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Abstract

Increasingly, research focus in the fields of biology and medicine moves from the investi-
gation of single phenomena to the analysis of complex cause and effect relationships. The
clarification of complicated relationships requires the consideration of different domains,
such as gene expression, protein, and metabolite data. Furthermore, it is often sensible not
to analyze the collected data in isolation, but to consider the context of relevant biological
networks. In this paper newly developed functionalities of the VANTED system are pre-
sented. They allow users from medicine and biology to interactively structure extensive
experimental data, to filter, to evaluate, and to visualize the data and the analysis results in
the context of biological networks and classification hierarchies.

1 Introduction

The methodology of biochemical research has strongly changed during the last years. Nowa-
days large amounts of experimental data is produced by massive-parallel analysis technologies,
for instance by automated enzyme-assays, metabolite- and transcript-profiling. Using the right
supporting software, the resulting data base provides a comprehensive view on the biochemistry
of an organism. The clarification of complicated connections in organisms generally requires
the consideration of different domains. To handle this problem, instead of analysing the data
in isolation, it is worth to consider the context of relevant biological networks. Available soft-
ware systems for this task (see [5]) are tuned besides a few exceptions to single data domains
and/or are firmly coupled to certain databases. In this paper newly developed functionalities
of the VANTED system [2] are presented. They allow users from medicine and biology to
interactively work with extensive experiment data, to filter, to statistically evaluate, and to vi-
sualize the analysis results directly in context of relevant biological networks and classification
hierarchies.

2 Methods

For the analysis of experimental data integrated views of the measured values and relevant
background information should be generated. This approach corresponds with the idea of sys-
tem biology – instead of considering single parts, the analysis covers the overall system with
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all interactions to better understand biological phenomena. In order to fulfill the goal of cre-
ating a software system which supports users in such an integrated analysis, three aspects are
of importance for the design of the VANTED software: 1) data models for experiment data and
biological networks, 2) the process of data mapping, by means of connecting experiment data
and networks, 3) the analysis and visualization of the network-integrated data sets. These three
points are described in the following.

1) Data models for experiment data and biological networks By investigation of
common experiment designs the following crucial experimental factors have been identified: in-
formation about time series, replicates, environmental conditions, treatments and genetic lines.
A data model which is able to handle experiment data, partitioned by the mentioned experiment
factors, has been developed and is shown in Figure 1. To simplify the design and implementa-
tion, the model does not store information about the experiment procedures, but instead focuses
on information required for experiment data mapping, visualization and analysis.

experiment

name : String
coordinator : String
importDate : Date
importBy : String
comment : String

substance

name : String
synonyms : String

condition

species : String
genotype : String
treatment : String

sample

time : Float
timeUnit : String

measurement

value : Float
unit : String
replicateID : int

1 0..* 1 0..*1 1..* 1..* 1

Figure 1: Data model for experiment data sets.

In contrast to some other systems VANTED supports dynamic networks. Networks can be
loaded into the system from databases (e. g. KEGG) or from files (e. g. GML, SBML, Pajek
.net format). In addition, it is possible to construct or edit networks manually with integrated
editor functions, thus networks can be easily extended if more substances were measured. The
following graph data model is used as a flexible basis for different kinds of biological networks
as well as for classification hierarchies:

The mapping-graph MG is defined based on a graphG = (V, E) with a set of nodesV and a
set of directed or undirected edgesE, and additionally, a set of labelsL, sets of node- and edge-
typesTV andTE, a set of experiment dataM , the label functionl : V, E 7→ L, the node- and
edge-type functionstV : V 7→ TV , tE : E 7→ TE, the data mapping functionz : V, E 7→ M .
Thismapping-graphMG is written asMG = (V, E, l, tV , tE, z).

Depending on the biological network under investigation, different sets of node- and edge-types
are used. Two examples:

(1) For a protein-protein interaction mapping-graphMGPPI , the following node- and edge-
types are used:TV = {Protein} and TE = {Interaction}. Each edge of the modelled
graphMGPPI stands for an undirected interaction between two proteins, represented by the
end points of the particular edge.

(2) A KEGG-mapping-graphMGKEGG uses the following node- and edge-types:TV = {
Orthologue, Enzyme, Gene, Gene-Group, Metabolite, Pathway-Link} andTE = {ECrel, PPrel,
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GErel, PCrel, Link}. A description of the KGML format, which stores information about a
particular KEGG pathway, the listed node- and edge-types as well as the transformation into a
dynamic graph model has been published previously [4].

2) Data mapping For the integration of measurement data into relevant networks a data
mapping is carried out. Given a mapping-graphMG and a set of experimental data setsED
(according to the definition shown in Figure 1), fromED derived subsets of the experiment data
are connected to elements ofMG, using the following algorithm. The result of this algorithm
corresponds to the data functionz of MG.

Algorithm 1 Data mapping

Require: MG – mapping-graph
Require: ED – experiment data, objects of typeexperiment

1: M ⇐ generate for each substance inED a separate data set
2: for all graphelementsge ∈ MG do
3: Z ⇐ ∅
4: A ⇐ label(ge) ∪ synonyms(ge)
5: for all m ∈ M do
6: B ⇐ id(m) ∪ synonyms(m)
7: if |A ∩B| > 0 then
8: Z ⇐ m ∪ Z
9: end if

10: end for
11: z(ge) = Z
12: end for

In the beginning of the data mapping algorithm (line 1), the given exerimental data sets are
partitioned into multiple data sets. For each substance in the data setsED new data sets are
constructed, containing only the measurement data and corresponding experiment info, which
is related to a particular substance. Two setsA, B are initialized (lines 4 and 6).A contains
the substance identifier (id(m)) and corresponding synonyms, setB contains the graphelement
label and additionally defined or derived synonyms. Information about synonyms is taken au-
tomatically from the integrated databases (Expasy Enzyme [1], KEGG Compound and KEGG
BRITE [3]) or can be provided by the user. For each node and edge inMG (line 2 and 4), it is
tested, whether the intersection of setA andB contains at least one element (line 7). Is this the
case, the data setm (containing experiment data of one substance) is included in the set of data
to be mapped (Z, line 8). After checking all substance data setsm ∈ M the mapped data for a
particular graph element is defined (line 11).

