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Significance

 Alan Turing’s activator–inhibitor 
mechanism provides a general 
theory to understand spatial 
pattern formation in ecosystems. 
Consumer–resource interactions, 
which qualitatively correspond to 
Turing’s theory, have been 
hypothesized to drive some 
observed spatial patterns but 
empirical evidence has been 
scant. Here, we develop a 
framework to study consumer–
resource spatial patterns by 
highlighting how demographic 
spatial patterns in clustered 
resources can influence trends in 
their population dynamics in 
space through time. By 
combining analysis of field data 
with modeling, we apply our 
approach to an arboreal ant and 
its parasitoid on a coffee farm in 
Mexico and find support for the 
consumer–resource interaction 
driving the observed spatial 
patterns of the ant.
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In ecology, Alan Turing’s proposed activation–inhibition mechanism has been abstracted 
as corresponding to several ecological interaction types to explain pattern formation in 
ecosystems. Consumer–resource interactions have strong theoretical arguments linking 
them to both the Turing mechanism and pattern formation, but there is little empirical 
support to demonstrate these claims. Here, we connect several lines of evidence to sup-
port the proposition that consumer–resource interactions can create empirically observed 
spatial patterns through a mechanism similar to Turing’s theory. We propose the exist-
ence of a fine- scale demographic spatial pattern (DSP), in which the youngest resources 
are located at the periphery and oldest in the center of clusters. We find evidence of a 
DSP in the spatially clustered distribution of arboreal ant nests, whose large- scale spatial 
patterning has previously been hypothesized to be driven by ant parasitoids. Through a 
combination of field surveys and analysis of demographic trends, we demonstrate how 
the DSP structures the interactions between the ant and its parasitoid. To explore the 
implications of DSP for consumer–resource pattern forming systems generally, we use 
a spatially explicit consumer–resource model to show how relative diffusion rates of the 
system shape multiscale spatial patterns that structure the demographic trends of the 
resource population in predictable ways. This work provides both empirical support for 
consumer–resource spatial patterns as well as a multiscale approach to understand their 
spatially explicit population dynamics.

pattern formation | self- organization | consumer- resource interactions | population dynamics |  
agroecology

 The Turing activator–inhibitor mechanism provides a qualitative understanding of 
self-organization of spatial patterns ( 1 ), as applied to many areas of science from chemistry 
( 2 ), to cosmology ( 3 ), and in biology, from the cell to the ecosystem ( 4 ,  5 ). In ecology, 
consumer–resource interactions provide a useful analogy to Turing’s conceptualization, 
with resources being activators, consumers inhibitors and both diffusing through space. 
As ecologists first began to explore spatially explicit consumer–resources models, it became 
clear that a variety of patterns, from traveling waves, stationary lattices, chaos, and clustered 
distributions, are a ubiquitous property of their spatial extension ( 6         – 11 ). This theoretical 
inevitability of spatial patterns emerging from such systems resulted in the suggestion that 
consumer–resource motifs may be responsible for observed large-scale spatial patterns in 
ecosystems ( 12 ). Although evidence for Turing-like mechanisms has been found in several 
empirical systems, it has rarely been attributed to consumer–resource interactions, but 
rather has often been abstracted to function in single-species scenarios in the form of 
scale-dependent feedbacks ( 4 ,  13 ,  14 ).

 While there are practical difficulties in obtaining adequate spatiotemporal data to under-
stand the dynamics of pattern formation in ecosystems, we suggest that the paucity of 
empirical support for consumer–resource generated spatial patterns stems in part from a 
lack of clear hypotheses regarding their population dynamics at multiple spatial scales. 
While much attention has been paid to large-scale descriptions of spatial pattern ( 15   – 17 ), 
we propose that fine-scale patterns in the constitutive elements of the larger-scale spatial 
pattern may be informative in understanding the mechanisms driving pattern formation. 
A common spatial pattern that emerges in both nature and a plethora of ecological models, 
including consumer–resource models, is the clustered distribution of organisms ( 17 ,  18 ), 
which are often quantified by cluster size frequency distributions ( 16   – 18 ). Although stud-
ying ecological spatial patterns at larger scales has been fruitful in understanding the dynam-
ics of self-organized spatial pattern formation, we propose to couple this large-scale approach 
with an interrogation of the fine-scale pattern embedded within these large-scale patterns. D
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With clustered spatial patterns, this means zooming-in to the scale 
of individual clusters to understand how processes taking place 
locally (i.e., at the level of the cluster) feed up to create (or at least 
influence) the landscape-level pattern. Furthermore, a focus on the 
demographic dynamics of the clusters themselves enables interro-
gation of the underlying mechanisms of activation and inhibition 
in the system at a local scale where interactions take place.

