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Abstract
We generalize results from topological robotics on the topological complexity (TC)
of aspherical spaces to sectional categories of fibrations inducing subgroup inclusions
on the level of fundamental groups. In doing so, we establish new lower bounds on
sequential TCs of aspherical spaces as well as the parametrized TC of epimorphisms.
Moreover,we generalize theCosta–Farber canonical class for TC to classes for sequen-
tial TCs and explore their properties. We combine them with the results on sequential
TCs of aspherical spaces to obtain results on spaces that are not necessarily aspherical.
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1 Introduction

Anautonomously functioning system in robotics operates amotion planning algorithm
which takes as input the initial and the desired states of the system and produces as
output a motion of the system from the initial to the desired state. A topological
approach to the robot motion planning problem was initiated in [23]; the topological
techniques explained relationships between instabilities occurring in robot motion
planning algorithms and topological features of robots’ configuration spaces. In this
article we focus on the special case when the configuration space of the system is
aspherical and analyse the arising topological and algebraic problems.

1.1 Sectional category and topological complexity

The sectional category of a fibration p : E → B is given as the minimal value of
n, for which B admits an open cover consisting of n + 1 non-empty open sets, each
with the property that p admits a continuous local section over it. It was introduced
under the name of genus of a fibration by A. Schwarz in [43] and is usually denoted
by secat(p : E → B), or simply by secat(p).

While sectional category can be seen as a generalization of the Lusternik–
Schnirelmann category of a space, there is another special case of sectional category
aroundwhom a huge circle of ideas has been established in the past 20 years: the notion
of topological complexity (TC). It has been introduced by M. Farber in [23], see also
[24, Chapter 4] or [25] for introductions to the subject and the introduction to [26] for
an overview of more recent developments. The TC of a path-connected topological
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space X is defined as TC(X) = secat(p), where p denotes the path fibration

p : PX → X × X , p(γ ) = (γ (0), γ (1)),

with PX = C0([0, 1], X). It is motivated by the field of topological robotics and
it encodes the complexity of motion planning for autonomous robots in an arbitrary
work space.

An extension of TC is given by the notion of sequential or higher topological
complexity, which has been introduced by Rudyak in [42] and has been explored by
various authors ever since, see e.g. [3, 32] or [34]. The r -th sequential topological
complexity of a path-connected space X , where r ≥ 2, is defined as TCr (X) =
secat(pr ), where

pr : PX → Xr , pr (γ ) =
(
γ (0), γ

(
1

r−1

)
, . . . , γ

(
r−2
r−1

)
, γ (1)

)
. (1.1)

Obviously, it holds that p2 = p, the path fibration of X . It encodes a variation of the
motion planning problem from topological robotics in which the robot is supposed to
visit several pre-determined intermediate points along its way from start to end point.

1.2 Topological complexity of aspherical spaces

Both TC and its sequential version are homotopy invariants. Thus, the TC of an aspher-
ical, or Eilenberg–MacLane space, depends only on its fundamental group. It is a
natural question to ask for a description of the TC of an aspherical space as an alge-
braic expression of its fundamental group. For the Lusternik–Schnirelmann category
of an aspherical space, such a description is given by the celebrated Eilenberg–Ganea
theorem, see [22].

The TC of aspherical spaces has received a lot of attention and has been studied
from various perspectives. Complementary to computations for various classes of
examples, see among others [11, 12, 17, 37], there are also more general approaches
to the problem. In [26] methods and constructions from equivariant topology and
Bredon cohomology are employed to produce new lower and upper bounds for the
TC of aspherical spaces, while in [28] the authors establish a spectral sequence from
which a lower bound on the TC of an aspherical space can be derived.

So far, less is known about the sequential TCof aspherical spaces. In [29] theBredon
cohomology approach from [26] is transferred to sequential TC yielding lower and
upper bounds for sequential TC as well. There are also computations of sequential
TCs of certain classes of aspherical spaces in the literature, see e.g. [33] for the case
of a closed oriented surface.

1.3 Sectional categories of fibrations inducing subgroup inclusions

As a more general question, one might investigate the sectional category of fibrations
between aspherical spaces. It is well-known that the fibre homotopy type of such a
fibration only depends on the homomorphism it induces on the level of fundamental
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groups. Using established properties of sectional category, this shows that the sec-
tional category of a fibration between aspherical spaces depends only on its associated
homomorphism of fundamental groups. Thus, onemight expect a description of such a
sectional category as an algebraic expression of its associated group homomorphism.

Since PX has the homotopy type of X , the path fibration p can be seen as an
example of such a fibration in the case that X is aspherical. One checks that if X is
of type K (π, 1) for some group π , then on fundamental group level, p induces the
diagonal inclusion

π ↪→ π × π, g �→ (g, g).

More generally, for any r ≥ 2, the fibration pr from (1.1) induces the inclusion

π ↪→ πr , g �→ (g, g, . . . , g),

between fundamental groups in the aspherical case.
Motivated by these observations, the authors of [6] study the sectional category

of fibrations between aspherical spaces that induce subgroup inclusions between
fundamental groups in loc. cit. in a systematic way. Their main algebraic tools are
algebraically defined relative versions of Berstein–Schwarz classes that can be used
to provide lower bounds on the corresponding sectional categories. As we shall
see in the course of this article, studying sectional categories of fibrations induc-
ing subgroup inclusions further subsumes the parametrized topological complexity
of epimorphisms. The latter has been studied by Grant [35] and can be seen an an
analogue of the TC of aspherical spaces in the framework of parametrized TC. This
notion has been introduced by Cohen, Farber and Weinberger in [10] and has been
studied by several authors since then.

1.4 Contents of this article

The purpose of this article is twofold. On the one hand, we present generalizations
of the spectral sequence constructions from [28] to sectional categories of fibrations
inducing subgroup inclusions. Here, we only make use of methods from homological
algebra and obtain a general lower bound for such sectional categories. We also gen-
eralize some of the main results of [28] to sectional categories of subgroup inclusions.
While a certain spectral sequence constructed therein can be used to derive lower
bounds for the TC of aspherical spaces, we show how to generalize the construction to
sectional categories of fibrations inducing subgroup inclusions. Eventually, we derive
the following lower bound for such sectional categories.

Theorem (Theorem 4.10) Let G be a geometrically finite group and let H ≤ G be a
subgroup. Then

secat(H ↪→ G) ≥ cd(G) − κG,H ,

where κG,H = max{cd(H ∩ xHx−1) | x ∈ G � H}.
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The proof of this lower bound is given by entirely algebraicmethods that do not involve
any topological arguments at all.

On the other hand,we carry out the consequences of this general result for sequential
TC and approach the question of sequential TC of aspherical spaces from a more
topological point of view. First of all, we show that in the case of sequential TC,
the above lower bound can be rephrased in terms of cohomological dimensions of
centralizers as in part a) of the following theorem.

Theorem Let π be a geometrically finite group and let r ∈ N with r ≥ 2. Let C(g)
denote the centralizer of g ∈ π and put

k(π) = max{cd(C(g)) | g ∈ π � {1}}.

a) (Theorem 5.2) Then

TCr (K (π, 1)) ≥ r · cd(π) − k(π).

b) (Corollary 7.6) Let X be a connected locally finite CW complex with π1(X) = π

whose universal cover is (k − 1)-connected for some k ∈ N with cd(π) ≤ k. Then

TCr (X) ≥ r · cd(π) − k(π).

As an application, we will show that for a free amalgamated product of the form
π1 ∗H π2, where H is malnormal both in π1 and in π2, we obtain that

TCr (K (π1 ∗H π2, 1)) ≥ r · cd(π1 ∗H π2) − max{k(π1), k(π2)} ∀r ≥ 2.

We further introduce a generalization of the canonical cohomology class of a topolog-
ical space, which has been introduced by Costa and Farber in [15] in the study of lower
bounds for TC. Our more general notion provides an analogue of this class for the
r -th sequential TC of a space for any r ≥ 2. We study its properties and link it to the
algebraically defined relative Berstein–Schwarz classes in the case of sequential TC of
aspherical spaces. In constrast to relative Berstein–Schwarz classes, canonical classes
are defined for all, i.e. not necessarily aspherical topological spaces. Towards the end
of the article, we will show how the results for aspherical spaces can be employed to
derive results for not necessarily aspherical spaces as well, culminating in a proof of
part b) of the above theorem.

1.5 Structure of the article

In Sect. 2 we recall various definitions and results on sectional categories with a focus
on subgroup inclusions. Section3 generalizes the notion of essential cohomology
classes as introduced in [28] for TC to the abovementioned situations involving sub-
group inclusions. They are explored purely in terms of group cohomology and further
used to compute the sectional category of the inclusion of a normal subgroup. The
abovementioned spectral sequence from [28] is then generalized to fibrations inducing

123



4560 A. E. Baro et al.

subgroup inclusions in Sect. 4. Its properties are studied in analogy with [28] and it is
shown that the spectral sequence encodes the properties of essential classes of subgroup
inclusions. In Sect. 5 the spectral sequence is used to derive our main lower bound on
sectional categories of fibrations inducing subgroup inclusions. These results gener-
alize observations for TC that are implicitly contained, though not explicitly stated, in
[28].

We then turn our attention to the special cases of sequential and parametrized
topological complexities in Sect. 6. We state and slightly simplify the corresponding
lower bounds and present some simple consequences. Section7 approaches sequential
TC from a more topological point of view. We establish the notion of r -th canonical
classes that are the sequential TC versions of Costa–Farber’s construction for TC, i.e.
the case of r = 2, and show that they coincide with the respective relative Berstein–
Schwarz classes in the aspherical case. We further connect our previous results with
the notion of sequentialD-topological complexity that was introduced in [29] and use
it to derive results on sequential TCs of spaces that are not necessaily aspherical.

2 Preliminaries

In this brief section, we recall various results and terminology for sectional categories
and aspherical spaces.

Definition 2.1 Let X and Y be topological spaces and let f : X → Y be continuous.
The sectional category of f , denoted by secat( f : X → Y ), or just secat( f ), is given
as the minimum number n ∈ N for which there is an open cover U0,U1, . . . ,Un of
Y , such that for each i ∈ {0, 1, . . . , n} there exists a continuous map si : Ui → X for
which f ◦ si is homotopic to the inclusion of Ui . If there is no finite open cover of Y
which has these properties, we put secat( f ) := +∞.

Remark 2.2 (1) The sectional category of a fibration was originally defined under the
name of genus by Schwarz in [43]. Its generalization to arbitrary continuous maps
was first considered by Fet in [31] and by Berstein and Ganea in [4], see also [2]
for a more general approach. If f is a fibration in Definition 2.1, the maps si can
be required to be continuous sections of f , not only homotopy sections, without
changing the value of secat( f ).

(2) Note that our definition of secat( f ) is the reduced version which differs from
Schwarz’s original definition by one, so that in the case that f admits a global
continuous homotopy section, Y → X , by our definition secat( f ) = 0, while by
Schwarz’s original definition, it would hold that secat( f ) = 1. Likewise, we will
use the reduced definition of Lusternik–Schnirelmann category as also considered
in [14].

In the following theorem, we collect various basic properties of sectional categories
that we will use in the course of this article.

Theorem 2.3 Let X and Y be topological spaces and let f : X → Y .

a) secat( f : X → Y ) ≤ cat(Y ), the Lusternik–Schnirelmann category of Y .
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b) If g : X → Y is homotopic to f , then secat( f ) = secat(g).
c) Let k ∈ N, If there are reduced cohomology classes ui ∈ ker

[
f ∗ : H̃∗(Y ; Ai ) →

H̃∗(X; f ∗Ai )
]
, where Ai is a local coefficient system over Y for each i ∈

{1, 2, . . . , k}, such that

u1 ∪ u2 ∪ · · · ∪ uk 
= 0 ∈ H∗(Y , A1 ⊗ A2 ⊗ · · · ⊗ Ak),

then

secat( f ) ≥ k.

Let G be a group. In the following we will say that a space X is of type K (G, 1) if
its homotopy groups satisfy

πi (X) ∼=
{
G if i = 1,

{0} if i 
= 1.

By abuse of notation, we will also write K (G, 1) as a space instead of X if our
considerations are independent of the chosen space of type K (G, 1).

Definition 2.4 A group G is called geometrically finite if there exists a finite CW
complex of type K (G, 1).

By classical algebraic topology, for any two groupsG1 andG2 there is a one-to-one
correspondence between based homotopy classes of continuous maps K (G1, 1) →
K (G2, 1) and group homomorphisms G1 → G2, induced by associating with any
continuous f : K (G1, 1) → K2(G2, 1) the induced homomorphism π1( f ) between
the fundamental groups.

Definition 2.5 Let G1 and G2 be groups and let ϕ : G1 → G2 be a group homomor-
phism. We define the sectional category of ϕ by

secat(ϕ : G1 → G2) := secat( fϕ : K (G1, 1) → K (G2, 1)),

or just secat(ϕ), where fϕ is a continuous map with π1( fϕ) = ϕ. By Theorem 2.3.b),
secat(ϕ) is well-defined.

Given a group G and a subgroup H ≤ G, we further let

secat(H ↪→ G)

denote the sectional category of the inclusion of H into G without naming the map
explicitly.

The sectional category of subgroup inclusions was introduced and studied by Z.
Błaszczyk, J. Carrasquel Vera and the first author in [6]. Since the cohomology of
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aspherical spaces can be computed purely algebraically in terms of group cohomol-
ogy, the properties of sectional category fromTheorem 2.3 can for sectional categories
of subgroup inclusions be translated into algebraic statements.

Both assertions of the following theorem are obtained straightforwardly as special
cases of Theorem 2.3.a) and c). One uses that by the Eilenberg–Ganea theorem, see
[22], and later work of Stallings [44] and Swan [45], it holds for every geometrically
finite group G that

cat(K (G, 1)) = cd(G),

the cohomological dimension of G. See also [41] for a lucid exposition of the
Eilenberg–Ganea results.

