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Abstract

We consider the motion of an incompressible viscous fluid on a compact Riemannian manifold M with 
boundary. The motion on M is modeled by the incompressible Navier-Stokes equations, and the fluid is sub-
ject to pure or partial slip boundary conditions of Navier type on ∂M. We establish existence and uniqueness 
of strong as well as weak (variational) solutions for initial data in critical spaces. Moreover, we show that 
the set of equilibria consists of Killing vector fields on M that satisfy corresponding boundary conditions, 
and we prove that all equilibria are (locally) stable. In case M is two-dimensional we show that solutions 
with divergence free initial condition in L2(M; T M) exist globally and converge to an equilibrium exponen-
tially fast.
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1. Introduction

Suppose that M is a compact, smooth, connected and oriented n-dimensional Riemannian 
manifold with boundary � = ∂M. It follows that � is a compact, smooth, orientable (n − 1)-
dimensional manifold. � is then provided with outward orientation with respect to M. Let (·|·)g
denote the Riemann metric on M. In the sequel, we also use the notation (·|·)g for the induced Rie-
mann metric on �. We will study the motion of an incompressible viscous fluid on M, modeled 
by the surface Navier-Stokes equations with Navier boundary conditions which can be stated as 
follows ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

� (∂tu + ∇uu) − 2μsdivD(u) + gradπ = 0 on M,

divu = 0 on M,

αu +P�

(
(∇u + [∇u]T)ν�

)= 0 on �,

(u|ν�)g = 0 on �,

u(0) = u0 on M.

(1.1)

Here, the unknowns are the fluid velocity u and the fluid pressure π . � > 0 is the (constant) 
density, μs > 0 is the surface shear viscosity, ν� is the outward unit normal field of �, while 
P� is the orthogonal projection onto the tangent bundle of �, and the constant α ≥ 0 is a given 
friction parameter. In the following, we assume without loss of generality that � = 1.

Moreover, ∇uv denotes the covariant derivative induced by the Levi-Civita connection of M
for given tangent vectors u, v, and D(u) := 1

2 (∇u + [∇u]T)� denotes the deformation tensor (a 
definition of the operator � is provided in Appendix A), given in local coordinates by

D(u) = 1

2

(
gjkui

|k + giku
j
|k
) ∂

∂xi
⊗ ∂

∂xj
,

with ui
|k being covariant derivatives, that is,

ui
|k = ∂ku

i + 	i
kℓu

ℓ for u = ui ∂

∂xi
.

Here and throughout this article, we are using the Einstein summation convention, indicating that 
terms with repeated indices are added.

We note here that

Du := 1

2

(∇u + [∇u]T)
is a (1, 1)-tensor, while D(u) is a (2, 0)-tensor. In case divu = 0, it is well-known, see for instance 
[35, Lemma 2.1], that

2 divD(u) = �Mu + Ric�u, (1.2)
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where �M denotes the (negative) Bochner Laplacian (sometimes also called the connection 
Laplacian), and Ric� is the Ricci (1, 1)-tensor. In local coordinates, these operators are expressed 
by

�Mu = gij (∇i∇j − 	k
ij∇k)u, Ric�u = Ri

ju
j ∂

∂xi
:= gikRkju

j ∂

∂xi
, (1.3)

with ∇j = ∇ ∂

∂xj
being covariant derivatives, and where Ric = Rijdxi ⊗ dxj is the usual Ricci 

(0, 2)-tensor. More details are given in Appendix A.
(1.1)3 and (1.1)4 is termed the pure slip boundary condition in case α = 0, or partial slip

boundary condition in case α > 0.
In case M = Rn+ := Rn−1 × (0, ∞), the boundary conditions for u = (u1, . . . , un) on � =

Rn−1 result in

un = 0, (∂ju
n + ∂nu

j ) − αuj = 0, j = 1, . . . , n − 1,

which, taking into account the relation un = 0, further reduce to

un = 0, ∂nu
j − αuj = 0, j = 1, . . . , n − 1.

This implies uj (x′, xn) ≈ (1 + αxn)uj (x′, 0) for small xn > 0, showing the friction effect on �
for tangential velocity components in case α > 0.

The topic of fluids on surfaces and Riemannian manifolds has recently attracted attention by 
numerous authors, see for instance [6,19,23,25,27,30,33,35,37] and the references contained in 
these publications.

One application concerns the modeling of emulsion and biological membranes, see [38]. In 
addition, (1.1) may be considered as a model for the motion of a fluid on a planet’s surface that 
is covered by water and landmasses (while the effect of Coriolis forces is being ignored).

The main results in this manuscript establish existence, uniqueness, and qualitative properties 
of strong as well as weak (variational) solutions to (1.1). The expression ‘(variational) weak 
solutions’ is used here to distinguish our solutions from the class of Leray-Hopf weak solutions. 
Our approach is based on the method of Lp-Lq maximal regularity in time weighted spaces, see 
for instance [28].

In Sections 3 and 4, we demonstrate that the Stokes operator associated with (1.1) admits 
a bounded H∞-calculus with angle < π/2 (a property that implies maximal regularity) in 
Lq,σ (M; T M) as well as in H−1

q,σ (M; T M). This property opens up the way to obtain unique solu-
tions to (1.1) for initial data in critical spaces, as shown in Section 5, Theorem 5.1, Corollary 5.2, 
and Remark 5.3.

In Section 6, we show that the set of equilibria of (1.1) consists exactly of all Killing fields on 
M which satisfy the boundary conditions imposed on solutions, see Proposition 6.4. In particular, 
we show that in case of a positive friction coefficient α, equilibria correspond to the situation 
where the fluid is at rest.

One of the main results of this paper is contained in Theorem 6.6. It shows that in case 
dim M = 2, any solution with initial value u0 ∈ L2,σ (M; T M) exists globally and converges to 
an equilibrium at an exponential rate. Moreover, in case dimM > 2, we show in Theorem 6.7 and 
Corollary 6.9 that all equilibria are locally stable: solutions that start out close to an equilibrium 
exist globally and converge at an exponential rate to a (possibly different) equilibrium.
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We add three examples to illustrate the scope of our results for two-dimensional surfaces in 
R3. For α ≥ 0, let Eα denote the set of equilibria of (1.1).

Examples:

(a) Let M = S2+ = {x = (x1, x2, x3) ∈ S2 : x3 > 0} be the upper hemisphere in R3. Then

Eα =
{{0} in case α > 0,

{ωe3 × x : ω ∈R, x ∈ S2+} in case α = 0.

That is, in case of pure slip boundary conditions, the equilibria correspond to the situation 
where the fluid rotates with constant angular speed ω about the z-axis.
Theorem 6.6 says that in case α > 0, any solution with initial value u0 ∈ L2,σ (M; T M) exists 
globally and converges at an exponential rate to the equilibrium state u∞ = 0.
If α = 0, any solution with initial value u0 ∈ L2,σ (M; T M) exists globally and converges at an 
exponential rate to an equilibrium state u∞ = ωe3 × x, for some ω ∈R which is determined 
by Theorem 6.6.

(b) Analogous results hold in case M is a disk in R2 with center at the origin (embedded in R3).
(c) Let M = {x = (x1, x2, x3) ∈ R3 : x2

1 +x2
2 = 1, 0 < x3 < 1} be a cylinder of finite height. Then 

analogous results to Example (a) hold.

It is interesting to note that even in the simple Euclidean setting of Example (b), the results seem 
to be new, at least in the case where α = 0.

For surfaces, in case α > 0, the global convergence results are based on the fact that all Killing 
fields are trivial, see Proposition 6.2. In case α = 0, the results follow from the somewhat surpris-
ing observation that the evolution equation leaves the orthogonal space to Killing fields invariant, 
see Lemma 6.5 (a), and from Korn’s inequality, see Lemma B.3.

As another application of Theorem 6.7 we consider the three-dimensional manifold M con-
sisting of a solid ball in R3 with center at the origin. Theorem 6.7 and Corollary 6.9 then show 
that rotations about any axis through the origin are stable: solutions that start close to a rotation 
exist globally and converge to a (possibly different) rotation. We are not aware of a corresponding 
result in the literature.

In the Appendices A through D we collect and prove results concerning Riemannian mani-
folds (with boundary), Green’s formula, Korn’s inequality, solvability of elliptic problems and 
the existence of the Helmholtz projection, interpolation for mixed boundary conditions, sectorial 
operators and the H∞-calculus. These results are used throughout the manuscript and are also of 
independent interest.

In case M is an embedded hypersurface in Rn+1 without boundary, the motion of an incom-
pressible fluid has been considered in the literature by several authors. Here we refer to the article 
[6] for a survey and a comprehensive list of references. We also mention that the equations in 
(1.1)1 and (1.1)2 coincide with the system

{
∂tu +PM(u · ∇Mu) −PMdivM(2μsDM(u) − πPM) = 0 on M,

div u = 0 on M,
M
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considered in [30,37], see for instance [30, Remarks A.3]. In addition, we mention the publica-
tions [19,25,33,34] and the references contained therein for interesting numerical investigations 
for embedded surfaces in R3 without boundary.

For the case of a Riemannian manifold with boundary, we are aware of the publications 
[23,27]. The author in [27] considers Navier boundary conditions, and he examines the equa-
tions in a variational framework, mostly concentrating on the stationary linear case. In [23], the 
authors show that the Hodge-Laplacian subject to Neumann-type boundary conditions on a Lips-
chitz subdomain of a smooth, compact, boundaryless Riemannian manifold generates an analytic 
semigroup on Lq for q in some open interval containing (3/2, 3).

In case of a domain contained in Euclidean space, the Navier-Stokes equations with Navier 
boundary conditions have been considered by numerous authors, and we refer to [32] for a dis-
cussion.

The novelty of this manuscript lies in the fact that we consider the behavior of fluids on sur-
faces, or manifolds, with boundaries. This situation extends traditional fluid dynamics analysis, 
which typically focuses on the Euclidean space. By studying fluids on manifolds, we are address-
ing a more complex scenario that also has applications.

For instance, this is relevant when analyzing the motion of water on a planet that is covered 
by both oceans and continents. In such a context, the surface of the planet can be modeled as a 
manifold with boundaries, representing land and sea.

In this situation, the analysis becomes considerably more complex than in the Euclidean case. 
Unlike in flat space, one must account for the manifold’s geometric properties, which introduce 
additional mathematical challenges. Specifically, we need to handle geometric quantities such as 
the Ricci curvature, which incorporates how the manifold’s shape deviates from being flat. These 
geometric considerations play a role for describing the behavior of fluids on curved surfaces.

When dealing with an impermeable boundary �, the most widely employed boundary condi-
tion in the literature is the no-slip condition, expressed as

u = 0 on �. (1.4)

In contrast, the Navier boundary condition (1.1)3 and (1.1)4 permits tangential slip along the 
boundary. Over recent decades, a growing debate has emerged concerning the choice between the 
no-slip condition and the Navier condition, primarily due to the so-called no-collision paradox. 
Consider a rigid body in free fall within a fluid bounded by a solid wall. In case the rigid body and 
the wall have a smooth boundary, previous research [12,16,17] has demonstrated that under the 
assumption (1.4), the rigid body does not reach the fluid-solid interface in finite time, regardless 
of the relative densities of the fluid and the object. In contrast, assuming a Navier boundary 
condition circumvents such a situation [13].

Although we would expect similar results for the no-slip boundary conditions (1.4) as for the 
case of partial slip with α > 0, the approach used here does not cover (1.4).

Notation. Given q ∈ (1, ∞), q ′ = q/(q − 1) always denotes the Hölder conjugate of q .
Let X and Y be two Banach spaces and T : X → Y . We denote by D(T ), N(T ) and R(T ) the 

domain, null space and range of T , respectively. The notation L(X, Y) stands for the set of all 
bounded linear operators from X to Y and L(X) := L(X, X). Lis(X, Y) denotes the subset of 
L(X, Y) consisting of linear isomorphisms from X to Y . Moreover, we denote by X′ = L(X, R)

the dual of X.
For any 0 ≤ t1 < t2 < ∞, p ∈ (1, ∞) and μ ∈ (1/p, 1], the X-valued Lp-spaces with temporal 

weight are defined by
1606
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Lp,μ((t1, t2);X) :=
{
f : (t1, t2) → X : t �→ t1−μf (t) ∈ Lp((t1, t2);X)

}
.

Similarly,

Hk
p,μ((t1, t2);X) :=

{
f ∈ Wk

1,loc((t1, t2);X) : ∂
j
t f ∈ Lp,μ((t1, t2);X), j = 0,1, . . . , k

}
.

2. The surface Stokes operator with Navier boundary conditions

To analyze (1.1), we introduce the surface Helmholtz projection, defined by

PH u = u − gradψu, u ∈ Lq(M;T M),

where gradψu ∈ Lq(M; T M) is the unique solution of

(gradψu|gradφ)M = (u|gradφ)M, ∀φ ∈ Ḣ 1
q ′(M),

cf. Lemma B.6. Here,

(u|v)M :=
∫
M

(u|v)g dμg, (u, v) ∈ Lr(M;T M) × Lr ′(M;T M),

denotes the duality pairing between Lq(M; T M) and Lq ′(M; T M). We note that in case q = 2, the 
pairing (·|·)M defines an inner product on L2(M; T M).

For any u ∈ Lq(M; T M) and v ∈ Lq ′(M; T M) it holds

(PH u|v)M = (u − gradψu|v)M = (u|v)M − (gradψu|v)M

= (u|v)M − (gradψu|gradψv)M = (u|v)M − (u|gradψv)M

= (u|PH v)M

(2.1)

as ψu ∈ Ḣ 1
q (M) and ψv ∈ Ḣ 1

q ′(M). Note that the definition of PH implies

(u|ν�)g = 0 on � in case u ∈ Hs
q,σ (M;T M) and s > 1/q. (2.2)

With these preparations, we can introduce the function spaces used in this article

Lq,σ (M;T M) : = PH Lq(M;T M)

Hs
q,σ (M;T M) : = Hs

q (M;T M) ∩ Lq,σ (M;T M)

Bs
qp,σ (M;T M) : = Bs

qp(M;T M) ∩ Lq,σ (M;T M)

H−s
q,σ (M;T M) : = (Hs

q ′,σ (M;T M))′

B−s
qp,σ (M;T M) : = (Bs

q ′p′,σ (M;T M))′

(2.3)

for s ≥ 0 and 1 < p, q < ∞, where the respective duality parings
1607



Y. Shao, G. Simonett and M. Wilke Journal of Differential Equations 416 (2025) 1602–1659
〈·|·〉M : H−s
q,σ (M;T M) × Hs

q ′,σ (M;T M)) →R,

〈·|·〉M : B−s
qp,σ (M;T M) × Bs

q ′p′,σ (M;T M) →R,

are induced by (·|·)M. We would like to point out that our definition of the ‘negative’ spaces H−s
q

and B−s
qp differs from the usual definition in case −s < −1/q ′. This allows for a more streamlined 

presentation of our results. As the spaces involved will be clear from the context they will not be 
explicitly referenced in our notation 〈·|·〉M. Note that

〈u|v〉M = (u|v)M in case (u, v) ∈ Lq(M;T M) × Lq ′(M;T M).

Now we can define the strong surface Stokes operator with Navier boundary conditions, AN :
X1 → X0, by

ANu := −2μsPH divD(u) = −μsPH (�Mu + Ric�u) (2.4)

with X0 := Lq,σ (M; T M) and

X1 := D(AN) := {u ∈ H 2
q,σ (M;T M) : (u|ν�)g = 0, αu +P�

(
(∇u + [∇u]T)ν�

)= 0 on �}.
(2.5)

Although the condition (u|ν�)g = 0 is already contained in the stipulation u ∈ H 2
q,σ (M; T M), see 

(2.2), we include it in the definition for extra emphasis.
Next, we will derive a simpler expression of the boundary conditions of (1.1). We first note 

that in local coordinates

ν� =
n∑

j=1

1√
gnn

gnj ∂

∂xj
= 1√

gnn
gnj ∂

∂xj
. (2.6)

In addition, we set P� = IT M − 1

gnn
gnj ∂

∂xj
⊗ dxn. Hence,

P�

∂

∂xi
= ∂

∂xi
, i = 1, . . . , n − 1, P�

(
gnj ∂

∂xj

)
= 0. (2.7)

Then we have for any u ∈ H 1
q,σ (M; T M), using the metric property of (·|·)g , (2.7), the boundary 

condition (u|ν�)g = 0, and (A.1)

P�

([∇u]Tν�

)= P�

(
g�(dxi ⊗ ∇iu)g�ν�

)
= P�

(
g�dxi(∇iu|ν�)g

)
=

n∑
i,j=1

[∇i (u|ν�)g − (u|∇iν�)g
]
P� gij ∂

∂xj

=
n−1∑ n∑[∇i (u|ν�)g − (u|∇iν�)g

]
P� gij ∂

∂xj

i=1 j=1

1608
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=
n−1∑
i=1

n∑
j=1

(L�u
∣∣ ∂

∂xi
)g P� gij ∂

∂xj
(2.8)

=
n∑

i,j=1

(L�u| ∂

∂xi
)g P� gij ∂

∂xj
=

n∑
i,j=1

(L�u|gij ∂

∂xi
)g P�

∂

∂xj

=
n∑

j=1

〈dxj ,L�u〉g� P�

∂

∂xj
=

n−1∑
j=1

〈dxj ,L�u〉g�

∂

∂xj
= L�u,

where L� is the Weingarten tensor induced by g|�, with L�u ∈ 	(�, T �), and

〈· , ·〉g� : T ∗� × T � → R� is the (fiber-wise defined) duality pairing on �.