 The dynamics of resource demography at the level of the cluster 
is presumed to be related to the mechanism of the spatial pattern 
formation at the larger scale. A resource population diffusing spa-
tially (e.g., dispersing locally) suggests the existence of a demo-
graphic spatial pattern (henceforth referred to as DSP) where the 
oldest resources occur in the center of a cluster and the youngest 
on the edge. This type of demographic structure in clustered pop-
ulations is likely a common phenomenon in sessile organisms that 
can be used to study spatially explicit population dynamics. In 
the context of consumer–resource interactions, the existence of 
DSP in the resource populations suggests several testable hypoth-
eses: 1) While consumers randomly diffuse through space between 
clusters, they will first encounter the periphery of clusters where 
the youngest resources will be located, a basic feature of the DSP. 
We thus expect the highest pressure from consumers to be found 
on these younger resources due to their vulnerable position at the 
edge of clusters and the random consumer diffusion across the 
landscape, 2) consumers encountering younger resources will 
result in higher age-specific death rates for younger resources, and 
3) the impact of consumers on the younger resources should 
depend on the relative diffusion rates of both the resource and 
consumer populations, as the diffusion rates will structure the 
prominence of the DSP in resource clusters.

 To test for the hypothesized fine-scale demographic structure 
(DSP) and its implications on population dynamics, we leverage 
the well-studied consumer–resource system of a tree-nesting ant 
 Azteca sericeasur , and its parasitoid, the Phoridae  fly Pseudacteon  
spp. This empirical system’s dynamics contain the two features that 
correspond to the classic activator and inhibitor elements of Turing’s 
basic equations. First, the activation of resources occurs through 
the budding of ant colonies—queens move with a group of workers 
to a neighboring tree, effectively a low “diffusion” rate. The second 
element, inhibition, occurs via the parasitic fly-consuming ants and 
subsequently causing local extinction of ant nests. In the spirit of 
Turing’s mechanism, the budding of ant nests are the activators, 

which have a relatively low diffusion rate (mainly from tree to 
nearby tree), while the parasitoids are the inhibitors, which have a 
higher diffusion rate (thought to be mainly through wind dispersal). 
This differential diffusion, in conjunction with the antagonistic 
interaction between the two organisms, qualitatively corresponds 
to the appropriate conditions for diffusive instability and the con-
sequent pattern formation ( 19 ,  20 ).

 The data used to explore the hypothesized DSP and its impli-
cations come from a 45-ha plot that was surveyed annually for 
the presence of Azteca  ant nests from 2004 to 2016, providing an 
extensive spatially explicit time series for 13 y of resource (ant 
nests) distribution ( Fig. 1 ). We use this empirical dataset to 
demonstrate our framework for detecting the DSP in the ant 
population and to quantify trends in its demography through 
time. We couple this analysis with field surveys to confirm varia-
tion in the consumer–resource interaction strength across the 
demography of the ant nests. We then present a consumer–
resource model and compare theoretical expectations with our 
empirical system to understand how the feedbacks between spatial 
pattern and consumer–resource interactions structure observed 
dynamics of the system. We find strong congruence between our 
data and modeling approach, suggesting that Turing’s basic insight 
may serve as a general framework for capturing essential features 
of consumer–resource pattern-forming systems.         

Results

Uncovering the DSP and Its Impact on Empirical Consumer–
Resource Dynamics. To quantify the DSP of the Azteca ant nests 
in this system, we implement the statistical procedure outlined in 
Fig. 2. In short, we consider nests belonging to different age classes 
and quantify how the relationships between focal nests and the 
ages of surrounding nests within the spatial neighborhood change 
systematically across focal nest ages. For each focal nest age class, 
we performed a linear regression of the ages of neighboring nests 
as a function of distance to the focal nests (from the focal nests to 
the maximum of r) (Fig. 2A). The regression coefficient of the ith 
age class (bi) is calculated for each of the different nest age classes 
(Fig. 2B). Given the existence of the DSP in clusters with oldest nests 
in the center and youngest on the edges, the qualitative prediction 
is that if we move away from older nests in any direction, the age 
of neighboring nests will decrease resulting in negative regression 
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Fig. 1.   Map of A. sericeasur ant nests on a 45- ha plot in a shaded organic coffee farm in Chiapas Mexico in 2016. (A) Shows the spatial distribution of the ant 
nests. (B) Shows the relative ages of nests derived from 13 y of surveys. The oldest nests in dark violet and youngest nests in yellow, and small gray symbols 
are shade trees that have no Azteca nests.D
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coefficients (bi). However, as we move away similarly from younger 
nests, we expect the ages of neighboring nests to generally increase, 
resulting in positive regression coefficients (bi). For intermediate 
age nests, we expect approximately no relationship (Fig. 2B). From 
this, it follows that we expect a systematic trend in these regression 
coefficients (bi), transitioning from negative for old nests to positive 
for young nests, resulting in a negative relationship between the 
focal age of nests and their corresponding regression coefficients 
(bi) (Fig. 2C). This negative relationship between nest age classes 
and their regression coefficients (bi), which describe nest ages of 
their neighborhood in space, can be used as a metric of the DSP in 
resource clusters. Here, we take the existence of such a pattern in 
nest ages and regression coefficients as evidence of a DSP. Additional 
details regarding the procedure of quantifying the DSP can be found 
in SI Appendix, S1.