Theorem 2.6 Let G be geometrically finite and let ι : H ↪→ G be the inclusion of a
subgroup.

a) secat(ι : H ↪→ G) ≤ cd(G).
b) If there are reduced cohomology classes ui ∈ ker[ι∗ : H̃∗(G; Ai ) → H̃∗(H ,ResGH

(Ai ))], where Ai is a left Z[G]-module for each i ∈ {1, 2, . . . , k}, which satisfy
u1 ∪ u2 · · · ∪ uk 
= 0, then

secat(ι : H ↪→ G) ≥ k.

Remark 2.7 Note that for any group G and any subgroup H ≤ G, secat(H ↪→
G) coincides with the sectional category of the covering map K (H , 1) → K (G, 1)
associated with H . In particular, this provides an explicit fibration whose sectional
category coincides with secat(H ↪→ G).

We end this section by fixing some notational conventions that we will frequently
use throughout the article.

Notation 2.8 Let G be a group.

• We let 1 ∈ G denote the unit element and Z[G] the integer group ring of G.
• We further let ε : Z[G] → Z, ε(

∑
g∈G ng · g) = ∑

g∈G ng , be the augmentation
and K = ker ε be the augmentation ideal, seen as a left Z[G]-module.

• Given a subgroup H ≤ G, we let Z[G/H ] be the associated permutation module
as a left Z[G]-module. We further let σ : Z[G/H ] → Z, σ(

∑
x∈G/H nx · x) =∑

x∈G/H nx denote its augmentation, and I = ker σ the corresponding augmen-
tation ideal.

• For any left Z[G]-module M , we put M̃ := ResGH (M) for the left Z[H ]-module
that is obtained via restriction of scalars from Z[G] to Z[H ].

• We always let ⊗ without any subscript denote the tensor product ⊗Z of abelian
groups. Given a Z[G]-module M and p ∈ N we denote the p-fold tensor power
of M by

Mp := M⊗p := M ⊗ M ⊗ · · · ⊗ M

and consider it as a Z[G]-module with respect to the diagonal G-action on Mp.
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• Given two left Z[G]-modules M1 and M2 we consider HomZ(M1, M2), the set of
group homomorphisms from M1 to M2, as a left Z[G]-module via the diagonal
G-action given by

(g · f )(m) := g f (g−1m) ∀m ∈ M1, g ∈ G, f ∈ HomZ(M1, M2).

Note that as free abelian group,

K =
⊕
g∈G

Z · (g − 1), I =
⊕

gH∈G/H

Z · (gH − H),

where H ∈ G/H denotes the class of the unit element.

3 Essential classes relative to subgroups

3.1 The definition of essential classes

Let G be a group and let i : K ↪→ Z[G] be the inclusion of the augmentation ideal. It
is shown in [21] and discussed in [6] that we obtain a projective resolution of Z over
Z[G] via

· · · → Z[G] ⊗ Ks ps−→ Z[G] ⊗ Ks−1 → · · · → Z[G] ⊗ K
p1−→ Z[G] ε−→ Z → 0,

(3.1)

where

ps : Z[G] ⊗ Ks → Z[G] ⊗ Ks−1, ps(x ⊗ y ⊗ z) = ε(x) · i(y) ⊗ z

∀x ∈ Z[G], y ∈ K , z ∈ Ks−1.

In the following, we shall use this resolution in our study of cohomology groups of G.
Let us recall the following definition from [6],whichwill play a crucial role through-

out the rest ot this article.

Definition 3.1 Let H ≤ G be a subgroup. We define the Berstein–Schwarz class of
G relative to H as the class ω ∈ H1(G; I ) represented by the cocycle

ξ ∈ HomZ[G](Z[G] ⊗ K , I ), ξ = μ ◦ (ε ⊗ idK ),

where μ : K → I is induced by the canonical projection G → G/H .

We also recall the description of the cup product in group cohomology with respect
to the resolution (3.1) provided in [6, Proposition 1.6]. For cohomology classes [a] ∈
H p(G; A) and [b] ∈ Hq(G; B) represented by cocycles a : Z[G] ⊗ K p → A and
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b : Z[G] ⊗ Kq → B, the cup product [a] ∪ [b] ∈ H p+q(G; A⊗ B) is represented by
the map

Z[G] ⊗ K p+q ε⊗id−−→ K p+q â⊗b̂−−→ A ⊗ B

where â : K p → A the Z[G]-module homomorphism induced by the diagram

K p+1
Z[G] ⊗ K p K p

A,

a
â

since a vanishes on K p+1, and analogously for b̂. Under this characterization, the n-th
power of the relative Berstein–Schwarz class ωn ∈ Hn(G; I n) is represented by the
map

Z[G] ⊗ Kn ε⊗id−−→ Kn μn

−→ I n .

The next proposition relates the powers of relative Berstein–Schwarz classes to sec-
tional category.

Proposition 3.2 Let H ≤ G be a subgroup and let ω ∈ H1(G; I ) be the Berstein–
Schwarz class of G relative to H. Then

secat(H ↪→ G) ≥ height(ω) = sup{n ∈ N | ωn 
= 0}.

Proof Let i : H ↪→ G be the inclusion and let k := height(ω). By [6, Lemma 2.6],
it holds that ω ∈ ker ι∗. Thus, it follows immediately from Theorem 2.6.b) by taking
ui = ω for each i ∈ {1, 2, . . . , k}. ��
The role of relative Berstein–Schwarz classes for sectional categories of subgroup
inclusions is analogous to the role of Berstein–Schwarz classes for Lusternik–
Schnirelmann category and the role of the so-called canonical classes for topological
complexity. The latter were introduced by Costa and Farber in [15]. We shall discuss
below how canonical classes are related to relative Berstein–Schwarz classes.

The following lemma provides an alternative characterization of relative Berstein–
Schwarz classes and is an analogue of [15, Lemma 5].

Lemma 3.3 Consider the short exact sequence of G-modules

0 → I
i→ Z[G/H ] σ→ Z → 0 (3.2)

and let δ : H0(G; Z) → H1(G; I ) denote the Bockstein homomorphism associated
with that sequence. Then

ω = δ(1),
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where 1 ∈ H0(G; Z) is a generator.

Proof Let ρ : Z[G] → Z[G/H ] denote the homomorphism induced by the orbit
space projection. We know that ω ∈ H1(G; I ) is represented by f : Z[G] ⊗ K → I ,
f = ρ ◦ (ε ⊗ idK ). We consider the long exact sequence associated with

0 → C0(G; I ) → C0(G; Z[G/H ]) → C0(G; Z) → 0.

In terms of our resolution, its connecting homomorphism, i.e. the Bockstein homo-
morphism, is obtained via diagram chasing in

0 HomZ[G](Z[G], I ) HomZ[G](Z[G],Z[G/H ]) HomZ[G](Z[G],Z) 0

0 HomZ[G](Z[G] ⊗ K , I ) HomZ[G](Z[G] ⊗ K ,Z[G/H ]) HomZ[G](Z[G] ⊗ K ,Z) 0

d∗
1

i∗ σ∗

d∗
1 d∗

1
i∗ σ∗

The augmentation ε ∈ HomZ[G](Z[G], Z) is a cocycle. By definition of the maps
involved, it holds that ε = σ ◦ ρ, i.e. σ∗(ρ) = ε. Diagram chasing shows that

i∗( f ) = d∗
1 (ρ),

so by definition of the Bockstein homomorphism, we obtain that

δ(1) = δ([ε]) = [ f ] = ω.

Here, one sees that 1 = [ε] generates H0(G; Z) as ε(g) = 1 for each g ∈ G. ��
By elementary homological algebra, since I is Z-free, tensoring the short exact

sequence (3.2) with a left Z[G]-module M yields a short exact sequence of Z[G]-
modules

0 → I ⊗ M → Z[G/H ] ⊗ M → M → 0 (3.3)

with respect to the diagonal G-actions. In complete analogy with a statement for the
canonical class observed in Sect. 3 of [28], we derive the following statement.

Corollary 3.4 Let M be a Z-free left Z[G]-module and let u ∈ Hi (G; M), where
i ∈ N0. Consider the Bockstein homomorphism δ of the coefficient sequence

0 → I ⊗ M → Z[G/H ] ⊗ M → M → 0.

Then

δ(u) = ω ∪ u ∈ Hi+1(G; I ⊗ M).

Proof It follows straight from [8, V.(3.3)] and the graded commutativity of the cup
product that

δ(u) = δ(u ∪ 1) = (−1)i u ∪ δ(1) = (−1)i u ∪ ω = ω ∪ u. ��
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We let HomZ(I s, M) be equipped with the diagonal G-action and consider

evs : I ⊗ HomZ(I s+1, M) → HomZ(I s, M), ev(x ⊗ f ) = f (x ⊗ ·),

which is seen to be a Z[G]-homomorphism. The following statement and its proof are
straightforward analogues and carried out along the lines of [28, Proposition 7.3].

Proposition 3.5 Let A be a left Z[G]-module. For any cohomology class u ∈ Hr

(G;HomZ(I s+1, A)) one has

δ(u) = −(evs)∗(ω ∪ u),

where δ is the Bockstein homomorphism associated with the short exact coefficient
sequence

0 → HomZ(I s, A)
σ ∗→ HomZ(Z[G/H ] ⊗ I s, A)

i∗→ HomZ(I s+1, A) → 0 (3.4)

obtained by applying HomZ(·, A) to (3.3) in the case of M = I s .

Proof Wefirst observe that (3.4) is indeed short exact, since I s ,Z[G/H ]⊗ I s and I s+1

are all Z-free. Let β : Hr (G;HomZ(I s+1, A)) → Hr+1(G; I ⊗ HomZ(I s+1, A))

denote the Bockstein homomorphism of the short exact coefficient sequence

0→ I ⊗ HomZ(I s+1, A) ↪→ Z[G/H ] ⊗ HomZ(I s+1, A)
σ⊗id→ HomZ(I s+1, A)→0

obtained by letting M = HomZ(I s+1, A) in (3.3). By Corollary 3.4, it holds that

β(u) = ω ∪ u.

Thus, the claim immediately follows if we can show that δ = −(evs)∗ ◦ β. We first
consider the homomorphism F : Z[G/H ] ⊗ HomZ(I s+1, A) → HomZ(Z[G/H ] ⊗
I s, A) given by Z-linearly extending

(F(xH ⊗ f ))(zH ⊗ y) = f ((zH − xH) ⊗ y)

∀x, z ∈ G, y ∈ I s, f ∈ HomZ(I s+1, A).

We compute that

(F(g · (xH ⊗ f )))(zH ⊗ y)

= F(gxH ⊗ (g · f ))(zH ⊗ y)

= (g · f )((zH − gxH) ⊗ y) = g f ((g−1zH − xH) ⊗ g−1y)

= g(F(xH ⊗ f ))(g−1zH ⊗ g−1y) = (g · F(xH ⊗ f ))(zH ⊗ y)
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for all g, x, z ∈ G, y ∈ I s and f ∈ HomZ(I s+1, M). Hence, F is a Z[G]-
homomorphism. Consider the following diagram with exact rows:

0 I ⊗ HomZ(I s+1, M) Z[G/H ] ⊗ HomZ(I s+1, M) HomZ(I s+1, M) 0

0 HomZ(I s , M) HomZ(Z[G/H ] ⊗ I s , M) HomZ(I s+1, M) 0

evs

i⊗id

F

σ⊗id

id
−σ ∗ i∗

To show that the left-hand square of this diagram commutes, we compute for all
x, z ∈ G, y ∈ I s and f ∈ HomZ(I s+1, M) that

((−σ ∗ ◦ evs)((xH − H) ⊗ f ))(zH ⊗ y) = −σ(zH) · f ((xH − H) ⊗ y)

= − f ((xH − H) ⊗ y).

and

((F ◦ (i ⊗ id))((xH − H) ⊗ f ))(zH ⊗ y)

= (F(xH ⊗ f ))(zH ⊗ y) − (F(H ⊗ f ))(zH ⊗ y)

= f ((zH − xH) ⊗ y) − f ((zH − H) ⊗ y) = − f ((xH − H) ⊗ y).

Comparing the results shows the commutativity of the left-hand square. Concerning
the right-hand square, we derive that

((i∗ ◦ F)(xH ⊗ f ))((zH − H) ⊗ y)

= (F(xH ⊗ f ))(zH ⊗ y) − (F(xH ⊗ f ))(H ⊗ y)

= f ((zH − xH) ⊗ y) − f ((H − xH) ⊗ y)

= f ((zH − H) ⊗ y) = σ(xH) · f ((zH − H) ⊗ y)

= ((σ ⊗ id)(x ⊗ f ))((zH − H) ⊗ y).

Thus, the above diagram commutes. Considering the long exact cohomology
sequences associated with the coefficient groups of the above diagram, the naturality
of Bockstein homomorphisms shows that

−(evs)∗ ◦ β = δ ◦ id∗ = δ,

which we wanted to show. The claim immediately follows. Here, the additional sign
stems from the fact that we have considered −σ ∗ instead of σ ∗ in the bottom row of
the diagram. ��
We introduce some additional terminology which generalizes the notion of essential
classes introduced in [28].

Definition 3.6 Let n ∈ N and let α ∈ Hn(G; A)with α 
= 0.We say that α is essential
relative to H if there exists a homomorphism ofZ[G]-modules ϕ : I n → A, such that

ϕ∗(ωn) = α.
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Remark 3.7 Cohomology classes which are essential relative to subgroups are used to
derive lower bounds on the sectional category of the corresponding subgroup inclusion:
Assume that for some n ∈ N, there exists a class u ∈ Hn(G; A) with u 
= 0 that is
essential relative to H . By definition of essential classes, this requires that ωn 
= 0 ∈
Hn(G; I n), which in turn yields that secat(H ↪→ G) ≥ n by Proposition 3.2.

3.2 Essential classes relative to normal subgroups

To close this section, let us consider the case of the inclusion of a normal subgroup. In
this setting we can characterize essential classes relative to that subgroup as pullbacks
of non-trivial classes in the cohomology of the quotient group through the homo-
morphism in cohomology induced by the quotient map. This is, in certain measure, a
generalization of the ideas present in the case of the inclusion of the diagonal subgroup
in abelian groups, as considered in [28, Section 6].

