of a measure but could also be negative. The problem to find a function x : I → Rn of
bounded variation such that

dx ∈ F (x), x(0) = x0, (2.7)

is said to be a measure differential inclusion (MDI). That means there is a signed measure
ν : P (I) → Rn with ν ∈ F (x) and ν([0, t]) =

∫
[0,t]

dx for all t ∈ I.

Example 2.34 (Reformulation: The bouncing ball) The equations of motion of the
bouncing ball in Example 1.1 can be rewritten as

mv̇(t) ∈ −mg −NR+(q(t)), (t ∈ I s.t. q(t) ̸= 0), (2.8)

v+(t) = −ϵv−(t), (t ∈ I s.t. q(t) = 0). (2.9)

In Appendix B, it is proven that 0 ≤ λ ⊥ q ≥ 0 is equivalent to −λ ∈ NR+(q). Referring
to Example 1.1, a separated analytical study of the differential inclusion and the discrete
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problem in the impact points is not possible since an accumulation point of discontinuities
can be observed. The equivalent formulation as a measure differential inclusion is

m dv ∈ −mg −NR+(q(t)) dt−NR+(v
+(t) + ϵv−(t)) dη, η =

∑
t∈T ∗(v,I)

δt

where dt is the one dimensional Lebesgue measure. The transformation of the impact law
is explained in the following section.

Remark 2.35 (Decomposition of MDIs) In non-smooth mechanics, there are two sets
of time points in I. As it is described in the next section, the first set contains all
time points where the motion could be described by a differential inclusion (DI). The
second one is a sequence of time points in which the velocity jumps. Remembering
Example 1.1, the ball is either in free flight or an impact happens. Often numerical and
analytical studies [17, 61, 69] based on the separated analytical consideration of DIs and
the discrete problems in the impact points. For example, for both systems existence
arguments are studied and are coupled by the implicit function theorem. However, if
there is an accumulation point of discontinuities this procedure would fail. In contrast
the summarised formulation as an MDI (2.7) is covering such complex behaviour.

2.2. Non-Smooth Mechanics

In the following, a system of a finite number of bodies connected by joints or other me-
chanical elements like springs or dampers is considered. Special interest is aimed to the
simulation of its dynamics in a certain time interval I. The degree of freedom of the
motion is reduced by the connecting elements and interaction forces like contacts and
impacts affecting the multibody system. The equations of motion must be formulated as
a differential system with inequality constraints. Those problems are investigated in the
field of non-smooth analysis. Detailed introductions to the topic of mechanical systems
can be found in [43, 84, 88].

The generalised coordinates, which describe uniquely the position of the mechanical sys-
tem, at time t ∈ I including angles or centres of masses are presented by the function
q : I → Rn and the generalised velocity by a weak derivative v(t) = q̇(t), v : I → Rn. In
the following, it will be described that the dynamics of a mechanical system with contacts
and impacts can be characterised through a measure differential inclusion.

2.2.1. Equations of Motion

There are two important aspects to set up the equations of motion for non-smooth mechan-
ical systems. At first, the so called Lagrange equations for the unconstrained dynamics
of the system must be derived, e.g., with Hamilton’s principle. They form a differential
system with respect to q and v. Furthermore, different types of constraints can influence
the dynamics of the system. The physical laws of contact and impact forces can be formu-
lated as normal cone inclusions [41]. They form in connection with the differential system
a measure differential inclusion. Analytical results for non-smooth mechanical systems
can be deduced from the results for measure differential inclusions which are derived for
example in Chapter 3. For a more detailed introduction we refer to [41].
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Hamilton’s Principle

Remark 2.36 (Variational calculus) Let S : u 7→ S(u) be a functional that maps a
function u to a real number S(u) ∈ R. A typical task in calculus of variations is to
determine a function u for which S(u) is minimal or maximal. Those variational problems
could be equivalently rewritten as partial differential equations. This problem class plays
an important role in theoretical physics. It can even be said, especially elegant methods
to formulate physical laws base on the application of variational principles. In [11, 76],
further explanations of variational calculus and theoretical physics are discussed.

Definition 2.37 (Lagrangian) The Lagrange formalism assumes that the dynamics of a
system can be described by using only one function called the Lagrangian. Let T (q, v), T :
Rn × Rn → R be the kinetic energy of the system and U(q), U : Rn → R the potential
energy. The Lagrangian of the system is

L (q, v) := T (q, v)− U(q). (2.10)

Definition 2.38 (Action) The action of a mechanical system is defined as

A(t) :=

∫
[0,t]

L (q(s), v(s)) ds. (2.11)

Theorem 2.39 (Hamilton’s principle of least action) The principle of least action of
Hamilton states that a multibody system moves with minimal action. In a minimum of
A, the first variation, a generalised directional derivative, vanishes. This means

δA(t) =

∫
[0,t]

δL (q(s), v(s)) ds =

∫
[0,t]

δT (q(s), v(s))− δU(q(s)) ds = 0.

Conclusion 2.40 (Euler-Lagrange equations) From the variational principle in Theorem
2.39, the so called Lagrange equations of the first kind or Euler-Lagrange equations

d

dt

(
∂L (q, v)

∂v

)
− ∂L (q, v)

∂q
= 0 (2.12)

follows [84]. Using the energy formula

T (q, v) :=
1

2
v⊤M(q)v

with the symmetric positive semi-definite mass matrix M : Rn → Rn×n, the equations
(2.12) can be transformed to

q̇ = v,
M(q)v̇ = f(q, v)

(2.13)

with

f(q, v) := −
(
∂

∂v

∂T (q, v)

∂q

)
· v −

(
∂U(q)

∂q
− ∂T (q, v)

∂q

)⊤

.

The term fnc(q, v) := f(q, v) +
(

∂U(q)
∂q

− ∂T (q,v)
∂q

)⊤
will play a special role in Chapter 4
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where periodic solutions are considered. It includes all non-conservative and gyroscopic
forces.

Remark 2.41 (Alternative variational principles) The Euler-Lagrange equations (2.13)
can also be derived with other variational principles like the ones of d’Alembert or Jour-
dain [11, 19, 41].

Inequality Constraints

Definition 2.42 (Inequality constraints) Similar to Example 1.1, the motion of multi-
body systems is often influenced by physical phenomena that can be mathematically
described by inequalities. Such constraints are said to be unilateral. We consider con-
straints on the dynamics of the systems that can be represented by m ∈ N additional
inequalities

g(q(t)) ≥ 0, t ∈ I, (2.14)

with a two times differentiable constraint function g : Rn → Rm and its Jacobian

G(q) =
∂g(q)

∂q
∈ Rm×n.

The matrix G is called the constraint matrix. The relation g ≥ 0, g ∈ Rm, is equivalent
to gi ≥ 0, i = 1, 2, . . .m.

Remark 2.43 (Differential-algebraic equation) If we would combine (2.13) with an equal-
ity system g(q(t)) = 0 instead of (2.14), the total formulation of the equations of motion
is a differential-algebraic equation (DAE). Such a problem combines a differential equal-
ity system with an algebraic one. The analytical investigation and numerical solution of
DAEs is a well-studied mathematical field of research. Overviews about this topic can be
found in [6, 43].

Conclusion 2.44 (Optimisation problem with inequality constraints) If the motion of
a multibody system is restricted by additional inequality constraints, the equations of
motion are equivalent to a non-linear optimization problem with inequality constraints

min
q∈Rn

A(q) s.t. g(q) ≥ 0 (2.15)

where A is the action in (2.11).

Theorem 2.45 (Optimality conditions - Karush-Kuhn-Tucker conditions) We consider
a generalised non-linear optimization problem (NOP)

min
x∈Rp

h(x) s.t. g(x) ≥ 0

with continuously differentiable functions h : Rp → Rn, g : Rp → Rm. Referring to [15],
for a solution x∗ ∈ Rp of (NOP), there must exist so called Lagrange multipliers λ ∈ Rm

with
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∂h

∂x
(x∗)− ∂g

∂x
(x∗)λ = 0, (2.16)

λ ≥ 0, g(x∗) ≥ 0, λ⊤g(x∗) = 0. (2.17)

Remark 2.46 (Complementarity problem) The problem (2.17) is a non-linear comple-
mentarity problem. Following Appendix B, it can be equivalently written as a normal
cone inclusion

−λ ∈ NRm
+
(g(x∗))

where Rm
+ := {x ∈ Rm | x ≥ 0}. We prefer the latter formulation to underline that this

is a set-valued problem.

Conclusion 2.47 (Equations of motion with inequality constraints) If one applies The-
orem 2.45 to (2.15) the formulation of the equations of motion including unilateral con-
straints

q̇ = v,
M(q)v̇ = f(q, v) +G(q)⊤λ,

−λ ∈ NRm
+
(g(q))

(2.18)

results. The Lagrange multipliers λ(t) ∈ Rm represent the normal force G(q)⊤λ(t) which
prevent the violation of the constraints.

Remark 2.48 (Index formulations for DAEs, [6, 43]) For mechanical systems with equal-
ity constraints the motion can be described by a DAE of the form

M(q)v̇ = f(q, v) +G(q)⊤λ, g(q) = 0. (2.19)

The so called index of a DAE plays important role for numerical and analytical investiga-
tions. The index is the number of times, the system (2.19) has to be differentiated with
respect to t for a unique specification of λ̇. For equation (2.19) this should be done three
times. First the equality constraint is differentiated two times to get

0 =
∂2g

∂t2
(q) = G(q)v̇ + γ(q, v), γ(q, v) :=

∂2g

∂q2
(v, v)

and combined with (2.19) to(
M(q) G(q)⊤

G(q) 0

)(
v̇
λ

)
=

(
f(q, v)
−γ(q, v)

)
. (2.20)

Following [6, Lemma 1], this coefficient matrix is regular if the conditions

(H1) M is symmetric and positive semi-definite,

(H2) M is positive definite at the null space of G

are satisfied. Then, formulation (2.20) has a unique solution for v̇ and λ. By differentiating
one more time we get an explicit description of λ̇. If the initial value q(0) := q0 satisfies
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the condition g(q0) = 0 the DAE (2.19) is equivalent to the index two formulation with
constraints on velocity level

M(q)v̇ = f(q, v) +G(q)⊤λ, G(q)v = 0. (2.21)

If the initial values q0 and v(0) = v0 fulfil in addition the hidden constraint G(q0)v0 = 0
it is equivalent to the index one formulation with constraints on acceleration level

M(q)v̇ = f(q, v) +G(q)⊤λ, G(q)v̇ + γ(q, v) = 0. (2.22)

Definition 2.49 (Active sets) In order to characterise the index term for inequality
constraints, two important sets must be defined. The active set on position level is

J1(q) := {i ∈ {1, . . . ,m} | gi(q) = 0} . (2.23)

The set (2.23) contains all indices of constraint components that are active. An inequality
gi(q) ≥ 0 is said to be active if gi(q) = 0. The active set on velocity level is

J2(q, v) :=
{
i ∈ J1(q) | hi(q, v) = 0

}
. (2.24)

where h(q, v) := G(q)v.

Definition 2.50 (Row reduction) Let G ∈ Rm×n be a matrix and J be a subset of
{1, 2, . . . ,m}. The matrix GJ is the matrix containing only the rows of G which number
is an element of J .

Example 2.51 (Row reduction) Let G be the 5×5 unity matrix and J = {1, 4, 5}. Then
we get

GJ =

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 .

Conclusion 2.52 (Index formulations for DIs, [88]) Inspired by the index term for DAEs,
it is defined that the differential complementarity problem

M(q)v̇ = f(q, v) +G(q)⊤λ,

0 ≤ λ ⊥ g(q) ≥ 0,

λ : I → Rm,

has index three. The analytically equivalent formulation on velocity level

M(q)v̇ = f(q, v) +GJ1(q)(q)
⊤λ,

0 ≤ λ ⊥ GJ1(q)(q)v ≥ 0,

λ : I → Rm1 , m1 = |J1(q)|,

has index two and the equivalent formulation on acceleration level

M(q)v̇ = f(q, v) +GJ2(q,v)(q)
⊤λ,

0 ≤ λ ⊥ GJ2(q,v)(q)v̇ + γJ2(q,v)(q, v) ≥ 0,

λ : I → Rm2 , m2 = |J2(q, v)|
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index one.

Example 2.53 (Contact forces) Typical inequality constraints (2.14) are given by dis-
tance conditions, i.e. the requirement that rigid bodies can not penetrate each other.
They are based on purely geometric considerations. In Example 1.1 the distance of ball
and ground obstacle must be non-negative over the whole time interval. Introduced in
Conclusion 2.47, the Lagrange multiplier represents the normal contact force G(q)⊤λ
which guarantees the non-penetration.

Impact law

Definition 2.54 (Impact point) A time point τ is said to be an impact point if a non-
active constraint gets active, i.e.

∃ δ > 0, i ∈ J1(q(τ)) ∀ t ∈ [τ − δ, τ) ⊂ I : i /∈ J1(q(t)).

Remark 2.55 (Velocity jump in impact points) Let τ ∈ I be an impact point. That
means there is an index j ∈ {1, . . . ,m} such that the relations

gj(t) =


> 0, t ∈ [τ − δ1, τ),
= 0, t = τ,
≥ 0, t ∈ (τ, τ + δ2]

are satisfied with sufficiently small δ1, δ2 > 0. The left-side limit of the derivative with
respect to time calculated to

0 ≥ lim
t↑τ

dgj
dt

(q(t)) = lim
t↑τ

Gj(q(t))v(t) =: Gj(q(τ))v
−(τ)

and the right-side limit to

0 ≤ lim
t↓τ

dgj
dt

(q(t)) = lim
t↓τ

Gj(q(t))v(t) =: Gj(q(τ))v
+(τ)

where we use that gj is twice times continuously differentiable. Therefore, it is possible
that the pre-impact velocity v− and the post-impact velocity v+ have not the same value
and a velocity jump can be observed. The change in the active set symbolises e.g., two
bodies which get in contact. Physically, an impact happens.

A simple result is that impact points can be elements of the critical set T ∗(v, I) defined
in Definition 2.18. Henceforth, impact points, which are also discontinuouty points of v,
are a countable sequence τ1, τ2, . . . in I.

Remark 2.56 (Impact law, [40]) In order to describe impacts, a physical law needs to be
introduced. It relates v− to v+ in impact points τ ∈ T ∗(v, I). In this thesis, the impact
law of Newton

GJ1(q)(q(τ))v
+(τ) = −ϵGJ1(q)(q(τ))v

−(τ) (2.25)

is utilised to relate the pre-impact velocity v−(τ) and the post-impact velocity v+(τ) in
an impact point τ ∈ T ∗(v, I). The so called resolution number ϵ ∈ [0, 1] is here constant.
It characterises the elasticity of the impact. The condition ϵ = 0 means that the impact
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is totally inelastic and ϵ = 1 means that the impact is totally elastic. A normal impact
force Λ > 0 accompanies the impact. Following [40, Section 2 (c)], there are reasons
such that the contact does not participate in the impact. A very common situation is
that multi-contact collisions happens. In this case, GJ1(q)(q(τ))v

+(τ) has to be greater or
equal than −ϵG(q)v−(τ) and the non-negative force Λ is orthogonal to the sum of both
terms. These two cases can be combined to

0 ≤ Λ ⊥ GJ1(q)(q)(v
+ + ϵv−) ≥ 0

or equivalently
−Λ ∈ NRm

+
(GJ1(q)(q)(v

+ + ϵv−)).

Remark 2.57 (Consistent initial values) We assume that the velocity function v is right-
continuous, i.e. v(t) = v+(t), t ∈ I. Especially, in t = 0 it follows v(0) = v+(0) = v0.
A solution of the equations of motion exists at t = 0 only, if gi(q0) > 0 or gi(q0) =
0, Gi,:(q0)v0 ≥ 0 for all i ∈ {1, . . . ,m}. Therefore, we must assume that the initial point
τ = 0 is not an impact point. If gi(q0) = 0, Gi,:(q0)v0 < 0 is given for any i = 1, . . . ,m,
we recalculated the initial velocity to v0 := v+(0) by using the impact law of Newton.

Conclusion 2.58 (Equations of motion in form of an MDI) Summarising all steps, the
equations of motion can be formulated as a measure differential inclusion

q̇ = v,
M(q)dv = f(t, q, v)dt+G(q)⊤dP.

(2.26)

The differential measures dv and dP are decomposed by the impact and the smooth parts

dv = v̇(t) dt+
∑

τi∈T ∗(v,I)

(v+ − v−) dδτi

and
dP = λ(t) dt+

∑
τi∈T ∗(v,I)

Λ dδτi .

The smooth part λ of the normal force P is determined by the normal cone inclusion

−λ ∈ NRm
+
(g(q))

and the impact part Λ in impact points by

τ ∈ T ∗(v, I) : −Λ(τ) ∈ NRm1
+
(GJ1(q(τ))(q(τ))(v

+(τ) + ϵv−(τ)))

with ϵ ∈ [0, 1]. We can ignore impact points which are not elements of T ∗(v, I). For impact
points τ /∈ T ∗(v, I) it holds GJ1(q(τ))(q)v = 0 and the constraints with index in J1(q(τ))
can be treated as continuous constraints described in (2.14). The total formulation of the
equations of motion for non-smooth mechanical systems is an MDI
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q̇ = v,
M(q)dv = f(t, q, v) dt+G(q)⊤dP,

−dP ∈ NRm
+
(g(q)) dt+NRm1

+
(GJ1(q)(q)(v

+ + ϵv−)) dη,

η =
∑

τ∈T ∗(v,I) δτ .

(2.27)

with consistent initial values.

Remark 2.59 (Function spaces) According to the description in the previous section, the
generalised velocity can be interpreted as a function of bounded variation in SBV +(I,Rn).
The equations of motion must be rewritten in terms of the right-side limit v+(t) := q̇+(t).
Referring to Lemma 2.19, the function

q(t) = q(0) +

∫
[0,t]

v(τ)dτ

is absolutely continuous. The acceleration as the time derivative of v ∈ SBV +(I,Rn)
is not defined and must be replaced by the generalised derivative concept of differential
measures dv. That contains the differentiable part in the smooth phases and the discon-
tinuous nature when impacts happen. There are also physical forces of fractial type like
air turbulences. They are described by singular functions. We do not involve such forces
in our modell and consider only contact and impact forces.

2.2.2. Applications

In literature about mechanical systems, it is very common to assume that

(i) the constraint equations are independent and therefore the Jacobian matrix G(q)
has full rank,

(ii) the mass matrix M(q) is symmetric positive definite and the modelling process uses
a minimal number of coordinates to describe the full system uniquely.

For example [61, 63, 69, 80, 87] deal with the mentioned requirements. However, in many
situations the equations of motion are set up with rank-deficient mass or constraint matri-
ces. Singular mass matrices occur in applications that utilise Euler parameters or natural
coordinates to define the position of a rigid body [2, 16, 17, 47, 48]. Sometimes inertia is
captured by zero if it is very small or if zero-mass points are used [12]. In such situations
or by model reduction [92] singular mass matrices appear, too. Redundant constraints
are derived from over-parametrized systems [55], simplifications of modelling and imple-
mentation processes [36] or singular positions.

Of course, the mentioned problems can also be analysed with a set of independent gen-
eralised coordinates by elimination of the redundant ones. In practice, the identification
and elimination process is often expensive or even impossible, such that the formulation
with the redundant coordinates or constraints is utilised. Therefore, generalised ana-
lytical studies including rank-deficient mass and constraint matrices are needed. In the
literature, they are only occasionally available [6, 7, 17, 49, 92].

Example 2.60 (Two-masses-spring system with periodic forcing) The modelling of a
two-masses-spring system is taken from [92] and is expanded by a unilateral constraint in
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Figure 2.2.: Two-masses-spring system: Construction.

[17]. It consists of two massesm1 > 0 andm2 > 0 connected by springs with non-stretched
lengths l1 and l2 and stiffnesses k1 > 0, k2 > 0. According to Figure 2.2 the position is
presented by q = (q0, q1, q̄2)

⊤ with q0 = x1 − l1, q̄2 = q2 − l2. Referring to [92] the system
is understood as two subsystems which are interconnected through an equality f(q) = 0
and as in [17] the motion of m1 is further limited by a rigid obstacle at position L. In
addition to the mentioned forces the first spring is influenced by an ω-periodic forcing
p(t). The resulting equations of motion have the form

 m1 0 0
0 m2 m2

0 m2 m2

 v̇ = −

 k1 0 0
0 0 0
0 0 k2

 q +

 −1 −1 0
1 0 0
0 0 1

 λ1
λ2
λ3

+

 p(q)
0
0

 ,

f(q) = q1 − q0 − l1 − d = 0,

0 ≤ λ2(t) ⊥ h1(q) = L− q0 − l1 − d ≥ 0,

0 ≤ λ3(t) ⊥ h2(q) = q2 ≥ 0,

The mass matrix is obviously singular. These equations of motion are solved with the
explicit Moreau-Jean scheme (see Chapter 5). With the parameter configuration

l1 = l2 = 1 m, d = 1 m, L = 2 m, m1 = m2 = 2 kg,

k1 = 10
kg

s2
, k2 = 1

kg

s2
, ϵ = 0.9, p(q) = cos(πq/8),

in Figure 2.3 the periodic limit cycle of mass m1 is plotted. It deals with accumulation
points of velocity jumps

Example 2.61 (Slider-crank mechanism) A planar impacting slider-crank mechanism
[35, 82, 83] is considered. Its motion is described by the angles q = (θ1, θ2, θ3)

⊤, θi ∈ [0, 2π)
and the angular velocity v = (ω1, ω2, ω3)

⊤ (see Figure 2.4). Parameters belonging to the
crank are indexed with 1: mass m1, gravity J1 and length l1. Analogous characteristics of
the connecting rod are m2, J2 and l2. The slider has mass m3, gravity J3, length 2a and
height 2b. It is located between a ground and ceiling barrier which have a distance of d.
The clearance of the slider between the obstacles is 2c = d − 2b. The gap functions
representing the geometrical constraints must be defined as



2. Preliminaries 28

0 5 10 15 20 25 30 35 40 45 50
t [s]

-0.1

-0.05

0
q
0
(t
)
[m

/
s]

0 5 10 15 20 25 30 35 40 45 50
t [s]

-0.2

0

0.2

v
0
(t
)
[m

/
s]

Figure 2.3.: Two-masses-spring system: Position q0 and velocity v0 of the first mass m1.
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Figure 2.4.: Slider-crank mechanism: Construction.

g1(q) :=
d

2
− l1 sin θ1 − l2 sin θ2 + a sin θ3 − b cos θ3,

g2(q) :=
d

2
− l1 sin θ1 − l2 sin θ2 − a sin θ3 − b cos θ3,

g3(q) :=
d

2
+ l1 sin θ1 + l2 sin θ2 − a sin θ3 − b cos θ3,

g4(q) :=
d

2
+ l1 sin θ1 + l2 sin θ2 + a sin θ3 − b cos θ3,

such that the constraint matrix satisfies

G(q) =


−l1 cos θ1 −l2 cos θ2 a cos θ3 + b sin θ3
−l1 cos θ1 −l2 cos θ2 −a cos θ3 + b sin θ3
l1 cos θ1 l2 cos θ2 −a cos θ3 + b sin θ3
l1 cos θ1 l2 cos θ2 a cos θ3 + b sin θ3

 .

This matrix has not full rank which identify redundant constraints. The position of the
rectangular slider is uniquely determined by the position of three corners and therefore
the additional fourth gap function does not give new information. Assuming gravitation
in negative y-direction the equations of motion fit exactly the form (2.27) with
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M(q) =

 J1 + l21(m1/4 +m2 +m3) l1l2 cos(θ1 − θ2)(m2/2 +m3) 0
l1l2 cos(θ1 − θ2)(m2/2 +m3) J2 + l22(m2/4 +m3) 0

0 0 J3

 ,

f(q, v) =

 −l1l2 sin(θ1 − θ2)(m2/2 +m3)ω
2
2 − γl1 cos θ1(m1/2 +m2 +m3)

l1l2 sin(θ1 − θ2)(m2/2 +m3)ω
2
1 − γl2 cos θ2(m2/2 +m3)

0

 .
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Figure 2.5.: Slider-crank mechanism: Gap functions.

The equations of motion are again solved with the explicit Moreau-Jean scheme of Chapter
5 and the configuration of parameters

Geometrys: l1 = 0.153 m, l2 = 0.306 m, a = 0.05 m,

b = 0.05 m, c = 0.0002 m,

Inertia properties: m1 = 0.038 kg, m2 = 0.038 kg, m3 = 0.076 kg,

J1 = 7.4 10−5 kg ·m2, J2 = 5.9 10−4 kg ·m2,

J3 = 2.7 10−6 kg ·m2,

Force elements: γ = 9.81 m/s2, ϵ = 0.7,

Initial conditions: q0 = (0, 0, 0)⊤ m, v0 = (150,−75, 0)⊤
m

s

as in [35]. As in Example 1.1, an accumulation point of impact points can be observed
in numerical experiments, see Figure 2.5. Because the initial velocity is zero in the third
component, the slider does not rotate. The rank of the constraint matrix even reduces to
two and the gap functions g1 and g2 and the functions g3 and g4 are identical.

Further examples with rank-deficient mass or constraint matrices are listed in the Ap-
pendix C.





3. Solvability of Linear Implicit
Measure Differential Inclusions

If real world processes are captured in mathematical models, the first question should be,
whether the model has a solution and is so well-defined. In this chapter, the MDI (2.27)
representing the equations of motion of mechanical systems including impacts is studied.
There are already some detailed studies of the solvability of this problem. But they have
to be generalised to match to our applications of interest.

Theorem 3.1 (Monteiro-Marques [63]) Let

(i) m = 1,

(ii) g and f be Lipschitz continuous,

(iii) M(q) ≡M ∈ Rn×n be regular.

Then, the MDI (2.27) has at least one solution q ∈ AC(I,Rn), v ∈ BV (I,Rn).

This theorem covers problems with a constant regular mass matrix and only a scalar
inequality constraint.

Theorem 3.2 (Stewart [87]) MDI (2.27) has at least one solution q ∈ AC(I,Rn), v ∈
BV (I,Rn) if g : Rn → Rm, f : I ×Rn ×Rn → Rn are Lipschitz continuous and

(i) M(q), q ∈ Rn, is smooth, Lipschitz continuous, bounded and positive definite,

(ii) G(q), q ∈ Rn, is smooth, Lipschitz continuous, bounded and has full rank.

Theorem 3.2 generalises Theorem 3.1 to time varying mass matrices and multi-dimensional
constraints since m ≥ 1. In the previous chapter, the description of mechanical systems
with singular mass matrices and redundant constraints is considered. The existence re-
sults above do not cover the mathematical formulation of those problems. The possible
singularity of the mass matrix concludes that instead of explicit problems (2.7) linear
implicit measure differential inclusions are studied in this thesis. Due to the modeling
approach, we are only interested in solutions v ∈ SBV +(I,Rn).

3.1. Abstract Setting

Problem 3.3 Let A : Rn → Rn×n be continuous and F : BV (I,Rn) → P (SI) a set- and
measure-valued function with

F (x) = F1(x(t))dt+ F2(x
−)dη(x)

η(x) =
∑

s∈T ∗(x,I)

δs
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for x ∈ BV (I,Rn) and Fi : R
n → P (Rn), i = 1, 2. Here, dt is the n-dimensional Lebesgue

measure and η a sum of Dirac measures. We search for a solution x ∈ SBV +(I,Rn) of
the linear implicit measure differential inclusion (LIMDI)

A(x)dx ∈ F (x), x(0) = x0, (3.1)

The inclusion (3.1) can be understood in the sense of Lebesgue-Stieltjes integrals∫
[0,t]

A(x)dx =

∫
[0,t]

f1(x(s))ds+

∫
[0,t]

f2(x)dη(x)

=

∫
[0,t]

f1(x(s))ds+
∑

s∈T ∗(x,[0,t])

f2(x(s)), ∀ t ∈ I.

The inclusions f1(x(t)) ∈ F1(x(t)), t ∈ I\T ∗(x, I), f2(x(s)) ∈ F2(x
−(s)), s ∈ T ∗(x, I), are

defined pointwise.

To show the solvability of the dynamical problem (3.1), it is important to know that the
discrete problem in a fixed time point has a solution. We call this property consistency.

Definition 3.4 (Consistency) Problem (3.1) is called consistent, if there exists a constant
K > 0 such that for all x̄ ∈ Rn with Fi(x̄) ̸= ∅, i = 1 or 2, the following requirements are
true

(C1) ∃ mi ∈ Rn : A(x̄)mi ∈ Fi(x̄)

(C2) ∃ h0 > 0 ∀ h ∈ (0, h0] : F1(x̄+ hmi) ̸= ∅

(C3) ∥mi∥ ≤ K · (1 + ∥x̄∥)

We summarise all m fulfilling (C1) in the admissable sets Zi(x̄), i = 1, 2. These sets have
to be convex (see Theorem 2.31.).

Properties (C1)-(C2) are equivalent to the solvability of the discrete problem in an open
neighbourhood. Referring to Theorem 2.31, the linear boundedness (C3) is already a
sufficient criterion for solvability of differential inclusions.

We will now prove the solvability of LIMDI (3.1) with a set-valued fixed point theorem.
This strategy is also used in the solvability proof for MDIs in [69]. After that we define A
and F in (3.1) for Problem (2.27) which represent the equations of motion of non-smooth
mechanical systems.

