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Abstract 
This paper addresses the need for ethical and 
effective use of synthetic image data in digital health 
computer vision. It explores the design requirements 
and design principles for both responsible use of 
artificial intelligence in digital health and model 
robustness, focusing on privacy, ethical compliance, 
and domain adaptation. Using the design science 
research paradigm along with value-sensitive design 
and sociotechnical systems theory, this study presents 
a design theory that provides actionable guidance for 
the generation, selection, and integration of synthetic 
data in digital health. Through heuristic theorizing over 
two design cycles, the work provides a robust theory 
artifact and conceptual model to ensure ethical use 
and improve model performance in digital health 
through appropriate domain adaptation, generalization, 
and accuracy. In addition to contributing to theoretical 
knowledge, this research offers practical implications 
for health authorities to promote ethical standards and 
performance in synthetically trained AI applications.  

Keywords: Artificial Intelligence; Synthetic Data; 
Deep Learning; Design Theory; Digital Ethics. 

Introduction 
Deep learning models for computer vision, which 
typically contain millions to billions of parameters, rely 
on extensive datasets to achieve optimal performance 
and generalizability (Alzubaidi et al., 2021). 
Nevertheless, the process of collecting authentic 
training datasets for artificial intelligence (AI) systems 
is often expensive, prone to errors, and can result in 
limited or unbalanced datasets (Hinterstoisser et al., 
2019; Seib et al., 2020; Zhang et al., 2018). Recently, 
synthetic image data (artificially generated images) 
has emerged as a promising alternative, offering 
scalability, feasibility, and fairly accurate deep learning 
models (Bird et al., 2020; Hinterstoisser et al., 2019; 
Krump et al., 2020). In particular, the digital health 
domain benefits from synthetic data in terms of tailored 
and innovative applications (Giuffrè & Shung, 2023; 
Gonzales et al., 2023; Murtaza et al., 2023), but it also 
raises various ethical and privacy concerns, as 
sensitive data in AI (e.g., how body parts or 
environments are modeled) has a high risk of 
misrepresentation, discrimination, intrusiveness, and 
bias (Kern et al., 2022; McBride, 2014; Obermeyer et 
al., 2019; Russel & Norvig, 2021). These concerns are 
compounded by the fact that while synthetic data is 
artificial, it is often rooted in real-world datasets 
through the real-world application settings for which 
the models are used, which may inadvertently retain 
identifiable or sensitive characteristics, posing 
significant privacy risks. While it may seem 
counterintuitive given the artificial nature of synthetic 



data, the reliance on real-world references to create 
such data underscores the importance of proactively 
addressing these ethical and privacy concerns. 
However, even if it appears less risky due to its 
artificial nature, synthetic data does not entirely 
eliminate privacy risks or ethical challenges; patterns 
from the source or reference data can be reverse-
engineered or misused, and its artificiality can lead to 
unanticipated harms, such as skewing demographic or 
clinical representations. In particular, the digital health 
domain inherently involves sensitive information and 
human interactions, making it critical to design 
technologies that are consistent with ethical standards 
and user values (Vayena et al., 2018; Rajkomar et al., 
2018). Therefore, it is imperative that researchers and 
practitioners in deep learning and digital health 
carefully consider these ethical implications. Effective 
strategies must be developed to mitigate risks, 
including implementing rigorous standards for data 
anonymization, applying fairness metrics to ensure 
unbiased AI models, and establishing ethical 
guidelines for the use and distribution of synthetic 
image data (Obermeyer et al., 2019; Panch et al., 
2019; Raji et al., 2020; Rajkomar et al., 2019; Zhang 
et al., 2018).  
However, while there is considerable meta-level 
guiding knowledge on ethical research in IS and 
Design Science Research (DSR) (Myers & Venable, 
2014; Herwix et al., 2022), we found that the ethical 
and effective use of synthetic image data in digital 
health computer vision in particular is underexplored, 
leaving both researchers and practitioners navigating 
a complex ethical AI landscape without a clear 
compass. We address this gap by responding to the 
call for value systems (Herwix et al., 2022) by focusing 
on the specific ethical challenges of synthetic image 
data in digital health beyond existing meta-level ethical 
frameworks in IS and DSR. Beyond meta-level ethical 
guidance, the lack of consensus on standards and 
guidance for the use of synthetic data in digital health 
further exacerbates the problem, making it difficult to 
ensure that the benefits of AI are harnessed without 
compromising patient privacy or reinforcing existing 
biases. This gap is significant because it hinders the 
ability to systematically address the challenges and 
realize the potential of synthetic data in ways that are 
both ethically responsible and technologically effective 
(Panch et al., 2018). Thus, this paper poses the 
following research question:  

RQ: What are the design requirements and design 
principles to ethically and effectively utilize 
synthetic image data in digital health computer 
vision environments, considering potential 
tensions between ethical compliance and 
operational effectiveness?  

We answer this question by adopting a multi-method 
heuristic design theorizing approach (Gregory & 
Muntermann, 2014) that combines qualitative 
methods such as moderated focus groups and think-
aloud sessions in the theorizing quadrant of the DSR 
focus matrix (Brendel et al., 2022) throughout two 
design iterations. Guided by value-sensitive design 
and sociotechnical systems theory as our kernel 
theories, we develop design requirements and 
principles as a constituted design theory that 
embodies a general design solution to the problem 
class (Baskerville & Pries-Heje, 2010) of lacking 
guidance in developing ethically and performant deep 
learning models trained on synthetic image data in IS 
research. Since recent literature explicitly calls for 
guidance on synthetic data utilization (Murtaza et al., 
2023) and design decisions, in general, are not neutral 
(i.e., having moral and ethical implications) (Findeli, 
1994), our design theory addresses key aspects such 
as ethical compliance, privacy protection, data 
governance, scene diversity, controlled composition, 
complexity management, data augmentation, and 
responsible AI, providing actionable and theory-
grounded guidance for researchers and practitioners 
in the selection, generation, and integration of 
synthetic image data for digital health computer vision. 
By adopting the design theory and a derived 
conceptual model, researchers can ensure the ethical 
and responsible use of synthetic image data while 
enhancing model performance, privacy protection, 
and projectability.  
This paper contributes to the theoretical discourse on 
AI healthcare computer vision systems by presenting 
a design theory grounded in sociotechnical systems 
theory and value-sensitive design. Our study 
addresses the ethical and technical challenges of 
using synthetic image data for computer vision model 
training, ensuring that ethical values are embedded in 
the design process. By integrating core theories, we 
offer a balanced approach that balances ethical and 
social imperatives with technical performance, thereby 
advancing the responsible use of AI in digital health. 
The following sections cover the theoretical 
foundations, research methodology, design theory 
description, evaluation, and discussion. 

Theoretical Foundations 
Kernel Theories and Theoretical Lens 
To ensure scientific rigor and stringency, DSR 
endeavors can use kernel theories to derive design 
principles. Broadly speaking, kernel theory functions 
as a form of justificatory knowledge within the realm of 
design knowledge development, as indicated by the 
work of Gregor and Hevner (2013), such as in the form 
of design principles (Gregor et al., 2020). DSR efforts 
may employ kernel theories to derive foundational 



design principles since the genesis of novel artifacts is 
grounded not merely in prototyping and user 
participation but fundamentally depends on a kernel 
theory (Walls et al., 1992; 2004). Thus, this study 
adopts the analyze with lens-mechanism proposed by 
Möller et al. (2022), drawing upon the theoretical 
foundations of employing kernel theories as a means 
of analysis and adhering to the conceptual boundaries 
of a theory. Using one or more kernel theories as a 
foundational framework can help clearly define 
normative prescriptions within design theories, 
directing the strategies and methods used to find 
specific solutions through design. Therefore, we argue 
that the use of a theoretical lens allows us to derive 
concepts indirectly, guiding the analysis or framing of 
data within the conceptual borders of a specific theory. 
This approach aligns with the perspective of 
Niederman and March (2019) on the theoretical lens, 
which emphasizes its role in aiding the theorization 
process, leading to the formulation of design principles 
or meta-requirements based on a data foundation. In 
the context of our study, we chose to use two kernel 
theories that not only informed our research 
methodology but were also used to inform our design 
requirements and principles. As shown in Figure 1, we 
used value-sensitive design theory (Friedman et al., 
2002; 2013) specifically for our theory building and to 
frame our heuristic theorizing process, while 
sociotechnical systems theory (Trist & Bamforth, 1951; 
Emery & Trist, 1960) and its concepts were used for 
our theory grounding. 
Value-sensitive design theory (Friedman et al., 2002; 
2013) was chosen because it embodies a theoretically 
grounded approach that considers human values in a 
principled and comprehensive manner throughout the 
design process, which aligns with the research goal of 
developing technology that respects and incorporates 
user values while ensuring ethically responsible and 
user-centered design decisions. In general, value-
sensitive design encompasses conceptual (Friedman 
et al., 2013), empirical (Deng et al., 2016), and 
technical investigations (Denning et al., 2010) of 
phenomena and their value conflicts and trade-offs 
(Mueller et al., 2018). Demonstrating its utility in 
addressing ethical issues in digital health (Dadgar & 
Joshi, 2018; Detweiler & Hindriks, 2012; Denning et al., 
2014), value-sensitive design theory provides a 
structured approach to incorporating human and 
ethical values into technology design (Yetim. 2011). 
We also used value-sensitive design as a guiding 
framework to structure and evaluate the think-aloud 
sessions. Ethical considerations such as privacy, 
fairness, and inclusivity were explicitly embedded in 
the session design, allowing participants to reflect 
critically on these values while interacting with 
prototype artifacts. This approach ensured that the 
resulting design knowledge was aligned with the 

theoretical underpinnings of value-sensitive design. In 
the specific use-case of synthetic image data 
utilization for deep learning tasks in digital health, this 
especially connects to the synthetic depiction of 
humans (including separate or related characteristics, 
e.g. body parts or demographics), the use-case 
context in which the synthetically generated image 
data is used (often human-related, e.g. medicine or 
surveillance), and the potential ethical implications 
that arise from the creation and utilization of synthetic 
images. Given that synthetic imagery often closely 
mirrors real-image references, we aim to ensure that 
ethical implications, especially privacy concerns, are 
systematically addressed throughout the design 
process. This theoretical lens thus helps not only to 
derive design principles and requirements but also to 
establish a rigorous elicitation and evaluation (e.g., 
with think-aloud sessions) of these principles in the 
context of digital health. Using this kernel theory 
ensures that synthetic deep learning technology is not 
merely functional (i.e., precise, accurate, and reliable) 
but also ethically value-bound. By grounding the 
design process in a rigorous theoretical foundation, 
this approach not only facilitates the development of 
ethically responsible and user-centered digital health 
technologies but also contributes to the evolution and 
refinement of the theory itself, enhancing its 
applicability and relevance in the rapidly evolving 
landscape of digital health. 
To complement the ethical framework established by 
value-sensitive design, this study integrates 
sociotechnical systems theory as an additional kernel 
theory to ensure a comprehensive approach to the 
design of synthetic image data in digital health 
computer vision. Originating from the seminal work of 
Trist and Bamforth (1951) and further developed by 
Emery and Trist (1960), sociotechnical systems theory 
emphasizes the intricate interplay between social 
subsystems (i.e., organizational structures, cultural 
practices, and human interactions) and technical 
subsystems (i.e., tools, processes, and technologies). 
In the context of using synthetic image data to train 
deep learning models in digital health, this interplay 
becomes particularly apparent. The sensitivity of 
health-related data and the potential for 
misrepresentation or bias necessitate a design 
approach that not only incorporates ethical 
considerations but also acknowledges the 
sociotechnical dynamics at play. Mumford’s (2006) 
reflections on sociotechnical design underscore the 
need to align both social and technical elements to 
achieve sustainable and effective outcomes. This 
alignment is critical when generating synthetic 
imagery that must accurately represent diverse 
populations without perpetuating existing biases. 
Within the field of IS, Baxter and Sommerville (2011) 
highlight how sociotechnical systems theory can guide 



the development of systems that are both technically 
robust and socially responsive, a principle that 
resonates with the challenges of ensuring data realism 
and utility in synthetic datasets. Similarly, Bostrom and 
Heinen’s (1977) examination of MIS failures through a 
socio-technical lens highlights the importance of 
considering human factors alongside technical 
specifications to prevent system failures. By grounding 
our DSR process in sociotechnical systems theory 
alongside value-sensitive design, this study not only 
advocates for ethical and user-centered technology 
but also ensures that the complex interdependencies 
between healthcare professionals, patients, and 
technological systems are thoughtfully integrated. This 
dual theoretical foundation facilitates the derivation of 
design requirements and principles that address the 
multiple challenges of using synthetic image data in 
deep learning models - balancing technical 
performance with ethical imperatives and social 
considerations. Consequently, the integration of 
sociotechnical systems theory provides a robust 
framework for navigating the complexities inherent in 
digital health environments and promotes the 
development of AI solutions that are not only effective 
and accurate but also socially attuned and ethically 
sound. 