Proposition 3.8 Let N � G be a normal subgroup, put Q := G/N for the quotient
group and let π : G → Q denote the projection.

a) Let ω ∈ H1(G; I ) be the Berstein–Schwarz class of G relative to N and let
β ∈ H1(Q; IQ) be the Berstein–Schwarz class of Q, where IQ ⊂ Z[Q] denotes
the augmentation ideal of Q. Then

π∗β = ω.

b) Let A be a left Z[Q]-module and let n ∈ N. A cohomology class u ∈ Hn(G;π∗A)

with u 
= 0 is essential relative to N if and only if there exists v ∈ Hn(Q; A) with
π∗v = u.

Proof Throughout the proof, we will use the projective resolution (Z[G] ⊗ K ∗, p∗)
of Z over Z[G] and the projective resolution (Z[Q] ⊗ I ∗

Q, p∗) of Z over Z[Q], both
defined as in the beginning of this section, to compute the cohomology groups of G
and Q, respectively. By abuse of notation, we further denote the ring homomorphism
induced by π by π : Z[G] → Z[Q] as well.
a) By definition of the augmentation ideals and of π , it holds that π(K ) ⊂ IQ and

in the notation of Definition 3.1, we write μ := π |K : K → IQ . By factorwise
applying π , one obtains a chain map

π# : Z[G] ⊗ K ∗ → Z[Q] ⊗ I ∗
Q,

This map induces a cochain map

(π#)
∗ : HomZ[Q]

(
Z[Q] ⊗ I ∗

Q, A
)

→ HomZ[G]
(
Z[G] ⊗ K ∗, π∗A

)
,

which in turn induces the pullback map

π∗ : H∗(Q; A) → H∗(G;π∗A).
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Denote the augmentations ofG and Q by εG and εQ , respectively.As shown in [21],
the Berstein–Schwarz class β ∈ H1(Q; IQ) is then represented by the cocycle

fβ : Z[Q] ⊗ IQ → IQ, fβ = εQ ⊗ idIQ .

One easily checks that εQ ◦ π = εG , so that

(π#)
∗( fβ)(x)(y) = (εQ ◦ π)(x) · π#(y) = εG(x) · μ(y)

= (μ ◦ (εG ⊗ idK ))(x ⊗ y).

for all x ∈ Z[G] and y ∈ K . By definition of ω, it is represented by this latter
cocycle. Passing to cohomology then shows that π∗β = ω.

b) Assume that u is essential relative to N , such that there exists a Z[G]-
homomorphism ϕ : I n → π∗A with

u = ϕ∗(ωn) = ϕ∗((π∗β)n) = (ϕ∗ ◦ π∗)(βn).

One easily checks that π∗ IQ = I as Z[G]-modules. Moreover, since we can view
ϕ : I nQ → A as a Z[Q]-homomorphism and since the diagram

Hn(Q; I nQ)
ϕ∗−−−−→ Hn(Q; A)

π∗
⏐⏐� π∗

⏐⏐�
Hn(G; I n) ϕ∗−−−−→ Hn(G;π∗A)

(3.5)

obviously commutes, we obtain that u = π∗v, where v := ϕ∗(βn) ∈ Hn(Q; A).
Conversely, assume that there exists a class v ∈ Hn(Q; A), for which u = π∗v.
By the universality of Berstein–Schwarz classes, see [21], there exists a Z[Q]-
homomorphism

ψ : I nQ → A,

such that v = ψ∗(βn). In fact, by definition of pullback modules, we can view ψ

as a Z[G]-homomorphism

ψ : I n = π∗ I nQ → π∗A.

Replacing ϕ∗ by ψ∗, the diagram corresponding to (3.5) commutes as well, so we
obtain that

u = π∗(ψ∗(βn)) = ψ∗(π∗(βn)) = ψ∗(ωn),

hence u is essential. ��
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Wewant to derive an estimate for secat(N ↪→ G) from the previous proposition, for
whichwe need to introduce another notion. Recently,MarkGrant defined the cohomo-
logical dimension cd(φ) of a group homomorphism φ : G → H to be the maximum
k for which there exists some H -module A so that φ∗ : Hk(H ; A) → Hk(G;φ∗A)

is non-trivial. The first published account of the study of this new dimension is even
more recent, see [20].

For the proof of the following theorem we recall that the LS-category of a map
f : X → Y is the smallest integer m for which there are m + 1 open sets U0, . . . ,Um

which cover X and such that each of the restrictions f |Uj is nullhomotopic. For a
group homomorphism φ : G → H , we write cat(φ) for the category of the associated
map of aspherical spaces K (G, 1) → K (H , 1).

Theorem 3.9 Let N �G be a normal subgroup, put Q := G/N for the quotient group
and let π : G → Q denote the projection. Then

cd(π : G → Q) ≤ secat(N ↪→ G) ≤ cd(Q).

In particular, if π∗ : H cd(Q)(Q; A) → H cd(Q)(G;π∗A) is non-zero for some Z[Q]-
module A, then secat(N ↪→ G) = cd(Q).

Proof Put k := cd(π : G → Q) and let A be a left Z[Q]-module and u ∈ Hk(Q; A)

with π∗u 
= 0. Then, by Proposition 3.8, π∗u ∈ Hk(G;π∗A) is essential relative to
N . This in particular yields that ωk 
= 0, where ω ∈ H1(G; I ) denotes the Berstein–
Schwarz class of G relative to N and it follows from Proposition 3.2 that secat(N ↪→
G) ≥ k.

To show the other inequality we can argue through properties of Lusternik–
Schnirelmann category as found in [14]. First, let’s note that the exact sequence

{1} → N
i→ G

π→ Q → {1}

gives a fibre sequence

K (N , 1)
i→ K (G, 1)

π→ K (Q, 1)

where we have used the same notation for the space maps. A fibre sequence arises as
a homotopy pullback

K (N , 1) P0(K (Q, 1))

K (G, 1) K (Q, 1)

i
π

where P0(K (Q, 1)) → K (Q, 1) is the based path space fibration. By [14, Proposition
9.18], because P0(K (Q, 1)) is contractible, we have secat(N ↪→ G) = cat(π). But
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a standard property of the category of a map is that it is bounded above by both the
category of its domain and the category of its codomain. Hence,

secat(N ↪→ G) = cat(π) ≤ cat(K (Q, 1)) = cd(Q). (3.6)

Assume now the hypothesis that π∗ : H cd(Q)(Q; A) → H cd(Q)(G;π∗A) is non-zero
for some Z[Q]-module A. Then, by definition, cd(π) ≥ cd(Q). Combining this with
the lower bound by cd(π) and with inequality 3.6 shows that

secat(N ↪→ G) = cd(π) = cd(Q).

��
Remark 3.10 (1) Notice that if we assume cd(Q) 
= 2 (and thus we remove the

pathological case prescribed by the Eilenberg–Ganea conjecture) one could also
argue in the proof of the upper bound of Theorem 3.9 as follows: observe first
that, by [6, Corollary 2.4], it holds that

secat(N ↪→ G) ≤ dim E〈N 〉G

where E〈N 〉G is the classifying space of the family of groups generated by N .
Since N is a normal subgroup of G, we derive from [1, Corollary 4.22] that
dim(E〈N 〉G) = dim(K (Q, 1)), where K (Q, 1) is a classifying space of Q. Using
the Eilenberg–Ganea theorem and Theorem 2.6.a) we derive that

secat(N ↪→ G) ≤ dim(K (Q, 1)) = cd(Q).

Combining this with the first inequality of Theorem 3.9 shows the claim.
(2) Since cat(K (Q, 1)) = cd(Q) for any Q by the Eilenberg–Ganea theorem, there

arose the natural conjecture that cat(φ) = cd(φ) for any homomorphism φ : G →
H . This was disproved by T. Goodwillie using an infinitely generated group G.
In [20, Theorem 5.4] a finitely generated example was derived and we shall use
this in Example 3.11.

Example 3.11 While the hypothesis that cd(π : G → Q) = cd(Q) on cohomology
in Theorem 3.9 is sufficient to derive secat(N ↪→ G) = cd(Q), it is not necessary.
We can see this using [20, Theorem 5.4] as follows. We recall that in [7], D. Bolotov
defined a closed manifold M4 with fundamental group π1(M) = Z ∗ Z

3 for which,
as shown in [20], the pullback map

μ∗ : H3(K (Z ∗ Z
3, 1); A) → H3(M; A)

is the zero homomorphism for allZ∗Z
3-modules A, whereμ : M → K (π, 1) is a clas-

sifyingmap of the universal cover. The hyperbolization procedure of [9] gives a closed
aspherical manifoldW 4 and a degree one map α : W → M which induces a surjection
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of fundamental groups. The surjective group homomorphism G = π1(W ) → Z ∗ Z
3

is then induced by the composition

W
α→ M

μ→ K (Z ∗ Z
3, 1) = S1 ∨ T 3

and we have a map θ : W → T 3 given by the composition

W
α→ M

μ→ S1 ∨ T 3 c→ T 3

where c : S1 ∨T 3 → T 3 collapses S1. Abusing notation, the induced homomorphism
of fundamental groups θ : G → Z

3 is also a surjection. Letting N = ker θ , we have

an exact sequence {1} → N
i→ G

θ→ Z
3 → {1}. In [20, Theorem 5.4] it is shown

that

cat(θ) = cd(Z3) = 3.

As in Remark 3.10, this means that secat(N ↪→ G) = 3 as well. However, the fact
that μ∗ = 0 and that θ = c ◦ μ ◦ α shows that the map θ∗ : H3(Z3; A) → H3(G; A)

is trivial for any coefficient module, hence cd(θ) < 3.

4 Forming the spectral sequence and deriving a lower bound

In this section we will proceed to generalize the construction of a spectral sequence to
sectional categories of subgroup inclusions that has been carried out for the topological
complexity of aspherical spaces by the second and third authors in [28, Section 7]. In
our setting, the spectral sequence fom [28] corresponds to the choice of G = π × π

and H = �π , for a given group π . The steps of the construction are carried out in
complete analogy with the corresponding parts of [28] and instead of giving individual
references for each statement, we view this as a general reference to [28, Section 7].
The interested reader will have no difficulties in finding the analogous statements
therein.

4.1 The construction of the spectral sequence

Let G be a group, let H ≤ G be a subgroup and let ω ∈ H1(G; I ) be the Berstein–
Schwarz class of G relative to H . Let A be a left Z[G]-module. Define the groups

Er ,s
0 = Extr

Z[G]
(
Z[G/H ] ⊗ I s, A

)
, Dr ,s

0 = Extr
Z[G](I

s, A) ∀r , s ∈ N0.

Let i : I ↪→ Z[G/H ] denote the inclusion. For each s ∈ N the short exact sequence
from (3.3) with M = I s yields a short exact sequence of Z[G]-modules

0 → I s+1 fs−→ Z[G/H ] ⊗ I s
gs−→ I s → 0, (4.1)
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where fs : I s+1 → Z[G/H ] ⊗ I s , fs := i ⊗ idI s and gs : Z[G/H ] ⊗ I s → I s ,
gs(x ⊗ y) = σ(x) · y.

For each s, the sequence in (4.1) induces a long exact Ext-sequencewith coefficients
in A, which is in the above notation given as

· · · → Er ,s
0

k0−→ Dr ,s+1
0

i0−→ Dr+1,s
0

j0−→ Er+1,s
0 → · · · (4.2)

where

• i0 : Dr ,s+1
0 → Dr+1,s

0 denotes the connecting homomorphism,
• j0 : Dr ,s

0 → Er ,s
0 is induced by (gs)∗ : HomZ[G](I s, A) → HomZ[G](Z[G/H ]⊗

I s, A),
• k0 : Er ,s

0 → Dr ,s+1
0 is induced by ( fs)∗ : HomZ[G](Z[G/H ] ⊗ I s, A) →

HomZ[G](I s+1, A).

We put

E0 :=
⊕

r ,s∈N0

Er ,s
0 =

⊕
r ,s∈N0

Extr
Z[G](Z[G/H ] ⊗ I s, A)

and

D0 :=
⊕

r ,s∈N0

Dr ,s
0 =

⊕
r ,s∈N0

Extr
Z[G](I

s, A)

and consider the summandwise defined maps

i0 : D0 → D0, j0 : D0 → E0, k0 : E0 → D0.

Together with these maps the groups D0 and E0 form an exact couple

D0 D0.

E0

i0

j0k0

For each p ∈ N we denote its p-th derived exact couple as

Dp Dp

Ep

i p

jpkp

where, for each p ∈ N the module Dr ,s
p is defined as the image of p compositions of

the map i0, i.e.

Dr ,s
p = im(i p−1 : Dr−1,s+1

p−1 → Dr ,s
p−1) = im(i0 ◦ · · · ◦ i0︸ ︷︷ ︸

p

: Dr−p,s+p
0 → Dr ,s

0 )
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and, naturally, the module E∗,∗
p is defined by taking cohomology with respect to the

differential defined by the exact couple, that is

E∗,∗
p = H∗(E∗,∗

p−1, dp−1).

The zeroth page of the first-quadrant cohomological spectral sequence obtained
thereby is formed by the groups Er ,s

0 and the differential

d0 : Er ,s
0 → Er ,s+1

0 , d0 := j0 ◦ k0 ∀r , s ∈ N0.

Note that we can view Dr ,s
p ⊂ Dr ,s

0 as subsets for each p ∈ N andwewill occasionally
do so without further mention.

Let n, p ∈ N with p ≤ n. Taking a class α ∈ Dn,0
p we know by definition that

α = i p0 (γ ) for some γ ∈ Dn−p,p
0 . By [8, Proposition III.2.2], we can identify

Dn−p,p
0 = Extn−p

Z[G](I
p, A) ∼= Hn−p(G;HomZ(I p, A)).

Following an iterated use of the identification provided by Proposition 3.5, we obtain
the following characterization of Dn,0

p , which is a generalization of [28, Corollary
7.4].

Proposition 4.1 Let n, p ∈ N with p ≤ n and let α ∈ Dn,0
0 . Then α ∈ Dn,0

p if and
only if there exists γ ∈ Hn−p(G;HomZ(I p, A)) with

α = ψ∗(ωp ∪ γ ),

where ψ : I p ⊗ HomZ(I p, A) → A is the Z[G]-homomorphism given by

ψ(x1 ⊗ · · · ⊗ xp ⊗ f ) = f (xp ⊗ xp−1 ⊗ · · · ⊗ x1).