Theorem 3.5 (Fixed point theorem for set-valued functions, Himmelberg [46]) LetD ̸= ∅
be a convex subset of a separated locally convex space X and Γ : D → P (D)\∅ be an
upper semi-continuous function with closed and convex values. If Γ(D) is contained in
some compact subset C ⊂ D then Γ has a fixed point, i.e. ∃ x∗ ∈ D with x∗ ∈ Γ(x∗).

A second important abstract argument of [63] is often used in the proof of solvability. It
is a compactness result for functions of bounded variation.

Theorem 3.6 Let (xk)k∈N be a sequence of functions in BV (I,Rn) with

∥xk(t)∥ ≤ L, t ∈ I,

var(xk, I) ≤M
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for all k ∈ N and some constants L,M > 0. Then, there exists a subsequence (xkl) of
(xk) which converges pointwise to a function x ∈ BV (I,Rn) with

∥x(t)∥ ≤ L, t ∈ I

var(x, I) ≤M.

If all xkl are right-continuous, the differential measures dxkl converge weakly* to dx, i.e.
for all continuous functions ϕ : I → R and all [c, d] ⊂ I the relationship

lim
l→∞

∥∥∥∥∫
[c,d]

ϕ dxkl −
∫
[c,d]

ϕ dx

∥∥∥∥ = 0

is true.

Remark 3.7 (Convergence in SBV +(I,Rn)) A function sequence (xk)k∈N with xk ∈
SBV +(I,Rn),∀ k ∈ N, converges pointwise to a limit x : I → Rn if

lim
k→∞

xk(t)− x(t) = 0, ∀ t ∈ I.

It converges to x ∈ SBV +(I,Rn) if

0 = lim
k→∞

∥xk − x∥BV = lim
k→∞

∥xk(0)− x(0)∥+ var(xk − x, I).

This means limk→∞ (xk(0)− x(0)) = 0 is true and following Theorem 2.26 the equations

lim
k→∞

var(xk − x, I) = lim
k→∞

∫
I

|d(xk − x)| = lim
k→∞

∫
I

∥ẋk(t)− ẋ(t)∥ dt+

+
∑

s∈T ∗(xk,I)∪T ∗(x,I)

∥∥x+k (s)− x−k (s)− x+(s) + x−(s)
∥∥ .

hold. On one hand, ∥ẋk(t)− ẋ(t)∥ should converge for almost all t ∈ I uniform to zero.
On the other hand, it holds

lim
k→∞

∥∥x+k (s)− x−k (s)− x+(s) + x−(s)
∥∥ = 0, ∀s ∈ T ∗(xk, I) ∪ T ∗(x, I).

This could be only true if there is an N ∈ N such that

∀ l ≥ N : T ∗(x, I) ⊂ T ∗(xl, I)

Otherwise there exists an s ∈ T ∗(x, I) and a subsequence (xkl) of (xk) with s ∈ T ∗(x, I)
ans s /∈ T ∗(xkl , I),∀ l ∈ N. The conclusion

lim
l→∞

∥∥x+kl(s)− x−kl(s)− x+(s) + x−(s)
∥∥ = lim

l→∞

∥∥x+(s)− x−(s)
∥∥ ̸= 0

contradicts limk→∞ var(xk − x, I) = 0. Equality T ∗(x, I) = T ∗(xl, I),∀ l ≥ N , has not to
be fulfilled. If there is an s /∈ T ∗(x, I) with s ∈ T ∗(xl, I), the Zeno phenomenon

lim
l→∞

∥∥x+l (s)− x−l (s)
∥∥ = 0

could be observed in s for xl and continuous behaviour of x in s. Convergence implies as al-
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ways pointwise convergence and the limit of a convergent sequence is also in SBV +(I,Rn)
since this space is closed (see Theorem 2.25).

Now the first new result of this thesis follows.

Theorem 3.8 (Solvability of LIMDI (3.1)) Let A : Rn → Rn×n be a continuous function
with A(x) = A(xabs) for all x ∈ BV (I,Rn) and Fi : Rn → P (Rn)\∅, i = 1, 2, are
upper semi-continuous with closed values. Here xabs is the absolutely continuous part of
the Lebesgue decomposition of a function x ∈ BV (I,Rn). Then all consistent LIMDI
(3.1) with an initial value x(0) = x0 satisfying F1(x0) ̸= ∅ have a local solution x ∈
SBV +(I,Rn) on I.

Proof: We define
C(t) := (1 + ∥x0∥)eKt − 1, t ∈ I,

C0 := (1 + ∥x0∥)(eKT − 1),

where K is the positiv constant from Definition 3.4. The origin of the constant C0 and
C(t) arises in the course of the proof. Since Theorem 3.5 shall be used to prove this
statement, it is defined

X := BV (I,Rn),

D :=
{
x ∈ SBV +(I,Rn) | ∥x(t)∥2 ≤ C(t), t ∈ I, var(x, I) ≤ C0, x(0) = x0

}
,

Γ(x) := {y ∈ D | A(x)dy ∈ F (x)} .

According to [38], the function space X is a Banach space with norm ∥·∥BV and therefore
even a separated locally convex space.

With x1, x2 ∈ D,α ∈ [0, 1] , the linear combination x3 := αx1 + (1 − α)x2 is defined.
Referring to Theorem 2.25, it can be concluded x3 ∈ SBV +(I,Rn). Following Proposition
2.17 (iii),

var(x3, I) ≤ αvar(x1, I) + (1− α)var(x2, I) ≤ C0,

∥x3(t)∥2 ≤ α ∥x1(t)∥2 + (1− α) ∥x2(t)∥ ≤ C(t),

x3(0) = αx1(0) + (1− α)x2(0) = αx0 + (1− α)x0 = x0

are satisfied and so x3 ∈ D. The set D is convex and trivially non-empty (D ∋ x(t) ≡ x0).
It remains to prove all properties of the multi-function Γ.

(i) Γ(x) is convex for all x ∈ D: Let y1, y2 ∈ Γ(x). Since D is convex, the linear com-

bination y3 := αy1 + (1 − α)y2 ∈ SBV +(I,Rn), α ∈ [0, 1] , defines also an element
of D. Furthermore, for all t ∈ I\T ∗(x, I) it is

A(x(t))ẏ3(t) ∈ F1(x(t))

since Z1(x(t)) is convex and for s ∈ T ∗(x, I)

A(x(s))(y+3 (s)− y−3 (s)) ∈ F2(x
−(s))

since Z2(x
−(s)) is convex. Here Z1, Z2 are the admissable sets of the discrete inclu-

sions which are defined in Definition 3.4. It follows A(x)dy3 ∈ F (x). Therefore, Γ
has convex values.
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(ii) Γ(x) is closed for all x ∈ D: Let x ∈ D be arbitrary and (yk) ⊂ Γ(x) with

lim
k→∞

∥yk − y∥BV = 0.

We have also pointwise convergence in the sense of limk→∞ yk(t) = y(t), t ∈ I, with

y(0) = lim
k→∞

yk(0) = x0.

Due to Theorem 3.6 a sequence of functions yk which is uniformly bounded in
norm ∥yk(t)∥ ≤ C(t) ≤ C(T ) and variation var(yk, I) ≤ C0 converges to a limit
y ∈ BV (I,Rn) with the same properties ∥y(t)∥ ≤ C(T ), var(yk, I) ≤ C0. Since
∥yk(t)∥ ≤ C(t), t ∈ I, the same inequality holds for the limit

∥y(t)∥ =
∥∥∥ lim
k→∞

yk(t)
∥∥∥ ≤ C(t).

Using Theorem 2.25, the space SBV +(I,Rn) is a closed subset of BV (I,Rn) and
so it can be concluded from yk ∈ SBV +(I,Rn) the inclusion y ∈ SBV +(I,Rn) and
finally y ∈ D.

Furthermore, Theorem 3.6 states that dyk → dy in the sense of

lim
k→∞

∫
[0,t]

ϕ dyk =

∫
[0,t]

ϕ dy

for all continuous ϕ. The function A(x) is continuous since A is continuous and
depend only on the continuous part of x by assumption. Due to consistency, there
exist sequences (fk

1 )k∈N and (fk
2 )k∈N with

fk
1 (x(t)) ∈ F1(x(t)), t ∈ I\T ∗(x, I),

fk
2 (x(t)) ∈ F2(x

−(t)), t ∈ T ∗(x, I)

for all k ∈ N fulfilling

∫
[0,t]

A(x)dy = lim
k→∞

∫
[0,t]

A(x)dyk = lim
k→∞

∫
[0,t]

fk
1 (x(s))ds+

∑
s∈T ∗(x,[0,t])

fk
2 (x(s))

Since A(xabs) is continuous on [0, t], its norm is bounded by a constant βA > 0 and
it holds∥∥fk

1 (x(s))
∥∥ = ∥A(xabs(s))ẏk(s)∥ ≤ βA ∥ẏk(s)∥ ≤ βA·K(1+∥x(s)∥) ≤ βA·K(1+C(T ))

Using that the set F1(x(s)) is closed, there exists a subsequence (fkl
1 (x(s)) ⊂
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fk
1 (x(s)) which converges pointwise to f1(x(s)) ∈ F1(x(s)).

∫
[0,t]

A(x)dy = lim
l→∞

∫
[0,t]

fkl
1 (x(s))ds+

∑
s∈T ∗(x,[0,t])

fkl
2 (x(s))

 .

If a function sequence fkl
1 converges pointwise to a function f1 and there exists an

upper bound w ∈ L1([0, t] ,Rn) for
∥∥∥fkl

1 (x(s))
∥∥∥ ≤ ∥w(x(s))∥, we can change the

order of limit and Lebesgue integral [30]. Here, the conditions are fulfilled with
w(s) = βA ·K(1 + C(T )). The integral can be transformed to∫

[0,t]

A(x(s))dy =

∫
[0,t]

f1(x(s))ds+ lim
l→∞

∑
s∈T ∗(x,[0,t])

fkl
2 (x(s))

with f1(x(s)) ∈ F1(x(s)). Since f l
2(x(s)) is analoguesly bounded and a sequence of

the closed set F2(x
−(s)), we get with the same argument a limit f2(x(s)) ∈ F2(x(s))

in every s ∈ I of a subsequence with∫
[0,t]

A(x(s))dy =

∫
[0,t]

f1(x(s))ds+
∑

s∈T ∗(x,[0,t])

f2(x(s)).

This is the integral sense of A(x)dy ∈ F (x). So y ∈ Γ(x) holds and it can be
concluded that Γ(x) is closed.

(iii) ∃ C ⊂ D with Γ(x) ⊂ C, ∀ x ∈ D, and C compact: Let

C =
{
y ∈ SBV +(I,Rn) : ∥y∥BV ≤ ∥x0∥2 + C0, y(0) = x0

}
.

In metric spaces a set is compact if it is sequentially compact. Let (yk) ⊂ C be a
sequence satisfying

var(yk, I) ≤ C0, ∥yk(t)∥2 ≤ ∥x0∥2 + var(yk, I) ≤ ∥x0∥2 + C0.

As in proof step (ii), from Theorem 3.6 it follows that there is a subsequence ykl
with ∥ykl − y∥BV → 0, l → ∞, and y ∈ C. Therefore, the set C is compact.

(iv) Γ is upper semi-continuous: Following Theorem 2.12 it must be proven that graph(Γ)
is compact. A sequence ((xk, yk))k∈N in graph(Γ) is considered. That means

(xk, yk) ∈ D ×D and A(xk)dyk ∈ F (xk).

Referring to Theorem 3.6, there is a subsequence ((xkl , ykl))l∈N that converges to
(x, y) ∈ D×D. Following Remark 3.7, there is again a subsequence ((xkm , ykm))m∈N
of ((xkl , ykl)) with T

∗(x, I) ⊂ T ∗(xm, I). So for all s ∈ T ∗(x, I), we have

lim
m→∞

A(xkm(s))(y
+
km
(s)− y−km(s)) = A(x(s))(y+(s)− y−(s)).

It is assumed that A(xkm)(y
+
km
(s)−y−km(s)) ∈ F2(x

−
km
(s)) and that F2 is upper semi-

continuous. Theorem 2.12 states that graph(F2) must then be closed. So one can
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conclude that the limit (x(s), A(x(s))(y+(s)−y−(s))) of (xkm(s), A(xkm(s))(y+km(s)−
y−km(s))) is also an element of graph(F2), i.e.

A(x(s))(y+(s)− y−(s)) ∈ F2(x
−(s)), ∀ s ∈ T ∗(x, I).

For almost all t ∈ I, the inclusion A(xkm(t))ẏkm(t) ∈ F1(xkm(t)) and the relation
limm→∞A(xkm(t))ẏ(t) = A(x(t))ẏ(t) is true. Since F1 is also upper semi-continuous,
it can be concluded analogously A(x(t))ẏ(t) ∈ F1(x(t)) for almost all t ∈ I. In
summary, there is always a subsequence ((xkm , ykm))m∈N of an arbitrary sequence
((xk, yk)) of graph(Γ) that converges to a limit (x, y) ∈ graph(Γ) since

(x, y) ∈ D ×D and A(x)dy = A(x)ẏdt+ A(x)(y+ − y−)dη(x) ∈ F (x).

So graph(Γ) is compact and Γ is upper semi-continuous.

(v) Γ(x) is non-empty, ∀ x ∈ D:

Let h = T/n with n ∈ N. We define a vector sequence in Rn

yn,0 = x0,

yn,i+1 = yn,i + hmn,i, A(x(ih))mn,i ∈ F (x(ih))

and a sequence of functions

yn(t) := yn,i, t ∈ [ih, (i+ 1)h] ,

with i ∈ {0, . . . , n− 1}. The vector sequence fulfills pointwise

∥yn,i∥2 ≤ ∥x0∥2 + ihK(1 + C(ih)). (3.2)

Equation (3.2) will be proven by induction. The inequality ∥yn,0∥2 ≤ ∥x0∥2 is
trivially true for i = 0. If (3.2) is satisfied for an arbitrary i = k ∈ N it can be
concluded

∥yn,k+1∥ ≤ ∥yn,k∥2 + h ∥mn,k∥2
≤ ∥x0∥2 + khK(1 + C(kh)) + hK(1 + ∥x(kh)∥)
≤ ∥x0∥2 + (k + 1)hK(1 + C(kh))

since x ∈ D. Furthermore, we have for i = 1, . . . , n− 1

∥yn,i − yn,i−1∥2 = h ∥mn,i∥ ≤ hK(1 + ∥x(ih)∥2) ≤ hK(1 + C(ih)). (3.3)

Using equations (3.2)-(3.3), the function sequence (yn) ⊂ SBV +(I,Rn) satisfies

∥yn(t)∥2 ≤ ∥x0∥2 + T0K(1 + C(T0)),
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and in addition

var(yn, I) =
n−1∑
j=1

∥yn,i − yn,i−1∥2

≤ (n− 1)hK(1 + C(T ))

≤ T0K(1 + C(T )).

Following [63, p. 11] and [3, Theorem 4.8], there must be a subsequence ynk
con-

verging in the sense of

∃ y̌ ∈ SBV +(I0,R
n) : ∥ynk

− y̌∥ → 0

with
∥y̌(t)∥ ≤ ∥x0∥2 + TK(1 + C(T )),∀ t ∈ I0.

We will prove that y(t) := y̌+(t) ∈ SBV +(I,Rn) is an element of Γ(x).

Because of the consistency of the LIMDI, for 0 < h ≤ h0 it holds

yn,i = yn,i−1 + hmn,i ∈ Z1(x(ih))

with yn,0 = x0 ∈ Z1(x0). Since convergence implies pointwise convergence and
Z1(x(ih)) is closed, we have

y(t) = lim
n→∞

yn,⌈nt
T
⌉ ∈ Z1(x(t)).

In the following, we use that T ∗(x, I) is a set of Lebesgue measure zero. For all
t ∈ I, it is satisfied∫ t

0

A(x(s))dy = lim
n→∞

∫ t

0

A(x)dyn = lim
n→∞

n−1∑
i=1

A(x(ih))(yn,i − yn,i−1)

= lim
n→∞

n−1∑
i=1

A(x(ih))hmn,i−1

= lim
n→∞

∑
i=1,...,n−1,ih∈I\T ∗(x)

f1(x(ih))h+
∑

i=1,...,n−1,ih∈T ∗(x)

f2(x(ih))h

= lim
n→∞

∑
i=1,...,n−1,ih∈I\T ∗(x)

∫ ih

(i−1)h

f1(x(ih))ds+

+
∑

i=1,...,n−1,ih∈T ∗(x)

∫ ih

(i−1)h

f2(x(ih))ds

=

∫ t

0

f1(x(s))ds+
∑

s∈T ∗(x)

f2(x(s)) ∈ F (x)
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Since A(x)dy ∈ F (x) follows, it holds

var(y, I) =

∫ T0

0

|dy| ≤
∫ T

0

K(1 + ∥x(s)∥)ds

≤
∫ T

0

K(1 + C(s))ds =

∫ T

0

K(1 + ∥x0∥2)e
LMsds

= (1 + ∥x0∥2)(e
KT − 1) = C0.

In the same way we get

∥y(t)∥2 ≤ ∥x0∥2 +
∫ t

0

|dy| ≤ ∥x0∥2 + (1 + ∥x0∥2)(e
Kt − 1) = C(t)

i.e., y ∈ Γ(x).

After the solvability, we also give a new boundedness theorem for LIMDI.

Theorem 3.9 (Boundedness of Solutions) On the interval [0, T ] = I, the solution x ∈
SBV +(I,Rn) of the LIMDI (3.1) fulfills the inequalities

∥x(t)∥2 ≤ (∥x0∥2 + 1)eKt − 1, t ∈ I,
var(x, I) ≤ (∥x0∥2 + 1)(eKT − 1).

Proof: Using the consistency, we get

∥x(t)∥2 ≤ ∥x0∥2 +
∫ t

0
|dx|

≤ ∥x0∥2 +
∫ t

0
K(1 + ∥x(s)∥2)ds,

where |x| is the modulus function to x (see Corollary A.21). Let w, z ∈ Rn be. Following
the Cauchy-Schwarz inequality ⟨w, z⟩2 ≤ ∥w∥2 ∥z∥2 for the standard scalar product and
Euclidean norm, it is satisfied

(∥w∥2 − ∥z∥2)
2 = ∥w∥22 − 2 ∥w∥2 ∥z∥2 + ∥z∥22

≤ ∥w∥22 − 2 ⟨w, z⟩2 + ∥z∥22
= ∥w − z∥22

and so |∥w∥2 − ∥z∥2| ≤ ∥w − z∥2. If x is a function of bounded variation on J than
∥x∥2 : t 7→ ∥x(t)∥2 is also a function of bounded variation since

var(∥x∥2 , J) = sup(ti)⊂J

∑
∥∥x(ti)∥2 − ∥x(ti−1)∥2∥2

≤ sup(ti)⊂J

∑
∥x(ti)− x(ti−1)∥2

= var(x, J) <∞.

In [75, Theorem 3.1.] a Theorem of Gronwall type for functions of bounded variation was
proven: If y(t) is a non-negative function of bounded variation on J , C ≥ 0 and K(t) a
non-negative Lebesgue-integrable function on J with

y(t) ≤ C +

∫ t

0

K(s)y(s)ds, t ∈ J,
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then

y(t) ≤ C(1 +

∫ t

0

K(s)exp

(∫ t

s

K(η)dη

)
ds), t ∈ J.

With y(t) = 1 + ∥x(t)∥2 ∈ BV (I,Rn), C = ∥x0∥+ 1, K(t) ≡ K, the inequality for ∥x(t)∥
holds since

1 + ∥x(t)∥2 ≤ (∥x0∥+ 1)(1 +
∫ t

0
Kexp

(∫ t

s
Kds

)
ds)

= (∥x0∥+ 1)eKt

For the variation of the solution x on I, it is satisfied

var(x, I) =
∫ T

0
|dx|

≤
∫ T

0
K(1 + ∥x(s)∥2)ds

≤
∫ T

0
KeLMs(∥x0∥2 + 1)ds

= (∥x0∥2 + 1)(eKT − 1).

The question of uniqueness of solutions of LIMDI is not discussed here. The existing
literature [10, 78, 79] about such problems points towards a verdict of non-uniqueness in
general. In [78, Example 3b] a one-dimensional example is constructed with a non-analytic
force f(t, q, v). The resulting MDI has on one hand the constant solution x(t) ≡ x0 and
on the other hand a second solution with an infinite number of discontinuity points in
the neighbourhood of x0. So non-uniqueness is already given in case of explicit measure
differential inclusion. In [79] for the analytic case the following uniqueness result in the
one-dimensional case was proven with rather technical methods.

Theorem 3.10 (Schatzman [79]) The problem

q̇ = v, dv ∈ f(t, q, v) +NR+(q)dt+NR+(v
+ + ϵv−)dη,

with q(0) = q0, v(0) = v0 has at most one solution on I ⊂ R if f : I × Rn × Rn is an
analytic function and the initial values fulfill q0 ≥ 0 and q0 = 0 ⇒ v0 ≥ 0.

The bouncing ball in Example 1.1 defines a gravitational force f(t, q, v) = −mg. Since a
constant function is analytic, there is for all consistent initial values a unique solution.

3.2. Setting in Non-Smooth Mechanics

The aim of this section is to prove the existence of solutions q and v for the equations
of motion (2.27) in case of singular mass matrices and redundant constraints. This is
equivalent to show that the modelling strategies of Chapter 2 are appropriate. In [17, 49],
it is similarly proven that there exist solutions for mechanical systems with equality
constraints or inequality constraints without impacts and singular mass matrices and
redundant constraints. For a more general and detailed overview of overdetermined and
underdetermined DAEs and differential variational inequalities we refer to [7, 14, 36, 37,
55].

Theorem 3.11 (Garcia de Jalón, Gutierrez-Lopez [49]) The equations of motion of me-
chanical systems with equality constraints are a DAE given in (2.20). Let M(q) ∈ Rn×n

be a symmetric positive semi-definite matrix for all q ∈ Rn and let the block matrix
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[
M(q) G(q)⊤

]
have full rank n. Then, problem (2.20) has a unique solution.

Theorem 3.12 (Brogliato, Goeleven [17]) LetM(q) ∈ Rn×n be symmetric positive semi-
definite and the assumption

Im(GJ1(q)(q)) ∩
{
z ∈ Rm : z + γJ1(q)(q, q̇) ∈ Rm

+

}
̸= ∅ (3.4)

is true. If one of the following statements is satisfied

(a) {x ∈ Rn : GJ1(q)(q)x ≥ 0} ∩ ker(M(q)) = {0},

(b) {x ∈ Rn : GJ1(q)(q)x ≥ 0} ∩ ker(M(q)) ̸= {0} and f(q, v)⊤z < 0, ∀ z ∈ {x ∈ Rn :
GJ1(q)(q)x ≥ 0} ∩ ker(M(q))\{0},

then the mixed complementarity problem

M(q)x = f(q, v) +GJ1(q)(q)
⊤λ

0 ≤ λ ⊥ GJ1(q)(q)x+ γJ1(q)(q, v) ≥ 0

has at least one solution x and λ. The vector x is unique if

(i) z ∈ ker(M(q)) ⇒ z ∈ ker(GJ1(q)(q)),

(ii) z ∈ ker(M(q))\{0} ⇒ f(q, v)⊤z ̸= 0.

The underlying works [17, 49] of Theorems 3.11 and 3.12 conclude from these discrete
arguments the solvability of the dynamical system with the implicit function theorem and
certain smoothness assumptions.

Remark 3.13 (Physical interpretation) Let M(q) ∈ Rn×n be the symmetric positive
semi-definite mass matrix describing the kinetic energy 0.5v⊤M(q)v and GJ1(q)(q) ∈
Rm1×n the Jacobian matrix of the constraint function g : Rn → Rm. The kernel of
GJ1(q) spans the tangent space of the constraint manifold {z | g(z) = 0} at point q. The
condition

rank
([
M(q) GJ1(q)(q)

⊤]) = n

is important to get the existence of solutions in the DAE case. It can be interpreted
as the fact that any possible movement must be associated with non-zero kinetic en-
ergy [49]. If GJ1(q)(q)v = 0 it can immediately be concluded v /∈ ker(M(q)) and so
T (q, v) = v⊤M(q)v ̸= 0.

The equivalent conditions for the existence of solutions for contact systems are (a)-(b)
in Theorem 3.12. The velocity is admissible if GJ1(q)(q)v ≥ 0. Either condition (a) is
satisfied, than T (q, v) ̸= 0 follows, or (b) is satisfied. Assume v ̸= 0 with M(q)v =
0, GJ1(q)(q)v ≥ 0 is admissible and the MLCP in Theorem 3.12 has a solution (x, λ) that
satisfy the condition λ⊤GJ1(q)(q)v = 0. The contradiction

0 = v⊤M(q)x = v⊤f(q, v) + v⊤G⊤
J1(q)(q)λ = v⊤f(q, v) > 0
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follows. Just as in the case of equality constraints, an admissible velocity must cause
kinetic energy.

Like Theorems 3.11 and 3.12 show, equations of motion with singular mass matrices and
redundant constraints can be well-defined in case of equality constraints and inequality
constraints without impacts. A generalisation to impact systems seems to be logically.
We call mechanical systems with the impact law also systems with impulsive forces.

Remark 3.14 (Problem parameters) The problem (2.27) is a LIMDI for x = (q⊤, v⊤)⊤

with parameters

A(q, v) =

(
I 0
0 M(q)

)
,

F (q, v) = F1(q, v)dt+ F2(q, v
−)dη(v)

=

(
v

f(q, v) +G⊤(q)NRm
+
(g(q))

)
dt+

(
0

G⊤
J1(q)NRm1

+
(GJ1(q)(v+ + ϵv−))

)
dη(v).

Remark 3.15 (Discrete system) For q, v ∈ Rn the problem A(q, v)x ∈ F (q, v) is equiva-
lent to the problem to find

(i) vectors v̇ ∈ Rn, λ ∈ Rm2 , x = (v̇, λ) with

M(q)v̇ = f(q, v) +GJ2(q,v)(q)
⊤λ

0 ≤ λ ⊥ GJ2(q,v)v̇ + γJ2(q,v)(q, v) ≥ 0

if for all i = 1, . . . ,m, gi(q) > 0 or gi(q) = 0, Gi(q)v > 0 or gi(q) = 0, Gi(q)v =
0, gi(q − hv) = 0, for all h ∈ (0, h0) and h0 small enough.

These conditions can be associated with inactive constraints, constraints which get
inactive or active constraints which stay active.

(ii) vectors v+ ∈ Rn,Λ ∈ Rm1 , x = (v+,Λ) with

M(q)(v+ − v−) = GJ1(q)(q)
⊤Λ

0 ≤ Λ ⊥ GJ1(q)(v
+ + ϵv−) ≥ 0

if there is an index i = 1, . . . ,m, with gi(q) = 0, Gi(q)v
− < 0 or gi(q) = 0, Gi(q)v

− =
0, gi(q − hv−) > 0, for all h ∈ (0, h0) and h0 small enough.

These conditions can be associated with constraints which get active and therefore
an impact happens.

We consider the discrete problem to find x ∈ Rn, λ ∈ Rmi with

M(q)x = f̃(q, v) +GJi(q,v)(q)
⊤λ

0 ≤ λ ⊥ GJi(q,v)x+ γ̃(q, v) ≥ 0
(3.5)
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and

f̃(q, v) =

{
f(q, v), in case (i),
M(q)v−, in case (ii)

J i(q, v) =

{
J2(q, v), in case (i),
J1(q), in case (ii)

γ̃(q, v) =

{
γJ2(q,v)(q, v), in case (i),
ϵGJ1(q)v

−, in case (ii)

Referring to Theorem B.14, the problem in Equation (3.5) has a solution if M(q) is
positive semi-definite and the problem is feasible. Feasibility is equivalent to the aspect
that there exist x ∈ Rn, λ ∈ Rmi with

λ ≥ 0, M(q)x+GJi(q,v)(q)λ = f̃(q, v), GJi(q,v)(q)x+ γ̃(q, v) ≥ 0. (3.6)

Theorem 3.16 (Feasibility) Let M(q) be positive semi-definite for all q ∈ Rn. The
inequality system (3.7) has for all q, v ∈ Rn a solution if

y ∈ ker(M(q))
z ∈ ker(GJi(q,v)(q)

⊤)
GJi(q,v)(q)y = u

u, z ≥ 0

⇒ −f̃(q, v)⊤y + γ̃(q, v)⊤z ≥ 0. (3.7)

Proof: Following the Lemma of Farkas [33], a system Ax+ b ≥ 0 has a solution if

y ≥ 0, A⊤y = 0 ⇒ y⊤b ≥ 0

is true. System (3.6) is equivalent to Ax+ b ≥ 0 with

A =


0 I
M −G
−M G
G 0

 , b =


0

−f̃
f̃
γ̃

 .

The arguments and indices are omitted for better readability. The Farkas condition for
feasibility of system (3.6) is

yi ≥ 0, i = 1, 2, 3, 4,
y1 −G(y2 − y3) = 0

M(y2 − y3) +G⊤y4 = 0

⇒ f̃⊤(y3 − y2) + γ̃⊤y4 ≥ 0.

First we define y := y2 − y3 ∈ Rn and transform

yi ≥ 0, i = 1, 4,
Gy = y1

My +G⊤y4 = 0

⇒ −f̃⊤y + γ̃⊤y4 ≥ 0.