Moreover,

P� (∇uν�) = 1√
gnn

gnjP�

(∇j u
)= 1√

gnn
gnjP�

(
(∂ju

i + 	i
kju

k)
∂

∂xi

)
= gnj

√
gnn

(∂ju
i + 	i

kju
k)

∂

∂xi
− gnjgni

(gnn)3/2 (∂ju
n + 	n

kju
k)

∂

∂xi

=
n−1∑
i=1

[
gnj

√
gnn

(∂ju
i + 	i

kju
k) − gnjgni

(gnn)3/2 (∂ju
n + 	n

kju
k)

]
∂

∂xi
.

(2.9)

By (2.1), (2.8), and Lemma B.1 (b) (ii), for any u ∈ D(AN) and v ∈ H 1
q ′,σ (M; T M),

(ANu|v)M = μs(∇u|∇v)M − μs(Ric� u|v)M − μs(∇uν�|v)�

= μs(∇u|∇v)M − μs(Ric� u|v)M − μs(P�(∇u)ν�|v)�

= μs(∇u|∇v)M − μs(Ric� u|v)M + (αμsu + μsL�u|v)�,

(2.10)

where (·|·)� denotes the duality pairing between Lq(�, T �) and Lq′(�; T �). By setting

X1/2 := H 1
q,σ (M;T M) and X−1/2 :=

(
H 1

q ′,σ (M;T M)
)′ =: H−1

q,σ (M;T M), (2.11)

the above computations motivate us to define the weak surface Stokes operator with Navier 
boundary conditions Aw

N : X1/2 → X−1/2 by

〈Aw
Nu|v〉M = μs(∇u|∇v)M − μs(Ric�u|v)M + (αμsu + μsL�u|v)�

for all (u, v) ∈ X1/2 × (X−1/2)
′ = H 1

q,σ (M; T M) × H 1
q ′,σ (M; T M).

The next result states that the surface Stokes operators Aw
N and AN both admit a bounded 

H∞-calculus.

Theorem 2.1. There exists a number ω0 > 0 such that
1609
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(a) ω + Aw
N ∈ H∞(X−1/2) with H∞-angle < π/2 for all ω > ω0.

(b) ω + AN ∈ H∞(X0) with H∞-angle < π/2 for all ω > ω0.

Proof. For a proof we refer to Section 4. �
3. H∞-calculus of surface Stokes operator with perfect slip boundary conditions

In order to prove Theorem 2.1, we take a detour and first consider the Stokes operator with 
perfect slip boundary conditions, which is also of interest in its own right. On a technical level, 
we are aided by the fact that in this case, the Helmholtz projection commutes with the Laplacian, 
which (temporarily) allows us to ignore the pressure and the divergence condition. The same 
strategy was also employed in [32].

We start this section by providing the necessary tools to localize differential equations and 
tangent fields that are defined on the manifold M. We define an atlas {(Uk, ϕk)}k∈K of M with 
K = K0 �K1 such that k ∈K0 if Uk ∩ � = ∅ and k ∈K1 if Uk ∩ � �= ∅. Moreover,

ϕk(Uk) = Bn
k (0,R) :=

{
Bn(0,R), if k ∈K0,

Bn(0,R) ∩Rn+, if k ∈K1.

Given k ∈ K, we set

Xk =
{
Rn, if k ∈K0,

Rn+, if k ∈K1,

endowed with the Euclidean metric in Rn. Let {ξ2
k }k∈K be a partition of unity subject to {Uk}k∈K. 

Furthermore, let ζ ∈ C∞
0 (Bn(0, R); [0, 1]) be chosen such that

ζ ≡ 1 on supp((ϕk)∗ξk) for all k ∈ K,

where (ϕk)∗φ := φ ◦ ϕ−1
k is the pushforward of a function φ : M → R by ϕk . Given u ∈

	(M; T M), we define

(ϕk)∗u := ((ϕk)∗ui)1≤i≤n, where u = ui ∂

∂xi
.

For F ∈ {Hq, Wq}, 1 < q < ∞, and s ≥ 0, we define:

Rc
k : Fs(M;T M) → Fs(Xk;Rn), u �→ (ϕk)∗(ξku),

Rk : Fs(Xk;Rn) → Fs(M;T M), uκ �→ ξk(ϕ
∗
k uκ).

Here and in the following, it is understood that a partially defined and compactly supported 
vector field is automatically extended over the whole base manifold by identifying it to be the 
zero section outside its original domain.
With a slight abuse of notation, we define the pullback of a vector field v : Xk → Rn by means 
of
1610
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ϕ∗
k v :=

(
vi ◦ ϕk

) ∂

∂xi
.

Finally, we define

Rc : Fs(M;T M) → Fs(X;Rn), u �→ (Rc
ku)k∈K,

R : Fs(X;Rn) → Fs(M;T M), v = (vk)k∈K �→
∑

k

Rkvk

with Fs(X; Rn) :=∏k∈K Fs(Xk; Rn), equipped with the norm

‖v‖Fs =
∑
k∈K

‖vk‖Fs (Xk), v = (vk)k∈K.

Then one shows that

Rc ∈ L(Fs(M;T M),Fs(X;Rn)), R ∈ L(Fs(X;Rn),Fs(M;T M)),

see for instance [4]. Moreover,

(R ◦Rc)u = u, u ∈ Fs(M;T M),

that is, R is a retraction from Fs(X; Rn) onto Fs(M; T M), and Rc is a coretraction.

3.1. Strong formulation

Following the ideas of [32], we will first study the Stokes operator with perfect slip boundary 
conditions. To this end, we consider first the elliptic boundary value problem,⎧⎪⎪⎨⎪⎪⎩

(λ − �M + Ric�)u = f on M,

P�

(
(∇u − [∇u]T)ν�

)= h1 on �,

(u|ν�)g = h2 on �,

(3.1)

for suitable λ ∈C and

(f,h1, h2) ∈ Lq(M;T M) × W
1−1/q
q (�;T �) × W

2−1/q
q (�).

We should like to briefly explain our rationale for using the terminology perfect slip boundary 
conditions. In three-dimensional Euclidean space, it can be shown that

P�

(
(∇u − [∇u]T)ν�

)= ν� × curlu,

see for instance [29, Section 4.1]. In applications in (magneto) hydrodynamics, the boundary 
conditions

(u|ν�)g = 0, curlu × ν� = 0,
1611
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are sometimes referred to as perfect wall conditions, see for instance [1]. In addition, these con-
ditions are also known as Neumann boundary conditions or free boundary conditions, see for 
instance [23,24] and the reference therein. For lack of a better name and following [29,32], we 
will use the same terminology also in the general situation of manifolds of arbitrary dimension.

We have the following result about existence and uniqueness of solutions to (3.1).

Proposition 3.1. Let 1 < q < ∞ and φ ∈ (0, π/2). Then, there exists a number λ0 > 0 such that 
for all λ ∈ λ0 + �π−φ problem (3.1) has a unique solution u ∈ H 2

q (M; T M) if and only if

(f,h1, h2) ∈ Lq(M;T M) × W
1−1/q
q (�;T �) × W

2−1/q
q (�).

Furthermore, there exists a constant C > 0 such that for all λ ∈ λ0 + �π−φ the estimate

|λ|‖u‖Lq(M) + ‖u‖H 2
q (M) ≤ C

(
‖f ‖Lq(M) + ‖H1‖H 1

q (M)+|λ|1/2‖H1‖Lq (M)

+ ‖H2‖H 2
q (M) + |λ|1/2‖H2‖H 1

q (M) + |λ|‖H2‖Lq(M)

)
(3.2)

holds, where Hj is any extension of hj from Wj−1/q
q (�) to Hj

q (M).

Proof. In short form, (3.1) can be formulated as

Lλu = F, (3.3)

where Lλ : H 2
q (M; T M) → Lq(M; T M) × W

1−1/q
q (�; T �) × W

2−1/q
q (�) is defined by the left 

side of (3.1) and F := (f, h1, h2).
In the following, we will show that the operator Lλ is invertible for λ appropriately chosen. 

We start by establishing a priori estimates for solutions of (3.1). Suppose u ∈ H 2
q (M; T M) is a 

solution of (3.1). We then set

ūk := Rc
ku = (ū1

k, ū
2
k, · · · , ūn

k )
T

and

Ḡ(k) = [ḡij

(k)]ij = ζGk + (1 − ζ )In,

where Gk := [(ϕk)∗gij ]ij . Using these notations and (1.3), we can write the first line in (3.1) in 
local coordinates as

(λ − ḡ
ij

(k)∂i∂j )ūk = f̄k + Pk(u) in Xk, (3.4)

where the matrices Ḡ(k) belong to BC∞(Xk; Rn×n) and f̄k := Rc
kf . Up to translations and 

rotations, ‖Ḡ(k) − In‖∞ can be made arbitrarily small by shrinking the radius R > 0 of Bn
k (0, R). 

The linear operator Pk is of first order; in particular

Pk ∈ L(H 1
q (M;T M),Lq(Xk;Rn)).
1612
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Next, we will localize the boundary conditions in (3.1). First, in view of (2.6), the boundary 
condition (u|ν�)g = h2 can be restated as

1√
ḡnn

(k)

ūn
k = h̄2,k on Rn−1, k ∈ K1. (3.5)

Using (2.8) and (2.9), the remaining boundary condition P�

(
(∇u − [∇u]T)ν�

) = h1 can be 
rewritten as

1√
ḡnn

(k)

ḡ
nj

(k)∂j ū
i
k − ḡ

nj

(k)ḡ
ni
(k)

(ḡnn
(k)

)3/2 ∂j ū
n
k = h̄i

1,k + trRn−1Q
i
k(u) on Rn−1, (3.6)

for k ∈ K1, i = 1, 2, . . . , n − 1. We note here that Qi
k(u), in particular, contain an extension of 

the (localized) term L�u in (2.8) to H 2
q (Xk). It follows that Qi

k ∈ L(H 2
q (M; T M), H 2

q (Xk)) with

‖Qi
k(u)‖Hs

q (Xk) ≤ C(s)‖u‖Hs
q (M;T M), u ∈ H 2

q (M;T M),

for any s ∈ [0, 2]. We define

L#
λ,k : H 2

q (Xk;Rn) → Lq(Xk;Rn)

for k ∈ K0 by L#
λ,kv := λv − ḡ

ij

(k)∂i∂j v and

L#
λ,k : H 2

q (Xk;Rn) → Lq(Xk;Rn) × W
1−1/q
q (Rn−1;Rn−1) × W

2−1/q
q (Rn−1)

for k ∈ K1 by

L#
λ,kv :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λv − ḡ
ij

(k)∂i∂j v

trRn−1( 1√
ḡnn
(k)

ḡ
nj

(k)∂j v
1 − ḡ

nj

(k)
ḡn1
(k)

(ḡnn
(k)

)3/2 ∂j v
n)

...

trRn−1( 1√
ḡnn
(k)

ḡ
nj

(k)∂j v
n−1 − ḡ

nj

(k)
ḡ

n,n−1
(k)

(ḡnn
(k)

)3/2 ∂j v
n)

trRn−1
1√
ḡnn
(k)

vn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where trRn−1 is the trace operator from Rn+ to Rn−1.

Let us denote by L#,0
λ,k the corresponding operator in the planar case, i.e. Gk = In. Then it 

holds that L#,0
λ,kv = λv − �Rnv if k ∈K0 and

L
#,0

v =
(
λv − �Rn v, trRn−1∂nv

1, · · · , trRn−1∂nv
n−1, trRn−1v

n
)T
λ,k +

1613
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if k ∈ K1. It is well-known that for each λ ∈ �π−φ , φ ∈ (0, π/2), the operators L#,0
λ,k are isomor-

phisms between the corresponding spaces defined above. It follows from [22, Theorem 3.1.3]
that there exists a constant C > 0 being independent of λ, such that the unique solution v to the 
elliptic problems

L
#,0
λ,kv = f̄

for k ∈ K0, f̄ ∈ Lq(Rn; Rn) and

L
#,0
λ,kv = (f̄ , h̄1

1, . . . , h̄
n−1
1 , h̄2)

T

for k ∈ K1 and

(f̄ , h̄1, h̄2) ∈ Lq(Rn+;Rn) × W
1−1/q
q (Rn−1;Rn−1) × W

2−1/q
q (Rn−1)

satisfies

|λ|‖v‖Lq(Xk) + ‖v‖H 2
q (Xk)

≤ C
(
‖f̄ ‖Lq(Xk) + ‖H̄1‖H 1

q (Xk)
+ |λ|1/2‖H̄1‖Lq(Xk)

+ ‖H̄2‖H 2
q (Xk)

+ |λ|1/2‖H̄2‖H 1
q (Xk)

+ |λ|‖H̄2‖Lq(Xk)

)
(3.7)

for all λ ∈ �π−φ , φ ∈ (0, π/2) and any extension H̄j of h̄j from Wj−1/q
q (Rn−1) to Hj

q (Xk). In 
case k ∈ K0, the terms in (3.7) containing H̄1 and H̄2 are omitted.

We will show in the sequel, that (3.7) still holds for the general geometry by means of a 
perturbation argument. To this end, we write

L#
λ,k = L

#,0
λ,k + L#

λ,k − L
#,0
λ,k,

wherefore the equation L#
λ,kv = (f̄ , h̄1

1, . . . , h̄
n−1
1 , h̄2)

T is equivalent to

v + [L#,0
λ,k]−1(L#

λ,k − L
#,0
λ,k)v = [L#,0

λ,k]−1(f̄ , h̄1
1, . . . , h̄

n−1
1 , h̄2)

T.

In case k ∈K0, it holds that

L#
λ,kv − L

#,0
λ,kv = �Rnv − ḡ

ij

(k)∂i∂j v,

and

‖�Rnv − ḡ
ij

(k)∂i∂j v‖Lq(Xk) ≤ ‖Ḡ(k) − In‖∞‖v‖H 2
q (Xk)

≤ ‖Ḡ(k) − In‖∞
(
|λ|‖v‖Lq(Xk) + ‖v‖H 2

q (Xk)

)
,

where we recall that ‖Ḡ(k) − In‖∞ can be made as small as we wish. Therefore we may achieve

‖[L#,0
λ,k]−1(L

#,0
λ,k − L#

λ,k)v‖H 2 (X ) ≤ 1‖v‖H 2 (X ),
q,λ k 2 q,λ k
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where H 2
q,λ(Xk) denotes the space H 2

q (Xk) equipped with the norm |λ| ‖ · ‖Lq(Xk) + ‖ · ‖H 2
q (Xk)

. 
A Neumann series argument then yields that the linear operator

I + [L#,0
λ,k]−1(L#

λ,k − L
#,0
λ,k) : H 2

q,λ(Xk) → H 2
q,λ(Xk)

is invertible and the estimate

‖v‖H 2
q,λ(Xk)

≤ 2C‖f̄ ‖Lq(Xk)

holds, whenever k ∈ K0.
If k ∈K1, then perturbations on the boundary ∂Xk = Rn−1 have to be taken into account. We 

show this exemplarily for the last component of L#
λ,kv − L

#,0
λ,kv, given by

trRn−1((ḡ
nn
(k))

−1/2vn − vn) ∈ W
2−1/q
q (Rn−1).

The term ((ḡnn
(k))

−1/2 − 1)vn ∈ H 2
q (Xk) is an extension and will be estimated with respect to the 

norm

‖ · ‖H 2
q (Xk)

+ |λ|1/2‖ · ‖H 1
q (Xk)

+ |λ|‖ · ‖Lq(Xk).

For the sake of readability, we write a = (ḡnn
(k))

−1/2 − 1 and we recall that ‖a‖L∞(Xk) can be 
made as small as we wish, while ‖a‖W 2∞(Xk)

is bounded. Then, it holds that

|λ|‖avn‖Lq(Xk) ≤ |λ|‖a‖L∞(Xk)‖vn‖Lq(Xk) ≤ |λ|‖a‖L∞(Xk)‖v‖Lq(Xk) ≤ ‖a‖L∞(Xk)‖v‖H 2
q,λ(Xk)

by the definition of the norm in H 2
q,λ(Xk). Furthermore, we have

‖avn‖H 1
q (Xk)

≤ ‖a‖W 1∞(Xk)
‖v‖Lq(Xk) + ‖a‖L∞(Xk)‖v‖H 1

q (Xk)
,

where

‖v‖Lq(Xk) ≤ |λ|−1‖v‖H 2
q,λ(Xk)

.

We make use of complex interpolation

H 1
q (Xk) = [Lq(Xk),H

2
q (Xk)]1/2

and Young’s inequality to obtain

‖v‖H 1
q (Xk)

≤ C|λ|−1/2‖v‖H 2
q,λ(Xk)

.

This then implies that

|λ|1/2‖avn‖H 1(X ) ≤ C
(
‖a‖W 1 (X )|λ|−1/2 + ‖a‖L∞(Xk)

)
‖v‖H 2 (X ).
q k ∞ k q,λ k
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Finally, to estimate avn in W 2
q (Xk), we observe

‖avn‖H 2
q (Xk)

≤ ‖a‖L∞(Xk)‖v‖H 2
q (Xk)

+ ‖a‖W 1∞(Xk)
‖v‖H 1

q (Xk)
+ ‖a‖W 2∞(Xk)

‖v‖Lq(Xk).

By the estimates for ‖v‖Hs
q (Xk), s ∈ {0, 1}, from above, we obtain

‖avn‖H 2
q (Xk)

≤ C
(
‖a‖L∞(Xk) + ‖a‖W 1∞(Xk)

|λ|−1/2 + ‖a‖W 2∞(Xk)
|λ|−1

)
‖v‖H 2

q,λ(Xk)
.