Optionally (not shown in Algorithm 1), data sets which could not be mapped on the basis of
substance names and synonyms are mapped to newly generated network nodes. In this manner
new substances can be easily integrated into an existing network.

3) Histogram functions for classification hierarchies and network-integrated data
The basis of the histogram functions are classification hierarchies modelled as graphs (e. g.
Gene Ontology or KEGG BRITE) consisting of classification nodesCN and leaf-nodesLN
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representing genes. A data analysis function is used to partition the leaf-nodesLN into sev-
eral groups (e. g. up- or down-regulated gene nodes). In order to get an overview about the
classification-specific group assignment withinCN , the frequencies of the group-assignments
for LN are determined and a corresponding data set is constructed for every non-leafCN
hierarchy node. This data set is visualized by node-embedded bar- or pie-charts. The most in-
terestingCN nodes are nodes which show an uncommon pattern in the frequency of assigned
groups. The significance of an observed frequency distribution in comparison to the overall
proportions can be analyzed using Fisher’s exact test. The result of this statistical test is a prob-
ability valuep. If p lies under a user-defined threshold (e. g.p ≤ 0.05), the observed frequency
distribution is regarded as non-random and therefore as significant. The visualization may then
be simplified by removing all nodes from the hierarchy from which there is no significant node
reachable, see Figure 2 (top).

VANTED also supports the visualization of several values connected to a single network ele-
ment. While other systems often support only a simple colour code for the representation of a
single measured value or the ratio of two values, the integration of diagrams into the network
representation enables the visualization of more complex structured data sets. Another advan-
tage in using line- or bar-charts is that such kinds of diagrams are widely used in other areas
and thus are easy to understand.

3 Application example

Certain human cell lines are used to investigate the development of cancer. For this application
example gene expression data of a human cell line, affected by a specific type of carcinoma
(human choriocarcinoma BeWo), is compared to a control line (human placenta). The data
sets were downloaded from the KEGG EXPRESSION database [3]. In order to get a general
overview about the differences of the lines, the gene expression data can be assigned with the
VANTED system to the KEGG pathway hierarchy (using information from the KEGG BRITE
system). In the present data set no additional annotation files need to be considered in order to
generate a corresponding pathway hierarchy, because the data sets from the KEGG EXPRES-
SION database already use gene IDs, used also inside the KEGG pathway diagrams. For data
sets from a different source additional annotation files may be needed.

At first a data mapping is carried out which generates for each gene of the data set a new node.
After that, the automated workflow is started by using the menu command “Hierarchy/Analysis
Pipeline ”:

1. Depending on the gene expression values, the available network nodes are categorized as
down-, up- or not-regulated. A user-specified threshold is used during this procedure.

2. Gene-nodes are related to the KEGG Pathway hierarchy which is constructed as classifi-
cation tree. Each new node of the classification tree represents a pathway, a BRITE gene
function or a (pathway) category. In the present data set 695 out of 836 gene nodes could
be connected to at least one node of the classification hierarchy.

3. Histograms are calculated. For each classification node the number of reachable nodes,
belonging to a user-selected group as well as the number of remaining reachable gene-
nodes are determined. In this example, user selected nodes are unregulated nodes.

Journal of Integrative Bioinformatics, 7(2):112, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-112 4

C
op

yr
ig

ht
 2

01
0 

T
he

 A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/


4. In step two of the pipeline 695 genes were assigned to 190 different pathways. Most of
the pathways show a similar relative proportion of not-regulated to up- or down-regulated
genes. With the help of Fisher’s exact test those pathways can be identified, which show a
non-random divergence to this pattern. By usingp ≤ 0.05, 18 pathway nodes and KEGG
BRITE category nodes remain in the visualization and can be easily investigated in more
detail.

5. The layout of the result network takes place.

The result of the pipeline is shown in Figure 2 (top). The remaining pathway nodes contain
in comparison to the complete data set either a comparatively high or low number of regulated
genes. From the classification hierarchy KEGG pathways can be loaded and be investigated
in detail. Figure 2 (bottom) shows the ECM-Receptor Interaction pathway which contains a
comparatively large number of down-regulated genes and two up-regulated genes. The corre-
sponding distribution of the genes within the pathways can be easily recognized.

4 Summary

VANTED is implemented as an open source Java Web Start application and therefore can be
used on most computer platforms such as Linux, Windows and Mac OS X. The combination of
functions for the network-integrated visualization and analysis of experiment data of different
-omics areas, including the integration into KEGG pathways and Gene Ontology, as well as the
flexible visualization of time series data, different conditions and replicates, make VANTED a
valuable tool for research projects in biology, medicine and bioinformatics.
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Figure 2: Top: KEGG BRITE pathway hierarchy (by means of Fisher’s exact test as significant
recognized pathways). Note that only classification nodesCN are shown. Bottom: ECM-Receptor
Interaction pathway with detailed representation of up- (red) and down-regulated (blue) genes.
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