
BIT Numerical Mathematics            (2025) 65:6 
https://doi.org/10.1007/s10543-024-01046-5

RESEARCH PAPER

Exact dimension reduction for rough differential equations

Martin Redmann1 · Sebastian Riedel2

Received: 5 July 2023 / Accepted: 2 December 2024
© The Author(s) 2024

Abstract
In this paper, practically computable low-order approximations of potentially high-
dimensional differential equations driven by geometric rough paths are proposed and
investigated. In particular, equations are studied that cover the linear setting, but we
allow for a certain type of dissipative nonlinearity in the drift as well. In a first step,
a linear subspace is found that contains the solution space of the underlying rough
differential equation (RDE). This subspace is associated to covariances of linear Ito-
stochastic differential equations which is shown exploiting a Gronwall lemma for
matrix differential equations. Orthogonal projections onto the identified subspace lead
to a first exact reduced order system. Secondly, a linear map of the RDE solution
(quantity of interest) is analyzed in terms of redundant information meaning that state
variables are found that do not contribute to the quantity of interest. Once more,
a link to Ito-stochastic differential equations is used. Removing such unnecessary
information from the RDE provides a further dimension reduction without causing
an error. The resulting reduced order rough equation can be solved numerically much
faster than the original system. Therefore, our approach provides enormous savings
in computing time and is hence beneficial from the practical point of view. Finally,
we discretize a linear parabolic rough partial differential equation and a rough wave
equation in space. The resulting large-order RDEs are subsequently tackled with the
exact reduction techniques studied in this paper.We illustrate the enormous complexity
reduction potential in the corresponding numerical experiments.
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Introduction

Rough paths theory is a powerful tool in stochastic analysis that allows to study
stochastic ordinary differential equations pathwise. Invented by Lyons in the 90s
[25], the theory found applications in a variety of fields, cf. [13] for an overview.
As already conjectured in Lyons’ seminal work [25], the theory has a vast potential
to study stochastic partial differential equations (SPDEs), too. Nowadays, there exist
numerous approaches to these rough partial differential equations (RPDEs). Parabolic
equations with roughness in time were studied, e.g., via semigroup theory [15, 16],
with (stochastic) viscosity theory [6, 7, 12], and with a Feynman-Kac approach [11].
Note that this is by far not an exhaustive review of the existing literature, the interesting
reader may consult [13, Chapter 12] for a more extensive overview of approaches to
rough-in-time RPDEs. Roughness in space of parabolic SPDEs, e.g., in the presence
of space-time white noise, was also investigated with rough paths theory [17, 21].
This line of thinking culminated in Hairer’s solution to the KPZ-equation [18] and
his seminal theory of regularity structures [19]. We are not trying to summarize the
vast literature built on regularity structures here and refer, once again, to [13] for a
(non-exhaustive) overview. However, when it comes to actually solve rough SPDEs
numerically, much less work can be found (let us, however, mention [2, 9, 20] here).

A standard approach to solve a deterministic (time and space dependent) PDE is to
discretize in space and hence to approximate the solution by a high-dimensional system
of ordinary differential equations (ODEs). For a RPDE, this strategy results in a system
of rough ODEs. Solving these equations numerically is a notoriously difficult problem
due to the high dimension of the system, especially if many system evaluations are
required. Such computationally challenging situations occur for instance in an optimal
control context or if a Monte-Carlo method is used. One common approach in PDE
and SPDE theory to escape the curse of dimensionality is to use model order reduction
(MOR). We refer to [1, 3] for a comprehensive overview on various projection-based
MOR techniques for deterministic equations and to [4, 28] for a system-theoretic
ansatz to tackle high-dimensional stochastic ODEs. The basic observation is that many
equations contain redundancies that lead to the fact that the solution described by the
system essentially evolves in a subspace (or manifold) of much lower dimension.
MOR aims to identify these subspaces (or manifolds) on which the dynamics of
the equations are essentially acting. Subsequently, one transforms the initial high-
dimensional (stochastic) ODE to a (stochastic) ODE of lower order that describes the
evolution in this smaller space (or manifold). For many equations, MOR can lead to a
drastic dimension reduction while keeping a high accuracy. In fact, MOR is nowadays
a standard procedure and widely used in practice.

The contribution of this work is to make an important first step towards establishing
MOR in the context of rough differential equations (RDEs). More precisely, we will
study the exact dimension reduction for a linear RDE driven by a geometric rough
path W, i.e., an equation of the form

dx(t) = Ax(t) dt + N (x(t)) K
1
2 dW(t), x(0) = x0 ∈ R

n
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with state space dimension n being large. In fact, we can even allow for a nonlinear
drift term, cf. Sect. 1. Our first main result is Theorem 2.5 that identifies an operator
P on Rn having the property that every x(t) lies in the image of P . Interestingly, P is
explicit and given by

P =
∫ ∞

0
E[xB(t)xB(t)�] dt,

where xB solves the corresponding Ito stochastic differential equation

dxB(t) = AxB(t) dt + N (xB(t)) K
1
2 d B(t), xB(0) = x0 ∈ R

n .

This means that we found an approximation for the solution space of the RDE
that is independent of the driver W. In addition, this approximation can practically
be computed in high dimensions by solving a matrix equation. Now, given that the
image of P is low-dimensional, we can construct an exact reduced system that is much
cheaper to evaluate for each W. Therefore, we significantly save computational time
when solving the reduced RDE for many different drivers.

To prove this main theorem, we first approximateW by smooth rough pathsWε and
study the corresponding smooth equations. One key ingredient tomake the comparison
is a Gronwall-type lemma for matrix differentials, cf. Lemma 2.4. Once the statement
of Theorem 2.5 is proved for the smooth rough paths Wε , one can safely pass to the
limit using the continuity property of RDEs. The eigenvalue decomposition of P now
leads to a dimension reduced equation by using a standard procedure, cf. the discussion
after Theorem 2.5. If the quantity of interest is given by y(t) = Cx(t) for a matrix C ,
we can potentially reduce the dimension even further, cf. Theorem 3.2. In Sect. 4, we
apply both theorems and performMOR for two discretized linear RPDEs. For a rough
heat equation and the quantity of interest being the average temperature on the domain,
we can reduce the dimension of the discretized equation from n = 100 to r = 33 with
practically no reduction error. In fact, even a reduction to r = 5 yields an error below
one percent. Secondly, we use our approach for finding a low-order approximation of
a finite difference discretization corresponding to a formal rough wave equation. In
this spatially discrete 1000-dimensional model, more than half of the variables could
be removed without an error. Furthermore, keeping solely one percent of the states
causes an error of approximately one percent. This underlines the enormous potential
of MOR for RPDEs.