Synthetic Images in Deep Learning 
Given that state-of-the-art deep learning models for 
computer vision comprise millions, if not billions, of 
parameters, training such models requires large 
amounts of data, which is often costly, missing, or 
unbalanced (Alzubaidi et al., 2021). Synthetic image 

data (which is synonymous with artificial image data) 
in deep learning refers to artificially created imagery 
that is generated by algorithms (e.g., video game 
engines) to train deep learning models. Several 
studies have highlighted the effectiveness of synthetic 
data in various computer vision tasks. Lee et al. (2019) 
and Krump et al. (2020) utilized synthetic datasets for 
deep learning-based object detection, specifically in 
underwater sonar imaging and vehicle detection on 
unmanned aerial vehicle platforms, respectively, 
highlighting the effectiveness of synthetic data in 
various computer vision domains. Additionally, domain 
adaptation, which is a technique that involves adapting 
a model trained on one (synthetic) domain of data to 
perform well on a different but related (real) domain, 
and transfer learning have been extensively explored 
in the context of synthetic data. Lahiri et al. (2018), 
Venkateswara et al. (2017), and Kuhnke and 
Ostermann (2019) focused on unsupervised domain 
adaptation for synthetic data, learning transferable 
feature representations, and domain adaptation for 
pose estimation, respectively. Seib et al. (2020) 
conducted a comprehensive review of current 
approaches that combine real and synthetic data to 
enhance neural network training, supporting the 
argument for a combination of training data and data 
augmentation. Aranjuelo et al. (2021) discussed key 
strategies for synthetic data generation in people 
detection from omnidirectional cameras, emphasizing 
the effective use of both real and synthetic data. 
Valtchev and Wu (2021) demonstrated the utility of 
domain randomization for neural network classification, 
showcasing the effectiveness of synthetic data in 
training robust models.  

 
Figure 1. Our Kernel Theories and How They Inform the Design Science Approach of This Study 



 
Figure 2. Exemplary Applications of Synthetic Data with 1) A Comparison of Synthetic and Real Image 
Data in Medicine (Chen et al., 2021) and 2) Synthetic Living Room Scenes in Digital Health (Own Study) 

 
Moreover, the combination of synthetic and real 
training data has been investigated by several 
researchers. Wan et al. (2021) and Bird et al. (2020) 
utilized mixed datasets, comprising both synthetic and 
real data, for document layout analysis, scene 
classification, and object detection in augmented 
reality, respectively. Thereby, these studies highlight 
the benefits of leveraging both synthetic and real data 
for training computer vision models. Furthermore, the 
use of synthetic data generation techniques and 
simulators has been explored. Müller et al. (2018) 
introduced a photo-realistic simulator for generating 
synthetic data for computer vision applications, 
whereas Zhang et al. (2018) proposed a stacked 
multichannel autoencoder framework for efficient 
learning from synthetic data. In addition, Scheck et al. 
(2020) introduced a synthetic dataset that serves as a 
valuable resource for training and evaluating deep 
learning models in overhead object detection. 
At the intersection of synthetic data (not limited to 
image data) and digital health, Giuffrè and Shung 
(2023) thoroughly examine the technical benefits and 
challenges of synthetic data in healthcare, focusing on 
its use in policy, privacy, and predictive analytics. They 
highlight how synthetic data can improve healthcare 
by enabling data-driven decision-making while 
addressing privacy concerns and data scarcity. 
However, they also identify significant risks, including 
data bias, the potential for re-identification, and 
regulatory gaps. As such, they point out that biases in 
training data can lead to inaccurate or discriminatory 
results in AI models, which is particularly problematic 
in healthcare, where decisions directly affect patient 
outcomes. The paper discusses the need for robust 
methods to verify the quality of synthetic data, calls for 
transparency in data generation processes, and 
proposes the establishment of a digital chain of 
custody to maintain data integrity and accountability. 

While these insights are essential, their work primarily 
addresses technical, privacy, and regulatory 
challenges, leaving a gap in ethical considerations, 
particularly as they relate to synthetic image data in 
digital health. Here, Murtaza et al. (2023) reviewed the 
generation of synthetic data in healthcare, while 
Gonzales et al. (2023) discussed the potential 
applications of synthetic data, focusing on datasets 
and innovative utility. As shown in Figure 2, synthetic 
image data can be applied across various medical and 
clinical healthcare applications such as skin lesion and 
cancer detection, x-ray diagnosis, or renal cell 
carcinoma treatment (Chen et al., 2021), providing 
insights into the generation and use of synthetic data 
for training deep learning models. At this point, we 
would like to note that the illustrative examples shown 
in Figure 2 are only one of many possible forms of 
synthetic image data applications in digital health, and 
that, for example, the correct classification rate for 
cancer detection needs to be significantly higher 
compared to preventive care use cases, as our 
instantiation will show later. We argue that a 
misdiagnosis in cancer detection with synthetic image 
data is much more fatal than an error in home care 
interaction with cognitively impaired individuals, for 
which Figure 2 is only an example of how 
photorealistic synthetic image data can be and what 
possible use cases are conceivable.  

Despite the considerable research on utilizing 
synthetic image data for computer vision deep learning 
models, there remains a notable research gap in terms 
of a comprehensive framework or guidelines that 
provide design knowledge to effectively and 
systematically utilize synthetic data in this context. 
While individual studies have demonstrated the 
benefits and effectiveness of synthetic data in specific 
tasks, there is a lack of unified principles or guidelines 
that guide researchers and practitioners in the 



selection, generation, and integration of synthetic 
image data for training deep learning models. 
Moreover, relying on synthetic data without a robust 
ethical framework risks exacerbating existing biases or 
introducing errors, particularly when synthetic 
datasets are generated without adequate 
consideration of demographic diversity or the potential 
for subtle patterns to be exploited, underscoring the 
critical need for proactive safeguards to prevent 
unintended harm in high-stakes scenarios such as 
cancer detection. Hereby, the absence of such design 
knowledge hinders the widespread adoption and 
consistent utilization of synthetic data, leading to 
potential inefficiencies, suboptimal performance, and 
challenges in real-world deployment (Giuffrè & Shung, 
2023; Müller et al., 2018; Scheck et al., 2020; Zhang 
et al., 2018). 

Ethics in IS and Digital Health 
(Digital) Ethics has long been an afterthought in IS 
research but has gained some momentum in the last 
decade and is showing various manifestations with a 
growing number of studies (Kern et al., 2022). Ethics, 
broadly speaking, is a branch of philosophy that 
assesses the morality of human actions, offering a 
thorough examination of interconnected ethical 
dilemmas, concepts, principles, reasoning, and 
judgments through various ethical theories (Becker & 
Becker, 2001; O’Neil, 2004) that orbit around 
teleological (Aristotele et al., 2009), deontological 
(Habermas, 1987; Kant, 1998), and weak 
normative/contextual (Düwell et al., 2011) categories. 
Similarly, digital ethics focuses on the moral 
implications associated with the development and 
application of digital technologies, providing a 
comprehensive framework to address the ethical and 
moral challenges posed by digital innovation. 
Intending to formulate morally good solutions as 
defined by Floridi and Taddeo (2016), the field 
encapsulates varying viewpoints; for instance, 
Spiekermann et al. (2022) emphasize ethical virtues 
and values, while Schlagwein et al. (2019) advocate 
for discourse ethics as a foundation for analysis. While 
existing ethical research frameworks in IS and DSR, 
such as those proposed by Myers and Venable (2014), 
provide valuable meta-level guidance, these tend to 
focus on broad, generalizable principles that may not 
fully address the unique ethical challenges presented 
by synthetic image data in digital health computer 
vision. These unique challenges include the potential 
for synthetic data to replicate or amplify biases in 
source datasets, vulnerability to re-identification 
despite its artificial nature, and ethical ambiguities 
surrounding consent for its creation and use (i.e., in 
terms of accountability, fairness, transparency, or 
compliance). In addition, the perceived infallibility of 
synthetic data risks fostering complacency, while its 

increasing accessibility increases the potential for 
misuse in sensitive digital health contexts. Addressing 
these issues requires rigorous, domain-specific ethical 
frameworks that consider the high stakes and 
sociotechnical complexities of healthcare applications. 
Similarly, while Herwix et al. (2022) emphasize the 
importance of value systems design in IS research, 
there remains a critical need for domain-specific 
ethical guidelines that not only build upon these 
existing frameworks but also provide actionable 
insights tailored to the sociotechnical demands of 
digital health applications, where the ethical stakes are 
particularly high. Subsequently, digital health is 
considered a branch in the interdisciplinary field of 
digital ethics, which overlaps with, for example, 
computer science (Mahieu et al., 2018) or the 
paradigm of computer ethics (Floridi, 2010). More 
specifically, the IS concept of technology adoption in 
terms of privacy and e-health records has been 
reviewed by Hansen and Baroody (2020), while Turja 
et al. (2020) studied the acceptance of robotic 
caretakers that pay attention to ethical values and Al-
Dhaen et al. (2021) explored the ethical considerations 
in the internet-of-medical-things use intentions. 
On a more conceptual theory level and as shown in 
Figure 3, digital health ethics can be allocated to AI 
ethics and the design and development of 
positive/beneficial artificial intelligence (Floridi & 
Cowls, 2019); value ethics and the indication that a 
person strives for higher intrinsic values (Becker & 
Becker, 2001); and IS ethics that specifically applies 
to information systems research (McBride, 2014). 
From this perspective, the developed concepts (Kern 
et al., 2022) of artificial intelligence to act effectively 
and safely in AI environments (Russell & Norvig, 2021) 
and privacy to determine the extent of personal 
information exposure (Hung & Cheng, 2009) hereby 
inform our study of synthetic image data in digital 
health computer vision in terms of the guiding 
theoretical orientation. In addition, Rajkomar et al. 
(2019) delve into the application of AI in healthcare, 
discussing both its potential benefits and associated 
challenges. Their comprehensive analysis covers a 
range of issues, from improving patient care to ethical 
considerations and data privacy. Focusing on the 
critical issue of bias in healthcare AI, Obermeyer et al. 
(2019) provide an in-depth examination of how AI 
algorithms can inadvertently perpetuate bias and offer 
methods for identifying and reducing these biases, 
contributing to the development of fairer and more 
equitable AI tools in healthcare. In this context, Raji et 
al. (2020) explored the ethical dimensions of auditing 
facial recognition technologies, focusing on the 
methodological challenges and moral implications 
associated with auditing these AI systems and 
situating their study within the broader conversation 
about AI, ethics, and societal impact, with a particular 



focus on facial recognition technology. Building on 
this, Vayena et al. (2019) present an ethical framework 
tailored for AI applications in healthcare. They argue 
for a multi-stakeholder approach, involving 
collaboration between technologists, ethicists, and 
legal experts, highlighting the importance of balancing 
innovation with ethical responsibility and ensuring that 
AI advancements enhance healthcare while 
safeguarding patient privacy and data security. In the 
larger context of AI research in healthcare, Panch et 
al. (2019) critically examine the application of AI in 
healthcare, addressing what they refer to as the 
‘inconvenient truth’ of AI in this domain and 
highlighting its contributions to the ongoing discussion 
about the realistic and ethical application of AI 
technologies in medical settings. Their work serves as 
a critical reminder of the need to balance enthusiasm 
for AI with a clear-eyed assessment of its challenges 
and limitations. Since digital health environments and 
especially image-based computer vision approaches 
are exposed to sensitive data, the incorporation of 
digital ethics is necessary. 

However, as digital ethics has gained momentum in 
recent years, there is a significant lack of research in 
the area of computer vision healthcare, particularly in 
the use of synthetically generated image data – both 
theoretically and practically. The notion of generating 
synthetic medical images, for instance, creates a 
potential ethical grey area around consent, data 

privacy, and the authenticity of information. The stakes 
are high, as missteps can lead to misinformation, 
misdiagnosis, or the exploitation of sensitive personal 
data, such as potential demographic biases or 
misrepresentations (Giuffrè & Shung, 2023; Gonzales 
et al., 2023, Murtaza et al., 2023; Obermeyer et al., 
2019; Panch et al., 2019). Interestingly, while it could 
be argued that synthetic data is artificial data and 
therefore easier to protect privacy, synthetic data often 
mirrors real-world data, meaning that identifiable 
patterns or sensitive information from real-world 
reference datasets may be unintentionally replicated 
in the synthetic output (Giuffrè & Shung, 2023, 
Gonzales et al., 2023). This link between synthetic and 
real data underscores the need for robust ethical 
frameworks and privacy protections, particularly in the 
sensitive context of digital health, where the potential 
for re-identification and misuse remains significant. 
Moreover, the intersection of AI ethics, value ethics, 
and IS ethics with the realm of synthetic image data in 
digital health computer vision needs a thorough 
exploration to ensure the responsible development 
and deployment of these technologies. Therefore, 
design knowledge and guidance are needed to ensure 
the ethical and performant use of synthetically trained 
deep learning models in digital health, and to generate 
compliant image data that is both realistic and value-
sensitive (Becker & Becker, 2001; Giuffrè & Shung, 
2023; Murtaza et al., 2023). 