This shows that, for any given η > 0, choosing first ‖a‖L∞(Xk) sufficiently small and then |λ|
sufficiently large, we may achieve that

‖avn‖H 2
q (Xk)

+ |λ|1/2‖avn‖H 1
q (Xk)

+ |λ|‖avn‖Lq(Xk) ≤ η‖v‖H 2
q,λ(Xk)

.

The estimates for the remaining boundary conditions can be derived in the same spirit and are 
therefore omitted. By a Neumann series argument as in case k ∈ K0, it follows that (3.7) holds 
true for the general geometry, with a possibly larger constant C > 0.

We split the solution ūk of (3.4), (3.5), (3.6) into ūk = ũk + ûk in such a way that ũk solves

L#
λ,kũk = (f̄k, h̄1,k, h̄2,k)

T

and ûk solves

L#
λ,kûk = (Pk(u), trRn−1Qk(u),0)T, Qk(u) = (Q1

k(u), . . . ,Qn−1
k (u))

if k ∈ K1. For k ∈ K0, we introduce a similar decomposition ūk = ũk + ûk with

L#
λ,kũk = f̄k, L#

λ,kûk = Pk(u).

For the solution u of (3.1) we therefore obtain

u = u(1) + u(2) := R
(
(ũ)k∈K

)+R
(
(û)k∈K

)
=
∑
k∈K

ξkϕ
∗
k ũk +

∑
k∈K

ξkϕ
∗
k ûk.

(3.8)

Employing (3.7) yields

|λ|‖u(1)‖Lq(M) + ‖u(1)‖H 2
q (M)

≤ C
∑
k∈K

‖f̄k‖Lq(Xk) + C
∑
k∈K1

(
‖H̄1,k‖H 1

q (Xk)
+ |λ|1/2‖H̄1,k‖Lq(Xk)

+ ‖H̄2,k‖H 2
q (Xk)

+ |λ|1/2‖H̄2,k‖H 1
q (Xk)

+ |λ|‖H̄2,k‖Lq(Xk)

)
≤ C

(
‖f ‖Lq(M) + ‖H1‖H 1

q (M) + |λ|1/2‖H1‖Lq(M)

+ ‖H2‖H 2
q (M) + |λ|1/2‖H2‖H 1

q (M) + |λ|‖H2‖Lq(M)

)
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for all λ ∈ λ0 + �π−φ , where H̄j,k ∈ H
j
q (Xk) are the localized versions of Hj ∈ H

j
q (M). Here 

we have used the fact that if Hj is any extension of hj from Wj−1/q
q (�) to Hj

q (M), then H̄j,k is 

an extension of h̄j,k from Wj−1/q
q (Rn−1) to Hj

q (Xk).
To estimate u(2), note that (3.7) implies

|λ|‖u(2)‖Lq(M) + ‖u(2)‖H 2
q (M)

≤ C
∑
k∈K

‖Pk(u)‖Lq(Xk) + C
∑
k∈K1

(
‖Qk(u)‖H 1

q (Xk)
+ |λ|1/2‖Qk(u)‖Lq(Xk)

)
≤ C

(
‖u‖H 1

q (M) + |λ|1/2‖u‖Lq(M)

)
. (3.9)

By complex interpolation and Young’s inequality, there exists a constant C > 0 such that

‖u‖H 1
q (M) ≤ C‖u‖1/2

Lq(M) · ‖u‖1/2
H 2

q (M)
≤ |λ|−1/2C

(
|λ|‖u‖Lq(M) + ‖u‖H 2

q (M)

)
. (3.10)

Furthermore,

|λ|1/2‖u‖Lq(M) ≤ |λ|−1/2
(
|λ|‖u‖Lq(M) + ‖u‖H 2

q (M)

)
.

By possibly further increasing λ0 > 0, we can always achieve

|λ|‖u(2)‖Lq(M) + ‖u(2)‖H 2
q (M) ≤ 1

2

(
|λ|‖u‖Lq(M) + ‖u‖H 2

q (M)

)
for all λ ∈ λ0 + �π−φ . Combining with the estimate for u(1), this yields (3.2) for all λ ∈ λ0 +
�π−φ . This estimate implies in particular that the operator Lλ defined in (3.3) has a left inverse 
Sλ, provided λ ∈ λ0 + �π−φ .

We can even give an explicit formula for the left inverse Sλ. To this end, we use again (3.8), 
i.e.

u =
∑
k∈K

ξkϕ
∗
k ũk +

∑
k∈K

ξkϕ
∗
k ûk

and define

Hℓ
λu := u(2) =

∑
k∈K

ξkϕ
∗
k ûk.

It follows from the considerations above that the linear operator

Hℓ
λ : H 2

q,λ(M;T M) → H 2
q,λ(M;T M), u �→ u(2),

satisfies the norm estimate

‖Hℓ
λ‖ ≤ 1

,

2
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provided λ ∈ λ0 + �π−φ , where H 2
q,λ(M; T M) denotes the space H 2

q (M; T M) equipped with the 
norm |λ| ‖ · ‖Lq(M) + ‖ · ‖H 2

q (M). By definition of ũk we then obtain

u =
∑
k∈K

ξkϕ
∗
k (L#

λ,k)
−1(f̄k, h̄1,k, h̄2,k) + Hℓ

λu,

where (f̄k, h̄1,k, h̄2,k) = f̄k if k ∈ K0. Therefore, it follows that

Sλ(f,h1, h2) = u = (I − Hℓ
λ)−1

∑
k∈K

ξkϕ
∗
k (L#

λ,k)
−1(f̄k, h̄1,k, h̄2,k).

It remains to prove the existence of a right inverse for the operator Lλ defined in (3.3). To this 
end, let

(f,h1, h2) ∈ Lq(M;T M) × W
1−1/q
q (�;T �) × W

2−1/q
q (�)

be given and define u := Sλ(f, h1, h2) ∈ H 2
q (M; T M) with the left inverse Sλ from above. In the 

sequel, we denote by

Lλ,k : H 2
q (Xk;Rn) → Lq(Xk;Rn)

for k ∈ K0 and by

Lλ,k : H 2
q (Xk;Rn) → Lq(Xk;Rn) × W

1−1/q
q (Rn−1;Rn−1) × W

2−1/q
q (Rn−1)

for k ∈ K1 the full operator Lλ from (3.3) in local coordinates, that is, Lλ,k satisfies the relation 
Lλ(ξkϕ

∗
k v) = ϕ∗

kLλ,k(ψ
∗
k ξkv) for v ∈ H 2

q (Xk; Rn), where ψk := ϕ−1
k . It follows that

L1
k := Lλ,k − L#

λ,k

is of lower order, since the terms of highest order are already included in L#
λ,k . Applying Lλ to 

u − Hℓ
λu yields

Lλ(u − Hℓ
λu) = Lλ

∑
k∈K

ξkϕ
∗
k (L#

λ,k)
−1(f̄k, h̄1,k, h̄2,k)

=
∑
k∈K

ξkϕ
∗
kLλ,k(L

#
λ,k)

−1(f̄k, h̄1,k, h̄2,k)

+
∑
k∈K

ϕ∗
k [Lλ,k,ψ

∗
k ξk](L#

λ,k)
−1(f̄k, h̄1,k, h̄2,k)

=
∑
k∈K

ξkϕ
∗
k (f̄k, h̄1,k, h̄2,k)

+
∑

ξkϕ
∗
kL1

k(L
#
λ,k)

−1(f̄k, h̄1,k, h̄2,k)
k∈K
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+
∑
k∈K

ϕ∗
k [Lλ,k,ψ

∗
k ξk](L#

λ,k)
−1(f̄k, h̄1,k, h̄2,k).

We note on the go that ∑
k∈K

ξkϕ
∗
k (f̄k, h̄1,k, h̄2,k) = (f,h1, h2)

and we define

Hr
λ(f,h1, h2) :=

∑
k∈K

(
ξkϕ

∗
kL1

k(L
#
λ,k)

−1 + ϕ∗
k [Lλ,k,ψ

∗
k ξk](L#

λ,k)
−1
)
(f̄k, h̄1,k, h̄2,k).

Since both operators L1
k and [Lλ,k, ψ∗

k ξk] are of lower order, it follows that

‖Hr
λ‖ ≤ 1

2

for λ ∈ λ0 + �π−φ and by possibly further increasing λ0 > 0 if necessary, where the space

Lq(M;T M) × W
1−1/q
q (�;T �) × W

2−1/q
q (�)

is equipped with the norm on the right hand side of (3.2). This in turn implies that

(Sλ − Hℓ
λSλ)(I + Hr

λ)−1

is a right inverse for Lλ. Hence, Lλ is invertible. �
In a next step, we consider homogeneous boundary conditions

P�

(
(∇u − [∇u]T)ν�

)= 0 and (u|ν�)g = 0 on � (3.11)

in (3.1) and we define an operator Lps : D(Lps) → Lq(M; T M) by

Lpsu = −�Mu + Ric�u, u ∈ D(Lps) := {u ∈ H 2
q (M;T M) : u satisfies (3.11)}.

Note that by Proposition 3.1, the operator (λ + Lps) is invertible for any λ ∈ λ0 + �π−φ .
We can then show the following stronger result.

Proposition 3.2. There exists ω0 > 0 such that for all ω > ω0

ω + Lps ∈ H∞(Lq(M;T M)) with H∞-angle < π/2. (3.12)

Proof. We define the linear operator Lk : D(Lk) → Lq(Xk; Rn) by

Lku := −ḡ
ij

(k)∂i∂ju in Xk

and for k ∈K1,
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Tku :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

trRn−1( 1√
ḡnn
(k)

ḡ
nj

(k)∂ju
1 − ḡ

nj

(k)
ḡn1
(k)

(ḡnn
(k)

)3/2 ∂ju
n)

...

trRn−1( 1√
ḡnn
(k)

ḡ
nj

(k)∂ju
n−1 − ḡ

nj

(k)
ḡ

n,n−1
(k)

(ḡnn
(k)

)3/2 ∂ju
n)

trRn−1
1√
ḡnn
(k)

un

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

D(Lk) =
{

H 2
q (Rn;Rn) if k ∈ K0,

{u ∈ H 2
q (Rn+;Rn) : Tku = 0 on Rn−1} if k ∈ K1.

We claim that there exists some ω0 > 0 and φ∞ ∈ (0, π/2) such that

ω + Lk ∈ H∞(Lq(Xk;Rn)) with H∞-angle < φ∞ for all ω > ω0. (3.13)

It is well-known that (3.13) holds true for k ∈K0, see for instance [9, Theorem 6.1] or [7, Theo-
rem 4.1], as long as R > 0 is sufficiently small.

In the case of k ∈ K1, in the planar case, i.e. Gk = In, one can check that

Lk = −diag [�N, · · · ,�N,�D] : D(Lk) → Lp(Xk;Rn),

where �N and �D are the Neumann and Dirichlet Laplacian in Rn+, respectively. Then it follows 
from well-known results that (3.13) holds, see [8, Theorem 7.4]. For a general geometry, using 
a similar perturbation argument to that in [11], one can show that, by making R > 0 sufficiently 
small, (3.13) is at our disposal.

We seek to find an expression for the resolvent (λ +Lps)
−1. To this end, consider the splitting 

(3.8) for the solution u of (3.1) with homogeneous boundary conditions. This yields

(λ + Lps)
−1f = u = u(1) + u(2) := R

(
(ũ)k∈K

)+R
(
(û)k∈K

)
=
∑
k∈K

ξkϕ
∗
k ũk +

∑
k∈K

ξkϕ
∗
k ûk

= R
(
((λ + Lk)

−1f̄k)k∈K
)

+ R(λ)(f ),

(3.14)

where

R(λ)(f ) :=
∑
k∈K0

ξkϕ
∗
k (λ + Lk)

−1Pk(u) +
∑
k∈K1

ξkϕ
∗
k (L#

λ,k)
−1(Pk(u), trRn−1Qk(u),0)T.

The estimates (3.9), (3.10) and (3.2) then yield the existence of ω0 > 0 such that

‖R(λ)f ‖Lq(M) ≤ C|λ|−3/2‖f ‖Lq(M) (3.15)

for all λ ∈ ω + �π−φ∞ , ω ≥ ω0.
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Note that the H∞-bound Kφ∞ , cf. (D.1), can be chosen uniformly for ω + Lk , where ω > ω0
by possibly further increasing ω0. Given any h ∈ H0(�π−φ∞), see Appendix D for a definition 
of H0(�φ), in view of (3.14) we obtain

‖h(ω + Lps)f ‖Lq(M)

=
∥∥∥∥∥∥ 1

2πi

∫
	

h(λ)(λ + ω + Lps)
−1f dλ

∥∥∥∥∥∥
Lq(M)

≤ c

∥∥∥∥∥∥ 1

2πi

∑
k∈K

ξkϕ
∗
k

⎡⎣∫
	

h(λ)(λ + ω + Lk)
−1f̄k dλ

⎤⎦∥∥∥∥∥∥
Lq(M)

+ c

∥∥∥∥∥∥
∫
	

h(λ)R(λ)f dλ

∥∥∥∥∥∥
Lq(M)

≤ M
∑
k∈K

∥∥∥∥∥∥ 1

2πi

∫
	

h(λ)(λ + ω + Lk)
−1f̄k dλ

∥∥∥∥∥∥
Lq(Xk)

+ M‖h‖∞
∫
	

‖R(λ)f ‖Lq(M) ds

≤ M‖h‖∞
∑
k∈K

‖f̄k‖Lq(Xk) + M‖h‖∞‖f ‖Lq(M) (3.16)

≤ M‖h‖∞‖f ‖Lq(M),

where the integral contour 	 is defined as in (D.2) and (3.16) follows from (3.13) and (3.15). �
We have shown in Proposition 3.1 that, for every λ ∈ ω + �π−φ∞ and f ∈ Lq(M; T M), the 

equation λu − Lpsu = f has a unique solution u ∈ D(Lps). More can be said about the solution 
u if, in addition, f ∈ Lq,σ (M; T M).

Proposition 3.3. There exists λ0 > 0 such that for all λ > λ0 and f ∈ Lq,σ (M; T M), the equation 
λu − Lpsu = f has a unique solution u ∈ H 2

q,σ (M; T M).

Proof. We consider the Neumann problem{
�Bφ = λdivu on M,

(gradφ|ν�)g = 0 on �,
(3.17)

where �B is the Laplace-Beltrami operator on (M, g). By Lemma B.6, (3.17) has a unique (up 
to a constant) solution φ ∈ H 3

q (M). Employing Lemma B.1 repeatedly, we obtain

‖gradφ‖2
L2(M)

= (−�Bφ|φ)M = −λ(divu|φ)M = λ(u|gradφ)M

= (�Mu|gradφ)M + (f |gradφ)M − (Ric�u|gradφ)M

= −(∇u|∇gradφ)M + (∇ν�u|gradφ)� − (Ric�u|gradφ)M (3.18)

= (u|�Mgradφ)M + (∇ν�u|gradφ)� − (u|∇ν�gradφ)� − (Ric�u|gradφ)M
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= (u|grad�Bφ)M + (∇ν�u|gradφ)� − (u|∇ν�gradφ)� (3.19)

= −λ‖divu‖2
L2(M) + (∇ν�u|gradφ)� − (u|∇ν�gradφ)�. (3.20)

By the definition of PH and the fact that f ∈ Lq,σ (M; T M), we conclude that

(f |gradφ)M = (PH f |gradφ)M = (f − gradψf |gradφ)M = 0.

Therefore, (3.18) follows. In (3.19), we have used the property

�Mgradφ = grad�Bφ + Ric�gradφ, (3.21)

see Lemma B.2.
Since φ is a scalar function, we have ∇gradφ = (∇gradφ)T. Employing (2.8), with u replaced 

by gradφ, we then obtain

P�∇ν�gradφ = P�(∇gradφ)ν� = P�(∇gradφ)Tν� = L�gradφ.

Hence, the last term on the RHS of (3.20) can be rewritten as

(u|∇ν�gradφ)� = (u|P�∇ν�gradφ)� = (L�u|gradφ)�

in view of (3.11). We thus infer that

‖gradφ‖2
L2(M) + λ‖divu‖2

L2(M) = (∇ν�u − L�u|gradφ)�

= ((∇u − [∇u]T)ν�|gradφ)� = 0,

where we have used (3.11) once more. We thus have divu = 0 and (u|ν�)g = 0 and this, in turn, 
implies u ∈ H 2

q,σ (M; T M), in virtue of Lemma B.6. �
Proposition 3.3 reveals that for λ > λ0

(λ + Lps)
−1R(PH ) ⊆ R(PH ). (3.22)

We will further show that

(λ + Lps)
−1N(PH ) ⊆ N(PH ). (3.23)

Indeed, if f = gradg for some g ∈ H 1
q (M), then we consider

{
(λ − �B)φ = g on M,

(gradφ|ν�)g = 0 on �.
(3.24)

For sufficiently large λ0 > 0 and all λ > λ0, (3.24) has a unique solution φ ∈ H 3
q (M) by means 

of a localization argument as in Section 3.1. Let v = gradφ. Then v satisfies
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λv − grad�Bφ = gradg = f.

Using (3.21) once more, it is easy task to check that v solves

{
(λ − �M + Ric�)v = f on M,

(v|ν�)g = 0 on �.

On the other hand, since ∇v = [∇v]T, the boundary condition

P�

(
(∇v − [∇v]T)ν�

)= 0 on �

is automatically satisfied. Hence v is indeed a solution of (3.1). Uniqueness of solutions of (3.1)
implies that v = u and thus (3.23) is proved.