 By implementing the procedure illustrated in  Fig. 2  to detect the 
DSP across a range of spatial scales (r ), we find support for a signa-
ture of the DSP in the ant nest spatial distribution. From the metric 
of the DSP ( Fig. 2C  ), we see that slopes, R2 , and P -values, support 
the existence of the DSP across spatial scales ranging from 13 m to 
23 m on our plot ( Fig. 3 ). By performing the test as outlined in 
 Fig. 2  on the randomized data that shuffles the nest ages but main-
tains the spatial relationships between nesting sites (SI Appendix, 
S1 ), we can produce a null statistical expectation for our DSP metric 
(data in red in  Fig. 3 ) and calculate the probability of observing our 
empirical metrics (the stars at the top of the plots show where the 
empirical measures fall outside of at least 99% of the randomized 
data). There are distinct scales at which we find support for DSP 

when comparing empirical patterns to the randomization of nest 
ages (the two groups of stars in  Fig. 3 ), suggesting that signatures 
of DSP in the ant nest clusters tend to be spatial scale specific. 
Together, these significant measures of the DSP suggest that the ant 
nests leave a historical trail of their diffusion, where older resources 
are in the center and expand out radially, forming the DSP.          

Demographics of Resource Clusters Influence Consumer 
Dynamics. The second component of the Turing mechanism in 
pattern formation is the inhibitor, which in our empirical system 
is represented by a Phoridae parasitoid fly of the Azteca ants. Given 
the DSP in the ant nest clusters as detected above, we expect to see 
parasitoids exerting higher pressure on the periphery of clusters 
(i.e., youngest Azteca nests) due to their random diffusion via wind 
dispersal which results in longer distance diffusion relative to the 
ants. We surveyed the parasitoid flies by disturbing Azteca nests 
of different ages and measuring 1) the time until the appearance 
of the first parasitoid, 2) the number of parasitoids that arrived 
during a 5- min interval, and 3) the duration of the parasitoid’s 
attack. As nest age increases, the time until the first parasitoid 
appearance increases (Fig. 4A), the number of parasitoids decreases 
(Fig.  4B), and the duration of the parasitoid attack decreases 
(Fig. 4C). Thus, via three different measures of consumer pressure, 
our field surveys suggest that consumers concentrate on younger 
resources. Within our theoretical framework, we interpret this 
result as emerging from the joint combination of the DSP in 
the ant population and the random long- distance diffusion of 
parasitoids through space.

A B C

D

Fig. 2.   Illustrating the quantification of the DSP. (A) Clustered nest age distribution in space with older nests (darker blue) in the center and younger nests 
(yellow) on the periphery of the cluster. (B) Relationship between nest age class and distance from focal nest for old and young nests. (C) Linear regression 
coefficient (bi) as a function of the age of the focal nest. The coefficient from the regression in (C) is used to quantify the spatial demographic pattern of the 
nests (resources) in space. We refer to this regression as a metric of the DSP. (D) illustrates how the same test was conducted across a range of spatial scales 
(r) to detect the spatial scale of DSP in our system.
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 In addition to allowing us to understand the spatial dynamics 
of the parasitoids with respect to the ants in our system, our field 
surveys allow us to explore some of their basic population dynam-
ics. The details of consumer dynamics in the context of ecological 
interpretations of the Turing mechanism were explored by Alonso 
et al. ( 10 ), who showed theoretically that mutual interference or 
self-inhibition plays a critical role in the onset of pattern formation 
in consumer–resource systems. We searched for a signature of 
negative-density dependence in the relationship between increas-
ing parasitoid numbers and the number of attacks at an ant nest. 
We show in   SI Appendix, S7  that our data provide some support 
for a signal, albeit weak, of density dependence in the per-capita 
attack rates of the parasitoids  

Joint Impact of DSP and Consumer Dynamics on Demographic 
Trends of the Resource. It follows that the patterns of parasitoid 
attack across different ages of Azteca nests should influence the 
demographic trends in the Azteca population in our plot, where 
younger nests that experience higher pressure from parasitoids 
should have higher death rates. Analysis of these trends finds that 
the age- specific death rates of the Azteca ants show a clear signal of 
decreasing death rates as the nest age increases (Fig. 5), consistent 
with the expectation from the DSP in the Azteca population 
(Fig. 3) and the age- specific trends in parasitoid attack (Fig. 4). 
However, there is also a deviation from that trend starting at 

6- y- old nests, where age- specific death rates begin to increase. The 
data suggest that the youngest nests on the periphery of clusters 
buffer older nests in the center of the cluster up until a point where 
the trend reverses, and there is a greater likelihood of older nests 
dying. This change in mortality dynamics for older nests is likely a 
result of density- dependent dynamics of parasitoids on clusters at 
the landscape scale. A pattern previously seen from field surveys is 
that larger clusters of ant nests are associated with higher pressure 
from parasitoids (18, 21), thus making it more likely for larger 
clusters of ant nests to attract parasitoids. Analysis in SI Appendix, 
S5 shows that older nests tend to be associated with larger clusters, 
supporting this explanation of two distinct regimes in death rates 
across the Azteca nest ages.