 
Figure 3. Relevant Ethical Foundations and Concepts for the Use of Synthetic Image Data in Digital Health 
  



From a more philosophical, sociological, and 
phenomenological perspective, our study is further 
informed by theoretical foundations and (design) 
knowledge from related fields to IS and digital ethics. 
In general, ethical design decisions are not neutral but 
have inherent moral implications, as highlighted by 
Donia and Shaw (2021), who argue that the degree of 
designer agency - constrained by external factors such 
as corporate/performance pressures - significantly 
influences the integration of values into design 
processes. Moreover, the concept of normative 
strength within design emphasizes how strongly 
ethical principles are embedded in these processes, 
challenging us to consider how the constraints on 
designers’ agency affect the ethical quality of the 
resulting artifacts. This aligns with Albrechtslund’s 
(2007) critique of positivist assumptions in value-
sensitive design, which argues for a flexible approach 
that recognizes the multistability of technologies and 
the unpredictable ways in which they can be used or 
misused once deployed. This phenomenological 
approach shifts the focus from predicting ethical use 
to preparing for ethical adaptability and flexibility in 
design. In addition, Findeli’s (1994) exploration of the 
intertwined relationship between ethics and aesthetics 
in design emphasizes that design decisions should 
take into account both ethical and aesthetic 
judgments, reinforcing the notion that design in socio-
technical systems carries moral responsibility, 
especially when designing artifacts that mediate 
between the human and technological realms 
(biocosm, sociocosm, and technocosm). The term 
technoethics is introduced to discuss the ethical issues 
arising from technological developments and their 
impact on professions, including design. Findeli (1994) 
emphasizes that designers have a professional 
responsibility for the moral implications of their 
creations that goes beyond mere functionalism. 
Designers must consider how their designs affect 
users, society, and the environment at large, which is 
consistent with the key assumptions of sociotechnical 
systems theory. Integrating this with Luhmann’s 
(1996) reflections on ethical systems as adaptive and 
reflective processes within social contexts 
underscores the need for continuous ethical 
deliberation in complex environments such as 
computer vision and digital health. Finally, Lupton 
(2017) critiques mainstream design thinking for 
neglecting sociocultural complexity and advocates for 
speculative design approaches that address 
technological systems' broader social and ethical 
implications. Together, these perspectives deepen our 
engagement with ethical and sociotechnical 
frameworks and ground our study in a comprehensive 
theoretical foundation that not only addresses the 
challenges of synthetic data but also ensures that 

ethical considerations are central to the design of 
health technologies. 

Literature Review 
As shown in the previous sections, research on deep 
learning models, especially concerning synthetic 
training data, and digital ethics in IS has become 
increasingly sophisticated. While real image models in 
computer vision depend on the availability and quality 
of training data, this particular challenge can be 
addressed by synthetic data, which is scalable, cheap, 
and less error-prone, but also raises questions of 
ethical use, especially in digital health. Research has 
consistently highlighted the complexity and data-
intensive nature of deep learning models in computer 
vision, underscored by the challenges of acquiring the 
diverse and extensive datasets required for these 
models (Alzubaidi et al., 2021). This gap in effective 
and efficient data acquisition, which is particularly 
relevant in digital health, affects model accuracy and 
generalizability, which directly impacts human health 
outcomes. Looking at Research Stream 1, which 
focuses on synthetic image data in deep learning, it 
can be conceptually divided into the effectiveness and 
application of synthetic data (EA-SD) as well as the 
challenges and strategies in synthetic data utilization 
(CS-SDU), as shown in Table 1. Studies listed in the 
former category, such as those by Lee et al. (2019), 
Krump et al. (2020), and Aranjuelo et al. (2021), focus 
specifically on the applications and effectiveness of 
synthetic data in different deep learning and computer 
vision contexts. On the other hand, CS-SDU includes 
papers such as those by Lahiri et al. (2018) and Seib 
et al. (2020), which address domain adaptation, 
challenges in using synthetic data, and strategies for 
combining real and synthetic data. Research Stream 
2 can then be conceptually divided into the theoretical 
and philosophical foundations of digital ethics (TPF-
DE) and the practical applications and implications in 
digital health (PAI-DH). Here, studies from the former 
category, such as those by Becker and Becker (2001) 
and Floridi and Taddeo (2016), focus on the ethical 
theories and philosophical foundations relevant to 
digital ethics, which is different from the practical 
applications of these theories. On the other hand, the 
studies listed in PAI-DH, such as those by Hansen and 
Baroody (2020) and Turja et al. (2020), are specifically 
focused on the application of ethical considerations in 
digital health, which is distinct from the theoretical 
underpinnings of digital ethics. At the intersection of 
these conceptually divided research streams, general 
synthetic data has been addressed in terms of 
application, privacy, and policy (Giuffrè & Shung, 
2023; Gonzales et al., 2023) while also covering 
healthcare settings (Murtaza et al., 2023). By further 
grounding our theory-driven approach (Schoormann 
et al., 2024) in philosophical, sociological, and 



phenomenological perspectives from related fields 
(Donia & Shaw, 2021; Albrechtslund, 2007; Findeli, 

1994; Luhmann, 1996; Lupton, 2017), we ground our 
study in this prior (design) knowledge. 

Table 1. Literature and Research Streams are Categorized Based on Their Conceptual Orientation 

Literature 

Research Stream 1: 
Synthetic Image Data in Deep 

Learning 
Research Stream 2: 
Digital Ethics in IS 

EA-SD CS-SDU TPF-DE PAI-DH 
Lee et al. (2019) X    
Krump et al. (2020) X    
Aranjuelo et al. (2021) X X   
Valtchev and Wu (2021) X    
Wan et al. (2021) X    
Bird et al. (2020)     
Lahiri et al. (2018)  X   
Venkateswara et al. (2017)  X   
Kuhnke and Ostermann (2019)  X   
Seib et al. (2020)  X   
Müller et al. (2018)  X   
Zhang et al. (2018)  X   
Scheck et al. (2020)  X   
Giuffrè and Shung (2023)  X  X 
Murtaza et al. (2023) X   X 
Gonzales et al. (2023) X   X 
Becker and Becker (2001)   X  
O’Neill (2004)   X  
Floridi and Taddeo (2016)   X  
Spiekermann et al. (2022)   X  
Schlagwein et al. (2019)   X  
Vayena et al. (2019)   X  
Donia and Shaw (2021)   X  
Luhmann (1996)   X  
Lupton (2017)   X  
Albrechtslund (2007)   X X 
Findeli (1994)   X X 
Obermeyer et al. (2019)   X X 
Panch et al. (2019)   X X 
Hansen and Baroody (2020)    X 
Turja et al. (2020)    X 
Al-Dhaen et al. (2021)    X 
Floridi and Cowls (2019)    X 
Russel and Norvig (2021)    X 
Raji et al. (2020)    X 
Rajkomar et al. (2019)    X 
Hung and Cheng (2009)    X 
Our study approach X X X X 

Note 

• EA-SD = Effectiveness and Application of Synthetic Data 
• CS-SDU = Challenges and Strategies in Synthetic Data Utilization 
• TPF-DE = Theoretical and Philosophical Foundations of (Digital) 

Ethics 
• PAI-DH = Practical Applications and Implications in Digital Health. 

 



Despite the considerable work that has been done in 
these categories, there remains a significant gap in 
synthesizing these diverse streams into cohesive 
design knowledge that can inform the development of 
digital health technologies using synthetic image data. 
This gap is significant because it hinders the ability to 
systematically address the challenges and realize the 
potential of synthetic data in ways that are both 
ethically responsible and technologically effective 
(Rajkomar et al., 2018; Panch et al., 2018). This is 
particularly relevant given the rapid evolution of digital 
health technologies and their increasing reliance on 
complex deep learning models. The need for unified 
design knowledge becomes even more apparent 
when considering the diverse applications and 
implications of synthetic image data in digital health. 
Unlike meta-level approaches to ethical guidance in IS 
and DSR (Myers & Venable, 2014; Herwix et al., 
2022), the need for knowledge about the ethical use of 
synthetic data stems from its growing use in 
healthcare, where it presents unique ethical 
challenges and, despite being artificially generated, 
often reflects real-world data that may inadvertently 
carry sensitive or identifiable characteristics. For 
example, using synthetic data to train algorithms for 
diagnostic purposes requires a socio-technical 
perspective with technical precision and a deep 
understanding of ethical considerations such as 
patient privacy and data security. Similarly, when 
synthetic data is used to train models for predictive 
healthcare analytics or in digital health applications 
aimed at assisting vulnerable populations, it is critical 
to ensure that the models are not only accurate but 
also unbiased and fair. Thus, the need for a design 
theory to address the research gap in the ethical and 
effective use of synthetic image data in digital health 
computer vision is multifaceted. First, it has the 
potential to integrate technical and ethical aspects of 
healthcare, providing a comprehensive framework for 
practitioners and researchers (Chandra et al., 2015; 
Meth et al., 2015). Furthermore, it aims to emphasize 
ethical compliance and social responsibility, focusing 
on values such as privacy and fairness in the use of 
synthetic data (Gregor & Jones, 2007). The design 
theory could, therefore, improve AI-driven medical 
diagnosis and treatment, promote innovation in 
medical imaging, and address risks such as AI bias 
and legal issues. It could, therefore, also foster 
interdisciplinary collaboration and reduce 
indeterminacy in design theory (Burton-Jones et al., 
2021; Lukyanenko & Parsons, 2020), ensuring that 
digital health technologies remain adaptable and 
responsible. 

Research Methodology 
We drew on the DSR paradigm (Hevner et al., 2004), 
as our study seeks to provide prescriptive insights for 

research on synthetic image data, rather than merely 
descriptive knowledge, as outlined by Gregor and 
Hevner (2013). Given that the DSR paradigm can be 
instantiated through a variety of methodological 
processes (Venable et al., 2017), and that design 
theories, in general, embody a form of theorizing in IS 
research (Brendel et al., 2022; Burton-Jones et al., 
2021; Dehling & Sunyaev, 2023; Gregory & 
Muntermann, 2014; Kane et al., 2021; Lee et al., 2011; 
Mandviwalla, 2015; Young et al., 2021), our study can 
be placed in the theorizing domain of the DSR focus 
matrix (Brendel et al., 2022), which implies a higher 
focus on rigor and derivation of theoretical artifacts. 
This matrix domain generally involves using higher-
level kernel theories (i.e., in our case, value-sensitive 
design theory and sociotechnical systems theory) to 
form new design theories for a given problem space 
(i.e., in our case, the use of synthetic image data in 
digital health). In this domain, the development of 
design principles and propositions, similar (but not 
equal) to hypothesis formulation, plays a central role, 
emphasizing the importance of grounding new 
theories in prior knowledge (Brendel et al., 2022; 
Schoormann et al., 2024). Thus, we followed the 
grounding and conceptualization step for theory-
driven DSR configurations as suggested by 
Schoormann et al. (2024) to ground our design 
requirements and principles in prior work and theory 
based on our theoretical foundations. 
As such, we meticulously followed the heuristic design 
theorizing framework proposed by Gregory and 
Muntermann (2014) over two design cycles to ensure 
both transparency and stringency (Figure 4) for design 
theory replication as discussed by Brendel and 
Muntermann (2022). In our case, heuristic theorizing 
is defined as the process of proactively creating design 
theory from problem-solving experiences and prior 
theories. This is achieved by continuously iterating 
between seeking a satisficing (adequate) problem 
solution (heuristic search) and synthesizing new 
information generated during the heuristic search 
through, e.g., literature, theory, or practical findings 
(Gregory & Muntermann, 2014). Thus, our theorizing 
approach contained multiple rounds of analogical 
design (e.g., transferring design knowledge about one 
design situation to another), reformulating the problem 
(e.g., for specific domains), playing with kernel 
theories (i.e., value-sensitive design and 
sociotechnical systems theory), and modeling (cf. 
Figures 6 and 7). Here, our design theorizing approach 
is located in the abstract theoretical domain, seeking 
an abstract solution that solves an abstract problem, 
and using abductive reasoning because there is an 
objective to guide learning and problem-solving (Lee 
et al., 2011). From a more metatheoretical perspective 
of our theorizing approach, and in line with the general 
design theory development directions mentioned 



above, we followed the envision-strategy proposed by 
Burton-Jones et al. (2021) for next-generation 
theorizing. In doing so, our proposed design theory 
helps to study a new phenomenon (i.e., synthetically 
generated image data in computer vision) emerging in 
a changing world (i.e., dynamic digital health domain 
and increased ethical awareness), which effectively 
leads to a new IS theory. 
Therefore, a multi-method research approach 
(Mingers & Brocklesby, 1997) consisting of a focus 
group session for data collection and two think-aloud 
sessions for evaluating the theorized artifacts was 
chosen to address the shortcomings of single methods 
and ensure validity. While the heuristic design 
theorizing process does not require formal evaluation 
(Gregory & Muntermann, 2014), we incorporated 
these evaluation episodes to align our design theory 
with the broader principles of DSR, ensuring both 
theoretical rigor and practical applicability. As such, 
our iterative, heuristic process of data collection and 
analysis ensured that the findings from these sessions 
were continually refined. We acknowledge that sample 
size is often questioned in qualitative research 
(Marshall et al., 2013; Hwang & Salvendy, 2010; 
Noushad et al., 2024), especially when dealing with 
smaller numbers of participants (see Figure 8 for our 
study sample), who in our case were selected for their 
specialized expertise in synthetic (image) data, digital 

ethics, and AI in digital health. However, theoretical 
saturation was reached when no new insights 
emerged to further inform our design theory (Glaser & 
Strauss, 2017; Charmaz, 2006), while data saturation 
occurred when additional data collection did not yield 
new second-order themes or aggregate dimensions 
(Saunders et al., 2018), signaling that further data 
would not contribute new insights. Code/thematic 
saturation (Bowen, 2008; Guest et al., 2020; Hennink 
et al., 2022) confirmed that the identified themes fully 
captured the essence of our study focus, even after 
adding or subtracting experts from the sample. Finally, 
we reached meaning saturation, where our 
interpretive understanding of the themes was fully 
developed, and no new meaning could emerge from 
additional data or sessions (Hennink et al., 2017; Yang 
et al., 2022). The depth of engagement with our expert 
participants allowed us to make meaningful design 
decisions without the need for a larger participant pool, 
focusing on the premise that qualitative rigor comes 
from the richness of the data rather than the number 
of participants (Bryant & Charmaz, 2007; 
Sandelowski, 1995). The rather small sample size was 
used to ensure the participation of a practical and 
realistically recruitable subset of the target community, 
allowing for a focused yet meaningful evaluation of the 
proposed design requirements and principles by 
relevant practitioners outside the DSR project (Iivari et 
al., 2021). 

