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Abstract:We show that the E-cohomological Conley index, that was introduced by the first author recently,
has a natural module structure. This yields a new cup-length and a lower bound for the number of critical
points of functionals on Hilbert spaces. When applied to the setting of the Arnold conjecture, this paves the
way to a short proof on tori, where it was first shown by C. Conley and E. Zehnder in 1983.
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1 Introduction
Motivated by questions of celestial mechanics from the beginning of the 20th century, Arnold conjectured
in the sixties that every Hamiltonian diffeomorphism on a compact symplectic manifold (M, ω) has at least
as many fixed points as a function on M has critical points. Let us recall that a diffeomorphism ψ : M → M
is called Hamiltonian if there exists a smooth map H : ℝ ×M → ℝ, H(t + 1, x) = H(t, x), such that ψ = η1,
where the family {ηt}t∈ℝ satisfies

{{
{{
{

d
dt
ηt = XH(ηt),

η0 = id,
(1.1)

and XH stands for the time-dependent vector field given by

dH( ⋅ ) = ω(XH , ⋅ ).

Consequently, p is a fixed point of ψ if and only if it is the initial condition of a 1-periodic solution of (1.1),
and so Arnold’s famous conjecture can be reformulated dynamically as follows.

Arnold Conjecture. The Hamiltonian system

ẋ(t) = XH(x(t)) (1.2)

has at least as many 1-periodic orbits as a function on M has critical points.

The aim of this paper is to point out a new approach to the Arnold conjecture which proves it on tori, where
it was first shown by C. Conley and A. Zehnder in [3]. Let us point out that several approaches to the Arnold
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Conjecture have appeared since then. We refer to [10, pp. 215–216], but want to mention in particular that
Chaperon proved it in [2] for tori by a concise geometric argument (cf. also [9]). Our proof is short as well,
and it will be future work to investigate if our methods also apply to cases where the conjecture is still open.
For example, the Arnold conjecture has not been proved for T2n × ℂPm where a similar analytical setting can
be introduced (see [6]). To the best of our knowledge, the previous methods only work to some extent in this
case (see, however, [12] for partial results), and therefore it is worthwhile to develop new approaches.

However, let us point out that, apart from these important applications, our methods are of independent
interest and can be outlined as follows. In [15] the first author introduced the E-cohomological Conley index
for isolated invariant sets of flows in Hilbert spaces. Roughly speaking, it is a generalization of the classical
Conley index for flows on locally compact spaces by using E-cohomology, which is a generalized cohomology
theory for subsets of Hilbert spaces that was constructed by Abbondandolo in [1] (cf. also [7]). The first aim of
this paper is to introduce amodule structure for the E-cohomological Conley index, which allows us to define
a relative cup-length for triples of closed and bounded subsets of Hilbert spaces. Secondly, we consider this
numerical invariant for isolating neighborhoods of LS-flows in Hilbert spaces (cf. [8, 16]), and show that
it is a lower bound for the number of critical points of gradient flows as in classical Ljusternik–Schnirelman
theory. Herewe substantially use properties of the E-cohomological Conley index that were recently obtained
by the first author in a joint work with Izydorek, Rot, Styborski and Vandervorst in [11]. Finally, we apply our
Ljusternik–Schnirelman-type theorem to the functionals in the setting of the Arnold conjecture on T2n. This
yields an estimate from below for the number of contractible 1-periodic solutions of (1.2), and the obtained
bound is indeed the one that Arnold conjectured.

This paper is organizedwith the intentionof guiding the reader throughourproof of theArnold conjecture
in as straightforward a manner as possible. Therefore, in the second section, we only introduce the material
that is necessary to understand the basics of our approach and postpone more technical proofs to Section 4.
Our discussion of the Arnold conjecture can be found in between, in the third section.