 The above results taken together are consistent with the hypoth-
esized underlying mechanisms of the system, where the diffusion 
process of the Azteca  ants results in the DSP of their nests, wherein 
youngest nests are on the periphery and oldest in the center, which 
in turn structures the dynamics of the parasitoids with respect to 
the ages of nests encountered and attacked ( Fig. 4 ). This differential 
pressure from the parasitoids then translates to the patterns of 
age-specific death rates of the Azteca  nests ( Fig. 5 ). All of these 
patterns are consistent with our theoretical framework, where dif-
ferential diffusion of ants and parasitoids generate multiscale spa-
tial patterns that influence their population dynamics. While there 
are a variety of potential mechanisms that might create patterns of 
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Fig. 3.   DSP of arboreal ant nests as a function spatial scale (m). The panels show the results from the regression in Fig. 2C. Black points represent the empirical data, 
and the red points show the results of 500 randomizations of nest ages while maintaining the actual nest spatial distribution with error bars showing the SD. The 
test was performed across various scales ranging from 10 to 50 m to estimate the scale of the DSP. (A) Shows the slope estimate from the DSP test, (B) the R2 and 
(C) the corresponding p- value (dotted red line at 0.05). The stars at the top of each plot show where the empirical data falls outside of 99% of the randomizations.
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Fig. 4.   Three lines of evidence that suggest parasitism is less intense for old nests (which are generally located at the center of clusters) than young nests 
(which are generally at the edges of clusters). (A) Shows the time until arrival, where parasitoids arrive sooner at younger nests than at older nests. (B) Shows 
the presence of more parasitoids at younger nests than older nests. (C) Shows a decrease in parasitoids attack as nests get older. Note that data points are 
randomly jittered on the x-axis to show overlapping data.D
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decreasing age-specific death rates, we argue that our basic frame-
work, inspired by Turing, provides a set of minimal assumptions, 
capable of capturing essential features of the system. The connec-
tion between demographic trends and the diffusion parameters in 
our Turing-like system provides a framework to empirically inter-
rogate the diffusion rates of the consumer–resource system and 
allows us to explore the utility of our framework here.  

Relative Diffusion Rates and Multiscale Pattern formation. 
Turing’s insight into the dynamics of pattern formation highlighted 
the importance of relative diffusion rates in pattern formation, 
and here, we show how diffusion dynamics of both consumer 
(inhibitors) and resource (activators) structure multiscale spatial 
patterns both at the landscape and at the cluster scale with the 
degree to which the DSP will be apparent in resource clusters. 
Intuitively, if consumers are dispersal limited and are diffusing 
relatively slowly compared to resources, then we would expect a 
highly pronounced DSP in the resource clusters due to the ability 
to spread locally uninhibited from consumer pressure. On the other 
hand, we expect that rapidly diffusing consumers would result 
in a less apparent DSP in resource clusters due to the consumers 
arriving at and annihilating the resources before they can create a 
large cluster with a prominent DSP. Thus, the presence of DSP in 
resource clusters will be a function of the relative diffusion rates of 
the consumer–resource system. This also means that the DSP may 
serve as a tool to approximate the underlying diffusive parameters 
of the consumer–resource system due to its role in structuring 
trends in age- specific death rates of resources (Fig. 5).

 To understand the degree to which our intuition regarding the 
demographics of pattern-forming consumer–resource systems is 
informative, we use a spatially explicit consumer–resource model. 
We deliberately keep this model free of system-specific assump-
tions, as we suggest that a minimal set of assumptions regarding 
spatially explicit consumer–resource interactions shape the 
dynamics that emerge from our empirical system. We employ a 
stochastic individual-based framework that allows us to track 
demographic trends of resources and focus on the diffusion param-
eters of the consumers and resources, which we suggest are the 
driving force behind the spatial patterning and demographic 

trends of the empirical ant-parasitoid system. See the methods 
section and   SI Appendix, S2  for details of the model and simula-
tion approach.

 Our consumer–resource model is able to recreate the previously 
reported self-organized clustered spatial patterning observed in 
other models inspired by the same system ( 18 ,  22 ). Consistent 
with our intuition,  Fig. 6  shows that relatively low consumer dif-
fusion allows for larger clusters to form in the landscape, which 
subsequently have a clear DSP within them. This pronounced 
spatial patterning of resource ages in clusters almost entirely dis-
appears for higher values of consumer diffusion. Importantly, it 
is not only the cluster scale demographic patterns that change with 
consumer diffusion but also the landscape-scale spatial patterning 
of the system as well.        