If the second equation is multiplied with y⊤ from the left and the first equation is put in,
we get y⊤My + y⊤G⊤y4 = y⊤My + y⊤1 y4 = 0. Since y1, y4 ≥ 0, this equation can only
be satisfied if y⊤1 y4 = 0 and y⊤My = 0. Since M is positive semi-definite, the relation
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y ∈ ker(M) results. From My + G⊤y4 = 0, the property y4 ∈ ker(G⊤) and the claim
follow.

Remark 3.17 (Comparison to [17]) In [17] only case (i) without impacts is considered.
Assumption (3.4) is equivalent to

∃ x ∈ Rn : GJ2(q,v)(q)x+ γJ2(q,v)(q, v) ≥ 0.

Following the lemma of Farkas that can be transformed to

y ≥ 0, GJ2(q,v)(q)y = 0 ⇒ y⊤γJ2(q,v)(q, v) ≥ 0. (3.8)

Cases (a) and (b) in Theorem 3.12 are subcases of

GJ2(q,v)(q)x ≥ 0,M(q)x = 0 ⇒ f(q, v)⊤x ≤ 0. (3.9)

The requirements of Theorem 3.16 are trivially true if (3.8)-(3.9) are satisfied. So Theorem
3.16 is a generalisation of the results in [17]. If we consider the impact case the feasibility
condition is equivalent to

y ∈ ker(M(q))
z ∈ ker(GJ1(q)(q)

⊤)
GJ1(q)(q)y = u

u, z ≥ 0

⇒ −(M(q)v−)⊤y + (ϵGJ1(q)(q)v
−)⊤z ≥ 0.

Since y ∈ ker(M(q)), z ∈ ker(GJ1(q)(q)
⊤), the inequality reduces to 0 ≥ 0 which is true.

Problem 3.18 (Mechanical LIMDI) We consider an MDI of the form (2.27) with the
following properties

(P1) f, g,G,M, γ are Lipschitz continuous on I with Lipschitz constants Lf , Lg, LG, LM , Lγ.
This implies that there are for example ρf , ργ with ∥f(x)∥ ≤ ρf (1 + ∥x∥), ∥γ(x)∥ ≤
ργ(1 + ∥x∥).

(P2) M(q) is symmetric and positive semi-definite for all q ∈ Rn.

(P3) M,G are uniformly bounded by bM , bG > 0. That means ∀ q ∈ Rn : ∥M(q)∥M ≤
bM , ∥G(q)∥M ≤ bG with a matrix norm ∥.∥M .

(P4) g is two times continuously differentiable.

(P5) Condition (3.7) is satisfied and
[
M(q) G⊤

J3(q,v,a)(q)
]
has for all q, v, a ∈ Rn full rank

with
J3(q, v, a) :=

{
i ∈ J2(q, v) |

[
GJ2(q,v)a+ γJ2(q,v)(q, v)

]
i
= 0
}
.

Example 3.19 Condition (P5) is important to guarantee the existence of solutions. Con-
sider the simple problem (

1 2
2 4

)(
v̇1
v̇2

)
=

(
1
1

)
+

(
1
2

)
λ,

q1 + 2q2 = 0.
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Regardless of the initial value, the differential system has no solution.

Theorem 3.20 (Existence result) The problem (2.27) with (P1)-(P5) and a consistent
initial value x0 has at least one solution.

Proof: Following Theorem 3.8, we must show that the parameters in Remark 3.14 fulfill
the properties

(i) A is continuous with A(x) = A(xabs) for all x fulfilling Equation (3.1)

Following (P1) A is continuous. If x(t) = (q(t)⊤, v(t)⊤), t ∈ I, fulfills Equation (3.1)
it is a function of bounded variation. More precisely, q, v : I → Rn are functions of
bounded variation. The first n rows of A(x)dx ∈ F (x) are equivalent to dq = vdt
or ∫

[0,t]

dq =

∫
[0,t]

v(t)dt ⇔ q(t)− q(0) =

∫
[0,t]

v(t)dt.

Lemma 2.19 states that q is absolutely continuous and therefore also continuous.
We get the claim A(x) = A(xabs).

(ii) (2.27) is consistent.
To repeat Definition 3.4, an MDI is consistent if the discrete problem in an admis-
sible state x ∈ R2n with F1(x) ̸= ∅ or F2(x) ̸= ∅
(C1) has a solution

(C2) stays admissible

(C3) has linear bounded growth

and the solution spaces Z1(x), Z2(x) are convex. Let x = (q⊤, v⊤)⊤ ∈ R2n be an
admissible vector with

a) F1(x) ̸= ∅ if for all i = 1, . . . ,m either gi(q) > 0 or gi(q) = 0, Gi(q)v ≥ 0 or

b) F2(x) ̸= ∅ if there is an i ∈ {1, . . .m} with gi(q) = 0 and Gi(q)v < 0

Referring to Theorems B.14 and 3.16, the MLCP A(x)m ∈ Fi(x), i = 1, 2, has a
solution m and (C1) is satisfied.

Following Definition 3.4, the solutionm =

(
m1

m2

)
withm1,m2 ∈ Rn stays admissible

if there is an h0 > 0 such that F1(x+ hm) ̸= ∅,∀ h ∈ (0, h0]. Function F1 is defined
through

F1(q, v) = f(q, v) +NRm
+
(g(q)).

The inclusion 0 ∈ NRm
+
(g(q)) is true if g(q) ≥ 0. It follows f(q, v) ∈ F1(q, v) and

F1, q, v is not empty. Now the inequality g(q + hm1) ≥ 0 is proven for one h > 0 to
follow (C2).

a) In case (i) of Remark 3.15, m as a solution of A(x)m ∈ F1(x) fulfills m1 = v.
From the Taylor expansion of g follows

gi(q + hm1) = gi(q) +Gi(q)v · h+O(h2) (3.10)

If either gi(q) > 0 or gi(q) = 0, Gi(q)v > 0 you can choose hi > 0 small enough
such that for all h ∈ (0, hi] from equation (3.10) also g(q+hm1) > 0 follows. If
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gi(q) = 0, Gi(q)v = 0 and g(q−hv) = 0, for all h ∈ (0, h0) with a small enough
h0, it holds

∃hi > 0 ∀ h ∈ (0, hi) : g(q + hv) = 0.

Otherwise the left-side limit limh↑0
∂2g
∂q2

(q + hv) = 0 and the right-side limit

limh↓0
∂2g
∂q2

(q + hv) ̸= 0. That contradicts the requirement that g is two times
continuously differentiable.

b) In case (ii) of Remark 3.15, m is a solution of A(x)m ∈ F2(x) and m1 = 0.
The simple relation g(q+ hm1) = g(q) = 0 follows. This represents the case of
an impact. The position does not change but a postimpact velocity v+ = m2

with
G(q + hm1)m2 = G(q)m2 ≥ −ϵG(q)v ≥ 0

is calculated. The constraints stays active or get inactive and we get a solution
as in case (i).

Let h0 := max(h1, . . . , hm) be. For all h ∈ (0, h0), the inequality g(q + hm1) ≥ 0
stays true and so we get an admissible solution.

It remains to show the linearly bounded growth of the solution set. All solutions
m ∈ R2n can be split in (m⊤

1 ,m
⊤
2 )

⊤,m1,m2 ∈ Rn, with ∥m1∥2 = ∥v∥2 ≤ 1(1+∥v∥2).
The second part m2 ∈ Rn fulfills

M(q)m2 = f̃(q, v) +G⊤
J3(q,v,m2)

(q)λ,

GJ3(g,v,m2)(q)m2 + γ̃J3(q,v,m2)(q, v) = 0.

If GJ3(q,v,m2)(q) ∈ R|J3|×n has rank r ≤ |J3|, there is an orthogonal matrix Q ∈
R|J3|×|J3| such that

Q⊤GJ3(q) =

(
G1

J3 G2
J3

0 G3
J3

)
where G1

J3 ∈ Rr×r has full rank. We define

S :=

(
(G1

J3)−1

0

)
∈ R|J3|×r, b := Q⊤γ̃J3

and R ∈ Rn×n−r as a matrix which columns are a basis of the null space of GJ3 and
so it is satisfied

GJ3R = 0.

Referring to [49] and using (P5), we can transform the constraints GJ3(g,v,m2)(q)m2+
γ̃J3(q,v,m2)(q, v) = 0 to

m2 = S(q)b(q, v) +R(q, v)(R⊤(q, v)M(q)R(q, v))−1(R⊤(q, v)f̃(q, v)

−R⊤(q, v)M(q)S(q, v)b(q, v).

SinceG, f and γ are Lipschitz continuous, the same is true for S,R, b. For a Lipschitz
continuous function k : (q, v) 7→ k(q, v) with Lipschitz constant Ck, it can be proven
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that there is a constant βk(Ck) > 0 with ∥k(q, v)∥ ≤ βk(1 + ∥(q, v)∥). Following
this, there must be a constant βm depending on LM , LG, Lg, Lγ, Lf with

∥m2∥ ≤ βm(1 + ∥(q, v)∥).

So we get that m is linear bounded and (C3) fulfilled. The set Zi(x) = {m |
A(x)m ∈ Fi(x)}, i = 1, 2, is for a fixed x ∈ Rn the solution space of a mixed
linear complementarity problem. Following [31, Theorem 2.5.17], this solution set
is convex, if

(x1 − x2)TM(q̄)(x1 − x2) = 0

for all solutions x1 and x2 of (3.5). If x1, x2 are solutions of this mixed complemen-
tarity problem, there exists λ1, λ2 such that

(x1 − x2)⊤M(q)(x1 − x2) = (x1 − x2)T (G⊤(q)λ1 + f(q, v)−G⊤(q)λ2 − f(q, v))

= (x1 − x2)⊤G⊤(q)(λ1 − λ2)

= (G(q)x1 + γ(q, v)−G(q)x2 − γ(q, v))⊤(λ1 − λ2)

= −(G(q)x1 + γ(q, v))⊤λ2 − (G(q)x2 + γ(q, v))⊤λ1

Since λi ≥ 0, G(q)xi + γ(q, v) ≥ 0, the last term is non-positive and so (x1 −
x2)⊤M(q)(x1 − x2) ≤ 0 is satisfied. Using that M positive semi-definite, we get
(x1 − x2)⊤M(q)(x1 − x2) should be zero and so Zi(x) convex. The LIMDI fulfills
Definition 3.4 and is so consistent.

(iii) F1, F2 are upper semi-continuous with non-empty and closed values
Since 0 ∈ NRm

+
(ϕ(x)) for all functions ϕ

f(q, v) = f(x) ∈ F1(x), 0 ∈ F2(x),∀ x ∈ R2n

and so F1, F2 have non-empty values.

Following (P1), both F1, F2 are continuous transformations of a normal cone inclu-
sion. Therefore, it is enough to show that

NC(x) =
{
x∗ ∈ C : (y − x)⊤x∗ ≤ 0,∀ y ∈ C

}
is closed for all closed cones C as Rm

+ ,m ∈ N, and vectors x ∈ C. Let (uk) ⊂ NC(x)
be a sequence with limk→∞ uk → u. As (uk) ⊂ C and C closed, u is also an element
of C. Furthermore, the inequality

(y − x)⊤u = lim
k→∞

(y − x)⊤uk ≤ 0

holds where y ∈ C is arbitrary. The inclusion u ∈ NC(x) results and as well NC(x)
as F1(x), F2(x) have closed values.
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In [25, Corollar 7.2.3], it is proven that for every closed cone like Rm
+ ,m ∈ N, the

function x 7→ NC(g(x)) is upper semi-continuous. Since Fi(x) = ϕi◦NCi
(x), i = 1, 2,

are function compositions of a continuous function ϕi and an upper semi-continuous
(usc) function, from [26] we can conclude that F1, F2 are usc.

Example 3.21 (Two-masses-spring system) In Example 2.60, a two-masses-spring sys-
tem is considered. There is one equality constraint and one inequality constraint. Since
equality constraints are always active, the combined matrix

[
M(q) GJ3(q)(q)

⊤] has always
full rank since it has the formm1 0 0 1

0 m2 m2 −1
0 m2 m2 0

 or

m1 0 0 1 −1
0 m2 m2 −1 1
0 m2 m2 0 −1

 .

The assumptions γ(q, v) ≡ 0 and y ∈ ker(M(q)), GJ1(q)y ≥ 0 imply y = 0 and so the
condition (3.7) is fullfilled. Therefore, (P5) is satisfied. The other smoothness conditions
(P1)-(P4) are trivially fulfilled, since all functions are linear or constant ones. For all
consistent initial values, the problem has at least one solution.

Example 3.22 (Slider-crank mechanism) The determinant of the mass matrix M(q) of
the slider-crank mechanism in Example 2.61 fulfils

det(M(q)) ≥J3
((
J1 + l21

(m1

4
+m2 +m3

))
J2 + l22

(
J1 + l21

m1

4

)(m2

4
+m3

)
+l21l

2
2

(m2

4
+m3

)2 (
1− cos2(θ1 − θ2)

))
.

Since all parameters Ji,mi, li are positive, the mass matrix has rank three. The combined
matrix

[
M(q) GJ3(q)⊤

]
has also rank three. The smoothness requirements (P1)-(P4) are

also fulfilled. Therefore, the equations of motion have for all consistent initial values at
least one solution.

Remark 3.23 (Non-uniqueness of Lagrange-multipliers) However, q and v as the solution
of (2.27) exist and are provided as unique, the same holds for the contact and impact forces

GJ1(q)(q)
⊤dP =M(q)dv − f(q, v)dt.

But if GJ1(q)(q)
⊤ has not full rank because of redundant constraints, the term dP is not

necessarily unique. Following dP = λdt + Λdη, there is maybe a whole set of Lagrange
multipliers which fulfil together with q and v the equations of motion. Let dP = λdt+Λdη
be one solution. If

L(t) := ker GJ1(q)(q(t))
⊤ ∩Rm

+ ̸= {0}

holds, then every force dP ∗ := λ∗dt+Λ∗dη with λ∗(t) = λ(t)+l(t), l(t) ∈ L(t), t /∈ T ∗(v, I),
and Λ∗(t) = Λ(t) + l(t), l(t) ∈ L(t), t ∈ T ∗(v, I), is another solution.

Remark 3.24 (Numerical treatment) In Chapter 5 the discretisation of the equations of
motion (2.27) is explained. The values (v̇, λ) representing the acceleration and Lagrange
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multipliers must be evaluated in every timestep using a discrete (MLCP)

Mv̇ +G⊤λ = b, 0 ≤ λ ⊥ Gv̇ + c ≥ 0.

Referring to the appendix, this problem is equivalent to a least squares problem

∥Ax− b∥ → min .

The matrix A has the same rank deficit as G. In case of redundant constraints, an
underestimated problem must be solved. One method to solve the problem is the QR-
decomposition A = QRP⊤. So the least square problem is equivalent to∥∥∥∥(R1 R2

0 0

)
P⊤x−Q⊤b

∥∥∥∥→ min

with a permutation matrix P ∈ R2n×2n, R2 ∈ Rr×2n−r, a regular upper triangular matrix
R1 ∈ Rr×r and an orthogonal matrix Q ∈ R2n×2n where r is the rank of A. If all matrices
and vectors are split after r components the residuum is equivalent to∥∥R1(P

⊤x)1 +R2(P
⊤x)2 − (Q⊤b)1

∥∥+ ∥∥(Q⊤b)2
∥∥→ min .

As R1 is regular, (P⊤x)1 calculates to R−1
1 ((Q⊤b)1 − R2(P

⊤x)2) where the components
(P⊤x)2 are arbitrarily chosen. So you get the minimum of the function. In numerical
experiments as in Example 3.25 it can be observed as we expect that the components be-
longing to (P⊤x)1 represent the acceleration and some Lagrange multipliers and (P⊤x)2
the remaining Lagrange multipliers. If we would solve the least square problem in MAT-
LAB with the backslash operator, it would use (P⊤x)2 = 0. We call this the basic solution.
In addition there are other common methods to choose (P⊤x)2

(i) the minimum norm solution (P⊤x)2 = argminy

∥∥R−1
1 ((Q⊤b)1 −R2y)

∥∥.
(ii) the unit solution where all components of (P⊤x)2 are one.

(iii) or a random solution where all compionents are a normally distributed pseudoran-
dom number with expectation between zero and one.

Example 3.25 (Slider-crank mechanism) The slider-crank mechanism of Example 2.61 is
solved with the half-explicit timestepping scheme on velocity level of [82]. The upcoming
least squares problems are solved with the QR-decomposition using the four different
strategies which are described in Remark 3.24. In Figure 3.1 the Lagrange multiplier
λ1 is plotted for all strategies. We see a completely different behaviour for almost all
strategies especially if you take a look at the magnitudes. Only the basic solution and
the minimum norm solution strategy match.
In Figure 3.2, we also see the corresponding position functions for the crank q1, rod q2 and
the slider q3. They match in amount of machine accuracy. This numerical test underlines
the uniqueness of the position and velocity function in contrast to the non-uniqueness of
the Lagrange multipliers.
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Figure 3.1.: Slider-crank mechanism: λ1 for different strategies
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Figure 3.2.: Slider-crank mechanism: Difference between numerical solutions of q for dif-
ferent strategies





4. Qualitative Behaviour of
Solutions of Measure Differential
Inclusions

Besides the solvability, the qualitative theory of dynamical systems is of particular interest
in this thesis. This includes the existence of equilibrium point or periodic solutions. In
[20], the occurence of those special phenomena is analysed for a non-smooth mechanical
system with high applicational relevance. In this mentioned paper, a single block on a
free rocking base is considered. The block is set into a swaying motion by a non-smooth
impulse of the platform. The focus of the numerical and experimental investigations is
whether the motion changes into a periodic oscillation, into the resting state of the initial
situation or an overturn. This example is a simple model for a building during an earth-
quake. The simulation results provide statements about which strengths and frequencies
of earthquakes lead to possible collapses and which are relatively harmless for cities.

Our investigation on the qualitive behaviour of non-smooth dynamical problems starts
with a much simpler model. In this chapter, the solutions of an one-dimensional example,
the example of the impact oscillator, are considered. It is shown whether they have peri-
odic behaviour or equilibria. What are its asymptotes for long running times or t → ∞
? How does the qualitative behaviour of the solutions change when parameters or initial
values are modified? For multi-dimensional applications, the investigation of such ques-
tions is much more complex. In general, one cannot assume the existence of equilibria or
periodic solutions, however Examples 2.60 and 2.61 are higher-dimensional applications
and numerical tests suggest that they have periodic solutions.

For all investigations in this chapter, it is important to assume that a LIMDI (3.1) with
a fixed consistent initial value x0 ∈ Z1 has always a solution x(t, x0).

Example 4.1 (Forced impact oscillator) The motion of a mass with position q and
velocity v attached to a linear spring is observed. It is influenced by a force p and an
obstacle at position σ (see Figure 4.1). A typical question is whether there are periodic
solutions of the equations of motion or whether all solutions to different initial values have
no special behaviour.

p

q

σ

Figure 4.1.: Impact oscillator with forcing p: modell
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The equations of motion can be formulated in the form

v̇(t) + q(t) = p(t, q(t)), (q(t) < σ),

v+(t) = −ϵ v−(t), (q(t) = σ).
(4.1)

0 5 10 15 20
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0

0 5 10 15 20
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1

Figure 4.2.: Periodic solution of the impact oscillator with σ = 0, ϵ = 0.8, p(q) = − cos(q)

In Figures 4.2 and 4.3, numerically determined periodic solutions of (4.1) with different
problem parameters are depicted. In a closed time period, q fulfills the requirements of
an absolutely continuous function and v that of a function of bounded variation.
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Figure 4.3.: Periodic solution of the impact oscillator with σ = 0, ϵ = 0.6, p(t) = sin(πt/8)

Example 4.2 (Higher dimensional dynamical systems) For planar autonomous smooth
systems we know from the Poincaré-Bendixson theorem that limit cycles without equi-
libria are always an orbit of a periodic solution. The qualitive behaviour of solutions for
dynamical systems with a dimension greater than two is not generally understood even in
the smooth case. One observes not only equilibria and periodic solutions, but also other
interesting attractors, which represent the final states of dynamical processes. So-called
strange attractors record the chaotic behaviour of dynamical systems which nevertheless
obey regularities. There is no general concept to prove the existence of periodic solutions
or strange attractors. It often has to be examined individually for each example or is not
possible analytically at all. Using numerical simulations of the non-smooth mechanical
systems of higher dimension from Chapter 2, one can assume that periodic behaviour or
attractors also exist for our problems of interest which have higher dimension.

In Figure 4.4 you can see an solution of the two-masses-spring system of Example 2.60
with time-independent force p(q) = (cos(4q2), 0, 0)

⊤ which seems to be periodic. In Fig-
ure 4.5 (a) the angular velocity of the slider-crank mechanism from Example 2.61 with
v3(0) = 0 cm/s is shown in the phase space. This characterises that the slider moves up
and down by the crank mechanism, but does not rotate. A periodic solution is observed.
If the slider rotates with v3(0) = 0.1 cm/s, the impacts are clearly visible. In Figure 4.5
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(b) and (c), the orbits of the angular velocity after 0.5 seconds and 10 seconds are shown.
They seem to move chaotically on a two-dimensional surface. This could be understood
as chaotic behaviour in a certain bounded set, as in the case of a strange attractor.
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Figure 4.4.: Solution of the two-masses-spring system with ϵ = 0.5, p(q) = (cos(4q2), 0, 0)
⊤

(a) v3(0) = 0, T = 10s (b) v3(0) = 0.1, T = 0.5s (c) v3(0) = 0.1, T = 10s

Figure 4.5.: Velocity orbits of the slider-crank mechanism

4.1. Equilibria and Periodic Solutions

In this section, we consider the qualitative behaviour of solutions x := (q, v) of the measure
differential inclusion

dx ∈ F (t, x) := Ax+ F1(t, x)dt+ F2(x)dη, A =

(
0 1
−1 0

)
,

F1(t, x) :=

(
0

p(t, x1)−NR+(σ − x1)

)
, F2(x) :=

(
0

NR+(x
+
2 + ϵx−2 )

) , (4.2)

which is a reformulation of (4.1) as an MDI. The admissible set for the position and the
velocity is partitioned in

Z = Z1 ∪ Z2 :=
{
(x1, x2)

⊤ ∈ R2 | x1 < σ
}
∪
{
(x1, x2)

⊤ ∈ R2 | x1 = σ, x2 ≤ 0
}
.
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x1

x2

Z2

Z1

x1 = σ

Figure 4.6.: Impact oscillator: admissible set

Definition 4.3 a) A point x∗ ∈ Rn is an equilibrium of (4.2) if F (t, x∗) ≡ 0. All
equilibria are summarised in the set Σ.

b) A function x : R+ → Rn is ω-periodic if x(t+ω) = x(t) for all t ≥ 0 and there is no
value 0 < θ < ω with the same property x(t+ θ) = x(t). A trivial periodic function
is a constant one. Therefore, trivial periodic solutions of (4.2) are equilibria.

c) For a function x : R+ → Rn, the set γ(x, I) := {x(t) | t ∈ I} is the orbit of x on
I ⊆ R+. It is abbreviated γ(x) := γ(x,R+).

d) The set Φ(x) := {y ∈ Rn | ∃ (tk)k∈N with (∀ k ∈ N : tk ∈ R+)∧(tk → ∞)∧(x(tk) →
y)} is the (positive) limit set of x.

Obviously γ(x) = γ(x) ∪ Φ(x) holds and Φ(x) is closed. For periodic solutions, it follows

γ(x) ⊂ Φ(x) ⇒ γ(x) = Φ(x).

In the smooth case, even γ(x) = Φ(x) is true. But the discontinuous character of the
solutions prevent this. If t ∈ T ∗(x,R+), there is a sequence (tk)k∈N with tk → t, (k → ∞),
with x+(tk) → x−(t) and x−(t) /∈ γ(x) since x is rightcontinuous.

Using the Theorem of Bolzano-Weierstraß, we get that Φ(x) is non-empty if limt→∞|x(t)| <
∞. For periodic solution, both sets γ(x) and Φ(x) are bounded.

Definition 4.4 (Positively invariant) A set P ⊂ Z is positively invariant with respect to
LIMDI (3.1) if any solutions x(t, x0) starting with x0 ∈ P remains in this set

x(t, x0) ∈ P, ∀ t ≥ 0.

Example 4.5 Let x(t, x0) be a ω-periodic solution of an autonomuos LIMDI (3.1) to an
initial value x0 ∈ Z. The sets γ(x) and Φ(x) ∩ Z are positively invariant.

Conclusion 4.6 The point (q∗, 0) ∈ R2 with q∗ ≤ σ is an equilibrium of (4.1) if and only
if one of the conditions

(i) p(t, q∗)− q∗ = 0 for all t ∈ I

(ii) q∗ = σ and p(t, σ)− σ > 0 for all t ∈ I

are satisfied. The second case characterises that the oscillator is continuously pressed
against the obstacle.
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Before the equations of motion of the impact oscillator are analysed, the existence of
periodic solutions for oscillators without obstacles is summarised.

Remark 4.7 (Periodic solutions of ordinary differential equations and differential inclu-
sions, [56, 74]) The generalised solution of the ordinary differential equation

q̈ + q = c sin

(
2π

ω
t+ φ

)
, c, φ ∈ R, is

q(t) = a sin(t) + b cos(t) +
c sin(2π

ω
t+ φ)

1−
(
2π
ω

)2 , a, b ∈ R.

This describes the motion of an oscillator with an ω-periodic force p(t) = sin(2π
ω
t). With

a = b = 0, you get an ω-periodic solution. Fourier proves that every ω-periodic continuous
function p(t) has a Fourier series

p(t) =
∞∑
n=0

(
an sin

(
n
2π

ω
t

)
+ bn cos

(
n
2π

ω
t

))
.

So the generalised solution of q̈ + q = p(t) has the form q(t) = a sin(t) + b cos(t) +∑∞
n=0(an sin(n

2π
ω
t) + bn cos(n

2π
ω
t))/(1− (2nπ/ω)2). If ω ∈ Z and

∃ N ∈ N ∀ n ≥ N : an = 0,

a periodic solution with a = 0 = b can be defined. For all these results it is important
that p is a non-resonant force, i.e., that ω ̸= 2πk, k ∈ Z.

If ω = 2πk, k ∈ N, the solutions of the ordinary differential equation generally explode.
For example, the system q̈ + q = cos(t) has the generalised solution

q(t) = a sin(t) + b cos(t) + sin(t)t/2

which explode for t→ ∞.

If the force p depends only on q and is differentiable, the equation of motion q̈+ q = p(q)
is an autonomous differential equation. It can be transformed into a planar autonomous
system

q̇ = v,

v̇ = −q + p(q).

Limit sets of two-dimensional autonomous systems are very well analysed. Poincaré-
Bendixson’s theorem states that the limit set of the system is already an orbit of a
periodic solution if it does not contain any equilibria. That means, if one knows that the
solution remains in a bounded set of R2 that does not contain equilibria, then there is a
periodic solution.

We will also consider this three cases of resonant, non-resonant and autonomous force p
for the impact oscillator. In [56], Kunze considered a pendulum in a straight tube with
continuous ω-periodic force p depending on time t and with dry friction. Its equations of
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motion can represented by the differential inclusion

q̈ + q ∈ p(t) + Sign(q̇).

In [56, Theorem 3.2.1], it is proven that for ω ̸= 2πk, k ∈ N, an ω-periodic solution of
this differential inclusion exists. This can also be an equilibrium. If ω = 2πk there exists
an ω-periodic solution of this differential inclusion if one of the condtions

(i) ∣∣∣∣∫ 2π

0

p(t)eitdt

∣∣∣∣ < 4,

where i is the imaginary unit,

(ii) ∣∣∣∣∫ 2π

0

p(t)eitdt

∣∣∣∣ = 4,

∫ π

0

p(t+ τ − π/2) cos(t)dt = 0,

where τ is the argument of
∫ 2π

0
p(t)eitdt

is true. As far as we know, the equations of motion of an oscillator with dry friction and
an autonomous force p(q) has not yet been considered in the literature.

In the following the existence of periodic solutions of (4.1) with different periodic forces
p is examined. A distinction is made between

(P1) The ω-periodic function p depends only on time t and ω ̸= 2πk, k ∈ Z (non-resonant
force).

(P2) The ω-periodic function p depends only on time t and ω = 2πk, k ∈ Z (resonant
force).

(P3) The ω-periodic function p depends only on position q. That means an autonomous
dynamical system is considered.

Theorem 4.8 (Periodic solutions in case (P1)) Let T > ω > 0 and p(t) ∈ C([0, T ] ,R)
be ω-periodic. The measure differential inclusion (4.2) has an ω-periodic solution in
SBV +([0, T ] ,R), if ω ̸= 2πk, k ∈ N.

Proof: In [56], the existence of periodic solutions of a similar problem is analysed.
They form the equations of motion of an oscillator with Coloumb friction, but without
impulsive forces. The concept of proof can be set up in an analogous way, but has to take
account special requirements for functions of bounded variation. For this function class,
the classical Fréchet derivative and the Riemann integral are in general not defined and
must be replaced by the differential measure and the Riemann-Stieltjes integral. Since
the solution of the smooth homogeneous problem is known, the proof is based on the idea
of a non-smooth version of the method of variation of parameters. We define

g(t, s) := U(t)(I − U(ω))−1U(s)−1, t, s ∈ [0, T ] , with U(t) :=

(
cos(t) − sin(t)
sin(t) cos(t)

)



4. Qualitative Behaviour of Solutions of Measure Differential
Inclusions

56

as the fundamental matrix of the ordinary differential equation ẏ = Ay. The function g
is well-defined since ω ̸= 2πk. With the constant C :=

√
2/ sin2(ω/2) > 0, the function g

fulfills

∥g(t1, s)− g(t2, s)∥ ≤ C |t1 − t2| und ∥g(t1, s)∥ ≤ C, t1, t2 ∈ [0, T ] .

