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Abstract

In this paper we study multi-valued parabolic variational inequalities involving quasilinear

parabolic operators, and multi-valued integral terms over the underlying parabolic cylinder

as well as over parts of the lateral parabolic boundary, where the multi-valued functions

involved are assumed to be upper semicontinuous only. Note, since lower semicontinuous

multi-valued functions allow always for a Carathéodory selection, this case can be consid-

ered as the trivial case, and therefore will be omitted. Our main goal is threefold: First,

we provide an analytical frame work and an existence theory for the problems under con-

sideration. Unlike in recent publications on multi-valued parabolic variational inequalities,

the closed convex set K representing the constraints is not required to possess a nonempty

interior. Second, we prove enclosure and comparison results based on a recently developed

sub-supersolution method due to the authors. Third, we consider classes of relevant gen-

eralized parabolic variational-hemivariational inequalities that will be shown to be special

cases of the multi-valued parabolic variational inequalities under consideration.
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1 Introduction
Let Ω ⊂ RN be a bounded domain with Lipschitz boundary ∂Ω, Q = Ω × (0, τ) a space-time

cylindrical domain, and Γ = ∂Ω × (0, τ) its lateral boundary with τ > 0. We assume that ∂Ω admits

the decomposition

∂Ω = ΣD ∪ ΣN ,

with pairwise disjoint, relatively open subsets ΣD, ΣN , where ΣN is supposed to have positive surface

measure, i.e., meas(ΣN) � 0. The corresponding parts of the lateral boundary are denoted by

ΓD = ΣD × (0, τ), ΓN = ΣN × (0, τ),

such that Γ = ΓD ∪ ΓN .

Let W1,p(Ω) be the usual Sobolev space with its dual space (W1,p(Ω))∗, and denote by p′ the

Hölder conjugate satisfying 1/p + 1/p′ = 1. By V0 we denote the closed subspace of W1,p(Ω) given

by

V0 = {u ∈ W1,p(Ω) : γ∂Ωu|ΣD = 0}, (1.1)

where γ∂Ω : W1,p(Ω) → Lp(∂Ω) stands for the trace operator which is known to be linear and

compact. For the sake of simplicity we assume throughout this paper 2 ≤ p < ∞. Then W1,p(Ω)

⊂ L2(Ω) ⊂ (W1,p(Ω))∗ forms an evolution triple with all the imbeddings being dense and compact,

cf. [27], and the same holds true for V0 ⊂ L2(Ω) ⊂ V∗0 . Let X := Lp(0, τ; W1,p(Ω)), and denote by

X0 ⊂ X the subspace of X defined by

X0 = {u ∈ X : γu|ΓD = 0} = Lp(0, τ; V0),

where γ : X → Lp(Γ) stands for the trace operator, which is linear and compact. In what follows we

are going to use the following notation

γNu := γu|ΓN .

In this paper we are going to study the following multi-valued parabolic variational inequality:

Find u ∈ W0 ∩ K, η ∈ Lp′ (Q) and ζ ∈ Lp′ (ΓN) such that

u(·, 0) = 0 in Ω, η ∈ f (·, ·, u), ζ ∈ fN(·, ·, γNu), and (1.2)

〈ut + Au, v − u〉 + ∫
Q η (v − u) dxdt +

∫
ΓN
ζ (γNv − γNu) dΓ ≥ 0, (1.3)

for all v ∈ K, where K is a closed, convex subset of X0, W0 = {u ∈ X0 : ut ∈ X∗0}, 〈·, ·〉 denotes

the duality pairing between X∗0 and X0. The operator A : X0 → X∗0 is assumed to be a second order

quasilinear differential operator of Leray-Lions type of the form

Au(x, t) = −
N∑

i=1

∂

∂xi
ai(x, t,∇u(x, t)),

and f : Q×R→ 2R with (x, t, s) �→ f (x, t, s) ∈ 2R and fN : ΓN ×R→ 2R with (x, t, s) �→ fN(x, t, s) ∈
2R are supposed to be upper semicontinuous multi-valued functions with respect to s that will be

specified later.

Problem (1.2)–(1.3) was studied in [8] in the special case where f : Q × R → R is a (single-

valued) Carathéodory function and meas(ΓN) = 0, i.e. with homogeneous Dirichlet boundary con-

ditions on Γ. An extension of the latter to the multi-valued case with f (x, t, s) = ∂ j(x, t, s), where
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s �→ ∂ j(x, t, s) denotes Clarke’s generalized gradient of some locally Lipschitz function s �→ j(x, t, s)

defined by

∂ j(x, t, s) := {ζ ∈ R : jo(x, t, s; r) ≥ ζr, ∀ r ∈ R}
(cf., e.g., [15, Chap. 2]), leads to the following associated multi-valued parabolic variational inequal-

ity: Find u ∈ W0 ∩ K and η ∈ Lp′ (Q) such that

u(·, 0) = 0 in Ω, η(x, t) ∈ ∂ j(x, t, u(x, t)), (1.4)

〈ut + Au, v − u〉 +
∫

Q
η (v − u) dxdt ≥ 0, ∀ v ∈ K. (1.5)

Problem (1.4)–(1.5) has been considered in [13], where among others it was shown that (1.4)–(1.5)

is equivalent to the following parabolic variational-hemivariational inequality: Find u ∈ W0∩K with

u(·, 0) = 0 in Ω such that

〈ut + Au, v − u〉 +
∫

Q
jo(x, t, u; v − u) dxdt ≥ 0, ∀ v ∈ K, (1.6)

where for a.e. (x, t) ∈ Q, (s, r) �→ jo(x, t, s; r) denotes the generalized directional derivative of the

locally Lipschitz function s �→ j(x, t, s) at s in the direction r which is defined by

jo(x, t, s; r) = lim sup
y→s, ε↓0

j(x, t, y + ε r) − j(x, t, y)

ε
,

(cf., e.g., [15, Chap. 2]). It is well known that Clarke’s generalized gradient s �→ ∂ j(x, t, s) of

a locally Lipschitz function s �→ j(x, t, s) is an upper semicontinuous multi-valued function with

closed and convex values. However, the reverse is not true, i.e., there are upper semicontinuous

multi-valued functions that cannot be represented as a Clarke’s gradient. For illustration let us

consider the following simple but relevant example, which has been used in [2] to model certain

friction laws.

Example 1.1. Define f : R→ 2R by

f (s) = g(s) + h(s) (1.7)

where s �→ h(s) is the multi-valued function given by

h(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if s < 0,

[−1, 1] if s = 0,
1 if s > 0,

and g : R→ R is the following (single-valued) discontinuous function:

g(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

if s < 0,
0 if s = 0,

− 1
2

if s > 0.

The multi-valued function f defined in (1.7) is apparently upper semicontinuous. However, it is

easily seen that it cannot be represented by Clarke’s generalized gradient of some locally Lipschitz

function.

While for variational-hemivariational inequalities a rather complete mathematical theory based

on Clarke’s generalized gradient has been developed in recent years, a need in applications requires
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to consider more general parabolic variational-hemivariational inequalities of the following form:

Find u ∈ W0 ∩ K with u(·, 0) = 0 in Ω such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
〈ut + Au, v − u〉 +

∫
Q

jo(x, t, u, u; v − u) dxdt

+

∫
ΓN

joN(x, t, γNu, γNu; γNv − γNu) dΓ ≥ 0, ∀ v ∈ K,
(1.8)

where j, jN given by

j : Q × R × R→ R with (x, t, r, s) �→ j(x, t, r, s),

jN : ΓN × R × R→ R with (x, t, r, s) �→ jN(x, t, r, s),

are supposed to be locally Lipschitz functions with respect to s, and jo(x, t, r, s; �) and joN(x, t, r, s; �)

denote Clarke’s generalized directional derivatives at s in the direction � for fixed (x, t, r). In partic-

ular, the following special case of (1.8) will be considered:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
〈ut + Au, v − u〉 +

∫
Q

h(x, t, u) ĵo(x, t, u; v − u) dxdt

+

∫
ΓN

hN(x, t, u) ĵoN(x, t, γNu; γNv − γNu) dΓ ≥ 0, ∀ v ∈ K,
(1.9)

where j and jN of (1.8) have the special form:

j(x, t, r, s) = h(x, t, r) ĵ(x, t, s), jN(x, t, r, s) = hN(x, t, r) ĵN(x, t, s), (1.10)

where h, ĵ : Q × R → R and hN , ĵN : ΓN × R → R are Carathéodory functions, and ĵ : Q × R → R
and ĵN : ΓN × R → R are, in addition, locally Lipschitz with respect to s. In problem (1.8) (as

well as in its special case (1.9)) the functions s �→ j(·, ·, s, s) and s �→ jN(·, ·, s, s) may be not locally

Lipschitz but only partially locally Lipschitz. This enlarges the class of variational-hemivariational

inequalities considerably.

Our main goal is threefold: First, we provide an analytical frame work and an existence theory

for the multi-valued parabolic variational inequality (1.2)–(1.3) with multi-valued upper semicontin-

uous functions in Q and on parts of the lateral parabolic boundary ΓN . Here we remark that the closed

convex set K representing the constraints is not required to possess a nonempty interior. Second,

we prove enclosure and comparison results based on a recently developed sub-supersolution method

due to the authors. The sub-supersolution method, which is of interest in its own right, will allow us

to relax certain coercivity conditions required in the general existence theory. Moreover, this method

will serve us as a tool to show that classes of parabolic variational-hemivariational inequalities of the

form (1.8) or (1.9) are equivalent to a subclass of the multi-valued parabolic variational inequality

(1.2)–(1.3). It should be noted that the treatment of parabolic variational inequalities with general

upper semicontinuous multi-valued functions, that is one of the main goal of this manuscript, is not

at all a straightforward matter, as new tools have to be developed. Moreover, such an extension

is desirable not only for disciplinary reasons, but because it also meets the needs in applications.

It is needless to say that (1.2)–(1.3) covers a wide range of parabolic problems when specifying

K and/or f and fN such as the special cases mentioned above as well as parabolic initial-boundary

value problem in the case when K = X0, and f : Q×R→ R and fN : ΓN×R→ R are (single-valued)

Carathéodory functions.

This paper is organized as follows: After providing important preliminary results about the pseu-

domonotonicity (w.r.t. D(L)) of certain multi-valued Nemytskij operators related to f and fN , which
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are of interest in its own right, we present a general existence result under coercivity assumptions,

where some relative growth condition of A and f , fN for u with large norm is imposed. In this case

the existence of solutions of (1.2)–(1.3) follows from penalty arguments and the solvability of equa-

tions with multi-valued pseudomonotone operators. Then we establish a sub-supersolution method

that will allow us to prove existence, comparison and enclosure results without imposing coercivity

conditions as before. The concepts of sub- and supersolutions and the arguments in our case here are

combinations of those for parabolic variational inequalities in [8] and those for multi-valued elliptic

and parabolic variational inequalities in [11], [21] and [12, Chap.3]. Finally, we show that problems

(1.8) and (1.9) are special cases of (1.2)–(1.3) only. Several notions here were originally presented

in [8, 10, 11]; their detailed inclusion in this paper is only for the sake of completeness.