 A measure of clustered landscape-scale spatial pattern is often 
quantified by fitting the frequency distribution of cluster sizes to 
a power law ( 17 ,  18 ,  22 ,  23 ). Across a range of consumer diffusion 
in our model, there is a systematic variation in the parameter of 
the power law ( Fig. 7 ). First, as noted previously, the biggest clus-
ters are larger with low consumer diffusion, something that is 
apparent on the x -axis of logged cluster size in  Fig. 7 . Additionally, 
the frequency of the smallest clusters changes across consumer 
diffusion rates, where we find relatively fewer small clusters at low 
consumer diffusion and relatively higher frequency of small clusters 
at high consumer diffusion. Both of these aspects of the frequency 
distribution of cluster sizes go on to influence the parameter of 
the power-law and allow us to use it as a metric for the landscape 
scale spatial pattern to compare to our empirical system.        

 Using the landscape scale spatial pattern of our empirical sys-
tem, we can compare the observed frequency distribution of clus-
ter sizes in our data with the predictions from our model. The 
frequency distributions of cluster sizes for the empirical (in black) 
and model (various colors showing replicate runs for a given 
parameter combination) are shown in  Fig. 7  and suggest that, 
although there is variability between model runs, the higher con-
sumer diffusion rates tend to better approximate the observed 
data. To quantify the concordance between our model and data, 
we first need to quantify the empirical frequency distributions 
across a range of spatial scales. One challenge of quantifying 
empirical cluster size frequency distributions is that the data are 
continuous in space (unlike a model bound by a lattice), which 
forces a decision to be made regarding the appropriate scale in 
which a threshold between neighboring and nonneighboring sites 
should be assigned. Instead of selecting an arbitrary range of spatial 
scales, we focused on scales in which DSP was detected in our 
data ( Figs. 2  and  3 ). This range of spatial scales offers a biologically 
informed definition of the scale of pattern formation in the system. 
See   SI Appendix, S3  for details on the quantification of the empir-
ical and simulation spatial patterns, as well as their comparison.

 The range of spatial scales in which demographic structure in 
clusters is empirically observed is 13 m to 23 m, and the corre-
sponding parameters of the cluster size frequency distribution range 
from approximately −1.6 to −1.0 ( Fig. 8 ). Using hierarchical linear 
regressions, we can approximate the spatial pattern parameters from 
our model for the range of consumer diffusion rates. In the model, 
we find that when the diffusion rates of the consumers are 2.25 to 
2.75 times that of the resources, the corresponding landscape-scale 
spatial pattern approximates our empirical system ( Fig. 8 ).        

 As previously highlighted, relative diffusion rates of the con-
sumer and resource not only impact the landscape-scale spatial 
patterning of the system but also the fine-scale demographic struc-
ture in the resource clusters as shown in the top row of  Fig. 6 . The 
varying strength of this DSP in the resource clusters across con-
sumer diffusion rates suggests that the extent to which the DSP 
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Fig. 5.   Shows the average age- specific mortality for the empirical ant nest 
data plotted on a log–log plot. The green section shows the contribution of the 
DSP in the resource clusters to the age specific mortality of nests aged 1 to 5 
y. The red section shows the deviation from this pattern that represents the 
density- dependent attack of clusters, due to older nests belonging to larger 
clusters. The error bars show the SE of the age- specific death rates, and the 
dashed line signifies a lack of variability due to a single time point in calculating 
the age- specific death rate for the oldest category of ant nests.
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structures age-specific death rates of resources (as in  Fig. 5 ) should 
vary as well. The age-specific death rates that emerge from the 
model simulations are qualitatively similar to our empirical data. 

To estimate the contribution of the DSP in resource clusters to 
trends in age-specific death rates, we take the same approach of 
fitting the steeply decreasing portion of the age-specific death rate 

consumer diffusion: 0.5 consumer diffusion: 1.5 consumer diffusion: 2.5

0 2 4 6 8

0

1

2

3

4

5

ln
(fr

eq
ue

nc
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ln(cluster size)
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Fig. 6.   Snap- shots from the individual- based model of consumer–resource interactions after 1,000 iterations. Each column corresponds to a different amount 
of consumer diffusion (average movement distance) while the diffusion of the resource is held constant at 1.0. The resources range in color from blue to yellow, 
where yellow cells represent young resources and blue old resources. The black circles on the top row represent the consumers in the model. Note that the DSP 
emerges most clearly in resource clusters for lower consumer diffusion, where old resources are at the center and young resources on the periphery (older = more 
blue and younger = more yellow). It is also clear that the consumer movement between clusters of resources will result in young resources being encountered 
first on the edges. The bottom row shows 10 replicates of the frequency distributions of cluster sizes that correspond to the parameters of consumer diffusion 
above. Visual inspection of the frequency distributions clearly shows the formation of larger clusters and few small clusters with low consumer diffusion, and 
this shifts to a smaller size of the largest clusters and many more small clusters under high consumer diffusion.