This proposition has an immediate consequence for sectional categories.

Theorem 4.2 Let n, p ∈ N with p ≤ n. If Dn,0
p 
= {0}, then ωp 
= 0 and thus

secat(H ↪→ G) ≥ p.

Proof By Proposition 4.1, every class in Dn,0
p is obtained as a pushforward of a cup

product of ωp with another class. So if there is a non-trivial class in Dn,0
p , then it

necessarily holds that ωp 
= 0 and the claim follows from Proposition 3.2. ��

4.2 Essential classes and the spectral sequence

To extract further consequences for secat(H ↪→ G) from the spectral sequence, we
need to introduce some auxiliary lemmas on the groups Er ,s

0 .
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Lemma 4.3 Let M and N be left Z[G]-modules. Let Z[G] ⊗ M be equipped with the
diagonal G-action. Then

� : HomZ[G](Z[G/H ] ⊗ M, N ) → HomZ[H ](M̃, Ñ ),

(�( f ))(x) := f (H ⊗ x) ∀x ∈ M,

is an isomorphism of abelian groups.

Proof It is easy to see that � is a well-defined group homomorphism. Consider the
map

� : HomZ[H ](M̃, Ñ ) → HomZ[G](Z[G/H ] ⊗ M, N ),

(�( f ))(gH ⊗ x) = g f (g−1x).

For each f ∈ HomZ[H ](M̃, Ñ ) and h ∈ H we obtain that

gh f (h−1g−1x) = g f (g−1x) ∀g ∈ G, x ∈ M,

since f is a Z[H ]-homomorphism. This shows that �( f )(gH ⊗ x) is independent of
the chosen representative of gH , thus �( f ) : Z[G/H ] ⊗ M → N well-defined.

For all f ∈ HomZ[H ](M̃, Ñ ), g1, g2 ∈ G and x ∈ M we further compute that

(�( f ))(g1 · g2H ⊗ x) = �( f )(g1g2H ⊗ g1x) = g1g2 f (g
−1
2 g−1

1 g1x)

= g1 · g2 f (g−1
2 x) = g1 · (�( f ))(g2H ⊗ x),

so �( f ) ∈ HomZ[G](Z[G/H ] ⊗ M, N ). Hence, � is well-defined and it is apparent
that � is a group homomorphism. A simple computation shows that � is a two-sided
inverse of �. ��
Lemma 4.4 Let M and N be left Z[G]-modules. Let Z[G/H ] ⊗ M be equipped with
the diagonal G-action. Then there are isomorphisms

Extr
Z[G](Z[G/H ] ⊗ M, N ) ∼= Extr

Z[H ](M̃, Ñ ) ∀r ∈ N0.

Proof Let

0 → N ↪−→ J0
j0−→ J1

j1−→ J2
j2−→ . . .

be an injective resolution of N over Z[G]. By Lemma 4.3, there is an isomorphism

�i : HomZ[G](Z[G/H ] ⊗ M, Ji ) → HomZ[H ](M̃, J̃i )

for each i ∈ N0 and one checks without difficulties that �i is compatible with the
maps induced by the ji . At this point, it suffices to show that each of the J̃i is an
injective Z[H ]-module as passing to cohomology then shows the claim.
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Let J be an injective Z[G]-module, X and Y be Z[H ]-modules and i : X ↪→ Y
be a monomorphism of Z[H ]-modules and let f ∈ HomZ[H ](X , J̃ ). We consider
the induced Z[G]-modules IndGH (X) and IndGH (Y ). One checks from the universal
property of induced modules see e.g. [8, p. 63], that i induces a Z[G]-homomorphism
ĩ : IndGH (X) ↪→ IndGH (Y ), which is again injective since Z[G] is free as a right Z[H ]-
module, and f induces f̃ ∈ HomZ[G](IndGH (X), J ). Since J is injective over Z[G],
it follows that there exists ϕ̃ ∈ HomZ[G](IndGH (Y ), J ) with f̃ = ϕ̃ ◦ ĩ .

Define ϕ : Y → J by ϕ(y) := ϕ̃(1 ⊗Z[H ] y) for each y ∈ Y . One checks without
difficulties that ϕ is a Z[H ]-homomorphism with

(ϕ ◦ i)(y) = ϕ̃
(
1 ⊗Z[H ] i(y)

)
= ϕ̃

(̃
i(1 ⊗Z[H ] y)

)
= f̃ (1 ⊗Z[H ] y) = f (y)

for all y ∈ J . This shows that J̃ is injective over Z[H ] and thereby completes the
proof. ��
Corollary 4.5 Let r ∈ N and s ∈ N0. Then

Er ,s
0

∼= ExtZ[H ]( Ĩ s, Ã).

Proof This is the special case of Lemma 4.4 obtained by letting M = I s and N = A.
��

The following theorem summarizes the most important properties of the spectral
sequence.

Theorem 4.6 Let n ∈ N and let u ∈ Hn(G; A) with u 
= 0.

a) The class u is essential relative to H if and only if u ∈ Dn,0
n .

b) Dn,0
1 = ker[ι∗ : Hn(G; I ) → Hn(H ; Ĩ )], where ι∗ is induced by the inclusion

ι : H ↪→ G.
c) Let s ∈ {0, 1, . . . , n − 1}. Then u ∈ Dn,0

s+1 if and only if

u ∈ Dn,0
s and u ∈ ker

[
js : Dn,0

s → En−s,s
s

]
.

Proof a) By Proposition 4.1, u ∈ Dn,0
n if and only if there is a class μ ∈

H0(G;HomZ(I n, A)), such that u = ψ∗(ωn ∪ μ), where ψ is described in the
statement of said proposition. But H0(G;HomZ(I n, A)) = (HomZ(I n, A))G =
HomZ[G](I n, A) and one checks without difficulties that, seeing μ as a Z[G]-
homomorphism, it holds that

u = ψ∗(ωn ∪ μ) = μ∗(ωn).

The claim immediately follows.
b) By definition and exactness of the exact couple,

Dn,0
1 = im

[
i0 : Dn−1,1

0 → Dn,0
0

]
= ker

[
j0 : Dn,0

0 → En,0
0

]
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= ker
[
j0 : Extn

Z[G](Z, A) → Extn
Z[G](Z[G/H ], A)

]

= ker
[
j0 : Extn

Z[G](Z, A) → Extn
Z[H ](Z, Ã)

]

= ker
[
ι∗ : Hn(G; A) → Hn(H ; Ã)

]
,

where we used Corollary 4.5.
c) This is an immediate consequence of the inner workings of exact couples. ��

4.3 Computing the zero-th page

In [28], the authors proceeded from the construction of the spectral sequence by
introducing certain decompositions of terms of the form Er ,s

0 for r > 0 and s > 0 into
products of cohomology groups of centralizers of elements of the groups involved.
We will show next that this can be generalized as well and derive decompositions of
parts of our spectral sequence as products of cohomology groups of certain isotropy
groups of H -actions that will be introduced momentarily.

We consider the left H -action on the left cosets G/H given by

H × G/H → G/H , h · gH = (hg)H . (4.3)

For each s ∈ N we further consider the diagonal H -action

H × (G/H)s → (G/H)s, h · (g1H , . . . , gs H) = (hg1H , hg2H , . . . , hgs H).

We denote the set of orbits of this action for each s ∈ N by

Cs(G/H) := {H · (g1H , g2H , . . . , gs H) | g1H , . . . , gs H ∈ G/H}.

We put (G/H)∗ := (G/H) � {H} and

C′
s(G/H) := {H · (g1H , g2H , . . . , gs H) | g1H , . . . , gs H ∈ (G/H)∗} ⊂ Cs(G/H).

The above action equips Z[G/H ]⊗s with the structure of a left Z[H ]-module and we
consider I s ⊂ Z[G/H ]⊗s as a Z[H ]-submodule. This submodule structure obviously
coincides with the one obtained by Ĩ s = (ResGH (I ))s that we previously considered.
One checks that as free abelian groups

I s =
⊕

g1H ,...,gs H∈(G/H)∗
Z · (g1H − H) ⊗ (g2H − H) ⊗ · · · ⊗ (gs H − H) ∀s ∈ N

and note that for all s ∈ N, g1H , . . . , gs H ∈ G/H and h ∈ H it holds that

h · (g1H − H) ⊗ (g2H − H) ⊗ · · · ⊗ (gs H − H)

= (hg1H − H) ⊗ (hg2H − H) ⊗ · · · ⊗ (hgs H − H).
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From this, one observes that for each C ∈ C′
s(G/H), we obtain a Z[H ]-submodule

JC ⊂ I s, JC :=
⊕

(g1H ,...,gs H)∈C
Z · (g1H − H) ⊗ (g2H − H) ⊗ · · · ⊗ (gs H − H),

and that

Ĩ s =
⊕

C∈C′
s (G/H)

JC (4.4)

is a decomposition of Z[H ]-modules. Moreover, for each C ∈ C′
s(G/H), we let Z[C]

denote the free abelian group generated by the elements of C . One checks without
difficulties that for each C the map ϕC : Z[C] → JC that is obtained by Z-linearly
extending

ϕ(g1H , g2H . . . , gs H) = (g1H − H) ⊗ (g2H − H) ⊗ · · · ⊗ (gs H − H),

is an isomorphism of Z[H ]-modules.

Theorem 4.7 Let s ∈ N. For each C ∈ C′
s(G/H) fix a representative xC ∈ C and let

NC := HxC be the isotropy group of xC . Then

Er ,s
0

∼=
∏

C∈C′
s (G/H)

Hr
(
NC ;ResGNC

(A)
)

∀r ∈ N.

Proof Fix r ∈ N. By Corollary 4.5, it holds that Er ,s
0

∼= Extr
Z[H ]( Ĩ s, Ã). From this,

using (4.4) and the addivity of Ext-functors we derive that

Er ,s
0

∼=
∏

C∈C′
s (G/H)

Extr
Z[H ](JC , Ã) ∼=

∏
C∈C′

s (G/H)

Extr
Z[H ](Z[C], Ã).

Let C ∈ C′
s(G/H). For any left Z[H ]-module A we observe that, since H acts tran-

sitively on C , the map

HomZ[H ]
(
Z[C], Ã

) ∼=→
(
ResHNC

( Ã)
)NC

, f �→ f (xC ), (4.5)

is a group isomorphism. Let

. . . −→ Pr
pr−→ Pr−1

pr−1−→ · · · p2−→ P1
p1−→ P0

p0−→ Z −→ 0

be a free resolution of Z over Z[H ]. Since Z[C] is a free abelian group, it follows
from [8, Corollary III.5.7] that
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. . . −→ Z[C] ⊗ Pr
idZ[C]⊗pr−→ Z[C] ⊗ Pr−1 −→

. . . −→ Z[C] ⊗ P1
idZ[C]⊗p1−→ Z[C] ⊗ P0 −→ Z[C] −→ 0

is a free resolution of Z[C] over Z[H ]. Consequently, we can compute the above
Ext-groups as

Extr
Z[H ]

(
Z[C], Ã

)
= Hr

(
HomZ[H ](Z[C] ⊗ P∗, Ã

)
,
(
idZ[C] ⊗ p∗)∗

)

Let r ∈ N0. If we consider HomZ(Pr , Ã) as a left Z[H ]-module w.r.t. the diagonal
H -action, then we obtain

HomZ[H ]
(
Z[C] ⊗ Pr , Ã

) ∼= HomZ[H ]
(
Z[C],HomZ(Pr , Ã)

)

(4.5)∼=
(
ResHNC

(HomZ(Pr , Ã))
)NC

= HomZ[NC ]
(
Pr ,Res

H
NC

( Ã)
)

and one checks that an explicit isomorphism is given by

Fr : HomZ[H ]
(
Z[C] ⊗ Pr , Ã

)
→ HomZ[NC ]

(
Pr ,Res

H
NC

( Ã)
)
,

(Fr ( f ))(q) = f (xC ⊗ q) ∀q ∈ Pr .

One checks that the Fr are compatiblewith the differentials, thus induce isomorphisms

(Fr )∗ : Extr
Z[H ]

(
Z[C], Ã

)
→ Hr

(
HomZ[NC ]

(
P∗,ResGNC

(A)
)
, p∗

r

)
∀r ∈ N0,

where we used the obvious fact that ResHNC
( Ã) = ResHNC

(ResGH (A)) = ResGNC
(A).

Since each Pr is free as a left Z[H ]-module, it is free as a left Z[NC ]-module as well.
Hence, P∗ is a free resolution of Z over Z[NC ], such that

Hr
(
HomZ[NC ]

(
P∗,ResGNC

(A)
)
, p∗

r

)
= Hr

(
NC ;ResGNC

(A)
)

∀r ∈ N0.

Combining the previous observations shows the claim. ��

4.4 Consequences for sectional categories of subgroup inclusions

We want to derive a lower bound on sectional categories of subgroup inclusions from
Theorem 4.7.We adopt all of the spectral sequence notation from the previous section.

Definition 4.8 Given a group G and a subgroup H ≤ G, we put

κG,H := sup{cd(H ∩ xHx−1) | x ∈ G � H}.
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The following result is a consequence of the previous properties of the spectral
sequence:

Proposition 4.9 Let G be a geometrically finite group and let H ≤ G be a subgroup.
Let A be a left Z[G]-module, let n ∈ N and let u ∈ Hn(G; A) = Dn,0

0 . If n ≥ κG,H ,
then

u ∈ Dn,0
n−κG,H

.

Proof For x ∈ G we denote the isotropy group of xH ∈ G/H with respect to the
left H -action from (4.3) by Hx . Apparently, H ∩ xHx−1 ⊂ Hx for each x ∈ G.
Conversely, let x ∈ G, g ∈ Hx and let h1 ∈ H be arbitrary. Then there exists an
h2 ∈ H with

g · xh1 = xh2 ⇔ g = xh2h
−1
1 x−1 ⇒ g ∈ xHx−1.