By (3.22) and (3.23), given any u ∈ D(Lps), one has

LpsPH u ∈ R(PH ) and Lps(I − PH )u ∈ N(PH ). (3.25)

Now we are ready to study the strong surface Stokes operator with perfect slip boundary condi-
tions Aps : D(Aps) → Lq,σ (M; T M), defined by

Apsu = −μsPH (�Mu + Ric�u)

with

D(Aps) = {u ∈ H 2
q,σ (M;T M) : (u|ν�)g = 0, P�

(
(∇u − [∇u]T)ν�

)= 0 on �}.

In spite of (2.2), we include the condition (u|ν�)g = 0 for extra emphasis.
Let Ãps := Aps + 2μsPH Ric� : D(Aps) → Lq,σ (M; T M). Since for any u ∈ D(Lps), one can 

deduce

PH Lpsu = PH LpsPH u + PH Lps(I − PH )u = LpsPH u

from (3.25), it holds that

Ãps = μsLps |D(Aps).

Therefore, for sufficiently large ω > 0, ω + Ãps ∈ H∞(Lq,σ (M; T M)), by (3.12). By possibly 
enlarging ω0 > 0, the following theorem is an immediate consequence of [28, Corollary 3.3.15].

Theorem 3.4. There exists ω0 > 0 such that for all ω > ω0

ω + Aps ∈ H∞(Lq,σ (M;T M)) with H∞-angle < π/2. (3.26)
1623



Y. Shao, G. Simonett and M. Wilke Journal of Differential Equations 416 (2025) 1602–1659
3.2. Weak formulation

For notational brevity, let A0 = ω + Aps , ω > ω0 with ω0 being defined in (3.26). Note that 
ω + Aps is invertible. We set

Z0 = X0 = Lq,σ (M;T M) and Z1 := D(Aps).

By [2, Theorems V.1.5.1 and V.1.5.4], the pair (Z0, A0) generates an interpolation-extrapolation 
scale (Zβ, Aβ), β ∈ R, with respect to the complex interpolation functor. In particular, when 
β ∈ (0, 1), Aβ is the Zβ -realization of A0, where

Zβ = D(A
β
0 ) = [Z0,Z1]β

due to (3.26). Let Z�
0 := (Z0)

′ = Lq ′,σ (M; T M) and

A
�
0 : = (A0)

′ = ω − μsPH (�M − Ric�) : D(A
�
0) → Z

�
0,

D(A
�
0) = Z

�
1 := {u ∈ H 2

q ′,σ (M;T M) : P�

(
(∇u − [∇u]T)ν�

)= 0 on �}.

Then (Z�
0, A

�
0) generates an interpolation-extrapolation scale (Z�

β, A�
β), β ∈ R, the dual scale. By 

[2, Theorem V.1.5.12], it holds that

(Zβ)′ = Z
�
−β and (Aβ)′ = A

�
−β (3.27)

for β ∈ R. Particularly, when β = −1/2, the operator A−1/2 : Z1/2 → Z−1/2 satisfies

D(A−1/2) = Z1/2 = [Z0,Z1]1/2 = H 1
q,σ (M;T M),

see Proposition C.6, and Z−1/2 = (Z
�
1/2)

′. Note that

Z
�
1/2 = [Z�

0,Z
�
1]1/2 = H 1

q ′,σ (M;T M).

Therefore,

Z1/2 = X1/2 and Z−1/2 = X−1/2,

where X1/2 and X−1/2 were introduced in (2.11). By the definitions in (2.3), one can follow the 
arguments in [32, Propositions 2.3 and 2.4] and show that for any θ ∈ (0, 1)

[Z−1/2,Z1/2]θ = H 2θ−1
q,σ (M;T M) (Z−1/2,Z1/2)θ,p = B2θ−1

qp,σ (M;T M), (3.28)

see also Proposition C.5. By replacing q by q ′, we infer from Section 3.1 that A�
0 ∈ H∞(Z

�
0)

with H∞-angle φ∞
A

�
0

< π/2. Since A�
1/2 is the Z�

1/2-realization of A�
0, it follows from [28, Propo-

sition 3.3.14] and (3.27) that
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A−1/2 = (A
�
1/2)

′ ∈ H∞(Z−1/2) with H∞-angle < π/2.

We call the operator A−1/2 : Z1/2 → Z−1/2 the weak surface Stokes operator with perfect slip 
boundary conditions.

Since A−1/2 is the closure of A0 in Z−1/2, it follows that A−1/2u = A0u for all u ∈ D(A0) =
Z1. Thus for any v ∈ Z

�
1/2, it follows from (2.8), (3.11) and Lemma B.1 (b) (ii) that

〈A−1/2u|v〉M = (A0u|v)M

= ω(u|v)M + μs(∇u|∇v)M − μs(Ric�u|v)M − μs(∇uν�|v)�

= ω(u|v)M + μs(∇u|∇v)M − μs(Ric�u|v)M − μs(P�([∇u]Tν�)|v)�

= ω(u|v)M + μs(∇u|∇v)M − μs(Ric�u|v)M − μs(L�u|v)�.

By the density of Z1 in Z1/2, we infer that for all

(u, v) ∈ Z1/2 × Z
�
1/2 = H 1

q,σ (M;T M) × H 1
q ′,σ (M;T M),

〈A−1/2u|v〉M = ω(u|v)M + μs(∇u|∇v)M − μs(Ric�u|v)M − μs(L�u|v)�. (3.29)

4. H∞-calculus of surface Stokes operator with Navier boundary conditions

Recall the definition of the weak Stokes operator with Navier boundary conditions Aw
N :

X1/2 → X−1/2 provided in Section 2. In view of (3.29), easy computations show that

〈(ω + Aw
N)u|v〉M = 〈A−1/2u|v〉M + 2μs(L�u|v)� + αμs(u|v)�

is valid for all (u, v) ∈ H 1
q,σ (M; T M) × H 1

q ′,σ (M; T M). We define the operator BN : D(BN) →
X−1/2 by

〈BNu|v〉M = 2μs(L�u|v)� + αμs(u|v)�

for all (u, v) ∈ D(BN) × H 1
q ′,σ (M; T M). The domain D(BN) will be specified in the following 

calculations. By trace theory and Hölder’s inequality, we have

|〈BNu|v〉M| ≤ C‖u‖Lq(�)‖v‖Lq′ (�) ≤ C‖u‖Hs
q,σ (M)‖v‖H 1

q′,σ (M)

for any s > 1/q . Thus, by choosing D(BN) = Hs
q,σ (M; T M) = [X−1/2, X1/2]θ with s ∈ (1/q, 1)

and θ = (s + 1)/2, BN ∈ L(D(BN), X−1/2) and thus is a lower order perturbation of A−1/2 :
X1/2 → X−1/2. Then it again follows from [28, Corollary 3.3.15] that, by possibly enlarging 
ω0 > 0,

ω + Aw
N ∈ H∞(X−1/2) with H∞-angle < π/2 for all ω > ω0. (4.1)

Next, we will show that AN also admits bounded H∞-calculus. Take ω > 0 sufficiently large 
so that ω + Aw is invertible. Given any u ∈ D(AN), see (2.4) and (2.5), there exists a unique 
N
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w ∈ X1/2 such that (ω + AN)u = (ω + Aw
N)w. Because of (2.10), for all v ∈ H 1

q ′,σ (M; T M) we 
have

((ω + AN)u|v)M = 〈(ω + Aw
N)w|v〉M = 〈(ω + Aw

N)u|v〉M.

The injectivity of ω+Aw
N implies that u = w. Thus, gr(AN) ⊂ gr(Aw

N), where gr(A) is the graph 
of an operator A in X−1/2. Lemma 4.1 further implies that ω + AN : D(AN) ⊂ Lq,σ (M; T M) →
Lq,σ (M; T M) is closed and bijective. Therefore, ω + AN is the Lq,σ (M; T M)-realization of ω +
Aw

N and it inherits the bounded H∞-calculus property, i.e., there exists ω0 > 0 such that

ω + AN ∈ H∞(X0) with H∞-angle < π/2 for all ω > ω0. (4.2)

Lemma 4.1. There exists λ0 > 0 such that for every λ > λ0 and f ∈ Lq,σ (M; T M)⎧⎪⎪⎨⎪⎪⎩
(λ − PH �M − PH Ric�)u = f on M,

αu +P�

(
(∇u + [∇u]T)ν�

)= 0 on �,

(u|ν�)g = 0 on �

(4.3)

has a unique solution u ∈ H 2
q,σ (M; T M).

Proof. We proved in Proposition 3.1 that there exists λ0 > 0 such that for all λ ≥ λ0, for all 
f ∈ Lq(M; T M) and all h ∈ W

1−1/q
q (�; T �) there exists a unique solution u ∈ H 2

q (M; T M) of 
the problem ⎧⎪⎪⎨⎪⎪⎩

(λ − �M + Ric�)u = f on M,

P�

(
(∇u − [∇u]T)ν�

)= h on �,

(u|ν�)g = 0 on �,

(4.4)

and, in addition, there exists a constant C = C(λ0) > 0 such that the estimate

λ‖u‖Lq(M) + ‖u‖H 2
q (M) ≤ C

(
‖f ‖Lq(M) + λ1/2‖H‖Lq(M) + ‖H‖H 1

q (M)

)
(4.5)

holds for the solution u ∈ H 2
q (M; T M) of (4.4), where H is any extension of h from W 1−1/q

q (�)

to H 1
q (M).

In a first step, we will show that there exists λ0 > 0 such that for all λ ≥ λ0, for all f ∈
Lq(M; T M) and all h ∈ W

1−1/q
q (�; T �) there exists a unique solution (v, π) ∈ H 2

q (M; T M) ×
Ḣ 1

q (M) of the Stokes problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(λ − �M + Ric�)v + grad π = f on M,

div v = 0 on M,

P�

(
(∇v − [∇v]T)ν�

)= h on �,

(v|ν ) = 0 on �,

(4.6)
� g
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satisfying the estimate

λ‖v‖Lq(M) +‖v‖H 2
q (M) +‖grad π‖Lq(M) ≤ C

(
‖f ‖Lq(M) + λ1/2‖H‖Lq(M) + ‖H‖H 1

q (M)

)
. (4.7)

Indeed, let v := PH u = u − grad ψu, where u ∈ H 2
q (M; T M) is the unique solution of (4.4) and 

gradψu ∈ H 2
q (M; T M) is the unique solution of

{
�Bψu = div u on M,

(grad ψu|ν�)g = 0 on �,

see Lemma B.6. Defining π := λψu − div u, it follows from (3.21) that the pair (v, π) is a 
solution of (4.6). Moreover, by (B.14) and (4.5), we have the estimates

‖grad ψu‖H 2
q (M) ≤ C‖u‖H 2

q (M)

≤ C
(
‖f ‖Lq(M) + λ1/2‖H‖Lq(M) + ‖H‖H 1

q (M)

)
and

‖grad π‖Lq(M) ≤ λ‖grad ψu‖Lq(M) + ‖grad div u‖Lq(M)

≤ C
(
λ‖u‖Lq(M) + ‖u‖H 2

q (M)

)
≤ C

(
‖f ‖Lq(M) + λ1/2‖H‖Lq(M) + ‖H‖H 1

q (M)

)
,

and therefore, the functions (v, π) satisfy the estimate (4.7).
Uniqueness of the solution (v, π) to (4.6) can be seen as follows. Assume that f = 0 and 

h = 0 in (4.6). Then u := PH v = v solves (4.4) with f = 0 and h = 0, as PH Lps = LpsPH (see 
Section 3) and PH gradπ = 0. Since the solution to (4.4) is unique, it follows that v = u = 0. 
Inserting v = 0 into (4.6) we obtain grad π = 0, and therefore π = 0 in Ḣ 1

q (M).
Having the unique solvability of (4.6) and the estimate (4.7) at hand, we may apply a pertur-

bation argument as in the proof of Proposition 3.1 in order to replace the left hand side of (4.6)1
by

λv − �Mv − Ric�v = (λv − �Mv + Ric�v) − 2Ric�v

and the boundary condition (4.6)3 by

P�

(
(∇v + [∇v]T)ν�

)+ αv = P�

(
(∇v − [∇v]T)ν�

)+ 2L�v + αv.

Indeed, for v ∈ H 2
q (M; T M) it holds that

‖Ric�v‖Lq(M) ≤ C‖v‖Lq(M) ≤ λ−1C
(
λ‖v‖Lq(M) + ‖v‖H 2(M)

)
.

q
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Concerning the boundary condition, we observe that 2L�v + αv ∈ W
2−1/q
q (�) for v ∈

H 2
q (M; T M). Hence, there exists an extension Q(v) ∈ H 2

q (M) of 2L�v + αv such that

‖Q(v)‖Hs
q (M) ≤ C(s)‖v‖Hs

q (M), v ∈ H 2
q (M;T M), s ∈ [0,2].

Then, by complex interpolation and Young’s inequality,

‖Q(v)‖H 1
q (M) ≤ C‖v‖H 1

q (M) ≤ λ−1/2C
(
λ‖v‖Lq(M) + ‖v‖H 2

q (M)

)
,

and

λ1/2‖Q(v)‖Lq(M) ≤ λ1/2C‖v‖Lq(M) ≤ λ−1/2C
(
λ‖v‖Lq(M) + ‖v‖H 2

q (M)

)
.

Therefore, a very similar Neumann series argument as in the proof of Proposition 3.1 yields the 
existence of a number λ0 > 0 such that for all λ ≥ λ0 and for all f ∈ Lq(M; T M) there exists a 
unique solution (u, π) ∈ H 2

q (M; T M) × Ḣ 1
q (M) of the problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(λ − �M − Ric�)u + grad π = f on M,

div u = 0 on M,

P�

(
(∇u + [∇u]T)ν�

)+ αu = 0 on �,

(u|ν�)g = 0 on �,

satisfying the estimate

λ‖u‖Lq(M) + ‖u‖H 2
q (M) + ‖grad π‖Lq(M) ≤ C‖f ‖Lq(M). �

Proof of Theorem 2.1. The assertions (a) and (b) of the Theorem are contained in (4.1) and 
(4.2). �
5. Existence and uniqueness of solutions

Based on the bounded H∞-calculus property of Aw
N and AN , the local well-posedness of 

(1.1) can be proved as in [30,32,37]. For the sake of completeness, we will nevertheless include 
a proof here.

By applying the Helmholtz projection PH on (1.1)1, one can readily see that the weak formu-
lation of (1.1) is equivalent to the following abstract semilinear evolution equation{

∂tu + Aw
Nu = F w(u), t > 0,

u(0) = u0,
(5.1)

where for all (u, v) ∈ H 1
q,σ (M; T M) × H 1

q ′,σ (M; T M)

〈F w(u)|v〉M = (u ⊗ u�|∇v)M,
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where we used Lemma B.1 and the fact that ∇uu = div (u ⊗u) (which holds since divu = 0). For 
notational brevity, we put

Xw
0 = X−1/2 and Xw

1 = X1/2.

Due to (3.28),

Xw
β := [Xw

0 ,Xw
1 ]β = H 2β−1

q,σ (M;T M) ↪→ L2q,σ (M;T M)

provided 2β − 1 ≥ n/2q . Then by taking 2β − 1 = n/2q and using Hölder’s inequality, we infer 
that ∣∣〈F w(u)|v〉M

∣∣≤ ‖u‖2
L2q (M)‖∇v‖Lq′ (M) ≤ C‖u‖2

Xw
β
‖v‖H 1

q′ (M)

and hence

‖F w(u)‖Xw
0

≤ C‖u‖2
Xw

β
.

With 2β − 1 = n/2q , which means q ∈ (n/2, ∞) as β < 1, the critical weight μw
c and the corre-

sponding critical space in the weak setting read as

Xw
γ,μw

c
= (Xw

0 ,Xw
1 )μw

c −1/p,p = B
n/q−1
qp,σ (M;T M), μw

c = 2β − 1 + 1

p
= 1

p
+ n

2q
,

with 2/p + n/q ≤ 2, see (3.28) and [32, Proposition 2.4 & Section 3.3] (for the Euclidean case).
Next, let us compute the critical spaces in the strong setting. To this end, we consider the 

following abstract evolution equation, which is equivalent to the strong formulation of (1.1){
∂tu + ANu = F(u) := −PH (∇uu), t > 0,

u(0) = u0.
(5.2)

It follows from Hölder’s inequality that

‖F(u)‖Lq(M) ≤ C‖u‖Lqr′ (M)‖u‖H 1
qr (M),

where 1/r + 1/r ′ = 1. We choose 1 − n

qr
= − n

qr ′ , or equivalently 
n

qr
= 1

2

(
1 + n

q

)
, so that

H 1
qr (M;T M) ↪→ Lqr ′(M;T M).

Note that this choice is feasible if q ∈ (1, n).
By interpolation theory and Sobolev’s embedding theorem,

[X0,X1]β ⊂ H 2β
q (M;T M) ↪→ H 1

qr (M;T M),

provided
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2β − n

q
= 1 − n

qr
, or equivalently β = 1

4

(
n

q
+ 1

)
.

In summary, we have shown that

‖F(u)‖Lq ≤ C‖u‖2
Xβ

, u ∈ Xβ.

The condition β < 1 requires q > n/3. Hence, for q ∈ (n/3, n), the critical weight in the strong 
setting is given by

μc = 2β − 1 + 1

p
= 1

2

(
n

q
− 1

)
+ 1

p
, with

2

p
+ n

q
≤ 3,

and the corresponding critical space in the strong setting is given by Xγ,μc := (X0, X1)μc−1/p,p , 
where

Xγ,μc = B
n/q−1
qp,σ,B(M;T M) in case n/q − 1 �= 1 + 1/q, (5.3)

see Proposition C.4.
The above discussions give rise to the following theorem concerning the local well-posedness 

of (5.1), respectively (1.1).