Fig. 7.   Quantification of the landscape- scale spatial pattern with cluster size frequency distributions for empirical data and model. The different panels represent 
a range of consumer diffusion rates in the model from 0.5 to 2.75, while the resource diffusion is held at 1.0. The black points, which are the same in each panel, 
show the empirical cluster size frequency distribution with a neighborhood scale of 20 m (see below for scale justification). The multicolored points in each panel 
show the frequency distribution of the spatial patterns of a given consumer diffusion parameter for 10 replicate simulations. Note that there is variability within 
a parameter value due to the stochastic nature of the simulations but systematic changes in the distribution across a range of parameter values.D
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curve ( Fig. 9A  ). Comparing the parameter estimates from these 
linear regressions across a range of consumer diffusion values, we 
see that our empirical estimate is approximated by a consumer 
diffusion rate 2.5 to 2.75 times that of the resource diffusion 
( Fig. 9B  ). In   SI Appendix, S4 , we outline our method of approx-
imating this decreasing portion of the age-specific death rate curve 
in our model data. We also explored a range of thresholds and 
showed that across the reasonable range of approximations for the 
decreasing portion of the curve; our results tell a similar story.        

 By confronting a spatially explicit consumer–resource model 
with our empirical data on the arboreal nesting ants in a coffee 

farm, we are able to recover consistent approximations of the 
relative diffusion rates in the system from different methods at 
both landscape and cluster scales. Both the cluster size frequency 
distribution across the landscape and age-specific death rates, as 
structured by the DSP in resource clusters, suggest that the para-
sitoids (consumers; inhibitors) diffuse about 2.5 times as quickly 
as the ants (resources; activators).   

Discussion

 While there are likely multiple interacting mechanisms that generate 
self-organized spatial patterns in ecosystems, from scale-dependent 
feedbacks in mussel beds ( 24 ) to intraspecific territoriality in ter-
mites ( 14 ), there is comparatively little empirical understanding of 
the role of interspecific mechanisms such as consumer–resource 
interactions. Here, we are able to show that signatures of the pattern-
generating mechanism are left behind by both the spatial distribu-
tion of resource population as well as trends in their demography. 
Furthermore, information regarding the differential diffusion rates 
of the consumer and resource, a key insight from Turing’s works on 
pattern formation, can be approximated through spatial patterns 
and demographic trends of the resource population. It seems highly 
plausible that qualitatively similar multiscale spatial patterns in 
populations should be operative elsewhere in nature and interrogat-
able with a similar approach to the one we present here.

 The multiscale demographic lens we use in this study to under-
stand consumer–resource systems can potentially serve as a template 
for further understanding the details of the many hypothesized 
pattern-generating mechanisms in ecology ( 14 ,  25     – 28 ). Our pro-
posed method of studying the fine-scale patterning in clusters, the 
DSP, is not restricted to consumer–resource systems. Rather, we 
expect such demographic patterns to be present to some degree in 
locally diffusing clustered populations generally. In pattern-forming 
systems where the dynamics of clusters are the focus of investigation 
(e.g., refs.  23 ,  28 , and  29 ), the dynamics of DSP may inform the 
underlying parameters driving pattern formation. Although the 
expected relationship between demographic trends and the param-
eters of pattern formation will be mechanism-specific, DSP offers 
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Fig. 8.   Comparison of empirical and model landscape spatial pattern. Using 
the parameters of the power- law fit to the cluster size frequency distribution 
(i.e., spatial pattern parameter on the y- axis), we quantify the landscape scale 
spatial pattern of our observed data and the model. The black points show the 
empirical data with the corresponding error from the linear regression. The 
horizontal- colored lines show the parameter estimates from our simulation 
model which come from hierarchical (mixed effect) linear models that estimate 
the cluster size frequency distribution fit to a power- law for a given consumer 
diffusion parameter. The horizontal- colored solid lines show the parameter 
estimates and the dashed lines show the corresponding error from the 
statistical model. The vertical red dashed lines represent the range of spatial 
scales in which DSP was detected in the ages of clusters in ant nests. We used 
the minimum and maximum of R- squared values that fall outside 99% of the 
randomized simulations (Fig. 3)

Fig. 9.   Age- specific death rates of resources as structured by the DSP of resource clusters. (A) Shows a plot of the age- specific death rates for model simulations 
across a range of consumer diffusion rates. The colors of points correspond to consumer diffusion which is noted in the legend on B and the dashed line shows 
the threshold for which we ascribe the trend in death rates to be due to the DSP in resource clusters. Note that a similar plot for the empirical data is seen in 
Fig. 5. (B) Shows the parameter estimates from panel (A) across the consumer diffusion rates. The horizontal red line shows empirical parameter estimate (the 
slope of the line on Fig. 5) and the associated error with the dashed lines.D
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a novel unit of measurement that may help make connections 
between theoretical approaches and empirical systems. Quantifying 
various ecologically relevant quantities that emerge from spatial 
pattern-forming models to compare to empirical data is particularly 
important, given that multiple mechanisms can generate qualita-
tively similar large-scale spatial patterns (see ref.  29 ). Attempts to 
more robustly link mechanisms to patterns will likely require mov-
ing beyond single-scale model-data comparison in addition to 
experimental approaches.