 
Note: SH=structuring heuristics; DH=artifact design heuristics; DR=design requirement; DP=design principle; AD=aggregate dimension; 

DT=design theory. 

Figure 4. Heuristic Design Theorizing Approach, adapted from Gregory and Muntermann (2014) 
 
  



Table 2. Value-Sensitive Design as a Companion to the Heuristic Design Theorizing Process  

Kernel Theory Steps of 
Value-Sensitive Design Application in our Health and Ethics Context Application in the Heuristic Design Theorizing 

Process 

1) Start with a Value, 
Technology, or Context 
of Use 

Synthetic image data in the context of digital 
health deep learning, focusing on ethical 
implications, privacy concerns, and the need for 
unbiased AI models. 

Corresponds to the initial entry into the theorizing 
process where the “wicked problem perception” is 
identified. Transitions into problem decomposition 
(SH1). 

2) Identify Direct and 
Indirect Stakeholders 

Researchers, designers, developers and 
regulatory bodies as direct stakeholders. Patients 
and healthcare providers as indirect stakeholders. 

Corresponds to the problem decomposition where 
stakeholders’ roles and impacts are considered. 

3) Identify Harms and 
Benefits for Each 
Stakeholder Group 

Identified privacy breaches, bias, 
misrepresentation as potential harms. Identified 
model performance, accuracy, scalability, and 
applicability as potential benefits. 

Occurred during the problem decomposition and 
continued through the analogical design and 
playing with kernel theory stages where potential 
design solutions were discussed and evaluated.  

4) Map Harms and 
Benefits onto 
Corresponding Values 

Aligned identified harms and benefits with the 
ethical values of privacy and consent, fairness 
and non-discrimination, accountability and 
transparency, and beneficence and non-
maleficence. 

Achieved through analogical design stages where 
harms and benefits are aligned with the defined 
ethical values. Subsequently, these were 
incorporated into design requirements and 
principles. 

5) Conduct a Conceptual 
Investigation of Key 
Values 

Analyzed values and enriched them by theoretical 
and practical underpinnings to ensure they are 
embedded in the design requirements and 
principles. 

Conducted in-depth theoretical analysis and aligned 
these insights with the theory-building dimensions 
of the think-aloud content analysis.  

6) Identify Potential Value 
Conflicts 

Addressed conflicts such as performance vs. 
transparency or anonymity vs. accountability, and 
balancing these in the design theory. 

Addressed through problem reformulation (SH2) 
and iterative design cycles to balance conflicting 
values and find adequate design solutions. 

7) Integrate Value 
Considerations into the 
Design Process 

Ensured that the design and implementation 
processes are aligned with the ethical 
values/standards of the design theory. 

Corresponds to the final design and the exit of the 
heuristic theorizing process. 

 
As shown in Table 2, and according to our analyze-
with-lens kernel theory mechanism (Möller et al., 
2022), we used value-sensitive design to inform our 
heuristic theorizing process in terms of the methods 
used and aspects of the design requirements and 
principles. By incorporating value-sensitive design 
theory as a theoretical lens into the heuristic theorizing 
process, we ensure that ethical values are 
systematically integrated into both our research 
methodology and the design artifact. Thus, we based 
the structured heuristics (SH1, SH2) on problem 
decomposition and reformulation and their 
understanding of ethical and technical challenges. 
Subsequently, our artifact design heuristics (DH1-
DH7) ensured that our design artifact embodied the 
identified values and addressed the key ethical and 
technical concerns. Thus, the iterative process of 
value-sensitive design accompanied the equally 
iterative nature of our DSR methodology. 
As shown in Figure 4, our multi-cyclical research 
approach contains two sequentially completed design 

cycles, with each of them containing theorized 
artifacts, whereas the second completed cycle drew 
on the conclusion of the first one. The design 
knowledge encompasses the collective design 
intuitions, design decisions, principles of form and 
function, and the descriptive insights employed to 
comprehend the problems and formulate the 
respective solutions in each cycle. Therefore, the 
approach and results within this paper are presented 
for both design cycles. 
The first design cycle was dedicated to gathering initial 
and foundational design knowledge about the use of 
synthetic image data in digital health computer vision 
environments, focusing on information security and 
model performance. In this first cycle, the main artifact 
proposed was a set of nascent design principles based 
on the literature and a qualitatively analyzed focus 
group session with AI experts (n = 11). For the 
qualitative content analysis, we followed the 
methodological approach proposed by Gioia et al. 
(2013) and developed first-order concepts, second-



order themes, and aggregate dimensions (AD). This 
particular content analysis methodology is used to 
build theory within IS (Magnani & Gioia, 2023) and 
provides our foundation for design requirement 
development. This approach to concept development 
allowed us to balance the often-conflicting goals of 
developing new concepts inductively and maintaining 
high standards of rigor in IS research. We used first-
order coding (inductive) to capture informant-centered 
concepts, which were then interpreted into second-
order themes through constant comparison and 
theoretical reflection (abductive), as shown in Böhmer 
et al. (2023). These themes were then aggregated into 
four dimensions representing core design constructs: 
privacy and ethical compliance (AD1), data 
governance (AD2), synthetic scene generation (AD3), 
and robust learning and generalization (AD4). These 
ADs, together with the literature, formed the basis of 
the design principles, which are prescriptive and 
universal in this context, specifying how an 
instantiation should be designed to meet the proposed 
requirements (Fu et al., 2016). In this context, the 
design principles were derived from a supporting 
approach (Möller et al., 2020) that complements the 
conceptual scheme of Gregor et al. (2020) (see 
Appendix A for the detailed scheme), whose a priori 
specification suggests a prescriptive formulation (Fu et 
al., 2016). Moreover, the use of the framework allowed 
us to formulate accessible, precise, and expressive 
design knowledge (Gregor et al., 2020). By evaluating 
the reusability of the design principles in the context of 
digital health (Iivari et al., 2021), we derived several 
areas for improvement and revision, which were 
crucial for initiating the second design cycle. 
Evaluation feedback from the first cycle included 
suggestions for strengthening the responsible AI 
paradigm due to ethical and social concerns, revising 
ambiguous design principle descriptions, addressing 
control mechanisms in data generation, and 
reevaluating the strategy for increasing complexity in 
synthetic scenes. Concerns were also raised about the 
specific applicability of these principles in the digital 
health domain, especially in the context of digital 
ethics, through potentially missing design knowledge, 
as their applicability may vary in different support, 
treatment, or diagnostic contexts, which ultimately 
triggered the need for a second cycle. Based on the 
evaluation feedback from the first cycle and its results 
(Böhmer et al., 2023), we decided to revise the artifact 
and conduct a second cycle, focusing on a more 
holistic theoretical approach, incorporating the 
revision suggestions, and operationalizing our design 
theory artifact. 

Design Theory 
Design Requirements 
The design requirements outlined by our design theory 
serve as the main objectives for the theoretical and 
conceptual artifact. In a way, these requirements can 
be seen as meta-requirements, as they guide the 
development of the subsequent reference architecture 
(Baskerville & Pries-Heje, 2010; Walls et al., 1992; 
Schoormann et al., 2024). Following evaluation 
feedback on missing design requirements from cycle 
1 (cf. Table 2), we derived the requirements of ethics 
& privacy compliance (DR1), individuality & 
generalizability (DR2), accuracy & precision (DR3), 
and realism & healthcare relevance (DR4). Figure 5 
shows both the theory building (Gioia et al., 2013) and 
theory grounding (Walls et al., 1992; Schoormann et 
al., 2024) of those DRs, while Figure 6 shows a 
simplified depiction of our design theory and its core 
components. 
When working with synthetic image data in digital 
health, it is crucial to ensure that all processes related 
to the generation and use of synthetic imagery are 
ethical and privacy-compliant (DR1), protecting 
individual privacy rights and ethical norms (Dadgar & 
Joshi, 2018; Mueller et al., 2018). Drawing from AD1, 
it highlights the need for ethical responsibility in the 
development and deployment of technologies that 
handle sensitive data in digital health environments as 
depicted by value-sensitive design theory (Friedman 
et al., 2002; 2013), the use of ethical values in IS 
(Spiekermann et al., 2022), and the general necessity 
for ethical AI and IS considerations (Floridi & Cowls, 
2019; Hung & Cheng, 2009; McBride, 2014; Murtaza 
et al., 2023; Russell & Norvig, 2021). While it builds on 
general meta-level guidance on ethical research in IS 
(Myers & Venable, 2014; Herwix et al., 20222), it 
embodies the core ethical values, which include 
adherence to the aspects of privacy and consent, 
fairness and non-discrimination, accountability and 
transparency, and beneficence and non-maleficence. 
Grounded in philosophical, sociological, and 
phenomenological ethics, Donia and Shaw (2021) 
emphasize the role of designer agency in embedding 
ethical values, while Findeli’s (1994) concept of 
“technoethics” emphasizes the moral responsibility of 
designers to consider the ethical implications of 
technological decisions and to ensure privacy. Deng 
et al. (2016) and Yetim (2011) emphasize the need for 
fairness, inclusiveness, and transparency, reinforcing 
the importance of ethical guidelines and privacy 
protection in the generation of synthetic data, 
especially in understanding stakeholder values 
(Denning et al., 2014). These tenets ensure 
compliance with privacy standards such as GDPR, 
promote equitable treatment, require transparent 
methodologies, and focus on maximizing benefits 



while minimizing harms, thereby aligning synthetic 
data use with societal values and ethical standards 
(Becker & Becker, 2001; Hung & Cheng, 2009; Floridi, 
2010; Russel & Norvig, 2021). In this context, it is 
important to recognize that while synthetic data is 
artificially generated, it can still pose risks of re-
identification and privacy breaches if not properly 
managed. This is particularly relevant when the 
synthetic data is modeled on sensitive real-world 
datasets, as it may inadvertently retain identifiable 
features or patterns (Giuffrè & Shung, 2023; Gonzales 
et al., 2023). For example, synthetic images generated 
from a dataset of patient scans may still contain 
patterns or features that, when combined with other 
data, could potentially be traced back to the original 
patient. Therefore, DR1 emphasizes the critical need 
for rigorous data governance and transparency in the 
synthetic data generation process to avoid a false 
sense of security (i.e., the misconception that it is just 
“artificial data”). This ensures that synthetic data does 
not circumvent ethical and legal obligations, especially 
when it reflects the sensitive real-world scenarios for 
which models are trained. As originally proposed by 
sociotechnical systems theory (Trist & Bamforth, 1951; 
Emery & Trist, 1960), the need for joint optimization of 
social and technical subsystems emphasizes 
preventing the technical subsystem (i.e., data 
generation) from undermining the social subsystem 
(i.e., ethical values and practices) by balancing 
technical capabilities with social imperatives. This 
approach is based on Mumford’s (2006) reflections on 
the need to align social and technical elements to 
achieve sustainable outcomes. Hence, Rajkomar et 
al.’s (2019) insights into the diverse applications of AI 
in healthcare, including improving patient care and 
addressing ethical challenges, set the stage for a more 
informed and balanced adoption of these 
technologies. The imperative to uphold ethical 
standards and protect privacy in digital health is further 
highlighted by Obermeyer et al. (2019) and the 
importance of addressing bias in healthcare AI to 
avoid ethical pitfalls, while Panch et al. (2019) inform 
DR1 in the context of the ethical and practical 
challenges of implementing AI in healthcare, 
emphasizing the need for transparency and protection 
of patient privacy. Therein, the work of Raji et al. 
(2020) serves as a guiding frame for the moral 
responsibilities that accompany the deployment of AI 
technologies, especially those with profound societal 
impacts. Building up on this, DR1 is further grounded 
in the framework proposed by Vayena et al. (2019) as 
their advocacy for a multi-stakeholder approach 
resonates with the need for collaborative efforts in 
developing AI solutions that are not only innovative but 
also ethically sound and respectful of privacy and data 
security. 