Thus, we have shown that Hx = H ∩ xHx−1 for each x ∈ G.
Let s ∈ N. By definition of the H -actions, for each C ∈ C′

s(G/H) there is some
x ∈ G � H , such that NC ≤ Hx , which by [8, Proposition VIII.2.4] yields that

cd(NC ) ≤ cd(Hx ) = cd(H ∩ xHx−1) ≤ κG,H

for each C ∈ C′
s(G/H). In particular, Hr (NC ;ResGNC

(A)) = 0 whenever r > κG,H ,
so we derive from Theorem 4.7 that

Er ,s
0 = {0} ∀r > κG,H , s ∈ N. (4.6)

In the case of r = n − s, we obtain

En−s,s
0 = {0} ∀s ∈ {1, 2, . . . , n − κG,H − 1}.

In terms of Theorem 4.6.c), this yields that u ∈ ker[ js : Dn,0
s → En−s,s

s ] for 1 ≤ s ≤
n − κG,H − 1, so it follows directly from Theorem 4.6.c) that u ∈ Dn,0

n−κG,H
. ��

This has an immediate consequence for sectional categories of subgroup inclusions.

Theorem 4.10 Let G be a geometrically finite group and H ≤ G be a subgroup. Then

secat(H ↪→ G) ≥ cd(G) − κG,H .

Proof Put n := cd(G), let A be a left Z[G]-module with Hn(G; A) 
= {0} and let
u ∈ Hn(G; A) with u 
= 0. It follows from Proposition 4.9 that u ∈ Dn,0

n−κG,H
. Thus,

we obtain from Theorem 4.2 that secat(H ↪→ G) ≥ n − κG,H . ��
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Remark 4.11 If H is not a self-normalizing subgroup ofG, then there exists some non-
trivial element x ∈ NG(H) � H such that H ∩ xHx−1 = H . Thus, κG,H = cd(H)

in this case and Theorem 4.10 yields

secat(H ↪→ G) ≥ cd(G) − cd(H).

This is, of course, the case if we consider a normal subgroup N � G. In this situation,
with Q = G/N , and under the necessary assumption that cd(Q) < ∞, we obtain

cd(G) − cd(N ) ≤ secat(N ↪→ G) ≤ cd(Q).

In Theorem 3.9 we have seen a condition for the sectional category to reach the
top dimension. It is interesting to remark as well that if H cd(N )(N ; Z[N ]) is free
abelian then, by [5, Theorem 5.5], we have that cd(Q) = cd(G) − cd(N ) and thus
secat(N ↪→ G) = cd(G) − cd(N ) under such assumption.

Before going on studying general sectional categories of subgroup inclusions, we
next want to check explicitly that our Theorem 4.10 indeed recovers the corresponding
result from [28].

5 Applications to topological complexity

5.1 Sequential topological complexity of aspherical spaces

The notion of sequential or higher topological complexitieswas introduced byRudyak
in [42] as a generalization of topological complexitywhichmodels themotion planning
problem for robots that are supposed to make some pre-determined intermediate stops
along their ways. We briefly recall their definition.

Let X be a path-connected topological space. For each r ∈ N with r ≥ 2 the map

pr : PX → Xr , pr (γ ) =
(
γ (0), γ

( 1
r−1

)
, γ

( 2
r−1

)
, . . . , γ

( r−2
r−1

)
, γ (1)

)
,

is a fibration. The r -th sequential topological complexity of X is defined as

TCr (X) := secat(pr : PX → Xr ).

Note that by definition TC2(X) = TC(X). The sequential topological complexities of
aspherical spaces have been studied by Farber and Oprea in [29]. In particular, given
a geometrically finite group π , it is shown in [29, Lemma 4.2 and Corollary 4.3] that
TCr (K (π, 1)) coincides with the sectional category of the covering of (K (π, 1))r that
is associated with the diagonal subgroup

�π,r := {(g, g, . . . , g) ∈ πr | g ∈ π}.
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In the light of Remark 2.7, this shows that TCr (K (π, 1)) is given as the sectional
category of the inclusion of �π,r , i.e.

TCr (K (π, 1)) = secat(�π,r ↪→ πr ). (5.1)

To obtain a tangible lower bound for TCr (K (π, 1)) from Theorem 4.10, we need to
determine the value of κπr ,�π,r more explicitly.

Lemma 5.1 For each r ∈ N with r ≥ 2, it holds that

κπr ,�π,r = k(π) := max{cd(C(g)) | g ∈ π � {1}},

where C(g) denotes the centralizer of g ∈ π .

Proof Let x = (x1, . . . , xr ) ∈ πr
� �π,r and let (h, h, . . . , h) ∈ �π,r . Then

x(h, h, . . . , h)x−1 ∈ �π,r ⇔ (x1hx
−1
1 , x2hx

−1
2 , . . . , xr hx

−1
r ) ∈ �π,r

⇔ x1hx
−1
1 = x2hx

−1
2 = · · · = xr hx

−1
r .

For all i, j ∈ {1, 2, . . . , r} we compute that

xi hx
−1
i = x j hx

−1
j ⇔ x−1

j xi h = hx−1
j xi ⇔ h ∈ C(x−1

j xi ).

One derives from this observation that

(h, h, . . . , h) ∈ �π,r ∩ x�π,r x
−1 ⇔ h ∈

⋂
i 
= j

C(x−1
j xi ).

This shows in particular that any subgroup of πr of the form �π,r ∩ x�π,r x−1, where
x /∈ �π,r , is isomorphic to a subgroup of the centralizer of an element of π � {1},
so we derive that κπr ,�π,r ≤ k(π). On the other hand, given an arbitrary g ∈ π with
g 
= 1, if we put x0 := (g, 1, . . . , 1) ∈ πr , then it follows from the above that

(h, h, . . . , h) ∈ �π,r ∩ x0�π,r x
−1
0 ⇔ h ∈ C(g),

so C(g) is indeed isomorphic to a group of the form �π,r ∩ x�π,r x−1. This shows
that κπ,r ≥ k(π) and the two inequalities together show the claim. ��
Thus, we obtain the following consequence of our main lower bound.

Theorem 5.2 Let π be a geometrically finite group and let r ∈ N with r ≥ 2. Then

TCr (K (π, 1)) ≥ r · cd(π) − k(π),

where k(π) = max{cd(C(g)) | g ∈ π � {1}}.
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Proof We derive from Theorem 4.10 and from (5.1) that

TCr (K (π, 1)) ≥ cd(πr ) − κπr ,�π,r

= r · cd(π) − k(π),

where in the last stepwe used Lemma 5.1 and themain result of [18] on cohomological
dimensions of products of geometrically finite groups. ��
Remark 5.3 (1) In the case of r = 2, the previous theorem yields the lower bound of

TC(K (π, 1)) ≥ 2cd(π) − k(π)

for topological complexity. Although not explicitly stated therein, this inequality
is an immediate consequence of the main results of [28].

(2) Ifπ is a torsion-free hyperbolic group, thenC(g) is infinite cyclic for each g ∈ π∗,
so Theorem 5.2 and Theorem 2.6.a) imply that

r · cd(π) − 1 ≤ TCr (K (π, 1)) ≤ r · cd(π) ∀r ≥ 2

in this case. It has in fact been shown by Hughes and Li in [38] that indeed
TCr (π) = r cd(π) for all torsion-free hyperbolic groupswithπ � Z and all r ≥ 2.
However, the methods of [38] only generalize slightly beyond the hyperbolic case
and do not yield a general lower bound for geometrically finite groups.

(3) If π is a free abelian group, then�π,r is a normal subgroup of πr with πr/�π,r ∼=
πr−1. In this case, we derive from Theorem 3.9 that

TCr (π) = cd(πr−1) = (r − 1) · cd(π) ∀r ≥ 2.

This has already been observed in [3, Corollary 3.13].
(4) Suppose that x = (x1, . . . , xr ) ∈ πr satisfies x�π,r x−1 = �π,r . From the proof

of Lemma 5.1 we can infer that this implies π ⊂ C(x j x
−1
i ) for every i 
= j . But

this means, in turn, that x j x
−1
i ∈ Z(π). Therefore

Nπr (�π,r ) = {(x1, . . . , xr ) ∈ πr | x j x−1
i ∈ Z(π) ∀i 
= j}.

Consequently, if the group π satisfies Z(π) = {1}, the diagonal subgroup �π,r is
self-normalizing.

We want to apply Theorem 5.2 to a certain class of free amalgamated products
whose centralizers were studied by T. Lewin. For this purpose, we need to introduce
a notion from group theory.

Definition 5.4 Let G be a group. A subgroup H ≤ G is malnormal if

xHx−1 ∩ H = {1} ∀x ∈ G � H .
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In the following, given a group G and g ∈ G we let CG(g) denote its centralizer
whenever it is ambiguous which group we are referring to.

Corollary 5.5 Let π1 and π2 be geometrically finite groups and consider a free product
with amalgamation π1 ∗H π2, such that H is malnormal in π1 or malnormal in π2.
Then for each r ≥ 2

TCr (π1 ∗H π2) ≥ r · cd(π1 ∗H π2) − max{k(π1), k(π2)}.

Proof Put π := π1 ∗H π2 and let g ∈ π , g 
= 1. By [39, Theorem 2], the centralizer
Cπ (g) is infinite cyclic or isomorphic to Cπ1(g) or Cπ2(g). In the first case, it holds
that cd(Cπ (g)) = 1, while in the other two cases it holds that cd(Cπ (g)) ≤ k(π1) or
cd(Cπ (g)) ≤ k(π2), respectively. Since g was chosen arbitrarily, this yields that

k(π) ≤ max{1, k(π1), k(π2)} = max{k(π1), k(π2)},

so the claim follows immediately from Theorem 5.2. ��

Remark 5.6 For explicit computations using Corollary 5.5, there are some general
results about cohomological dimensions of free amalgamated products that come in
handy. More precisely, let π1 and π2 be groups of finite cohomological dimension and
consider a free product with amalgamation π1 ∗H π2. It is shown in [5, Proposition
6.1] that

max{cd(π1), cd(π2)} ≤ cd(π1 ∗H π2) ≤ max{cd(π1), cd(π2)} + 1.

and that a necessary condition for cd(π1 ∗H π2) = max{cd(π1), cd(π2)} + 1 to hold
is that cd(π1) = cd(π2). It is further shown in [5, Corollary 6.5] that a sufficient
condition for this equality is that both π1 and π2 are of type FP∞ and that H is of
finite index both in π1 and in π2.

5.2 Parametrized topological complexity of epimorphisms

The parametrized topological complexity of a fibration has been introduced by Cohen,
Farber and Weinberger in [10]. Given a fibration p : E → B, one considers E I

B as the
space of all continuous paths γ : I := [0, 1] → E in a single fibre of p, i.e. such that
the path p ◦ γ is constant. Define the space

E ×B E = {(e, e′) ∈ E × E | p(e) = p(e′)}

of all possible pairs of configurations lying in the same fibre of p. Then, the map

� : E I
B → E ×B E, �(γ ) = (γ (0), γ (1)),
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is a fibration with fibre �X . The parametrized topological complexity of p is defined
as

TC[p : E → B] = secat
(
� : E I

B → E ×B E
)
.

We want to apply the results previously obtained to the parametrized topological
complexity of group epimorphisms. This algebraic variant of parametrized topological
complexity was defined and investigated by Grant in [35]. Given two groups G and
Q and an epimorphism ρ : G � Q there exists a fibration fρ : K (G, 1) → K (Q, 1),
whose fibre is path-connected andwhich inducedρ on the level of fundamental groups.
Moreover, it is shown in loc. cit. that TC[ fρ : K (G, 1) → K (Q, 1)] is independent of
the choice of fρ and that

TC[ fρ : K (G, 1) → K (Q, 1)] = secat(�G ↪→ G ×Q G) =: TC[ρ : G � Q].

Here, �G = {(g, g) ∈ G × G | g ∈ G} denotes the diagonal subgroup and

G ×Q G := {(x, y) ∈ G × G | ρ(x) = ρ(y)}.

We discuss an alternative description of these pullback groups in the following lemma.

Lemma 5.7 Let G, Q be groups, let ρ : G → Q be an epimorphism. Then

G ×Q G = ((ker ρ) × 1) · �G .

Proof Let k ∈ ker ρ and g ∈ G. Then, since ρ is a homomorphism, ρ(kg) = ρ(k) ·
ρ(g) = ρ(g), so that (kg, g) ∈ G ×Q G. Conversely, let (g1, g2) ∈ G ×Q G. Then

ρ(x) = ρ(y) ⇔ ρ(x)(ρ(y))−1 = 1 ⇔ ρ(xy−1) = 1 ⇔ xy−1 ∈ ker ρ.

Thus (x, y) = (xy−1, 1) · (y, y) ∈ ((ker ρ) × 1) · �G . ��
We now want to apply our results on sectional categories to this setting. The fol-

lowing statement is a straightforward application of Theorem 4.10.

Theorem 5.8 Let G and Q be geometrically finite groups and let ρ : G � Q be an
epimorphism. Then

TC[ρ : G → Q] ≥ cd(G ×Q G) − k(ρ),

where

k(ρ) = max{cd(C(g)) | g ∈ ker ρ, g 
= 1}.
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Proof It follows from Theorem 4.10 that TC[ρ : G → Q] ≥ cd(G ×Q G)− �, where

� := κG×QG,�G = max{cd(�G ∩ z�Gz
−1) | z ∈ (G ×Q G) � �G}.

It only remains to show that k(ρ) = �. It follows from Lemma 5.7 that

� = max{cd(�G ∩ (xh, h)�G(xh, h)−1) | x ∈ ker ρ � {1}, h ∈ G}
= max{cd(�G ∩ (x, 1)�G(x, 1)−1) | x ∈ ker ρ � {1}},

since, evidently, (h, h)�G(h, h)−1 = �G for all h ∈ G.
Let x ∈ ker ρ with x 
= 1 and let g ∈ G. Then

(g, g) ∈ (x, 1)�G(x, 1)−1 ⇔ ∃h ∈ G : (g, g) = (x, 1)(h, h)(x, 1)−1

= (xhx−1, h) ⇔ ∃h ∈ G : g = h ∧ g = xhx−1

⇔ g = xgx−1 ⇔ x = g−1xg ⇔ g−1 ∈ C(x) ⇔ g ∈ C(x).