That are the Lipschitz and boundedness criteria for g. Furthermore, we need the matrix
function

Γ(t, s) :=

{
g(t, s), 0 ≤ s ≤ t ≤ ω,

g(t+ ω, s), 0 ≤ t < s ≤ ω
.

and the function set

D :=
{
y ∈ SBV +([0, ω] ,R2) : ∥y∥BV ≤ W

}
(4.3)

where W := ωP (CP + ωCP + 1) > 0, C is the upper bound of ∥g(t, s)∥2 and P is the
upper bound of ∥p(t)∥2 on I. On the subspace D of the Banach space SBV +([0, ω] ,R2)
we consider the set-valued function G : D → 2D with

G(y) :=

{
z ∈ D : z(t) =

∫ ω

0

Γ(t, s)df with df = f1(s)ds+ f2dη(y),

f1(t) ∈ F1(t, y(t)), f2(t) ∈ F2(y
−(t)),∀ t ∈ [0, ω]

}
.

Similar to the existence proof, we can use the Fixed Point Theorem 3.5 to show that the
set-valued function G has a fixed point on D. The function y ≡ 0 is an element of D
and therefore, D is non-empty. As to the proof of Theorem 3.8 in Chapter 3, D is con-
vex and a subset of the Banach space SBV +([0, ω] ,R2). Only the properties of G from
Theorem 3.8 must be proven. The function G has to be upper semi-continuous with non-
empty closed and convex values and its image must be contained in a compact subset ofD.

Let z1, z2 ∈ G(y), y ∈ D. That means there are f 1
1 , f

2
1 , f

1
2 , f

2
2 with

f 1
1 (s), f

2
1 (s) ∈ F1(s, y(s)), f

1
2 (s), f

2
2 (s) ∈ F2(y

−(s)),∀ s ∈ [0, ω]

pointwise. With the differential measures df 1 := f 1
1 (s)ds + f 1

2dη and df 2 := f 2
1 (s)ds +

f 2
2dη, the elements z1, z2 are pointwise defined as

z1(t) =

∫ ω

0

Γ(t, s)df 1, z2(t) =

∫ ω

0

Γ(t, s)df 2.

Since the convexity of a normal cone [25, Theorem 3.58] implies the convexity of F1(s, y(s))
and F2(y

−(s)) the linear combination

z3(t) := αz1(t) + (1− α)z2(t), t ∈ [0, ω] , α ∈ [0, 1],

is also an element of G(y) with

z3(t) =

∫ ω

0

Γ(t, s)df 3, df 3 = f 3
1 (s)ds+ f 3

2 dη(y)
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using f 3
1 = αf 1

1 + (1− α)f 2
1 , f

3
2 = αf 1

2 + (1− α)f 2
2 . We can summarise that for all y ∈ D

the function value G(y) is a convex set.

Since {0}×{p(s)} ∈ F1(s, y(s)), 0 ∈ F2(y
−(s)) for all s ∈ I the function z ∈ AC([0, ω] ,R2) ⊂

SBV +([0, ω] ,R2) defined by

z(t) =

∫ ω

0

Γ(t, s)p(s)ds

is an element of G(y) if ∥z∥BV ≤ W . Using

dg

dt
(t, s) = Ag(t, s), g(t, t)− g(t+ ω, t) = I2 ∈ R2×2, ∀ t, s ∈ [0, ω] ,

this can be concluded from

∥z∥BV = ∥z(0)∥2 + var(z, [0, ω])

=

∥∥∥∥∫ ω

0

Γ(0, s)p(s)ds

∥∥∥∥
2

+

∫ ω

0

∥ż(s)∥ ds

≤ ωCP +

∫ ω

0

∥∥∥∥A ∫ ω

0

Γ(s, r)p(r)dr + p(s)

∥∥∥∥ ds
≤ ωCP + ω2CP + ωP = W.

The definition of the set-valued function G implies G(D) ⊂ D which is compact according
to Theorem 3.6. Using the same strategy as in Theorem 3.8, we know that G(y) is closed
for every function y ∈ D.

It still remains to show that G is usc. Let ((yk, zk))k∈N be a sequence of graph(G). That
means

yk, zk ∈ D, zk(t) =

∫
[0,ω]

Γ(t, s)dfk

dfk = fk
1 (s)ds+ fk

2 dη(yk), fk
1 (s) ∈ F1(yk(s)), f

k
2 (s) ∈ F2(y

−
k (s)).

Since ∥yk∥BV = ∥yk(0)∥+ var(yk, I) ≤ W , it follows

var(yk, I) ≤ W

∥yk(t)∥ =

∥∥∥∥yk(0) + ∫
[0,t]

dy

∥∥∥∥
≤ ∥yk(0)∥+

∫
I

|dy|

= ∥yk(0)∥+ var(yk, I) ≤ W

The same holds for zk ∈ D. Using Theorem 3.6, a subsequence ((ykl , zkl))l∈N exists with
ykl → y ∈ D, zkl → z ∈ D, l → ∞, in the BV-norm. Furthermore, it can be split

żkl(t) = Γ(t, t)fkl
1 (t),∀ t ∈ [0, ω] \T ∗(ykl , [0, ω]),

z+kl(s)− z−kl(s) = (g(t, t)− g(t+ ω, t))fkl
2 (s) = fkl

2 (s), ∀ s ∈ T ∗(ykl , [0, ω]).

Since zkl(t), żkl(t) and Γ(t, t) are bounded on [0, ω], the same is true for fkl
1 (t) and fkl

2 (t).
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Again a subsequence (f
klp
1 (s), f

klp
2 (s))p∈N exists with components which converge point-

wise to limits f1(s) and f2(s) for s ∈ [0, ω]. The set-valued functions F1 and F2 are
continuous transformations of a normal cone inclusion. Following [25, Corollary 7.2.3],
the solution operator of normal cone inclusions is upper semi-continuous. Because Theo-
rem 2.12 states that graph(F1), graph(F2) are closed, the inclusions

f1(s) ∈ F1(y(s)), f2(s) ∈ F2(y
−(s)),∀ s ∈ [0, ω]

result. Summarising, we have

z(t) = lim
p→∞

zklp (t) = lim
p→∞

∫
[0,ω]

Γ(t, s)dfklp

= lim
p→∞

∫
[0,ω]

Γ(t, s)f
klp
1 (s) ds+

∑
s∈T ∗(yp,[0,ω])

f
klp
2 (s)

We can change limit and Lebesgue integral and sum sign (see [30]) because f1, f2 converge
pointwise and are bounded.

z(t) =

∫
[0,ω]

Γ(t, s) lim
p→∞

f
klp
1 (s) ds+ lim

p→∞

∑
s∈T ∗(yklp

,[0,ω])

f
klp
2 (s)

=

∫
[0,ω]

Γ(t, s)f1(s) ds+
∑

s∈T ∗(y,[0,ω])

f2(s)

with f1(s) ∈ F1(y(s)), f2(s) ∈ F2(y
−(s)), s ∈ [0, ω]. We get the inclusion (y, z) ∈ graph(G)

for the limit and G is so usc.

The existing fixed point y ∈ G(y) is an ω-periodic solution since

y(0) =

∫ ω

0

Γ(0, s)df =

∫ ω

0

g(ω, s)df =

∫ ω

0

Γ(ω, s)df = y(ω)

by definition of Γ. For further considerations, we split

y(t) =

∫ ω

0

Γ(t, s)df =

∫ t

0

g(t, s)df +

∫ ω

t

g(t+ ω, s)df.

Therefore, y satisfies

y+(t)− y−(t) =

∫
{t}
g(t, s)f2(s)dη −

∫
{t}
g(t+ ω, s)f2(s)dη

=

{
(g(t, t)− g(t+ ω, t))f2(t), t ∈ T ∗(y, [0, ω])

0, t /∈ T ∗(y, [0, ω]).
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ẏ(t) =
d

dt

(∫ t

0

g(t, s)df +

∫ ω

t

g(t+ ω, s)df

)
=

∫ t

0

d

dt
g(t, s)df +

∫ ω

t

d

dt
g(t+ ω, s)df + (g(t, t)− g(t+ ω, t))f1(t)

=

∫ ω

0

AΓ(t, s)df + f1(t)

= Ay(t) + f1(t)

With these preliminary considerations and f1(s) ∈ F1(y(s)), f2(s) ∈ F2(y
−(s)), y fulfills

the measure differential inclusion dy ∈ Ay + F1(y)ds+ F2(y
−)dη in the sense∫ t

0

dy =

∫ t

0

ẏ(s)ds+
∑

s∈T ∗(y,[0,t])

(
y+(s)− y−(s)

)
=

∫ t

0

Ay(s) + f1(s)ds+
∑

s∈T ∗(y,[0,t])

f2(s)

=

∫ t

0

Ay(s) + f1(s)ds+

∫ t

0

f2(s)dη

⇒ dy ∈ Ay + F1(y)ds+ F2(y
−)dη.

The ω-periodic solution in case (P1) can of course be trivial in the sense that it is an
equilibrium.
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Figure 4.7.: Solutions of the impact oscillator with resonant force p(t) = cos(t)
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Remark 4.9 (Periodic solutions in case (P2)) As already mentioned, the solutions of the
smooth oscillator generally grows unboundelly if p has the period 2π. Since in the non-
smooth case, the mass meets the obstacle at some point, the solutions for p(t) = cos(t)
have a completely different structure. As shown in Figure 4.7, they can still explode, but
also converge towards an equilibrium or a periodic limit cycle. This is strongly related to
the choice of σ and ϵ. A precise analysis should not be carried out here, since autonomous
differential systems are of particular interest for the numerical investigations in the next
chapter and so we concentrate on case (P3).

Next, a criterion for the existence of periodic solutions of (4.1) is given if the force p
depends only on the position q. In this case (P3), the system is autonomous. The
fundamental idea is based on the transfer of the transversal theory and the Poincaré-
Bendixson theorem from smooth systems to a non-smooth example. It is supposed that
the system (4.1) has a unique solution for all initial values (q0, v0) ∈ Z and that p is
continuous.

Definition 4.10 (Transversal) A set S = {τu+ (1− τ)w | τ ∈ [0, 1]} with u,w ∈ Z is a
transversal to (4.1) if

h(q, v) :=

(
v

p(q)− q

)
and u− w

are linearly independent for all (q, v) ∈ S. Since Z is convex, the line S is a subset of Z.

Remark 4.11 If x = (q, v) ∈ Z is not an equilibrium of (4.1) then there exists a transver-
sal with x ∈ S.

(i) Let x = (q, v) ∈ Z1, i.e. q < σ. Then, a ball B(x, δ) exists where q̄ < σ for all
(q̄, v̄) ∈ B(x, δ). This case is similar to smooth systems and a transversal exists
because of [74, Bem. 9.1.2.].

(ii) If x = (q, v) ∈ Z2 with q = σ, v < 0 we can define u = (σ, v/2)⊤, w = (σ, 3v/2).
That means, S is a segment of Z2. In all points (q̄, v̄) ∈ S, it is h(q̄, v̄) = (β ·v, p(σ)−
σ)⊤, β ∈ [0.5, 1.5]. It is linearly independent of the direction vector u−w = (0,−v)⊤
of S.

(iii) Let x = (q, v) = (σ, 0) ∈ Z2. Since x is no equilibrium, Conclusion 4.6 states that
p(σ) − σ < 0. There has to be an δ > 0 such that p(σ − s) − (σ − s) < 0 for
all s ∈ [0, ϵ] because p is continuous. The set S with u = (σ, 0), w = (σ − δ, 0) is
a transversal through x as h(q̄, v̄) = (0, p(σ − s) − s), s ∈ [0, δ] is always linearly
independent of the direction vector u− w = (δ, 0) of S.

Theorem 4.12 Let x = (q, v) ∈ Z be not an equilibrium and S a transversal of (4.1)
with x ∈ S. Then, there is for all ϵ > 0 a ball B(x, δ) such that for all solutions x(t, x1)
with initial value x1 ∈ B(x, δ) ∩ Z a time point t ∈ [−ϵ, ϵ] exists with x(t, x1) ∈ S.

Proof:

(i) Let x ∈ Z1. This is similar to the smooth case. The existence can be concluded
with [74, Prop. 9.1.3].

(ii) Let x ∈ Z2, v < 0. Assume the statement is false. Then, there exists an ϵ0 > 0 and
a sequence Z ∋ xk = (qk, vk) → x = (σ, v) of initial values such that

x(t, xk) /∈ S, ∀ t ∈ [−ϵ0, ϵ0] ,
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Figure 4.8.: Impact oscillator: Tranversals for x ∈ Z in situations (i)-(iii) from Remark
4.11

for an transversal S = {σ} × [3v/2, v/2]. If vk → v < 0, qk → σ the inequalities
3v/2 < vk < v/2 and qk ≥ σ + vϵ0/4 are true for k ≥ N with one N ∈ N. As long
as q(s) ̸= σ, the functions v and q are continuous and so satisfy this equation in a
sufficiently short time interval [−t0, t0]. So for max(−ϵ0,−t0) ≤ t ≤ 0 it holds

q(t, qk) = qk −
∫ 0

t

v(s)ds ≥ qk +
v · t
2

≥ σ +
vϵ0
4

− vϵ0
2

≥ σ − vϵ0
2

≥ σ.

There is a timepoint max(−ϵ0,−t0) ≤ τ ≤ 0 where q(τ) = σ and the corresponding
velocity v(τ) is in [3v/2, v/2]. So x(τ, xk) ∈ S.

(iii) Let x = (σ, 0) ∈ Z2. Since x is not an equilibrium, it follows from Conclusion 4.6
that p(σ) − σ = θ < 0. Assume the statement is false. Then, there exists a ϵ0 > 0
and a sequence Z ∋ xk = (qk, vk) → x = (σ, 0) of initial values such that

v(t, vk) ̸= 0, ∀ t ∈ [−ϵ0, ϵ0] .

That means in particular vk ̸= 0 for all k ∈ N.

a) We consider the subsequence (qkn , vkn) with vkn > 0 for all n ∈ N. For all
t ∈ [−ϵ0, ϵ0] the value v(t, vkn) stays positive. It could change the sign if
v(t, vkn) gets zero - which we assume that it does not happend - or if an impact
could be observed. For all t < 0 it holds

q(t, qkn) = qk −
∫ 0

t

v(s, vkn)ds ≤ qkn +
vkn · t
2

< σ.

Therefore, no impact happens for t < 0 and v and q are continuous. Since p is
assumed to be continuous there is an index N ∈ N and a constant δ > 0 with

θ − δ ≤ p(qkn(t, qkn))− qkn(t, qkn) ≤ θ + δ < 0, ∀ n ≥ N.

It follows

v(t, vkn) = vkn+

∫ 0

t

p(q(s, qkn))−q(s, qkn)ds ≤ vkn+

∫ 0

t

(θ+δ)ds = vkn−(θ+δ)t.

Since −ϵ0 ≤ t < 0 and vkn → 0 this term is getting negativ. In particular,
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there is a timepoint when the velocity becomes zero. This is a contradiction.

b) If we consider the subsequence with vkn < 0, the argumentation in a) is true
for t > 0.

Remark 4.13 The basic idea of the following theorem is based on Jordan’s curve theorem
[44]. This states that every double point free closed curve Γ ⊂ R2 divides the space into
an interior Γi and an exterior Γe, which are open subsets of R2 with Γ∪Γi∪Γe = R

2. The
three sets are pairwise disjoint. A solution curve of (4.1) can switch between the interior
and the exterior only if it crosses Γ or jumps at a time t ∈ T ∗(x,R+) from x−(t) ∈ Γi into
the other set x+(t) ∈ Γ ∪ Γe. Of course, the jump also works the other way around.

Theorem 4.14 Let x be a bounded and non periodic solution of (4.1) and S a transversal.
Furthermore, there are three values x(ti) ∈ S, i = 1, 2, 3, with t1 < t2 < t3. That means,
there are τi, i = 1, 2, 3, with x(ti) = τiu+ (1− τi)w. Furthermore, it is γ(x, [t1, t3]) ∩ S =
{t1, t2, t3}. Then τ1 < τ2 < τ3 or τ1 > τ2 > τ3.

x1

x2

x1 = σ

S x(t1)
x(t3)

x(t2)

Figure 4.9.: Impact oscillator: sequence of transversal crossings in case (i)

Proof: Because it was assumed that the solutions of (4.1) are unique and non-periodic,
all τi, i = 1, 2, 3, must be different.

Suppose that τ1 < τ2 holds for t1 < t2. The intersection γ(x, [t1, t2]) ∩ T ∗(x,R+) can
be at most one-element. We justify this statement for the three transversal types from
Theorem 4.12.

(i) Let s1, s2 ∈ (t1, t2) ∩ T ∗(x,R+) with s1 < s2 be the first two discontinuouty time-
points. Then, γ(x, [t1, s1)) and γ(x, (s2, s2 + δ]), δ > 0, are connected curves which
are disjoint with the closed curve Ω := γ(x, [s1, s2)) ∪ L where

L = {τx−(s2) + (1− τ)x+(s1) | τ ∈ [0, 1]},

because x is not periodic. There are two possible situations

a) The curve γ(x, [t1, s1)) is in the interior Ωi. Then 0 < x−(s1) < x−(s2). With
the impact law and 0 ≤ ϵ ≤ 1 we get x+(s2) < x+(s1) < 0. So the curve stays
in Ωe for t ≥ s2 since x(t2) ∈ Ωe. So the curve γ(x, (s2, t2)) ∪ S must cross Ω.
This is a contradiction. There is no intersection with S in (t1, t2) and there
can not be an intersection with ω(x, (t1, t2)) since x is non-periodic.
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b) The curve γ(x, [t1, s1)) is in the exterior Ωe. Then x
−(s1) > x−(s2) > 0. With

the impact law and 0 ≤ ϵ ≤ 1 we get x+(s2) > x+(s1) < 0. So the curve stays
in Ωi for t ≥ s2 since x(t2) ∈ Ω1. So the curve γ(x, (s2, t2)) ∪ S must cross Ω.
This is a contradiction. There is no intersection with S in (t1, t2) and there
can not be an intersection with ω(x, (t1, t2)) since x is non-periodic.

(ii) In this case t1, t2 ∈ T ∗(x,R+) and there is no s ∈ T ∗(x, (t1, t2)). The curve
γ(x, [t1, t2)) ∪ L with

L = {τx−(t2) + (1− τ)x+(t1) | τ ∈ [0, 1]}

is again closed and has no doublepoint. Since the non-periodic solution x+(t2) ∈ Ωe.
Then, x can not cross Ω in Z1 and if it reaches Z2 in a timepoint s, it is x−(s) >
x−(t2). With the impact law we get x+(s) < x+(t2). So the solution curve stays
alwas in the exterior. If x+(t2) ∈ Ω ∪ Ωi we get that the curve stays in the interior
because of the impact law.

(iii) Is similar to (i).

With the argumentation from (ii), in this case it follows immediately from x+(t1) < x+(t2)
also x+(t2) < x+(t3) and thus the assumption. Analogously, of course, from x+(t1) >
x+(t2) also x+(t2) > x+(t3) and thus the assumption. In the other two cases we define
with

Ω := γ(x, [t1, t2]) ∪ S ∪
{
τx−(s) + (1− τ)x+(s) | τ ∈ [0, 1]

}
a closed doublepoint-free curve in R2. Here s is the only element in T ∗(x, [t1, t2]). If it
does not exists the third set is empty and Ω is nevertheless closed and doublepoint-free.
With [74, Prop. 9.1.4] it follows τ3 > τ2 since S is a transversal. The argumentation in
[74] is, that Ω is a closed double-point free curve and the vectorfield h(q, v) points to Ωe

for all (q, v) ∈ S, since τ1 < τ2. Since x(t3) ∈ S is true with x(t3 − δ) ∈ Ω2, δ > 0, the
condition τ3 > τ2 follows.

Next a conclusion of Theorems 4.12 and 4.14 is formulated which can be shown as in the
smooth case [74, Prop. 9.1.5,9.1.6.].

Conclusion 4.15 Let x be a bounded solution of (4.1), S a transversal and y ∈ S∩Φ(x).
Then, there is a sequence tk → ∞ with x(tk) ∈ S and x(tk) → y. Furthermore, there is
at most one element in S ∩ Φ(x). .

The following Theorem is again a conclusion of Theorem 4.12 and Conclusion 4.15 like
for smooth systems. Hence, it is referred to [74, Lem. 9.2.1.]

Conclusion 4.16 Let x = (q, v) be a bounded solution of (4.1) with γ(x) ∩ Φ(x) ̸= ∅.
Then x is periodic.

Theorem 4.17 (Periodic solutions in case (P3)) Let p be continuous, linearly bounded
and (q, v) ∈ AC(R+,R)× SBV +(R+,R) be a bounded solution of (4.1) with Φ(q, v)∩Z
containing no equilibrium. There exists a periodic solution of (4.1).

Proof: If x = (q, v) is periodic, the statement is of course true. Let us assume in the
following that (q, v) is not periodic. Since (q, v) are bounded functions, as mentioned
Φ(q, v)∩Z is also bounded and non-empty. We want to prove that Φ(q, v)∩Z is positive



4. Qualitative Behaviour of Solutions of Measure Differential
Inclusions

64

invariant. Let y ∈ Φ(x) ∩ Z. There is a sequence (tk)k∈N with x(tk) → y, tk → ∞. The
functions yk(s) := x(tk + s), s ≥ 0, are also solutions of (4.1) with initial value x(tk) ∈ Z.
With the same argument as in (ii) of the proof of Theorem 3.8 it follows that there is a
subsequence (ykl)l∈N which converges to a bounded solution z of (4.1) with initial value
z(0) = y. Since tm + s → ∞ with x(tm + s) → z(s), we get z(s) ∈ Φ(x) ∩ Z and so
Φ(x) ∩ Z is positive invariant.

Since γ(z) ⊂ Φ(x)∩Z, the function z is also bounded. So it exists y ∈ Φ(z)∩Z ⊂ Φ(x)∩Z.
According to the prerequisite, this is not an equilibrium. Using Theorem 4.12, there is
thus a transversal S through y.

Following Conclusion 4.15, the set Φ(x)∩S is equivalent to {y} since there is not a second
element in the intersection. In addition the sequence created in Conclusion 4.15 shows
that γ(z) ∩ S ̸= ∅. Since γ(z) ⊂ γ(x), it follows γ(x) ∩ S = {y} and y ∈ γ(z) ∩ Φ(z).
From Theorem 4.16 we get that z is periodic.

Theorem 4.18 (Number of velocity jumps during one period in case (P3)) Let x be an
ω-periodic solution of (4.2) with an autononous ω-periodic force p ∈ R → R. Then, x
has at most one discontinuity point during the period [0, ω].

Proof: We assume there are two points of discontinuity. That means there are two
different time points t1, t2 ∈ [0, ω] , t1 < t2, with

x+2 (t1) ̸= x−2 (t1), x+2 (t2) ̸= x−2 (t2)

and in the non-empty interval (t1, t2) the solution x is continuous. There are two possible
cases

(i) The relationship x−2 (t1) > x−2 (t2) > 0 is satisfied. From Newtons impact law, it
follows 0 > x+2 (t2) > x+2 (t1).

x1

x2 x−(t1)

x+(t1)

x−(t2)

x+(t2)
σ

Since x is continuous in (t1, t2), the orbit of x on this interval forms a closed set and

Γ := γ(x, (t1, t2)) ∪
(
{σ} × [x+2 (t1), x

−
2 (t2)]

)
a closed, double-point free, continuous curve. According to Jordan’s curve theorem
[74], Γ decomposes the plane R2 into two disjoint open sets Γi,Γe with

∂Γi = Γ = ∂Γe,
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the exterior of Γ and the interior. By assumption, x−(t1) ∈ Γe ∪ γ(x,R) and
x+(t2) ∈ Γi.

Let t3 > t2 be the next time point with x−(t3) ̸= x+(t3). Then the partial orbit
γ(x, (t2, t3)) ⊆ {z ∈ R | z ≤ σ} ×R
is again a connected curve, since it belongs to a continuous function. This either
remains in the interior Γi or is part of the edge ∂Γi = Γ at a time t ≤ t3. If
x(t) ∈ γ(x, (t1, t2)), x remains on the edge and x−(t2) = x−(t3). The second case is

x−(t) = x−(t3) ∈
(
{σ} × [x+2 (t1), x

−
2 (t2)]

)
.

Since x−(t3) ≤ x−(t2), according to Newton’s impact law the inequality x+(t3) ≥
x+(t2) follows and thus x+(t3) ∈ Γi. This reasoning can be continued over (t2,+∞)
and we get γ(x, (t2,+∞)) ⊆ Γi. Thus there is no t > t2 with x−(t) = x−(t1), since
x−(t1) ∈ Γe. But this is a contradiction to the periodicity with ω > 0.

(ii) The relationship x−2 (t2) > x−2 (t1) > 0 is satisfied. From Newtons impact law, it
follows 0 > x+2 (t1) > x+2 (t2).

x1

x2 x−(t2)

x+(t2)

x−(t1)

x+(t1)
σ

In this case one can argue analogously that

γ(x, (t1, t2)) ∪
(
{σ} × [x+2 (t1), x

−
2 (t2)]

)
forms a closed curve with x−(t1) on the inside and x+(t2) on the outside. However,
the solution can never reach the inside again and thus a contradiction arises again.

In this section we have given criteria for the existence of equilibria and periodic solutions
in case (P1) and (P3). In the next chapter we analyse the stability of this solutions. This
is important if we try to study periodic solutions numerically and do not know how to
choose the initial value to get periodic solutions.

4.2. Stability Issues of Equilibria

There are different types of stability of solutions. The interesting aspect for us is whether
solutions remain close to equilibrium points or periodic solutions when you change the
initial value. This can be investigated with the well-known method of Lyapunov, which is
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based on the functions of the same name. In addition, we will also investigate the stronger
property of attractivity. This states that all solutions converge towards the equilibrium
or the periodic solution if the initial value is close to the original one.

A detailed introduction to Lyapunov stability theory of MDIs is given in [59]. In this
thesis, some issues are generalised to the implicit formulation of MDIs.

Definition 4.19 (Lyapunov stability of equilibria) Let x∗ ∈ Z be an equilibrium of a
LIMDI (3.1). It is called Lyapunov stable if for all µ > 0 there is a δ > 0 such that for
all initial values x0 ∈ Z1 with ∥x0 − x∗∥ ≤ δ each solution x(t, x0) of LIMDI (3.1) with
x(0) = x0 satisfies

∥x(t, x0)− x∗∥ ≤ µ, ∀ t ∈ I.

Definition 4.20 (Attractivity of equilibria) Let x∗ ∈ Z be an equilibrium of a LIMDI
(3.1). It is called Lyapunov attractive if there is a δ > 0 such that for all initial values
x0 ∈ Z with ∥x0 − x∗∥ ≤ δ each solution x(t, x0) of LIMDI (3.1) with x(0) = x0 satisfies

lim
t→∞

∥x(t, x0)− x∗∥ = 0.

For the next three theorems, we assume that x∗ = 0 is an equilibrium of LIMDI (3.1) with
initial value x0 = 0 and non-empty closed convex admissible set Z. This holds if 0 ∈ Z
and 0 ∈ F1(0). It shell be emphasized that the next two theorems are strictly related to
the results of [59]. The slightly changed formulation is important for the third theorem
which generalises the results of [59] to implicite problems.

In this section, the expression dV ≤ 0 is used. This symbolises the condidtions

� V̇ (q(t), v(t)) ≤ 0,∀ t /∈ T ∗(V, I),

� V +(q(t), v(t))− V −(q(t), v(t)) ≤ 0,∀ t ∈ T ∗(V, I).

It can be summarised in the condition that V is monotonously decreasing along each
solution trajectory.

Theorem 4.21 (Stability of equilibria) The equilibrium x∗ = 0 is stable in the sense of
Lyapunov if there exists an upper semi-continuous Lyapunov function V : Rn → R∪{∞}
that is Lipschitz continuous on Z and a neighbourhood U := B(x∗, h) ∩ Z for an h > 0
with

(i) V (x) ≥ 0,∀ x ∈ U, V (x∗) = 0

(ii) d(V ◦ x) ≤ 0,∀ x ∈ SBV +(I, U)

(iii) {x ∈ Z : V (x) = 0} = {x∗}.

Proof: For all c > 0 we can define a non-empty closed set Ωc := {x ∈ Rn : V (x) ≤ c}.
Conditions (i)-(iii) state that x∗ = 0 is the global minimum of V on the closed and convex
set Z. From this fact it follows similar to [59, Prop. 6.2.] that there exists a c∗ > 0 such
that the intersection Ωc ∩ Z is closed and simply connected for all c ≤ c∗. Let now

Vµ/2 := sup
x∈B(0,µ/2)∩Z

V (x), Vh/2 := sup
x∈B(0,h/2)∩Z

V (x)
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with µ from the definition of stability be the suprema the upper semi-continuous func-
tion takes on compact sets. Since V is Lipschitz on Z the function V ◦ x is of bounded
variation [59, Prop 6.3.]. Every function of bounded variation attains a finite supremum
on compact sets.