Theorem 5.1. (a) Let p ∈ (1, ∞) and q ∈ (n/2, ∞) such that 2
p

+ n
q

≤ 2. Then for any initial 

value u0 ∈ B
n/q−1
qp,σ (M; T M), there exists a unique weak solution

u ∈ H 1
p,μw

c
((0, t+);H−1

q,σ (M;T M)) ∩ Lp,μw
c
((0, t+);H 1

q,σ (M;T M))

of (5.1) for some t+ = t+(u0) > 0 with μw
c = 1/p + n/2q . The solution exists on a maximal time 

interval [0, tmax(u0)) and depends continuously on u0. Moreover,

u ∈ C([0, tmax);Bn/q−1
qp,σ (M;T M)) ∩ C((0, tmax);B1−2/p

qp,σ (M;T M)).

If, in addition, q ≥ n, the solution u satisfies

u ∈ H 1
p,loc((0, tmax);Lq,σ (M;T M)) ∩ Lp,loc((0, tmax);H 2

q,σ (M;T M)). (5.4)

Hence, any solution regularizes instantaneously and becomes a strong solution in case q ≥ n.
(b) If p ∈ (1, ∞) and q ∈ (n/3, n) with 2

p
+ n

q
≤ 3, then for any initial value u0 ∈ Xγ,μc , 

see (5.3) for a characterization, there exists a unique strong solution

u ∈ H 1
p,μc

((0, t+);Lq,σ (M;T M)) ∩ Lp,μc ((0, t+);H 2
q,σ (M;T M))

of (5.2) for some t+ = t+(u0) > 0 with μc = 1/p+n/2q −1/2. The solution exists on a maximal 
time interval [0, tmax(u0)) and depends continuously on u0. Moreover,

u ∈ C([0, tmax);Bn/q−1
qp,σ (M;T M)) ∩ C((0, tmax);B2−2/p

qp,σ (M;T M)).
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Proof. Because of (4.1) and (4.2), the local existence and uniqueness of a solution is an imme-
diate consequence of [31, Theorem 1.2], see also [29, Theorem 2.1].

It remains to show the additional regularity property (5.4). Suppose q ≥ n and choose r = 2p. 
As r > p, we have

B
n/q−1
qp,σ (M;T M) ↪→ B

n/q−1
qr,σ (M;T M) = (Xw

0 ,Xw
1 )μr−1/r,r =: Xw

γ,μr
, with μr = 1/r + n/2q.

Note that μr < 1. We can now consider problem (5.1) with initial value u0 ∈ Xw
γ,μr

. By unique-
ness and [29, Theorem 2.1], we conclude that the solution u regularizes and satisfies

u(t0) ∈ B
1−2/r
qr,σ (M;T M) = (Xw

0 ,Xw
1 )1−1/r,r =: Xw

γ,1

for any t0 ∈ (0, tmax). Choosing μ ∈ (1/p, 1/2 + 1/2p), we have the embedding

B
1−2/r
qr,σ (M;T M) ↪→ B

2μ−2/p
qp,σ (M;T M)

at our disposal. Next, we note that

‖F(u)‖Lq(M) ≤ C‖u‖L∞(M)‖u‖H 1
q (M)

for all

u ∈ (X0,X1)β,p ⊂ B2β
qp (M;T M) ↪→ L∞(M;T M) ∩ H 1

q (M;T M),

provided 2β > 1 and q ≥ n. Now we can solve (5.2) with initial value u(t0) ∈ B
2μ−2/p
qp,σ (M; T M)

to obtain a strong solution by using [20, Theorem 2.1]. The asserted regularity (5.4) now follows 
from uniqueness of solutions. �

The following plot is helpful to illustrate the results in Theorem 5.1. When ( 1
q
, 1

p
) is

• in region A we have weak solutions, which immediately regularize and become strong solu-
tions;
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• in region B , we have strong solutions.

The proof of Theorem 5.1 has an immediate byproduct.

Corollary 5.2. Let p ∈ (1, ∞), q ∈ [n, ∞) and μ ∈ (1/p, 1]. Then for any initial value u0 ∈
(X0, X1)μ−1/p,p , where

(X0,X1)μ−1/p,p = B
2μ−2/p

qp,σ,B (M;T M) in case 2μ − 2/p �= 1 + 1/q,

there exists a unique strong solution

u ∈ H 1
p,μ((0, t+);Lq,σ (M;T M)) ∩ Lp,μ((0, t+);H 2

q,σ (M;T M))

of (5.2) for some t+ = t+(u0) > 0. The solution exists on a maximal time interval [0, tmax(u0))

and depends continuously on u0. Moreover,

u ∈ C([0, tmax);B2μ−2/p
qp,σ (M;T M)) ∩ C((0, tmax);B2−2/p

qp,σ (M;T M)).

Remark 5.3. Concerning Theorem 5.1, two cases are of particular interest.

(i) Suppose that n ≥ 2. Then for every u0 ∈ Ln,σ (M; T M), (5.1) has a unique solution satisfying 
the regularity properties stated in Theorem 5.1(a) with q = n for each fixed p ≥ n. Therefore, 
Theorem 5.1 reproduces the celebrated results by Giga and Miyakawa [14] (obtained for no-
slip boundary conditions) for Navier boundary conditions.

(ii) Suppose that n = 2, 3. Choosing p = q = 2 we can admit initial values u0 ∈ H
n/2−1
2,σ (M; T M). 

This generalizes the celebrated results by Fujita and Kato [10,18].
In particular, if n = 2, for any u0 ∈ L2,σ (M; T M), (5.1) has a unique solution satisfying 
the regularity properties stated in Theorem 5.1(a) with q = p = 2. Moreover, the solution 
satisfies

u ∈ H 1
p,loc((0, tmax);Lq,σ (M;T M)) ∩ Lp,loc((0, tmax);H 2

q,σ (M;T M))

for any fixed p, q > 1.

Proof. The assertions can be shown by following the proofs of [30, Corollary 4.4 and Theo-
rem 4.5] line by line. �
6. Large time behavior

6.1. Characterization of equilibria

We will begin the analysis of large time behavior by a characterization of the spectrum of 
Aw

N . Since X1/2 is compactly embedded in X−1/2, the spectrum σ(Aw
N) consists only of isolated 

eigenvalues and is independent of the choice of q . By Green’s first identity, Lemma B.1, one 
obtains for all (u, v) ∈ D(AN,q) × H 1′ (M; T M)
q ,σ
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〈Aw
Nu|v〉M = (ANu|v)M

= 2μs(Du|Dv)M − μs(P�(∇u + [∇u]T)ν�|v)�

= 2μs(Du|Dv)M + αμs(P�u|P�v)�

= 2μs(Du|Dv)M + αμs(u|v)�.

(6.1)

By a density argument, one readily sees that (6.1) holds for all (u, v) ∈ H 1
q,σ (M; T M) ×

H 1
q ′,σ (M; T M). Suppose

Aw
Nu = λu,

for some λ ∈ C and u ∈ H 1
2,σ (M; T MC), with T MC = T M + iT M denoting the complexified 

tangent bundle. (6.1) implies

λ‖u‖2
L2(M) = 2μs‖Du‖2

L2(M) + αμs‖u‖2
L2(�), (6.2)

and thus, λ ≥ 0, i.e., σ(Aw
N) ⊂ [0, ∞). It follows that ω + Aw

N ∈ S(Lq,σ (M; T M)) is invertible 
with spectral angle φω+Aw

N
< π/2 for all ω > 0. Applying one more time [28, Corollary 3.3.15]

and taking advantage of (4.1) yields ω+Aw
N ∈ H∞(X−1/2) with H∞-angle < π/2, for all ω > 0. 

Following the discussion in Section 4, it is not hard to see that the same holds true for AN .
Moreover, (6.2) shows that N(Aw

N) ⊆ Eα , which is defined by

Eα =
{

{u ∈ H 1
2,σ (M;T M) : Du = 0 on M and u = 0 on �} if α > 0

{u ∈ H 1
2,σ (M;T M) : Du = 0 on M and (u|ν�)g = 0 on �} if α = 0.

Conversely, if u ∈ Eα , (6.1) implies that Aw
Nu = 0. Hence, N(Aw

N) = Eα .

Remark 6.1. Any element u ∈ Eα is a Killing vector field on M, that is, it satisfies

(∇vu|w)g + (∇wu|v)g = 0, ∀v,w ∈ C∞(M;T M). (6.3)

Proposition 6.2.

Eα =
{

{0} if α > 0

{u ∈ C∞(M;T M) : Du = 0 on M and (u|ν�)g = 0 on �} if α = 0.

Proof. Suppose u ∈ H 1
2,σ (M; T M) and Du = 0. Then (Du)� = 0 as well. Let u = uk ∂

∂xk be a 
representation of u in local coordinates. Then, in local coordinates,

(Du)� =
(
gkiu

k
|j + gkju

k
|i
)

dxi ⊗ dxj =: (ui|j + uj |i
)
dxi ⊗ dxj .

The relation (Du)� = 0 then reads

ui|j + uj |i = ∂ui + ∂uj − 2	ℓ
ijuℓ = 0, 1 ≤ i, j ≤ n.
∂xj ∂xi
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Arguing as in the proof of [27, Lemma 3], we conclude that u ∈ C∞(M; T M).
Suppose now that α > 0. Let u ∈ Eα . Since u = 0 on �, one can immediately infer that ∇vu =

0 on � for any v ∈ C∞(�; T �). To show ∇ν�u = 0, we first observe that (∇ν�u|ν�)g = 0, as u
is a Killing field, see (6.3). Next, we get for any v ∈ C∞(�; T �)

(∇ν�u|v)g = −(∇vu|ν�)g = 0,

where we use, once more, the property that u is a Killing field and ∇vu = 0. This yields ∇vu = 0
for each vector field v ∈ C∞(�; T M), and hence ∇u = 0 on �. It then follows from [26, Chapter 
7, Proposition 28] that u = 0. �

Remark 6.3. Although, in general, E0 is non-trivial, E0 = {0} holds under some specific condi-
tions, for instance in case

(i) Ric� < 0 and L� ≥ 0, or
(ii) Ric� ≤ 0 and L� > 0,

see the proof of Lemma B.3, and also [41,42].

Proposition 6.4. Eα is the set of equilibria of (5.1), respectively (5.2). That is, the set of equilibria 
of (5.1), respectively (5.2), are exactly the Killing vector fields as characterized in Proposi-
tion 6.2.

Proof. Assume that u∗ is an equilibrium of (5.1), i.e., u ∈ D(AN) and

ANu∗ = F(u∗).

Using the metric property of (·|·)g and the fact that (u∗|ν�)g = 0, it follows from (B.1) that

(F (u∗)|u∗)M = −(∇u∗u∗|u∗)M = −1

2

∫
M

∇u∗ |u∗|2g dμg = 0.

Following the computations in (6.1), we get

0 = (F (u∗)|u∗)M = (Aw
N(u∗)|u∗)M = 2μs‖Du∗‖2

L2(M) + αμs‖u∗‖2
L2(�).

Therefore, u∗ ∈ Eα .
Conversely, if u∗ ∈ Eα , then it is clear that ANu∗ = 0. On the other hand, by the definition of 

PH , one can show that

PH ∇u∗u∗ = PH ((∇u∗)u∗) = −PH

([∇u∗]Tu∗
)= −1

2
PH

(
grad |u∗|2g

)
= 0.

This shows that u∗ is an equilibrium of (5.2). �
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With the convention that H 0
2,σ (M; T M) := L2,σ (M; T M), we put

V
j
2 = {u ∈ H

j
2,σ (M;T M) : (u|v)M = 0 ∀v ∈ Eα}, j = 0,1. (6.4)

In [27, Lemma 6], it was shown that Eα is a finite dimensional space. Thus, V j
2 is a closed 

subspace of Hj

2,σ (M; T M) and

H
j
2,σ (M;T M) = Eα ⊕ V

j
2 , j = 0,1, (6.5)

by a similar argument to [37, Remark 4.10 (a)].

6.2. Global existence and convergence for 2D

In this subsection, we consider the case n = 2. Given any u∗ ∈ Eα , we consider the evolution 
equation {

∂tu + ANu = G∗(u) := −PH (∇uu + ∇uu∗ + ∇u∗u), t > 0,

u(0) = u0
(6.6)

and its weak counterpart {
∂tu + Aw

Nu = Gw∗ (u), t > 0,

u(0) = u0,
(6.7)

where

〈Gw∗ (u)|φ〉M = (u ⊗ u�|∇φ)M + (u∗ ⊗ u�|∇φ)M + (u ⊗ (u∗)�|∇φ)M, φ ∈ Ḣ 1
q ′,σ (M;T M).

Note that, by choosing p = q = 2, the critical weight is μw
c = 1 and the corresponding critical 

trace space is

Xw
γ,μw

c
= (X−1/2,X1/2)1/2,2 = [X−1/2,X1/2]1/2 = L2,σ (M;T M),

see (3.28). Hence, by applying a similar argument to Remark 5.3 (ii), one can immediately infer 
that for every u0 ∈ L2,σ (M; T M), (6.7) has a unique solution

u ∈ H 1
2 ((0, t+);H−1

2,σ (M;T M)) ∩ L2((0, t+);H 1
2,σ (M;T M))

for some t+ = t+(u0) > 0. The solution exists on a maximal time interval [0, tmax(u0)). In addi-
tion, it holds that

u ∈ H 1
p,loc((0, tmax);Lq,σ (M;T M)) ∩ Lp,loc((0, tmax);H 2

q,σ (M;T M)) (6.8)

for any fixed p, q ∈ (1, ∞), and u also solves (6.6).
Next we show that any solution of (6.7) with initial value u0 ∈ L2,σ (M) that is orthogonal to 

Eα remains orthogonal for all later times. Moreover, we establish an energy estimate for such 
solutions.
1635



Y. Shao, G. Simonett and M. Wilke Journal of Differential Equations 416 (2025) 1602–1659
Lemma 6.5. Assume that n = 2. Given u0 ∈ V 0
2 , let u be the unique solution of (6.7). Then

(a) u(t) ∈ V 1
2 for all t ∈ (0, tmax(u0));

(b) there exists a constant C > 0 such that

‖u(t)‖2
L2(M) + C

t∫
0

‖u(s)‖2
H 1

2 (M)
ds ≤ ‖u0‖2

L2(M), t ∈ (0, tmax(u0)); (6.9)

(c) tmax(u0) = +∞. Moreover, there exists a constant β > 0 such that

‖u(t)‖L2(M) ≤ e−βt‖u0‖L2(M), t ≥ 0. (6.10)

Proof. (a) Pick any z ∈ Eα .
In the sequel, we suppress the time variable and simply write u in lieu of u(t). Following the 

computations in (6.1), we have

〈ANu|z〉M = 2μs(Du|Dz)M + αμs(u|z)� = 0. (6.11)

Moreover, it holds that

〈G∗(u)|z〉M = (∇uu|z)M + (∇u∗u|z)M + (∇uu∗|z)M = 0. (6.12)

We note that in (6.11) and (6.12) we may use the ‘strong’ operators AN and G∗, as solutions 
immediately regularize, see (6.8). To show (6.12), we employ the metric property to obtain

(∇u∗u|z)g + (∇uu∗|z)g = ∇u∗(u|z)g + ∇u(u∗|z)g − (u|∇u∗z)g − (u∗|∇uz)g.

Since z is a Killing vector field, we infer that

(u|∇u∗z)g + (u∗|∇uz)g = 0, (6.13)

see (6.3). Meanwhile, Lemma B.1, implies∫
M

[∇u∗(u|z)g + ∇u(u∗|z)g
]

dμg = 0.

Similar computations show that

(∇uu|z)M = 0.

Combining (6.11) and (6.12) yields

0 = 〈∂tu(t)|z〉M = ∂t (u(t)|z)M.

Hence (u(t)|z)M = 0 and u(t) ∈ V 1 for all t ∈ (0, tmax(u0)).
2
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(b) Due to (6.8), u is a valid test function in (6.6). Multiplying (6.6)1 by u and integrating 
over M yields

d

dt
‖u(t)‖2

L2(M) = −4μs‖D(u)‖2
L2(M) − 2αμs‖u‖2

L2(�) + 2(G∗(u)|u)M.

Following a similar computation as in Part (a) and using the fact that u∗ is a Killing vector field, 
one can show that

(G∗(u)|u)M = 0.

We thus have

d

dt
‖u(t)‖2

L2(M) = −4μs‖D(u)‖2
L2(M) − 2αμs‖u‖2

L2(�) ≤ −C‖u‖2
H 1

2 (M)
, (6.14)

where the last step follows from Korn’s inequality, cf. Lemma B.3. Integrating both sides with
respect to time gives (6.9).

(c) Part (b) shows that

u ∈ L2((0, tmax(u0));H 1
2,σ (M;T M)).

It follows from [29, Theorem 2.4] that tmax(u0) = +∞. An immediate consequence of (6.14) is

d

dt
‖u(t)‖2

L2(M) + C‖u‖2
L2(M) ≤ 0, ∀t > 0.

Solving the above ordinary differential inequality gives (6.10). �
Now we are in a position to prove the main theorem of this subsection.

Theorem 6.6. Let n = 2. Then for every u0 ∈ L2,σ (M; T M), the unique solution u to (5.1) with 
initial value u0 exists globally and enjoys the regularity properties listed in Remark 5.3 (ii). Fur-
thermore, for any fixed q ∈ (1, ∞), u converges to the equilibrium u∗ := PEα

u0 in the topology 
of H 2

q,σ (M; T M) at an exponential rate as t → ∞, where PEα
denotes the orthogonal projection 

from L2,σ (M; T M) onto Eα .