2 Notations, hypotheses, and a preliminary result
In this section, we introduce some notations and definitions, as well as a key preliminary result,

which assures that the multi-valued Nemytskij operators generated by the multi-valued functions

f : Q × R → 2R and fN : ΓN × R → 2R are multi-valued pseudomonotone operators with respect

to the graph norm topology of the time-derivative operator L := ∂/∂t : D(L) → X∗0 which will be

specified later.

Further to the notations already given in Section 1 we introduce the space W defined by

W = {u ∈ X : ut ∈ X∗} ,
where X∗ = Lp′ (0, τ; (W1,p(Ω))∗) is the dual of X, and the derivative ut := ∂u/∂t is understood in

the sense of vector-valued distributions. The space W endowed with the graph norm of the operator

∂/∂t
‖u‖W = ‖u‖X + ‖ut‖X∗

is a Banach space which is separable and reflexive due to the separability and reflexivity of X and

X∗, where ‖ · ‖X and ‖ · ‖X0
are the usual norms defined on X and X0 (and similarly on X∗ and X∗0) :

‖u‖X =
(∫ τ

0

‖u(t)‖pW1,p(Ω)
dt

)1/p

, ‖u‖X0
=

(∫ τ

0

‖u(t)‖pV0
dt

)1/p

.

It is well known that the embedding W ↪→ C([0, τ], L2(Ω)) is continuous, and by Aubin’s lemma

the embedding W ↪→↪→ Lp(Q) is compact due to the compact embedding W1,p(Ω) ↪→↪→ Lp(Ω).

Similar properties hold true for the subspace W0, i.e.,

W0 = {u ∈ X0 : ut ∈ X∗0},
introduced in Section 1. The notation 〈·, ·〉 stands for any of the dual pairings between X and X∗, X0

and X∗0, W1,p(Ω) and (W1,p(Ω))∗, and V0 and V∗0 , such as for example, if h ∈ X∗ and u ∈ X, then

〈h, u〉 =
∫ τ

0

〈h(t), u(t)〉 dt.

Here we should remark that u �→
( ∫
Ω
|∇u|p dx

)1/p
, in general, does not define a norm in V0, since ΣD

may be empty. Likewise u �→
( ∫

Q |∇u|p dxdt
)1/p

may be not a norm in X0 = Lp(0, τ; V0).

In what follows we denote by L := ∂/∂t when its domain of definition, D(L), is given by

D(L) =
{
u ∈ X0 : ut ∈ X∗0 and u(·, 0) = 0

}
. (2.1)
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It is known that the linear operator L : D(L) ⊂ X0 → X∗0 is closed, densely defined and maximal

monotone, e.g., cf. [27, Chap. 32].

We assume the following Leray–Lions conditions on the coefficient functions ai, i = 1, . . . ,N,

of the operator A.

(A1) ai : Q × RN → R are Carathéodory functions, i.e., ai(·, ·, ξ) : Q → R are measurable for all

ξ ∈ RN , and ai(x, t, ·) : RN → R are continuous for a.e. (x, t) ∈ Q. In addition, the following

growth condition holds:

|ai(x, t, ξ)| ≤ c1|ξ|p−1 + c2(x, t)

for a.e. (x, t) ∈ Q and for all ξ ∈ RN , for some constant c1 > 0 and some function c2 ∈ Lp′
+ (Q).

(A2) For a.e. (x, t) ∈ Q , and for all ξ, ξ′ ∈ RN with ξ � ξ′ the following monotonicity in ξ holds:

N∑
i=1

(ai(x, t, ξ) − ai(x, t, ξ′))(ξi − ξ′i ) > 0.

(A3) There is some constant c3 > 0 such that for a.e. (x, t) ∈ Q and for all ξ ∈ RN the inequality

N∑
i=1

ai(x, t, ξ)ξi ≥ c3|ξ|p − c4(x, t)

is satisfied for some function c4 ∈ L1(Q).

By (A1) the operator A defined by

〈Au, ϕ〉 :=

∫
Q

N∑
i=1

ai(x, t,∇u)
∂ϕ

∂xi
dx dt, ∀ϕ ∈ X0

is continuous and bounded from X (resp. X0) into X∗ ⊂ X∗0. We denote by Lp
+(Q) the positive cone

of nonnegative elements of Lp(Q). The natural partial ordering in Lp(Q) is defined by u ≤ v if and

only if v − u ∈ Lp
+(Q). If u, u ∈ Lp(Q) with u ≤ u, we denote by

[u, u] = {u ∈ Lp(Q) : u ≤ u ≤ u}
the ordered interval formed by u and u. The positive cone Lp

+(Q) induces a corresponding partial

ordering also in its subspaces. For functions w, z and sets W and Z of functions we use the notations:

w∧z = min{w, z}, w∨z = max{w, z}, W∧Z = {w∧z : w ∈ W, z ∈ Z}, W∨Z = {w∨z : w ∈ W, z ∈ Z},
and w ∧ Z = {w} ∧ Z, w ∨ Z = {w} ∨ Z. In particular, we denote w+ = w ∨ 0. For any normed vector

space V we denote by K(V) ⊂ 2V the following family of subsets of V

K(V) = {A ⊂ V : A � ∅, A is closed and convex}.
Let us recall the notion of (Vietoris) upper semicontinuous multi-valued functions. We refer to [1]

(Chapter 1), [17] (Chapter 8), or [18] (Chapter 1) for more details on different types of continuities

of multi-valued functions with respect to some usual topologies, such as the Vietoris, Hausdorff,

Mosco, and Attouch–Wets topologies, on power sets of topological vector spaces.

Definition 2.1 Let V,Y be Banach spaces, and T : V → 2Y be a multi-valued function. T is called
upper semicontinuous at x0(∈ V) if for every open subset O ⊂ Y with T (x0) ⊂ O, there exists a
neighborhood U(x0) such that T (U(x0)) ⊂ O. If T is upper semicontinuous at every x0 ∈ V, we call
T upper semicontinuous in V.
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Next we introduce the multi-valued Nemytskij operators F and FN associated with the multi-valued

functions f : Q × R→ 2R and fN : ΓN × R→ 2R, respectively, by

F(u) = {η : Q→ R : η is measurable in Q and η ∈ f (·, ·, u)},
FN(γNu) = {ζ : ΓN → R : ζ is measurable on ΓN and ζ ∈ fN(·, ·, γNu)} (2.2)

where η(x, t) ∈ f (x, t, u(x, t)) for a.e. (x, t) ∈ Q, and ζ(x, t) ∈ fN(x, t, γNu(x, t)) for a.e. (x, t) ∈ ΓN .

We impose the following hypotheses on f and fN :

(F1) f : Q × R → K(R) ⊂ 2R and fN : ΓN × R → K(R) ⊂ 2R are graph measurable on Q × R and

ΓN × R, respectively, that is,

Gr( f ) := {(x, t, u, η) ∈ Q × R × R : η ∈ f (x, t, u)} and ,

Gr( fN) := {(x, t, u, ζ) ∈ ΓN × R × R : ζ ∈ fN(x, t, γNu)}
belong to [L(Q) × B(R)] × B(R) and [L(ΓN) × B(R)] × B(R), respectively, where L(Q) and

L(ΓN) are the families of Lebesgue measurable subsets of Q and ΓN , respectively, and B(R)

is the σ-algebra of Borel sets in R.

(F2) For a.e. (x, t) ∈ Q, the function f (x, t, ·) : R → 2R is upper semicontinuous, and for a.e.

(x, t) ∈ ΓN , fN(x, t, ·) : R→ 2R is upper semicontinuous as well in the sense of Definition 2.1.

(F3) f satisfies the growth condition

sup{|η| : η ∈ f (x, t, s)} ≤ α(x, t) + β|s|p−1 (2.3)

for a.e. (x, t) ∈ Q, ∀ s ∈ R, where α ∈ Lp′ (Q), and β ≥ 0. Similarly, fN satisfies the growth

condition

sup{|ζ | : ζ ∈ fN(x, t, s)} ≤ αN(x, t) + βN |s|p−1 (2.4)

for a.e. (x, t) ∈ ΓN , ∀ s ∈ R, where αN ∈ Lp′ (ΓN), and βN ≥ 0.

It follows from (F1) and (F2) that the functions (x, t) �→ f (x, t, u(x, t)) and (x, t) �→ fN(x, t, v(x, t))
are also measurable functions from Q to 2R and ΓN to 2R, for any measurable functions u : Q → R
and v : ΓN → R, respectively. Further, by (F3), the multi-valued Nemytskij operators F : Lp(Q) →
2Lp′ (Q) and FN : Lp(ΓN)→ 2Lp′ (ΓN ) are well defined.

Let i : X0 ↪→ Lp(Q) be the (continuous) embedding of X0 into Lp(Q), and let i∗ : Lp′ (Q) ↪→ X∗0
be its adjoint. Denoting by γ∗N : Lp′ (ΓN) → X∗0 the adjoint operator of the trace operator γN : X0 →
Lp(ΓN), then the composed multi-valued operator

F = i∗ ◦ F ◦ i : X0 → 2X∗
0 and FN = γ

∗
N ◦ FN ◦ γN : X0 → 2X∗

0

will be shown to possess a certain pseudomonotonicity property which is important for our main

existence result to be proved in the next section, and which is of interest in its own right. To this

end let us first provide the following definition of a multi-valued pseudomonotone operator with

respect to the graph norm topology of the domain D(L) (w.r.t. D(L) for short) of some linear, closed,

densely defined and maximal monotone operator L : D(L) ⊂ Y → Y∗. We refer to [7] for the

original concept of multi-valued pseudomonotone operators and to [26] (see also [16]) for that of

multi-valued pseudomonotone operators w.r.t. D(L). As is seen in the proof of Proposition 2.3,

the operator F introduced above is pseudomonotone w.r.t. D(L) with L = ∂/∂t but not necessarily

pseudomonotone in the regular sense. This holds likewise for FN .
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Definition 2.2 Let Y be a reflexive Banach space, and let L : D(L) ⊂ Y → Y∗ be a linear, closed,
densely defined and maximal monotone operator. The operator T : Y → 2Y∗ is called pseudomono-
tone w.r.t. D(L) if the following conditions are satisfied:

(i) The set T (u) is nonempty, bounded, closed and convex for all u ∈ Y.

(ii) T is upper semicontinuous from each finite dimensional subspace of Y to Y∗ equipped with
the weak topology.

(iii) If (un) ⊂ D(L) with un ⇀ u in Y, Lun ⇀ Lu in Y∗, u∗n ∈ T (un) with u∗n ⇀ u∗ in Y∗ and
lim sup〈u∗n, un − u〉 ≤ 0, then u∗ ∈ T (u) and 〈u∗n, un〉 → 〈u∗, u〉.