Drawing from AD2, DR2 highlights the importance of 
capturing the diversity and individuality present in real-
world healthcare scenarios (Kern et al., 2022), 
ensuring that models trained on synthetic data are 
highly generalizable and applicable to a wide range of 
situations (Alzubaidi et al., 2021; Seib et al., 2020). 
These diverse applications can cover areas such as 
predictive healthcare (Gonzales et al., 2023), 
evaluation and testing (Murtaza et al., 2023), or 
classifying diseases (Giuffrè & Shung, 2023), and set 
the objective of high generalizability in various 
healthcare settings. The call for comprehensive and 
diverse datasets (Zhang et al., 2018) further supports 
DR2, highlighting the need for AI in healthcare to 
encompass a wide range of patient data to ensure 
applicability across different patient demographics and 
conditions, which is consistent with advocacy for AI 
systems in healthcare that are not only accurate but 
also versatile in their application to address the 
nuanced needs of diverse patient populations (Mueller 
et al., 2018; Panch et al., 2019). Drawing on 
phenomenological and socio-technical perspectives, 
Albrechtslund (2007) emphasizes the need for 
adaptable designs to manage the multistability of 
technology, while, again, Findeli’s (1994) principle of 
“technoethics” reinforces the ethical obligation to avoid 
bias in the representation of patient demographics and 
medical conditions. This further aligns with value-
sensitive design’s emphasis on autonomy and 
diversity, which highlights the need for synthetic data 
models to be generalizable and adaptable to different 
healthcare scenarios (Deng et al., 2016), as well as 
the importance of addressing diverse patient values 
and needs (Dadgar & Joshi, 2018). In addition, the 
ethical dimension of AI model development, 
particularly in terms of bias and fairness, as discussed 
by Raji et al. (2020) and Obermeyer et al. (2019), is 
integral to DR2. From a sociotechnical systems theory 
perspective, this means designing data and systems 
that are responsive to the needs and concerns of 
patients, healthcare providers, and regulators. This 
follows Baxter and Sommerville’s (2011) emphasis on 
designing technically robust and socially responsive 
systems, ensuring that governance frameworks 
consider the diverse requirements of all stakeholders, 
thus maintaining the integrity and applicability of 
synthetic data across different healthcare settings 
(Rajkomar et al., 2018). In general, the mentioned 
studies shed light on the need to develop AI tools that 
are not only high-performing but also fair and unbiased 
in different healthcare settings. Thus, DR2 embodies 
the aspect of developing synthetically trained AI 
models that are ethically sound, highly generalizable, 
and adaptable to the diverse nature of digital health. 



 
Note: AD = aggregate dimension 

Figure 5. Theory Building and Theory Grounding of the Design Requirements 
Drawing from both AD3 and AD4, DR3 addresses the 
need for high levels of accuracy and precision in the 
synthetic image data generation process. This is 
crucial in ensuring that the resulting models can be 
reliably employed for precise healthcare-related tasks 
(Aranjuelo et al., 2021; Murtaza et al., 2023; Seib et 
al., 2020; Valtchev & Wu, 2021, Giuffrè & Shung, 
2023), ultimately benefitting patient outcomes in a 
variety of potential applications (Gonzales et al., 
2023). Thus, the importance of high accuracy in 
healthcare AI applications is driven by the importance 
of realistic assessments of AI capabilities to prevent 
potential misdiagnoses or treatment errors (Panch et 
al., 2019). DR3 further addresses the need to maintain 
accuracy in AI algorithms, especially in sensitive 
applications such as facial recognition (Raji et al., 
2020), drawing a parallel to the criticality of accuracy 
in healthcare AI. The issue of competence 
marginalization in repetitive tasks supports the need 
for synthetic images to be accurate and capable of 
handling complex healthcare tasks (Deng et al., 2016). 

Therefore, it raises awareness regarding potential 
risks or inaccuracies in AI models, especially in terms 
of perpetuating biases, which can have serious 
consequences in healthcare decision-making 
(Obermeyer et al., 2019). This is further rooted in the 
potential value trade-off between performance and 
ethics, and the discourse on pragmatic, ethical, and 
moral issues (Yetim, 2011; Albrechtslund, 2007) that 
encompass the appropriate use and impact of security 
designs (Denning et al., 2014). Given this potential 
value trade-off, a nuanced understanding and 
management of both the technical and social 
subsystems is required, maintaining technical 
sufficiency in terms of accuracy and precision while 
focusing on the ethical value imperative as per 
sociotechnical systems theory (Trist & Bamforth, 1951; 
Emery & Trist, 1960; Mumford, 2006). Therefore, DR3 
captures the essence of producing synthetically 
trained deep learning models that are not only 
technically proficient but also reliable and safe in their 
application in healthcare. 



 
Note: AD = aggregate dimension; DR = design requirement; DP = design principle; Hatched DPs = generally applicable across domains. 

Figure 6. The Core Constructs and Simplified Representation of our Design Theory 
Lastly, DR4 draws from AD2 and AD4 and 
emphasizes the importance of ensuring that synthetic 
image data is reflective of real-world healthcare 
scenarios (Murtaza et al., 2023), accurately 
representing relevant medical conditions, patient 
demographics, and environmental factors through 
adequate domain adaptation (Kuhnke & Ostermann, 
2019; Lahiri et al., 2018; Venkateswara et al., 2017). It 
stresses the importance of addressing biases in 
healthcare AI, which resonates with DR4’s focus on 
accurately representing diverse patient populations 
and conditions (Obermeyer et al., 2019). Herein, the 
critical examination by Panch et al. (2019) of the 
realistic application of AI in healthcare underscores the 
necessity for DR4 to ensure that synthetic image data 
is not only functional but also aligns with the realistic 
and ethical considerations crucial in the medical and 
digital health domain. This further ensures that the 
technology is not only functional but also ethically 
sound and user-centric, aligning with value-sensitive 
design theory (Mueller et al., 2018; Friedman et al., 
2002; 2013) and maintaining ethical adaptability 
(Albrechtslund, 2007; Findeli, 1994). Particularly, the 
value placed on making a meaningful impact drives 
the need for synthetic data that accurately reflects 
real-world healthcare contexts (Dadgar & Joshi, 2018; 
Deng et al., 2016). Further grounded in sociotechnical 

systems theory, DR4 addresses the need to manage 
complex interactions between social and technical 
elements. Bostrom and Heinen’s (1977) analysis of 
MIS failures through a sociotechnical systems lens 
reinforces the need to consider both human factors 
and technical specifications to ensure that synthetic 
image data accurately represents the complexity of 
real-world healthcare scenarios and can be effectively 
used to train deep learning models. 

Design Principles 
Based on evaluation feedback from the first design 
cycle, we have revised DP1, DP2, DP3, and DP6 to 
make them more accessible, easier to understand (in 
regards to general AI domains), and more nuanced in 
their connection to digital health. As shown in Figure 
4, we added DP8, DP9, and DP10 throughout our 
heuristic theorizing process to ensure a strong ethical 
and model performance focus. The addressed 
connections between the design requirements and 
principles can be seen in Figure 6. DP1 draws from 
AD1 and states that ethical guidelines and principles 
should be followed when generating and utilizing 
synthetic image data. Incorporating value-sensitive 
design theory (Friedman et al., 2002; 2013) with value 
embedding (Donia & Shaw, 2021) and meta-ethical 



guidance (Myers & Venable, 2014; Herwix et al., 
2022), it is important to align data generation 
processes with privacy regulations and to show 
respect for individual privacy rights (Floridi & Cowls, 
2019; Hung & Cheng, 2009; McBride, 2014; Murtaza 
et al., 2023; Russell & Norvig, 2021; Spiekermann et 
al., 2022). Following Donia and Shaw’s (2021) 
emphasis on designer agency and Findeli’s (1994) 
concept of “technoethics,” ethical guidelines should 
ensure the constraint that every technological act (i.e., 
using synthetic image data in digital health AI) has an 
ethical dimension where design decisions are not 
neutral. DP1 underscores the imperative to recognize 
that while synthetic data is artificial, it is not inherently 
private; rigorous oversight is required to prevent the 
accidental inclusion of sensitive or identifiable 
information that could compromise privacy based on 
real-world reference data. Therefore, care should be 
taken to employ suitable data generation techniques 
(e.g., via Unity3D) and to refrain from incorporating 
sensitive information or biases that could potentially 
compromise the privacy or security of individuals. 
Informed by the ethical values of DR1, the critical role 
of transparency in reducing marginalization supports 
the need for ethical, transparent synthetic image 
generation processes (Deng et al., 2016; Mueller et 
al., 2018; Panch et al., 2018). In addition, DP1 
addresses Yetim’s (2011) advocacy for discourse 
ethics, supporting transparency and ethical integrity 
throughout the synthetic data generation process. This 
means documenting and explaining the decisions 
made in generating synthetic imagery, such as the 
selection of source data, the algorithms used, and the 
rationale behind those decisions (Obermeyer et al., 
2019; Panch et al., 2019). Such transparency is critical 
to building trust among users and stakeholders, and to 
ensuring accountability in the use of synthetic data 
(Panch et al., 2018; Raji et al., 2020; Vayena et al., 
2018). It further ensures the generation of synthetic 
data upholds the ethical values as stated in DR1, 
aligning with Mumford’s (2006) emphasis on balancing 
social and technical elements to prevent the technical 
subsystem from undermining these values. 
DP2 also builds on AD1 and addresses the need for 
the synthetic image data to contain no personally 
identifiable information (PII) or sensitive data, which 
often depends on how the data is generated and 
processed. As such, it addresses the ethical principles 
of public interest, informed consent, and privacy 
(Myers & Venable, 2014). DP2 is based on 
Albrechtslund’s (2007) call for flexible ethical designs 
and Luhmann’s (1996) reflections on societal norms 
and requires that synthetic data be thoroughly 
anonymized to prevent re-identification while also 
adapting to unforeseen or anticipated ethical 
challenges. In general, the idea of synthetic data is to 
create a dataset that mimics real-world data without 

actually containing sensitive information. However, 
there are scenarios where PII or sensitive data may 
still be present when closely derived from real patient 
data that may risk re-identification or contain sensitive 
metadata, raising privacy and bias concerns. DP2 
emphasizes the critical need to recognize that 
synthetic data, while artificial, is not automatically free 
of privacy risks; it is essential to apply robust 
anonymization techniques to ensure that even subtle, 
potentially identifiable characteristics of the real image 
reference are not replicated, thereby protecting 
against re-identification and privacy breaches. As 
such, concerns about security and exploitation align 
with the importance of excluding identifiable 
information from synthetic data (Deng et al., 2016). 
Techniques such as imperfect anonymization (e.g., 
altering key features in scans) or model inversion 
attacks (i.e., reconstructing patient data) can 
inadvertently reveal PII. Hence, it is necessary to 
anonymize or obfuscate any elements that could 
potentially reveal an individual’s identity (Giuffrè & 
Shung, 2023; Hansen & Baroody, 2020; Hung & 
Cheng, 2009; Kern et al., 2022). To achieve this, DP2 
recommends the implementation of advanced 
anonymization techniques that go beyond the removal 
of obvious identifiers such as names or faces (Raji et 
al., 2020). They extend to subtle features that, in 
combination, could lead to the identification of an 
individual (Panch et al., 2019; Vayena et al., 2018). 
This could include background details, specific 
patterns, or even color schemes that may be unique to 
a person’s environment or possessions. It is 
recommended that comprehensive privacy 
mechanisms be incorporated into the generation and 
use of synthetic image data, where controlled noise or 
perturbations are introduced during data generation to 
prevent individual data points from being distinguished 
with a high degree of certainty (Seib et al., 2020; 
Zhang et al., 2018). This approach can protect the 
privacy of individuals even in the presence of external 
information.  
Based on AD2, DP3 states that mechanisms should 
be implemented to control and regulate the generation 
of synthetic image data, such as process frameworks, 
toolkits, virtual environments, or guidelines (Gonzales 
et al., 2023; Murtaza et al., 2023). Following DP1 and 
DP2, DP3 emphasizes that even though synthetic data 
is artificially generated, it requires strong governance 
frameworks to ensure that its creation and use are 
conducted ethically and responsibly, recognizing that 
artificial data is not inherently free from risks related to 
privacy, security, and ethical concerns. Advocating the 
establishment of clear and comprehensive 
governance structures, these structures should not 
only enforce regulations but also foster an 
environment of responsible and ethical use of 
synthetic imagery (Panch et al., 2019; Vayena et al., 