Proof. In view of (6.5), we can decompose u0 into u0 = u∗ + v0 such that v0 ∈ V 0
2 . Let v(t) be 

the (unique) solution to {
∂tv + Aw

Nv = Gw∗ (v), t > 0,

v(0) = v0.

By Lemma 6.5, v exists globally. Then it follows from Proposition 6.4 that

u(t) = u∗ + v(t)

is the unique global solution of (5.1) with initial value u0. As was proved in Lemma 6.5,
1637



Y. Shao, G. Simonett and M. Wilke Journal of Differential Equations 416 (2025) 1602–1659
‖u(t) − u∗‖L2(M) = ‖v(t)‖L2(M) ≤ e−βt‖v0‖L2(M) = e−βt‖u0 − u∗‖L2(M), t > 0,

for some β > 0. The convergence in the stronger topology H 2
q,σ (M; T M) can be proved in the 

same way as in [37, Theorem 4.9]. �
6.3. Stability near killing vector fields

In this subsection, we will establish the stability of solutions of (5.1), respectively (1.1), with 
initial values close to a Killing vector field for n > 2.

For any fixed u∗ ∈ Eα , the linearization of the operator [u �→ (Aw
Nu − F w(u))] is given by the 

operator Aw
0 : X1/2 → X−1/2, defined by

〈Aw
0 u|v〉M = 〈Aw

Nu|v〉M − (u ⊗ (u∗)� + u∗ ⊗ u�|∇v)M

for all (u, v) ∈ H 1
q,σ (M; T M) × H 1

q ′,σ (M; T M). In other words, Aw
0 = Aw

N + B , where B is the 
linear operator from Lq,σ (M; T M) to X−1/2 defined by

〈Bu|v〉M = −(u ⊗ (u∗)� + u∗ ⊗ u�|∇v)M, v ∈ H 1
q ′,σ (M;T M).

Proposition 6.2 shows that Eα ⊂ C∞(M). Direct computations yield

|〈Bu|v〉M| ≤ C‖u‖Lq(M)‖v‖H 1
q′ (M).

Therefore, B ∈ L(Lq,σ (M; T M), X−1/2). From [28, Corollary 3.3.15], we infer that for some 
sufficiently large ω0 > 0

ω + Aw
0 ∈ H∞(X−1/2) with H∞-angle < π/2 for all ω > ω0.

Let A0 ∈ L(D(AN,q), Lq,σ (M; T M)) be the operator defined by

A0u = 2μsPH divD(u) + PH

(∇uu∗ + ∇u∗u
)
.

By applying a similar argument to AN , we can show that by possibly further increasing ω0 > 0

ω + A0 ∈ H∞(Lq,σ (M;T M)) with H∞-angle < π/2 for all ω > ω0.

Since X1/2 is compactly embedded in X−1/2, the spectrum of Aw
0 consists only of isolated eigen-

values and is independent of the choice of q . Suppose

Aw
0 u = λu,

for some λ ∈C. Following the computations in (6.1), it is not difficult to check that

Reλ‖u‖2
L2(M) = Re(〈Aw

0 u|u〉M)

= 2μ ‖D ‖2 + αμ ‖u‖2 + Re(Bu|u) .
(6.15)
s u L2(M) s L2(�) M
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We observe that for all v ∈ H 1
2,σ (M; T MC), with T MC denoting the complexified tangent bundle,

Re(Bv|v)g = −Re (v ⊗ (u∗)� + u∗ ⊗ v�|∇v)g = −Re [(u∗|∇vv)g + (v|∇u∗v)g]

= −Re∇v(u∗|v)g − 1

2
∇u∗ |v|2g + Re (∇vu∗|v)g,

where we used the metric property of (·|·)g . It follows from (B.1) that∫
M

(
Re∇v(u∗|v)g − 1

2
∇u∗ |v|2g

)
dμg = 0.

Finally, the definition of Killing vector fields implies

Re(∇vu∗|v)g = 0.

Therefore, Re(Bu|u)M = 0 and this shows that Reλ ≥ 0. When Reλ = 0, one can infer from 
(6.15) that u ∈ Eα . This implies N(Aw

0 ) ⊆ Eα .
Conversely, if z ∈ Eα , then for any v ∈ H 1

q ′,σ (M; T M), the above computations show

〈Aw
0 z|v〉M = (PH (∇zu∗ + ∇u∗z)|v)M.

As Du∗ = Dz = 0, we obtain

PH (∇zu∗ + ∇u∗z) = PH ((∇u∗)z + (∇z)u∗) = −PH ((∇u∗)Tz + (∇z)Tu∗)

= −PH grad (u∗|z)g = 0

in virtue of the definition of PH . This implies that z ∈ N(Aw
0 ). In summary, we conclude that

N(Aw
0 ) = Eα

and σ(Aw
0 ) ∩ iR = {0}. Next, we will show that the eigenvalue 0 of Aw

0 is semi-simple. Indeed, if

Aw
0 u = z ∈ Eα,

then it follows from similar computations as in (6.11) and (6.13) that

‖z‖2
L2(M) = 〈Aw

0 u|z〉M

= 〈Aw
Nu|z〉M − (PH (∇uu

∗ + ∇u∗u)|z)M

= 2μs(Du|Dz)M + αμs(u|z)� − (∇uu
∗|z)M − (∇u∗u|z)M = 0.

This shows that z = 0 and thus, N(Aw
0 ) = N((Aw

0 )2). As Eα is a linear space, we clearly have 
Tu∗Eα = N(Aw

0 ). From Proposition 6.4 and [28], we learn that Aw
N is normally stable. So we can 

apply [28, Theorem 5.3.1] to obtain the following theorem.
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Theorem 6.7. Suppose that n > 2, p ∈ (1, ∞) and q ∈ (n/2, ∞) such that 2
p

+ n
q

≤ 2.
Then for each u∗ ∈ E0, there exists some δ = δ(u∗) > 0 such that the solution u of (5.1) with 
initial value u0 ∈ B

n/q−1
qp,σ (M; T M) satisfying

‖u0 − u∗‖B
n/q−1
qp

≤ δ

exists globally and converges at an exponential rate to some z ∈ E0

(i) in the topology of B1−2/p
qp (M; T M),

(ii) in the topology of B2−2/p
qp (M; T M) if q ≥ n.

Proof. According to Theorem 5.1, problem (5.1) has for each u0 ∈ B
n/q−1
qp,σ (M; T M) a unique 

solution u in the regularity class asserted by the theorem. In order to show assertions (i) and (ii), 
we will employ [28, Theorem 5.3.1] for initial values in (Xw

0 , Xw
1 )1−1/r,r for the weak setting, or 

in (X0, X1)1−1/r,r for the strong setting, with r properly chosen.
(i) We will first show that any solution u to (5.1) with initial value u0 close to u∗ in 

B
n/q−1
qp,σ (M; T M) will also be close to u∗ in (Xw

0 , Xw
1 )1−1/r,r , for any fixed positive (sufficiently 

small) time and appropriate r > p.
Suppose r > p. As in the proof of Theorem 5.1, we have

B
n/q−1
qp,σ (M;T M) ↪→ B

n/q−1
qr,σ (M;T M) = (Xw

0 ,Xw
1 )μr−1/r,r =: Xw

γ,μr
, (6.16)

where μr = 1/r + n/2q . Moreover,

u(t0) ∈ B
1−2/r
qr,σ (M;T M) = (Xw

0 ,Xw
1 )1−1/r,r =: Xw

γ,1

for any fixed time t0 ∈ (0, tmax). Using Lipschitz continuity of solutions with respect to initial 
data and the regularization property, there exists a positive number t0 and a constant C(t0) such 
that

‖u(t0) − u∗‖B
1−2/r
qr

≤ C(t0)‖u0 − u∗‖B
n/q−1
qr

≤ C(t0)‖u0 − u∗‖B
n/q−1
qp

, (6.17)

for any initial value u0 sufficiently close to u∗ in Bn/q−1
qp,σ (M; T M). Indeed, as solutions to (5.1)

depend Lipschitz continuously on the initial data, see [29, Theorem 1.2], there are numbers t0
and M > 0 such that

‖u − u∗‖Ew
1,μr

(0,2t0) ≤ M‖u0 − u∗‖Xw
γ,μr

(6.18)

for any initial value u0 sufficiently close to u∗ in Xw
γ,μr

. Here we have set

Ew
1,μ(T1, T2) := H 1

p,μ((T1, T2);Xw
0 ) ∩ Lp,μ((T1, T2);Xw

1 ),

for 0 ≤ T1 < T2 < ∞. Since Ew
1,μ(t0, 2t0) ↪→ Ew

1,1(t0, 2t0) ↪→ BUC((t0, 2t0); Xw
γ,1) for any μ ∈

(1/p, 1], we obtain with (6.18)
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‖u(t0) − u∗‖Xw
γ,1

≤ sup
t∈[t0,2t0]

‖u(t) − u∗‖Xw
γ,1

≤ C‖u − u∗‖Ew
1,1(t0,2t0)

≤ Ct
μr−1
0 ‖u − u∗‖Ew

1,μr
(t0,2t0) ≤ C(t0)‖u0 − u∗‖Xw

γ,μr
.

(6.19)

The assertion in (6.17) follows now from (6.16) and (6.19).
Hence ‖u(t0) −u∗‖B

1−2/r
qr

can be made as small as we wish by making ‖u0 −u∗‖B
n/q−1
qp

small. 

It follows from the embedding

B
1−2/r
qr,σ (M;T M) ↪→ L2q,σ (M;T M),

which holds true as 4/r + n/q < 2 (here we need r > 2p), and the estimate

(u1 ⊗ (u2)�|∇v)M ≤ ‖u1‖L2q (M)‖u2‖L2q (M)‖v‖H 1
q′ (M)

that F w ∈ C1(B
1−2/r
qr,σ (M; T M), Xw

0 ). We can now deduce from [28, Theorem 5.3.1] that each 
solution with initial value u0 satisfying ‖u0 −u∗‖B

n/q−1
qp

≤ δ, with δ > 0 sufficiently small, exists 

globally and converges exponentially fast to some z ∈ E0 in the topology of B1−2/r
qr (M; T M). The 

embedding

B
1−2/r
qr (M;T M) ↪→ B

1−2/p
qp (M;T M),

then yields the assertion in (i).
We note that by the embedding B1−2/p

qp (M; T M) ↪→ B
n/q−1
qp (M; T M), solutions also converge 

in the topology of critical spaces.
(ii) The arguments in step (i) show that u(t0) ∈ B

1−2/r
qr (M; T M) and that (6.17) holds true for 

any r > p and any fixed time t0 ∈ (0, tmax). In the following, we assume r > max{p, 2}. We then 
have the embedding

B
1−2/r
qr,σ (M;T M) ↪→ B

2μ−2/r
qr,σ (M;T M)

for any fixed μ ∈ (1/r, 1/2]. We can now consider problem (5.2) with initial value

u(t0) ∈ (X0,X1)μ−1/r,r = B
2μ−2/r
qr,σ (M;T M).

By regularization and uniqueness, we have

u(t0 + t1) ∈ (X0,X1)1−1/r.r ↪→ B
2−2/r
qr (M;T M),

for any fixed time t1 > 0 such that t0 + t1 < tmax.
An analogous argument to (6.19), with Xw

j replaced by Xj , j = 1, 2, and μr replaced by μ, 
shows that ‖u(t0 + t1) −u∗‖B

2−2/r
qr

can be made as small as we wish by choosing ‖u0 −u∗‖B
n/q−1
qp

small.
The condition r > 2 and q ≥ n ensures

(X0,X1)1−1/r,r ↪→ B
2−2/r
qr (M;T M) ↪→ H 1

q (M;T M) ∩ L∞(M;T M).
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Since ‖F(u)‖Lq(M) ≤ C‖u‖L∞(M)‖u‖H 1
q (M) we conclude that F ∈ C1((X0, X1)1−1/r,r , X0).

Theorem 5.3.1 in [28] then implies that each solution with initial value close to u∗ in 
(X0, X1)1−1/r,r exists globally and converges exponentially fast to some z ∈ E0 in the topology of 
B

2−2/r
qr (M; T M). By the previous steps and the embedding B2−2/r

qr (M; T M) ↪→ B
2−2/p
qp (M; T M), 

which hold for ant r > p, we obtain assertion (ii). �
Remark 6.8. In case q ≥ n, analogous arguments as in [37, Remarks 4.10] show that every 
global solution of (5.1), respectively (5.2), with initial value u0 converges exponentially fast to 
an equilibrium, namely to PE0u0, where PE0 is the projection onto the finite dimensional space 
E0. Hence z = PE0u0 in Theorem 6.7 in the particular case q ≥ n.

Corollary 6.9. Suppose that Eα = {0}, p ∈ (1, ∞) and q ∈ (n/2, ∞) such that 2
p

+ n
q

≤ 2.
Then there exists some δ > 0 such that the assertions (i) and (ii) of Theorem 6.7 hold true with 
z = 0 for any initial value u0 ∈ B

n/q−1
qp,σ (M; T M) satisfying ‖u0‖B

n/q−1
qp

≤ δ.
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Appendix A. Tensor bundles and the Levi-Civita connection

Let M be a compact, smooth, and oriented n-dimensional Riemannian manifold with boundary 
� = ∂M and let (·|·)g denote the Riemann metric on M. We will use the same notation for the 
(induced) Riemann metric on �.

Then T M and T ∗M denote the tangent and the cotangent bundle of M, respectively, and 
T σ

τ M := T M⊗σ ⊗ T ∗M⊗τ stands for the (σ, τ)-tensor bundle of M for σ, τ ∈ N . The notations 
	(M; T σ

τ M) and T σ
τ M stand for the set of all sections of T σ

τ M and the C∞(M)-module of all 
smooth sections of T σ

τ M, respectively. For abbreviation, we put Jσ := {1, 2, . . . , n}σ , and J τ is 
defined alike.

Given local coordinates {x1, . . . , xn},

(i) := (i1, · · · , iσ ) ∈ Jσ , (j) := (j1, · · · , jτ ) ∈ J τ ,

we set

∂

∂x(i)
:= ∂

∂xi1
⊗ · · · ⊗ ∂

∂xiσ
, dx(j) := dxj1 ⊗ · · · ⊗ dxjτ .

Suppose that a ∈ 	(M; T σ
τ M) is a K-valued, K ∈ {R, C}, tensor bundle on M. In this appendix, 

for notational brevity, we denote both T σ
τ M and its complexification by T σ

τ M. The local repre-
sentation of a with respect to these coordinates is given by

a = a
(i)
(j)

∂

∂x(i)
⊗ dx(j), with a

(i)
(j) : Uk → K,
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where Uk ⊂ M is a coordinate patch.
For s ∈ {1, . . . , σ }, t ∈ {1, . . . , τ } and a ∈ 	(M; T σ

τ M), Cs
t (a) ∈ 	(M; T σ−1

τ−1 M) denotes the 
contraction of a with respect to the (s, t)-position. This means that in a local representation of a,

a = a
(i1,...,is ,...,iσ )
(j1,...,jt ,...,jτ )

∂

∂xi1
⊗ · · · ⊗ ∂

∂xis
⊗ · · · ⊗ ∂

∂xiσ
⊗ dxj1 ⊗ · · · ⊗ dxjt ⊗ · · · ⊗ dxjτ ,

the terms ∂
∂xis

and dxjt are deleted and a(i1,...,is ,...,iσ )
(j1,...,jt ,...,jτ )

is replaced by a(i1,...,k,...,iσ )
(j1,...,k,...,jτ )

, and the sum 
convention is used for k.

Any S ∈ 	(M; T 1
1 M) induces a linear map from 	(M; T M) to 	(M; T M) by virtue of

Su = (Si
j

∂

∂xi
⊗ dxj )u = Si

ju
j ∂

∂xi
, u = uj ∂

∂xj
∈ 	(M;T M).

The dual S∗ of S ∈ 	(M; T 1
1 M) is a linear map from 	(M; T ∗M) to 	(M; T ∗M), defined by

S∗α = (Si
j dxj ⊗ ∂

∂xi
)α = Si

jαidxj , α = αidxi ∈ 	(M;T ∗M).

The adjoint ST of S ∈ 	(M; T 1
1 M) is the linear map from 	(M; T M) to 	(M; T M) defined by 

ST = g�S∗g�, or more precisely,

STu = g�[S∗(g�u)], u ∈ 	(M;T M). (A.1)

It holds that (Su|v)g = (u|STv)g for tangent fields u, v. In local coordinates, ST =
giℓSm

ℓ gjm
∂

∂xi ⊗ dxj .

For a ∈ 	(M; T σ
τ M), τ ≥ 1, a� ∈ 	(M; T σ+1

τ−1 M) is defined by

a� := g�a := Cσ+2
1 (a ⊗ g∗),

and for a ∈ 	(M; T σ
τ M), σ ≥ 1, a� ∈ 	(M; T σ−1

τ+1 M) is defined by

a� := g�a := Cσ
1 (g ⊗ a).

Let ∇ be the Levi-Civita connection on M. For u ∈ C1(M; T M), the covariant derivative ∇u ∈
C(M; T 1

1 M) is given in local coordinates by

∇u = ∇j u ⊗ dxj = (∂ju
i + 	i

jku
k)

∂

∂xi
⊗ dxj =: ui

|j
∂

∂xi
⊗ dxj ,

where u = ui ∂
∂xi , ∇j = ∇ ∂

∂xj
, and 	i

jk are the Christoffel symbols. It follows that ∇u + [∇u]T is 

given in local coordinates by

∇u + [∇u]T = (ui
|j + giℓum

|ℓgjm

) ∂

∂xi
⊗ dxj

and
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(∇u + [∇u]T)� =
(
gjkui

|k + giku
j
|k
) ∂

∂xi
⊗ ∂

∂xj
.