Set c := min(Vµ/2, Vh/2, c
∗). It follows that Ωc ∩ Z is a subset of B(0, µ/2) and B(0, h/2)

and it holds
Ωc ∩ Z ⊂ Z ∪B(0, µ) ∪B(0, h).

According to [59, Prop 6.5.] you get from condition (ii) that Ωc ⊂ Z is positive invariant
for consistent LIMDI, i.e. for all x0 ∈ Ωc ∩Z it follows x(t, x0) ∈ Ωc ∩Z for each solution
x(t, x0). Let now be B(0, δ) the largest ball which lies in Ωc∪Zc

1. The notation Z
c
1 means

the complement of the set Z1. Its existence follows immeditally from the fact that the
closed set Ωc∩Z is not empty. It holds supx∈B(0,δ)∩Z V (x) ≤ c and so all solutions starting
in B(0, δ) remain in B(0, µ).

Theorem 4.22 (Attractivity of a equilibria) The equilibrium x∗ = 0 is attractive in the
sense of Lyapunov if there exists an upper semi-continuous Lyapunov function V : Rn →
R ∪ {∞} that is Lipschitz continuous on Z and a neighbourhood U := B(x∗, h) ∩ Z for
an h > 0 with

(i) V (x) ≥ 0,∀ x ∈ U, V (x∗) = 0

(ii) d(V ◦ x) ≤ 0,∀ x ∈ SBV +(I, U)

(iii) {x ∈ Z : d(V ◦ x) = 0} = {x∗}.

Proof: According to (i)-(iii) there can not be a y ∈ Z\{x∗} with V (y) = 0 and so x∗ is
stable. Set again c = min(Vh/2, c

∗) and B(0, δ) ⊂ B(0, h) as the largest ball in Ωc ∩ Z.
Because d(V ◦ x) < 0 for all x ∈ B(0, h) ∩ Z\{x∗} it holds

∥x0∥ < δ, x0 ∈ Z ⇒ lim
t→∞

V (x(t, x0)) =: a ≤ 0.

Since d(V ◦ x) is negative there exists a continuous strictly increasing function α : R+ →
R+ with α(0) = 0 and dV (x) ≤ −α(∥x∥). Using the same contradiction argument as in
[59, Theorem 6.23] we can show that a = 0. Otherwise there should be a d > 0 such that
B(0, d) ⊂ Ωa ∩ Z and V (x(t, x0)) is outside Ωa ∩ Z. From (ii) we get

V (x(t, x0)) ≤ V (x0)+

∫
[0,t]

d(V ◦x) ≤ V (x0)−
∫
[0,t]

α(∥x(t, x0)∥)dt ≤ V (x0)−α(d)(t− 0).

For t → ∞ the value V (x(t, x0)) is getting negative. From this contradiction to (i) you
can follow limt→∞ V (x(t, x0)) = 0 which implies attractivity.

Remark 4.23 (Lyapunov function candidate) Referring to [16, 59], the sum of the total
machanical energy and the indicator function of the admissible set Z

V (q, v) := T (q, v) + U(q)− U(0) + ψZ(q) =
1

2
v⊤M(q)v + U(q)− U(q∗) + ψZ(q) (4.4)

is a suitable Lyapunov function with q∗ = 0. The mass matrix M(q) is again symmetric
positive semi-definite and Lipschitz continuous. The potential energy U : Rn → R+ fulfills
U(q) > 0,∀ q ∈ Z\{0} and minq∈Rn U(q) = U(q∗). In addition, the gradient of U(q) does
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not vanish for all q ∈ Z\{q∗}. For example, a potential energy function q⊤Kq with a
positive definite K ∈ Rn×n fulfills all requirements. Systems with fewer assumptions on
the kinetic energy T and the potential energy U often have no equilibrium points

Theorem 4.24 (Stability result for equilibria of non-smooth mechanical systems) Let
M(q) ∈ Rn×n be symmetric positiv semi-definite for all q ∈ Rn and like g,G, f Lipschitz
continuous. If in addition the property (P5) in Problem 3.18 and the conditions

(S1) v⊤ · fnc(q, v) ≤ 0, for all q ∈ Z, v ∈ {x ∈ Rn | GJ1(q)(q)x ≥ 0}, with v⊤fnc(q, v) =
0 ⇒ v = 0

(S2) v⊤f(q, v) < 0, for all q ∈ Z, v ∈ {x ∈ Rn | GJ1(q)(q)x ≥ 0} ∩ ker(M(q)) except
(q, v) = (0, 0),

(S3) (q∗, v∗) = (0, 0) is an equilibrium of LIMDI (3.1)

are satisfied, than (q∗, v∗) is stable. If furthermore ϵ < 1 holds, the equilibrium is attrac-
tive.

Proof: The indicator function is upper semi-continuous for closed sets like Z such that
V is also upper semi-continuous and Lipschitz continuous on Z. SinceM is positive semi-
definite, U positive with minimum q∗ and ψ also, the Lyapunov candidate V in (4.4) is
non negative with V (q∗, v∗) = 0. The differential measure can be transformed to

dV =
1

2
(v+ + v−)⊤M(q)dv + v⊤

(
∂

∂q
(T (q, v) + U(q))

)
dt

= v⊤M(q)v̇ + v⊤
(
∂

∂q
(T (q, v) + U(q))

)
dt+

1

2
(v+ + v−)⊤M(q)(v+ − v−)dη

= v⊤(f(q, v) +G⊤
J1(q)(q)λ) + v⊤

(
∂

∂q
(T (q, v) + U(q))

)
dt+

1

2
(v+ + v−)⊤G⊤

J1(q)(q)Λdη

= v⊤(fnc(q, v) +G⊤
J1(q)(q)λ)dt+

1

2
(v+ + v−)⊤G⊤

J1(q)(q)Λdη

Using (S1) and −λ ∈ NRm1
+
(GJ1(q)(q)v) ⇒ v⊤G⊤

J1(q)(q)λ = 0 the weak derivative of the

absolute continuous part is negative. That means V̇ (q, v) ≤ 0. Furthermore, the discrete
part in the impact points s ∈ T ∗(q, I) can be rewritten in form

(v+(s) + v−(s))⊤G⊤
J1(q)(q)Λ =

2

1 + ϵ
(v+ + ϵv−)⊤G⊤

J1(q)(q)Λ

−
(

2

1 + ϵ
− 1

)
(v+(s)− v−(s))⊤G⊤

J1(q)(q)Λ

=
2

1 + ϵ
· 0−

(
2

1 + ϵ
− 1

)
(v+(s)− v−(s))⊤M(q)(v+ − v−)

Since ϵ ∈ [0, 1] and M is positive semi-definite, we get that the term is not positive. That
means V +(q, v)− V −(q, v) ≤ 0. Summarising, dV ≤ 0 can be concluded.

It remains to show (iii) in Theorem 4.21. We assume that there is an admissible (q, v)
with V (q, v) = 0 and (q, v) ̸= (q∗, v∗). It follows q = q∗ = 0 and v ∈ ker(M(q)). The
equation

0 = v⊤M(q)v = v⊤f(q, v) + v⊤G⊤
J1(q)(q)λ = v⊤f(q, v)
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contradicts (S2). So (iii) is also fullfilled and the equilibrium (q∗, v∗) = (0, 0) is stable.

Let now dV = 0. According to (S1) it follows v(t) = 0, t ∈ I\T ∗(v, I), i.e., t is no impact
point. In impact points s ∈ T ∗(v, I) it has to be V +(q, v)− V −(q, v) = 0 which conclude(

2

1 + ϵ
− 1

)
v+(s)− v−(s) ∈ kerM(q).

Since ϵ < 1 this is equivalent to v+(s) − v−(s) ∈ kerM(q). Together with (S2) it can be
concluded v+(s)− v−(s) = 0. So we have v+(s) = v−(s) = v(s) = 0 for all s ∈ I and the
differential measure reduces to

dV =
∂

∂q
U(q) = 0.

The partial derivative of the potential energy is only zero if q∗ is zero. Hence, the equi-
librium is attractive.

In the case ϵ = 1, no generally valid result can be formulated.

Remark 4.25 (Stability and attractivity for other equilibria) The stability or attractivity
of other equilibria (q∗, v∗) ̸= (0, 0) can be proven with the Lyapunov function V ((q, v)−
(q∗, v∗)). The fact that only the equilibrium (0, 0) was considered in the previous theorems
can only be justified by the more compact notation.

Example 4.26 (Bouncing ball) In Example 1.1, the motion of a bouncing ball with
M(q) = m > 0, f(q, v) = −mg, g(q) = q, ∀ q ∈ Rn is described. It follows U(q) = mgq
which is positive definite. Trivially M is symmetric and positive semi-definite and all
functions are Lipschitz continuous. Since M has full rank, also (P5) is fulfilled. If the
mass matrix is constant, we get f(q, v) = − ∂

∂q
U(q) and so fnc(q, v) ≡ 0. Therefore, (S1)

is satisfied. The set ker(M(q)) ∩ {x ∈ Rn | GJ1(q)(q)v = v ≥ 0} contains only v = 0 since
M(q) = m > 0. Hence, (S2) also follows. The trivial solution (q(t), v(t)) ≡ (0, 0) is at
all a solution of this benchmark problem with T ∗(v, I) = ∅, λ(t) = mg > 0. This stable
equilibrium is only attractive if ϵ < 1. The following figure will underline this analytical
result.
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(a) ϵ = 0.5
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(b) ϵ = 1

Figure 4.10.: Bouncing ball: Stability

Example 4.27 (Impact oscillator) For the impact oscillator we get from Equation (4.1)
the functions M(q) = 1, g(q) = σ − q, f(q, v) = − ∂

∂q
U(q) = p(t, q) − q. Analogous to
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Example 4.26, all requirements of Theorem 4.24 are fulfilled. One only has to presuppose
that (0, 0) is an equilibrium of the underlying MDI. Referring to Conclusion 4.6, it should
be p(t, 0) = 0, for all t ≥ 0 or σ = 0, p(t, 0) ≥ 0 for all t ≥ 0. Figure 4.11 underlines the
expected attractivity for the equilibrium (0, 0) when ϵ < 1. For ϵ = 1, the solution curve
seems to be periodic.

(a) ϵ = 0.5 (b) ϵ = 1

Figure 4.11.: Oszillator: Stability with p(q) = 1
2
cos(q)

Example 4.28 (Two-masses-spring system) We refer to Example 2.60 to describe the
motion of a two-masses-spring system. Following Example 3.21, all smoothness assump-
tions in Theorem 4.24 are satisfied. Here the forces are given by

U(q) = q⊤

k1 0 0
0 0 0
0 0 k2

 q, fnc(q, v) = (p(q), 0, 0)⊤, f(q, v) = − ∂

∂q
U(q) + fnc(q, v).

The state (0, 0, 0)⊤ is an equilibrium of this dynamical system if p(0) ≥ 0. Referring to
For p(0) = 0 we get an equilibrium in a resting position and for p(0) > 0 the first mass is
pressed against the obstacle. The condition (S1) is also equivalent to these properties. If
v ∈ ker(M(q)) it follows v1 = 0. Therefore,

v⊤f(q, v) = −k2v3q3 ≤ 0

with the positive stiffness parameter k2 > 0 and the non-negative position q3 ≥ 0 of the
seconde mass and the non-negative velocity v3 ≥ 0. Hence, (S2) is also fulfilled. If (0, 0, 0)
is an equilibrium of the two-masses-spring system, it is stable. As Figure 4.12 points out
the numerical solutions converges to the equilibrium if ϵ < 1. If ϵ = 1 a periodic behaviour
can be observed.

4.3. Stability Issues of Periodic Solutions

Now we want to investigate the stability of periodic solutions of autonomous systems.
This means that F in LIMDI (3.1) cannot depend directly on the time variable t. Such
systems also play a major role in the next chapter. As already stated in [74] for smooth
systems, the previous notions of stability do not make sense for autonomous systems. It
could be that a solution x(t, x10) to an initial value x10 ∈ Z differs only by a phase shift
τ > 0 from a second solution x(t, x20) to an initial value x20 ∈ Z
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Figure 4.12.: Two-masses-spring system: Stability with p(q) = sin(q0)

x(t+ τ, x10) = x(t, x20), t ≥ 0.

The same qualitative behaviour is described by both solutions, but the definition of at-
tractivity in Definition 4.20 is not fulfilled if it is not an equilibrium. We extend our
understanding of stability by the following definitions.

Definition 4.29 (Orbital stability) Let x∗ : R+ → Z be a ω-periodic solution of a LIMDI
(3.1). It is called orbital stable if ∀ µ > 0 ∃ δ > 0 such that for all initial values x0 ∈ Z
with dist(x0, γ(x

∗)) ≤ δ each solution x(t, x0) of LIMDI (3.1) with x(0) = x0 satisfies

dist(x(t), γ(x∗)) ≤ µ, ∀ t ≥ 0.

Definition 4.30 (Orbital attractivity) Let x∗ : R+ → Z be a ω-periodic solution of a
LIMDI (3.1). It is called orbital attractive if there exists a δ > 0 such that for all initial
values x0 ∈ Z with dist(x0, γ(x

∗)) ≤ δ each solution x(t, x0) of LIMDI (3.1) with x(0) = x0
satisfies

lim
t→∞

dist(x(t), γ(x∗)) = 0.

If no periodic solutions are considered, the limit set Φ must be used instead of γ. The
condition limt→∞ dist(x(t), A) = 0 for a set A ∈ Rn is equivalent to

∃ a : I → A : lim
t→∞

∥x(t)− a(t)∥ = 0.

Theorem 4.31 (Orbital stability for periodic solutions) The ω-periodic solution x∗(t, x0) ∈
Z is orbital stable if there exists a Lyapunov function V : Rn → R ∪ {∞}, V (x) :=
v(x)+ψZ(x) with v is continuous and positiv and a set U(h) :=

⋃
y∈γ(x∗)(B(y, h)∩Z) for

an h > 0 with

(i) V (x∗(t)) = 0,∀ t ≥ 0,

(ii) there is no y /∈ γ(x) : V (y) = 0

(iii) dV (x) ≤ 0,∀ x ∈ SBV +(R+, U(h)).

Proof: As in the proof of Theorem 4.21, we can construct a compact and positive
invariant set C containing γ(x∗). Let µ > 0 be arbitrary and

Vµ/2 := sup
x∈U(µ/2)

V (x), Vh/2 := sup
x∈U(h/2)

V (x)
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be suprema that upper semi-continuous functions takes on compact sets. Again there
exists an c∗ > 0 such that all sets Ωc ∩ Z with Ωc := {x ∈ Rn | V (x) ≤ c} ≠ ∅ are closed
and simply connected. Set d := min(Vµ/2, Vh/2, c

∗). According to condition (iii) the set
C := Ωd ∩ Z is closed and positive invariant.

Let now be U(δ) be the largest neighbourhood which lies in Ωc ∪Zc
1. Its existence follows

from the fact that the closed set Ωc ∩ Z is not empty. It holds supx∈U(δ) V (x) ≤ c and so
all solutions starting in U(δ) remains in U(µ). The periodic solution is orbital stable.
The following theorem is stated in [59, Theorem 6.31].

Theorem 4.32 (LaSalle’s Invariance principle) Let C ⊂ Z be compact and positive
invariant with respect to LIMDI (3.1) and V (x) := v(x) + ψZ(x) a Lyapunov function
candidate where v is continuous and bounded from below. Suppose furthermore dV (x) ≤
0 for all solution curves of (3.1) starting in C and

B := {x | x(t, x0) ∈ C, ∀t ≥ 0, A(x)dx ∈ F (x)}.

We define D as the largest positively invariant set in B. Then for every solution curve
x(t, x0) of LIMDI (3.1) with x0 ∈ C the condition

lim
t→∞

dist(x(t, x0), D) = 0

is fulfilled.

Theorem 4.33 (Orbital attractivity for periodic solutions) The ω-periodic solution func-
tion x∗(t, x0) ∈ Z is orbital stable if there exists a Lyapunov function V : Rn →
R ∪ {∞}, V (x) := z(x) + ψZ(x) with z being continuous and positive and a set U(h) :=⋃

y∈γ(x∗)(B(y, h) ∩ Z) for an h > 0 with

(i) V (x∗(t)) = 0,∀ t ≥ 0,

(ii) dV (x) ≤ 0,∀ x ∈ SBV +(R+, U(h)),

(iii) dV (y) = 0 ⇒ y ∈ γ(x∗).

Proof: According to (i)-(iii) there can not be a y ∈ Z\γ(x∗) with V (y) = 0 and so x∗

is stable. The set C constructed in the proof of Theorem 4.31 suits to Theorem 4.32. So
condition

lim
t→∞

dist(x(t, x0), D) = 0

is fulfilled for the largest positive invariant set D belonging to B. Following (iii), B
contains only elements of γ(x∗) and D = γ(x∗). The periodic solution is attractive.

Remark 4.34 (Lyapunov function candidate) Let

(q∗, v∗) ∈ AC(R+,R
n)× SBV +(R+,R

n)

be a periodic solution of the equations of motion (2.27). Similar to Remark 4.23 a Lya-
punov function candidate is

V (q, v) = T ((q, v)− φ(q, v)) + U((q, v)− φ(q, v))− U(0) + ψZ(q, v)
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where φ(q, v) = arg(minx∈γ(q∗,v∗) ∥(q, v)− x∥) is continuous. If all requirements of Theo-
rem 4.24 are satisfied, this function fulfills the assumptions of Theorems 4.31 and 4.33.
The periodic solution is orbital stable or even orbital attractive.

It should be mentioned that this proof strategy does not work for arbitrary solutions,
since it is not certain whether γ(x) and Φ(x) are bounded sets at all.
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Figure 4.13.: Bouncing ball orbit: Stability with ϵ = 1

Example 4.35 (Bouncing ball) The Bouncing ball has only periodic solutions if ϵ = 1.
The reverse is also true. If ϵ = 1 holds, then the solution is periodic. These solutions are
orbital stable, but never attractive.
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Figure 4.14.: Impact oscillator: Orbits for different inital values after 5 and 10 seconds
and ϵ = 0.7

Example 4.36 (Impact oscillator and two-masses-spring system) An periodic solution
(q∗(t), v∗(t)) of the impact oscillator (4.1) is orbitable stable if p(q) ≥ 0,∀ q ≤ σ, how it
is justify in Example 4.11. For ϵ < 1 it is orbital attractive.

The condition p(q1) ≥ 0,∀ q ∈ Z, states the results for the two-masses-spring system.





5. Orbital convergence

In this chapter, numerical methods for solving the equations of motion of non-smooth me-
chanics are discussed. We assume that the well-posedness assumptions of Chapter 3 hold
to guarantee that an exact solution of the underlying measure differential inclusion exists
and is unique in position, velocity and forces. The main aim of this chapter is to compare
the approximation quality of the classical integration method of Moreau, Jean [51] with
the approximation quality of the novel timestepping schemes constructed by Schindler,
Acary [80]. The last methods base on the idea of discontinuous Galerkin methods and
are developed to get higher order in phases without impacts. The classical convergence
analysis of time-stepping methods for differential equation problems is based on strong
smoothness assumptions. These are not satisfied for non-smooth mechanical problems.
When measure differential inclusions are numerically solved with timestepping schemes,
one difficulty, the peaking phenomen, arises. Nevertheless, it turns out in numerical tests
that all mentioned methods converge and they can be compared with each other by their
error bounds. We prove this analytically and transfer it to orbital convergence. This con-
cept is well suited for autonomous problems with periodic solutions. A detailed overview
on integration methods for non-smooth mechanics is given in [2].

5.1. Integration Methods for Non-Smooth Mechanics

There are two main groups of numerical methods to solve the equations of motion of non-
smooth mechanics. The first one are the event-driven ones [2, 58, 62, 73]. They identify
the next impact point exact and use up to this point a classical DAE-solver which can be
of arbitrary order. In the impact point, the discrete impact problem is solved once. Then,
the procedure is repeated over the entire time interval again and again. Those methods
are very accurate when dealing with few critical points. If, however, the number increases
or even the Zeno phenomenon arises, they get inconsistent [80]. For this situation, the
second group of integration methods has been developed. The timestepping schemes
define a sequence of time points

0 = t0 < t1 < . . . < tN−1 < tN = T

in [0, T ] and approximate the function values q(ti), v(ti) ∈ Rn, i = 0, 1, . . . , N, through
numerical approximations qi, vi ∈ Rn, i = 0, 1, . . . , N . The partition of the time interval
is never changed during the whole integration process and so it is independent of the
location of impacts. The stepsize hi := ti − ti−1, i = 1, . . . , N, describes the distance
between two consecutive time points. In this thesis, the stepsize is never adapted, such
that hi ≡ h. Timestepping schemes are robust and can have only order of convergence
one which is explained in the second part of this section. For details about timestepping
schemes we refer to [2, 91]. In the following, two very simple implementations of a mixed
event-driven and a similar timestepping scheme applied to Example 1.1 will underline the
advantages and the disadvantages of both approaches.
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Algorithm 1 Naive mixed event-driven scheme for the bouncing ball

Require: time interval [0, T ], initial values q0 = q(0), v0 = v(0), minimal number of
intervals N , stepsize h = T/N , positive tolerances δ1, δ2

1: procedure EventDrivenBall(T,N, q0, v0, δ1, δ2)
2: i = 0
3: t0 = 0
4: hi = h
5: while ti+1 < T do
6: vi+1 = vi − hi g ▷ Trapezoidal rule
7: qi+1 = qi + hi (vi + vi+1)/2
8: if qi+1 − r < −δ1 and vi+1 < 0 then
9: if hi < δ2 then ▷ Impact identification with accuracy δ2
10: vi+1 = −ϵvi
11: qi+1 = qi + hi (vi + vi+1)/2
12: hi+1 = h
13: ti+1 = ti + hi
14: i = i+ 1
15: else hi = hi/2
16: end if
17: else ti+1 = ti + hi;hi+1 = h; i = i+ 1
18: end if
19: end while
20: return q, v
21: end procedure

Algorithm 2 Naive timestepping scheme for the bouncing ball

Require: time interval [0, T ], initial values q0 = q(0), v0 = v(0), stepsize h = T/N ,
positive tolerance δ1

1: procedure TimesteppingBall(T,N, q0, v0, δ1)
2: i = 0
3: t0 = 0
4: while ti+1 < T do
5: vi+1 = vi − h g ▷ Trapezoidal rule
6: qi+1 = qi + h(vi + vi+1)/2
7: if qi − r < −δ1 and vi+1 < 0 then ▷ Impact identification
8: vi+1 = −ϵvi
9: end if

10: ti+1 = ti + h
11: i = i+ 1
12: end while
13: return q, v
14: end procedure
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Example 5.1 (Bouncing ball) The generalised velocity v(t) = q̇(t) of a bouncing ball
with centre of mass q(t) ∈ R, t ∈ [0, T ], can be described through

v̇(t) = −g, if q(t)− r> 0,

v+(t) = −ϵv−(t), if q(t)− r= 0,

where g > 0 is the gravitational acceleration, r > 0 the radius of the ball and ϵ ∈ [0, 1] the
impact number. If ϵ < 1, the Zeno phenomenon arises and an event-driven scheme would
fail. Therefore, only a mixed event-driven scheme in Algorithm 1 and a similar timestep-
ping scheme in Algorithm 2 are used to solve these equations of motion. In smooth phases
(q(t) − r > 0), both methods apply the classical trapezoidal rule [90] to the differential
system to get numerical approximations of order two for q and v in the time points (ti).
In ti → ti+1, an impact is recognised if qi+1 will be smaller than r in a certain tolerance
and vi+1 < 0 to exclude that the ball rests on the ground. Then, the timestepping scheme
calculates vi+1 = −ϵvi directly and continues the numerical simulation with the next pre-
viously fixed integration step ti+1 → ti+2 = ti+1 + h. In contrast the event-driven scheme
locates the impact point t∗ ∈ [ti, ti+1] by reducing the stepsize to δ2. If δ2 is equivalent to
the machine accuracy, Algorithm 1 would be a purely event-driven scheme. The order of
convergence two of the trapezoidal rule can be transferred to the non-smooth phases, if
δ2 ∈ O(h2).
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(a) Event-driven scheme in Algorithm 1
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(b) Timestepping scheme in Algorithm 2

Figure 5.1.: Numerical solution of the bouncing ball with values q0 = 0.005 cm, v0 = 0
cm/s, ϵ = 0.6, h = 0.007 s, r = 0 cm, δ1 = 0, δ2 = 10−6 (V1).

Figure 5.1 underlines very well the benefits of the event-driven method with respect to
the accuracy. If the numerical solution penetrated the constraint, the stepsize is reduced
so that the impact time point is identified in the desired accuracy. The approximation
of the exact solution is very accurate for this strategy. But especially for accumulation
points of impacts, this requires the computation in a lot of additional time points.
In addition, Figure 5.2 emphasizes the differences between the two algorithms. The
mixed method provides more accurate calculations with an error in accuracy O(h2). The
numerical solutions qh = (q0, . . . , qN), v

h = (v0, . . . , vN) have been compared with the
exact solutions q = (q(t0), . . . , q(tN)), v = (v(t0), . . . , v(tN)) in L

1-norm. The timestepping
method loses accuracy due to the inexact location of the impact, but instead of O(N2)
it only needs O(N) operations for the integration process. It is always recommendable
to compare timestepping methods with smaller stepsizes with mixed ones with larger
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Figure 5.2.: Comparison of numerical parameters using Algorithm 1 and 2 with (V1).

stepsizes.

Including elements of event-driven schemes like in Algorithm 1 is only one strategy to
increase the accuracy or order of timestepping schemes. More possibilities are described
in the next section.

5.1.1. Timestepping Schemes

There are two maingroups of timestepping schemes: based on the ideas of Moreau, Jean
[50, 51, 66] and based on the ideas of Paoli, Schatzman [70, 71]. The drawback of latter
ones is that they formulate impact laws at position level and fulfil Newton’s impact law
only after several time steps. As we focus on applications that are significantly influenced
by their behaviour during collisions, the focus is on the first group of methods.

Remark 5.2 (Timestepping schemes of Moreau-Jean type) The first timestepping sche-
mes to solve the equations of motion of non-smooth mechanics are developed by Moreau
and Jean [51]. To get numerical approximations qi ≈ q(ti), vi ≈ v(ti), they use θ-schemes
in smooth phases. It is not distinguished between contact and impact forces; both are
always calculated with the impact law of Newton. If in ti → ti+1 a contact or impact is
recognised, vi is taken as an approximation of the pre-impact velocity in the impact point.
In this thesis only the explicit version in Algorithm 3 is considered. It uses the explicit
Euler method in smooth phases to solve the underlying ODE. Since this method itself
already has only order of convergence one for smooth systems, the timestepping method
of Moreau-Jean type also has at most this order of convergence. This is proved among
others in [29, 63].

Remark 5.3 (Higher-order timestepping schemes) Because the classical timestepping
scheme in Algorithm 3 has only order of convergence one, in literature a lot of numerical
possibilities are studied to increase the accuracy or the order of timestepping schemes
based on Algorithm 3. There are different strategies

(i) Augmented timestepping schemes: this group of timestepping schemes are ex-
tended versions of methods of Moreau-Jean type (see Algorithm 3). If there is no
contact or impact classical augmentation strategies like extrapolation or stepsize
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Algorithm 3 Explicit Moreau-Jean timestepping scheme [51]

Require: time interval [0, T ], initial values q0 = q(0), v0 = v(0), stepsize h = T/N
1: procedure MoreauJean(T,N, q0, v0, δ1)
2: i = 0
3: t0 = 0
4: while ti+1 < T do
5: qi+1 = qi + hvi
6: M(qi)(vi+1 − vi) = h(f(qi, vi) +G(qi)

TΛ) ▷ Solve lines 6 and 7 simultaneously
7: Λ = projRm1

+
(Λ−GJ1(qi+1)(qi)(vi+1 + ϵvi))

8: t = t+ h
9: i = i+ 1
10: end while
11: return q, v
12: end procedure

adaptation are utilised to improve numerical approximations [43, 91]. Such strate-
gies often deal with instabilities.

(ii) Mixed timestepping (cf. Algorithm 1): such timestepping schemes use stepsize
adaptation in the non-smooth phases similar to event-driven schemes. They suffer
often from lacking of appropriate strategies. Error estimations based on Richard-
son strategies as well as stepsize switching procedures hnon-smooth = O(hsmooth) or
retrospective bisections [1, 91] are not satisfactory understood and analysed.

Based on this unsatisfactory analysis and uncertain understanding of higher-order meth-
ods, in [80] a whole set of methods for the consistent numerical treatment of measure
differential inclusions and their accuracy enhancement is developed.

Remark 5.4 (Timestepping schemes based on discontinuous Galerkin methods) To im-
prove the behaviour of timestepping schemes in the smooth phases and to give a consistent
treatment of contacts and impacts, Acary and Schindler [80] embedded these methods
in the setting of discontinuous Galerkin methods. Their consideration is motivated by
[57]. Discontinuous Galerkin methods are special mortar methods which use discontinu-
ous ansatz and test functions in any situation not just if the situation demands it. The
starting point is the weak formulation of the equations of motion

⟨q̇ dt, φq⟩ = ⟨v dt, φq⟩ , ∀ φq ∈ D([0, T ]),

⟨M(q)dv, φv⟩ =
〈
f +G(q)⊤λ dt+G(q)⊤Λ dη, φv

〉
, ∀ φv ∈ D([0, T ]).