2018). This includes the development of robust 
process frameworks to guide each stage of data 
generation, from initial design to final output (Rajkomar 
et al., 2018), which should be based on common meta-
ethical guidance (Myers & Venable, 2014; Herwix et 
al., 2022). These frameworks should be flexible 
enough to adapt to different contexts and use cases 
while maintaining a core set of ethical and privacy 
standards (Panch et al., 2019; Rajkomar et al., 2019). 
For example, it makes sense to use automated 
compliance checks, data anonymization templates, 
and simulation environments to safely test data 
generation methods without risking data breaches. 
Hence, policies and procedures need to be 
established to govern the creation, usage, and 
distribution of synthetic data to prevent unauthorized 
access or misuse, ensuring value-sensitive 
compliance (Becker & Becker, 2001; Friedman et al., 
2002; 2013). In that context, the suggestion of 
structured deliberation and boundary critique 
reinforces the need for comprehensive governance 
frameworks to guide ethical synthetic data generation 
(Yetim, 2011). As such, the need for ICTs that support 
patient autonomy and accountability suggests the 
importance of establishing governance structures that 
ensure ethical and responsible generation and use of 
synthetic image data (Dadgar & Joshi, 2018). This 
design principle underscores the need for socio-
technical governance that can flexibly adapt to 
changes in both the technological landscape and the 
organizational culture of healthcare institutions 
(Mumford, 2006; Baxter & Sommerville, 2011). 
DP4 stems from AD3 and specifies that a wide range 
of diverse and random elements should be 
incorporated into synthetic scenes, including textures, 
backgrounds, and objects, to address a variety of 
security concerns and contexts (Denning et al., 2014). 
Following Lupton (2017) and Donia and Shaw (2021), 
such scene diversity must incorporate sociocultural 
variability to ensure the representation of diverse 
patient populations and settings without reinforcing 
biases. By introducing a wide range of diverse 
elements into synthetic scenes that challenge 
conventional assumptions and biases (Obermeyer et 
al., 2019; Raji et al., 2020), models can be trained to 
recognize and understand objects in a variety of 
contexts, reducing the likelihood of bias toward 
specific environments or scenarios and model 
overfitting. This approach is particularly beneficial for 
models used in dynamic and unpredictable real-world 
environments. For example, in digital health, a model 
trained on a variety of scene elements is better able to 
recognize medical devices or conditions in a variety of 
settings, from well-equipped urban hospitals to 
resource-limited rural clinics (Rajkomar et al., 2019). 
By varying these factors, the model will be encouraged 
to learn relevant object characteristics instead of 

relying on color or other irrelevant cues (Scheck et al., 
2020; Seib et al., 2020). To further improve 
generalization, cross-domain scene randomization 
should be used, which involves incorporating scene 
elements from different domains or contexts (e.g., 
non-healthcare elements in healthcare settings). 
Introducing unconventional backgrounds, objects, or 
textures that are not typically associated with the 
objects of interest can push the model to learn their 
intrinsic properties, thereby promoting adaptability to 
real-world scenarios (Seib et al., 2020; Valtchev & Wu, 
2021).  
DP5 closely connects to DP4 and further relates to 
AD3, stating that while aiming to promote scene 
diversity (and randomness), it is important to maintain 
a level of control over the composition of synthetic 
scenes. Albrechtslund’s (2007) and Findeli’s (1994) 
integration of ethical and aesthetic values suggests 
that synthetic scenes should be carefully composed to 
balance diversity, adaptability, and realism while 
respecting ethical dimensions. While it is crucial to 
introduce variety and randomness, it is equally 
important to ensure that these elements do not 
overshadow or distort the primary objects of interest in 
the scene. This balance is achieved by carefully 
controlling aspects such as scale, orientation, and 
spatial relationships of objects within the scene (e.g., 
the scale and proportions of disease characteristics or 
living environments). This ensures that the intended 
features and factors of interest are properly 
represented, where factors such as object scale, 
orientation, and spatial relationships should be 
considered to enhance generalization (Krump et al., 
2020; Scheck et al., 2020). Rather than relying solely 
on changing the appearance of synthetic objects, the 
focus should be on varying their key features, and 
changing attributes such as shape, size, material 
properties, and structural characteristics will challenge 
the model to learn object representations. By doing so, 
models are trained to recognize and understand the 
essence of objects, making them more robust to 
changes in appearance that might occur in real-world 
settings. In addition, DP5 recognizes the importance 
of contextual relevance in synthetic scene 
composition. Objects should be placed in contexts that 
are representative of real-world scenarios, even when 
introducing elements of randomness. This approach 
ensures that while the model is exposed to a wide 
range of scenarios, it still learns to associate objects 
with their typical environments and situations. 
DP6 draws from AD4 and addresses the introduction 
of synthetic scenes with varying complexity. It 
emphasizes the strategic introduction and flexible 
management of complexity in synthetic scenes to 
optimize the learning process of deep learning models, 
addressing the value trade-off between security needs 



and usability (Denning et al., 2014). The approach can 
start with simpler scenes or a variety of complexity 
levels, allowing the model to first understand and 
identify the core characteristics of the objects and 
factors of interest. As the model becomes more 
proficient, more complex elements and scenarios can 
be gradually introduced. This incremental approach 
helps build a solid foundation before exposing the 
model to more challenging environments (Alzubaidi et 
al., 2021; Bird et al., 2020; Seib et al., 2020; Wan et 
al., 2021). On the other hand, the varied complexity 
aspect prevents the model from becoming overly 
specialized in recognizing only simple scenes and 
instead promotes the development of a more adaptive 
and versatile learning capability. As such, this design 
principle emphasizes the importance of managing 
complexity in a way that is consistent with the socio-
technical challenges of digital health and promotes 
models that are both socially sound and technically 
feasible (Mumford, 2006; Bostrom & Heinen, 1977). 
By encountering a wide range of complexity early on, 
the model is trained to generalize better across 
different scenarios, increasing its effectiveness in real-
world applications. In addition, DP6 emphasizes the 
importance of monitoring and adjusting model 
performance as complexity increases. Regular 
evaluation is necessary to ensure that synthetically 
trained models are not only able to cope with the 
increased complexity but also learn effectively from it 
to be used in the highly precise digital health 
environment (Panch et al., 2019; Rajkomar et al., 
2019). If the model shows signs of struggle or 
overfitting, the complexity can be adjusted accordingly 
to find the right balance that promotes learning without 
overwhelming the model. Finally, DP6 recognizes the 
need for diversity in the types of complexity 
introduced. This includes not only quantitative 
changes (such as more objects) but also qualitative 
changes (such as different types of interactions or 
more nuanced object properties). This comprehensive 
approach to complexity ensures that the model is well-
rounded and prepared for a wide range of situations. 
DP7 also stems from AD4 and states that 
augmentation techniques, such as geometric 
transformations, color modifications, and noise 
addition, should be utilized to enhance the diversity of 
synthetic scenes (Müller et al., 2018; Seib et al., 2020; 
Zhang et al., 2018). By applying geometric 
transformations such as scaling, rotating, and 
mirroring, models can learn to recognize objects 
regardless of their orientation or position within the 
scene. This helps build a more versatile model 
capable of recognizing objects in different spatial 
arrangements. Color modifications also play a critical 
role in enhancing synthetic scene diversity. Adjusting 
brightness, contrast, saturation, and hue can help the 
model become resilient to changes in lighting 

conditions and color variations that occur in real-world 
environments (Seib et al., 2020). This aspect of 
augmentation ensures that the model’s performance is 
consistent across different visual presentations. By 
introducing noise through random variations at the 
pixel level, models are trained to focus on the essential 
features of an object rather than being misled by minor 
imperfections or variations in image quality, which 
correlates with DP4. This type of augmentation is 
particularly useful in scenarios where the model must 
perform reliably despite the presence of visual noise, 
such as in low-resolution images or when dealing with 
sensor imperfections. DP7 further advocates for the 
use of more advanced augmentation techniques, such 
as perspective warping and synthetic occlusion. 
These methods introduce additional levels of 
complexity, teaching the model to understand objects 
even when they are partially obscured or viewed from 
unusual angles (Seib et al., 2020; Zhang et al., 2018). 
These techniques simulate real-world variations and 
assist the model in learning robust representations 
that remain invariant to such transformations, which 
further mitigates the risk of model overfitting (Alzubaidi 
et al., 2021). This design principle reflects the general 
socio-technical imperative to create synthetic data that 
can be generalized across different healthcare 
settings and patient populations, ensuring that AI 
models are adaptable and sustainable (Emery & Trist, 
1960). Nonetheless, DP7 emphasizes the importance 
of balancing the augmentation process. Over-
augmentation can lead to unrealistic synthetic scenes 
that do not represent real-world conditions, potentially 
hindering the model’s ability to generalize effectively. 
Therefore, it is critical to find the right mix of 
augmentation techniques that enhance scene 
diversity while maintaining realism. 
Drawing from AD1, DP8 emphasizes the importance 
of promoting responsible AI practices, including bias 
detection and mitigation, fairness assessments, and 
explainability, to guarantee ethical and accountable AI 
development and deployment in digital health settings 
(Alzubaidi et al., 2021; Floridi & Cowls, 2019; Hung & 
Cheng, 2009; McBride, 2014; Murtaza et al., 2023; 
Obermeyer et al., 2019; Russell & Norvig, 2021; 
Vayena et al., 2018). DP8 emphasizes that although 
synthetic data is used in AI development, it does not 
inherently eliminate bias or ensure fairness, so it is 
critical to implement robust bias detection, fairness 
assessment, and accountability practices. This is 
critical to maintaining trust and transparency in 
healthcare AI applications, especially in value-
sensitive environments (Friedmann et al., 2002; 2013; 
Herwix et al., 2022), where the responsibility of AI 
developers is balanced between technical and 
social/ethical imperatives (Mumford, 2006, Donia & 
Shaw, 2021; Luhmann, 1996). As such, the duality of 
empowerment and marginalization suggests the need 



for continuous bias detection and mitigation in AI 
models (Deng et al., 2016; Panch et al., 2018; 
Rajkomar et al., 2018). Hereby, bias detection and 
mitigation are key components of DP8, including the 
use of diverse synthetic datasets for training to ensure 
that AI models do not inherently favor or disfavor any 
particular group of patients (Obermeyer et al., 2019; 
Vayena et al., 2018). In addition, continuous 
monitoring for bias in AI decisions is recommended, 
along with the implementation of corrective measures 
when bias is detected. On the other hand, fairness 
assessments involve evaluating AI models to ensure 
that they make equitable decisions across different 
patient demographics (Obermeyer et al., 2019). The 
goal is to ensure that all patients receive fair and 
unbiased medical advice, assistance, or diagnoses, 
regardless of their background. In addition, 
explainability in AI models is also emphasized by DP8. 
In healthcare, medical professionals and patients must 
understand how AI models arrive at their conclusions. 
This transparency is critical to building trust in AI 
systems based on synthetic image data, as it allows 
users to validate the reasoning behind AI decisions 
and ensures that AI augments, rather than replaces, 
human judgment (Vayena et al., 2018). From a more 
indirect perspective, DP8 also calls for ethical training 
and awareness among those developing and using AI 
in healthcare. This includes educating AI professionals 
about the ethical implications of their work and the 
importance of considering the diverse needs and 
values of patients. 
DP9 stems from AD4 and highlights the need for clear 
guidelines on how models trained on synthetic data 
can be fine-tuned and adapted for specific healthcare 
applications to enhance their generalizability and 
performance in real-world environments (Murtaza et 
al., 2023). Its adaptability is based on sociotechnical 
imperatives (Emery & Trist, 1960), which emphasize 
the need for systems to evolve and remain effective in 
dynamic environments. A major focus of DP9 is to 
establish protocols for domain adaptation. These are 
techniques that help the model adapt from the 
synthetic data environment to the nuances and 
characteristics of real-world healthcare data, tailoring 
systems to specific patient needs (Dadgar & Joshi, 
2018). Such adaptation is critical for models to 
maintain high levels of accuracy and reliability when 
confronted with real patient data, which may differ 
considerably from the controlled conditions of 
synthetic datasets and artificial environments. In 
addition to domain adaptation, DP9 highlights the 
potential of fine-tuning models on real image data. 
This process involves adjusting the model parameters 
based on real digital health data to improve its 
performance and generalizability in clinical, assistive, 
or predictive settings. Fine-tuning ensures that the 
model is not only theoretically sound but also 

practically effective in diagnosing and treating real 
patients. This further ensures a working domain 
adaptation toward real-image model deployments and 
fine-tuning tasks on real-image data (Kuhnke & 
Ostermann, 2019; Lahiri et al., 2018; Venkateswara et 
al., 2017).  
Lastly, DP10 draws from AD1 and AD4, underscoring 
the importance of conducting rigorous testing for 
model robustness against various environmental 
healthcare conditions and input variations. 
Emphasized by technological marginalization 
concerns (Deng et al., 2016), this robustness checking 
is essential to ensure the reliability and resilience of AI 
models in unpredictable real-world scenarios, 
safeguarding against potential errors or malfunctions 
that could have serious implications for patient care 
(Floridi & Cowls, 2019; Giuffrè & Shung, 2023; 
Gonzales et al., 2023; Rajkomar et al., 2019; Russel & 
Norvig, 2021; Valtchev & Wu, 2021). Hence, a key 
aspect of DP10 is the simulation of a wide range of 
environmental conditions during the testing phase. 
This includes variations in lighting, background noise, 
and other factors that could affect the performance of 
AI models in digital health settings. For example, a 
diagnostic AI tool should be tested for accuracy on 
different types of medical imaging equipment and 
under different imaging conditions to ensure 
consistent performance of the synthetically trained 
deep learning model. Following on from this, DP10 
also emphasizes the importance of testing AI models 
on a variety of patient data. This includes data from 
patients of different ages, genders, ethnicities, and 
health conditions to ensure that the model will perform 
reliably across the diverse patient population it will 
serve (Obermeyer et al., 2019; Rajkomar et al., 2019; 
Vayena et al., 2018). This type of testing is critical to 
identify and mitigate any biases the model may have 
and to ensure equitable healthcare outcomes based 
on the synthetic image data fed to the model. In these 
scenarios, particularly in the digital health domain, and 
in light of a common utilitarian view that often 
overlooks social complexity (Lupton, 2017), it seems 
reasonable to stress test AI models to assess their 
resilience to extreme or rare scenarios. This could 
involve simulating emergencies or rare medical 
conditions to ensure that the AI model can handle such 
cases effectively without compromising accuracy or 
reliability. Finally, models should be continuously 
monitored and updated after deployment. As real-
world conditions and healthcare practices evolve, AI 
models must be periodically reassessed and updated 
to maintain their robustness and reliability. As such, 
not only should their technical performance be 
assessed, but also their ethical and social implications 
(Mumford, 2006; Bostrom & Heinen, 1977), to ensure 
that any emerging issues or changes in health care 
standards are addressed promptly. 