We have the following result about the pseudomonotonicity of F = i∗ ◦F ◦ i, which is an appropriate

adaptation of Lemma 3.6 in [21] to the evolutionary case.

Proposition 2.3 Under conditions (F1)–(F3), the mapping F = i∗ ◦ F ◦ i : X0 → 2X∗
0 is pseu-

domonotone with respect to D(L), where L = ∂/∂t and D(L) is given by (2.1).

Proof. The proof of this proposition is based on the ideas and arguments in the proof of Lemma 3.6,

[21], and is divided into several steps.

Step 1:
First, we prove that for any u ∈ Lp(Q), F(u) is a nonempty, bounded, closed, and convex subset of

Lp′ (Q), and thus in particular, F(u) ∈ K(Lp′ (Q)). Moreover, F : Lp(Q) → 2Lp′ (Q) is shown to be a

bounded mapping. The convexity of F(u) follows from the fact that f (x, t, u) is a closed interval in

R. Let η ∈ F(u). As a consequence of (2.3),

|η(x, t)| ≤ α(x, t) + β|u(x, t)|p−1, a.e. (x, t) ∈ Q. (2.5)

Since |u|p−1 ∈ Lp′ (Q), we have the boundedness of F(u) in Lp′ (Q). To prove that F(u) is closed in

Lp′ (Q), let {ηn} be a sequence in F(u) such that ηn → η in Lp′ (Q). By passing to a subsequence,

we can assume without loss of generality that ηn(x, t) → η(x, t) for a.e. (x, t) ∈ Q. Since ηn(x, t) ∈
f (x, t, u(x, t)) for a.e. (x, t) ∈ Q, all n ∈ N, and f (x, t, u(x, t)) is closed in R, we have η(x, t) ∈
f (x, t, u(x, t)). Since this holds for a.e. (x, t) ∈ Q, we have η ∈ F(u), which proves the closedness

of F(u) in Lp′ (Q). Inequality (2.5) also proves that if Z is a bounded set in Lp(Q) then F(Z) is a

bounded set in Lp′ (Q), that is, F is a bounded mapping from Lp(Q) to 2Lp′ (Q).

For u ∈ X0, from the boundedness of i∗ and the above arguments we see that F (u) is a nonempty,

convex and bounded subset of X∗0. Moreover, since ‖i∗η‖X∗
0
≤ C‖η‖Lp′ (Q),∀ η ∈ Lp′ (Q) for some

constant C, it follows from the boundedness of F that F is also a bounded mapping. Next, we prove

that F (u) is closed in X∗0. In fact, assume {ηn} ⊂ F (u), ηn = i∗η̃n with η̃n ∈ F(iu) = F(u), ∀n ∈ N,

and

ηn → η in X∗0. (2.6)

Because {η̃n :∈ N} ⊂ F(u), {η̃n} is a bounded sequence in Lp′ (Q). By passing to a subsequence if

necessary we can assume without loss of generality that

η̃n ⇀ η̃0 in Lp′ (Q). (2.7)

Since F(u) is weakly closed in Lp′ (Q), η̃0 ∈ F(u) and thus i∗η̃0 ∈ i∗F(u) = F (u). On the other hand,

since i∗ is continuous from Lp′ (Q) to X∗0 both with weak topologies, we have from (2.7) that

ηn = i∗η̃n ⇀ i∗η̃0 in X∗0,
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which combined with (2.6) yields η = i∗η̃0 ∈ F (u). Hence, F (u) is closed in X∗0.

Step 2:
Let V be a finite dimensional subspace of X0. We prove in this step that the restriction F |V of F on

V is upper semicontinuous from V into 2X∗
0 with respect to the weak topology of X∗0.

In fact, assume u0 ∈ V . To prove the upper semicontinuity of F |V at u0, we assume by contra-

diction that there is a weakly open neighborhood U of F (u0) in X∗0 and a sequence (un) ⊂ V such

that un → u0 in V and there exists a sequence (ηn) ⊂ X∗0 such that ηn ∈ F (un) \ U, ∀n ∈ N. We see

that Ũ = (i∗)−1(U) is a weakly open neighborhood of F(u0) in Lp′ (Q). Moreover, since ηn ∈ i∗F(un),

there exists η̃n ∈ F(un) such that

ηn = i∗η̃n. (2.8)

We have η̃n � Ũ for all n ∈ N. As (un) is a bounded sequence in Lp(Q), it follows from Step 1 that

(η̃n) is a bounded sequence in Lp′ (Q). Also, as above by passing to a subsequence we can assume

that

η̃n ⇀ η̃0 in Lp′ (Q). (2.9)

Since un → u0 in Lp(Q), we have h∗(F(un), F(u0))→ 0 (see [18, Theorem 7.26 ]), where

h∗(A, B) = h∗Lp′ (Q)
(A, B) = sup

u∈A

(
inf
v∈B
‖u − v‖Lp′ (Q)

)

is part of the Hausdorff distance between subsets A, B of Lp′ (Q), which is defined as h(A, B) =

max{h∗(A, B), h∗(B, A)}. (Note that this property of F is referred in [18] as its Hausdorff upper semi-

continuity (h-upper semicontinuity). According to Definition 2.60, [18], a multi-valued function F
is h-upper semicontinuous at u0 if the function u �→ h∗(F(u), F(u0)) is continuous at u0. On the other

hand, F is h-lower semicontinuous at u0 if the function u �→ h∗(F(u0), F(u)) is continuous at u0. It

follows immediately from these definitions that F is continuous at u0 with respect to the topology

generated by the Hausdorff distance on K(Lp′ (Q)) if and only if F is both h-upper semicontinuous

and h-lower semicontinuous at u0.)

Since

h∗(F(un), F(u0)) ≥ distLp′ (Q)(η̃n, F(u0)) = inf{‖η̃n − v‖Lp′ (Q) : v ∈ F(u0)},
there is a sequence (η̄n) ⊂ F(u0) such that ‖η̃n − η̄n‖Lp′ (Q) → 0. From (2.9), we have η̄n ⇀ η̃0 in

Lp′ (Q). Since F(u0) is weakly closed in Lp′ (Q), we get η̃0 ∈ F(u0) and thus η̃0 ∈ Ũ. Again from

(2.9) we have η̃n ∈ Ũ for all n sufficiently large, contradicting (2.8) and the assumption on ηn, and

therefore proving the upper semicontinuity of F |V .

Step 3:
First, let us prove that F is sequentially weakly closed from X0 with respect to the D(L)-graph

topology into 2X∗
0 \ {∅} with respect to the weak topology of X∗0, that is, if (un) and (ηn) are sequences

in D(L) and X∗0 respectively such that

un ⇀ u in X0, unt ⇀ ut in X∗0, (2.10)

ηn ⇀ η in X∗0, (2.11)

and

ηn ∈ F (un), ∀n ∈ N, (2.12)

then,

η ∈ F (u). (2.13)
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In fact, assume (2.10)–(2.12). We have i(un) = un and i∗(ηn) = ηn|X∗
0
. From (2.12), for each n ∈ N,

there exists η̃n ∈ F(i(un)) = F(un) such that ηn = i∗(η̃n) = η̃n|X∗
0
. From (2.10) and Aubin’ lemma (cf.

[22]), we have

un = i(un)→ i(u) = u in Lp(Q). (2.14)

Again, from the h-upper semicontinuity of F from Lp(Q) to 2Lp′ (Q) (see [18, Theorem 7.26]), we

have

h∗(F(un), F(u))→ 0. (2.15)

Since η̃n ∈ F(un),

inf
v∈F(u)

‖η̃n − v‖Lp′ (Q) ≤ h∗(F(un), F(u)).

Hence, infv∈F(u) ‖η̃n − v‖Lp′ (Q) → 0 as n→ ∞, and there exists a sequence (η∗n) ⊂ F(u) such that

lim
n→∞ ‖η̃n − η∗n‖Lp′ (Q) = 0. (2.16)

Since (η∗n) ⊂ F(u) and F(u) is a bounded subset of Lp′ (Q), by passing to a subsequence if necessary,

we can assume that

η∗n ⇀ η0 in Lp′ (Q) (2.17)

for some η0 ∈ Lp′ (Q). As F(u) is weakly closed in Lp′ (Q), η0 ∈ F(u). Hence, (2.16) and (2.17)

imply that

η̃n ⇀ η0 in Lp′ (Q). (2.18)

Since i∗ is continuous in the weak topologies of both Lp′ (Q) and X∗0, it follows from (2.18) that

ηn = i∗(η̃n) = η̃n|X∗
0
⇀ i∗(η0) = η0|X∗

0
(2.19)

weakly in X∗0. From (2.11) and (2.19), we have η = i∗(η0) ∈ i∗F(u), since ηn ⇀ η and ηn ⇀ i∗(η0)

both in the sense of distribution. The inclusion (2.13) is thus verified, which completes our proof of

the weakly closed property of F .

Next, we prove that if (un) ⊂ D(L), (ηn) ⊂ X∗0 are sequences satisfying (2.10)–(2.12) then

〈ηn, un〉X∗
0
,X0
→ 〈η, u〉X∗

0
,X0
. (2.20)

In fact, let (η̃n) and η0 be as above. We have

〈ηn, un〉X∗
0
,X0
= 〈η̃n|X∗

0
, un〉X∗

0
,X0

= 〈i∗(η̃n), un〉X∗
0
,X0

= 〈η̃n, i(un)〉Lp′ (Q),Lp(Q) = 〈η̃n, un〉Lp′ (Q),Lp(Q).

(2.21)

From (2.14) and (2.18), we have

〈η̃n, un〉Lp′ (Q),Lp(Q) → 〈η0, u〉Lp′ (Q),Lp(Q) = 〈η0, i(u)〉Lp′ (Q),Lp(Q)

= 〈i∗(η0), u〉X∗
0
,X0

= 〈η, u〉X∗
0
,X0
.

This limit, together with (2.21), proves (2.20).

The weakly closed property of F and (2.20) show that F is pseudomonotone from X0 to 2X∗
0

with respect to D(L). �

Proposition 2.4 Under conditions (F1)–(F3), the mapping FN = γ∗N ◦ FN ◦ γN : X0 → 2X∗
0 is

pseudomonotone with respect to D(L).