2 The E-Cohomological Conley Index and Cup-Lengths

2.1 Module Structure for E-Cohomology

We begin this section by recalling E-cohomology from [1], where we slightly modify the definition as in [11].
Let E be a separable real Hilbert space and E+, E− closed subspaces such that E = E+ ⊕ E−. In what follows
we denote by H∗ Alexander–Spanier cohomology with compact supports, for which we refer to [14] and the
nice survey in [1, Section 1]. Moreover, we let V be the set of all finite-dimensional subspaces of E−, which is
partially ordered by inclusion and directed.

If U, V,W ∈ V are such that W = V ⊕ U and dim(U) = 1, then we can decompose W into two subspaces
by setting

W+ = {w ∈ W : ⟨w, u⟩ ≥ 0},
W− = {w ∈ W : ⟨w, u⟩ ≤ 0},

where u ̸= 0 is a fixed element in U. Note that the choice of u corresponds to an orientation of the one-
dimensional space U, and changing this orientation swapsW+ andW−.

We set for a closed and bounded subset X of E,

XW = X ∩ (E+ ×W), X+W = X ∩ (E
+ ×W+), X−W = X ∩ (E

+ ×W−)

and note that XW = X+W ∪ X
−
W as well as XV := X ∩ (E+ × V) = X+W ∩ X

−
W . (See Figure 1.) If now A ⊂ X is closed,

then we obtain a relative Meyer–Vietoris sequence

⋅ ⋅ ⋅ → Hk(X+W , A
+
W ) ⊕ H

k(X−W , A
−
W ) → Hk(XV , AV )

∆kV,W
→ Hk+1(XW , AW )

→ Hk+1(X+W , A
+
W ) ⊕ H

k+1(X−W , A
−
W ) → ⋅ ⋅ ⋅ .
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Figure 1: Decomposition of X by W.

In the more general case thatW = V ⊕ U and dim(U) = n ≥ 2, we decompose U into n one-dimensional sub-
spaces U = U1 ⊕ ⋅ ⋅ ⋅ ⊕ Un and set Wi = V ⊕ U1 ⊕ ⋅ ⋅ ⋅ ⊕ Ui for 1 ≤ i ≤ n as well as W0 = V. Then the previous
construction yields n Mayer–Vietoris homomorphisms

∆k+i−1Wi−1 ,Wi
: Hk+i−1(XWi−1 , AWi−1 )→ Hk+i(XWi , AWi )

and their composition is a homomorphism Hk(XV , AV )→ Hk+n(XW , AW ). Hencewe have constructed for any
q ∈ ℤ and V,W ∈ V, V ⊂ W, a homomorphism

∆qV,W (X) : H
q+dim(V)(XV , AV )→ Hq+dim(W)(XW , AW ).

As noted in [1, Proposition 2.2], these maps do not depend on the choice of the one-dimensional subspaces
Ui and their orientations. In summary, {Hq+dim(V)(XV , AV ), ∆qVW (X, A)} is a direct system of abelian groups
over the directed set V.

Definition 2.1. Let A ⊂ X be closed and bounded subsets of E. The E-cohomology group of index q ∈ ℤ of
(X, A) is the direct limit

HqE(X, A) = lim→
V∈V
{Hq+dim(V)(XV , AV ), ∆qV,W (X, A)},

and we set as usual HqE(X) := H
q
E(X, 0).

The inclusions ιV,W : XV → XW forV,W ∈ V yield an inverse system {Hp(XV ), ι∗V,W }overV.Wedefine for p ∈ ℤ
the group Hp0(X) as the inverse limit

Hp0(X) := lim←
V∈V
{Hp(XV ), ι∗V,W }.

In what follows, we denote elements of Hp0(X) by [αV ]0 if αV ∈ Hp(XV ), and correspondingly elements of
HqE(X, A) by [αV ]E if αV ∈ Hq+dim(V)(XV , AV ).

Let us point out that H∗0 (X) is a ring if we define the product of [αV ]0 ∈ H
p
0(X) and [βV ]0 ∈ H

q
0(X) by

[αV ]0 ∪ [βV ]0 = [αV ∪ βV ]0 ∈ H
p+q
0 (X).

It is readily seen from the naturality of the cup product that this is a sensible definition.