The extension of the Levi-Civita connection on C1(M; T σ
τ M) is again denoted by ∇ := ∇g . 

For a ∈ C1(M; T σ
τ M), ∇a ∈ C(M; T σ

τ+1M) is given in local coordinates by ∇a = ∇j a ⊗ dxj , and

div : C1(M;T σ
τ M) → C(M;T σ−1

τ M), σ ≥ 1,

is the divergence operator, defined by diva = Cσ
τ+1(∇a). In particular,

divu = ui
|i for u = ui ∂

∂xi
, divS = Sik

|k
∂

∂xi
for S = Sij ∂

∂xi
⊗ ∂

∂xj
.

For a scalar function φ ∈ C1(M; K), the gradient vector gradφ ∈ C(M; T M) is defined by the 
relation

(gradφ|u)g := 〈∇φ,u〉g = ∇uφ, u ∈ C(M;T M),

where ∇φ ∈ C(M; T ∗M) is the covariant derivative of φ. In local coordinates, we have

(gradφ)i = gij ∂jφ, 1 ≤ i ≤ n.

For the curvature tensor R(u, v)w := [∇u, ∇v]w − ∇[u,v]w, with u, v, w ∈ 	(M; T M), we use 
the convention (as in [26,35], for instance)

R

(
∂

∂xi
,

∂

∂xj

)
∂

∂xk
= Rℓ

ijk

∂

∂xℓ
.

The Ricci tensor Ric ∈ T 0
2 M is then defined by Ricjk = Ri

ijk .
The generalized metric gτ

σ on T σ
τ M is still written as (·|·)g . In addition,

| · |g : C∞(M;T σ
τ M) → C∞(M), a �→

√
(a|a)g

is called the (vector bundle) norm induced by g.

Appendix B. Some analysis on manifolds

Lemma B.1. Let 1 < q < ∞.

(a) Suppose that u ∈ H 1
q (M; T M) and φ ∈ H 1

q ′(M). Then

∫
M

(divu)φ dμg = −
∫
M

(u|gradφ)g dμg +
∫
�

(u|ν�)gφ dσg

= −
∫

∇uφ dμg +
∫

(u|ν�)gφ dσg,

(B.1)
M �
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where μg (σg , respectively) is the volume element induced by g or g|�, respectively.
(b) (Green’s first identity). Suppose that S ∈ H 1

q (M; T 2
0 M) and v ∈ H 1

q ′(M; T M). Then

(divS|v)M = −(S�|∇v)M + (S�ν�|v)�. (B.2)

In particular,
(i) ((�M + Ric�)u|v)M = −2(Du|Dv)M + 2(Duν�|v)�, with

(u, v) ∈ H 2
q,σ (M;T M) × H 1

q ′(M;T M);
(ii) (�Mu|v)M = −(∇u|∇v)M + (∇u ν�|v)�, with

(u, v) ∈ H 2
q (M;T M) × H 1

q ′(M;T M);
(iii) (div (u ⊗ u)|v)M = −(u ⊗ u�|∇v)M + (u|v)� (u|ν�)�, with

(u, v) ∈
(
H 1

q (M;T M) ∩ L∞(M;T M)
)

× H 1
q ′(M;T M),

where Du = 1
2 (∇u + [∇u]T) and Dv = 1

2 (∇v + [∇v]T).

Proof. (a) We first consider the case u ∈ C1(M; T M) and φ ∈ C1(M). The assertion follows from

div (uφ) = (divu)φ + (u|gradφ)g = (divu)φ + ∇uφ

and the divergence theorem on manifolds with boundary, cf. [21, Theorem 16.32]. In view of the 
fact that div ∈ L(H 1

q (M; T M), Lq(M; T M)), the assertion follows by a density argument.

(b) As in Part (a), it suffices to prove the assertion for S ∈ C1(M; T 2
0 M) and v ∈ C1(M; T M). 

Then we have in local coordinates

S = Sij ∂

∂xi
⊗ ∂

∂xj
, v = vi ∂

∂xi
.

One readily verifies that

ST
� = gjkS

ji ∂

∂xi
⊗ dxk, ST

� v = gjkS
jivk ∂

∂xi
.

Direct computations show that in local coordinates

div (ST
� v) = (gjkS

jivk)|i = (gjkS
ji)|ivk + gjkS

jivk
|i = (divS|v)g + (S�|∇v)g.

By the divergence theorem on manifolds with boundary, cf. [21, Theorem 16.32],∫
M

div (ST
� v) dμg = (ST

� v|ν�)� = (S�ν�|v)�.

Hence (B.2) holds.
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The assertion in (i) then follows by choosing S = 2D(u) and noting that div 2D(u) = �Mu +
Ric�u as divu = 0, see (1.2), and

(S�|∇v)g = (∇u + [∇u]T|∇v)g = 2(Du|Dv)g.

(ii) follows by choosing S = (∇u)� and noting that S� = ∇u and div (∇u)� = �Mu. Finally, the 
assertion in (iii) follows immediately by choosing S = u ⊗ u. �
Lemma B.2. Suppose φ ∈ H 3

q (M). Then

�M gradφ = grad�Bφ + Ric�gradφ.

Proof. Let u = uk ∂
∂xk . Then �Mu = gijuk

|i |j
∂

∂xk and hence, (�Mu)k = gijuk
|i |j .

In case u = gradφ = gklφ|l ∂
∂xk we obtain, employing the property that gkl

|i = 0 for all 1 ≤
i, k, l ≤ n,

(�M gradφ)k = gij (gklφ|l )|i |j = gij gkl(φ|l )|i |j = gij gkl(φ|l |i )|j = gij gkl(φ|i |l )|j
= gij gkl(φ|i )|l |j = gkl(gij (φ|i )|l |j = gklu

j
|l |j = gklu

j
|j |l + gkl(u

j
|l |j − u

j
|j |l )

= (grad divu)k + gklRiclmum = (grad divu + Ric�u)k

= (grad�Bφ + Ric� gradφ)k,

where we used the fact that φ|i |j = ∂j ∂iφ − 	k
ji∂kφ = φ|j |i for scalar functions. �

Lemma B.3 (Korn’s inequality). There exists some constant C > 0 such that

‖u‖H 1
2 (M) ≤ C‖Du‖L2(M), u ∈ V 1

2 , (B.3)

where V 1
2 is defined in (6.4). In particular, if

(i) α > 0, or
(ii) Ric� < 0, L� ≥ 0 and α = 0, or
(iii) Ric� ≤ 0, L� > 0 and α = 0,

then (B.3) holds for all u ∈ H 1
2,σ (M; T M).

Proof. By combining assertions (i) and (ii) of Lemma B.1 (b), employing (2.8), and using com-
pactness of M, we obtain

2‖Du‖2
L2(M) = −(�Mu|u)M − (Ric�u|u)M + ((∇u + [∇u]T)ν�|u)�

= ‖∇u‖2
L2(M) − (Ric�u|u)M + ((∇u + [∇u]T)ν�|u)� − (∇uν�|u)�

= ‖∇u‖2
L2(M) − (Ric�u|u)M + (P�([∇u]Tν�)|u)�

= ‖∇u‖2
L2(M) − (Ric�u|u)M + (L�u|u)�

≥ ‖∇u‖2 − c (‖u‖ + ‖u‖ )

(B.4)
L2(M) 1 L2(M) L2(�)
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for some constant c1. Hence,

‖u‖H 1
2 (M) ≤ C

(‖Du‖L2(M) + ‖u‖L2(M) + ‖u‖L2(�)

)
(B.5)

for some constant C. By trace theory, interpolation theory, see for instance [4, Theorem 10.1], 
and Young’s inequality, we conclude that for every ε > 0 there exists a constant C(ε) > 0 such 
that

‖u‖L2(�) ≤ ε‖u‖H 1
2 (M) + C(ε)‖u‖L2(M).

Inequality (B.5) then becomes

‖u‖H 1
2 (M) ≤ C

(‖Du‖L2(M) + ‖u‖L2(M)

)
(B.6)

with a (possibly different) constant C.
The assertion in (B.3) then follows by a contradiction argument. Suppose (B.3) does not hold. 

Then there exists a sequence {un}∞n=1 ⊂ V 1
2 such that ‖un‖H 1

2 (M) = 1 and

‖Dun‖L2(M) → 0, as n → ∞.

Since V 1
2 is a closed subspace of H 1

2 (M; T M), there exist a subsequence of {un}∞n=1, not relabeled, 
and some u ∈ V 1

2 such that un → u in L2,σ (M; T M) and un ⇀ u in H 1
2,σ (M; T M). It follows 

from (B.6) that {un}∞n=1 is Cauchy in V 1
2 and thus, un → u in V 1

2 . We can now infer that ‖Dun −
Du‖L2(M) → 0 as n → ∞, and consequently, u ∈ Eα . Therefore, u ∈ Eα ∩ V 1

2 = {0}. However, 
this contradicts the assumption that ‖u‖H 1

2 (M) = 1. This completes the proof for (B.3).
Let us consider the set Eα under conditions (i)-(iii). When α > 0, it follows from Proposi-

tion 6.2 that Eα = {0}. Now we consider the case α = 0. Let u ∈ E0 be given. Then Du = 0. By 
the computations in (B.4), we have

0 = 2‖Du‖2
L2(M) = ‖∇u‖2

L2(M) − (Ric�u|u)M + (L�u|u)�.

This shows that under assumptions (ii) or (iii), u = 0, and hence E0 = {0}. Therefore, in all 
three cases, we have V 1

2 = H 1
2,σ (M; T M). �

Remark B.4. 
(a) In the Euclidean case, Korn’s inequality for Navier boundary conditions was first proved in 
[39, Lemma 4].

(b) The estimate (B.5) remains valid for all u ∈ H 1
2 (M; T M) satisfying (u|ν�)g = 0, that is, 

without assuming that divu = 0. Indeed, in this case, the assertion of Lemma B.1 (b) (i) reads

(�Mu + Ric�u + grad divu|u)M = −2(Du|Du)M + 2(Duν�|u)�, u ∈ H 2
2 (M;T M).

Using the relation div ((divu)u) = (divu)2 + (grad divu|u)g and the assumption (u|ν�)g = 0, we 
obtain by analogous arguments as above
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2‖Du‖2
L2(M) = ‖∇u‖2

L2(M) − (Ric�u|u)M + (L�u|u)� + ‖divu‖2
L2(M)

≥ ‖∇u‖2
L2(M) − c1(‖u‖L2(M) + ‖u‖L2(�)).

Hence the assertion (B.5) follows by a density argument.

In order to construct the Helmholtz projection on (M, g), we will need the following lemma, 
where we use the definition

H−1
q (M) :=

(
H 1

q ′(M)
)′

and W
−1/q
q (�) :=

(
W

1/q

q ′ (�)
)′

, 1/q + 1/q ′ = 1.

We note that our definition of H−1
q (M) differs from the usual definition used in the literature. 

This abuse of notation allows for a more streamlined presentation of the results in the following 
two Lemmas.

Lemma B.5. Let q ∈ (1, ∞) and k ∈ {−1, 0, 1}. Then the Poisson problem{
�Bφ = f on M,

(gradφ|ν�)g = h on �
(B.7)

has a unique (up to a constant) solution φ ∈ Hk+2
q (M) for each f ∈ Hk

q (M) and h ∈
W

k+1−1/q
q (�) satisfying the solvability condition

〈f |1〉M = 〈h|1〉�. (B.8)

Furthermore,

‖gradφ‖
Hk+1

q (M)
≤ C

(
‖f ‖Hk

q (M) + ‖h‖
W

k+1−1/q
q (�)

)
(B.9)

for some constant C > 0. In case k = −1, equation (B.7) is interpreted as

(gradφ|gradv)M = 〈Mh − f |v〉M, v ∈ H 1
q ′(M),

where M ∈ L(W
−1/q
q (�), H−1

q (M)) is the dual of the trace operator tr� ∈ L(H 1
q ′(M),

W
1−1/q ′
q ′ (�)).

Proof. For k ∈ {0, 1} and u ∈ Hk+2
q (M), let Bu := (tr� gradu|ν�)g , where tr� denotes the trace 

operator. Then B ∈ L(Hk+2
q (M), Wk+1−1/q

q (�)). Moreover, let

Ak : D(Ak) → Hk
q (M), D(Ak) = {u ∈ Hk+2

q (M) : Bu = 0 on �}, Aku := −�Bu.

Following a localization argument as in Section 3.1, one can show that there exists ω0 ∈ R such 
that for all ω > ω0
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ω +Ak ∈ Lis(D(Ak),H
k
q (M)).

Since the embedding Hk+2
q (M) ↪→ Hk

q (M) is compact, the spectrum σ(Ak) consists solely of 
isolated eigenvalues with finite multiplicity and the spectrum does not depend on q ∈ (1, ∞). 
Let λ ∈ σ(As) and consider the eigenvalue problem

λu = Aku in M.

Multiplying the above equality by u and applying Lemma B.1 yields

λ‖u‖L2(M) = ‖gradu‖L2(M),

which implies σ(Ak) ⊂ [0, ∞). In particular, we have

N(Ak) = {u ∈ D(Ak) : u ≡ constant} = R1M,

where 1M is the constant 1 function on M. Next, we will show that λ = 0 is in fact a semi-simple 
eigenvalue of Ak . Assume that u ∈ N(A2

k) and let

Aku = φ.

Since φ ∈ N(Ak), it follows that φ ≡ constant. Multiplying both sides of the equation above by 
φ and using Lemma B.1 results in

(Aku|φ)M = (gradu|gradφ)M = 0 = ‖φ‖2
L2(M),

which further yields φ = 0. Therefore, N(A2
k) = N(Ak). The assertion is thus established. This 

further implies that

Hk
q (M) = N(Ak) ⊕ R(Ak) = R1M ⊕ R(Ak).

Put Y0 = Lq(M) and Y1 = D(A0), where A0 := ω + A0 for a fixed number ω > 0. We note that 
it follows from σ(A0) ⊂ [0, ∞) that ω +A0 ∈ Lis(D(A0), Lq(M)) for any ω > 0.

The pair (Y0, A0) generates an interpolation-extrapolation scale with respect to the complex 
interpolation functor. We recall that Y1 := D(A0) = {u ∈ H 2

q (M) : Bu = 0}. Let Y �
0 = Lq ′(M) and

A
�
0 := (A0)

′ = ω +A0, Y
�
1 := D(A

�
0) = {u ∈ H 2

q ′(M) : Bu = 0}.

Then (Y �
0 , A�

0) also generates an interpolation-extrapolation scale (Y �
β, A�

β), β ∈ R, the dual 
scale.

By [2, Theorem V.1.5.12], it holds that (Yβ)′ = Y
�
−β and (Aβ)′ = A

�
−β for β ∈R. In particular, 

when β = −1/2,

D(A−1/2) = Y1/2 = [Y0, Y1]1/2 = H 1
q (M;T M),

Y−1/2 = (Y
�

)′ = ([Y �
,Y

�]1/2)
′ = (H 1′(M;T M))′ = H−1(M),
1/2 0 1 q q
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see Proposition C.6. We have

A−1/2 = ω +A−1/2 : H 1
q (M) = Y1/2 → Y−1/2 = H−1

q (M),

where A−1/2 is characterized by

〈A−1/2 φ|v〉M = (gradφ|gradv)M, v ∈ H 1
q ′(M),

see (B.1), and satisfies N(A−1/2) = R1M. Moreover,

H−1
q (M) = R1M ⊕ R(A−1/2).

Particularly, this implies that A−1/2 ∈ Lis(H 1
q (M) ∩ R(A−1/2), R(A−1/2)). In addition, observe 

that

R(A−1/2) = {u ∈ H−1
q (M) : 〈u|1M〉M = 0}.

Since tr� ∈ L(H 1
q ′(M), W 1−1/q ′

q ′ (�)), its dual

M := (tr�|H 1
q′ (M))

′ ∈ L(W
−1/q
q (�),H−1

q (M)) (B.10)

is well-defined. An important observation is that φ is a weak solution of (B.7) in H 1
q (M) iff

A−1/2 φ = Mh − f, (B.11)

or equivalently,

(gradφ|gradv)M = 〈Mh − f |v〉M, v ∈ H 1
q ′(M).

Since Mh − f ∈ H−1
q (M), it suffices to show that Mh − f ∈ R(A−1/2). Indeed, due to (B.8)

〈Mh − f |1〉M = 〈h|1〉� − 〈f |1〉M = 0.

This implies that (B.11) has a unique (up to a constant) weak solution φ ∈ H 1
q (M). Estimate (B.9)

in the case k = −1 follows from

‖gradφ‖Lq(M) ≤ ‖φ‖H 1
q (M) ≤ C‖Mh − f ‖

H−1
q (M)

≤ C
(‖f ‖

H−1
q (M)

+ ‖Mh‖
H−1

q (M)

)
≤ C

(‖f ‖
H−1

q (M)
+ ‖h‖

W
−1/q
q (�)

)
.

When f ∈ Hk
q (M) and h ∈ W

k+1−1/q
q (�) with k ∈ {0, 1}, it follows from [4, Theorem 10.1] that 

B has a right inverse Nk ∈ L(W
k+1−1/q
q (�), Hk+2

q (M)). Observe that φ is a strong solution of 
(B.7) iff ψ = φ −Nkh is a strong solution of
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{
Akψ = �BNkh − f on M,

(gradψ |ν�)g = 0 on �.
(B.12)

Since h ∈ W
k+1−1/q
q (M), it is an easy task to verify that �BNkh ∈ Hk

q (M). Condition (B.8) and 
Lemma B.1 imply that �BNkh − f ∈ R(Ak).