Proof. Since the trace operator γ : X → Lp(Γ) is linear and continuous, as well as γ : W → Lp(Γ)

is linear and compact (see, e.g., [10]), the proof can be done in just the same way as the proof of

Proposition 2.3. �
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3 Existence results
In this section we prove an existence results about problem (1.2)–(1.3), which can be equivalently

rewritten in the form: Find u ∈ D(L) ∩ K, η ∈ Lp′ (Q) and a ζ ∈ Lp′ (ΓN) such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η ∈ F(u), ζ ∈ FN(γNu)

〈ut + Au, v − u〉 +
∫

Q
η (v − u) dxdt +

∫
ΓN

ζ (γNv − γNu) dΓ ≥ 0,
(3.1)

for all v ∈ K, which in turn can be rewritten in the form: Find u ∈ D(L) ∩ K, η ∈ Lp′ (Q) and a

ζ ∈ Lp′ (ΓN) such that ⎧⎪⎨⎪⎩ η ∈ F(u), ζ ∈ FN(γNu)

〈Lu + Au + i∗η + γ∗ζ, v − u〉 ≥ 0, ∀ v ∈ K.
(3.2)

The proof of the existence of solutions of (3.1) is based on a penalty approach. For this purpose, let

us first recall the following general definition of a penalty operator associated with a convex set C in

a reflexive Banach space Y .

Definition 3.1 Let C � ∅ be a closed and convex subset of a reflexive Banach space Y. A bounded,
hemicontinuous and monotone operator P : Y → Y∗ is called a penalty operator associated with
C ⊂ Y if

P(u) = 0⇐⇒ u ∈ C.

In what follows, we assume that there exists a penalty operator P : X0 → X∗0 associated with the

given convex set K ⊂ X0 satisfying the following properties:

(P) For each u ∈ D(L), there exists w = w(u) ∈ X0, with w � 0 if P(u) � 0, such that

(i) 〈ut + Au,w〉 ≥ 0, and

(ii) 〈Pu,w〉 ≥ D‖Pu‖X∗
0
(‖w‖Lp(Q) + ‖γNw‖Lp(ΓN )),

(3.3)

for some constant D > 0 independent of u and w.

Application: Penalty operator of an obstacle

We consider an obstacle problem, where the convex, closed set K is given by

K = {u ∈ X0 : u ≤ ψ a.e. in Q},
with any obstacle function ψ specified as follows:

(i) ψ ∈ W and ψ(·, 0) ≥ 0 on Ω, γψ|ΓD ≥ 0, and

(ii) ψt + Aψ ≥ 0 in X∗0, i.e., 〈ψt + Aψ, v〉 ≥ 0, ∀v ∈ X0 ∩ Lp
+(Q).

The penalty operator P : X0 → X∗0 can be chosen as

〈P(u), v〉 =
∫

Q
[(u − ψ)+]p−1 v dxdt +

∫
ΓN

[(γNu − γNψ)+]p−1 γNv dΓ, (3.4)

for all u, v ∈ X0. Indeed, P is bounded, continuous and monotone. Let us check that

P(u) = 0⇐⇒ u ∈ K.
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If P(u) = 0, then (u − ψ)+ = 0 a.e. in Q, i.e.,

u ≤ ψ a.e. in Q,

that is u ∈ K. Conversely, assume that u ∈ K. Then, for a.a. t ∈ (0, τ), we have u(·, t) ≤ ψ(·, t) a.e. in

Ω, which implies that

γ∂Ωu(·, t) ≤ γ∂Ωψ(·, t) a.e. on ∂Ω

(γ∂Ω is the trace operator on ∂Ω). This means that γu ≤ γψ a.e. on Γ, and thus, in particular,

γNu ≤ γNψ showing that P(u) = 0. Now we need to check that P satisfies properties (3.3) of (P).

For each u ∈ D(L) we choose w = (u− ψ)+. Then, w ∈ X0 and w � 0 whenever P(u) � 0. We justify

that (3.3)(i) is satisfied. According to assumption (i) for ψ, (u − ψ)+(·, 0) = 0, we have

〈ut − ψt, (u − ψ)+〉 = 1

2
‖(u − ψ)+(·, τ)‖2L2(Ω)

≥ 0.

Combining the last inequality with 〈Au − Aψ, (u − ψ)+〉 ≥ 0, we arrive at

〈ut + Au, (u − ψ)+〉 ≥ 〈ψt + Aψ, (u − ψ)+〉 ≥ 0,

because (u − ψ)+ ∈ X0 ∩ Lp
+(Q). So we have checked (3.3)(i) of (P). To verify (3.3)(ii), we note that

〈P(u),w〉 = ‖(u − ψ)+‖pLp(Q)
+ ‖(γNu − γNψ)+‖pLp(ΓN )

, (3.5)

which yields by applying Hölder’s inequality: There exists some constant c > 0 such that

|〈P(u), v〉| ≤ ‖(u − ψ)+‖p−1

Lp(Q)
‖v‖Lp(Q) + ‖(γNu − γNψ)+‖p−1

Lp(ΓN )
‖v‖Lp(ΓN )

≤ c(‖(u − ψ)+‖p−1

Lp(Q)
+ ‖(γNu − γNψ)+‖p−1

Lp(ΓN )
)‖v‖X0

,

for all v ∈ X0. Hence,

‖P(u)‖X∗
0
≤ c(‖(u − ψ)+‖p−1

Lp(Q)
+ ‖(γNu − γNψ)+‖p−1

Lp(ΓN )
), ∀u ∈ X0,

which, by taking into account (3.5), finally implies (P)(ii). Note also, for our example of K, the

following lattice conditions:

K ∧ K ⊂ K, K ∨ K ⊂ K (3.6)

are satisfied.

Our main result in this section is the following existence result of solutions of (3.1) (resp.(3.2). For

its formulation and proof we are going to use the notation:

η∗ = i∗η ∈ F (u) iff η ∈ F(u), ζ∗ = γ∗Nζ ∈ FN(u) iff ζ ∈ FN(γNu).

Theorem 3.2 Assume (A1)–(A3) and that f , fN satisfy hypotheses (F1)–(F3). Suppose D(L)∩K � ∅
and that u0 is an element of D(L) ∩ K. Then, under the coercivity condition

lim
‖u‖X0

→∞

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
inf

η∗ ∈ F (u)

ζ∗ ∈ FN(u)

〈Au + η∗ + ζ∗, u − u0〉
‖u‖X0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ∞, (3.7)

the multi-valued parabolic variational inequality (3.1) has solutions.
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Proof. For ε > 0, let us consider the following penalized equation: Find u ∈ D(L), η∗ ∈ F (u), and

ζ∗ ∈ FN(u) such that

〈ut, v〉 + 〈Au + η∗ + ζ∗, v〉 + 1

ε
〈Pu, v〉 = 0, ∀v ∈ X0, (3.8)

where P is a penalty operator (associated to K) that satisfies (3.3). From Proposition 2.3, F and FN

are pseudomonotone with respect to D(L). Since A and ε−1P are monotone and hemicontinuous,

they are pseudomonotone and thus pseudomonotone with respect to D(L) (cf. e.g. Proposition 27.6,

[27]). As a consequence, the operator A + F + FN + ε
−1P is pseudomonotone with respect to D(L).

Moreover, it is bounded since A, P, F and FN are bounded mappings. From the coercivity condition

(3.7) and the monotonicity of ε−1P, it is easy to see that A +F +FN + ε
−1P is coercive on X0 in the

following sense:

lim
‖u‖X0

→∞

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
inf

η∗ ∈ F (u)

ζ∗ ∈ FN(u)

〈(A + ε−1P)(u) + η∗ + ζ∗, u − u0〉
‖u‖X0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ∞. (3.9)

According to the surjectivity result of [16, Theorem 1.3.73, p. 62], (3.8) has solutions for each ε > 0.

Let uε, η∗ε, ζ∗ε satisfy (3.8), and let (uε), (η∗ε), (ζ∗ε ) stand for sequences where ε > 0 is the sequence

parameter tending to zero. We show that the family {uε : ε > 0, small} is bounded with respect to

the graph norm of D(L). In fact, let u0 be a (fixed) element of D(L) ∩ K. Putting v = uε − u0 into

(3.8) (with uε) and noting the monotonicity of L and that Pu0 = 0, one gets

〈−u0t, uε − u0〉 = 〈uεt − u0t, uε − u0〉 + 〈Auε + η∗ε + ζ
∗
ε , uε − u0〉

+
1

ε
〈Puε − Pu0, uε − u0〉

≥ 〈Auε + ηε + ζ∗ε , uε − u0〉.
Thus,

〈Auε + η∗ε + ζ∗ε , uε − u0〉
‖uε − u0‖X0

≤ ‖u0t‖X∗
0
,

for all ε > 0. From the last inequality together with (3.7), we imply that ‖uε‖X0
is bounded. As a

consequence, we see that (Auε) is a bounded sequence in X∗0. Moreover, from the growth conditions

(2.3) and (2.4), we see that (ηε) and (ζε) are bounded sequences in Lp′ (Q) and Lp′ (ΓN), respectively.

(Note: η∗ε = i∗ηε and ζ∗ε = γ∗Nζε.) Next, let us check that the sequence (ε−1Puε) is also bounded in

X∗0. To see this, for each ε, we choose w = wε to be an element satisfying (3.3) with u = uε. From

(3.8), we have

〈uεt,wε〉 + 〈Auε + η∗ε + ζ
∗
ε ,wε〉 + 1

ε
〈Puε,wε〉 = 0.

From (3.3)(i), we see that 〈uεt,wε〉 + 〈Auε,wε〉 ≥ 0. Therefore,

1

ε
〈Puε,wε〉 ≤ 〈−η∗ε − ζ∗ε ,wε〉. (3.10)

Since (‖ηε‖Lp′ (Q)) and (‖ζε‖Lp′ (ΓN )) are bounded we get: there exists a constant c > 0 such that

|〈η∗ε,wε〉| ≤
∫

Q
|ηε| |wε| dxdt ≤ c‖wε‖Lp(Q), ∀ε,
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and

|〈ζ∗ε ,wε〉| ≤
∫
ΓN

|ζε| |γNwε| dΓ ≤ c‖γNwε‖Lp(ΓN ), ∀ε,

which results in

|〈η∗ε + ζ∗ε ,wε〉| ≤ c(‖wε‖Lp(Q) + ‖γNwε‖Lp(ΓN )), ∀ε.
This last inequality and (3.3)(ii) imply that

1

ε
‖Puε‖X∗

0
≤ c

D
, ∀ε.

On the other hand, since

uεt = −(A + ε−1P)(uε) − η∗ε − ζ∗ε
in X∗0, the above estimate implies that (uεt) is also bounded in X∗0. Thus, we have shown that (uε)
is bounded with respect the graph norm of D(L). Hence, there exist u ∈ X0 (with ut ∈ X∗0) and a

subsequence of (uε), still denoted by (uε), such that

uε ⇀ u in X0, uεt ⇀ ut in X∗0 (ε→ 0+). (3.11)

Since D(L) is closed in W0 and convex, it is weakly closed in W0, and thus u ∈ D(L). Now, let us

prove that u is a solution of the variational inequality (3.1). First, note that Pu = 0. In fact, we have

Puε → 0 in X∗0. It follows from the monotonicity of P that

〈Pv, v − u〉 ≥ 0, ∀v ∈ X0.

As in the proof of Minty’s lemma (cf. [19]), one obtains from this inequality that

〈Pu, v〉 ≥ 0, ∀v ∈ X0.