Proposition 2.2. The group H∗E(X, A) is a right module over H
∗
0 (X), where the module multiplication is induced

by the cup product.

Proof. We define for [αV ]0 ∈ Hr0(X) and [βV ]E ∈ H
q
E(X, A),

[βV ]E ∪ [αV ]0 := [βV ∪ αV ]E ∈ Hq+rE (X, A).

This product is well defined, as if βW = ∆qV,WβV and αV = ι
∗
V,WαW , then

∆q+rV,W (βV ∪ αV ) = ∆
q+r
V,W (βV ∪ ι

∗
V,WαW ) = (∆

q
V,WβV ) ∪ αW = βW ∪ αW ,
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where we have used that the coboundary operators of the Mayer–Vietoris sequence commute with products
in multiplicative cohomology theories (cf. [4, Proposition 17.2.1]).

Let now Ω ⊂ E be closed and bounded and such that X ⊂ Ω. The inclusions jV : XV → ΩV induce homomor-
phisms j∗V : Hp(ΩV )→ Hp(XV ) for V ∈ V, and it is readily seen that they actually yield a ring homomorphism

j∗ : H∗0 (Ω)→ H∗0 (X).

Consequently, we obtain the following corollary from Proposition 2.2.

Corollary 2.3. For every X ⊂ Ω ⊂ E, H∗E(X, A) is a right H
∗
0 (Ω)-module.

Henceforth we denote the module product of α ∈ Hr0(Ω) and β ∈ H
p
E(X, A) by

β ∪ α ∈ Hp+rE (X, A).

We conclude this section with the following crucial definition of a relative cup-length.

Definition 2.4. Let A ⊂ X ⊂ Ω be closed and bounded subsets of E.
∙ If H∗E(X, A) = 0, we set

CL(Ω; X, A) = 0.

∙ If H∗E(X, A) ̸= 0 but β ∪ α = 0 for every β ∈ H
∗
E(X, A) and α ∈ H

>0
0 (Ω), then we set

CL(Ω; X, A) = 1.

∙ If there are k ≥ 2, β0 ∈ H∗E(X, A) and α1, α2, . . . , αk−1 ∈ H
>0
0 (Ω) such that

β0 ∪ α1 ∪ ⋅ ⋅ ⋅ ∪ αk−1 ̸= 0,

then
CL(Ω; X, A) ≥ k.

In order to keep the definition short we have not defined when actually CL(Ω; X, A) = k for k ≥ 2 as the stated
estimate in the final part of Definition 2.4 is good enough for our purposes (see Theorem 2.10).

2.2 The E-Cohomological Conley Index and Critical Points

The first aim of this subsection is to introduce the E-cohomological Conley index and to define a module
structure for it. Let E be a real separable Hilbert space and L : E → E an invertible selfadjoint operator for
which there exists a sequence {En}n∈ℕ of finite-dimensional subspaces of E such that L(En) = En, En ⊂ En+1
and ⋃n∈ℕ En = E. Let U ⊂ E be open. Following [8], we call a vector field F : U ⊂ E → E, F(u) = Lu + K(u)
an LS-vector field if K : U ⊂ E → E is a locally Lipschitz compact operator. Note that every LS-vector field
generates a local flow ηt satisfying

d
dt
ηt = −F ∘ ηt , η0 = id, (2.1)

which we call an LS-flow.
Let us now assume that η is a global LS-flow on U, and let us denote by

Inv(Ω, η) = {x ∈ Ω : ηt(x) ∈ Ω, t ∈ ℝ}

the maximal η-invariant subset of Ω ⊂ U.

Definition 2.5. A closed and bounded set Ω ⊂ U is called an isolating neighborhood of η if Inv(Ω, η) ⊂ int(Ω),
where int(Ω) denotes the interior of Ω.