Notation and basic definitions

Continuous functions W : [0, T ] → R
d will be called paths. Let α ∈ (0, 1]. If the

α-Hölder seminorm

sup
s<t

‖W (t) − W (s)‖2
|t − s|α
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is finite, we say W ∈ Cα . Here and throughout the rest of the paper, ‖ · ‖2 denotes
the Euclidean norm. In the following, we recall some basic definitions of rough paths
theory. For a more comprehensive overview, we refer the reader to [13, 14, 26]. If
W : [0, T ] → R

d is sufficiently smooth, we can define the n-times iterated integrals

W
(n)
s,t :=

∫
s≤t1<...<tn≤t

dW (t1) ⊗ · · · ⊗ dW (tn) ∈ (Rd)⊗n =
n⊗

k=1

R
d .

Note that W(1)
s,t = W (t) − W (s). For some fixed N , we call W = (Ws,t )0≤s<t≤T

given by

Ws,t = (1,W(1)
s,t , . . . ,W

(N )
s,t ) ∈

N⊕
n=0

(Rd)⊗n

with (Rd)⊗0 = R the canonical lift of W . The space
⊕N

n=0(R
d)⊗n is called truncated

tensor algebra of level N . Let

Ws,t = (1,W(1)
s,t , . . . ,W

(N )
s,t ), W̃s,t = (1, W̃(1)

s,t , . . . , W̃
(N )
s,t )

be two two-parameter functions with values in
⊕N

n=0(R
d)⊗n . Then, we set

�α(W, W̃):=
N∑

n=1

sup
s<t

‖W(n)
s,t − W̃

(n)
s,t ‖

|t − s|nα
.

Let W ∈ Cα and N ≤ 1
α

< N + 1. A two-parameter function

Ws,t = (1,W(1)
s,t , . . . ,W

(N )
s,t )

with W
(1)
s,t = W (t) − W (s) is called a geometric α-Hölder rough path associated to

W if there exists a sequence of smooth paths W ε for which the canonical lifts Wε

satisfy

�α(W,Wε) → 0

as ε → 0. It can be shown [13, 14] that the set of all geometric rough paths constitutes a
complete separablemetric spacewith themetric�α .Anα-Hölder path x : [0, T ] → R

n

is called a solution to the rough differential equation

dx(t) = b(x(t)) dt + σ(x(t)) dW(t), x(0) = x0 (0.1)

if x(0) = x0 and for any approximating sequence Wε toW, the solutions xε to

dxε(t) = b(xε(t)) dt + σ(xε(t)) dW ε(t), xε(0) = x0
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converge in α-Hölder metric to x . Conditions on b and σ under which (0.1) has a
unique global-in-time solution can be found in [14, Chapter 10]. In particular, it is
shown in [14, Section 10.7] that linear equations have unique solutions globally in
time.

1 Setting

Let W be a geometric rough path associated to a path W ∈ Cα that takes values
in R

d . By definition, there exists a sequence of smooth paths W ε such that their
canonical lifts Wε satisfy Wε → W (ε → 0) w.r.t. the rough path metric. In this
paper, we will only assume that there exist left-continuous functions Ẇ ε ∈ L2

T , i.e.,

‖Ẇ ε‖2
L2

T
:= ∫ T

0 ‖Ẇ ε(v)‖22dv < ∞, so that

W ε(t) = W ε(0) +
∫ t

0
Ẇ ε(s) ds (1.1)

for all ε > 0. We consider the following rough differential equation

dx(t) = [Ax(t) + f (x(t))] dt + N (x(t)) K
1
2 dW(t), x(0) = x0, (1.2a)

y(t) = Cx(t), t ∈ [0, T ], (1.2b)

with A ∈ R
n×n , C ∈ R

p×n , N : Rn → R
n×d is a linear mapping defined by N (x) =[

N1x . . . Nd x
]
for x ∈ R

n and given that N1, . . . , Nd ∈ R
n×n .Moreover, we interpret

the symmetric positive semidefinite matrix K = (ki j )i, j=1,...,d as a covariance matrix
and assume the nonlinearity to be of the form f (x) = xg(x), where g is a scalar
function satisfying g(x) ≤ 0 for all x ∈ R

n . This setting covers interesting cases like
the cubic function x 	→ x − x‖x‖22 which we can make part of the drift in (1.2a) by
setting g(x) = −‖x‖22. Note, however, that the classical results on rough differential
equations found, e.g., in [14] can not be applied here to see that (1.2a) has a unique
global-in-time solution since the drift may have superlinear growth. Instead, we can
argue as follows: We first consider the corresponding equation without drift, i.e.,

dx(t) = N (x(t)) K
1
2 dW(t). (1.3)

The solution to (1.2a) can be obtained by a suitable flow decomposition of (1.3), cf.
[32, Section 2]. Since (1.3) is a linear equation, we can use the bounds in [14, Section
10.7] to see that all solution trajectories with initial conditions in a ball with given
radius R > 0 lie in a compact set K R ⊂ R

n . Therefore, for any R > 0, we can replace
the linear vector fields in (1.3) by smooth vector fields having compact support by just
redefining them to be zero outside K R . Note that b(x) = Ax + xg(x) satisfies [32,
Condition (4.2) and (4.3)]. Therefore, we can argue as in [32, Theorem 4.3] to see that
the solution to (1.2a) exists globally in time.
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We introduce the Lyapunov operator

L(X) := AX + X A� +
d∑

i, j=1

Ni X N�
j ki j (1.4)

for a simpler notation below, where X is an n × n matrix.

2 Approximating solution spaces based on a Gronwall lemma

Starting with a high-dimensional system (1.2), the goal of this section is to reduce the
dimension and hence the computational complexity. This means that we aim to find a
reduced system that has exactly the same dynamics, but is cheaper to evaluate for each
potential driverW. Then, we solve for x(t), t ∈ [0, T ], from a low dimensional RDE
instead of solving (1.2) directly. Here, the main obstacle is to identify and compute
an approximation for the solution space of (1.2a). Below, this is done by studying
covariance functions of Ito stochastic differential equations. We will study matrix
inequalities that have to be understood in terms of definiteness. In particular, we write
M1 ≤ M2 for two matrices M1 and M2 if M2 − M1 is a positive semidefinite matrix.
Let us first derive such amatrix inequality for a quadratic form of the solution of (1.2a)
in case the rough driver is replaced by its smooth approximation.