Moreover, the map C(x) → �G ∩ (x, 1)�G(x, 1)−1, g �→ (g, g), is easily seen to
be a group isomorphism. We immediately derive that k(ρ) = �. ��
To study the cohomological dimension of G×Q G, we can characterize such pullback
groups as semidirect products.

Lemma 5.9 Let G, Q be groups and let ρ : G � Q be an epimorphism. Then

� : G ×Q G → (ker ρ) �ϕ G, �(g, h) = (gh−1, h),

is a group isomorphism, where ϕ : G → Aut(ker ρ), (ϕ(g))(x) = gxg−1.

Proof One checks without difficulties that � is injective. Moreover, for each (x, y) ∈
(ker ρ) � G it holds that �(xy, y) = (x, y), so that � is surjective as well. For all
(g1, h1), (g2, h2) ∈ G ×Q G we further compute that

�
(
(g1, h1) · (g2, h2)

)

= �(g1g2, h1h2) = (
g1g2h

−1
2 h−1

1 , h1h2
)

= (
g1h

−1
1 · h1g2h−1

2 h−1
1 , h1h2

) = (
g1h

−1
1 (ϕ(h1))(g2h

−1
2 ), h1h2

)

= (
g1h

−1
1 , h1

) • (
g2h

−1
2 , h2

) = �
(
g1, h1

) • �
(
g2, h2

)
.

where • denotes multiplication in (ker ρ) �φ G. Thus, � is an isomorphism. ��
Corollary 5.10 Let G and Q be geometrically finite groups and let ρ : G � Q be an
epimorphism. Then

TC[ρ : G � Q] ≤ cd(G) + cd(ker ρ).
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Proof It is well known that the cohomological dimension of a semidirect product is at
most the sum of those of its factors. Thus, it follows from Lemma 5.9 and the lower
bound from Theorem 2.6.a) that

TC[ρ : G � Q] ≤ cd(G ×Q G) ≤ cd(G) + cd(ker ρ).

��
Corollary 5.11 Let G and Q be geometrically finite groups and let ρ : G � Q be an
epimorphism. Assume that Hn(ker ρ, Z[ker ρ]) is Z-free for n = cd(ker ρ). Then

2cd(G) − cd(Q) − k(ρ) ≤ TC[ρ : G � Q] ≤ 2cd(G) − cd(Q),

where k(ρ) = max{cd(C(g)) | g ∈ ker ρ, g 
= 1}.
Proof Since G is geometrically finite and Hn(ker ρ; Z[ker ρ]) is Z-free, it follows
from [5, Theorem 5.5], that

cd(ker ρ) = cd(G) − cd(Q). (5.2)

Theupper boundonTC[ρ : G � Q] thus followsdirectly fromCorollary 5.11.Regard-
ing the lower bound, we derive from Lemma 5.9 and again [5, Theorem 5.5] that

cd(G ×Q G) = cd(G) + cd(ker ρ)
(5.2)= 2cd(G) − cd(Q).

The lower bound is then an immediate consequence of Theorem 5.8. ��
If we want to consider the case of the inclusion of a normal subgroup notice that,

for G and Q groups and ρ : G � Q an epimorphism, then �G is a normal subgroup
of G ×Q G if and only if ker ρ ⊂ Z(G), where Z(G) denotes the center of G. Indeed,
since (g, h) ∈ G ×Q G, it holds that ρ(g) = ρ(h) and thus g−1h ∈ ker ρ. Thus,
if ker ρ ⊂ Z(G), this condition is satisfied for all (g, h) ∈ G ×Q G and x ∈ G.
Conversely, if �G is normal G ×Q G, then we derive by taking (g, h) = (a−1, 1)
for a ∈ ker ρ that indeed ker ρ ⊂ Z(G). As such, we are in the situation that the
associated group extension

{1} → ker(ρ) → G
ρ−→ Q → {1}

is central. Therefore, by [35, Corollary 5.2] we know that

TC[ρ : G � Q] = cd(ker(ρ)).

Butwe can also derive an approach to this case as a consequence of themore general
computation provided by Theorem 3.9.
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Proposition 5.12 Let G and Q be geometrically finite groups and let ρ : G � Q be
an epimorphism. Assume that ker ρ lies in the center of G and consider the homomor-
phism

φ : G ×Q G → ker ρ, φ(g, h) = gh−1.

Then

cd(φ : G ×Q G → ker ρ) ≤ TC[ρ : G � Q] = cd(ker ρ).

Proof We observe using Lemma 5.7 that the map G ×Q G → ker ρ, (g, h) �→ gh−1,

in fact induces a group isomorphism ψ : (G ×Q G)/�G
∼=→ ker ρ by the assumption

on ker ρ. Since the projection p : G ×Q G → (G ×Q G)/�G is easily seen to satisfy
ψ ◦ p = φ, we derive from the assumptions, Theorem 3.9 and [35, Corollary 5.2] that

TC[ρ : G � Q] = cd
(
(G ×Q G)

/
�G

) = cd(ker ρ)

and

TC[ρ : G � Q] ≥ cd(p) = cd(φ).

��

6 Canonical classes for sequential topological complexity

Wewant to revisit sequential topological complexity from a more topological point of
view. Note that the Berstein–Schwarz classes that we used in Sect. 5.1 to derive results
for sequential topological complexity were introduced and studied in a completely
algebraic way. In this section, we want to introduce topologically defined analogues
of Berstein–Schwarz classes for sequential topological complexity that are defined
for all topological spaces, not only aspherical ones. The construction generalizes the
notion of canonical classes that was introduced by Costa and the second author in [15]
for topological complexity.

Throughout this section, let π be a group. For each r ∈ N with r ≥ 2 we put

TCr (π) := TCr (K (π, 1)).

6.1 The construction of canonical classes

Let r ≥ 2 be fixed and put G := πr . We consider the Cartesian power πr−1 as a left
G-space with respect to the action

(x1, . . . , xr ) · (g1, . . . , gr−1) = (
x1g1x

−1
2 , x2g2x

−1
3 , . . . , xr−1gr−1x

−1
r

)
, (6.1)

123



Sequential topological complexity of aspherical spaces… 4589

where (x1, . . . , xr ) ∈ G and (g1, . . . , gr−1) ∈ πr−1. We view Z[πr−1] as a left
Z[G]-module with respect to this action and consider its augmentation ideal

Ir := ker
[
ε : Z[πr−1] → Z

]

again as a left Z[G]-module.

We consider the map

fr : πr → Ir , fr
(
g1, g2, . . . , gr

) = (
g1g

−1
2 − 1, g2g

−1
3 − 1, . . . , gr−1g

−1
r − 1

)
.

(6.2)

One checks without difficulties that fr is a crossed homomorphism and as such defines
a cohomology class on G, see [46, Section VI.3].

Definition 6.1 Let X be a path-connected topological space with π1(X) ∼= π and let
r ∈ N with r ≥ 2. The r -th canonical class of X is the cohomology class

vr ∈ H1(Xr ; Ir ), vr := [ fr ],

i.e. the class induced by the crossed homomorphism fr .

Note that this definition generalizes the one from [15, Section 2] dealing with the case
of r = 2.

Wewant to describe the classes vr for cell complexes from amore topological point
of view. Throughout the following, let X be a cell complex with π1(X) = π and let
r ≥ 2 be fixed. Here, we shall suppress the chosen basepoint from the notation. We
further let H∗(Y ) denote the singular homology of a space Y with integer coefficients.

The fibre of the free path fibration pr of X is (�X)r−1, where �X denote the
based loop space of X . The action of G ∼= π1(Xr ) on the fibre of pr induces a G-
action on H0((�X)r−1). We view H0((�X)r−1) and the reduced homology group
H̃0((�X)r−1) as left Z[G]-modules with respect to this action.

By [43, Theorem 1], there is a so-called homological obstruction to the existence
of a continuous section of pr over the 1-skeleton of Xr , i.e. a cohomology class

θ ∈ H1
(
Xr ; H̃0((�X)r−1)

)

with the property that pr admits a section over the 1-skeleton of Xr if and only if
θ = 0. Considering a fixed isomorphism π ∼= π1(X), we obtain a bijection

F : π0

(
(�X)r−1

)
→ π1

(
Xr−1

) ∼= πr−1.

Lemma 6.2 The group homomorphism � : H0((�X)r−1) → Z[πr−1] that is induced
by the bijection F : π0(�X)r−1 → πr−1, is an isomorphism of Z[G]-modules.
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Proof It is evident that � is a group isomorphism, so it only remains to show its
compatibility with the G-actions. For this purpose, we need to study the G-action on
H0((�X)r−1) in greater detail.

Given a fixed fibre of pr and a loop σ ∈ �(Xr ), σ(t) = (α1(t), . . . , αr (t)) in the
base space of pr , we obtain its monodromy or holonomy map

Kσ : �Xr−1 → �Xr−1

associated to the fibration pr . This monodromy is the (r − 1)-componentwise version
of the one described in [15] and is up to homotopy given as

Kσ (ω) � (α1ω1ᾱ2, α2ω2ᾱ3, . . . , αr−1ωr−1ᾱr ) (6.3)

where ᾱ denotes the inverse path to α and ω = (ω1, . . . , ωr−1) and where for any two
loops α and β we let αβ denote their concatenation. Let g = (g1, . . . , gr ) ∈ G and
[ω] ∈ π0((�X)r−1). The G-action g · [ω] is then given by Z-linearly extending the
following construction: consider a loop σ = (α1, . . . , αr ) ∈ �(Xr ) with [σ ] = g and
let

g · [ω] := [Kσ (ω)].

Since, apparently, [αi ] = gi for each i ∈ {1, 2, . . . , r}, one checks from this descrip-
tion without difficulties that � is indeed a G-map with respect to this action and the
one described in (6.1). ��
One checks that � restricts to an isomorphism of Z[G]-modules

ϕ : H̃0((�X)r−1) → Ir .

Proposition 6.3 The canonical class and the homological obstruction class are related
by

ϕ∗(θ) = vr .

Proof Assume throughout the following that X has a unique 0-cell x0. Consider the
universal covering X̃ → X equipped with the induced cell complex structure and
consider its r -fold power X̃r → Xr as a universal covering for Xr . By construction
of θ , a cocycle

c ∈ C1
(
Xr ; H̃0((�X)r−1)

)
= HomZ[G]

(
Ccell
1 (X̃r ), H̃0((�X)r−1)

)

which represents θ is obtained as follows:
Let ω0 ∈ (�X)r−1 be given such that each component of ω0 is the constant loop in

x0. Given a 1-cell e of Xr and a path γe : [0, 1] → X̃r parametrizing e, we consider a
fixed 1-cell ẽ of X̃r which lifts e and put

c(̃e) = [Kγe (ω0)] − [ω0].
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This expression is extended Z[G]-equivariantly to the free Z[G]-module Ccell
1 (X̃r ).

If e is an oriented 1-cell of X and a fixed lift ẽ of e as an oriented 1-cell of X , then
we have 1-cells in Xr given by

e1 = (e, x0, . . . , x0), e2 = (x0, e, x0, . . . , x0), . . . , er = (x0, . . . , x0, e),

and 1-cells in X̃r defined analogously and denoted by ẽ1, ẽ2, . . . , ẽr . Given a path
γe : [0, 1] → X which parametrizes e, we define paths

γ j : [0, 1] → Xr , γ j (t) = (x0, . . . , x0, γe(t), x0, . . . , x0).

where γe(t) occurs in the j-th component of γ j for each j ∈ {1, 2, . . . , r}. Evidently,
γ j parametrizes e j for each j . We observe from (6.3) that the monodromy map of pr
is up to homotopy given by

Kej (ω1, . . . , ωr−1) � (ω1, . . . , ω j−1γ̄e, γeω j , ω j+1, . . . , ωr−1).

Choosing the ẽ j as the distinguished lifts of the e j in the definition of the cocycle c,
we thus obtain that

c(̃e j ) = [Kγ j (ω0)] − [ω0]
= [(x0, . . . , x0γ̄e, γex0, x0, . . . , x0)] − [(x0, x0, . . . , x0)]

where we denoted the constant loop at x0 simply by x0. Here, γex0 occurs in the j-th
component for each j ∈ {1, 2, . . . , r −1} and x0γ̄e occurs in the (r −1)-th component
for j = r .

Since c represents θ , the class ϕ∗(θ) is represented by c′ := ϕ ◦ c ∈
HomZ[G](Ccell

1 (X̃r ), Ir ). From the definition ofϕ andour computation of c,we observe
with g = [γe] ∈ π that

c′(̃e j ) = (1, . . . , 1, g−1, g, 1, . . . , 1) − (1, 1, . . . , 1)

= (0, . . . , 0, g−1 − 1, g − 1, 0, . . . , 0),

where g − 1 occurs in the j-th component for each j ∈ {1, 2, . . . , r − 1} and g−1 − 1
occurs in the r -th component for j = r . Following the methods carried out in [46,
Section III], we can use c′ to construct a crossed homomorphism k : G → Ir which
represents ϕ∗(θ) and obtain that

k(1, . . . , 1, g j , 1, . . . , 1) = (0, . . . , 0, g−1
j − 1, g j − 1, 0, . . . , 0),

for g j ∈ π and all j ∈ {1, 2, . . . , r}. Using the crossed homomorphism property, we
compute from this equation that
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k(g1, . . . , gr ) = k(g1, 1, . . . , 1) +
r−1∑
i=1

(g1, 1, . . . , 1) · · ·

(1, . . . , 1, gi , 1, . . . , 1)k(1, . . . , 1, gi+1, 1, . . . , 1)

= (g1 − 1, 0, . . . , 0) +
r−2∑
i=1

(0, . . . , 0, gi g
−1
i+1

− 1 − (gi − 1), gi+1 − 1, 0, . . . , 0)

+ (0, . . . , 0, gr−1g
−1
r − 1 − (gr − 1))

= (g1g
−1
2 − 1, g2g

−1
3 − 1, . . . , gr−1g

−1
r − 1)

= fr (g1, . . . , gr ).