Hence, Pu = 0 in X∗0, that is, u ∈ K. On the other hand, (3.11) and Aubin’s lemma as well as the

compactness of the trace operator γ : W → Lp(Γ) (resp. γN : W0 → Lp(ΓN)) imply that

uε → u in Lp(Q) and γNuε → γNu in Lp(ΓN)). (3.12)

As a consequence, we obtain

〈η∗ε + ζ∗ε , uε − u〉 =
∫

Q
ηε(uε − u) dxdt +

∫
ΓN

ζε(γNuε − γNu) dΓ→ 0, (3.13)

as ε→ 0+. For w ∈ K, letting v = w − uε in (3.8) (with u = uε), one gets

〈uεt,w − uε〉 + 〈Auε + η∗ε + ζ
∗
ε ,w − uε〉 = 1

ε
〈−Puε,w − uε〉 ≥ 0. (3.14)

By choosing w = u in (3.14), we have

〈Auε, u − uε〉 ≥ −〈η∗ε + ζ∗ε , u − uε〉 − 〈ut, u − uε〉 + 〈ut − uεt, u − uε〉
≥ −〈η∗ε + ζ∗ε , u − uε〉 − 〈ut, u − uε〉.

As a consequence, one gets

lim inf
ε→0+

〈Auε, u − uε〉 ≥ 0.
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Note that A is of class (S +) with respect to D(L) (cf. e.g. [4, 5] or [10], we recall that A is said to be

of class (S +) with respect to D(L) if for any sequences {un} ⊂ D(L), the conditions un ⇀ u in X0,

Lun ⇀ Lu in X∗0 and lim infn→∞〈Aun, u − un〉 ≥ 0 imply that un → u in X0). Therefore, we deduce

from (3.11) and the above limit that

uε → u in X0. (3.15)

On the other hand, since (η∗ε) as well as (ζ∗ε ) are bounded in X∗0, by passing to a subsequence still

denoted by (η∗ε) and (ζ∗ε ), respectively, for simplicity of notation, we have

η∗ε ⇀ η∗, ζ∗ε ⇀ ζ∗ in X∗0. (3.16)

From (3.11) and the property of the mappings F and FN to be sequentially weakly-closed with

respect to D(L) (as for the proof, see Step 3 of Proposition 2.3), we have

η∗ ∈ F (u) and ζ∗ ∈ FN(u). (3.17)

Letting ε→ 0 in (3.14) and taking (3.11), (3.15), and (3.16) into account, we obtain

〈ut,w − u〉 + 〈Au + η∗ + ζ∗,w − u〉 ≥ 0.

This holds for all w ∈ K which together with (3.17) proves that u is in fact a solution of (3.1). �

In the case where ΣD has positive surface measure, let us consider some simple conditions that

ensure the coercivity condition (3.7) is satisfied and thus the existence of solutions of the inequality

(3.1). In this case, we can take as norm on X0 the usual norm defined only by the gradient of

functions in X0:

‖u‖X0
=

(∫
Q
|∇u|pdxdt

)1/p

(u ∈ X0).

Let μ and μN be the best constants corresponding to the continuous mappings X0 → Lp(Q), u �→ u,

and X0 → Lp(ΓN), u �→ γNu, that is,

‖u‖Lp(Q) ≤ μ‖u‖X0
, ‖γNu‖Lp(ΓN ) ≤ μN‖u‖X0

, ∀u ∈ X0.

Some sufficient conditions for (3.7) are given in the following result.

Corollary 3.3 Assume meas(ΣD) � 0.
(a) If

c3 > βμ
p + βNμ

p
N , (3.18)

then the coercivity condition (3.7) holds.
(b) In particular, if (2.3) and (2.4) hold with σ ∈ [0, p − 1) instead of p − 1, that is,

sup{|η| : η ∈ f (x, t, s)} ≤ α(x, t) + β|s|σ (3.19)

for a.e. (x, t) ∈ Q, ∀ s ∈ R, and

sup{|ζ | : ζ ∈ fN(x, t, s)} ≤ αN(x, t) + βN |s|σ (3.20)

for a.e. (x, t) ∈ ΓN , ∀ s ∈ R, where α ∈ Lp′ (Q), αN ∈ Lp′ (ΓN), β, βN ≥ 0, then the coercivity
condition (3.7) holds.
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Proof. (a) Let u0 be any (fixed) element of D(L) ∩ K. It follows from (A3) and (A1) that

〈Au, u〉 ≥ c3‖u‖pX0
− ‖c4‖L1(Q), (3.21)

and

|〈Au, u0〉| ≤ Nc1‖u‖p−1

X0
‖u0‖X0

+ N‖c2‖Lp′ (Q)‖u0‖X0
,∀u ∈ X0. (3.22)

On the other hand, for any u ∈ X0, any η∗ ∈ F (u) and ζ∗ ∈ FN(u), (F3) implies that

|〈η∗, u − u0〉| ≤ μ‖α‖Lp′ (Q)(‖u‖X0
+ ‖u0‖X0

) + βμp‖u‖pX0

+βμp‖u‖p−1

X0
‖u0‖X0

,
(3.23)

and

|〈ζ∗, u − u0〉| ≤ μN‖αN‖Lp′ (ΓN )(‖u‖X0
+ ‖u0‖X0

) + βNμ
p
N‖u‖pX0

+βNμ
p
N‖u‖p−1

X0
‖u0‖X0

.
(3.24)

Combining (3.21)–(3.24) yields

〈Au + η∗ + ζ∗, u − u0〉 ≥ (c3 − βμp − βNμ
p
n )‖u‖pX0

−(Nc1 + βμ
p + βNμ

p
N)‖u‖p−1

X0
‖u0‖X0

−(μ‖α‖Lp′ (Q) + μN‖αN‖Lp′ (ΓN ))(‖u‖X0
+ ‖u0‖X0

)

−‖c4‖L1(Q) − N‖c2‖Lp′ (Q)‖u0‖X0
.

It is clear from this estimate that (3.18) implies (3.7).

(b) In view of Young’s inequality (with ε), we see that conditions (3.19) and (3.20) imply con-

ditions (2.3) and (2.4) with arbitrarily small choices of β and βN in (2.3) and (2.4), which in their

turns, implies (3.18). �

Remark 3.4 Theorem 3.2, in particular, allows to treat rather general parabolic obstacle problems,

as for those a penalty operator satisfying the required property (P) can explicitly be constructed, see

(3.4). As for parabolic obstacle problems with (single-valued) Carathéodory nonlinearities, see e.g.

[6, 14, 20].

4 Enclosure and comparison results in the noncoercive case

Note that when the growth conditions (2.3), (2.4), or the coercivity condition (3.7) is not fulfilled

then problem (3.1) (resp. (3.2)) may not have solutions. However, without these conditions, we

can still have the existence and other properties of solutions of (3.1) provided that sub- and super-

solutions of (3.1), defined in a certain appropriate sense, exist. In this section we establish a sub-

supersolution method for (3.1), which will allow us to derive existence, enclosure and comparison

results for (3.1) (which is equivalent to (1.2)–(1.3)).

Let us first introduce our basic notions of sub-supersolution for the multi-valued parabolic vari-

ational inequality (3.1).
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Definition 4.1 A function u ∈ W is called a subsolution of (3.1) if there is an η ∈ Lp′ (Q) and a
ζ ∈ Lp′ (ΓN) such that the following holds:

(i) u ∨ K ⊂ K, u(·, 0) ≤ 0 in Ω,

(ii) η ∈ F(u), ζ ∈ FN(γNu)

(iii) 〈ut + Au, v − u〉 +
∫

Q
η (v − u) dxdt +

∫
ΓN

ζ (γNv − γNu) dΓ ≥ 0,

for all v ∈ u ∧ K.

We have a similar definition for supersolutions of (3.1).

Definition 4.2 A function u ∈ W is called a supersolution of (3.1) if there is an η ∈ Lp′ (Q) and a
ζ ∈ Lp′ (ΓN) such that the following holds:

(i) u ∧ K ⊂ K, u(·, 0) ≥ 0 in Ω,

(ii) η ∈ F(u), ζ ∈ FN(γNu)

(iii) 〈ut + Au, v − u〉 +
∫

Q
η (v − u) dxdt +

∫
ΓN

ζ (γNv − γNu) dΓ ≥ 0,

for all v ∈ u ∨ K.

Remark 4.3 Note that the notions for sub- and supersolution defined in Definition 4.1 and Defini-

tion 4.2 have a symmetric structure, i.e., one obtains the definition for the supersolution u from the

definition of the subsolution by replacing u, η, ζ in Definition 4.1 by u, η, ζ, and interchanging ∨ by

∧, and ”≤” in (i) by ”≥”.

Throughout this section instead of the growth condition (F3) of the preceding section we assume

the following local growth assumption with respect to the ordered interval of sub-supersolutions.

(F4) Assume that there exists a pair of sub-supersolutions u and u of (3.1) such that u ≤ u. For f
and fN we require the following growth between u and u:

|η| ≤ c5(x, t), ∀ η ∈ f (x, t, s), (4.1)

for some c5 ∈ Lp′ (Q), for a.e. (x, t) ∈ Q, and all s ∈ [u(x, t), u(x, t)], as well as

|ζ | ≤ c6(x, t), ∀ ζ ∈ fN(x, t, s), (4.2)

for some c6 ∈ Lp′ (ΓN), for a.e. (x, t) ∈ ΓN , and all s ∈ [γNu(x, t), γNu(x, t)],

We are now ready to state and prove our main existence and comparison result.

Theorem 4.4 Assume (A1)–(A3) and that (3.1) has an ordered pair of sub- and supersolutions u
and u, and that (F1)–(F2), and (F4) are satisfied. Suppose furthermore that D(L) ∩ K � ∅. Then,
(3.1) has a solution u such that u ≤ u ≤ u a.e. in Q.

Proof. We define the following cut-off function b : Q × R→ R:

b(x, t, s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[s − u(x, t)]p−1 if s > u(x, t)
0 if u(x, t) ≤ s ≤ u(x, t)
−[u(x, t) − s]p−1 if s < u(x, t),
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for (x, t, s) ∈ Q × R. It is easy to check that b is a Carathéodory function satisfying the following

growth condition

|b(x, t, s)| ≤ c7(x, t) + c8|s|p−1, for a.e. (x, t) ∈ Q, all s ∈ R, (4.3)

with c7 ∈ Lp′ (Q), c8 > 0. Hence, the Nemytskij operator B : u �→ b(·, ·, u) is a continuous and

bounded mapping from Lp(Q) to Lp′ (Q) and the composed operator B = i∗ ◦ B ◦ i : X0 → X∗0 given

by

〈Bu, v〉 =
∫

Q
b(·, ·, u) v dxdt, ∀u, v ∈ X0 (4.4)

is (single-valued) pseudomonotone w.r.t. D(L) due to the compact imbedding W ↪→↪→ Lp(Q)).