Let now Ω be an isolating neighborhood of η and S := Inv(Ω, η).
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Definition 2.6. We call a closed and bounded pair (X, A) of subsets of Ω an index pair for S if
∙ A is positively invariant with respect to X, i.e. given x ∈ A and t > 0with η[0,t](x) ⊂ X, then η[0,t](x) ⊂ A,
∙ S = Inv(X \ A, η) ⊂ int(X \ A),
∙ if y ∈ X, t > 0 and ηt(y) ∉ X, then there exists t < t such that η[0,t](y) ⊂ X and η(t, y) ∈ A.

It was shown in [11, Lemma 2.7] that every isolated invariant set S as above has an index pair.
Note that the space E splits as E = E+ ⊕ E−, where E± are the spectral subspaces with respect to the pos-

itive and negative part of the spectrum of L. Henceforth, we denote by H∗E the E-cohomology with respect to
this splitting. The following crucial result was proved in [11, Proposition 2.8].

Proposition 2.7. If (X, A)and (X, A)are index pairs for S, the groupsH∗E(X, A)andH
∗
E(X
, A)are isomorphic.

Hence the next definition is sensible (cf. [11, Definition 2.9]).

Definition 2.8. The E-cohomological Conley index of S is defined by

chE(S) = H∗E(X, A),

where (X, A) is an index pair for S.

If we want to emphasize the isolating neighborhood Ω instead of the isolated invariant set S, we will also
write chE(Ω) to denote the E-cohomological Conley index.

When taking the module structure from Section 2 into account, it is readily seen by arguing as in
[11, Proposition 2.8] that H∗E(X, A) and H

∗
E(X
, A) are actually isomorphic as H∗0 (Ω)-modules. Hence we

obtain as a consequence of Proposition 2.7 the following important result.

Corollary 2.9. The cup-length CL(Ω; X, A) does not depend on the choice of the index pair (X, A) such that
X ⊂ Ω.

Consequently, we can define
CL(Ω, S) := CL(Ω; X, A),

where (X, A) is any index pair for S such that X ⊂ Ω. As S is uniquely determined by Ω and the flow η, we will
sometimes denote this cup-length by CL(Ω, η) if we want to emphasize η.

Let us now assume that η is the gradient flow with respect to a differentiable functional f : U → ℝ, i.e.
the map F : U ⊂ E → E is of the form F = ∇f . As before, we assume that η is global. Let Ω be an isolating
neighborhood of η and S = Inv(Ω, η). We denote by Crit(f, Ω) the set of critical values of f|Ω and can now
state the main theorem of this paper.

Theorem 2.10. If f has only finitelymany critical points inΩ, then the number of critical values of f|Ω is bounded
below by the cup-length of Ω with respect to S, i.e.

#Crit(f, Ω) ≥ CL(Ω, S). (2.2)

Note that by Theorem 2.10, the right-hand side in (2.2) is obviously also a lower bound for the number of
critical points of f in Ω. We will prove Theorem 2.10 in Section 4.

3 The Arnold Conjecture on the Torus T2n

Let T2n denote the standard Torus of dimension 2n and let ω0 be its standard symplectic structure. Let
H ∈ C2(S1 × T2n ,ℝ) be a 1-periodic Hamiltonian and XH the induced vector field on T2n given by

dH( ⋅ ) = ω(XH , ⋅ ).

We consider the Hamiltonian equation
ẋ(t) = XH(x(t)), (3.1)

and the aim of this section is to prove the following deep theorem.
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Theorem 3.1 (Arnold Conjecture on T2n). For every C2-Hamiltonian on T2n there exist at least 2n + 1 contrac-
tible solutions of (3.1).

The above theorem was first proved by Conley and Zehnder in [3] (cf. also [10]). We now recall the analytical
setting from their proof in the next section, and then use Theorem 2.10 for a short proof of Theorem 3.1.