Lemma 2.1 Let xε(t), t ∈ [0, T ], satisfy

dxε(t) = [Axε(t) + f
(
xε(t)

)]dt + N
(
xε(t)

)
K

1
2 dW ε(t), xε(0) = x0, (2.1)

given that W ε is absolutely continuous with representation in (1.1) and left-continuous
Ẇ ε ∈ L2

T . Then, the quadratic form X ε(t) = xε(t)xε(t)� ∈ R
n×n satisfies

Ẋ ε(t) ≤ L(X ε(t)) + X ε(t)
∥∥Ẇ ε(t)

∥∥2
2 , X ε(0) = x0x�

0 , (2.2)

for all t ∈ [0, T ] in which W ε is differentiable.

Proof We obtain by the product rule that

xε(t)xε(t)� = x0x�
0 +

∫ t

0
dxε(v)xε(v)� +

∫ t

0
xε(v)dxε(v)�

= x0x�
0 +

∫ t

0

[
Axε(v)xε(v)� + f

(
xε(v)

)
xε(v)� + xε(v)xε(v)� A�

+ xε(v) f
(
xε(v)

)� ]
dv +

∫ t

0

[
N

(
xε(v)

)
K

1
2 Ẇ ε(v)xε(v)�

+ xε(v)Ẇ ε(v)�K
1
2 N

(
xε(v)

)� ]
dv.

Now that t 	→ xε(t)xε(t)� is absolutely continuous, we can take the derivative which
exists almost everywhere in points, where W ε can be differentiated. Subsequently,
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given two matrices M1 and M2 of suitable dimension, we exploit that M1M�
2 +

M2M�
1 ≤ M1M�

1 + M2M�
2 . In particular, we set M1 = N (xε(v)) K

1
2 , M2 =

xε(v)Ẇ ε(v)� and use that f (x)x� = x f (x)� = xx�g(x) ≤ 0. This yields for
almost all t ∈ [0, T ] that

d

dt
xε(t)xε(t)� ≤ Axε(t)xε(t)� + xε(t)xε(t)� A�

+ N
(
xε(t)

)
K N

(
xε(t)

)� + xε(t)Ẇ ε(t)�Ẇ ε(t)xε(v)�.

The result follows by N (x)K N (x)� = ∑d
i, j=1 Ni xx�N�

j ki j . ��
We now find a (stochastic) representation for the respective equality in (2.2) based

on a quadratic form of the solution of a linear Ito-stochastic differential equation.

Lemma 2.2 Let B be a d-dimensional standard Brownian motion and xB(t), t ≥ 0,
be the solution to the following Ito-stochastic differential equation

dxB(t) = AxB(t)dt + N (xB(t)) K
1
2 d B(t), xB(0) = x0, (2.3)

Then, Z(t) = E[xB(t)xB(t)�], t ≥ 0, solves

Z(t) = x0x�
0 +

∫ t

0
L(Z(v))dv. (2.4)

Moreover, given the left-continuous Ẇ ε ∈ L2
T from (1.1), the function X̄ ε(t) =

exp
{∫ t

0

∥∥Ẇ ε(v)
∥∥2
2 dv

}
Z(t), t ∈ [0, T ], solves the following matrix identity:

X̄ ε(t) = x0x�
0 +

∫ t

0
L(X̄ ε(v)) + X̄ ε(v)

∥∥Ẇ ε(v)
∥∥2
2 dv. (2.5)

Proof Ito’s product rule yields

xB(t)xB(t)� = x0x�
0 +

∫ t

0
dxB(v)xB(v)� +

∫ t

0
xB(v)dxB(v)�

+
∫ t

0
N (xB(v)) K N (xB(v))� dv.

We insert (2.3) above, take the expected value and utilize N (x)K N (x)� =∑d
i, j=1 Ni xx�N�

j ki j . Since the Ito-integral has mean zero, we obtain

E[xB(t)xB(t)�] = x0x�
0 +

∫ t

0
AE[xB(v)xB(v)�]dv +

∫ t

0
E[xB(v)xB(v)�]A�dv

+
∫ t

0

d∑
i, j=1

NiE[xB(v)xB(v)�]N j ki j dv

123
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giving us the first part of the claim. Applying the product rule to X̄ ε(t) =
exp

{∫ t
0

∥∥Ẇ ε(v)
∥∥2
2 dv

}
Z(t) and taking (2.4) into account, we see that the second

part of the result follows. ��
Remark 2.3 First,weobserve thatmean square asymptotic stability, i.e.,E ‖xB(t)‖22 →
0 for all x0 ∈ R

n as t → ∞ is equivalent to E[xB(t)xB(t)�] → 0. For that reason,
Lemma2.2 tells us thatmean square asymptotic stability is equivalent to the asymptotic
stability of (2.4). It is well known that this is equivalent to

λ(L) ⊂ C− = {z ∈ C : Re(z) < 0},

where λ(·) denotes the spectrum of an operator, and that the decay of the solution
of (2.4) to zero is exponential. We refer to [8, 23, 28] for additional algebraic char-
acterizations and for a further discussion on second moment exponential stability of
(2.3). Let us further point out that this stability concept is stronger than almost sure
exponential stability in the linear case, see [27, Theorem 4.2].

In the next step, a relation between solutions of (2.2) and (2.5) is pointed out. The
following lemma can be interpreted as Gronwall type result for matrix differential
inequalities/equations.We generalize arguments exploited in [29] in the corresponding
proof.

Lemma 2.4 Suppose that Ẇ ε ∈ L2
T is left-continuous. Given an (absolutely) continu-

ous X ε(t), t ∈ [0, T ], satisfying (2.2) and X̄ ε(t), t ∈ [0, T ], being the solution to the
matrix integral equation (2.5). Then, we have that X ε(t) ≤ X̄ ε(t) for all t ∈ [0, T ].
Proof We introduce Y := X̄ ε − X ε and the time-dependent Lyapunov operator

Lt (Y ) := L(Y ) + Y
∥∥Ẇ ε(t)

∥∥2
2. From the integrated version of (2.2) and (2.5), we

find that

Y (t) − Y (s) ≥
∫ t

s
Lv(Y (v))dv, s ≤ t . (2.6)

We define D(t) := Y (t) − ∫ t
0 Lv(Y (v))dv and consider a perturbed integral equation

Yγ (t) = γ I +
∫ t

0
[Lv(Yγ (v)) + γ I ]dv + D(t) (2.7)

with parameterγ ≥ 0.By construction,weobserve thatY0(t) = Y (t) for all t ∈ [0, T ].
Moreover, it holds that limγ→0 Yγ (t) = Y (t) for all t ∈ [0, T ].