Moreover, there are c9, c10 > 0 such that∫
Q

b(·, ·, u)u dxdt ≥ c9‖u‖pLp(Q)
− c10, ∀u ∈ Lp(Q). (4.5)

Let η, ζ and η, ζ correspond to u and u as in definitions 4.1 and 4.2. We define multi-valued truncation

functions f0 : Q × R → 2R and fN0 : ΓN × R → 2R related to the multi-valued function f and fN ,

respectively, by

f0(x, t, s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{η} if s < u(x, t)
f (x, t, s) if u(x, t) ≤ s ≤ u(x, t)
{η} if s > u(x, t),

(4.6)

for (x, t, s) ∈ Q × R, and

fN0(x, t, s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{ζ} if s < γNu(x, t)
fN(x, t, s) if γNu(x, t) ≤ s ≤ γNu(x, t)
{ζ} if s > γNu(x, t),

(4.7)

for (x, t, s) ∈ ΓN × R.

As in [21], we can check that f0 and fN0 also satisfy (F1) and (F2). Moreover, as a consequence

of (F4), f0 satisfies (2.3), and fN0 satisfies (2.4) of (F3) with β = 0 and βN = 0, and α = c5+ |η|+ |η| ∈
Lp′ (Q) and αN = c6 + |ζ | + |ζ | ∈ Lp′ (ΓN), respectively. For u : Q→ R measurable, let

F0(u) = {η : Q→ R : η is measurable on Q and η(x, t) ∈ f0(x, t, u(x, t))},
and for v : ΓN → R measurable, let

FN0(v) = {ζ : ΓN → R : ζ is measurable on ΓN and ζ(x, t) ∈ f0(x, t, v(x, t))}.
Then, F0(u) ⊂ Lp′ (Q) and FN0(v) ⊂ Lp′ (ΓN) for any measurable functions u : Q → R and v : ΓN →
R, respectively. This allows us to define F0 : Lp(Q) → 2Lp′ (Q), u �→ F0(u) and F0 : X0 → 2X∗

0 ,

where F0 = i∗ ◦ F0 ◦ i, as well as FN0 : Lp(ΓN) → 2Lp′ (ΓN ), v �→ FN0(v) and FN0 : X0 → 2X∗
0 , where

FN0 = γ∗N ◦ FN0 ◦ γN . Then F0 and FN0 are pseudomonotone with respect to D(L), according to

Proposition 2.3 and Proposition 2.4, respectively. Let us consider the following auxiliary variational

inequality: Find u ∈ D(L) ∩ K, η∗ ∈ F0(u), and ζ∗ ∈ FN0(u) such that

〈Lu + Au + Bu + η∗ + ζ∗, v − u〉 ≥ 0. ∀v ∈ K, (4.8)

By means of the existence result of Section 3 we are going to show first that problem (4.8) possesses

solutions.
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We already mentioned above that B : X0 → X∗0 is (single-valued) bounded, continuous, and

pseudomonotone w.r.t. D(L). Setting, f1 = b + f0, then in view of the properties of the truncation

functions b, f0, fN0 one readily verifies that f1 and fN0 satisfy (F1)–(F3), and thus F1 = B + F0

and FN0 are bounded and pseudomonotone with respect to D(L) according to Proposition 2.3 and

Proposition 2.4, respectively. In order to apply the existence result of Section 3, we need to check

that the operator

A + B + F0 + FN0 : X0 → 2X∗
0

is coercive on X0 in the following sense:

lim
‖u‖X0

→∞

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
inf

η∗ ∈ F0(u)

ζ∗ ∈ FN0(u)

〈Au + Bu + η∗ + ζ∗, u − ϕ〉
‖u‖X0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ∞, (4.9)

for any ϕ ∈ X0, which then holds true also for ϕ ∈ K. In fact, from (A3), we have

〈Au, u〉 ≥ c3‖|∇u|‖pLp(Q)
− c11, ∀u ∈ X0, (4.10)

with some constant c11 > 0. Now let c > 0 be a generic constant. For η∗ ∈ F0(u), η∗ = i∗η with

η ∈ F0(u), we have

|〈η∗, u〉| =
∣∣∣∣∣∣
∫

Q
η u dxdt

∣∣∣∣∣∣
≤ (‖c5‖Lp′ (Q) + ‖η‖Lp′ (Q) + ‖η‖Lp′ (Q))‖u‖Lp(Q)

≤ c ‖u‖Lp(Q) ≤ c ‖u‖X0
.

(4.11)

For ζ∗ ∈ FN0(u), ζ∗ = γ∗Nζ with ζ ∈ FN0(γNu), we have

|〈ζ∗, u〉| =
∣∣∣∣∣∣
∫
ΓN

ζ γNu dΓ

∣∣∣∣∣∣
≤ (‖c6‖Lp′ (ΓN ) + ‖ζ‖Lp′ (ΓN ) + ‖ζ‖Lp′ (ΓN ))‖γNu‖Lp(ΓN )

≤ c ‖γNu‖Lp(ΓN ) ≤ c ‖u‖X0

(4.12)

Combining (4.5) with (4.10),(4.11) and (4.12), one gets for all u ∈ X0

〈(Au + Bu + η∗ + ζ∗, u〉 ≥ c3‖∇u‖pLp(Q)
+ c9‖u‖pLp(Q)

− c10

−c ‖u‖X0
, (4.13)

and thus with c̃ = min{c3, c9} > 0

〈(Au + Bu + η∗ + ζ∗, u〉 ≥ c̃ ‖u‖pX0
− c (‖u‖X0

+ 1). (4.14)

For any ϕ ∈ X0 fixed, it is inferred from (A1), (4.3), (4.2) and (4.1) that

|〈Au + Bu + η∗ + ζ∗, ϕ〉| ≤ c (‖u‖p−1

X0
+ 1), ∀u ∈ X0. (4.15)

From (4.14) and (4.15), we obtain (4.9). Let u0 ∈ D(L) ∩ K be fixed. With the particular choice of

ϕ = u0, we see that all conditions of Theorem 3.2 are fulfilled with F1 = B + F0 in place of F and

FN0 in place of FN . According to Theorem 3.2, (4.8) has solutions.
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Now, let us show that any solution u of (4.8) satisfies: u ≤ u ≤ u a.e. in Q. We verify that u ≤ u,

the second inequality is proved in a similar way. Because u ∈ K, it follows that

u + (u − u)+ = u ∨ u ∈ K.

Letting v = u + (u − u)+ into (4.8), one gets

〈ut, (u − u)+〉 + 〈Au + Bu + η∗ + ζ∗, (u − u)+〉 ≥ 0,

which is equivalent to

〈ut, (u − u)+〉 + 〈Au + Bu, (u − u)+〉
+

∫
Q
η (u − u)+ dxdt +

∫
ΓN

ζ (γNu − γNu)+ dΓ ≥ 0, (4.16)

where η∗ = i∗η and ζ∗ = γ∗Nζ with η ∈ F0(u) and ζ ∈ FN0(γNu). On the other hand, since u is a

subsolution, it follows with

v = u − (u − u)+ = u ∧ u ∈ u ∧ K,

that

−〈ut, (u − u)+〉 − 〈Au, (u − u)+ −
∫

Q
η (u − u)+ dxdt −

∫
ΓN

ζ (γNu − γNu)+ dΓ ≥ 0. (4.17)

Adding (4.16) and (4.17), we get

〈(u − u)t, (u − u)+〉 + 〈Au − Au + Bu, (u − u)+〉
+

∫
Q

(η − η) (u − u)+ dxdt +
∫
ΓN

(ζ − ζ) (γNu − γNu)+ dΓ ≥ 0.
(4.18)

We have u − u ∈ W and (u − u)+(·, 0) = 0, and thus

〈(u − u)t, (u − u)+〉 = 1

2
‖(u − u)+(·, τ)‖2L2(Ω)

≥ 0. (4.19)

On the other hand, it is easy to check from (A2) that

〈Au − Au, (u − u)+〉 ≥ 0. (4.20)

Moreover, because of (4.6), it follows∫
Q

(η − η) (u − u)+ dxdt =
∫

Q+
(η − η)(u − u) dxdt = 0, (4.21)

where Q+ = {(x, t) ∈ Q : u(x, t) > u(x, t)}, and due to (4.6), we have

η(x, t) = η(x, t) for a.e. (x, t) ∈ Q+.

Similarly, one has ∫
ΓN

(ζ − ζ) (γNu − γNu)+ dΓ =
∫
Γ+N

(ζ − ζ) (γNu − γNu) dΓ = 0, (4.22)
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because due to (4.7), for (x, t) ∈ Γ+N = {(x, t) ∈ ΓN : γNu(x, t) > γNu(x, t)}, it follows that

ζ(x, t) = ζ(x, t) for a.e. (x, t) ∈ Γ+N .
Combining (4.19)–(4.22) with (4.18), we obtain

0 ≤ 〈Bu, (u − u)+〉 = −
∫

Q+
(u − u)p dxdt ≤ 0.

This proves that u − u = 0 a.e. on Q+ and thus u ≤ u a.e. on Q. A similar proof shows that u ≤ u.

From u ≤ u ≤ ū, we have Bu = 0 as well as F0u ⊂ F u, and FN0u ⊂ FNu. Consequently, a solution

u of (4.8) is also a solution of (3.1), which completes the proof. �

The construction of sub- and supersolutions of (3.1) depends on the specific properties of the

data of the problem, i.e., on Ω, A, F, FN and the convex set K. In the following application, we

consider a noncoercive problem that can be treated by means of Theorem 4.4 via the construction of

sub- and supersolutions for an obstacle problem with the Laplacian as principal operator.

Application: Multi-Valued Parabolic Obstacle Problem

Let us assume ΓD = ∅, which implies Γ = ΓN , X0 = X, and let Ω = B(0, 1) be the unit ball in RN .

We consider the multi-valued parabolic obstacle problem: Find u ∈ D(L) ∩ K, η ∈ L2(Q) and a

ζ ∈ L2(ΓN) such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η ∈ F(u), ζ ∈ FN(γNu)

〈ut + Au, v − u〉 +
∫

Q
η (v − u) dxdt +

∫
ΓN

ζ (γNv − γNu) dΓ ≥ 0,
(4.23)

for all v ∈ K, where K is given by an obstacle

K = {u ∈ X : u ≤ ψ a.e. on Q},
and A = −Δ is the Laplacian (i.e. p = 2 and (A1)–(A3) are apparently satisfied). We assume

ψ ∈ W∩L∞(Q) to satisfy the conditions already formulated in Section 3. The multi-valued functions

f , fN : R → K(R) ⊂ 2R are supposed to be upper semicontinuous, and for simplicity we assume

these functions be bounded. More precisely, we assume the existence of positive constants d and dN

such that

d ≤ N : −d ≤ f (s) ≤ d, ∀ s ∈ R. (4.24)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dN > 2 and − dN ≤ fN(s) ≤ dN , ∀ s ∈ R,
∃ s0 > 0 : 2 ≤ fN(s) ≤ dN , ∀ s ≥ s0,

− dN ≤ fN(s) ≤ −2, ∀ s ≤ −s0.