Therefore, the homological obstruction obeys ϕ∗(θ) = [ fr ] = vr . ��

6.2 A homotopical viewpoint

There is an alternative “homotopical obstruction” viewpoint which arises from the
fact that measuring the difference in connected components, which the homological
obstruction class does, may be accomplished by using the connecting homomorphism

∂ : π1(X
r ) → π0((�X)r−1)

in the exact homotopy sequence associatedwith the free path fibration pr : PX → Xr .
Note that ∂ arises from applying π0 to a composition of inclusion with monodromy

(�X)r ↪→ (�X)r × (�X)r−1 → (�X)r−1.

Using the above identifications, we consider ∂ as a map ∂ : G → πr−1 and by a
standard property of the connecting homomorphism, it is a G-map with ∂(1) = 1,
i.e. the components of the constant loops. To see the difference between connected
components of the fibre, we define

k̂ : G → Ir , k̂(g) = ∂(g) − 1.

Then k̂ is a crossed homomorphism as we see by

k̂(gh) = ∂(gh) − 1 = g∂(h) − ∂(g) + ∂(g) − 1

= g(∂(h) − 1) + ∂(g) − 1

= gk̂(h) + k̂(g).

In fact, ∂ was computed in [36, Proposition 2.1] (with an opposite sign convention) to
be

∂(g1, . . . , gr ) = (g1g
−1
2 , g2g

−1
3 , . . . , gr−1g

−1
r ),
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from which we see we see that k̂ = k, where k is the crossed homomorphism from
the proof of Proposition 6.3. Consequently, the homological obstruction is θ = [k̂].

6.3 Naturality of canonical classes

Let r ≥ 2, let X andY be path-connectedCWcomplexes and denote the path fibrations
as

pXr : PX → Xr , pYr : PY → Yr .

Assumew.l.o.g. that X has a unique 0-cell x0 and Y has a unique 0-cell y0 and consider
them as basepoints throughout this subsection. Let f : X → Y be continuous with
f (x0) = y0 and consider the map

f# : (�X)r−1 → (�Y )r−1, f#(α1, α2, . . . , αr−1) := ( f ◦ α1, f ◦ α2, . . . , f ◦ αr−1),

where the based loop spaces are considered with the basepoints x0 and y0. Apparently,
f#(ωx0) = ωy0 , where ωx0 and ωy0 are in each component given by the constant loops
at x0 and y0, respectively. Moreover, for suitable inclusions of the fibers, one checks
that f# coincides with the restriction of the map PX → PY , γ �→ f ◦ γ , to the fiber
of pr over x0. We put

AX := H̃0
(
(�X)r−1), AY := H̃0

(
(�Y )r−1)

and denote the map induced by f# between the reduced homology groups by

ϕ∗ := H̃0( f#) : AX → AY .

Let f ∗AY denote the π1(Xr )-module which coincides with AY as a free abelian group
and whose π1(Xr )-action is obtained from the π1(Yr ) action via ( f r )∗.

Proposition 6.4 Let θX ∈ H1(Xr ; AX ) and θY ∈ H1(Yr ; AY ) be the homological
obstructions of pXr and pYr , respectively. Assume that π1( f ) : π1(X , x0) → π1(Y , y0)
is an isomorphism. Then

ϕ∗(θX ) = ( f r )∗(θY ),

where f r : Xr → Yr is the r-fold Cartesian product of f with itself.

Proof Since π1( f ) is an isomorphism, π0( f#) : π0(�r X) → π0(�r Y ) is a bijection
and thus ϕ is an isomorphism of Z[G]-modules. Given α ∈ �Xr and α′ ∈ �Yr , we
let

K X
α : (�X)r−1 → (�X)r−1, KY

α′ : (�Y )r−1 → (�Y )r−1,

denote the monodromy maps of pXr and pYr , respectively. Using (6.3), we observe for
each α = (α1, . . . , αr ) ∈ �Xr and all ω = (ω1, . . . , ωr−1) ∈ (�X)r−1 that
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( f# ◦ K X
α )(ω) � f#(α1ω1ᾱ2, α2ω2ᾱ3, . . . , αr−1ωr−1ᾱr )

= ( f ◦ (α1ω1ᾱ2), f ◦ (α2ω2ᾱ3), . . . , f◦(αr−1ωr−1ᾱr ))

= (( f ◦ α1)( f ◦ ω1)( f ◦ α2), ( f ◦ α2)( f ◦ ω2)( f ◦ α3), . . . , ( f ◦ αr−1)

( f ◦ ωr−1)( f ◦ αr ))

� KY
( f ◦α1,..., f ◦αr )

( f ◦ ω1, f ◦ ω2, . . . , f ◦ ωr−1) = KY
f r◦α( f#(ω)),

so that

f# ◦ K X
α � KY

f r◦α ◦ f# ∀α ∈ �Xr . (6.4)

By the cellular approximation theorem,we can assumew.l.o.g. that f is a cellular map.
Let Z(Xr ) and Z(Yr ) be the sets of those 1-cells of Xr and Yr , respectively, whose
homology classes are non-trivial. Sinceπ1( f ) is an isomorphism, π1( f r ) : π1(Xr ) →
π1(Yr ) is an isomorphism as well and f r induces a bijection Z(Xr ) → Z(Yr ) that
we shall denote by f as well.

Let X̃ and Ỹ be the universal covers of X and Y , respectively, and let f̃ : X̃ → Ỹ be
a lift of f . For each e ∈ Z(Xr )we choose and fix a lift ẽ to X̃r , i.e. a 1-cell of X̃r which
projects down to e under the universal covering map. Then for each d ∈ Z1(Yr ), there
is a unique e ∈ Z(Xr ) with f r (e) = d and the 1-cell f̃ r (̃e) of Ỹ r lifts d. We equip
each d ∈ Z(Yr ) with the thus-obtained lift to Ỹ r . As in the proof of Proposition 6.3,
we define cocycles cX : Ccell

1 (X̃r ) → AX and cY : Ccell
1 (Ỹ r ) → AY representing θX

and θY and defined with respect to the chosen lifts as in the proof of Proposition 6.3.
Then ( f r )∗θY is represented by ( f r )∗cY , for which we compute that

(( f r )∗cY )(̃e) = cY ( f̃ r (̃e))

= [KY
( f r )◦γe

(ωy0)] − [ωy0 ]
= [KY

( f r )◦γe
( f#(ωx0)] − [ f#(ωx0)]

(6.4)= [( f# ◦ K X
γe

)(ωx0) − [ f#(ωx0)]
= ( f#)∗

([K X
γe

(ωx0)] − [ωx0 ]
)

= ( f#)∗(cX (̃e)).

Passing to cohomology shows the claim. ��
We have seen that up to identifications of coefficient modules the homological

obstruction classes considered above coincide with the respective r -th canonical
classes. Thus, if we neglect some technical details, we immediately obtain the fol-
lowing statement.

Corollary 6.5 Let r ≥ 2 and let vXr ∈ H1(Xr ; Ir ) and vYr ∈ H1(Yr ; Ir ) be the
r-th canonical classes of X and Y , respectively. If π1( f ) : π1(X) → π1(Y ) is an
isomorphism, then, up to a suitable isomorphism of coefficient modules,

( f r )∗(vYr ) = vXr .
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This yields an interesting connection between canonical classes of arbitrary CW
complexes with nontrivial fundamental groups and canonical classes of aspherical
spaces.

Corollary 6.6 Let X be a connected CW complex with π1(X) = π , let K be a space
of type K (π, 1) and let fX : X → K be a classifying map for the universal cover of
X. Then

vXr = ( f rX )∗(vKr ) ∈ H1(Xr , Ir ).

Proof This is an immediate consequence of Corollary 6.5, since by definition of κ ,
the map π1(κ) : π1(X) → π is an isomorphism. ��

6.4 Canonical classes of aspherical spaces

Let π be a group, fix r ∈ N with r ≥ 2 and put G := πr . We denote the group
cohomology class that is induced by the crossed homomorphism fr of (6.2) by

vr ,π ∈ H1(G; Ir ),

which can be seen as the r -th canonical class of a space of type K (π, 1). As a first step
in connecting canonical classes to the aspects from the first part of this manuscript,
we want to relate this purely algebraically defined class to relative Berstein–Schwarz
classes.

We consider G/�r as a left G-set in the obvious way and again consider πr−1 as
equipped with the G-action described in (6.1). Let φ : πr → πr−1 be given by

φ(x1, x2, . . . , xr ) = (x1x
−1
2 , x2x

−1
3 , . . . , xr−1x

−1
r ). (6.5)

It is easy to see that φ is G-equivariant and descends to a G-equivariant bijection

φ̄ : G/�r → πr−1,

which in turn induces a Z[G]-module isomorphism

ψ : Z[G/�r ] → Z[πr−1].

Let σ : Z[G/�r ] → Z be the augmentation and let J := ker σ . We recall that J is
the cofficient module from which the Berstein–Schwarz class of G relative to �r is
obtained.

Proposition 6.7 Let ω ∈ H1(G; J ) be the Berstein–Schwarz class of G relative to
�r . Then

ψ∗(ω) = vr ,π .
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Proof It is apparent from its construction in [6] that ω is induced by the crossed
homomorphism

w : G → J , w(g) = g� − �.

Thus, ψ∗(ω) is induced by ψ ◦ w and we compute for all g1, . . . , gr ∈ π that

(ψ ◦ w)(g1, . . . , gr ) = ψ((g1, . . . , gr )�) − ψ(�)

= (g1g
−1
2 , g2g

−1
3 , . . . , gr−1g

−1
r ) − (1, 1, . . . , 1)

= (g1g
−1
2 − 1, g2g

−1
3 − 1, . . . , gr−1g

−1
r − 1) = fr (g1, . . . , gr ).

This shows that ψ∗(ω) = [ψ ◦ w] = [ fr ] = vr ,π . ��
Thus, up to an isomorphism of coefficient modules, ω and vr ,π indeed coincide.

Corollary 6.8 Let r ∈ N with r ≥ 2.

a) Then

TCr (π) ≥ height(vr ) = sup{n ∈ N | vnr 
= 0}.
b) Assume thatπ is geometrically finite and thatπ is not free or r ≥ 3. Then TCr (π) =

r · cd(π) if and only if

height(vr ) = r · cd(π).

Proof a) Let k ∈ N. We derive from Proposition 6.7 and the compatibility of push-
forwards with cup products that

vkr = vkr ,π = (ψ∗(ω))k = (ψ⊗k)∗(ωk).

Thus, the claim is a straightforward application of Proposition 3.2 to the case of
G = πr and H = �r .

b) We derive from Theorem 2.6.a) and the main result of [18] that

TCr (π) ≤ cd(πr ) = r · cd(π).

Thus, if height(vr ) = r · cd(π), it follows immediately from a) that TCr (π) =
r · cd(π).
Conversely, if TCr (π) = secat(�r ↪→ πr ) = r · cd(π), it follows from [6,
Theorem 2.5] that ωr ·cd(π) 
= 0, where ω denotes the Berstein–Schwarz class of
πr relative to �r . Given that

ψ⊗(r ·cd(π))∗ (ωr ·cd(π)) = (ψ∗(ω))r ·cd(π) = vr ·cd(π)
r

and since ψ∗ is an isomorphism of Z[G]-modules, it follows that vr ·cd(π)
r 
= 0 and

thus height(vr ) ≥ r · cd(π), which becomes an equality, as for degree reasons
height(vr ) ≤ cd(πr ) = r · cd(π). ��
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7 Topological and algebraic approaches to sequential TCs

In this section, we want to combine our knowledge on canonical classes with the
results from Sect. 5 for aspherical spaces to derive results on sequential topological
complexities of spaces that are not necessarily aspherical.

7.1 SequentialD-topological complexity

As a first step, we recall some topological characterizations of TCr (π) that have been
carried out by the second and fourth authors in [29]. We will briefly recall their con-
structions and results. Throughout this subsection, we consider a given group π and
its Cartesian powers πr and πr−1 as discrete topological spaces.

Let D denote the family of subgroups of πr generated by the diagonal subgroup

�r = {(g, g, . . . , g) ∈ πr | g ∈ π},

that is, the smallest set of subgroups of G that contains �r and is closed under conju-
gation and finite intersection.

Definition 7.1 [29, Definition 4.1] Let X be a path-connected topological space with
fundamental group π . The r -th D-topological complexity, TCDr (X), is defined as the
minimal number k such that Xr can be covered by k + 1 open subsets

Xr = U0 ∪U1 ∪ . . .Uk

with the property that for any i ∈ {0, 1, . . . , k} and for any choice of the base point
ui ∈ Ui the homomorphism π1(Ui , ui ) → π1(Xr , ui ) induced by the inclusion
Ui → Xr takes values in a subgroup of πr that is conjugate to �r .

It is worth noting that the definition of TCDr (X) generalizes an earlier construction
from [26] which treats the case of r = 2. The following statement and its proof occur
as Lemma 4.2 and Corollary 4.3 in [29].

Theorem 7.2 Let K be a connected finite aspherical cell complex of type K (π, 1) and
let q : K̂ r → Kr be the connected covering space corresponding to �r ⊂ πr . Then

TCDr (K ) = TCr (π) = secat
(
q : K̂ r → Kr

)
.

One way to prove the second equality of Theorem 7.2 is the following:
Let X be a cell complex with π1(X) = π and let X̃ be its universal cover. We can

realize X̂r , the covering space of Xr that is associated with �r ⊂ πr as

X̂r = X̃r/�r ,

i.e. as the orbit space of the �r -action on X̃r obtained by restricting the πr -action
that is given as the r -fold product of the π -action on X̃ by deck transformations.
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Let ρ : X̃r → X̂r denote the corresponding orbit space projection. Then there is a
well-defined continuous map

φX : PX → X̂r , φ(γ ) = ρ
(
γ̃ (0), γ̃ ( 1

r−1 ), . . . , γ̃ ( r−2
r−1 ), γ̃ (1)

)
,

where γ̃ denotes a lift of γ to X̃ . (This map was first studied in the case of r = 2 in
[30, Theorem 4.1].) Then the following diagram commutes:

PX X̂r

Xr
p

φX

q
(7.1)

If X = K is aspherical, then φK is a fibre homotopy equivalence since both PK
and K̂ r are of type K (π, 1) and both of their fundamental groups map isomorphically
onto �r ⊂ πr . Since φK commutes with the two fibrations, it follows from Dold’s
theorem, see [40, Section 7.5] that φK is a fibre homotopy equivalence, from which
we derive the assertion of Theorem 7.2.