The function space D([0, T ]) can be the space of all functions of bounded variation
BV ([0, T ],Rn) and the product ⟨·, ·⟩ is the primal-dual pairing. To get numerical ap-
proximations, (r+ 1)-dimensional subspaces of D([0, T ]) must be considered. The spaces
Φq,Φv ⊂ D([0, T ]) are the spaces of test functions with bases (φqk), k = 0, 1, . . . , r, and
(φvk). In addition Ψq̇,Ψv with bases (ψq̇k), (ψvk) are suitable (r + 1)-dimensional spaces
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of ansatz functions for q̇ and v. Then, the numerical solutions qh, vh can be presented by

qh(t) = q0 +
r∑

k=0

∫ t

t0

ψq̇k(s)ds q̇
h
k

vh(t) =
r∑

k=0

ψvk(t)v
h
k

with weights (q̇hk ), (v
h
k ). Inserting the ansatz and test functions in the weak formulation

the discrete problem

r∑
k=0

⟨ψq̇k , φql⟩ q̇hk =
r∑

k=0

⟨ψvk , φql⟩ vhk , ∀ l = 0, 1, · · · , r,

(5.1)
r∑

k=0

M(qk) ⟨dψvk , φvl⟩ vhk =
〈
f +G(q)⊤λ dt+G(q)⊤Λ dη, φvl

〉
, ∀ l = 0, 1, · · · , r

(5.2)

must be solved. If the compact support of the test functions is chosen as [ti, ti+1], every
integration step ti → ti+1 can be considered separately. Therefore, a one-step method is
constructed. In [80] all ansatz and test function spaces are chosen to be the space of all
piecewise polynomials of order r. An integration interval Ii = [ti, ti+1] is divided by the
Chebychev points (til) such that φql , φvl , ψq̇l , ψvl can be chosen to be the pruned Lagrange
polynomials

Lil(t) =

{ ∏
j ̸=l

t−tij
til−tij

, t ∈ Ii,

0, elsewhere.

It holds Lil(til) = 1, Lil(tik) = 0, k ̸= l, and that all these functions are continuous inside
the interval (ti, ti+1). An important task is how to calculate the velocity jumps. In [80]
only ansatz and test functions are considered that jump only one time per integration
interval. The same holds then for q̇, v, v̇. It is distinguish between integration schemes
with functions which evaluate the impact law at the left-side border or the right-side
border of the integration interval. That means, if Lil(t) is left- or right-side continuous.
We only consider the last group to get the explicit formulation of this methods. Then, the
numerical approximation is a right-side continuous function. In every integration step,
the following stage values must be calculated

qi,0 := qi, qi,1 := qh(ti1), . . . qi,r := qh(tir), qi+1 := qi,r,
q̇i,0 := q̇h+i , q̇i,1 := q̇h(ti1), . . . q̇i,r := q̇h−(tir), q̇i+1 := q̇h+(tir),
vi,0 := vh+i , vi,1 := vh(ti1), . . . vi,r := vh−(tir), vi+1 := vh+(tir),
v̇i,0 := v̇h+i , v̇i,1 := v̇h(ti1), . . . v̇i,r := v̇h−(tir), v̇i+1 := v̇h+(tir).

All products ⟨., .⟩ are evaluated in [80] with the Clenshaw-Curtis quadrature. With the
parameters

βik(til) :=
1

h

∫ til

ti

Lik(t)dt, βik := βik(tir)
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we get for l = 0, 1, . . . , r with relation (5.1) the following condition

qi,l = qi,0 +
r∑

k=0

∫ til

ti

ψq̇k(t)dt q̇
h
k = qi,0 +

r∑
k=0

∫ til

ti

Lik(t)dt q̇
h
k

= qi,0 + h
r∑

k=0

βik(til)q̇
h
k = qi,0 + h

r∑
k=0

βik(til)vi,k.

Because q and qh are continuous, it holds qi+1 = qi,r. Since vh, v̇h, q̇h are assumed to
be continuous in [ti, ti+1), their values can be calculated in the same way. Referring to
[57, 80], the derivative v̇h of vh with ψvk = Lik is equivalent to a polynomial of order r−1
of the form

v̇h(t) =
r−1∑
k=0

L̃ik(t)v̇
h
i,k, L̃ik(t) :=

∏
j ̸=k,j ̸=r

(t− tij)

(tik − tij)

Using also the Clenshaw-Curtis quadrature for (5.2) over [ti, til ], it follows Mv̇i−1,l =
fil +G⊤

il
λil . Following this condition, you get for the velocity

M(vi,l − vi,0) =M

∫ til

ti

v̇h(t)dt =M

∫ til

ti

r−1∑
k=0

L̃ik(t)v̇
h
i,kdt

=
r−1∑
k=0

∫ til

ti

L̃ik(t)dt Mv̇hi,k = h
r−1∑
k=0

β̃ik(til)(fik +G⊤
ik
λik)

with l = 0, 1, . . . , r

β̃ik(t
∗) :=

∫ t∗

ti

L̃ik(t)dt.

If we now include the impact at the end of the interval, the variation in the right-side
border of the interval is described in [80] as

M(vi+1 − vi,r) +Mv̇h = hβir(fir +G⊤
irλir) +G⊤

irΛir .

The last stage value can be calculated by

M(vi+1 − vi,r) = hβir

(
fir +G⊤

irλir −
r−1∑
k=0

L̃ik(ti+1)(fik +G⊤
ik
λik)

)
+G⊤

irΛir

Summarizing all calculations, you get Algorithm 4. The contact and impact forces are
calculated with the contact or impact law based on the functional values in the Chebychev
points.

Definition 5.5 (Matrix notation) In every integration step ti → ti+1 numerical approx-
imations in the Chebychev points ti = ti0 < ti1 < . . . < tir = ti+1 are calculated where
qi,l ≈ q(til), vi,l ≈ v+(til), λi,l ≈ λ(til). With the vector-valued notation

q
i
:= (q⊤i,0 q

⊤
i,1 . . . q⊤i,r)

⊤, vi := (v⊤i,0 v
⊤
i,1 . . . v⊤i,r)

⊤, λi := (λ⊤i,0 λ
⊤
i,1 . . . λ⊤i,r)

⊤,

Algorithm 4 can be written in a compact matrix-version, see Algorithm 5. The following
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Algorithm 4 Forecasting timestepping scheme [80]

Require: time interval [0, T ], initial values q0 = q(0), v0 = v(0), stepsize h = T/N
1: procedure TimesteppingDiscontinuousGalerkin(T,N, q0, v0, δ1)
2: i = 0
3: t0 = 0
4: while ti+1 < T do
5: ▷ Solve simultaneously lines 6,7,8 for l = 0, 1, . . . , r
6: qi,l = qi + h

∑r
k=0 βik(til)vi,k

7: M(qi,l)(vi,l − vi) = h
∑r−1

k=0 β̃ik(til)(f(qi,k, vi,k) +GT (qi,k)λik)
8: λil = projRm(λil − g(qi,l))
9: qi+1 = qir
10: ▷ Solve simultaneously lines 11,12,13,14

11: M(qi+1)(vi+1 − vi,r) = h βir

(
(f(qi,r, vi,r) +GT (qi,r)λir)

12: −
∑r−1

k=0 L̃ik(ti+1)(f(qik , vik) +GT (qi,k)λik)
)
+GT (qi)Λi

13: λir = projRm
+
(λir − g(qi,r))

14: Λi = projRm1
+
(Λi −GJ1(qir )

(qir)(vi+1 + ϵvi,r))

15: ti+1 = ti + h
16: i = i+ 1
17: end while
18: return q, v
19: end procedure

matrices are needed

Br = (bl,k) := (βik−1
(til−1

))l=1,...,r+1,k=1,...,r+1, Bn
r := Br ⊗ In,

B̃r = (b̃l,k) := (β̃ik−1
(til−1

))l=1,...,r,k=1,...,r+1, B̃n
r := B̃r ⊗ In,

M r := diag(M(qi,0) M(qi,1) . . . M(qi,r)), L̃r := (L̃ik−1
(ti+1))k=1,...,r,

Gr := diag(G(qi,0) G(qi,1) . . . G(qi,r)), g
r
:= (g⊤(qi,0) g

⊤(qi,1) . . . g
⊤(qi,r))

⊤,

f
r
:= (f⊤(qi,0) f

⊤(qi,1) . . . f
⊤(qi,r))

⊤.

Example 5.6 (Forecasting trapezoidal rule) For r = 0 no rule exists but a popular choice
is ti0 = ti such that you get the classical scheme of Moreau and Jean in Algorithm 3. For
r = 1, Algorithm 4 reduces to the trapezoidal rule in Algorithm 6 which was derived in
[80] and expanded and numerically studied in [82]. The coefficients B1, B̃1 and L̃1 are

B⊤
1 =

(
0 0.5
0 0.5

)
, B̃⊤

1 =
(
0 1

)
, L̃⊤

1 =
(
1
)
. (5.3)

Example 5.7 (Timestepping scheme of order three and four) Using all considerations in
[80], we developed the schemes belonging to r = 2 and r = 3. They represent the methods
constructed by [80] of order 3 and 4 in smooth phases. The coefficients of the method of
order 3 are
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Algorithm 5 Forecasting timestepping scheme [80] in matrix notation

Require: time interval [0, T ], initial values q0 = q(0), v0 = v(0), stepsize h = T/N
1: procedure TimesteppingDiscontinuousGalerkinMatrix(T,N, q0, v0, δ1)
2: i = 0
3: t0 = 0
4: while ti+1 < T do
5: q

i
= 1r ⊗ qi + hBnvi ▷ Solve simultaneously lines 5-10

6: M r(vi − 1r ⊗ vi) = hB̃n
r (f r−1

+G⊤
r−1λi,1:r−1)

7: M(qi,r)(vi+1 − vi,r) = hβir(f(ti+1, qi,r) +G⊤(qi,r)λir − L̃(f
r−1

+G⊤
r−1λi,1:r−1))

8: +G⊤(qi,r)Λi

9: λi = projRm∗r
+

(λi − g)

10: Λi = projRm1
+
(Λi −GJ1(qi,r)(qi,r)(vi+1 + ϵvi,r))

11: qi+1 = qi,r; vi+1 = vi+1; ti+1 = ti + h
12: i = i+ 1
13: end while
14: return q, v
15: end procedure

Algorithm 6 Forecasting trapezoidal rule [80]

Require: time interval [0, T ], initial values q0 = q(0), v0 = v(0), stepsize h = T/N
1: procedure TrapezoidalRule(T,N, q0, v0, δ1)
2: i = 0
3: t0 = 0
4: while ti+1 < T do
5: M(qi)(vi,1 − vi) = h(f(qi, vi) +GT (qi)λi)
6: λi = projRm(λi − g(qi))
7: qi+1 = qi + h(vi + vi,1)/2
8: M(qi+1)(vi+1−vi,1) = h

(
(f(qi, vi) +GT (qi)λi) + (f(qi+1, vi,1) +GT (qi+1)λi1)

)
/2

9: +GT (qi)Λi

10: λi1 = projRm(λi1 − g(qi+1))
11: Λi = projRm1 (Λi −GJ1(qi)(qi)(vi+1 + ϵvi,1))
12: ti+1 = ti + h
13: i = i+ 1
14: end while
15: return q, v
16: end procedure
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B⊤
2 =

0 5/24 1/6
0 1/3 2/3
0 −1/24 1/6

 , B̃⊤
2 =

(
0 1/4 0
0 1/4 1

)
, L̃⊤

2 =

(
−1
2

)
. (5.4)

In the following, this scheme is called Simpson method. The coefficients of the method of
order 4 are

B⊤
3 =


0 (8

√
2− 5)/96 −(8

√
2 + 5)/96 −1/6

0 (32− 17
√
2)/96 (23

√
2 + 32)/96 2/3

0 (32− 23
√
2)/96 (17

√
2 + 32)/96 2/3

0 (8
√
2− 11)/96 −(8

√
2 + 11)/96 −1/6

 ,

B̃⊤
3 =

0 (
√
2− 1)/6 −(1 +

√
2)/6 −1/3

0 (8− 3
√
2)/48 (24 + 17

√
2)/48 (4 +

√
2)/6

0 (24− 17
√
2)/48 (8 + 3

√
2)/48 (4−

√
2)/6

 , L̃⊤
3 =

 1

−
√
2√
2

 .

(5.5)

Remark 5.8 (Numerical treatment of non-linear terms) The numerical solution of con-
tact and impact laws in the discretised form is a research topic of current interest. Detailed
studies on the various aspects of the numerical treatment of non-smooth mechanics can be
found in [2, 88, 91]. On one hand, there are different, analytically equivalent formulations
that result in different solution methods. In detail, the equivalent problems are discussed
in the appendix. The force laws can be a complementarity problem, a non-smooth equa-
tion following the projected formulation or a non-linear optimisation problem. The oldest
method to solve a complementarity problem is the direct method of Lemke [25, 67, 89]. It
is similar to the simplex method for convex optimization problems. However, in compar-
ison to other methods, it is considerably less robust and requires more computing time.
For mechanical problems with redundant constraints or singular mass matrices, you can
not use this algorithm. Further methods based on these analytic assumptions and solv-
ing either an equivalent optimisation problem or a root finding problem resulting from
projection functions approaches are generalized Gauss-Jacobi or Gauss-Seidel projection
methods [4], augmented Lagrangian methods [91], Krylov subspace methods [45] and in-
ner point methods [53]. Due to the simple structure, the convergence properties described
in the appendix, and the handling of redundant constraints and singular mass matrices,
we selected non-smooth Newton methods to solve non-smooth equations.

On the other hand, the constraints can be formulated on position, velocity or acceleration
level. A physically consistent treatment of the impact law on position level is not possible
if the law of Newton is used. Considering only non-impulsive forces, it is possible to
formulate the constraints on position level to avoid the drift-off effect. This effect describes
the increasing violation of the constraints over time. It has already been described in [5]
that for differential systems with constraints, this disadvantage increases as one proceeds
in the formulation from position to velocity or from velocity to acceleration level. Another
advantage of the formulation on velocity level is that friction laws can be easily included.
Therefore, from our point of view, it is most appropriate to perceive the formulation of
constraints at velocity level. Similar decisions are made in [80, 82].

Remark 5.9 (Non-smooth Newton method) To get a solution in one integration step
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ti → ti+1 of Algorithm 4, a non-smooth Newton method is used. Here similar to [83] we
formulate the integration scheme for one non-smooth Newton step. We use the scheme
in matrix notation to be able to formulate it in an elegant way. In each integration step,
one must solve a system of non-linear equations of the form

02(r+1)n+n+m̄(r+1)+m1 = φ(xi+1) :=
q
i
− 1n ⊗ qi − hBn

r vi
M r(vi − 1n ⊗ vi)− hB̃n

r (f r−1
+G⊤

r−1λi,1:r−1)

Mir(vi+1 − vir)− hβir(fir +G⊤
irλi,r − L̃(f

r−1
+ (G⊤λi)1:r−1))−G⊤

irΛi

λi − projRm̄∗r
+

(λi − (Ḡv̄i)J1)

Λi − projRm1
+
(Λi −GJ1(qir )

(qir)(vi+1 + ϵvir))


with respect to unknown variables

xi+1 =
(
q⊤
i
v⊤i v⊤i+1 λ

⊤
i Λ⊤

i

)⊤
.

Using the non-smooth Newton method∥∥∥∥∥
(
∂Cφ(x)

∂x

)∣∣∣∣
x=xk

i+1

(
xk+1
i+1 − xki+1

)
− φ(xki+1)

∥∥∥∥∥→ min

one can derive a Newton sequence that converges to the root of φ. We use the Clarke
differential since proj is continuous but not differentiable in every point. In every step
k → k + 1, a least square problem has to be solved. Since the Lagrange multipliers are
not unique, this problem also has no unique solution if there are redundant constraints.
As a starting point of the sequence we set

x0i+1 = ((1n ⊗ qi)
⊤, (1n ⊗ vi)

⊤, 0⊤m̄∗r, 0
⊤
m1

)⊤.

We consider here only constant mass matrices M and right hand sides f , which depend
only on the position q. We define

∂f
r
:=
(
∂f⊤(q)/∂q|q=qi0

∂f⊤(q)/∂q|q=qi1
. . . ∂f⊤(q)/∂q|q=qir

)
,

∂G⊤λr :=
(
∂G(q)⊤λ/∂q|q=qi0 ,λ=λi0

. . . ∂G(q)⊤λ/∂q|q=qir ,λ=λir

)
.

A Jacobian matrix Jφ(x) ∈ ∂Cφ(x)
∂x

calculates then to

Jφ(x) =


I(r+1)n −hBn

r 0 0 0

jp1 M r 0
[
−hB̃n

rG
⊤
r−1 0

]
0

jp2 [0 . . . 0 −M(qi,r)] M(qi,r) hβir [L̃ − In]G⊤ −GT (qi,r)
jp3 0 0 jp4 0
jp5 jp6 jp7 0 jp8


with
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jp1 =
[
−hB̃n

r

(
∂f + ∂G⊤λ

)
r−1

0
]

jp2 =
[
−L̃ − hβirIn

] (
∂f

r
+ ∂G⊤λr

)
+

[
0 − ∂(GTΛ)

∂q
|q=qi,r,Λ=Λi

]
(jp3)j,: =

{
(0(r+1)n)⊤, projR+

(λj −
(
(Ḡv̄i)J1

)
j
) > 0

Gi,:, otherwise
j = 1, . . . , (r + 1)m

(jp4)j,j =

{
0, projR+

(λj −
(
(Ḡv̄i)J1

)
j
) > 0

1, otherwise
j = 1, . . . , (r + 1)m

p = projR+

(
Λi −

[
GJ1(qi,r)(qi,r)(vi+1 + ϵvir)

])
(jp5)j,rn+1:(r+1)n =


∂GJ1(qi,r)

(q)(vi+1+ϵvi,r)

∂q

∣∣∣∣
q=qi,r

, pj > 0

(0n)⊤, otherwise

(jp6)j,rn+1:(r+1)n =

{
ϵ
[
GJ1(qi,r)(qi,r)

]
j,:
, pj > 0

(0n)⊤, otherwise

(jp7)j,: =

{ [
GJ1(qi,r)(qi,r)

]
j,:
, pj > 0

(0n)⊤, otherwise

(jp8)j,j =

{
0, pj > 0
1, otherwise

The terms jp4 and jp8 are diagonal matrices. In Theorem B.23 in the appendix, it is
captured that the non-smooth Newton method converge for all elements of the Clarke

differential ∂Cφ(x)
∂x

. In this thesis, the following element is choosen

∂

∂x
proxR+

(f(x))

∣∣∣∣
xk
i+1

=

{
∂
∂x
f(x), f(xki+1) > 0,

0, otherwise.

5.1.2. Classical Comparison Tool: Local and Global error

We want to solve numerically an autonomous MDI on I = [0, T ]

T ∗(x, I) :={t ∈ I | ∃ i ∈ {1, . . . ,m} : (gi(x(t)) = 0)∧
(∃ δ > 0 ∀ s ∈ [t− δ, t) : gi(x(s)) > 0)} ,

t /∈ T ∗(x, I) : ẋ(t) = φ1(x),

t ∈ T ∗(x, I) : x+(t)− x−(t) = GJ1(x−(t))(x
−(t)⊤φ2(x

−(t)),

GJ1(x−(t))(x
−(t))x+(t) = −ϵGJ1(x−(t))(x

−(t))x−(t),

x(0) =x0,

(5.6)

and φ1 ∈ C0(R2n) representing the continuous but not necessarily differentiable forces
and φ symbolising the discontinuous impact forces. We use this compact form of MDIs
for reasons of readability.

If T ∗(x, I) = ∅, system (5.6) would be an ODE. The methods which are discussed
in Section 5.1.1 would solve an ODE with order p ≥ 1 by construction (see Deufl-
hard,Bornemann [27]). It is not proven whether they solve differential inclusions with
the same order. We reduce in the first step MDIs to an ODE with an impact conditions
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as it is formulated in (5.6). One advantage is that the methods of 5.1.1 would identify
every impact point, if the step sizes are small enough, and would not identify an im-
pact falsely. This can happened, if we would combine (5.6) with contact conditions like
g(x(τ)) = 0, ∂

∂x
g(x(τ)) = 0. In this situtation, two bodies touch each other and no impact

happens. A numerical scheme could falsely identify an impact.

The functions φ1, φ2 are Lipschitz continuous with Lipschitz constants L1, L2 and bounded
with upper bounds β1, β2. We assume that the solution of (5.6) is uniquely determined.
Furthermore, let 0, T /∈ T ∗(x) hold, i.e.

g(x0) > 0, g(x(T )) > 0.

Thus there must exist a δ > 0 with t /∈ T ∗(x, I) for all t ∈ (0, δ)∪ (T − δ, T ). For proof of
convergence for time-stepping methods in Theorem 5.25, we first have a look on solutions
x of (5.6) with only finitely many points of discontinuity

0 < τ1 < τ2 < . . . < τm < T

with τi ∈ T ∗(x, I). This means that in the first step of developing a comparison criterion
for numerical methods we will not consider the Zeno phenomenon. The bouncing ball
and the impact oscillator are problems of the form (5.6) and it is possible to find T > 0
such that |T ∗(x, I)| = m ∈ N as explained in Chapter 4.

If the solution x(t) of (5.6) fulfills the inequality g(x(t)) > 0 for all t ∈ [0, T ], the system
(5.6) would be equivalent to an ODE. Hence, it is plausible to use timestepping methods
which are originally devoleped for ODEs and then combined with the impact constraints.
The timestepping schemes presented in Section 5.1.1. proceed in time steps ti → ti+1 =
ti + h of equidistant stepsize

h =
T

N
,N ∈ N,

from an initial state x0 in t = 0 to T . A sequence (xi)
N
i=1 with xi ≈ x(ti) is computed.

An abstract version of the methods from Section 5.1.1., which we examine here, is

x̃i+1 = xi + hΦ(ti, xi;h, φ1), n = 0, 1, . . . , N − 1

if g(x̂i+1) ≤ 0 :

x̂i+1 = xi + hΦ

(
ti, xi;

r · h
r + 1

, φ1

)
xi+1 = x̂i+1 + hΦ

(
ti +

r · h
r + 1

, x̂i+1;
h

r + 1
, φ1

)
+GJ1(x̂i+1)(x̂i+1)φ2(x̂i+1)

GJ1(x̂i+1)(x̂i+1)xi+1 = −ϵGJ1(x̂i+1)(x̂i+1)x̂i+1

else

xi+1 = x̃i+1

(5.7)
Here, Φ is the increment function of the numerical method for the ODE part of (5.6) of
order p ≥ 1 for smooth enough right hand sides which is also Lipschitz continuous with
Lipschitz constant LΦ and bounded by β3. The parameter r ∈ N is the polonymial de-
gree of the ansatz of test functions which are used to construct the timestepping methods.
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If there is no impact in [0, T ], the numerical solution (xi)
N
i=1 has a global error

ε := max
1≤i≤N

∥xi − x(ti)∥ = O(hp).

We use here the supremum norm to underline that the error can be constant even if h→ 0.
The classical convergence analysis of timestepping schemes supposes that the right-hand
side is at least p times continuously differentiable on [0, T ] to get order p, see [27]. Since
this assumption is violated for non-smooth problems, this error estimate can not be used.
In the following section, we work out the error bounds observed in practice for systems
(5.6) with the help of different examples (see also [80]). We prove this error bounds by
using not the classical convergence. We will be explain later why we switch to orbital
convergence.

As in [80], we take a look at the global error of numerical solutions of a ball in free fall,
a ball in rest mode and a jumping ball. The respective equations of motion increase in
complexity from an ordinary differential equation to a differential inclusion to a measure
differential inclusion.

Problem 5.10 (Bouncing ball: free flight) First, we consider the equations of motion
of a ball in free fall. An obstacle does not exist. The equations of motion result in the
following ODE

q(0) = 1, v(0) = 0, q̇ = v, v̇ = −10t4.

The analytical solution is given by

q(t) = 1− 1

3
t6, v(t) = −2t5.

Algorithm 3 shows numerically convergence order one. The timestepping schemes based
on parameters (5.3) and (5.4) have order two and three (cf. Figure 5.3). We does not use
the realistic formulation v̇(t) = g where g is the acceleration of gravity because then no
difference between the algorithms could be observed.
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Figure 5.3.: Experimental convergence analysis for the bouncing ball: free flight.

Problem 5.11 (Bouncing ball: Rest phase) Now the dynamics of a ball is considered
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which starts in a resting position on a ground obstacle. It is influenced by the gravitational
force. To guarantee the non-penetration of obstacle and ball, a contact force λ is added.
The equations of motion form a differential inclusion of the following form

q(0) = 0, v(0) = 0, q̇ = v, v̇ = −10t4 + λ(t), −λ(t) ∈ NR+(q(t)).

The analytical solution is given by

q(t) = 0, v(t) = 0, λ(t) = 2t5.

For this problem, Algorithm 3 has convergence order one, the numerical schemes based
on parameters (5.3) order two, on parameters (5.4) order three (cf. Figure 5.4). The
timestepping schemes have also for differential inclusions the expected convergence rate.
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Figure 5.4.: Experimental convergence analysis for the bouncing ball: rest phase.

Problem 5.12 (Bouncing ball: Combined analysis [80]) Now the classical bouncing ball
example with an obstacle is considered. The equations of motion

q̇ = v, v̇ = −2,

q(t) = 0 ⇒ v+(t) = v−(t) + max(0,−(1 + ϵ)v−(t)),

q(0) = 1, v(0) = 0,

are formulated state dependent. For ϵ = 0.5, the analytical solution is given by

t ∈ [0, 1) : q(t) = 1− t2, v(t) = −2t,

t ∈
[
3− 1

2p−1
, 3− 1

2p

)
, p ∈ N : q(t) = −(t− 3)2 − 3

2p
(t− 1) +

1

2p−1

(
3− 1

2p

)
,

v(t) = −2(t− 3)− 3

2p
.

For this problem, for all tested numerical schemes the global error in q and v fulfills

εq = O(h), εv = O(1)

(cf. Figure 5.5). It does not matter how many computational effort is used to get better
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Figure 5.5.: Experimental convergence analysis for the bouncing ball: combined phase

approximations in smooth phases. For some schemes and stepsizes, the impact time points
are hit better than with other combinations. However, this is always a random task and
would require a prior knowledge of impact points. Therefore, there is at most only an
upper bound for the error. You can’t seem to get a better approximation with more effort.

Example 5.13 (Classical Order - Impact oscillator) As another application, the impact
oscillator of Example 4.1 is considered. The reference solution is calculated with the
Algorithm 4 and parameters (5.5) with high accuracy. It can again be observed

εq = O(h), εv = O(1)

for all timestepping schemes (cf. Figure 5.6).

10
-2

10
0

10
-5

10
0

Position

10
-2

10
0

10
-5

10
0

Velocity

Figure 5.6.: Experimental convergence analysis for the impact oscillator.

Example 5.14 (Classical order - higher dimensional problem) In order to apply our
considerations to higher dimensional problems with an impact condition, we consider the
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Figure 5.7.: 10 trajectories of Example 5.14 with n = 5

following abstract differential problem{
ẍ(t) = −Ax(t), ∥x(t)∥22 > 0.25

ẋ+(t) = −2ẋ−(t), ∥x(t)∥22 = 0.25
, x(0) = 1n

with n ∈ R, A ∈ Rn×n. We select the entries of matrix A normally distributed between 0.5
and 1. A function x ∈ C0([0, T ],Rn) is the solution of this problem. The time derivative
ẋ is not continuous. We use Algorithm 4 and parameters (5.5) to solve the problem. Since
∥x(t)∥ obviously has points where it is not differentiable, the time derivative must again
have jumps.
As Figure 5.8 shows, the error ε of x is O(h). The equation εẋ = O(1) follows.
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Figure 5.8.: Experimental convergence analysis for Example 5.14 and a fixed A.

Remark 5.15 (Peaking phenomenon) It will not make a difference which application ex-
ample of non-smooth mechanics one considers, timestepping methods will always have the
classical global error in O(1) for such non-smooth systems. An increased computational
effort for a better approximation of the solution in the smooth phases is not reflected
in the concept at all. The reason, the so-called peaking phenomenon, will be explained
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in this section. If one does not identify the critical points like it would be typically for
event-driven schemes, it may happen that they are not noticed in the right time step. Fig-
ure 5.9 highlights visually the described phenomenon. If there is a jump in the solution
as here in t∗ and it is noticed regardless of the stepsize in the next time step, the error
remains almost constant. In the iteration point next to t∗, the error is about as large
as the jump. It may even happen that a jump is registered at the correct interval with
stepsize h and with h/2 not. The convergence plots do not give such smooth curves as
if smooth examples are used. In Figure 5.10 the absolute error in the velocity is plotted
for different stepsizes. For the numerical solution the trapezoidal rule was used. In the
neighbourhood of the critical time points, a peak is observed, which does not decrease
even for smaller stepsizes. The reason is that the impact is not recognised in the correct
time integration step.

t∗

Stepsize h

t∗

Stepsize h/2

Figure 5.9.: Peaking phenomenon.
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Figure 5.10.: Experimental convergence analysis for the bouncing ball: Peaks.