(4.25)

As ‖∇u‖L2(Q) is not an equivalent norm in X0 = X, we readily observe that the coercivity condi-

tion (3.7) of Theorem 3.2 is not satisfied. Still we are able to construct an ordered pair u, u of

sub-supersolution of (4.23), which allows to apply Theorem 4.4. To this end let us introduce the

following two (single-valued) parabolic initial boundary value problems:

ut − Δu − d = 0, u(·, 0) = 0 in Ω,
∂u
∂ν
+ β(u) = 0 on Γ, (4.26)
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ut − Δu + d = 0, u(·, 0) = 0 in Ω,
∂u
∂ν
+ β(u) = 0 on Γ, (4.27)

where ∂/∂ν is the outward normal derivative at ΓN , and where β : R → R may be any smooth

function satisfying, in addition, the following bounds for s ≥ s0 and s ≤ −s0 with s0 as given in

(4.25):

1 ≤ β(s) ≤ 2 for s ≥ s0, −2 ≤ β(s) ≤ −1 for s ≤ −s0. (4.28)

Then the following enclosure holds:

Corollary 4.5 Assume assumptions (4.24) and (4.25) for the multi-valued functions f , fN : R →
K(R) ⊂ 2R. If u is a supersolution of the initial boundary value problem (4.26) satisfying u(x, t) ≥ s0,
then u is a supersolution of the obstacle problem (4.23). If u is a subsolution of the initial boundary
value problem (4.27) satisfying u(x, t) ≤ min{−s0,−‖ψ‖∞}, then u is a subsolution of the obstacle
problem (4.23), and u ≤ u holds true, which implies that (4.23) has solutions within the interval
[u, u].

Proof. As a supersolution of (4.26) the function u ∈ W satisfies: u(·, 0) ≥ 0, in Ω, and

〈ut, ϕ〉 +
∫

Q
(∇u∇ϕ − dϕ) dxdt +

∫
Γ

β(γu)γϕ dΓ ≥ 0, ∀ ϕ ∈ X ∩ L2
+(Q). (4.29)

We are going to verify that u is a supersolution in the sense of Definition 4.2 of the obstacle problem

(4.23). First, for any w ∈ K we have u∧w ∈ K which is (i) of Definition 4.2. Let η be any measurable

selection of f (u(x, t)), and let ζ be any measurable selection of fN(γu(x, t)). Then −d ≤ η(x, t) ≤ d,

−dN ≤ ζ(x, t) ≤ dN , and thus η ∈ F(u) and ζ ∈ FN(γu) (which is (ii)). Moreover, since u(x, t) ≥ s0

we have γu ≥ s0, and thus by (4.25) and (4.28) it follows ζ ≥ β(γu). Apparently, −d ≤ η, which in

view of (4.29) leads to

〈ut − Δu + i∗η + γ∗ζ, ϕ〉 ≥ 0, ∀ ϕ ∈ X ∩ L2
+(Q). (4.30)

The last inequality, in particular holds for ϕ = (w − u)+ for any w ∈ K, which implies that for

v = u ∨ w = u + (w − u)+ (w ∈ K), the following inequality is satisfied:

〈ut − Δu + i∗η + γ∗ζ, v − u〉 ≥ 0, ∀ v ∈ u ∨ K,

which is (iii) of Definition 4.2.

Since the subsolution of (4.27) satisfies u(x, t) ≤ min{−s0,−‖ψ‖∞}, it readily follows u ∨ w ∈ K
for all w ∈ K, i.e., (i) of Definition 4.1. As a subsolution of (4.27) the function u ∈ W satisfies:

u(·, 0) ≤ 0, in Ω, and

〈ut, ϕ〉 +
∫

Q
(∇u∇ϕ + d ϕ) dxdt +

∫
Γ

β(γu)γϕ dΓ ≤ 0, ∀ ϕ ∈ X ∩ L2
+(Q). (4.31)

Let η be any measurable selection of f (u(x, t)), and let ζ be any measurable selection of fN(γu(x, t))
then η ∈ F(u) and ζ ∈ FN(γu) (which is (ii)), and again we have −d ≤ η(x, t) ≤ d. Since u(x, t) ≤
min{−s0,−‖ψ‖∞}, we have, in particular, that γu ≤ −s0, which, in view of (4.25) and (4.28), yields

ζ ≤ β(γu). Thus from (4.31) we get

〈ut − Δu + i∗η + γ∗ζ, ϕ〉 ≤ 0, ∀ ϕ ∈ X ∩ L2
+(Q). (4.32)

Inequality (4.32), in particular, holds for ϕ = (u − w)+ for any w ∈ K, which implies that for

v = u ∧ w = u − (u − w)+ (w ∈ K), the following inequality is satisfied:

〈ut − Δu + i∗η + γ∗ζ,−(v − u)〉 ≤ 0, ∀ v ∈ u ∧ K,
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which yields

〈ut − Δu + i∗η + γ∗ζ, v − u〉 ≥ 0, ∀ v ∈ u ∧ K. (4.33)

But the last inequality (4.33) is property (iii) of Definition 4.1. Applying Theorem 4.4 completes the

proof. �

Let us verify that sub-supersolutions as required in Corollary 4.5 do exist. As Ω = B(0, 1) is the

unit ball in RN we claim that

u(x, t) = −1

2
|x|2 + a, u = −u, a ≥ max{1

2
+ s0,

1

2
+ ‖ψ‖∞} (4.34)

satisfy the conditions of Corollary 4.5. To see that u is a supersolution of (4.26) we calculate:

ut − Δu − d = N − d ≥ 0, since d ≤ N.

∂u
∂ν
+ β(u)|∂B(0,1) = −1 + β(γu) ≥ 0,

since u ≥ s0 and thus γu ≥ s0, which implies β(γu) ≥ 1. Similarly, one shows that u = −u satisfies

the condition of Corollary 4.5.

5 Generalized variational-hemivariational inequalities
As already mentioned in the introduction, a need in applications requires to consider more general

parabolic variational-hemivariational inequalities of the following form: Find u ∈ D(L) ∩ K such

that ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
〈ut + Au, v − u〉 +

∫
Q

jo(x, t, u, u; v − u) dxdt

+

∫
ΓN

joN(x, t, γNu, γNu; γNv − γNu) dΓ ≥ 0, ∀ v ∈ K,
(5.1)

where j, jN given by

j : Q × R × R→ R with (x, t, r, s) �→ j(x, t, r, s), (x, t) ∈ Q

jN : ΓN × R × R→ R with (x, t, r, s) �→ jN(x, t, r, s), (x, t) ∈ ΓN

are supposed to be locally Lipschitz functions with respect to s, and jo(x, t, r, s; �) and joN(x, t, r, s; �)

denote Clarke’s generalized directional derivative at s in the direction � for fixed (x, t, r). In particu-

lar, the following special case of (5.1) will be considered:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
〈ut + Au, v − u〉 +

∫
Q

h(x, t, u) ĵo(x, t, u; v − u) dxdt

+

∫
ΓN

hN(x, t, γNu) ĵoN(x, t, γNu; γNv − γNu) dΓ ≥ 0, ∀ v ∈ K,
(5.2)

where j and jN of (5.1) now have the special form:

j(x, t, r, s) = h(x, t, r) ĵ(x, t, s), jN(x, t, r, s) = hN(x, t, r) ĵN(x, t, s), (5.3)

We assume that h, ĵ : Q × R → R and hN , ĵN : ΓN × R → R are Carathéodory functions, where

ĵ : Q × R→ R and ĵN : ΓN × R→ R are supposed, in addition, to be locally Lipschitz with respect
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to s. In problem (5.1) (as well as in its special case (5.2)) the functions s �→ j(·, ·, s, s) and s �→
jN(·, ·, s, s) may be not locally Lipschitz but only partially locally Lipschitz. This enlarges the class

of variational-hemivariational inequalities considerably. More precisely, we make the following

assumptions on j and jN :

(J1) (x, t) �→ j(x, t, r, s) and (x, t) �→ jN(x, t, r, s) are measurable in Q and on ΓN , respectively, for

all r, s ∈ R.

r �→ j(x, t, r, s) and r �→ jN(x, t, r, s) are continuous for a.e. (x, t) ∈ Q and (x, t) ∈ ΓN ,

respectively, and for all s ∈ R.

s �→ j(x, t, r, s) and s �→ jN(x, t, r, s) are locally Lipschitz for a.e. (x, t) ∈ Q and (x, t) ∈ ΓN ,

respectively, and for all r ∈ R.

(J2) Let s �→ ∂ j(x, t, r, s) and s �→ ∂ jN(x, t, r, s) denote Clarke’s generalized gradient of the func-

tions j and jN w.r.t s, respectively. Assume the following growth conditions: ∂ j satisfies the

growth condition

sup{|η| : η ∈ ∂ j(x, t, s, s)} ≤ α(x, t) + β|s|p−1 (5.4)

for a.e. (x, t) ∈ Q, ∀ s ∈ R, where α ∈ Lp′ (Q), and β ≥ 0. Similarly, ∂ jN satisfies the growth

condition

sup{|ζ | : ζ ∈ ∂ jN(x, t, s, s)} ≤ αN(x, t) + βN |s|p−1 (5.5)

for a.e. (x, t) ∈ ΓN , ∀ s ∈ R, where αN ∈ Lp′ (ΓN), and βN ≥ 0.

(J3) Let s �→ jo(x, t, r, s; �) and s �→ joN(x, t, r, s; �) denote Clarke’s generalized directional deriva-

tive of the functions s �→ j(x, t, r, s) and s �→ jN(x, t, r, s) at s, respectively, in the direction �
for fixed (x, t, r). Suppose that s �→ jo(x, t, s, s; �) and s �→ joN(x, t, s, s; �) are upper semicon-

tinuous for a.e. (x, t) ∈ Q and (x, t) ∈ ΓN , respectively, and for all � ∈ R.

Define the multi-valued functions f : Q × R→ 2R and fN : ΓN × R→ 2R as follows:

f (x, t, s) = ∂ j(x, t, s, s), fN(x, t, s) = ∂ jN(x, t, s, s). (5.6)

For the so defined multi-valued functions the following lemma holds true.

Lemma 5.1 Under the assumptions (J1)–(J3), the multi-valued functions f : Q × R → 2R and
fN : ΓN × R→ 2R defined by (5.6) satisfy hypotheses (F1)–(F3).

Proof. From the definition of ∂ j(x, t, r, s) and the positive homogeneity of the mapping � �→ jo(x, t, r, s; �),

we see that for almost all (x, t) ∈ Q, all r, s ∈ R,

∂ j(x, t, r, s) = [− jo(x, t, r, s;−1), jo(x, t, r, s; 1)].