3.1 The Analytical Setting

Before proving Theorem 3.1, let us first recall the analytical setting from [10] (see also [13]). In what follows,
we let J be the symplectic standard matrix

(
0 In
−In 0

) ,

which is related to the symplectic form on T2n by

ω0(x, y) = ⟨x, Jy⟩,

where ⟨ ⋅ , ⋅ ⟩ denotes the standard Euclidean scalar product.
We now start with the case of ℝ2n and consider the space of smooth loops C∞(S1,ℝ2n) in ℝ2n. If we set

ek(t) := etk2πJ, k ∈ ℤ, then any x ∈ C∞(S1,ℝ2n) is represented by its Fourier series

x(t) = ∑
k∈ℤ

ek(t)xk , (3.2)

where xk ∈ ℝ2n, k ∈ ℤ. The Sobolev space H
1
2 (S1,ℝ2n) is the Hilbert space which is obtained as the comple-

tion of C∞(S1,ℝ2n) with respect to the scalar product

⟨x, y⟩ 1
2
= ⟨x0, y0⟩ + 2π ∑

k∈ℤ
|k|⟨xk , yk⟩.

There is an orthogonal decomposition

H
1
2 (S1,ℝ2n) = Z0 ⊕ Z− ⊕ Z+

into a 2n-dimensional subspace Z0 and closed infinite-dimensional subspaces Z+ and Z− which correspond
to k = 0, k > 0 and k < 0 in the Fourier-series expansion (3.2), respectively. In what follows, we denote by P0,
P+ and P− the corresponding orthogonal projections.

Now let H ∈ C2(S1 ×ℝ2n ,ℝ) be a Hamiltonian such that |H(x)| ≤ C ⋅ |x|2 at infinity and such that the
second spatial derivative H is globally bounded. We define a functional ΦH : C∞(S1,ℝ2n)→ ℝ by the
formula

ΦH(x) = a(x) − b(x) :=
1
2

1

∫
0

⟨−Jẋ(t), x(t)⟩ dt −
1

∫
0

H(t, x(t)) dt. (3.3)

The importance ofΦH comes from the fact that the critical points ofΦH are periodic solutions of theHamilton
equation (3.1). It is easy to see that ΦH extends to H 1

2 (S1,ℝ2n), and

∇ΦH = L + K, (3.4)

where L = ∇a = P+ − P− is a selfadjoint Fredholm operator and K = −∇b = −j∗∇H is a compact map because
of the compactness of the adjoint j∗ : L2 → H 1

2 of the inclusion.
On a general manifold, it is a delicate problem to define spaces H 1

2 (S1,M) as H 1
2 (S1,ℝ2n) contains non-

continuous functions which consequently have no local meaning. However, for a torus one can overcome
this problem by using the universal covering ℝ2n → T2n = ℝ2n/ℤ2n. Then smooth Hamiltonians on T2n are
in one-to-one correspondence with ℤ2n-invariant smooth Hamiltonians on ℝ2n, where ℤ2n acts on ℝ2n by
translations. By a slight abuse of notation, we will denote by H both the Hamiltonian on the torus and the
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Hamiltonian lifted to ℝ2n. Note that the lifted Hamiltonian on ℝ2n is ℤ2n-invariant and therefore its second
spatial derivative is bounded and it obviously satisfies the growth condition mentioned above. Now the cor-
responding functional ΦH in (3.3) is ℤ2n-invariant as well, and therefore it descends to a functional on the
quotient space

M := Z0/ℤ2n × Z+ × Z− = T2n × Z+ × Z−.

3.2 Proof of Theorem 3.1

We suppose as in the previous subsection that H ∈ C2(S1 × T2n ,ℝ) is a given Hamiltonian. Let us note at first
that F = ∇ΦH in (3.4) is an LS-vector field, even though the operator L is not invertible. Indeed, if we write
F = L̂ + K̂ := (L + P0) + (K − P0), where P0 is the orthogonal projection onto the finite-dimensional kernel of L
as introduced above, then F is the sum of an invertible selfadjoint operator and a compact map.