5.2. Orbital Convergence

In order to be able to compare different numerical methods in a better way, we use
another tool to judge their approximation quality. In this section, the concept of orbital
convergence will be introduced. There are applications with a higher relevance of a good
numerical approximation of limit sets than of the approximation in certain time points.
Noteworthy are invariant orbits such as of an equilibrium points or of a periodic solutions.
In the following, we will consider the approximation quality of this whole solution set,
so-called orbits. It is important to mention, however, that the concept is only plausible for
applications with invariant limit cycles. Another important point, which will be discussed
later, is that the system is autonomous. For chaotic solutions, the orbital convergence
presented in the next section would not be a suitable comparising tool for numerical
methods.
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5.2.1. Concept

Definition 5.16 (Orbit, [74]) Let x(t) ∈ SBV +(I,Rn) be a solution of (3.1) with initial
value x(t0) = x0. Then we call the set γ(x0, I) = {x(t), t ∈ I} orbit in x0 of I.

Definition 5.17 (Numerical orbit) Let x0, x1, . . . , xN be numerical approximations of a
timestepping scheme in time points t0, t1, . . . , tN ∈ I. Then the discrete set

γh(I) = {xi, i = 0, 1, . . . , N}

is called numerical orbit of I.

Definition 5.18 (One-sided Hausdorff distance, [85]) Let ∅ ̸= A ⊂ Rn and ∅ ̸= B ⊂ Rn

two bounded sets. The directed or one-sided Hausdorff distance from A to B is the
non-negative number

ρ(A,B) := sup
a∈A

inf
b∈B

∥a− b∥

where ∥.∥ is a norm on Rn.

Definition 5.19 (Pseudo-quasimetric) A function d : X ×X → R+ on a set X is called
a pseudo-quasimetric if ∀ x, y ∈ X

(i) d(x, y) ≥ 0 (positivity),

(ii) x = y ⇒ d(x, y) = 0 (indistancy),

(iii) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Theorem 5.20 The one-sided Hausdorff distance is a pseudo-quasimetric on the set of
all bounded sets of Rn called X.

Proof: Let A,B,C ⊂ Rn and ∥.∥ be a norm on Rn. For all bounded sets, both the
supremum and the infimum exist.

(i)
∥a− b∥ ≥ 0, ∀ a ∈ A, b ∈ B.

⇔ inf
b∈B

∥a− b∥ ≥ 0, ∀ a ∈ A.

⇔ ρ(A,B) = sup
a∈A

inf
b∈B

∥a− b∥ ≥ 0.

(ii) Let A = B and a ∈ A fixed. Since ∥.∥ is a norm and with ∥a− b∥ ≥ 0, ∀ b ∈ A, you
get infb∈A ∥a− b∥ = ∥a− a∥ = 0, ∀ a ∈ A, and furthermore ρ(A,A) = supa∈A 0 = 0.
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(iii)

∥a− c∥ ≤ ∥a− b∥+ ∥b− c∥ , ∀ a ∈ A, b ∈ B, c ∈ C,

⇒ inf
c∈C

∥a− c∥ ≤ ∥a− b∥+ inf
c∈C

∥b− c∥ , ∀ a ∈ A, b ∈ B,

⇒ inf
c∈C

∥a− c∥ ≤ ∥a− b∥+ sup
b∈B

inf
c∈C

∥b− c∥ , ∀ a ∈ A, b ∈ B,

= ∥a− b∥+ ρ(B,C), ∀ a ∈ A, b ∈ B,

⇒ inf
c∈C

∥a− c∥ ≤ inf
b∈B

∥a− b∥+ ρ(B,C), ∀ a ∈ A,

⇒ sup
a∈A

inf
c∈C

∥a− c∥ ≤ sup
a∈A

inf
b∈B

∥a− b∥+ ρ(B,C),

⇒ ρ(A,C) ≤ ρ(A,B) + ρ(B,C).

Definition 5.21 (Orbital convergence) Let x(t) ∈ SBV +(I,Rn) be the solution of (3.1)
to the initial value x(t0) = x0 with orbit γ(x0, I) and x0, x1, . . . , xN numerical approxima-
tions in time points t0, t1, . . . , tN summarised to the numerical orbit γh(I). The numerical
scheme convergences orbitally if

ρ
(
γh(I), γ(x0, I)

)
= O(h).

5.2.2. Numerical Studies

In the following section, three examples from the previous chapters with impact condi-
tions are studied. The orbits are graphically illustrated for one dimensional problems.
The respective subfigures refer to the different timestepping methods that have already
been presented. Sometimes there is no visual difference between numerical and contin-
uous orbit. Then the graphical representation was omitted. In each figure, the exact
or numerical orbit of very high accuracy can be seen in black. In different colours four
discrete numerical orbits are added which should approximate the black one. Next, the
numerical orbits representing different stepsizes are compared with the continuous one
using the one-sided Hausdorff distance. For the calculation of the distance we use the
numerical orbit γh

4
instead of the continuous one.

Example 5.22 (Bouncing ball - Orbits) First, the benchmark problem of the bouncing
ball with the newly introduced concept will be examined. For this purpose, the equations
of motion are solved numerically with the scheme of Moreau and the trapezoidal rule, each
with four different stepsizes. In Figure 5.11, the corresponding four discrete numerical
orbits are displayed together with the continuous orbit of the exact solution in black in a
q-v-diagramm. The initial values are q = 1, v = 0. The ball drops on a smooth curve to
q = 0, v = −2 and then jumps to q = 0, v = 1. After that, the ball lifts off with a positive
post-impact velocity until it approaches the state q = 0 again along a smooth curve.
It is observed that the trajectory winds closer and closer to the equilibrium point and
accumulation point of impact times (0, 0). In Figure 5.12 the Hausdorff distance between
the continuous orbit in black and the discrete numerical orbit for different stepsizes is
shown. We observe for all schemes that the Hausdorff distance isO(h). For some stepsizes,
the discontinuity points are hit so well, that the Algorithm 5 for methods with order two
or three solve the problem with machine accuracy. The present example is a differential
problem with constant right-hand side.
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(a) Moreau scheme (b) Trapezoidal rule

Figure 5.11.: Bouncing ball orbits, Problem 5.12: q0 = 1, v0 = 0, ϵ = 0.6.

10
-3

10
-2

10
-1

10
0

10
-10

10
0

Figure 5.12.: Orbital convergence: Bouncing ball.

Example 5.23 (Impact oscillator - Orbits) Example 4.1 describes a one-dimensional
impact oscillator. In Chapter 4, it has been proven that a periodic limit cycle exists for
each parameter set. Moreover, in numerical experiments it has been shown that it is an
asymptotically stable limit cycle. With the parameter set ϵ = 0.6, σ = 0 and p = sin(q),
the problem has been solved with the method of Moreau and the timestepping methods
in Algorithm 5 of order 2, 3 and 4 for four different stepsizes.
The orbits are plotted in Figure 5.13. For h→ 0 one can observe a convergence against the
limit cycle for all methods. In Figure 5.14, the Hausdorff distance between the exact orbit
and the discrete numerical ones is plotted and the expected accurracy can be observed.

Remark 5.24 (Higher dimensional problem) The concept of orbital convergence is also
applied to a higher dimensional problem. Of course, the orbits can not longer be visualised.
Therefore, we do not show the orbits graphically. We use the problem in Example 5.14
with n = 5 and a fixed A.
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(a) Moreau scheme (b) Trapezoidal rule

(c) Order 3 (d) Order 4

Figure 5.13.: Impact oscillator orbits.
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Figure 5.14.: Orbital convergence: Impact oscillator

5.2.3. Convergence Analysis

Since we consider first only problems with finitely many discontinuities (τj)
m
j=1 in [0, T ]

and a δ > 0 exists with
((0, δ) ∪ (T − δ, T )) ∩ T ∗(x) = ∅

one can find a stepsize hmax such that for all stepsizes h ≤ hmax there is at most one
discontinuity τj in each time step ti → ti+1 = ti + h.
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Figure 5.15.: Orbital convergence: Example 5.14

Theorem 5.25 Let h0 > 0 and γh([0, T ]) be the numerical orbit of (5.7) with a stepsize
h ∈ (0, h0) applied to (5.6). Then

ρ(γh([0, T ], γ(x0, [0, T ]))) = O(h).

Proof: Since g is twice continuously differentiable, there is an h0 ≤ hmax

3
, so that in three

time steps
ti−1 → ti → ti+1 → ti+2

we have at most one discontinuity τj, detect no impact erroneously and capture all im-
pacts. This is a consequence of the assumptions made in Remark ??.

To derive the global error of (5.7), we first consider the local error in a time step ti →
ti+1 = ti + h with an initial value xi = x(ti). The following situations can occur:

(i) T ∗(x)∩ [ti, ti+1] = ∅, g(x̂i+1) > 0: Both the analytical and numerical solutions detect
no impact.

(ii) T ∗(x)∩ [ti, ti+1] = {τj}, g(x̂i+1) ≤ 0: An impact is detected at the correct time step.

(iii) T ∗(x) ∩ ([ti−1, ti] ∪ [ti+1, ti+2]) = {τj}, g(x̂i+1) ≤ 0: An impact is detected one time
step too early or too late.

(iv) T ∗(x) ∩ [ti, ti+1] = {τj}, g(x̂i+1) ≥ 0: An impact is not detected.

We will find for each of the four situations a t ∈ [ti−1, ti+2] with

∥xi+1 − x(t)∥ = O(h).

We start with situation (i). Then the problem (5.6) is an ODE in [ti, ti+1] with continuous
right-hand side solved by (5.7) with an increment function Φ of order p.

∥xi+1 − x(ti+1)∥ = ∥xi + hΦ(ti, xi;h, φ1)− x(ti+1)∥
= ∥x(ti) + hΦ(ti, x(ti);h, φ1)− x(ti+1)∥
= O(hp+1)



5. Orbital convergence 97

Let us look at situation (ii). Here the discontinuity τj ∈ [ti, ti+1] is detected at the right
time step. Nevertheless, the numerical procedure does not solve the problem (5.6) in
[ti, ti+1], which has discontinuity in τj. It solves the MDI

dx = φ1(x) dt+ φ2(x
−) dδti+1

, x(ti) = x(ti), (5.8)

which jumps in ti+1. Note that x coincides with x up to timepoint τj. The jump amount
in ti+1 is computed numerically to arbitrary precision using, for example, non-smooth
Newton methods for complementarity problems. If we start with the exact initial value
xn = x(ti), the method (5.7) solves the problem (5.8) with accuracy O(hp), because

∥xi+1 − x(ti+1)∥ = ∥xn + hΦ(ti, xi;h, φ1) + φ2(x̂i+1)−

(xi +

∫
[ti,ti+1]

φ1(x(t)) dt+ φ2(x
−(ti+1)))

∥∥∥∥
≤
∥∥∥∥hΦ(ti, xi;h, φ1)−

∫
[ti,ti+1]

φ1(x(t)) dt

∥∥∥∥+ ∥∥φ2(x̂i+1)− φ2(x
−(ti+1))

∥∥
= O(hp+1) +

∥∥φ2(x
−(ti+1) +O(hp+1))− φ2(x

−(ti+1))
∥∥

≤ O(hp+1) + L2 · O(hp+1) = O(hp+1)

We define another auxiliary system on [τj, ti+1] by applying to the analytic solution x
for t ∈ [τj, ti+1] a translation by the vector ϱ := −φ2(x

−(τj)). Let x̃(t) := x(t) − m in
t ∈ [τj, ti+1] be the solution of the ODE

˙̃x(t) = ẋ(t) = φ1(x(t)) = φ1(x̃(t) + ϱ)

x̃(τj) = x+(τj) + q = x−(τj)
(5.9)

τjti ti+1

x

x̃
x

Figure 5.16.: Different solutions.

For this shifted problem (5.9) one can show with the Gronwall lemma

∥∥x−(ti+1)− x̃(ti+1)
∥∥ =

∥∥∥∥∥x(τj) + ϱ+

∫
(τj ,ti+1]

φ1(x(t)) dt− ϱ

−

(
x(τj) +

∫
[τj ,ti+1]

φ1(x(t)) dt

)∥∥∥∥∥
≤ C · ∥ϱ∥

(
eL1(ti+1−τj) − 1

)
≤ C · ∥ϱ∥L1e

L1h|ti+1 − τj| = O(h)

So with problems (5.8) and (5.9) we get, if xi = x(ti),
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∥x(ti+1)− xi+1∥ ≤ ∥xi+1 − x(ti+1)∥+ ∥x(ti+1)− x(ti+1)∥
= O(hp) +

∥∥x−(ti+1) + φ2(x
−(ti+1))− x(ti+1)

∥∥
≤ O(hp) +

∥∥x−(ti+1)− x̃(ti+1)
∥∥+ ∥∥x̃−(ti+1) + φ2(x

−(ti+1))− x(ti+1)
∥∥

= O(hp) +O(h) +
∥∥x(ti+1)− q + φ2(x

−(ti+1))− x(ti+1)
∥∥

= O(hp) +O(h) +
∥∥φ2(x

−(ti+1))− φ2(x
−(τj))

∥∥
= O(hp) +O(h)

Let us now look at situation (iii). If τj ∈ T ∗(x) ∩ [ti−1, ti] and the jump is detected too
late, ti+1− τj ≤ 2h holds and the proof from situation (ii) is also applicable here. Now let
τj ∈ T ∗(x) ∩ [ti+1, ti+2] and the discontinuity is noticed in the previous time step. Then,
if again xi = x(ti) +O(h) holds, it follows similarly

∥xi+1 − x(τj)∥ ≤ ∥xi+1 − x(ti+1)∥+ ∥x(ti+1)− x(τj)∥

= O(h) +

∥∥∥∥∥φ2(x
−(ti+1))−

(∫
[ti+1,τj ]

φ1(x(t)) dt+ φ2(x
−(τj))

)∥∥∥∥∥
≤ L2e

L2(τj−ti+1) + β1 · C · (τj − ti+1) +O(h) = O(h)

Finally, we consider situation (iv). If a discontinuity point τj ∈ T ∗(h) ∩ [ti, ti+1] is not
identified, it will be recognised at the next time step ti+1 → ti+2. For the numerical
solution xi+1, the following applies

∥xi+1 − x(ti)∥ = ∥hΦ(ti, x(ti), h, φ1)∥ = O(h)

We have been able to infer in all four situations from the initial condition xi = x(ti)+O(h)
at the time step ti → ti+1 = ti + h the conclusion

∃ t ∈ [ti, ti+2] : xi+1 = x(t) +O(h).

So the numerical solution remains in an h-tube around the analytic orbit. If we now
proceed inductively and sum over all time steps, we get the numerical observed result

ρ(γh([0, T ]), γ(x0, [0, T ])) = O(h)

of orbital convergence.
Next we consider the Zeno phenomen for ϵ ∈ (0, 1). If ϵ = 0 this is not possible.

Theorem 5.26 (Orbital convergence of systems with accumulation points of impacts)
Let t∗ be an accumulation point of critical points with ϵ ∈ (0, 1). Therefore, there is a
sequence (t∗k)k∈N with t∗k → t∗ and v+(t∗k) − v−(t∗k) → 0 for k → ∞. There exists an
hmax > 0 with i ∈ N such that t∗i−1 < t∗ − hmax < t∗i and

∞∑
j=i

∥∥v+(t∗j)− v−(t∗j)
∥∥ ≤ C ·

∥∥v+(t∗i )− v−(t∗i ))
∥∥+O(hmax)

for some constant C > 0.
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Proof: Let δi be the heigth of the i-th velocity jump, i.e.

δi =
∥∥v+(t∗i )− v−(t∗i )

∥∥ .
The first three jumps can be estimated

δ0 =
∥∥v+(t∗0)− v−(t∗0)

∥∥ ≤ βG(1 + ϵ)
∥∥v+(t∗0)∥∥ ,

δ1 =
∥∥v+(t∗1)− v−(t∗1)

∥∥leqβG(1 + ϵ)
∥∥v+(t∗0) +O(t∗1 − t∗0)

∥∥ ,
δ2 =

∥∥v+(t∗2)− v−(t∗2)
∥∥leqβG(1 + ϵ)

∥∥ϵv+(t∗0) + ϵO(t∗1 − t∗0) +O(t∗1 − t∗2)
∥∥

with βG is an upper bound of ∥G∥ and in general

δi ≤ βG(1 + ϵ)ϵi−1
∥∥v+(t∗0)∥∥+ βG(1 + ϵ)

i∑
j=1

ϵj−1O(t∗j − t∗j−1)

If the sum over all velocity jumps is considered we get

∞∑
i=0

δi ≤ βG(1 + ϵ)
∞∑
i=0

ϵi−1
∥∥v+(t∗0)∥∥+ βG(1 + ϵ)

∞∑
i=0

i∑
j=1

ϵj−1O(t∗j − t∗j−1)

= βG(1 + ϵ)
∥∥v+(t∗0)∥∥ · 1

ϵ− ϵ2
+ βG(1 + ϵ)

∞∑
i=0

O(t∗j − t∗j−1) ·
(1− ϵi−1)

(1− ϵ)

≤ βG(1 + ϵ)
∥∥v+(t∗0)∥∥ · 1

ϵ− ϵ2
+ βG(1 + ϵ)

∞∑
i=0

O(hmax) ·
(1− ϵ)i−1

(1− ϵ)

=
βG(1 + ϵ)

ϵ− ϵ2
∥∥v+(t∗0)∥∥+ βG(1 + ϵ)

(1− ϵ)
· O(hmax)

∞∑
i=0

(1− ϵ)i−1

=
βG(1 + ϵ)

ϵ− ϵ2
∥∥v+(t∗0)∥∥+ βG(1 + ϵ)

ϵ(1− ϵ)
· O(hmax)

Remark 5.27 In the numerical tests we have deliberately considered only examples with
invariant limit cycles, since for these the orbit plays a special role. As it has been proven,
the numerical solution converges against the analytical orbit. For applications without
invariant limit cycles, this is not a statement relevant for reality. Whether the error bound
is dominated by aO(h) term or, as can be seen in the experiments, even of better accuracy,
is a matter of chance. It depends on the location of the discontinuities relative to the
location of the grid points. Other problem properties that are favourable for convergence,
and possibly observed in the numerical experiments, are

� Attractiveness of the orbit

� Influence of the selection of initial values

These properties were not considered in more detail. No statement can be made how
much they influence the error bounds.





6. Conclusion

In this thesis, various analytical and numerical aspects of non-smooth mechanical systems
have been considered, re-derived and proved. The inclusion of contact and impact forces
makes the discussion of the equations of motion more complex as for force-free systems
or systems with smooth forces. New analytical problem classes and generalised solution
spaces have to be added. However, due to similar structures, it is often possible to pick
up and generalise many results and strategies for smooth systems to non-smooth ones.

In Chapter 3, two new theorems concerning the existence and boundedness are introduced
and proved. These are immensely important to guarantee the correctness of current mod-
elling strategies. With the quickly verifiable preconditions of the existence statements,
one can now save time and effort without hesitation in order to work with a minimum
number of coordinates or without redundant constraints. The criteria could be verified for
a few academic examples. Their true manageability would only become apparent when
they are applied to systems of very high dimension. These play a role in granular or
building simulation, for example.

As the example of a house during an earthquake [20] shows, other properties of the so-
lutions play an important role. For this purpose, the existence of equilibria and periodic
solutions of MDIs of small dimension was analysed in Chapter four. The focus is on the
impact oscillator. Again, two new theorems could be formulated and shown. They prove
the existence of periodic solutions for different drive forms. In the first theorem about
time-dependent systems, the idea of a fixed point theorem was used following [56]. In the
cited work, frictional rather than impulsive forces were considered. In the second step, the
drive depends only on the position. An autonomous system is considered. For this pur-
pose, the transversal theory and the Poincaré-Bendixson theorem for smooth autonomous
plane systems [74] were applied to the impact oscillator. Whether these strategies work
for all plane systems is still unknown. In the next section, it is shown for equilibrium and
periodic systems that they are stable under certain conditions. This means that initial
value perturbations nevertheless cause similar behaviour and the system does not behave
totally chaotically. The analytical results could again be supported with numerically gen-
erated experiments. In the future, it would be interesting to study the systems in terms
of their dependence on initial values and parameters. After all, reality is always changing.

In Chapter 5, the numerical solution of MDIs is discussed. Since the difficult Zeno phe-
nomenon is the focus of this thesis, time-stepping methods are concentrated on. These
are difficult to compare with the usual numerical instruments for non-smooth problems.
Therefore, a completely new instrument was developed using orbital convergence. The
numerical experiments and the analytical proof showed the well-definedness of the con-
cept. However, it can only be applied to autonomous problems with positively invariant
limit cycles. The usefulness for other problems must be questioned.





A. Measure and Integration Theory

An interesting question is, whether it is possible to define functions µ called measures
which map to a large class of sets A ⊂ Rn their volume or other important quantities. In
R it could match the length of intervals, in R2 the classical surface of areas and in R3 the
classical volume of bodies. With the rigorous theory of measure and integration theory
this difficult topic could be handled for a large class of subsets Rn. For more details we
refer to the classical literature [23, 30, 77].

σ-algebras and measures

The most important role of σ-algebras is taken as domains of measures. Precursors of σ-
algebras are rings and algebras. For a set X ⊂ Rn the set of all possible subsets including
the empty set and X is called power set and is denoted by P (X).

Definition A.1 (Ring, algebra, σ-algebra) A system R ⊂ P (X) is called a ring over X
if and only if it has the following three properties

(i) ∅ ∈ R, (ii) A,B ∈ R ⇒ A ∪B ∈ R, (iii) A,B ∈ R ⇒ A\B ∈ R.

A system A ⊂ P (X) is an algebra over X if and only if

(i) X ∈ A, (ii) A,B ∈ A ⇒ A ∪B ∈ A, (iii) A ∈ A ⇒ AC ∈ A.

A system A ⊂ P (X) is called σ-algebra over X if and only if

(i) X ∈ A, ∅ ∈ A, (ii) A1, A2 ∈ A ⇒ A1 ∪ A2 ∈ A, A1 ∩ A2 ∈ A, A1\A2 ∈ A,
(iii) A1, A2, ... ∈ A ⇒ ∪∞

i=1Ai ∈ A,∩∞
i=1Ai ∈ A.

Often, σ-algebras are given by the specification of a generator. This procedure bases on
a simple assumption: Every average of arbitrary many σ-algebras is again a σ-algebra.
A deduction is that for every set B ⊂ P (X) a with respect to set inclusion smallest σ-
algebra over B exists (Notation AB). It is the average of all σ-algebras over B. This set
is called the σ-algebra generated by B and B is the so called generator.

Example A.2 (Cuboids, figures) A subset Q ⊂ X is called a half-open cuboid of Rn if
it has the form

Q = [a1, b1)× . . .× [an, bn) , ai ≤ bi, i = 1, . . . , n.

A set A ⊂ Rn is called figure if it is equivalent to the union of finite many pairwise disjoint
half-open cuboids

A =

p⋃
i=1

Qi.

The set of all figures
Rn := {A ⊂ Rn : A is a figure}

is a ring on Rn, but no σ-algebra.
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Example A.3 (Borel σ-algebra of Rn) For the measure theory the most important σ-
algebra is the σ-algebra generated by sets of all open subsets of Rn. It is called the Borel
σ-algebra of Rn, noted by B(Rn) and can be generated by the closed or compact subsets
of Rn, too.

Definition A.4 (Finitely additive measure, pre-measure, measure) Let R be a ring over
X and µ : R → [0,∞]. The function µ is called a finitely additive measure if

(i) µ(∅) = 0, (ii) A,B ∈ R,A ∩B = ∅ ⇒ µ(A ∪B) = µ(A) + µ(B) (additivity).

Furthermore, µ is a pre-measure over an algebra A if

(i) µ(∅) = 0, (ii) (An)n∈N ∈ A,∩∞
n=1An = ∅ ⇒ µ(∪∞

n=1An) =
∑∞

n=1 µ(An) (σ-additivity).

If µ : A → [0,∞] is a pre-measure over a σ-algebra A it is a measure. Then, the triple
(X,A, µ) is called a measure space and all elements of A are called measurable. If A ∈ A
with µ(A) = 0 then it is a µ-null-set.

Example A.5 (Dirac measure, characteristic function) Let p ∈ X. The Dirac measure
δp indicates if p belonges to a set A ⊂ X, i.e.

δp(A) :=

{
1, p ∈ A,
0, p /∈ A.

With the characteristic function

χA(x) :=

{
1, x ∈ A,
0, x /∈ X\A.

of a set A, the Dirac measure can be defined as δp(A) = χA(p).

Example A.6 (Lebesgue pre-measure) Let Q ⊂ Rn be a half-open cuboid. The geomet-
rical volume of Q is

vn(Q) := Πn
i=1(bi − ai).

The volume of a figure A ∈ Rn is defined as

µn(A) :=

{ ∑n
i=1 vn(Qi), A ̸= ∅,

0, A = ∅.

The function µn is a σ-finite pre-measure called the Lebesgue pre-measure. A function
µ on R ⊂ P (X) is called σ-finite if there are (Xn)n≥0 ⊂ X with X = ∪∞

n=0Xn and
µ(Xn) <∞,∀ n ≥ 0.

Remark A.7 (Construction of measure spaces according to Caratheodory) The speci-
fication of pre-measures is in contrast to the specification of measures relatively simple.
Caratheodory construct a generalized method to continue pre-measures to measures.

A function µ∗ : P (X) → [0,∞] is called an outer measure if

(i) µ∗(∅) = 0, (ii) A ⊂ B ⇒ µ∗(A) ≤ µ∗(B) (monotonicity), (iii) µ∗(∩∞
n=1An) ≤∑∞

n=1 µ
∗(An) (σ-semi-additivity).
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A set A ⊂ X is called µ∗-measurable if

∃ E ⊂ X : µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ AC).

The set of all µ∗-measurable sets is noted byAµ∗ . Caratheodory has proved that (X,Aµ∗ , µ∗|Aµ∗ )
is a measure space. For example, the function

µ∗(E) := inf

(
∞∑
n=1

µ(An), E ⊂ ∪∞
n=1An, An ∈ R

)

defines an outer measure when µ is a pre-measure over R [30, pp. 55-58].

Example A.8 (Lebesgue measure over Rn) Let Rn be the ring of all figures of Rn and
µn the Lebesgue pre-measure of Example A.6. The outer measure µ∗

n : P (Rn) → [0,∞]
generated by µn is called the outer Lebesgue measure. Following Remark A.7, the space
L(Rn) := Aµ∗ is the σ-algebra of all Lebesgue measurable sets and λn := µ∗

n|L(Rn) is the
Lebesgue measure. Often the dimension n vanishes and the alternative notation dt := λn
is used for the Lebesgue measure.

Example A.9 (Lebesgue-Stieltjes measure on Rn) Let f : Rn → R be monotone
increasing and right-side continuous and A = ∪∞

i=1Qi with half-open cuboids Qj =
[aj1, b

j
1)× . . .× [ajn, b

j
n) an element of Rn. The function

µf (A) :=

{ ∑n
i=1 v(Qi), A ̸= ∅,

0, A = ∅. with v(Qj) := Πn
i=1(f(bi)− f(ai))

is a σ-finite pre-measure on Rn. The outer measure µ∗
f generated by µf is called outer

Lebesgue-Stieltjes measure of f and (Rn,Aν∗f
, ν∗f |Aν∗

f
) is a measure space where ν∗f |Aν∗

f
is

the Lebesgue-Stieltjes measure of f .

Measurable Functions and the Lebesgue Integral

In the following, let (X,A, µ) and (Y,B, ν) be measure spaces.

Definition A.10 (Measurable function) A function f : E ⊂ X → Y is called (A,B)-
measurable if f−1(B) ∈ A, ∀ B ∈ B. The function f : X → Y is called (A-)measurable if
it is (A,B(Y ))-measurable, where B(Y ) are the Borel σ-algebra of Y . This is the σ-algebra
generated by all open sets of Y .

Remark A.11 (Properties of measurable functions) Let f : X → Y, g : X → Y, fn :
X → Y, n ∈ N measurable functions. The compositions f + g, f ◦ g, min(f, g), max(f, g),
inf(fn), sup(fn), lim sup(fn), lim inf(fn) are measurable.

Example A.12 (Lebesgue measurable functions) If f is L(Rn)-measurable it is called
Lebesgue measurable. Every continuous function is Lebesgue measurable.

Theorem A.13 (Lusin) Let E ⊂ Rn a Lebesgue measurable set. Then f : E ⊂ Rn → R

is Lebesgue measurable if ∀ ϵ > 0 a closed Fϵ ⊂ E exists with

(i) f is continuous on Fϵ, (ii) λn(E\Fϵ) < ϵ.
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Theorem A.14 (Fréchet) Let E ⊂ Rn be a Lebesgue measurable set and f : E → R

Lebesgue measurable. Then, there is a sequence of continuous functions fn : E → R that
converges λn-almost everywhere to f . If a statement is µ-almost everywhere true on X
then there exists a µ-null set N such that is is satisfied for all x ∈ X\N .

Corollary A.15 A step function is measurable.

Definition A.16 (Integral of non-negative step functions) Let f : X → R a non-negative
step function with f =

∑n
i=1 ciχAi

, X = ∪n
i=1Ai,∩n

i=1Ai = ∅. The value∫
X

f dµ :=
n∑

i=1

ciµ(Ai)

is called the integral of f over X with respect to the measure µ. If µ is the Lebesgue
measure it is called the Lebesgue integral; if µ is the Lebesgue-Stieltjes measure of f it is
the Lebesgue-Stieltjes integral.