Hence,

Gr( f ) = {(x, t, s, η) ∈ Q × R × R : η ∈ ∂ j(x, t, s, s)}
= {(x, t, s, η) ∈ Q × R × R : − jo(x, t, s, s;−1) ≤ η ≤ jo(x, t, s, s; 1)}
= {(x, t, s, η) ∈ Q × R × R : η ≥ − jo(x, t, s, s;−1)}
∩{(x, t, s, η) ∈ Q × R × R : η ≤ jo(x, t, s, s; 1)}.

For each � ∈ R, it follows from (J1) that the function (x, t, r, s) �→ jo(x, t, r, s; �) is measurable on

Q×R×Rwith respect to the measureL(Q)×B(R)×B(R), as “countable limit superior” of measurable

functions there. Hence the functions (x, t, s) �→ jo(x, t, s, s; 1) and (x, t, s) �→ jo(x, t, s, s;−1) are
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measurable on Q × R with respect to the measure L(Q) × B(R). This implies that Gr( f ) belongs to

[L(Q) × B(R)] × B(R), i.e., f satisfies (F1).

To prove (F2), let (x, t) ∈ Q be a point such that the functions s �→ jo(x, t, s, s;±1) are upper

semicontinuous on R. Let s0 ∈ R and U be an open neighborhood of ∂ j(x, t, s0, s0). There exists

ε > 0 such that

(− jo(x, t, s0, s0;−1) − ε, jo(x, t, s0, s0; 1) + ε) ⊂ U.

From the upper semicontinuity of the (single-valued) functions s �→ jo(x, t, s, s;±1) at s0, there

exists an open neighborhood O of s0 such that{
jo(x, t, s, s; 1) < jo(x, t, s0, s0; 1) + ε, and

jo(x, t, s, s;−1) < jo(x, t, s0, s0;−1) + ε, ∀s ∈ O.

Hence, for all s ∈ O,

∂ j(x, t, s, s) = [− jo(x, t, s, s;−1), jo(x, t, s, s; 1)]

⊂ (− jo(x, t, s0, s0;−1) − ε, jo(x, t, s0, s0; 1) + ε)

⊂ U.

This shows the upper semicontinuity of f at s0. Lastly, (F3) follows directly from (J2). The proof

that fN satisfies (F1)–(F3) is similar. �

Since by Lemma 5.1 the multi-valued functions f and fN given by (5.6) satisfy hypotheses (F1)–

(F3), we may consider the multi-valued parabolic variational inequality (1.2)–(1.3) or equivalently

(3.1) with the special multi-valued functions (5.6), i.e, we consider the problem: Find u ∈ D(L)∩K,

η ∈ Lp′ (Q) and a ζ ∈ Lp′ (ΓN) such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η ∈ F(u), ζ ∈ FN(γNu)

〈ut + Au, v − u〉 +
∫

Q
η (v − u) dxdt +

∫
ΓN

ζ (γNv − γNu) dΓ ≥ 0,
(5.7)

for all v ∈ K, or equivalently: Find u ∈ D(L) ∩ K, η ∈ Lp′ (Q) and a ζ ∈ Lp′ (ΓN) such that⎧⎪⎨⎪⎩ η ∈ F(u), ζ ∈ FN(γNu)

〈Lu + Au + i∗η + γ∗ζ, v − u〉 ≥ 0, ∀ v ∈ K.
(5.8)

The main result of this section is to show that the parabolic variational-hemivariational inequal-

ity (5.1) and the related multi-valued variational inequality (5.7) are indeed equivalent provided K
satisfies some lattice property. The following equivalence result holds:

Theorem 5.2 Let (A1)–(A3), and (J1)–(J3) be satisfied and assume the following lattice condition
for K to be fulfilled:

K ∨ K ⊂ K and K ∧ K ⊂ K. (5.9)

Then u is a solution of the parabolic variational-hemivariational inequality (5.1) if and only if u is
a solution of the multi-valued variational inequality (5.7) with multi-functions f and fN given by
(5.6).

Proof. Let u be a solution of (5.7) (resp. (5.8)), which due to (5.6) means there is an η ∈ Lp′ (Q) and

a ζ ∈ Lp′ (ΓN) such that

η(x, t) ∈ ∂ j(x, t, u(x, t), u(x, t)), ζ(x, t) ∈ ∂ jN(x, t, γNu(x, t), γNu(x, t))
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and

〈ut + Au, v − u〉 +
∫

Q
η (v − u) dxdt +

∫
ΓN

ζ (γNv − γNu) dΓ ≥ 0, (5.10)

for all v ∈ K. By the definition of ∂ j and ∂ jN we get for any v ∈ K

jo(x, t, u, u; v − u) ≥ η(x, t) (v − u), a.e. in Q,

joN(x, t, γNu, γNu; γNv − γNu) ≥ ζ(x, t) (γNv − γNu), a.e. on ΓN .
(5.11)

By (J1) and (J2) we can ensure that the left-hand sides of (5.11) belong to L1(Q) and L1(ΓN), respec-

tively, which in view of (5.10) implies (5.1).

Let us prove the reverse, and assume that u is a solution of (5.1). In order to show that u
is a solution of the multi-valued variational inequality (5.7), we are going to show that u is both a

subsolution and a supersolution for the multi-valued problem (5.7), which then by applying Theorem

4.4 completes the proof.

Since K has the lattice property (5.9), we can use in (5.1), in particular, v ∈ u ∧ K, i.e., v =
u ∧ ϕ = u − (u − ϕ)+ with ϕ ∈ K, which yields

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
〈ut + Au,−(u − ϕ)+〉 +

∫
Q

jo(x, t, u, u;−(u − ϕ)+) dxdt

+

∫
ΓN

joN(x, t, γNu, γNu;−(γNu − γNϕ)+) dΓ ≥ 0, ∀ ϕ ∈ K.

Because � �→ jo(·, ·, r, s; �) (resp. � �→ joN(·, ·, r, s; �)) is positively homogeneous, the last inequality

is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
〈ut + Au,−(u − ϕ)+〉 +

∫
Q

jo(x, t, u, u;−1)(u − ϕ)+ dxdt

+

∫
ΓN

joN(x, t, γNu, γNu;−1)(γNu − γNϕ)+ dΓ ≥ 0, ∀ ϕ ∈ K.

Using again for any v ∈ u ∧ K its representation in the form v = u − (u − ϕ)+ with ϕ ∈ K, the last

inequality is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
〈ut + Au, v − u〉 +

∫
Q
− jo(x, t, u, u;−1)(v − u) dxdt

+

∫
ΓN

− joN(x, t, γNu, γNu;−1)(γNv − γNu) dΓ ≥ 0, ∀ v ∈ u ∧ K.
(5.12)

By [15, Proposition 2.1.2] we have

jo(x, t, u(x, t), u(x, t));−1)

= max{−θ(x, t) : θ(x, t) ∈ ∂ j(x, t, u(x, t), u(x, t))}
= −min{θ(x, t) : θ(x, t) ∈ ∂ j(x, t, u(x, t), u(x, t))}
=: −η(x, t),

(5.13)

where

η(x, t) ∈ ∂ j(x, t, u(x, t), u(x, t)). (5.14)
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Similarly, we get for joN

joN(x, t, γNu(x, t), γNu(x, t));−1)

= max{−ζ(x, t) : ζ(x, t) ∈ ∂ jN(x, t, γNu(x, t), γNu(x, t))}
= −min{ζ(x, t) : ζ(x, t) ∈ ∂ jN(x, t, γNu(x, t), γNu(x, t))}
=: −ζ(x, t),

(5.15)

and

ζ(x, t) ∈ ∂ jN(x, t, γNu(x, t), γNu(x, t)). (5.16)

Since (x, t) �→ jo(x, t, u(x, t), u(x, t));−1) as well as

(x, t) �→ joN(x, t, γNu(x, t), γNu(x, t));−1) are measurable functions, it follows that (x, t) �→ η(x, t) and

(x, t) �→ ζ(x, t) are measurable in Q and ΓN , respectively, and in view of the growth conditions (J2)

on the Clarke’s gradients, we infer η ∈ Lp′ (Q) and ζ ∈ Lp′ (ΓN). Taking (5.13)–(5.16) into account,

from (5.12) we get ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
〈ut + Au, v − u〉 +

∫
Q
η(v − u) dxdt

+

∫
ΓN

ζ(γNv − γNu) dΓ ≥ 0, ∀ v ∈ u ∧ K.
(5.17)

which together with (5.6) proves that u is a subsolution of (5.7). By similar arguments, one shows

that u is a supersolution of (5.7) as well. By applying Theorem 4.4, there exists a solution û of (5.7)

satisfying u ≤ û ≤ u, i.e. û = u is a solution of (5.7), which completes the proof. �

Special Case

Let us consider the special case of (5.1) given by (5.2) with j and jN of the special form (5.3), i.e.,

j(x, t, r, s) = h(x, t, r) ĵ(x, t, s), jN(x, t, r, s) = hN(x, t, r) ĵN(x, t, s), (5.18)

where h, ĵ : Q × R → R and hN , ĵN : ΓN × R → R are Carathéodory functions. We suppose that

ĵ : Q×R→ R and ĵN : ΓN ×R→ R are, in addition, locally Lipschitz with respect to s. In this case,

in order for j and jN to satisfy (J1)–(J3), only the following additional hypothesis for h, ĵ, hN , ĵN is

required:

(HJ) h(x, t, r) ≥ 0, hN(x, t, r) ≥ 0,

sup{|η| : η ∈ h(x, t, s)∂ ĵ(x, t, s)} ≤ α(x, t) + β|s|p−1 (5.19)

for a.e. (x, t) ∈ Q, ∀ s ∈ R, where α ∈ Lp′ (Q), and β ≥ 0, and

sup{|ζ | : ζ ∈ hN(x, t, s)∂ ĵN(x, t, s)} ≤ αN(x, t) + βN |s|p−1 (5.20)

for a.e. (x, t) ∈ ΓN , ∀ s ∈ R, where αN ∈ Lp′ (ΓN), and βN ≥ 0.

We conclude this section with a few remarks.

Remark 5.3 (i) The results obtained in this paper may be extended and hold true if the operator

A is replaced by a more general Leray-Lions operator of the form

A(x, t) = −
N∑

i=1

∂

∂xi
ai(x, t, u,∇u) + a0(x, t, u,∇u).
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(ii) Unlike in recent papers on multi-valued parabolic variational inequalities (e.g., [3]), the inte-

rior of the closed convex set K considered here may be empty, see for example the obstacle

problem considered here.

(iii) Regarding the existence and enclosure result formulated in Theorem 4.4, more subtle consid-

eration can be carried out to show that the solution set possesses a certain order structure. In

particular, one can show that the solution set enclosed by sub-and supersolutions is a directed

set, which then can be used to prove the existence of extremal solutions, see [11].

(iv) We remark that the lattice condition (5.9) for K, which is needed in the equivalence result The-

orem 5.2 is satisfied, e.g., by obstacle problems and a number of further relevant constraints

in applications.
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