We derive an interesting observation:

Proposition 7.3 Let r ∈ N with r ≥ 2, let π be a geometrically finite group and let
K be a finite cell complex of type K (π, 1). Let q : K̂ r → Kr be a covering that is
associated with the diagonal subgroup �r ⊂ πr .

a) Up to identifications of coefficient modules, the canonical class vr ∈ H1(K ; Ir ) is
the homological obstruction to the existence of a continuous section of q.

b) It holds that

TCDr (K ) ≥ height(vr ).

Proof a) This follows fromProposition 6.3 and the observations preceding this propo-
sition.

b) By construction, X̂r is aspherical with π1(X̂r ) = �r . Thus, by Theorem 7.2,

TCDr (K ) = secat
(
q : K̂ r → Kr

)
= secat

(
�r ↪→ πr

)
.

Using a), the claim is then shown along the same lines as Corollary 6.8.a). ��

7.2 Beyond the aspherical case

By Theorem 7.2, for a finite aspherical cell complex K , it holds that TCr (K ) =
TCDr (K ). This equality does not need to hold for arbitrary finite CW complexes.
Counterexamples are provided by simply connected CW complexes for whom it fol-
lows straight from the definition that TCDr (X) = 0 for all r ≥ 2 which is certainly not
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true for TCr (X) unless X is contractible. However, there are more general results on
relations between TCr and TCDr .

The following theorem is proven by straightforward generalizations of the corre-
sponding results for r = 2, which occur as Propositions 2.2 and 2.4 in [27].

Theorem 7.4 Let X be a connected locally finite cell complex with π1(X) = π and
let r ∈ N with r ≥ 2.

a) Then TCr (X) ≥ TCDr (X).
b) Let qX : X̂r → Xr be the covering of Xr that is associated with �r ⊂ πr . Then

TCDr (X) = secat
(
qX : X̂r → Xr

)
.

We can use this observation to establish a lower bound for sequential topological
complexity from our considerations of the aspherical case. The following assertion
was shown in [27, Lemma 2.9] for the case of r = 2, but again the proof generalizes
straightforwardly to the sequential setting.

Lemma 7.5 Let r ∈ N with r ≥ 2, let X be a connected cell complex and put π :=
π1(X). Let k ∈ N, such that the universal cover of X is (k−1)-connected. If cd(π) ≤ k,
then TCDr (X) = TCr (π).

Corollary 7.6 Let π be a geometrically finite group and X be a connected locally
finite cell complex with π1(X) = π . Let k ∈ N, such that the universal cover of X is
(k − 1)-connected. If cd(π) ≤ k, then

TCr (X) ≥ r · cd(π) − k(π),

where k(π) = max{cd(C(g)) | g ∈ π � {1}}.
Proof Combining Theorem 7.4.a) with Lemma 7.5 shows that TCr (X) ≥ TCr (π) in
this setting. The claim it then an immediate consequence of Theorem 5.2. ��

We want to show next that for a finite cell complex X that is not aspherical, the
height of its r -th canonical class provides a lower bound for TCr (X). Put G := πr

and consider the universal covering X̃r → Xr as a principal G-fibration. It is shown
in [29] that the associated fibration

pX : X̃r ×G πr−1 → Xr ,

definedwith respect to theG-action onπr−1 from (6.1) and viewingπr−1 as a discrete
group, coincides with the covering qX : X̂r → Xr from Theorem 7.4.b). Thus, by
Theorem 7.4.b),

TCDr (X) = secat
(
fr : X̃r ×G πr−1 → Xr ).

It is a result of Schwarz, see [43, Theorem 3], that the sectional category of a fibration
p : E → B equals the smallest integer k such that the fiberwise join p ∗ p ∗ · · · ∗ p
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of k + 1 copies of p : E → B admits a continuous section. One checks that the join
of k + 1 copies of the fibration pX is given by

qX
k : X̃r ×G Ek(π

r−1) → Xr ,

where Ek(π
r−1) = πr−1 ∗ πr−1 ∗ · · · ∗ πr−1 denotes the (k + 1)-fold join of πr−1

and where the left G-action on Ek(π
r−1) is induced by the one on πr−1. Thus, we

obtain that

TCDr (X) = inf

{
k ∈ N | qk : X̃r ×G Ek(π

r−1) → Xradmits a cont.section

}
.

(7.2)

Let K be a space of type K (π, 1) and let fX : X → K be the classifying map of the
universal cover of X . Then f rX : Xr → Kr is the classifying map of the universal
cover of Xr for any r ≥ 2.

Consider the coverings qX : X̂r → Xr and q : K̂ r → Kr corresponding to the
subgroup �r ⊂ πr . Then the following is a pullback diagram:

X̃r ×G πr−1 K̃ r ×G πr−1

Xr Kr .

pX pK

f rX

Thus, all of the diagrams associated to fibrewise joins of the two fibrations with
themselves are pullbacks as well. That is, the following is a pullback diagram for any
k ∈ N:

X̃r ×G Ek(G/�) K̃ r ×G Ek(G/�)

Xr Kr .

qX
k qK

k
f rX

(7.3)

Combining this with the previous observations shows us how we can generalize
properties of canonical classes to cell complexes that are not necessarily aspherical.

Theorem 7.7 Let r ∈ N with r ≥ 2 and let X be a connected finite cell complex. Let
vr ∈ H1(X; Ir ) be the r-th canonical class of X. Then

TCDr (X) ≥ height(vr ).

Proof Let π = π1(X) and let k ∈ N with vkr 
= 0. By Corollary 6.6, vkr =
(( f r )∗(vr ,π ))k = ( f r )∗(vkr ,π ), which shows that vkr ,π 
= 0 as well. By Proposition
7.3.a) and [43, Proposition 12], vkr ,π is the homological obstruction to the existence
of a continuous section of the fibration

qK
k−1 : K̃ r ×G Ek−1(π

r−1) → Kr .
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Since homological obstructions are preserved under pullbacks, we derive from the
pullback diagram (7.3) that qX

k−1 : X̃r ×G Ek−1(π
r−1) → Xr does not admit a con-

tinuous section as well. Thus, it follows from (7.2) that TCDr (X) ≥ k, which yields
the claim. ��
Remark 7.8 Evidently, combining Theorem 7.4 with Theorem 7.7 yields that

TCr (X) ≥ height(vr )

for all finite cell complexes X and all r ≥ 2. This is implicitly shown in [15] in the
case of r = 2. However, even in the case of r = 2 it has hitherto not been shown that
the height of the canonical class actually yields a lower bound not only for TC(X), but
also for TCD(X).

7.3 Coincidence of TCr and TCDr

We want to conclude our considerations by showing that TCr and TCDr coincide for
some non-aspherical cell complexes under an additional condition that weakens the
asphericity assumption. We view our result as an analogue of a result of Dranishnikov
from [16] in which the Lusternik–Schnirelmann category cat(X) and the 1-category
cat1(X) are related in a similar way. The proof of Dranishnikov’s result relied on a
result on k-equivalences of joins of CW complexes.

We recall that a continuous map f : X → Y is a k-equivalence if f# : π j (X) →
π j (Y ) is an isomorphism for j < k and is a surjection for j = k. This is equivalent to
saying that the relative homotopy groups π j (Y , X) vanish for j ≤ k.

Proposition 7.9 [19, Proposition 5.7] Let s ∈ N and let X1, . . . , Xs,Y1, . . . ,Ys be
CWcomplexes. Suppose that f j : X j → Y j is an n j -equivalence for j ∈ {1, 2, . . . , s}.
Then the induced map on joins

( f1 ∗ · · · ∗ fs) : X1 ∗ · · · ∗ Xs → Y1 ∗ · · · ∗ Ys

is a (min{n j | j ∈ {1, 2, . . . , s}} + s − 1)-equivalence.

In general, consider an n-equivalence f : E → E ′ of two total spaces of fibrations
of cell complexes over the same base B. By comparing the long exact homotopy
sequences of the fibrations, we see that f induces an n-equivalence of fibres f̃ : F →
F ′. Let fk : �k(E) → �k(E ′) be the inducedmap on fibrewise joins with restriction to
fibres given by f̃k : ∗k+1 F → ∗k+1F ′. By Proposition 7.9, f̃k is an (n+ k+1−1) =
(n + k)-equivalence.

This in turn implies that fk itself is an (n + k)-equivalence by again comparing
long exact homotopy sequences. In fact, if f : E → E ′ is a map of fibrations over B
and the induced map of fibres is an n-equivalence, then so is f . With this in mind, we
will tackle the proof of the following result.

Theorem 7.10 Let k, r ∈ N with r ≥ 2 and suppose X is an n-dimensional CW
complex whose universal cover X̃ is (rn − k)-connected.
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a) If TCDr (X) ≥ k, then TCr (X) = TCDr (X).
b) If TCDr (X) ≤ k, then TCr (X) ≤ k as well.

Proof a) We first note that if k ≤ (r − 1)n, then the assumption that X̃ is (rn − k)-
connected implies that X̃ is contractible, since it is n-dimensional and simply
connected. Hence, X is of type K (π, 1) and the claim follows from Theorem 7.2.
We therefore consider the case of k > (r − 1)n. Suppose TCDr (X) = m ≥ k and
consider the diagram (7.1). Since X̃ is (rn−k)-connected, we see that map induced
by φX : PX → X̂r on fibres (�X)r−1 → πr−1 is an (rn − k)-equivalence. As
explained above, this yields that φX is an (rn − k)-equivalence as well. Therefore,
by the discussion above, the induced map on fibrewise joins

φm : �m(p) → �m(q)

is an (rn − k + m = rn + (m − k))-equivalence with m − k ≥ 0. By Theorem
7.4.b), it holds that secat(q) = TCDr (X) = m, so qm admits a continuous section
Xr → �m(q). The obstructions to lifting this section along φX to �m(p) lie in the
groups Hi (Xr ;πi−1(F)), where F is the homotopy fibre of φm . Because φm is an
(rn+(m−k))-equivalence, we know thatπi−1(F) = πi (�m(q), �m(p)) = {0} for
i ≤ rn+(m−k). Since X is assumed to be n-dimensional, Xr is rn-dimensional, so
all of the obstructions vanish and there is a section Xr → �m(p). Hence, we have
TCr (X) ≤ m = TCDr (X). Together with Theorem 7.4.a), this shows the desired
equality.

b) If TCDr (X) = m ≤ k, then the naturality of fibrewise joins implies that there is a
section of �k(q) → Xr induced by the section of �m(q) → Xr and the natural
maps �m(q) → �k(q) over Xr . In this case we may apply the argument above
verbatim to obtain a section of �k(p) → Xr , showing that TCr (X) ≤ k. ��
The previous discussion has several interesting consequences.

Corollary 7.11 Suppose X is a connected n-dimensional CW complex and TCr (X) =
rn. Then TCDr (X) = rn as well.

Proof The universal cover X̃ is 1-connected, so take k = rn − 1 in Theorem 7.10. By
part b) of that theorem, if TCDr (X) ≤ rn− 1, then the same would be true for TCr (X),
so TCDr (X) > rn − 1. Hence, TCDr (X) = rn. ��
Corollary 7.12 Suppose X is a connected n-dimensional CW complex and that the
universal cover X̃ is (rn − k)-connected with TCDr (X) ≥ k and cd(π) ≤ rn − k + 1.
Then TCr (X) = TCr (π).

Proof This follows from combining Theorem 7.10, which yields that TCr (X) =
TCDr (X) in this case, with Lemma 7.5. ��

The following result gives a cohomological characterization of the maximality
of sequential topological complexities. It generalizes the Costa–Farber theorem [15,
Theorem 7] dealing with the case of r = 2.
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Theorem 7.13 Let n, r ∈ N with r ≥ 2 and let X be an n-dimensional CW complex. It
holds that TCr (X) = rn if and only if vr ·nr 
= 0, where vr denotes the canonical class
of X.

Proof If vrnr 
= 0, then we derive from Remark 7.8 that TCr (X) ≥ rn. The converse
inequality follows from the standard upper bound of Theorem 2.3.a), yielding that
TCr (X) ≤ dim(Xr ) = rn.

Conversely, suppose that TCr (X) = rn. Then Corollary 7.11 yields that TCDr (X) =
rn, so that by (7.2), the fibrewise join qrn−1 does not admit a continuous section. By
Proposition 6.3.a) and [43, Proposition 12], the class vrnr is the primary obstruction to
a continuous section of qrn−1. As previously discussed, the obstruction classes for the
existence of continuous sections of qrn−1 lie in the groups Hi (Xr ;πi−1(Ern−1(π))),
for 1 ≤ i ≤ rn. Recall, however, that the space Ern−1(π) is the (rn)-fold join

Ern−1(π) = π∗rn

and consequently is a (rn−2)-connected space, which implies that all but the primary
obstruction necessarily vanish. Therefore, vrnr 
= 0. ��

Corollary 7.14 Let X be a connected n-dimensional finite CW complex, where n ∈ N,
whose fundamental group is free abelian of rank at most n. Then

TCr (X) < rn ∀r ≥ 2.

Proof By the hypothesis onπ1(X) andRemark 5.3.(3), it holds that TCr (π1(X)) < rn,
so that vrnr ,π1(X) = 0 by Theorem 7.13. We derive from Corollary 6.6, that vrnr = 0
as well, where vr denotes the r -th canonical class of X . Therefore, the claim follows
from Theorem 7.13. ��

Remark 7.15 The non-maximality of topological complexity for closed manifolds
with abelian fundamental groups was investigated by D. Cohen and L. Vandembroucq
in [13]. While most of their results involve fundamental groups with torsion, see [13,
Theorem 1.2.(2a)] for a result similar to Corollary 7.14.
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