Definition A.17 (Integral of non-negative functions) Let f : X → R be a non-negative
measurable function. The value∫

X

f dµ := sup

{∫
X

ϕ dµ : ϕ is a non-negative step function with ϕ ≤ f

}
is called the integral of f over X with respect to µ.

Theorem A.18 Let f : X → R be a non-negative function. It exists a monotone
increasing sequence of non-negative step functions (fn)n∈N with fn ≤ f that converge
pointwise to f (Notation fn ↑ f).

Definition A.19 (Beppo-Levi) Let f : X → R be a non-negative function and (fn)n∈N
a monotone increasing sequence of non-negative step functions with fn ↑ f like in A.18.
Then, the equivalence ∫

X

f dµ = lim
n→∞

∫
X

fn dµ

is satisfied.

Remark A.20 (Properties of the integral) The integral is linear and preserves mono-
tonicity of sets or functions.

Corollary A.21 (Modulus function) Let f : X → R be measurable. Then, the functions

f+ := max(f, 0) ≥ 0, f− := max(−f, 0) ≥ 0

are measurable, too. It applies f = f+ − f− and the modulus function |f | := f+ + f−

can be defined.

Definition A.22 (Integrable function) An arbitrary measurable function f : X → R is
called µ-integrable if ∫

X

f+ dµ <∞,

∫
X

f− dµ <∞.
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The value ∫
X

f dµ :=

∫
X

f+ dµ−
∫
X

f− dµ

is the integral of f over X with respect to µ. The space of all µ-integrable A-measurable
functions over X is noted by L(X,A, µ).

Remark A.23 (Properties of the integral) Let f ∈ L(X,A, µ). Then, f is µ-almost
everywhere finite. If f = h is satisfied µ-almost everywhere, the equivalence

∫
X
f dµ =∫

X
h dµ is true.

Remark A.24 (Comparison to Riemann integral) The integral A.22 introduced by
Lebesgue has clear advantages in comparison to the older Riemann integral concept.
If the proper Riemann integral exists both values match. The most significant advantage
of the Lebesgue integral to Riemann ones is that much better convergence results exists.

Remark A.25 (Lp-spaces) Let

Lp(X,A, µ) := Lp :=

{
f : X → Y : f is A-measurable and

∫
X

|f |p dµ <∞
}
.

Using the inequalities of Hölder and Minkowski, it can be proved that

0 ≤ ∥f∥p :=
(∫

X

|f |p dµ

)1/p

<∞

is a semi-norm on Lp. If the set N := {f : X → Y : f is A − measurable, f = 0 µ −
almost everywhere} is ignored, the function ∥·∥p is a norm on Lp(X,A, µ) = Lp := Lp\N .
For p ≥ 1, (Lp, ∥·∥p) is a Banach space.

Absolute Continuity

Let (X,A, µ) be a measure space.

Definition A.26 (Signed measure) A function ν : A → R is called a signed measure if

(i) ν(∅) = 0, (ii) ν(A) ⊂ (−∞,∞] or ν(A) ⊂ [−∞,∞), (iii) A = ∪∞
i=1Ai,∩∞

i=1Ai =
∅ ⇒ ν(A) =

∑∞
i=1 ν(Ai).

Remark A.27 (Relation between measures and signed measures) Signed measures differ
to measures through the non-fulfilment of the non-negativity.

Examples A.28 (i) Let ρ, µ : A → [0,∞] be measures. The difference ν := ρ− µ is a
signed measure.

(ii) Let µ : A → [0,∞] a measure and f : X → R a µ-integrable function. Then,
ν : A → R with

ν(A) :=

∫
A

f(x) dµ,A ∈ X

is a signed measure. It is called signed measure with density f with respect to µ
and noted by ν = f ⊙ µ.
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Definition A.29 A set P ∈ A is called ν-positive if ν(A) ≥ 0,∀ A ⊂ P . A set N ∈ A is
called ν-negative if ν(A) ≤ 0,∀ A ⊂ N .

Theorem A.30 (Hahn decomposition theorem) Let ν : A → R be a signed measure.
Then a disjoint decomposition X = P ∪ N with a ν-positive set P and a ν-negative set
N exists and is unique except for ν-null sets.

Definition A.31 Let P ∪ N = X be the decomposition of X in A.30. The function
ν+ defined by ν+(A) := ν(A ∩ P ), A ∈ X is the positive variation of ν, ν− defined by
ν−(A) := ν(A ∩ N), A ∈ X the negative variation and |ν| := ν+ + ν− the variation.
Clearly ν = ν+ − ν− is true.

Example A.32 Let f be measurable. Following A.21 there exists a decomposition f =
f+ − f− in non-negative functions f+ and f−. If ν is a signed function with density f
with respect to µ (ν = f ⊙ µ) then ν+ = f+ ⊙ µ and ν− = f− ⊙ µ.

Definition A.33 (Singular signed measures) Let ν, µ : A → R be signed measures. They
are called singular if a decomposition X = A ∪ B with A ∩ B = ∅, A,B ∈ A, exists such
that A is a ν-null set and B is a µ-null set. (Notation: ν ⊥ µ).

Example A.34 For every signed measure ν it follows ν+ ⊥ ν−.

Definition A.35 (Absolute continuity) Let ν, µ : A → R be signed measures. The
function ν is called absolute continuous with respect to µ if µ(A) = 0, A ∈ X → ν(A) = 0
(Notation ν << µ).

Theorem A.36 (Radon-Nikodým) Let µ be a σ-finite measure and ν << µ a signed
measure. Then, ν has a density f with respect to µ. This f is µ-almost everywhere
uniquely defined.

Theorem A.37 (Lebesgue partition of the Lebesgue-Stieltjes measure) For all f ∈
BV(X,R), a partition

f = fabs + fS + fsing (A.1)

exists with the decomposition

νf = νabs + νs + νsing

of the signed Lebesgue-Stieltjes measure and the properties

i) fabs is absolutely continuous with respect to the Lebesgue measure λn = dt with
νabs << λn, νabs = ḟabs ⊙ λn,

ii) fS is a step function, i.e. it is almost everywhere constant and its signed measure
νS is a purely atomic measure

iii) fsing is a singular function, i.e. it is continuous and almost everywhere constant and
its measure νsing is orthogonal to λn.

If a vector-valued function f : X → Rn is given, everything is considered componentwise.



B. Variational Inequalities and
Complementarity Problems

Variational inequalities and the subclass of complementarity problems play an important
role in non-smooth mechanics and other application fields and coherent mathematical
topics like constrained optimisation problems, saddle problems, source problems, Nash
equilibrium problems or option pricing. In this section, different equivalent formulations
of variational inequalities are presented, properties are proved and a suitable numerical
algorithm is discussed. For a detailed introduction on variational inequalities and com-
plementarity problems we refer to [25, 31, 32, 52].

In this thesis, three analytically equivalent formulations of the impact law of Newton are
considered

(i) as a complementarity problem, which has the clearest reference to reality,

(ii) as a normal cone inclusion, which is used for analytical considerations,

(iii) as a non-smooth equation, for which the most effective numerical solution strategy
exists.

All of these are studied in the following section.

Definition B.1 (Variational inequality) Let C ⊂ Rn and F : C → Rn. The problem to
find an element x ∈ C such that

(y − x)⊤F (x) ≥ 0, ∀ y ∈ C (B.1)

is called a variational inequality (Notation: VI(C,F )). The set of all solutions x of (B.1)
is denoted SOL(C,F ).

Equivalent Formulations

Remark B.2 (Geometrical interpretation) The geometrical interpretation of Definition
B.1 is, that x ∈ C is a solution of VI(C,F ) if and only if the angle between vector F (x)
and all vectors y−x, y ∈ C, is always non-obtuse. The formalisation can be done by using
the definition of a normal cone.

Definition B.3 (Normal cone) Let C ⊂ Rn. The set of all normal vectors in x ∈ C is
the normal cone

NC(x) :=
{
x∗ ∈ Rn : (y − x)⊤x∗ ≤ 0,∀ y ∈ C

}
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Cx1NC(x1)

x2NC(x2)

x3
NC(x3) = {}

Figure B.1.: Normal Cone

Conclusion B.4 (Normal cone inclusion) All vectors that belongs to NC(x) are called
normal vectors of C in x. By definition it is easy to prove that x ∈ C solves VI(C,F ) if
and only if

−F (x) ∈ NC(x)

is satisfied.

In the analytical part of this thesis, this formulation of the non-linear parts is used to
underline the set-valued nature of the problems. Using projections, another important
equivalent formulation can be derived for closed and convex C which is utilised for the
numerical solution of such systems.

Definition B.5 (Euclidean projection) Let C ⊂ Rn be closed and convex. The Euclidean
projection of x ∈ Rn on C is defined as

projC(x) := argmin
z∈C

∥x− z∥ .

The vector projC(x) is the closest point of C to x. In [31, Theorem 1.5.5] it is proved
that projC(x) exists and is unique for closed and convex C.

Theorem B.6 Let C ⊂ Rn be closed and convex and F : C → Rn. Then, the statements

(i) x is a solution of VI(C,F ),

(ii) x = projC(x− F (x))

are equivalent [31, Proposition 1.5.8].

Proof: First it is proven that x∗ is the Euclidean projection of x on a convex C if and
only if

(iii) (y − x∗)⊤(x∗ − x) ≥ 0, ∀ y ∈ C.

Let x∗ be projC(x). It follows that x
∗ is the solution of

min(y − x)⊤(y − x) subject to y ∈ C

or equivalent

(iv) (y − x)⊤(y − x) ≥ (x∗ − x)⊤(x∗ − x), ∀ y ∈ C.

Since C is convex, for all α ∈ [0, 1] an y ∈ C the point xα,y := x∗ +α(y− x∗) is in C, too.
Following (iv) the function

Ψ(α) = (xα,y − x)⊤(xα,y − x)
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has its minimum independent of y in α = 0 and so it holds

0 ≤ ∂Ψ

∂α
(0) = (y − x∗)⊤(x∗ − x).

On the other side, (iii) can be transformed using the Cauchy-Schwarz inequality to

(y − x∗)⊤(x∗ − x) ≥ 0 ∀ y ∈ C

⇔ (y − x+ x− x∗)⊤(x∗ − x) ≥ 0 ∀ y ∈ C

⇔ (y − x)⊤(x∗ − x)− ∥x− x∗∥2 ≥ 0 ∀ y ∈ C

⇔ (y − x)⊤(x∗ − x) ≥ ∥x− x∗∥2 ∀ y ∈ C

⇔ ∥y − x∥ ∥x∗ − x∥ ≥ ∥x− x∗∥2 ∀ y ∈ C

⇔ ∥y − x∥ ≥ ∥x− x∗∥ ∀ y ∈ C

⇔ x∗ = projC(x) ∀ y ∈ C.

Using this equivalence of x∗ = proj(x) to (iii), we can rewrite (ii) to (y − x)⊤F (x) ≥
0, ∀ y ∈ C, which is the definition of a solution of VI(C,F ).

In addition to [31], this projection consideration is picked up in [81] in the context of non-
smooth mechanics. Since the projection function is non-differentiable at the boundery of
C the problem to find an x fulfilling (ii) is a non-smooth equation. In [31, Proposition
1.1.3], furthermore the following equivalence is proved when C is a cone.

Theorem B.7 (Complementarity problem) Let C ⊂ Rn be a cone, i.e. α ≥ 0, x ∈ C ⇒
αx ∈ C, and F : C → Rn. The vector x ∈ C solves VI(C,F ) if and only if x solves the
following problem

x ∈ C, F (x) ∈ C∗, (B.2a)

x⊤F (x) = 0. (B.2b)

The problem (B.2a)-(B.2b) is said to be a complementarity problem (Notation CP(C,F )).
The set C∗ is the dual cone to a cone C that is defined by

C∗ :=
{
d ∈ Rn : y⊤d ≥ 0, y ∈ C

}
.

An equivalent notation to (B.2a)-(B.2b) is

C ∋ x ⊥ F (x) ∈ C∗

where a ⊥ b means a⊤b = 0.

Proof: Let x ∈ C be a solution of VI(C,F ). From the definition of cones follows that
y1 = 0 ∈ C and y2 = 2x ∈ C. Condition (B.1) for this vectors is equivalent to

(i) x⊤F (x) ≤ 0,

(ii) x⊤F (x) ≥ 0.

Combining both, we deduce x⊤F (x) = 0. With this result, (B.1) transforms to

0 ≤ (y − x)⊤F (x) = y⊤F (x),∀ y ∈ C,
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i.e. F (x) ∈ C∗. Now let x ∈ C be a solution of CP(K,F ). That means for an arbitrary
y ∈ C the term (y−x)⊤F (x) reduces to y⊤F (x) which is non-negative because F (x) ∈ C∗.
Therefore, x solves VI(C,F ).

Definition B.8 We call x ∈ Rn feasible to CP(C,F ) if it satisfies (B.2a). All feasible
vectors to CP(C,F ) are summarized in FEA(C,F ).

There are two special cases of variational inequalities (B.1) which are interesting in non-
smooth mechanics.

Definition B.9 (Linear complementarity problem) The complementarity problem (B.2a)-
(B.2b) with

C = Rn
+ := {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}

and F (x) =Mx+ q,M ∈ Rn×n, q ∈ Rn, is called linear complementarity problem (Nota-
tion LCP(M, q)) and denoted by

0 ≤ x ⊥ Mx+ q ≥ 0. (B.3)

Its solution set is SOL(M, q).

Definition B.10 (Mixed linear complementarity problem) LetA ∈ Rm×n, B ∈ Rm×k, D ∈
Rk×n, E ∈ Rk×k, a ∈ Rm, b ∈ Rk. The problem to find x ∈ Rn, y ∈ Rk such that

Ax+By + a = 0 (B.4a)

0 ≤ y ⊥ Dx+ Ey + b ≥ 0 (B.4b)

is called mixed linear complementarity problem (Notation MLCP(A,B,D,E, a, b)).

Conclusion B.11 If A is invertible than problem (B.4a)-(B.4b) is equivalent to LCP(E−
DA−1B, b−DA−1a). Otherwise the following equivalence is useful.

Theorem B.12 The vectors x ∈ Rn and y ∈ Rk are the solution of MLCP(A,B,D,E, a, b)

if and only if z =

(
x
y

)
∈ Rn+k is the solution of VI(C,F ) with

C =

{
z ∈ Rn+k : z =

(
x
y

)
, x ∈ Rn, y ∈ Rk, y ≥ 0

}
,

F (z) =

(
Ax+By + a
Dx+ Ey + b

)
.

Proof: Let x, y be the solution of MLCP(A,B,D,E, a, b). Then z = (x⊤ y⊤)⊤ is clearly
an element of C. Let z̃ = (x̃⊤ ỹ⊤)⊤ with x̃ ∈ Rn, ỹ ∈ Rk, ỹ ≥ 0 be an arbitrary element
of C. It holds

(z̃ − z)⊤F (z) = (x̃− x)⊤(Ax+By + a) + (ỹ − y)⊤(Dx+ Ey + b)

= (x̃− x)⊤0 + ỹ⊤(Dx+ Ey + b)− y⊤(Dx+ Ey + b)

= ỹ⊤︸︷︷︸
≥0

(Dx+ Ey + b︸ ︷︷ ︸
≥0

)− 0 ≥ 0.

Therefore, z is a solution of VI(C,F ). Let z be a solution of VI(C,F ) and x ∈ Rn the first
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n elements of z and y ∈ Rk the last k elements. Trivially it follows y ≥ 0. Condition (B.1)
is true for z̃1 = (x⊤ 0)⊤ ∈ C and z̃2 = (x⊤ 2y⊤)⊤. This means y⊤(Dx+ Ey + b) ≤ 0 and
y⊤(Dx+Ey + b) ≥ 0 are both satisfied such that y⊤(Dx+Ey + b) = 0 results. Because
(B.1) is true for every zi = z + ei, i = n + 1, . . . , n + k the inequality Dx + Ey + b ≥ 0
follows. The vector ei is i-th unit vector. Similarly, from (B.1) for z1i = z + ei and
z2i = z − ei follows Ax+By + a = 0.

Lemma B.13 Let x ∗ y be the Hadamard product (x1y1, . . . , xnyn)
⊤ ∈ Rn for x, y ∈ Rn.

The following statements are equivalent for a symmetric matrix A

(i) A is positiv semi-definite

(ii) x ∗ (Ax) ≤ 0 ⇒ x ∗ (Ax) = 0

Proof: LetA be positiv definite and x∗(Ax) ≤ 0. The inequality x⊤Ax =
∑n

i=1 xi(Ax)i ≤
0. Since A is positiv semi-definite we know x⊤Ax = 0. Because every summand xi(Ax)i
of the sum is non-positive, it is zero. You get the conclusion x ∗ (Ax) = 0.

Let the conclusion x ∗ (Ax) ≤⇒ x ∗ (Ax) = 0 be true. We assume that A is not positiv
semi-definite. Then there is a negative eigenvalue λi < 0 with an eigenvector xi ̸= 0. The
vector

xi ∗ (Axi) = λi

(xi1)
2

...
(xin)

2


has at least one component which is not zero since xi ̸= 0. This contradicts the assump-
tion.

Theorem B.14 (Solvability of (MLCP) [72]) Let D = −B⊤, E = 0Rk×k . A feasible
mixed complementarity problem (B.4a)-(B.4b) has at least one solution if A is symmetric
and positiv semi-definite.

Proof: In [42] extended linear complementarity problems (XLCP) are analysed. Two
vectors y, z ∈ Rm solve an (XLCP) if

0 ≤ y ⊥ z ≥ 0, My −Nz ∈ K

withM,N ∈ Rn×m, ∅ ≠ K ⊂ Rn is a polyhedron.An (MLCP) (B.4a)-(B.4b) is an (XLCP)
with

M =

(
B
E

)
, N =

(
0
I

)
, K =

{
q ∈ Rn+m|∃ x ∈ Rn :

(
−A
−D

)
−
(
a
b

)
= q

}
.

Following [42], the (MLCP) with A = A⊤, D = −B⊤, E = 0 has one solution if

(B⊤u) ∗ v ≤ 0
A⊤u−B⊤v = 0

}
⇒ (B⊤u) ∗ v = 0.

If we use the equation and (B⊤u) ∗ v = u ∗ (Bv) this property can be transformed to

u ∗ (Au) ≤ 0 ⇒ u ∗ (Au) = 0.

With Lemma B.13 the claim follows.



B. Variational Inequalities and Complementarity Problems 112

If we want to solve the variational inequality V I(C,F ) we could also use methods to solve
inclusions, complementarity problems or non-smooth equations. A class of numerical
methods for non-smooth equations are non-smooth Newton methods.

Non-smooth Newton Methods

Problem B.15 (Non-smooth equation) Let G : C ⊂ Rn → Rm be a locally Lipschitz
function, but not necessarily differentiable. The problem to find an element x ∈ C with

G(x) = 0

is said to be a non-smooth equation.

Remark B.16 (Smooth Newton-type methods) The most important methods to solve
smooth non-linear equations with a differentiable function G are the Newton-type meth-
ods. The general idea of this schemes is to defining a sequence (xk) that converges to the
solution x. Therefore, G is replaced by an approximation depending on the current iterate
which can be solved more easily to get the next iterate. If G is continuously differentiable
this substitute term can be the linearisation

G(xk) + JG(xk)(x− xk)

where JG(x) ∈ Rm×n is the Jacobian of G in x. The zero of this function is the next
iterate xk+1. Using Taylor’s expansion, it can be proofed that the sequence converges
quadratically to the solution of Problem B.15 in a neighbourhood of x. Difficulties can
arise in the determination of a suitable initial point x0. If G is not differentiable it is
not clear in general what assumptions on G and C are reasonable to define well-posed
schemes. But for systems in non-smooth mechanics, generalised Newton-type methods
are already established and studied. We utilise the rewritten formulation of the linearised
problem

G(xk) + JG(xk)d = 0, xk+1 = xk + d.

During the numerical simulation, there could arise difficulties in the calculation of JG
such that often approximations of the Jacobian are used. If A(x, d) is a family of approx-
imations of JG(x)d all possible equations

G(xk) + A(xk, d) = 0, xk+1 = xk + d

with A(x, d) ∈ A(x, d) define Newton-type sequences.

Remark B.17 (Clarke’s calculus) Following Section 2.1.1, Lipschitz continuous func-
tions are absolutely continuous function that define the generalised Clarke differential in
Definition 2.7. For functions G : Rn → Rm this is defined as

∂G(x) := co
{
lim
k→∞

JG(xk) : xk → x, JG(xk) exists
}
.

Theorem B.18 (Properties of the Clarke differential) Let G : C ⊂ Rn → Rm be locally
Lipschitz continuous on a open set C. Then following [21], for all x ∈ C

(i) ∂G(x) ̸= ∅,
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(ii) ∂G(x) is convex and compact,

(iii) x 7→ ∂G(x) is upper semi-continuous.

Example B.19 (Euclidean norm) Let G(x) = ∥x∥2. If x ̸= 0 the gradient of calculates
to x/ ∥x∥2. In x = 0 the function is not differentiable but the Clarke differential exists
with ∂G⊤(0) = ∂B(0, 1).

Following [32, Definition 7.2.2.], the following assumptions are needed to generalise Newton-
type methods to non-smooth equations.

Definition B.20 (Newton approximation scheme) A function G : C ⊂ Rn → Rm has a
Newton approximation scheme at point x ∈ C if there is a neighbourhood C̄ ⊂ C of x
such that for all x̄ ∈ C̄ a family A(x, d) of functions A(x, d) ∋ A : C̄ × Rn → Rm exists
with

(i) A(x, 0) = 0, A ∈ A,

(ii) limx̄→x,A∈A
∥G(x)−G(x̄)−A(x̄,x−x̄)∥

∥x̄−x∥ = 0.

The family A is the Newton approximation scheme. It is called strong if (ii) is replaced
by

(iii) limx̄→x,A∈A
∥G(x)−G(x̄)−A(x̄,x−x̄)∥

∥x̄−x∥2 <∞.

The condition (ii) is a non-smooth correspondence to Taylor’s expansion.

Theorem B.21 (Piecewise continuous functions) Let G : C ⊂ Rn → Rm, C open, be a
piecewise continuous function, i.e.

G(x̄) = Gl(x̄), x ∈ Rl, C = ∪r
l=1Rl

and Gl is continuously differentiable on Rl. Furthermore, let x ∈ C be a root of G sucht
that all Jacobian matrices JGl(x) with l ∈ P(x) := {i : G(x) = Gi(x) = 0} are regular.
Referring to [32, Theorem 7.2.15.], the set

A(x, d) := {JGl(x)d, l ∈ P(x)}

is a Newton approximation scheme of G in x.

Example B.22 Let f : R→ R continuously differentiable in a neighbourhood of x with
f(x) = 0 and G : R→ R+ a composited function in the form

G(x) = projR+
(f(x)) =

{
f(x), f(x) ≥ 0
0, otherwise.

Then, the set
A(x, d) = co {0, f ′(x)d}

forms a Newton approximation scheme. The natural choice for implementations is to use

A(x, d) =

{
f ′(x)d, f(x) ≥ 0
0, otherwise.

If G : Rn → Rm
+ with Gi(x) = projR+

(f(x)) this procedure is applied componentwise.
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Algorithm 7 Non-smooth Newton method

Require: initial value x0, TOL> 0, ϵ > 0
1: procedure NonSmoothNewton(x0)
2: k = 0
3: while ∥G(xk)∥ > TOL do
4: Select A(xk, d) ∈ A(x, d) and solve for d ∈ B(0, ϵ) :
5: G(xk) + A(xk, d) = 0
6: xk+1 = xk + d
7: k = k + 1
8: end while
9: return xk

10: end procedure

The difference of Algorithm 7 to a smooth Newton-type method is that d do not need to
be unique.

Theorem B.23 (Local convergence result) Following [32, Theorem 7.2.5], let G : C ⊂
Rn → Rm, C open, be locally Lipschitz in a neighbourhood of x ∈ C with G(x) = 0 and
has a Newton approximation scheme A(x, d) at x. Then, for all ϵ ∈ (0, ϵA] exists a ball
B(x, δ) for which

(i) the sequence (xk) defined by Algorithm 7 converges superlinear to x for x0 ∈ B(x, δ).

(ii) If A(x, d) is strong, it converges quadratic.



C. Applications

Two further applications with a singular mass matrix or redundant constraints are enu-
merated.

Example C.1 (Shock absorber supported vehicle) Referring to [28], a model of a shock
absorber supported vehicle (see Figure C.1) with zero-mass couplings is another applica-
tion with a singular mass matrix and contact forces. A vehicle is travelling along a road
of profile h : I → R and consists of

(i) a tire with mass T , radius r and midpoint q1 that is connected by a linear spring
with k1 > 0 and a damper with c1 > 0 with

(ii) a vehicle with mass V and midpoint q2,

(iii) a system of three spring-damping-systems with ki, ci > 0, i = 2, 3, 4, that symbol the
spinal column of the driver and the head of the driver with mass D and midpoint
q7. The connection points between two springs or dampers are of zero-mass.

q

h

q1
T

Vq2

c1k1

c2k2
q3 q4

c3
q5 q6

k3

c4k4

Dq7

Figure C.1.: Shock absorber supported vehicle

The position coordinates are q = (q1, . . . , q7)
⊤. There is one geometrical constraint with

0 ≤ λ ⊥ q1(t)− r − h(t) ≥ 0.

This complementarity problem is combined with the differential system

q̇(t) = v(t), Mdv(t) + Cv(t) +Kq(t) = f(t) +G(q)⊤λ



C. Applications 116

with f = (−Tg − V g 0 0 0 0 −Dg)⊤, G(q) = (1 0 0 0 0 0 0) and

M =



T 0 0 0 0 0 0
0 V 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 D


, C =



c1 −c1 0 0 0 0
−c1 c1 + c2 0 −c2 0 0 0
0 0 0 0 0 0 0
0 −c2 0 c2 + c3 0 −c3 0
0 0 0 0 0 0 0
0 0 0 −c3 0 c3 + c4 −c4
0 0 0 0 0 −c4 c4


,

K =



k1 −k1 0 0 0 0
−k1 k1 + k2 −k2 0 0 0 0
0 −k2 k2 + k3 0 −k3 0 0
0 0 0 0 0 0 0
0 0 −k3 0 k3 + k4 0 −k4
0 0 0 0 0 0 0
0 0 0 0 0 −k4 k4


Example C.2 (Parallel five-bar linkage with side obstacle) The consideration of a planar
parallel five-bar linkage (see Figure C.2) with one redundant constraint is taken from [13],
studied also in [49] and expanded by an unilateral constraint.

x

y

x = σ

(x2, y2)

(x4, y4)

l
2

l
2

l

l

φ1 φ3

φ4

φ2

mg

Figure C.2.: Parallel five bar linkage

The mixed Lagrangian and Cartesian coordinates are summarised to

q = (φ1, x2, y2, φ2, φ3, x4, y4, φ4)
⊤.

The system is constrained by eight equalities

g1(q) = x2 − 0.5l cosφ2 − l cosφ1 = 0 g5(q) = x4 − 0.5l cosφ4 − 0.5l cosφ1 = 0

g2(q) = y2 − 0.5l sinφ2 − l sinφ1 = 0 g6(q) = y4 − 0.5l cosφ4 − 0.5l sinφ1 = 0

g3(q) = x2 + 0.5l cosφ2 − l cosφ3 = 0 g7(q) = x4 + 0.5l cosφ4 − 0.5l cosφ3 = 0

g4(q) = y2 + 0.5l sinφ2 − l sinφ3 = 0 g8(q) = y4 + 0.5l sinφ4 − 0.5l sinφ3 = 0

completed by two unilateral constraints

x2 −
l

2
− σ ≥ 0 x4 −

l

2
− σ ≥ 0.
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The position of the system is uniquely determined by seven bilateral constraints such
that one need to be redundant and the bilateral constraint matrix calculates to the rank-
deficient matrix

Gb(q) =



l sinφ1 1 0 0.5l sinφ2 0 0 0 0
−l cosφ1 0 1 −0.5l cosφ2 0 0 0 0

0 1 0 −0.5l sinφ2 l sinφ3 0 0 0
0 0 1 0.5l cosφ2 −l cosφ3 0 0 0

0.5l sinφ1 0 0 0 0 1 0 0.5l sinφ4

−0.5l cosφ1 0 0 0 0 0 1 −0.5l cosφ4

0 0 0 0 0.5l sinφ3 1 0 −0.5l sinφ4

0 0 0 0 −0.5l cosφ3 0 1 0.5l cosφ4


and the unilateral constraint matrix to

Gu(q) =

(
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0

)
.

The equations of motion can be set up with

M = diag

(
m1l

2

3
,m2,m2,

m2l
2

12
,
m3l

2

3
,m4,m4,

m4l
2

12

)
,

f =

(
−m1gl cosφ1

2
0 −m2g 0 − m3gl cosφ4

2
0 −m4g 0

)T

.
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[20] N. Čeh, G. Jelenić, and N. Bićanić. Analysis of restitution in rocking of single rigid
blocks. Acta Mechanica, 229(11):4623–4642, 2018.

[21] F.H. Clarke. Optimization and Nonsmooth Analysis. Wiley, New York, 1983.

[22] F.H. Clarke, Y.S. Ledyaev, R.J. Stern, and P.R. Wolenski. Nonsmooth analysis and
control theory. Graduate Texts in Mathematics, 178, 1998.

[23] D.L. Cohn. Measure Theory. Birkhäuser Basel, 2 edition, 2013.
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