AsM is a Hilbert manifold, we cannot directly apply the E-cohomological Conley index which we only
have defined for flows on open subsets of a Hilbert space. However, if we use a tubular neighborhood, the
definition can easily be extended to Hilbert manifolds of the type M × E, where M is a closed manifold and
E is a Hilbert space. In the case ofM, the construction is as follows. We embedM into Ê = ℝ4n × Z+ × Z− in
such a way that every S1 in T2n = S1 × ⋅ ⋅ ⋅ × S1 is mapped to the unit circle inℝ2. We consider the open set

U := D2n
0 × Z

+ × Z− ⊂ Ê

of Ê, where D0 = {(x, y) ∈ ℝ2 : 0 < x2 + y2 < 4} is a punctured disc of radius 2 in ℝ2, and we let π : N→M

be the standard projection to T2n on D2n
0 and the identity on Z+ and Z−. The map ΦH can be extended to U

by

ΨH(x) = ΦH(π(x)) +
2n
∑
i=1
(1 − ri(x))2,

where ri(x) denotes the polar coordinate inℝ2 of the projection of x ∈ U to the i-th component of (ℝ2)2n. Note
that the extension is done in such a way that ΨH and ΦH have the same critical points. We denote by K̃ the
compact operator which is the sum of K̂ and ∇(∑2ni=1(1 − ri(x))2).

Note that ∇ΨH = L̂ + K̃ is an LS-vector field, and the negative and positive spectral subspaces of the
selfadjoint isomorphism L̂ are given by

E+ = ℝ4n ⊕ Z+, E− = Z−.

Now Theorem 3.1 can be obtained as follows. Since K is bounded, there is R > 0 such that R > ‖K(x)‖ for all
x ∈ U. We set

X = C2n × B(Z+, R) × B(Z−, R),

where B(Z±, R) are the closed balls of radius R in Z± and C ⊂ D0 is a closed annulus containing S1. Note that
the boundary ∂X is given by the non-disjoint union

∂X = (∂C2n × B(Z+, R) × B(Z−, R)) ∪ (C2n × ∂B(Z+, R) × B(Z−, R)) ∪ (C2n × B(Z+, R) × ∂B(Z−, R)).

Let now X1, X2, X3 denote the three parts of ∂X in the above order and let η be the flow induced by −∇ΨH
as in (2.1). Firstly, if x ∈ X1 but neither in X2 nor in X3, then there is some t > 0 such that η(0,t](x) ⊂ X \ ∂X.
Secondly, if x ∈ X2, then ‖P+x‖ = R and we have

⟨L̂x + K̃(x), P
+x
R ⟩
= ⟨LP+x, P

+x
R ⟩
+ ⟨K(x), P

+x
R ⟩
> R − ‖K(x)‖ > 0.

Consequently, the vector field L̂x + K̃(x) is pointing outwards the sphere ∂B(Z+, R). Hence, if x ∈ X1 ∪ X2
but x ∉ X3, then η, which is the flow induced by −∇ΨH , moves x into the interior of X. Finally, if x ∈ X3, we
analogously see that

⟨L̂x + K̃(x), P
−x
R ⟩
< 0
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as ‖P−x‖ = R. Hence those x leave X under η. It is now readily seen that

(X, A) = (C2n × B(Z+, R) × B(Z−, R), C2n × B(Z+, R) × ∂B(Z−, R))

is an index pair for S = Inv(X, η) in the sense of Definition 2.6, where we have set A := X3 for simplicity
of notation.

To find the E-cohomology of (X, A), let V ⊂ Z− be of finite dimension. Then

(XV , AV ) = (C2n × B(Z+, R) × B(V, R), C2n × B(Z+, R) × ∂B(V, R)),

where B(V, R) denotes the ball of radius R in V. Hence we get for k ∈ ℤ

Hk(XV , AV ) = Hk(XV/AV ) = Hk(S(V, R) ∧ T2n) = Hk−dim(V)(T2n),

where S(V, R)denotes the sphere of radius R in V. Moreover, ifW ⊃ V is another finite-dimensional subspace,
then the Mayer–Vietoris homomorphism ∆kV,W mapping

Hk+dim(V)(XV , AV ) = Hk+dim(V)(S(V) ∧ T2n)

to
Hk+dim(W)(XW , AW ) = Hk+dim(W)(S(W) ∧ T2n)

is by definition just the suspension isomorphism. Hence we obtain

H∗E(X, A) = H
∗(T2n).