Following general design theory communication, 
justification, and cumulation, we adopted the outlined 
process for design theory “anatomy” proposed by 

Gregor and Jones (2007). Table 3 provides a 
summary of this process and shows how we have 
theorized along it. 

Table 3. Components of a Design Theory (Gregor & Jones, 2007) 
Component Description 

Purpose and 
Scope 

The current trajectory of synthetic image data utilization in digital health computer vision settings is unguided and 
inconsistent due to its sudden occurrence in the rapidly evolving deep learning field. As such, this inconsistency 
may hinder the ethical deployment of such models and their performance in IS digital health applications. We aim 
to develop a design theory that will not only alter this trajectory but also path the way for ethical, effective, and 
compliant synthetic image use in such settings. Therefore, the theorized artifact’s goals are: ensuring ethical and 
privacy compliance (DR1); focusing on individuality of image data and model generalizability (DR2); fostering model 
accuracy and precision through scene diversity (DR3); and ensuring data realism and healthcare feasibility (DR4). 

Constructs 

We conceptualize guiding and framing requirements and principles for the utilization of synthetic image data in 
digital health computer vision. As such, our proposed design requirements and design principles build the 
foundation for our conceptual model (Fig. 7), encompassing the constructs of data realism, model effectiveness, 
data utility, data diversity, responsible privacy, and ethical compliance that are representations of the entities of 
interest in our design theory.  

Design Principles 
of form and 

function 

Features of current synthetically trained computer vision deep learning models in digital health are fundamentally 
epitomized by uncontrolled data generation (i.e., potential misrepresentations, privacy data breaches, or ethnical 
biases), insufficient data and model preparation, overfitting problems, and faulty domain adaptation. The dynamic 
and rapidly evolving nature of digital health deep learning hence requires novel and contemporary guidance in the 
form of design knowledge on how to utilize such data in these sensitive environments. Through theorizing, ten 
relevant design principles were developed to address this goal (Figure 5): ethical healthcare data generation (DP1); 
comprehensive privacy protection (DP2); adaptive data governance (DP3); synthetic scene diversity (DP4); 
controlled scene composition (DP5); flexible complexity management (DP6); data augmentation (DP7); responsible 
AI (DP8); transfer learning guidelines (DP9); robustness checks (DP10). 

Testable 
propositions 

The design theory offers guidance on how to use synthetic image data in digital health both ethically and effectively. 
Therefore, the design principles and requirements as the core components of our design knowledge, offer high 
accessibility, importance, novelty and insightfulness, actability and guidance, and effectiveness. Users can design 
(synthetically trained) computer vision deep learning solutions in digital health by altering conventional approaches 
and adhering to our design theory. We view the testable propositions as varying in their degree of generality and 
as truth statements about our design theory, meaning that these general statements describe expected outcomes 
(i.e., addressing the DRs) based on the application of the DPs. Thus, we hypothesize that in the context of synthetic 
image data in digital health computer vision, if System A uses our design theory, it will work or be more ethical and 
efficient than a System B that does not. On a more granular level, the testable propositions here refer to the 
relationships between DRs and DPs, as shown in Figure 5, emphasizing that if someone has similar DRs in a 
different context, the corresponding DPs from our design theory can be applied and their effective relationship can 
be tested. To give a specific example, if DP4 (Synthetic Scene Diversity) is applied during synthetic image 
generation, the resulting data will (partially - since multiple DPs address DR3) satisfy DR3 (Accuracy & Precision), 
leading to improved model performance in diverse healthcare tasks, which can be tested by comparing the 
accuracy and precision metrics of models trained on diverse versus homogeneous datasets. Thus, the following 
testable propositions arise:        DR1  DP1/DP2/DP3/DP8; DR2  DP4/DP5/DP6/DP9; DR3  
DP4/DP6/DP7/DP10; DR4  DP3/DP4/DP5/DP9/DP10 

Artifact mutability 

We theorize the framing constructs for the utilization of synthetic image data in digital health as a type of guidance 
to change the current trajectory in digital health computer vision that works in a complementary relationship to real 
image-based approaches. Our theorized artifact can be used in various digital health computer vision domains, 
such as medical imaging, diagnosis, human computer interaction, monitoring, detection, or predictive analytics. In 
addition, it provides general design principles that can be applied across domains of synthetic image processing, 
and its applicability is deep learning-model independent.  

Justificatory 
Knowledge 

Universal themes of synthetic image data use and value sensitive design theory (Friedman et al., 2002, 2013) 
together with an initial think aloud session and first cycle evaluation feedback serve as the theoretical and practical 
foundations of our design theory. The chosen kernel theory and qualitative analysis findings remain consistent 
across various domains, justifying the derivation of DRs and DPs. 



Component Description 

Principles of 
implementation 

The universally design knowledge suggests various implementation criteria to the conventional use of synthetic 
image data in digital health that will yield ethical and performance outcomes. Thus, the design theory can be used 
in computer vision project processes as a form of feasible and applicable guiding knowledge. Therefore, we present 
20 design features (Figure 8) that illustrate how we operationalized the design theory. 

Expository 
instantiation 

We developed a series of DRs and DPs that, alongside a conceptual model for synthetic image use in digital health, 
show how researchers can apply the proposed constructs to develop ethical and performant computer vision 
models. Furthermore, we show how the design theory can be used to derive theoretical models or concepts in 
digital health.   

 

 
Note: DP = design principles. 

Figure 7. Conceptual Model as Abstract Instantiation and Theorizing Step 
 
Conceptual Model 
As a result of our heuristic theorizing approach, we 
conducted various steps of modeling (i.e., Figures 6 
and 7) to visually develop different types of 
representations of the problem solution (Gregory & 
Muntermann, 2014). Following one of many 
approaches to graphically depict a conceptual solution 
schema for design theories (Müller-Wienbergen et al., 
2011), we developed a conceptual model based on 
our design theory for the ethical use of synthetic image 
data in digital health (Figure 7). Within the theorizing 
process, such a conceptual model enables a more 
accurate expression of the underlying assumptions, 
thoughts, constructs, and implications, and can be 
seen as an abstract instantiation of the design theory 
(Bittmann & Thomas, 2013; Schermann et al., 2009). 
As such, our conceptual model represents the abstract 
constructs as entities of interest in our design theory 
(Gregor & Jones, 2007; Kane et al., 2021). 

Based on our design theory, and in particular the 
design principles, the conceptual model graphically 
depicts how the theorized constructs ultimately affect 
the application of synthetically trained computer vision 
models in digital health. Based on DP4, DP5, and 
DP8, data diversity complements data realism (DP3, 
DP9, and DP10) and ensures both responsible privacy 
(DP1, DP2) and ethical compliance (DP1, DP3, DP8). 
Thus, the conceptual model underscores the 
importance of a holistic design approach that 
integrates technical data and model robustness with 
rigorous ethical standards to promote trust and 
reliability in digital health settings. In addition, data 
realism and data utility (DP7, DP9) both enhance 
model effectiveness (DP6, DP7, DP10) while 
addressing potential biases to ensure that the use of 
these models leads to equitable and accurate health 
outcomes for diverse populations. Finally, model 
effectiveness enables ethical compliance to guide 
digital health applications, creating a balanced 



framework where AI-driven solutions not only meet 
healthcare expectations but also align with ethical 
values and privacy concerns, paving the way for 
sustainable innovation in digital health. 

Evaluation 
To ensure rigor in evaluating our design cycles, the 
well-established FEDS framework proposed by 
Venable et al. (2016) was used. The evaluation phase 
is highly relevant in DSR (Hevner et al., 2004; Venable 
et al., 2016), as it is necessary to select an appropriate 
strategic process and determine the constructs to be 
evaluated. This complementary evaluation approach, 
while not integral or necessary to the heuristic 
theorizing process (Gregory & Muntermann, 2014), 
served to validate the reusability, practicality, and 
relevance of the design theory, ensuring that it “works” 
in real-world applications and resonated with 
stakeholder needs. Given the complexity of human 
factors in digital health, ethical considerations, and the 
practical application of technology in healthcare 
settings, the Human Risk & Effectiveness evaluation 
strategy (Venable et al., 2016) was chosen to address 
the socio-technical and value-based imperatives of 
our research (Figure 8). 
While our problem-centered research approach was 
theory-driven (Schoormann et al., 2024; Iivari, 2015), 
we sought to balance both rigor and relevance in our 
evaluation strategy. Thus, the goal was to conduct an 
evaluation episode to complete both design cycles and 
to move quickly to a summative evaluation result. 
Despite the relatively small sample sizes of our 
evaluation episodes, we achieved theoretical, data, 
code, thematic, and meaning saturation, confirming 
that further data collection was unlikely to yield new 
insights. This saturation across multiple dimensions 
ensured the rigor and robustness of our findings and 
validated our evaluation approach as both thorough 
and efficient. 

Design Requirement and Design Principle 
Reusability 
To ensure the objectives of feasibility, accessibility, 
completeness, and applicability, we applied the 
framework of design principle reusability proposed by 
Iivari et al. (2021). This framework provides a 
systematic approach to evaluating the design 
principles generated during the design cycles, and by 
assessing the reusability of these principles, 
researchers can determine their potential for wider 

application and adoption in similar contexts (Iivari et 
al., 2021). Since we introduced additional design 
requirements for our design theory, and the framework 
was designed for the reusability of design principles, 
we adapted it to evaluate design requirements as well. 
Iivari et al. (2021) actively call for adaptations of their 
framework, for which we have applied it to a different 
level of design abstraction. Thus, we identified 3 levels 
of reusability for design requirements (RDR) based on 
the items in the framework: 1) direct application (items 
for design principles can be directly mapped to design 
requirements), 2) item adoption (individual items of a 
construct can be mapped), and 3) non-applicability 
(items cannot be mapped to design requirements). 
Because design requirements embody the objective 
that design principles address, their evaluation differs 
to some extent. To ensure content validity based on 
the framework and questionnaire (Iivari et al., 2021), 
the constructs of accessibility (i.e., understandability, 
comprehensibility, intelligibility) and importance (i.e., 
real and important problem addressing) were 
allocated to level 1 RDR and could be asked without 
tweaking them. The constructs of actability and 
guidance, and effectiveness were assigned a level 2 
RDR with necessary adjustments. Therefore, we 
decided to use “sufficient guidance,” “sufficient 
direction,” and “sufficient freedom” for actionability and 
guidance, and “usefulness,” “design help,” and 
“artifact quality” for effectiveness, ensuring content 
validity by not evaluating items that are explicitly tied 
to design principles and their empirical validation on 
these items. Finally, the construct of novelty and 
insightfulness was assigned level 3 RDR and therefore 
deemed inapplicable due to the goal-oriented 
formulation of the design requirements. Consistent 
with our kernel theory of value-sensitive design and 
beyond the first cycle evaluation, a reconvened 
qualitative think-aloud session was conducted to 
address the reusability of the proposed design theory 
constructs. Therefore, the method of concurrent think-
aloud (Van Den Haak et al., 2003) was employed with 
n=12 AI experts, where the sample size was decided 
based on the “10±2 rule” for think-aloud sessions 
(Hwang and Salvendy, 2010). The participants were 
asked to verbalize their thoughts about the design 
principles and requirements (to the aforementioned 
extent) in terms of the reusability categories proposed 
by Iivari et al. (2021). Table 4 presents the qualitative 
think-aloud results, including the categories of the 
reusability framework and the manually aggregated 
verbalized thoughts of the participants. 



 
Figure 8. Evaluation Strategy Following the FEDS Framework (Venable et al., 2016) 

Table 4. Reusability Framework According to Iivari et al. (2021)  
Reusability 
Category 

Design Theory 
Component Verbalized Think Aloud Results 

Accessibility 
 

Design 
Requirements 

The subjects stated the design requirements to be highly accessible in terms of their 
understandability, comprehensibility, and intelligibility. They particularly highlighted their 
detailed description and formulation, emphasizing the importance of ethical responsibility in 
the development and deployment of technologies that handle sensitive data in digital health. 

Design Principles 
The subjects appreciated the prescriptive formulation of the design principles, especially the 
causality of cause and effect, which helped them understand. For some, a shorter description 
would have been sufficient, but for others, the comprehensive nature of the principles was 
crucial in ensuring a thorough grasp of the concepts and their application. 