Below, let us assume that Yγ is not positive definite for γ > 0 meaning that
z̃�Yγ (t̃)z̃ ≤ 0 for some z̃ �= 0 and t̃ > 0.Yγ is positive definite at t = 0 asYγ (0) = γ I .
This is equivalent to all the eigenvalues of this matrix being positive. Now that Yγ is
continuous and takes values in the space of symmetric matrices, there exist continuous
and real functions λ1, . . . , λn such that λ1(t), . . . , λn(t) represent the eigenvalues of
Yγ (t) for each fixed t ∈ [0, T ], see [5, Corollary VI.1.6]. By assumption, at least one
of these eigenvalue functions crosses or touches zero, while starting with a positive
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value. Let λi be the one that reaches zero first at some t0 ∈ (0, t̃], i.e., t0 is the smallest
point of time with λi (t0) = 0. Since we have λi (t0) = 0 while all the other eigenvalues
are nonnegative, Yγ turns from a positive definite into a positive semidefinite matrix
at this t0 meaning that

z�
0 Yγ (t0)z0 = 0 and z�

0 Yγ (t)z0 > 0, 0 ≤ t < t0, (2.8)

for some z0 �= 0 while z�Yγ (t0)z ≥ 0 for all z ∈ R
n . Now, Lt is a Lyapunov oper-

ator for fixed t ≥ 0 and hence resolvent positive, see Appendix A. The relation 0 =
z�
0 Yγ (t0)z0 = 〈Yγ (t0), z0z�

0 〉F consequently implies 0 ≤ 〈Lt0(Yγ (t0)), z0z�
0 〉F =

z�
0 Lt0(Yγ (t0))z0 according to Theorem A.2. As Ẇ ε is left-continuous, the same
holds for t 	→ z�

0 Lt (Yγ (t))z0. For that reason, there exists a δ > 0 such that
z�
0 Lv(Yγ (v))z0 > −γ ‖z0‖22 for all v ∈ (t0 − δ, t0]. Let s, t ∈ (t0 − δ, t0] with

s ≤ t . Then,

z�
0 Yγ (t)z0 − z�

0 Yγ (s)z0 =
∫ t

s
z�
0 Lv(Yγ (v))z0 + γ ‖z0‖22 dv + z�

0 (D(t) − D(s))z0

≥ z�
0 (D(t) − D(s))z0.

From (2.6), we obtain that D(t)−D(s) ≥ 0. Consequently,we know that z�
0 Yγ (s)z0 ≤

z�
0 Yγ (t)z0, i.e., v 	→ z�

0 Yγ (v)z0 is increasing on (t0 − δ, t0] which contradicts (2.8).
Therefore, Yγ (t) is positive definite for all t ∈ [0, T ] and γ > 0. Taking the limit of
γ → 0, we obtain Y (t) ≥ 0 for all t ∈ [0, T ] which concludes the proof. ��

Asa consequence ofGronwall Lemma2.4, the following theoremcanbe established
that provides information on the solution space of the considered rough differential
equation.

Theorem 2.5 Suppose that x is the solution of (1.2a) on [0, T ] with a driver W. Then,
it holds that

x(t) ∈ im[PT ], t ∈ [0, T ], (2.9)

where PT = ∫ T
0 E[xB(t)xB(t)�]dt with xB solving the Ito-stochastic differen-

tial equation (2.3). If (2.3) further is mean square asymptotically stable, that is,
E ‖xB(t)‖22 → 0 as t → ∞, the limit P := limT →∞ PT exists. Then, PT can be
replaced by P in (2.9).

Proof Let z ∈ ker[PT ] and let xε be the approximation of x defined by (2.1). Then,

∫ T

0
〈z, xε(t)〉22dt = z�

∫ T

0
xε(t)xε(t)�dt z.

By Lemma 2.1, we observed that xε(t)xε(t)� is a continuous solution to (2.2). Hence,
it can be bounded from above by the solution X̄ ε to (2.5) using Lemma 2.4. By Lemma

123
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2.2, it is known that X̄ ε(t) = exp
{∫ t

0

∥∥Ẇ ε(v)
∥∥2
2 dv

}
E[xB(t)xB(t)�]. Consequently,

we have

∫ T

0
〈z, xε(t)〉22dt ≤ exp

{∫ T

0

∥∥Ẇ ε(v)
∥∥2
2 dv

}
z�

∫ T

0
E[xB(t)xB(t)�]dt z

= exp

{∫ T

0

∥∥Ẇ ε(v)
∥∥2
2 dv

}
z� PT z = 0. (2.10)

Since xε is continuous it follows that 〈z, xε(t)〉22 = 0, t ∈ [0, T ]. Taking the limit as
ε → 0, we find 〈z, x(t)〉22 = 0 for all t ∈ [0, T ]. This means that x(t) is orthogonal to
ker[PT ]. By the symmetry of PT the orthogonal complement of this kernel is im[PT ],
so that the first claim follows. If the Ito-stochastic differential equation is mean square
asymptotically stable, it decays exponentially fast to zero, seeRemark 2.3. This implies
exponential convergence of E[xB(t)xB(t)�] to zero. In this case, P exists and it holds
that z� PT z ≤ z� Pz for all z ∈ R

n . Now, choosing z ∈ ker[P], the second claim
follows from (2.10). This concludes the proof. ��
Remark 2.6 It can be shown that the solution xB of (2.3) takes values in im[PT ] with
probability one, see, e.g., [32]. Therefore, Theorem 2.5 tells us that im[PT ] does not
only characterize the solution space of the Ito equation, but is much more universal:
it can be used to describe the solution space of a linear RDE driven by a general
geometric rough path. Note that to apply Theorem 2.5 in practice, we need to either
compute PT or P in order to find the superset for the solution space of the RDE. One
might think of an empirical approach due to the stochastic representation of PT or P ,
i.e., the Ito stochastic differential equation (2.3) can be simulated and subsequently
one averages a quadratic form of xB in ω and in time t . However, PT or P can be
computed exactly most of the time using the matrix identity (2.4).