Therefore, (B.12) has a unique (up to a constant) strong solution ψ ∈ Hk+2
q (M). The remain-

ing cases in (B.9) can be established in a similar way to k = −1. This completes the proof. �
Lemma B.6. Let q ∈ (1, ∞) and k ∈ {−1, 0, 1}. For every u ∈ Hk+1

q (M; T M), the elliptic bound-
ary value problem {

�Bφ = divu on M,

(gradφ|ν�)g = (u|ν�)g on �
(B.13)

has a unique (up to a constant) solution φ ∈ Hk+2
q (M). The solution satisfies

‖gradφ‖
Hk+1

q (M)
≤ C‖u‖

Hk+1
q (M)

(B.14)

for some constant C > 0. In case k = −1, equation (B.13) is interpreted as

(gradφ|gradv)M = (u|gradv)M, v ∈ H 1
q ′(M), (B.15)

while (B.15) is always satisfied for solutions of (B.13) in case k = 0, 1.
Therefore, the Helmholtz projection PH ∈ L(Hk+1

q (M; T M), Hk+1
q,σ (M; T M)) is well-defined.

Proof. Suppose first that k ∈ {0, 1} and let Cu := (tr�u|ν�)g for u ∈ Hk+1
q (M; T M). Then by 

Lemma B.1(a), the pair

(f, g) = (divu,Cu)

satisfies the solvability condition (B.8). Moreover, we have divu ∈ Hk
q (M) and (u|ν�)g ∈

W
k+1−1/q
q (M). The latter follows from the trace theorem, cf. [4, Theorem 10.1]. Solvability of 

(B.13) in these two cases thus follows from Lemma B.5.
Suppose φ ∈ Hk+2

q (M) is a solution of (B.13). Employing Lemma B.1 twice, we obtain

(gradφ|gradv)M = −(divu|v)M + ((gradφ|ν�)g|tr�v)�

= −(divu|v)M + (Cu|tr�v)� = (u|gradv)M

(B.16)

for all v ∈ H 1
q ′(M), showing (B.15).

We now consider the case k = −1. Let M be as in (B.10). Employing the same computation 
as in (B.16), we obtain

(divu|v)M = (Cu|tr�v)� − (u|gradv)M = 〈M(Cu)|v〉M − (u|gradv)M,

for each (u, v) ∈ H 1(M; T M) × H 1′(M). Hence,
q q
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|〈M(Cu) − divu|v〉M| = |(u|gradv)M| ≤ ‖u‖Lq(M)‖v‖H 1
q′ (M),

which further implies

[u �→ (M(Cu) − divu)] ∈ L(H 1
q (M;T M),H−1

q (M)). (B.17)

By the density of H 1
q (M; T M) in Lq(M; T M) and (B.17), the operator [u �→ (M(Cu) −divu)] has 

a unique continuous extension in L(Lq(M; T M), H−1
q (M; T M)), denoted by F . The extension 

satisfies

(u|gradv)M = 〈Fu|v〉M, (u, v) ∈ Lq(M;T M) × H 1
q ′(M).

By (B.16) and a density argument, we have

(gradφ|gradv)M = (u|gradv)M = 〈Fu|v〉M, (u, v) ∈ Lq(M;T M) × H 1
q ′(M).

Hence, (B.13) can be interpreted as

A−1/2 φ = Fu.

By analogous arguments as in the proof of Lemma B.5, this problem has (up to constants) a 
unique solution, which satisfies (B.14), as ‖Fu‖

H−1
q (M)

≤ c‖u‖Lq(M). �
Appendix C. Interpolation spaces

As in Section 3.2, let A0 = ω + AN : X1 := D(AN) → X0, for some ω > 0, with X0 =
Lq,σ (M; T M) and

X1 = {u ∈ H 2
q,σ (M;T M) : αu +P�

(
(∇u + [∇u]T)ν�

)= 0 on �}.
Recall that A0 is invertible. By [2, Theorems V.1.5.1 and V.1.5.4], the pair (X0, A0) generates 
an interpolation-extrapolation scale (Xβ, Aβ), β ∈ R, with respect to the complex interpolation 
functor. When β ∈ (0, 1), Aβ is the Xβ -realization of A0, where

Xβ = [X0,X1]β

in view of (4.2). Let X�
0 := (X0)

′ = Lq ′,σ (M; T M) and

A
�
0 := (A0)

′ = (ω + AN)′ = ω − μsPH (�M + Ric�),

D(A
�
0) = X

�
1 := {u ∈ H 2

q ′,σ (M;T M) : αu +P�

(
(∇u + [∇u]T)ν�

)= 0 on �}.

Then (X�
0, A

�
0) generates an interpolation-extrapolation scale (X�

β, A�
β), β ∈ R, the dual scale.

In the following, we set

H 2 (M;T M) = {u ∈ H 2
q (M;T M) : Bu = 0 on �},
q,B
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where Bu = (B1u, B2u) := (tr� (P�(∇uν�) + (α + L�)P�u) , tr�(u|ν�)g). One readily veri-
fies that

X1 = H 2
q,B(M;T M) ∩ Lq,σ (M;T M). (C.1)

Indeed, given any u ∈ X1, we immediately have u ∈ H 2
q (M; T M) ∩ Lq,σ (M; T M) and the bound-

ary condition B2u = 0 is automatically satisfied, see (2.2). In view of (2.8), it holds that on �

0 = αu + 2P�(Duν�) = P�(∇uν�) + (α + L�)P�u = B1u.

Therefore, we conclude that X1 ⊂ H 2
q,B(M; T M) ∩ Lq,σ (M; T M). The converse inclusion 

H 2
q,B(M; T M) ∩ Lq,σ (M; T M) ⊂ X1 follows from

H 2
q,B(M;T M) ∩ Lq,σ (M;T M) ⊂ H 2

q,σ (M;T M)

and (2.8).
In order to characterize the interpolation spaces Xβ = [X0, X1]β and Xβ,p = (X0, X1)β,p we 

first include two auxiliary results.

Lemma C.1. Given θ ∈ (0, 1) and p ∈ (1, ∞), let (·, ·)θ stand for either the complex interpola-
tion functor [·, ·]θ , or the real interpolation functor (·, ·)θ,p, respectively. Then

(Lq,σ (M;T M),H 2
q,σ (M;T M))θ

.= (Lq(M;T M),H 2
q (M;T M))θ ∩ Lq,σ (M;T M).

Proof. Let P̃H := PH |H 2
q (M;T M). Then Lemma B.6 implies

P̃H ∈ L(H 2
q (M;T M),H 2

q,σ (M;T M)).

Moreover, P̃ 2
H = P̃H and P̃H u = u for all u ∈ H 2

q,σ (M; T M). The assertion then follows from 
[40, Theorem 1.17.1.1]. �
Lemma C.2. Given θ ∈ (0, 1) and p ∈ (1, ∞), let (·, ·)θ stand for either the complex interpola-
tion functor [·, ·]θ or the real interpolation functor (·, ·)θ,p. Then

(X0,X1)θ
.= (Lq(M;T M),H 2

q,B(M;T M))θ ∩ Lq,σ (M;T M).

Proof. Define

AB : D(�B) := H 2
q,B(M;T M) → Lq(M;T M)

by ABu := −μs(�M + Ric�)u. It follows from analogous arguments as in Section 3.1 that there 
exists λ0 such that for all λ > λ0

λ + AB ∈ Lis(H 2 (M;T M),Lq(M;T M)).
q,B
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It follows from Lemma 4.3 that there exists λ0 such that for all λ > λ0

λ + AN ∈ Lis(X1,X0).

Then the assertion follows from a similar argument to [3, Lemma 3.2]. For the reader’s conve-
nience, we will nevertheless include a proof. Let

Q1 := (λ + AN)−1PH (λ + AB).

Then Q1 ∈ L(H 2
q,B(M; T M), X1) and

Q2
1u = (λ + AN)−1PH (λ + AB)(λ + AN)−1PH (λ + AB)u

= (λ + AN)−1PH (λ + AB)u = Q1u,

where we have employed the relations PHAB|X1 = AN and P 2
H = PH . This further implies 

Q1|X1 = IX1 , and thus Q1 is a bounded projection from H 2
q,B(M; T M) onto X1. Now con-

sider Q1 as a closed densely defined operator from Lq(M; T M) to Lq,σ (M; T M) with domain 
H 2

q,B(M; T M) and denote this operator by Q. Let

A
�

B : H 2
q ′,B(M;T M) → Lq ′(M;T M), A

�

B := −μs(�M + Ric�)

A
�
N : D(AN,q ′) → Lq ′,σ (M;T M), A

�
N := −μsPH (�M + Ric�).

Then

Q′ = (λ + AB)′PT
H [(λ + AN)−1]′

= (λ + A
�

B)(λ + A
�
N)−1 ∈ L(Lq ′,σ (M;T M),Lq ′(M;T M)),

where PT
H is the dual operator of PH ∈ L(Lq(M; T M), Lq,σ (M; T M)). We note that PT

H is in-
deed the embedding operator i� : Lq ′,σ (M; T M) → Lq ′(M; T M). Therefore, Q′′ ∈ L(Lq(M; T M),

Lq,σ (M; T M)). Together with the inclusion Q ⊂ Q′′ and the density of H 2
q,B(M; T M)

in Lq(M; T M), this implies that Q has a unique bounded extension Q0 ∈ L(Lq(M; T M),

Lq,σ (M; T M)). It is easy to check that Q0 is a projection and Q0|X0 = IX0 . Then the assertion 
follows from [40, Theorem 1.17.1.1]. �

We are now ready to state the first main result of this section, providing a characterization of 
the complex interpolation spaces Xβ := [X0, X1]β .

Proposition C.3. Let β ∈ (0, 1) \ { 1
2 + 1

2q
}. Then Xβ = H

2β

q,σ,B(M; T M), where

H
2β

q,σ,B(M;T M) =
{

{u ∈ H
2β
q,σ (M;T M) : αu + 2P�(Duν�) = 0 on �}, 1

2 + 1
2q

< β < 1,

H
2β
q,σ (M;T M), 0 < β < 1 + 1 .
2 2q
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Proof. We first observe that

B1 ∈ L(Ws
q (M;T M),W

s−1−1/q
q (�;T �)), 1 + 1/q < s ≤ 2,

B2 ∈ L(Ws
q (M;T M),W

s−1/q
q (�)), 1/q < s ≤ 2,

are normal boundary operators in the sense of [36, Definition 3.1], see also [5, Section VIII.2]. 
Then [36, Theorem 4.1] implies, see also [5, Theorem 2.4.8] for the case M =Rn+,

[Lq(M;T M),H 2
q,B(M;T M)]β =: H 2β

q,B(M;T M),

where

H
2β

q,B(M;T M)
.=

⎧⎪⎨⎪⎩
{u ∈ H

2β
q (M;T M) : Bu = 0 on �}, 1

2 + 1
2q

< β < 1,

{u ∈ H
2β
q (M;T M) : B2u = 0 on �}, 1

2q
< β < 1

2 + 1
2q

,

H
2β
q (M;T M), 0 < β < 1

2q
.

Lemma C.2 shows that for β ∈ (0, 1) \ { 1
2q

, 12 + 1
2q

}

[X0,X1]β .= H
2β

q,B(M;T M) ∩ Lq,σ (M;T M).

By a similar argument as in (C.1), we obtain

H
2β

q,B(M;T M) ∩ Lq,σ (M;T M)

=
{

{u ∈ H
2β
q,σ (M;T M) : αu + 2P�(Duν�) = 0 on �}, β ∈ ( 1

2 + 1
2q

,1),

H
2β
q,σ (M;T M), β ∈ (0, 1

2 + 1
2q

) \ { 1
2q

}.

We will now pay attention to the particular case β = 1
2q

, which is currently excluded in the char-

acterization above. We know that X1/2 = H 1
q,σ (M; T M). It follows from the reiteration theorem 

that

[X0,X1/2]α = [X0, [X0,X1]1/2]α = [X0,X1] α
2

= Xα/2.

Taking α = 1/q and using Lemma C.1 and the reiteration theorem yields

X1/2q
.= [X0,X1/2]1/q = [X0, [X0,H

2
q,σ (M;T M)]1/2]1/q

= [X0,H
2
q,σ (M;T M)]1/2q

.= H
1/q
q,σ (M;T M).

This proves the assertion for the case β = 1/2q and thus completes the proof. �
We obtain an analogous result for the real interpolation spaces Xβ,p := (X0, X1)β,p .
1655



Y. Shao, G. Simonett and M. Wilke Journal of Differential Equations 416 (2025) 1602–1659
Proposition C.4. Let β ∈ (0, 1) \ { 1
2 + 1

2q
} and p ∈ (1, ∞). Then

Xβ,p = (X0,X1)β,p = B
2β

qp,σ,B(M;T M), where

B
2β

qp,σ,B(M;T M) =
{

{u ∈ B
2β
qp,σ (M;T M) : αu + 2P� (Duν�) = 0 on �}, 1

2 + 1
2q

< β < 1,

B
2β
qp,σ (M;T M), 0 < β < 1

2 + 1
2q

.

Proof. The case β ∈ (0, 1) \ { 1
2q

, 12 + 1
2q

} can be obtained as in Proposition C.3, see for instance 
[15] or [5, Theorem 2.4.5] for the Euclidean case.

To treat the case β = 1
2q

, note that the reiteration theorem for the complex and real method 
implies

X1/2q,p = (X0,X1)1/2q,p = (X0, [X0,X1]1/2)1/q,p = (X0,X1/2)1/q,p.

We can further utilize Lemma C.1 to obtain

X1/2q,p = (X0,X1/2)1/q,p = (X0, [X0,H
2
q,σ (M;T M)]1/2)1/q,p

= (X0,H
2
q,σ (M;T M))1/2q,p = B

1/q
qp,σ (M;T M).

This completes the proof. �
Using a duality argument, we can also characterize the interpolation spaces between X−1/2

and X1/2.

Proposition C.5. Let β ∈ (0, 1) and p ∈ (1, ∞). Then

[X−1/2,X1/2]β = H 2β−1
q,σ (M;T M) and (X−1/2,X1/2)β,p = B2β−1

qp,σ (M;T M),

where

H 2β−1
q,σ (M;T M) :=

(
H

1−2β

q ′,σ (M;T M)
)′
, B2β−1

qp,σ (M;T M) :=
(
B

1−2β

q ′p′,σ (M;T M)
)′

for β ∈ (0, 1/2).

Similar results hold for spaces with other boundary conditions. For instance, let

Z0 = X0, Z1 = {u ∈ H 2
q,σ (M;T M) : P�

(
(∇u − [∇u]T)ν�

)= 0 on �}, or

Y0 = Lq(M), Y1 = {φ ∈ H 2
q (M) : (gradφ|ν�)g = 0 on �}.

Then we have the following result.

Proposition C.6. Let β ∈ (0, 1). Then the interpolation spaces Zβ = [Z0, Z1]β and Yβ =
[Y0, Y1]β can be characterized as follows.
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Zβ =
{

{u ∈ H
2β
q,σ (M;T M) : P�

(
(∇u − [∇u]T)ν�

)= 0 on �}, 1
2 + 1

2q
< β < 1,

H
2β
q,σ (M;T M), 0 < β < 1

2 + 1
2q

.

Yβ =
{

{φ ∈ H
2β
q (M) : (gradφ|ν�)g = 0 on �}, 1

2 + 1
2q

< β < 1,

H
2β
q (M), 0 < β < 1

2 + 1
2q

.

Appendix D. Sectorial operators and H∞-calculus

In this part of the appendix, we will introduce several basic concepts concerning maximal 
Lp-regularity theory. The reader may refer to the treatises [2], [8] and [28] for more details of 
these concepts.

For θ ∈ (0, π], the open sector with angle 2θ is denoted by

�θ := {ω ∈C \ {0} : | argω| < θ}.

Definition D.1. Let X be a complex Banach space, and A be a densely defined closed linear 
operator in X with dense range. A is called sectorial if �θ ⊂ ρ(−A) for some θ > 0 and

sup{‖μ(μ +A)−1‖L(X) : μ ∈ �θ } < ∞.

The class of sectorial operators in X is denoted by S(X). The spectral angle φA of A is defined 
by

φA := inf{φ : �π−φ ⊂ ρ(−A), sup
μ∈�π−φ

‖μ(μ +A)−1‖L(X) < ∞}.

Let φ ∈ (0, π]. Define

H∞(�φ) := {f : �φ →C : f is analytic and ‖f ‖∞ < ∞}
and

H0(�φ) =
{
f ∈ H∞(�φ) : ∃s > 0, c > 0 s.t. |f (z)| ≤ c

|z|s
1 + |z|2s

}
.

Definition D.2. Suppose that A ∈ S(X). Then A is said to admit a bounded H∞-calculus if there 
are φ > φA and a constant Kφ such that

‖f (A)‖L(X) ≤ Kφ‖f ‖∞, f ∈ H0(�π−φ). (D.1)

Here

f (A) := − 1

2πi

∫
(λ +A)−1f (λ)dλ, 	 =

{
−te−iθ for t < 0,

teiθ for t ≥ 0,
(D.2)
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is a positively oriented contour for any θ ∈ (0, π − φ). The class of such operators is denoted by 
H∞(X). The H∞-angle of A is defined by

φ∞
A := inf{φ > φA : (D.1) holds}.

If an operator A ∈ H∞(X) with H∞-angle φ∞
A < π/2 and X is of class UMD, then Condition 

(H3) in [31] is satisfied with the choices X0 = X and X1 = D(A).

Data availability

No data was used for the research described in the article.
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