Finally, to find the cup-length, we note at first that for the isolating neighborhood X, and any finite-dimen-
sional subspace V ⊂ Z−,

H∗(XV ) = H∗(C2n × B(Z+; R) × B(V; R)) = H∗(T2n).

Hence CL(X, η) is just the ordinary cup-length of the torus T2n, which is 2n + 1. By Theorem 2.10, this is
a lower bound for the number of critical points of ΦH in X, and so we have proved the Arnold conjecture
on T2n.

4 Proof of Theorem 2.10
We will need the following two properties of the cup-length CL that we introduced in Definition 2.4. As the
proofs are purely algebraic, we leave it to the reader to check that they follow by obvious modifications
from [5, Lemmas 2.2 and 2.3].

Lemma 4.1. If B ⊂ A ⊂ X ⊂ Y are closed and bounded subsets of E, then

CL(Y; X, B) ≤ CL(Y; X, A) + CL(Y; A, B).

Lemma 4.2. If A ⊂ X ⊂ Y1 ⊂ Y2 are closed and bounded subsets of E, then

CL(Y2; X, A) ≤ CL(Y1; X, A).

Now let us consider an isolating neighborhood Ω for the flow η generated by the gradient of the function
f : U → ℝ in Theorem 2.10. As we suppose that there are only finitely many critical points of f in Ω, the set of
critical values Crit(f, Ω) is finite as well, say, c1 < ⋅ ⋅ ⋅ < ck. LetMi ⊂ Ω denote the set of stationary points with
values ci, and set for 1 ≤ i ≤ j ≤ k,

Mij = {x ∈ Ω : ω(x) ∪ α(x) ⊂ Mi ∪Mi+1 ∪ ⋅ ⋅ ⋅ ∪Mj},

where α(x) and ω(x) denote as above the α and ω limits of x ∈ E under the flow η. Note that M1k consists of
all the critical points of f inside Ω and all the orbits connecting them. Consequently,

M1k = Inv(Ω, η).

Now let (X, A) be an index pair for M1k.
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Lemma 4.3 (Morse Filtration). There exist sets

X0 = A ⊂ X1 ⊂ ⋅ ⋅ ⋅ ⊂ Xk = X

such that (Xj , Xi−1) is an index pair for Mij.

Proof. We let bi ∈ (ci , ci+1), i = 1, . . . , k − 1, be regular values of f , set bk =∞, and define X0 = A as well
as Xi := X ∩ f−1(−∞, bi], i = 1, . . . , k. Then it is readily seen that (Xj , Xi−1) is an index pair for Mij as Mij
consists of all critical points x such that f(x) ∈ {ci , . . . , cj} and all the orbits connecting them.

If we now apply Lemma 4.1 k times, we get

CL(Ω; X, A) ≤
k
∑
i=1

CL(Ω; Xi , Xi−1). (4.1)

On the other hand, (Xi , Xi−1) is an index pair forMii, which is a set consisting of a finite number of stationary
points. Therefore we can choose an isolating neighborhood Ωi for Mii, where Ωi is a disjoint union of discs.
If now (Xi , X


i−1) is an index pair for Mii such that Xi ⊂ Ωi, then by Corollary 2.9 and Lemma 4.2

CL(Ω; Xi , Xi−1) = CL(Ω; Xi , X

i−1) ≤ CL(Ωi; X


i , X

i−1) ≤ 1,

where the last inequality follows from the fact that the groups Hq>00 (Ωi) are trivial. Hence, by (4.1),

CL(Ω; X, A) ≤ k

and Theorem 2.10 is shown, as k is the number of critical values of f in Ω.
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[5] Z. A. Dzedzej, K. Gȩba and W. Uss, The Conley index, cup-length and bifurcation, J. Fixed Point Theory Appl. 10 (2011),

no. 2, 233–252.
[6] B. Fortune, A symplectic fixed point theorem for CPn, Invent. Math. 81 (1985), no. 1, 29–46.
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