We can now consider the eigenvalue decomposition of P ∈ {PT , P} given by

P = [
VP 


] [
� 0
0 0

] [
V �
P



]
= VP�V �

P ,

where � is the diagonal matrix of non-zero eigenvalues of P and the matrix VP

of associated eigenvectors provides an orthonormal basis for im[P]. Therefore, we
can find a reduced order function xr (t) ∈ R

r , with r being the number of non-
zero eigenvalues, giving us x(t) = VPxr (t). Inserting this identity into (1.2) and
multiplying the resulting equation with V �

P from the left leads to

dxr (t) = [V �
P AVPxr (t) + V �

P f (VPxr (t))]dt

+ V �
P N (VPxr (t)) K

1
2 dW(t), xr (0) = V �

P x0, (2.11a)

y(t) = CVPxr (t), t ∈ [0, T ]. (2.11b)

It is important to notice that solving for xr is potentially much cheaper than solving
for the solution x of (1.2). In addition, the exact approximation is independent of the
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driver W. Consequently, the computational benefit is the larger the more often the
system needs to be evaluated for different drivers, e.g., when running a Monte-Carlo
simulation in case of a random rough path W.

In the remainder of this section, we will briefly sketch the difficulties when trying
to extend the here presented dimension reduction techniques to nonlinear dynamics.
Let us consider a general nonlinear rough system given existence and uniqueness of a
global solution,meaning that we study (1.2a) while assuming that f and N are general,
but sufficiently nice nonlinearities. In this case, Theorem 2.5 could be reformulated for
the operator PW,T := ∫ T

0 x(t)x(t)�dt in the sense that x(t) ∈ im[PW,T ], t ∈ [0, T ].
This expression describes the solution space in the general framework. However, note
that PW,T depends on the driver W and is not accessible unless x itself is computed.
Therefore, we are lead to seek for an W-independent matrix-valued function Z(t)
approximating x(t)x(t)�, t ∈ [0, T ], in the sense that the image of PT = ∫ T

0 Z(t)dt
contains the image of PW,T and is computable in practice. This is the key idea of
Theorem 2.5, where Z is the covariance function of an Ito stochastic differential
equation in the linear case. In general, Z would still be the solution to a matrix ODE
like in (2.4) and hence be related to an Ito equation, but the associated Lyapunov
operator L would be different. It turns out that we would have to choose a linear L
for which Lemma 2.2 holds true, but the existence of this operator is generally an
open question. This approach can be seen as a linearization of the Lyapunov operator
corresponding to the nonlinear system. However, the linearization is hard to construct
in practice.1

3 Redundancies in the quantity of interest

Instead of looking at an approximation for the solution space of the state variable, let
us now point out which states in x can be removed from the dynamics without an effect
on y defined in (1.2b). This allows us to reduce the dimension of (2.11) further. Here,
we assume a purely linear system, i.e., f ≡ 0 in (1.2a). Let Z denote the solution to

Z(t) = C�C +
∫ t

0
L∗(Z(v))dv. (3.1)

which can be interpreted as the dual equation of (2.4), where

L∗(X) := A� X + X A +
d∑

i, j=1

N�
i X N j ki j . (3.2)

1 Amore promising approachmight be to approximate the solution x of a nonlinear RDE by a linear map of
the (truncated) signature ofW Such an approximation can always be constructed with an arbitrary accuracy
due to the universal approximation theorem, see [[31], Theorem 3.1]. Since the (truncated) signature can
be shown to be the solution to a linear RDE as considered in this paper, a model reduction technique to the
signature equation would then lead to a linear reduced order model for the original nonlinear dynamics.
However, the drawback is that the linear map of the signature is generally unknown, so that the problem is
transferred to finding an accurate linearization first.
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Here,L∗ is the adjoint operator ofLwith respect to the Frobenius inner product 〈·, ·〉F .
As Z = Z(·, C�C) is linear in its initial state, we obtain Z(t, C�C) = ∑p

�=1 =
Z(t, c�

� c�), where c� is the �th row of C . By Lemma 2.2, we know thatZ(t, c�
� c�) =

E[xB(t)xB(t)�], where xB solves the Ito-stochastic differential equation

dxB(t) = A�xB(t)dt + N∗ (xB(t)) K
1
2 d B(t), xB(0) = c�

� , (3.3)

with N∗(x) := [
N�
1 x . . . N�

d x
]
. This stochastic representation implies thatZ(t) is a

positive semidefinite matrix for all fixed t . This is exploited in the next lemma.

Lemma 3.1 Let us define QT := ∫ T
0 Z(t)dt, where Z solves (3.1). Suppose that

z ∈ ker[QT ]. Then, we have

QT Az = 0, Cz = 0, (K ⊗ QT )
[

N�
1 ... N�

d

]�
z = 0. (3.4)

If the solution of (3.3) satisfies E ‖xB(t)‖22 → 0 as t → ∞, the limit Q :=
limT →∞ QT exists and (3.4) holds when replacing QT by its limit.

Proof Using (3.1) for t = T and the linearity of L∗, we obtain

Z(T ) = C�C + L∗(QT ) = C�C + A�QT + QT A +
d∑

i, j=1

N�
i QT N j ki j

= C�C + A�QT + QT A + [
N�
1 ... N�

d

]
(K ⊗ QT )

[
N�
1 ... N�

d

]�
, (3.5)

since
∑d

i, j=1 N�
i ki j QT N j = [

N�
1 ... N�

d

]
(K ⊗ QT )

[
N�
1 ... N�

d

]�. Suppose that z ∈
ker[QT ]. Then, we have 0 = z�QT z = ∫ T

0

∥∥∥Z(t)
1
2 z

∥∥∥2
2

dt exploiting that Z(t) is

positive semidefinite. AsZ is continuous, we obtain thatZ(t)z = 0 for all t ∈ [0, T ].
Now, we can multiply (3.5) with z� from the left and z from the right yielding

0 = z�C�Cz + z� [
N�
1 ... N�

d

]
(K ⊗ QT )

[
N�
1 ... N�

d

]�
z. (3.6)