 Although we have shown that demographic trends, which we 
measure with a DSP, as well as metrics of landscape-scale spatial 
pattern, both approximate similar values of relative diffusion rates 
of the ant-parasitoid system, the approximations emerge from 
measurements interpreted through our conceptual and modeling 
frameworks. An important next step would be to directly verify 
the approximations of the underlying parameters of ant and par-
asitoid diffusion in the natural system. Apart from detailed work 
on the natural history of the system across large spatiotemporal 
scales, it may be possible to directly approximate diffusion rates 
with a spatially explicit population genetic study of the ants and 
parasitoids. Bradburd and Ralph ( 30 ), for example, note that a 
spatial pedigree might be used to quantify ecological parameters 
such as dispersal. Similar approaches to spatially explicit popula-
tion genetics studies offer potentially promising ways to more 
directly quantify diffusion rates of pattern-forming systems when 
not easily obtainable by other methods ( 31 ,  32 ). Although popu-
lation genetics approaches in service of furthering our understand-
ing of self-organized pattern formation are not widely employed 
(although there are exceptions, e.g., refs.  33  and  34 ), we suggest 
that useful insights into the underlying mechanisms may emerge 
with such approaches.

 While we suggest that Turing’s theory of pattern formation 
serves as a useful organizing metaphor to understand the system 
in this study, it is worth noting that the system does not meet the 
formal criteria of the Turing mechanism or diffusive instability in 
the strict sense of these terms. Our modeling framework, which 
is both individual-based and stochastic, prevents us from conduct-
ing traditional analysis of diffusive instability and does not seem 
to produce the classical fixed spots and stripes often associated 
with Turing’s partial differential equation model ( 10 ,  15 ,  28 ,  35 ). 
Although not “strictly Turing,” our approach highlights how 
Turing’s basic insights regarding the importance of activation/
inhibition and the relative diffusion rates in the system remain an 
essential component in self-organized spatial patterns even outside 
of the particular mathematical formulations often considered.

 Here, we have highlighted some of the basic expectations regarding 
the population dynamics of pattern-forming consumer–resources 
systems and attempted to show how they can be interrogated empir-
ically with a multiscale framework. While our study emphasizes the 
consumer–resource mechanism as a driver of pattern formation, it 
is important to acknowledge that multiple mechanisms likely interact 
and contribute to realized spatial patterns in our system. For example, 
prior analysis of the spatial dynamics of Azteca  suggests that exoge-
nous factors (i.e., tree density) likely contribute modestly to pattern 
formation ( 36 ). Furthermore, a number of endogenous factors have 
been proposed to drive the observed patterns of density dependence 
in Azteca’s  spatial dynamics. Several of these mechanisms are thought 
to operate through a mutualistic association between Azteca  and the 
scale insect, Coccus viridis , where Azteca  increases the population of 
scale insects locally until natural enemies of the scale arrive to deci-
mate the scale population, which results in the subsequent mortality 
of Azteca  nests due to loss of a vital resource ( 37 ). A predatory 
Coccinellidae beetle, Azya orbigera , and an entomopathogenic 

fungus, Lecanicillium lecanii , have both been proposed as influencing 
the spatial pattern formation of Azteca  through their interactions 
with the scale insects ( 37   – 39 ). While we highlight the role of the 
 Phoridae-Azteca  consumer–resource interaction as the primary mech-
anism of pattern formation in our system, this interaction only occurs 
within the context of a complex ecological network, which undoubt-
edly contributes to the dynamics of pattern formation ( 37 ,  40 ). 
Understanding the relative contributions of multiple interacting 
mechanisms of pattern formation, both endogenous and exogenous, 
remains an important and open challenge for our system as well as 
others like it ( 14 ).

 It is likely that most ecological processes, including those that 
drive pattern formation, act at distinct and interacting spatial 
scales ( 41       – 45 ). Here, we have presented a multiscale approach to 
understanding pattern formation in consumer–resource systems 
empirically and attempted to illustrate how the original spirit of 
Turing’s insights into activator–inhibitor systems seen through a 
demographic lens can be applied to ecological systems. Through 
multiple lines of evidence, we show how the dynamics of fine-scale 
demographic spatial structure in clustered resource populations 
can lend insights into the processes that generate large-scale spatial 
patterns. We propose the existence of a DSP in resource popula-
tions and illustrate how it can structure the spatiotemporal pop-
ulation dynamics of consumer–resource systems. We also 
demonstrated how to approximate information on the diffusive 
dynamics of the consumer–resource system through a multiscale 
analysis of fine-scale and large-scale spatial patterns and demo-
graphic dynamics. By focusing on basic assumptions that stem 
from the spatially explicit population dynamics of consumer–
resource systems, we suggest progress can be made toward a general 
understanding of consumer–resource pattern-forming systems.  

Materials and Methods

Phoridae Parasitoid Dynamics Across Azteca Nest Demography. Azteca ant 
nests were haphazardly selected from the database to measure Phoridae dynam-
ics across a range of Azteca nest ages on the 45- ha plot on a coffee agroecosystem 
in southern Mexico. Once at the site of an Azteca nest, we slowly approached the 
tree containing the ant colony and attempted to identify where the majority of 
ant activity was prior to disturbing the nest. We subsequently killed 10 ants in 
an area of high activity by pressing them into the trunk of the tree. During the 
killing process, a stick or leaf was used to kill the ants and left at the sight as to not 
carry Azteca pheromones between sites. Once the first ant was killed, we started a 
stopwatch to time how long it takes for the first Phoridae parasitoid- fly to arrive 
to the local site of the disturbance. Once a Phoridae was spotted, we turned off 
one stopwatch and triggered another one to measure the duration of the attack. 
While the Phoridae were present at a site, we monitored the number that arrived, 
the number of successful attacks, and the duration of the total attack for up to 
5 min. If there were no successful attacks for 1 min, then we considered the attack 
from parasitoids to be finished.

To analyze the trends in the Phoridae dynamics across the ages of Azteca nests, 
we used Bayesian multilevel models implemented in the brms R package (46). 
The structure for our three separate models which modeled 1) the number of 
Phoridae, 2) the time to first arrival, and 3) the duration of the attack, were kept 
consistent. All response variables were log- transformed, and models included 
both Azteca nest age as well as the circumference of the tree in which the nest 
was occupying as fixed effects. The identity of the hectare that the nesting tree 
occupied was included as a random effect (on the y- intercept) in the models. 
Additional details on model structure and output can be found in SI Appendix, S6.

Long- Term Data Collection of Nest Locations (2004 to 2016). Each tree on 
a 45- ha plot in a coffee agroecosystem in southern Mexico has been surveyed 
to look for the presence of Azteca nests since 2004. Data from this survey are 
used here from 2004 through 2016, to pick sites for fieldwork and also to look 
for trends in Azteca nest demography.
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Analysis of Long- Term Data. To calculate the age- specific death rates of the 
nests, we calculated the change in number of nests from 1 y to another divided 
by the number of nests in that age class. Doing this each year, we have the age- 
specific death rates on an annual basis. It is important to note that while we call 
these death rates, they are, in essence, “disappearance” rates or extinction rates 
in Levin’s sense of the term. Since the survey consists of checking to see whether 
ants are occupying a given tree, we cannot say with certainty whether that nest 
died or moved from one tree to another. Furthermore, we cannot definitively 
attribute nest disappearance to the parasitoids in the system. Given the lack of 
information on the natural history of this species and the spatial- temporal scales 
of the data we use here, it is unclear how one might make the distinction between 
the two processes and their ultimate cause.

Model Description. The resource (which corresponds to ant nests in the empir-
ical system) dynamics occur on a 100x100 lattice with periodic boundary con-
ditions where each space represents a site which can contain a single resource 
population. The resources are bound to the cells inside of the lattice, and when a 
resource population has been established, we here refer to it as a resource- site. 
For each iteration, every established resource- site increases its resource- energy 
by 1 unit and increases its resource- age by 1 unit. Resource- sites can only diffuse 
locally to unoccupied sites in their Moore- neighborhood (the 8 cells surrounding 
a focal cell), effectively giving them a diffusion rate of 1 unit of space. This scale 
of local diffusion of resources is held constant for all of the simulations and has 
a fixed probability of, � , for each iteration of the model. If a resource- site suc-
cessfully establishes another resource- site in its local spatial neighborhood (via 
some fixed probability), then the “parent” resource- site divides its energy by � . 
The new resource- site starts with 1 unit of resource- energy.

The consumers (which correspond to the parasitoid Phoridae flies in our 
empirical system) are represented in the model as a distinct agent with energy 
values gained from the consumption of resources and lost during their lifetime. 
Consumers are randomly initialized on a given fraction, � , of resource- sites. The 
diffusion process of the consumers is distinct from that of the resources in the 
model. Instead of being bound by the cells in the lattice, the consumer diffusion 
is implemented continuously across the landscape with random walks. The facing 
angle of the consumers is randomly drawn from a uniform distribution, and then, 
a step length is drawn from a Gaussian distribution with mean, � , and a SD of 1.

When a consumer encounters a resource- site, it stops its diffusion through 
space and begins reducing the resource- energy of the resource linearly by 

� and converts it linearly into consumer- energy (i.e., by �) . If the resource- 
energy reaches zero, the resource- site goes extinct in that cell and the con-
sumer continues to diffuse across the landscape with a random walk. When 
a given consumer’s energy surpasses the threshold, � , it then produces a 
new consumer resulting in the parent consumer’s consumer- energy being 
divided by, Ω . The newly created consumer inherits the consumer- energy 
which was lost from the parent consumer. Finally, the consumers have a base-
line consumer- energy cost, � , that linearly decreases consumer- energy as 
they diffuse through space. If consumer- energy reaches or surpasses zero 
then the consumer dies.

Additional information on the model, including pseudocode and parameters 
for the simulations, can be found in SI Appendix, S2. The model was implemented 
in NetLogo 6.0 (47) and can be found as a “.nlogo” file in supporting material.

Data, Materials, and Software Availability. All data and code are publicly 
archived and open here: https://figshare.com/projects/The_population_dynam-
ics_of_clustered_consumer- resource_spatial_patterns_insights_from_the_demo-
graphics_of_a_Turing_mechanism/224382 (48, 49).
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