K ⊗ QT is a positive semidefinite matrix, because K and QT are positive semidefinite.
Hence, both summands on the right-hand side of (3.6) must be zero. Therefore, we
have Cz = 0 and (K ⊗ QT )

[
N�
1 ... N�

d

]�
z = 0. With this knowledge, we multiply

(3.5) only with z from the right resulting in QT Az = 0. Finally, E ‖xB(t)‖22 → 0
is equivalent to E[xB(t)xB(t)�] → 0 as t → ∞. In particular, this convergence
is exponential, see Remark 2.3. Therefore, Z converges exponentially fast to zero
yielding the existence of Q = ∫ ∞

0 Z(t)dt . Taking the limit of T → ∞ in (3.5), this
Q satisfies 0 = C�C +L∗(Q), so that the above arguments can be used to proof the
same result for Q instead of QT . ��

Notice that mean square asymptotic stability of (3.3) exploited in Lemma 3.1 is
equivalent to the same type of stability in (2.3) since λ(L∗) = λ(L), see Remark 2.3.
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Let us introduceQ ∈ {QT , Q}. SinceQ is positive semidefinite, we can find an associ-
ated orthogonal basis forRn consisting of eigenvectors (qk) ofQ.We define thematrix
VQ := [ q1 ... qr ], where the columns of this matrix are the eigenvectors corresponding
to the non zero eigenvalue of Q. The remaining eigenvectors qr+1, . . . , qn form a
basis for ker[Q]. We set V ⊥

Q := [ qr+1 ... qn ]. We can find processes xr and x̃, so that
x(t) = VQxr (t) + V ⊥

Q x̃(t) which implies that xr (t) = V �
Q x(t). As a consequence of

Lemma 3.1, we obtain that y(t) = Cx(t) = CVQxr (t). Now, the differential equation
associated to xr is obtained by

dxr (t) = V �
Q dx(t) = V �

Q Ax(t)dt + V �
Q N (x(t)) K

1
2 dW(t), xr (0) = V �

Q x0.

By Lemma 3.1, we have V �
Q Ax(t) = V �

Q A(VQxr (t) + V ⊥
Q x̃(t)) = V �

Q AVQxr (t).
Moreover, given that the covariance matrix K is invertible, we can multiply the last
identity of (3.4)with K −1⊗I providingQNi z = 0 for z ∈ ker[Q] and all i = 1, . . . , d.
This can now be exploited to obtain that V �

Q N (x(t)) = V �
Q N (VQxr (t)). Let us

summarize the above considerations in the following theorem.

Theorem 3.2 Given Q ∈ {QT , Q} defined in Lemma 3.1, K being invertible and
f ≡ 0. Then, we find a reduced order system with the same quantity of interest like
(1.2). It is given by

dxr (t) = V �
Q AVQxr (t)dt + V �

Q N (VQxr (t)) K
1
2 dW(t), xr (0) = V �

Q x0, (3.7a)

y(t) = CVQxr (t), t ∈ [0, T ], (3.7b)

with VQ := [ q1 ... qr ], where q1, . . . , qr are orthonormal eigenvectors of Q corre-
sponding to all r non zero eigenvalues.

4 Numerical experiments

Let the regularity ofW = (W ,W) now be α ∈ (1/3, 1/2]. As before, we assume that
it can be approximate (w.r.t. the rough pathmetric) by the lift of W ε with representation
(1.1).

4.1 Linear rough PDEs and Feynman-Kac solutions

We aim to study the solution

[0, T ] × R
m � (t, x) 	→ u(t, x)

to the initial value problem

du = L(u) dt +
d∑

k=1

k(u) dWk, u(0, ·) = g, (4.1)
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where L and  = (1, . . . , d) are

Lh(ζ ) := 1

2
tr

(
σ(ζ )σ (ζ )�D2h(ζ )

)
+ 〈b(ζ ), Dh(ζ )〉 + c(ζ )h(ζ ),

kh(ζ ) := 〈βk(ζ ), Dh(ζ )〉 + γk(ζ )h(ζ ),

for a suitable test function h : Rm → R. For the Feynman-Kac approach, it will be
convenient to apply the time change t 	→ T − t and to study the equivalent terminal
value problem

−dv = L(v) dt +
d∑

k=1

k(v) d
←−
Wk, v(T , ·) = g, (4.2)

instead where
←−
W denotes the time reversed rough path

←−
W(t) = W(T − t). If we

replace
←−
W by

←−
W ε , then every bounded vε ∈ C1,2([0, T ] × R

m,R) solution to the
PDE (driven by

←−
W ε) has the Feynman-Kac representation

vε(t, ζ ) = E

[
g(xζ (T )) exp

(∫ T

t
c(xζ (s)) ds +

∫ T

t
γ (xζ (s))

←̇−
W ε(s) ds

)]
, (4.3)

where xζ is the solution to the Ito-stochastic differential equation

dxζ (s) = b
(
(xζ (s)

)
ds + [

σ
(
xζ (s)

)
β

(
xζ (s)

)] [
d B(s)

d
←−
W ε(s)

]
, t ≤ s ≤ T ,

xζ (t) = ζ,

If vε /∈ C1,2([0, T ] × R
m,R), we use (4.3) to define the solution of the PDE as long

as the associated stochastic differential equation admits a unique solution. Now, given
that the initial value g is continuous and bounded, [10, 11, 13] showed that for vε in
(4.3), it holds that

vε(t, ζ ) → v(t, ζ ):=E

[
g(xζ (T )) exp

(∫ T

t
c(xζ (s)) ds +

∫ T

t
γ (xζ (s)) d

←−
W(s)

)]
,

(4.4)

point-wise in time and space. Here, xζ is the solution to the rough differential equation

dxζ (s) = b
(
(xζ (s)

)
ds + [

σ
(
xζ (s)

)
β

(
xζ (s)

)]
dZ(s), t ≤ s ≤ T ,

xζ (t) = ζ,
(4.5)

with the joint rough path Z = (Z ,Z)
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Z(t) :=
(

B(t)←−
W (t)

)
,

Zs,t :=
( ∫ t

s (B(v) − B(s)) ⊗ d B(v)
∫ t

s (
←−
W (v) − ←−

W (s)) ⊗ d B(v)∫ t
s (B(v) − B(s)) ⊗ d

←−
W (v)

←−
Ws,t

)
,

where the stochastic integrals are understood as Ito-integrals. The limit v now defines
the solution to (4.1) given that (4.5) has a unique solution.

4.2 Dimension reduction for spatially discretized rough heat equations

We specify the coefficients for our numerical experiments by setting σ ≡ √
2I , b ≡ 0

and c ≡ 0 resulting in the rough heat equation

du(t, ζ ) = �u(t, ζ ) dt +
d∑

k=1

( 〈βk(ζ ),∇u(t, ζ )〉 + γk(ζ )u(t, ζ )
)
dWk(t), u(0, ·) = g.

(4.6)

Instead of exploiting the Feynman-Kac representation in (4.4), we formally discretize
(4.1) by a finite difference scheme.Moreover, we consider the bounded spatial domain
[0, 1]m (in contrast to the above Feynman-Kac theory). Here, we set additional bound-
ary conditions which are assumed to be of Dirichlet type. Notice that equation (4.6)
can then also be defined in the mild sense (for general non geometric drivers) when
the transport term is absent, see [13, 16].

For simplicity let us set m = 1. Then, hζ := 1
(n+1) is supposed to be the spatial

step size parameter leading to a grid ζ j = jhζ for j = 0, 1, . . . , n + 1. Intuitively, we
find that x j (t) ≈ u(t, ζ j ), where

dx1(t) = x2(t) − 2x1(t)

h2
ζ

dt +
d∑

k=1

(
βk(ζ1)

x2(t) − x1(t)

hζ

+ γk(ζ1)x1(t)
)

dWk(t),

dx j (t) = x j+1(t) − 2x j (t) + x j−1(t)

h2
ζ

dt

+
d∑

k=1

(
βk(ζ j )

x j+1(t) − x j (t)

hζ

+ γk(ζ j )x j (t)
)

dWk(t),

dxn(t) = −2xn(t) + xn−1(t)

h2
ζ

+
d∑

k=1

(
βk(ζn)

−xn(t)

hζ

+ γk(ζn)xn(t)
)

dWk(t)

(4.7)

for j ∈ {2, . . . , n−1} taking into account that u(t, 0) = u(t, 1) = 0. The initial condi-
tion associated to (4.7) is x(0) = (

g(ζ1) . . . g(ζn)
)�. W shall now be 2-dimensional,

where its components are paths of independent fractional Brownian motions with
Hurst index H = 0.4. Further, let us set n = 100, γ1(ζ ) = 4 sin(ζ ), γ2(ζ ) = 4 cos(ζ ),
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Fig. 1 Output y in (4.8) of (4.7)
with driver in Fig. 2

Fig. 2 Path of a 2D fractional
Brownian motion used as driver

β1 ≡ 0.4,β2 ≡ −0.2 and g(ζ ) = e−2|ζ−0.5|2 , ζ ∈ [0, 1].Wefix T = 0.5 and introduce
the quantity of interest

y(t) = 1

n

n∑
j=1

x j (t) (4.8)

being the average temperature, i.e., C = 1
n

[
1 . . . 1

]
. We illustrate y in Fig. 1 given

the driver depicted in Fig. 2.
Consequently, (4.7) together with (4.8) yield a system of the form (1.2) with f ≡ 0.

Moreover, notice that (4.7) is a mean square asymptotically stable system given the
above parameters. Therefore, P and Q, introduced in Theorem 2.5 and Lemma 3.1,
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Fig. 3 Logarithmic eigenvalues
of P (blue) and Q (red) (Color
figure online)

exist and can be used to identify unnecessary information. In particular, P and Q
can be computed much easier than PT and QT . We obtain them from solving 0 =
x0x�

0 +L(P) and 0 = C�C +L∗(Q) which are the equations derived by taking the
limit as t → ∞ in (2.4) and (3.1). We observe from Fig. 3 that P and Q have many
eigenvalues below machine precision that are numerically zero.

As a first step we remove the ones of P resulting in a reduced model (2.11) of order
35. Subsequently, the dimension of this system can be lowered further by applying the
procedure of Sect. 3. Here, two eigenvalues below machine precision can be detected
finally providing amodel of dimension r = 33 inwhichwe do not expect any reduction
error. However, it is important to notice that there are several sources of numerical
errors like, for instance, the time discretization leading to a non zero error in practice.
For that reason, we denote the output of the reduced system by yr and find a relative

L2
T -error

‖y−yr ‖L2T‖y‖
L2T

= 1.5710e−14 for r = 33. This can be assumed to be an exact

approximation neglecting the other numerical errors. In addition, the logarithm of
the point-wise error |y(t)−yr (t)|

|y(t)| for the same setting is shown in Fig. 5. Finally, we
conducted experiments related to dimension reduction with a true error. In detail, in
addition to the (numerical) zero eigenvalues, we neglect eigenspaces of P and Q that
are associated to very small eigenvalues of which we have many, see Fig. 3. This is
motivated by an observation in Ito-SDE settings, where those direction have a tiny
influence on the dynamics, see, e.g, [28]. Fig. 4 depicts the relative L2

T -errors for
r = 5, 7, 9, . . . , 33 in logarithmic scale. We observe a small error in each case, e.g.,
of order 1e−08 for an r around 20, Moreover, the deviation from the true output is
below one percent even for r = 5. This illustrates that rough differential equations
can have a very high reduction potential beyond truncating state variables that have
no contribution (Fig. 5).

We conclude by explaining the time discretization used in order to obtain the simu-
lation results. We implemented an implicit Runge–Kutta scheme for rough differential
equations [22, 31] with "optimal" rate solely based on the increments of the driver.
Here, the implicit nature is required due to the stiffness of (4.7). As a first step, we
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Fig. 4 Logarithmic relative
L2

T -error for different reduced
dimensions r = 5, 7, 9, . . . , 33

rewrite (1.2a) as

dx(t) = F (x(t)) dW̃(t), x(0) = x0,

where F(x) :=
[

Ax + f (x) N (x)K
1
2

]
and W̃ (t) =

[
t

W (t)

]
. Given an equidistant

partition tk = kh of [0, T ] with the step size h, we use the following scheme

Zk,i = zk +
s∑

j=1

ai j F(Zk, j )
(
W̃ (tk+1) − W̃ (tk)

)

zk+1 = zk +
s∑

i=1

bi F(Zk,i )
(
W̃ (tk+1) − W̃ (tk)

)
,

with z0 = x0 aiming that zk ≈ x(tk). In particular, Crouzeix’s two stages (s = 2) and
diagonally implicit method is exploited that has the following Butcher tableau

a11 a12
a21 a22
b1 b2

=
1
2 +

√
3
6 0

−√
3

3
1
2 +

√
3
6

1
2

1
2

.

This method satisfies the optimality conditions provided in [31] and hence has a
convergence order arbitrary close to 2H − 0.5, where 1

3 < H ≤ 1
2 is the Hurst index

of a fractional Brownian motion. Now, let us mention that all the above simulations
have been conducted setting h = 2−14.
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4.3 Dimension reduction for spatially discretized rough wave equations

In this section, we provide another example, for which we apply our approach.We aim
to consider a higher order system and illustrate the dimension reduction potential for
non parabolic equations. In particular, we consider the following symbolic2 damped
rough wave equation

∂2

∂t2
u(t, ζ ) + α

∂

∂t
u(t, ζ ) = ∂2

∂ζ 2 u(t, ζ ) +
d∑

k=1

γk(ζ )u(t, ζ )
∂

∂t
Wk(t), (4.9a)

u(0, ·) = g,
∂

∂t
u(0, ·) = ġ, u(t, 0) = u(t, 1) = 0, (4.9b)

on a spatial domain [0, 1], for t ∈ [0, 1] and α > 0. We can rewrite (4.9) in order to
obtain a system of the form like in (4.1). This is

d

(
u(t, ζ )
∂
∂t u(t, ζ )

)
=

(
0 I
∂2

∂ζ 2
−α I

) (
u(t, ζ )
∂
∂t u(t, ζ )

)
dt +

d∑
k=1

(
0 0

γk(ζ ) 0

)(
u(t, ζ )
∂
∂t u(t, ζ )

)
dWk(t),

(u(0, ·) ∂
∂t u(0, ·))� = (g ġ)�.

However, notice that the above equation is not parabolic but hyperbolic. Such equations
are generally harder to reduce in their dimension. Formally applying a finite difference
scheme as in Sect. 4.2 with ñ grid points and the interpretation that x j (t) ≈ u(t, ζ j )

and ẋ j (t) ≈ ∂
∂t u(t, ζ j ), j ∈ {1, . . . , ñ}, leads to a system of order n = 2ñ:

d

(
x(t)
ẋ(t)

)
=

(
0 I
A −α I

) (
x(t)
ẋ(t)

)
dt +

d∑
k=1

(
0 0

Nk 0

) (
x(t)
ẋ(t)

)
dWk(t),

(x(0) ẋ(0))� = (x0 ẋ0)
�, (4.10)

where A ∈ R
ñ×ñ is the finite difference discretization of the second derivative, x(0) =(

g(ζ1) . . . g(ζñ)
)�, ẋ(0) = (

ġ(ζ1) . . . ġ(ζñ)
)�, I is the ñ × ñ identity matrix and

Nk = diag
(
γk(ζ1), . . . , γk(ζñ)

)
. We use the driver in Fig. 2 again, i.e., d = 2. We pick

the parameter γ1(ζ ) = 4 sin(ζ ), γ2(ζ ) = 4 cos(ζ ) and g(ζ ) ≡ 0, ġ(ζ ) = e−2|ζ−0.5|2 ,
ζ ∈ [0, 1]. In addition, we fix α = 1 and ñ = 500 spatial grid points resulting in
a system of order n = 1000. The quantities of interest are the average position and
velocity, i.e.,

y(t) = (y1(t) y2(t))
�, where y1(t) = 1

ñ

ñ∑
j=1

x j (t), y2(t) = 1

ñ

ñ∑
j=1

ẋ j (t).

(4.11)

2 To our knowledge, there does not exist any solution theory yet that covers this equation.
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Fig. 5 Logarithmic relative error
in time for reduced dimension
r = 33

Fig. 6 Average position y1 in
(4.11) of (4.10) with driver in
Fig. 2

For illustration purposes, we depict both variables y1 and y2 in Figs. 6 and 7. The
position y1 is a smooth function, whereas the velocity y2 is as rough as the driver.

We exploit the observation of Sect. 4.2 that eigenspaces of P and Q related to
non-zero eigenvalues can be removed in case they are small enough. The result of
the inexact dimension reduction can be seen in Fig. 8, where the relative L2

T -errors
for reduced dimensions r = 10, 20, 30, . . . , 300 are shown in logarithmic scale. We
observe a small error in each case, i.e., deviations of less than one percent can easily
be achieved for small r . However, notice that the reduction potential is lower than in
the heat equation case.We encounter a (numerical) zero error for dimensions r ≥ 492,
meaning that we are able to truncate more than half of the variables without a change
in the outputs y1 and y2 in (4.11).

123



BIT Numerical Mathematics             (2025) 65:6 Page 21 of 23     6 

Fig. 7 Average velocity y2 in
(4.11) of (4.10) with driver in
Fig. 2

Fig. 8 Logarithmic relative
L2

T -error for the dimension
reduction of (4.10) with
n = 1000 and different reduced
dimensions
r = 10, 20, 30, . . . , 300

A Resolvent positive operators

This section covers the essential information on resolvent positive operators that are
required in this paper. We refer to [8] for a more detailed and more general discus-
sion. In particular, we are interested in such operators on (Hn, 〈·, ·〉F ) which shall
be the Hilbert space of symmetric n × n matrices and 〈·, ·〉F denotes the Frobenius
inner product. Further suppose that Hn+ is the associated subset of symmetric positive
semidefinite matrices. We begin with the definition of positive and resolvent positive
operators on Hn .

Definition A.1 A linear operator L : Hn → Hn is called positive if L(Hn+) ⊂ Hn+.
It is resolvent positive if there is an α0 ∈ R such that for all α > α0 the operator
(α I − L)−1 is positive.

123



    6 Page 22 of 23 BIT Numerical Mathematics             (2025) 65:6 

The Lyapunov operator defined in (1.4) is resolvent positive observing that it is a
composition of a resolvent positive operator X 	→ AX + X A� and a positive part
X 	→ ∑d

i, j=1 Ni X N�
j ki j , see [8]. Below, we state an equivalent characterization of

resolvent positive operators and refer oncemore to [8, Section 3.2.2] for amore general
framework.

Theorem A.2 A linear operator L : Hn → Hn is resolvent positive if and only if
〈V1, V2〉F = 0 implies 〈LV1, V2〉F ≥ 0 for V1, V2 ∈ Hn+.
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