Importance 

Design 
Requirements 

The subjects emphasized that the design requirements address a real and particularly 
important problem, and highlighted DR1 and DR3 as their key requirements. Privacy and 
accuracy are paramount, and adherence to the DRs would enhance trust and responsible use 
of synthetic image data, ensuring not only the safeguarding of sensitive information but also 
the reliability and validity of the data generated for research and development purposes. 

Design Principles 

The subjects highlighted the significant importance of DPs related to privacy and responsible 
AI (DP1, DP2, DP3, DP8) and positively assessed their importance. Especially these would 
address critical foreseeable problems in their professional practice. They acknowledged that 
incorporating these principles into their workflows would not only mitigate risks but also foster 
a culture of responsibility and integrity in the handling of such advanced technologies. 

Novelty and 
Insightfulness Design Principles 

The subjects appreciated design principles related to synthetic scene diversity, complexity, 
and composition (DP4, DP5, DP6) as they not only conveyed new ideas to them but also 
found them insightful. They expressed that these are particularly innovative in regards to 
synthetic image data generation and its scalability, flexibility, and versatility, emphasizing the 
potential these principles have in safeguarding the way synthetic image data is utilized across 
various industries. By incorporating these principles, they foresee a significant enhancement 
in the quality and applicability of synthetic imagery, paving the way for more advanced, ethical, 
and diverse applications. 



Reusability 
Category 

Design Theory 
Component Verbalized Think Aloud Results 

Actability and 
Guidance 

Design 
Requirements 

The subjects indicated that the DRs would provide sufficient guidance, direction, and freedom 
for designing and working with synthetic image data in digital health. This would increase 
standardization across different implementations and lead to reasonably consistent 
interpretations, thus facilitating a uniform approach to handling data while allowing for 
innovative uses. The flexibility within the DRs was seen as a key factor in promoting creativity 
and adaptability in digital health solutions, ensuring that evolving needs and challenges in the 
field can be met effectively. 

Design Principles 

The subjects found design principles related to data generation and domain adaptation (DP7, 
DP9, DP10) most useful in terms of guidance for designing. They expressed that the majority 
could easily and realistically be carried out in practice. However, some concerns were raised 
about restricted design freedom due to the number of DPs, suggesting that a more 
streamlined set of principles might enhance creativity and experimentation. Some of the 
subjects indicated a need for a balance between structured guidance and creative flexibility 
to foster innovative approaches in synthetic image data generation and domain adaptation. 

Effectiveness 

Design 
Requirements 

The subjects expressed a high degree of usefulness and design assistance in terms of artifact 
(i.e., the design requirements) quality. They mentioned that using the DRs could potentially 
lead to more effective design and development when working with synthetic image data. They 
appreciated the comprehensive nature of the DRs, which they believed would not only 
enhance the quality of design outcomes but also contribute to a deeper understanding and 
better implementation practices in the field of synthetic image data and digital health. 

Design Principles 

The subjects positively emphasized the prevention of ethical/privacy risks (DP1, DP2) and 
ensuring exemplary performance (DP4, DP5, DP9, DP10), thereby increasing their 
performance, productivity, effectiveness, and quality at a given task. They noted that the DPs 
act as a form of guiding knowledge when they need to design such digital health applications 
efficiently and effectively. However, they expressed concerns about whether DPs would 
improve the reputation and morale of the organization/company. 

 

Overall, the think-aloud subjects rated the design 
requirements and principles positively in terms of their 
theoretical and practical reusability, especially 
regarding accessibility, importance, novelty & 
insightfulness, actability & guidance, and 
effectiveness. Emphasizing digital ethics and 
precision, these evaluation results indicate a well-
founded acceptance and potential for integration of the 
proposed design theory artifact into existing and future 
practices within synthetic image data and digital 
health. The consistent acknowledgment of the detailed 
and actionable nature of the design requirements and 
principles by our think-aloud subjects indicates a 
promising trajectory for the successful application of 
this theory, particularly in terms of construct 
understanding and meaning. The articulated concerns 
regarding the balance between guidance and design 
freedom, as well as a more nuanced construct 
description, point to an area for further refinement to 
ensure that the principles facilitate innovation while 
maintaining a clear ethical and performance-oriented 
framework and guiding language. 

Evaluation by Operationalization and 
Instantiation 
In addition, the evaluation schema employed in this 
study takes into account the roles of key stakeholders 
involved in the formulation of design principles, 
allowing design science researchers to assess the 
usability of generated design principles for different 
user groups. Two critical questions arise from this 
perspective: first, whether the design principles are 
theoretically and practically useful, and second, 
whether they effectively serve the goals of users who 
implement the resulting instantiations (Gregor et al., 
2020). Therefore, evaluation activity 3 (Sonneberg & 
vom Brocke, 2012) was used, which describes a 
validated artifact instance as proof of the applicability 
of the design theory. To ensure the feasibility and 
operationality of our design artifact, the evaluation 
method of demonstration with a prototype was chosen 
(Sonneberg & vom Brocke, 2012). 



 
Figure 9. Operationalized Design Principles as Design Features for Our Prototypical Instantiation 

As shown in Figure 9, we operationalized the design 
principles as design features to validate their feasibility 
in a real-world application scenario. This iterative 
process ensured that the design features were not 
only consistent with the theoretical underpinnings of 
the design theory but also met the practical needs of 
users in a dynamic healthcare environment. As a 
result, the prototype demonstrated the practicality of 
the design principles and bridged the gap between 
theory and practice. The design features shown in 
Figure 9 serve as a transparent description of how we 
implemented the design theory for a specific digital 
health scenario, where we used the synthetic image 
data as a means to locate people with amnestic mild 
cognitive impairment, monitor their health status, and 
project appropriate information at the right place and 
time (see Figure 10). It is meant to be an illustrative 
example that shows how the design principles can be 
operationalized by specific actions we took to 
instantiate the design theory. These design features 
can be seen as possible characteristics and actions 
when using the design theory, but they are not meant 
to be mandatory. 
In addition, Figure 10 shows the aforementioned 
exemplary instantiation of the design principles, 
operationalized by the design features, in a computer 
vision deep learning setting for person detection and 
reasoning, which is therefore concerned with ethical 
data generation. This example detects people and 
objects to introduce a seamless, indirect, and intuitive 
approach to human-computer interaction, where the 
display of information is triggered when the person 
moves into a certain area of the living environment. In 
comparison to the examples of synthetic image data in 

digital health (Figure 2), i.e., cancer detection and skin 
conditions, our illustrative example shows a very 
attenuated form of application, where model errors are 
certainly not as drastic as in disease diagnosis. Hence, 
the design principles for such critical applications are 
even more relevant and decisive. 

By following value-sensitive design theory, abstract 
and non-genuine characters were generated for the 
scenes, ensuring ethical data generation (DP1) and 
privacy preservation (DP2). In addition, data gathering 
and processing for zone alignment only refers to the 
coordinates of the person's bounding box, not their 
actual appearance (see Figure 10 and the white 
rectangle), further ensuring that no sensitive data is 
displayed or actively used for processing. Using a 
video game engine and various mechanisms to 
generate the synthetic image data (DP3), a wide 
variety of scenes (DP4) and compositions (DP5) were 
achieved, significantly and intentionally varying the 
key features. Figure 10 shows the aforementioned 
domain gap and its adaptation, where our model 
trained on synthetic image data is applied to real 
scenes. In addition, several scenes contain varying 
complexity (DP6) to achieve better generalization and 
scalability, while data augmentation techniques (DP7) 
in the form of geometric transformations (i.e., lens 
distortion) were used to reduce the risk of overfitting. 
Prior bias detection, e.g., ethnicity or gender, was 
performed for data generation (DP8), and transfer 
learning (DP8) and robustness checking (DP10) 
strategies were employed. By incorporating these 
design principles that were operationalized by our 
design features, our instantiation ensures ethical data 
generation practices in person and activity detection, 



promoting accurate and reliable results while 
considering privacy, diversity, generalization, and 
controlled complexity. Exaggerated by our blatantly 
privacy-invasive example for positional reasoning in 
home care settings, the use of ethically generated and 

applied synthetic image data, properly operationalized 
by the design features, has the potential to mitigate 
these privacy-related concerns while still meeting the 
ethical requirements associated with digital health 
applications. 

 

 
Figure 10. Example of Ethically Generated Synthetic Image Data for Digital Health and Corresponding 

Design Features From the Instantiation 
Note: Dashed lines indicate design features that are not directly visible f rom this illustration. 

 

  



Discussion 
In this paper, we articulate a design theory that 
addresses the ethical and technical challenges of 
using synthetic image data in digital health, particularly 
for training deep learning models in computer vision. 
Our core argument is straightforward: if the social and 
ethical dimensions of health care are not integrated 
into the technical design of synthetic data systems, the 
resulting AI models may inadvertently perpetuate 
biases, compromise patient privacy, and ultimately 
undermine the very goals they are intended to serve. 
We are not suggesting that the developers of these 
systems are acting with malicious intent. Rather, we 
argue that without a concerted effort to align technical 
capabilities with ethical imperatives, the deployment of 
such systems could lead to significant and unintended 
ethical consequences. This dialog is not only about 
guiding academic research but also about influencing 
the policies and frameworks that will determine how 
these technologies are deployed in real-world settings. 
The ethical and technical challenges, especially 
inherent in this sensitive domain, are significant, and 
our design theory addresses them by proposing a 
framework that balances ethical integrity with technical 
performance, particularly in domain adaptation. The 
overall positive evaluation of our design theory, as 
evidenced by high levels of agreement across various 
reusability categories, suggests that our artifact is both 
feasible and relevant. We argue that the design 
requirements and principles we developed not only 
add to the body of IS knowledge but also have the 
potential to change the way we approach the design 
and implementation of synthetic image data systems 
in healthcare. By synthesizing these requirements and 
principles into an inter-field design theory, as 
suggested by Darden and Maull (1977), we contribute 
to the prescriptive knowledge base within the IS 
community, consistent with the frameworks proposed 
by Gregor and Hevner (2013) and Woo et al. (2014).  
Further locating the theorized artifact within the DSR 
knowledge framework of Gregor and Hevner (2013), it 
can be described as a level 3 well-developed design 
theory about the embedded phenomenon of ethically 
sound use of synthetic image data in digital health 
computer vision. While this design theory is presented 
as a comprehensive theorized artifact, it can also be 
interpreted as a nascent design theory (Gregor & 
Hevner, 2013), depending on the lens or context 
through which it is viewed. We argue that positioning 
the design theory as a comprehensive framework is 
more consistent with its multi-cyclical approach to 
addressing the ethical and technical challenges of 
synthetic data in digital health, which transcends the 
characteristics of a nascent design theory. Since our 
study is located within the theorizing area of the DSR 

focus matrix (Brendel et al., 2022), and according to 
the classification of DSR artifacts by Gregor and 
Hevner (2013), the DT can be seen as Design Theory, 
whereas its instantiation as conceptual model is 
epitomized as Model. From a more meta-theoretical 
perspective, our design theory artifact embodies a 
midrange design science theory (Kuechler & 
Vaishnavi, 2012) and general midrange theory in IS 
research (Young et al., 2021). 
By adopting the heuristic theorizing approach, we 
sought to reduce replication errors while maximizing 
transparency, reproducibility, and traceability. 
Following the design theory replication framework 
proposed by Brendel and Muntermann (2022), we 
effectively addressed various critical aspects of 
replication in the context of our design theory for digital 
health computer vision using synthetic image data 
(Table 5). Encompassing design theory replication 
aspects of problem class and solution space, robust 
and generalizable constructs, explicit methods and 
processes, the rationale for design choices, variability 
and adaptation, and iterative testing and feedback, our 
design theory is positioned for effective application 
and future development in the rapidly changing 
landscape of digital health and synthetic data use, 
while providing a theoretical contribution to the field.  

Theory Building in DSR 
Our study contributes to the accumulation of 
knowledge in DSR by focusing on midrange theories 
(Offermann et al., 2011), specifically within the IS 
design theory genre (Peffers et al., 2018), while 
aligning with the broader concept of midrange theory 
in both general theorizing (Young et al., 2021) and 
DSR (Kuechler & Vaishnavi, 2012). The design theory 
developed in this study is testable across different 
populations and settings, although it is not universally 
applicable. It clarifies the design process and its 
outcomes by following Gregor and Jones’ (2007) 
design theory framework (Table 3), which includes the 
essential components of a design theory, addressing 
user needs (meta-requirements) and the design’s 
response to these (meta-design). This approach 
bridges theory and practice and emphasizes the 
importance of design principles in communicating 
actionable design knowledge (Meth et al., 2015; 
Chandra et al., 2015). We further address the 
challenge of design theory indeterminacy by balancing 
abstraction with actionable principles, following the 
concerns of Lukyanenko and Parsons (2020). Using 
the schema of Gregor et al. (2020), along with 
supportive and prescriptive methods (Möller et al., 
2020; Fu et al., 2016), as well as the presentation of 
application-oriented design features, we mitigate such 
indeterminacy in the development of design theory.  

  



Table 5. Design Theory Replication Aspects According to Brendel and Muntermann (2022)  

Design Theory Replication Aspects 

Replication Aspect Our Implementation 

Problem Class & 
Solution Space 

The design theory addresses the problem of ethical and effective utilization of synthetic image data in digital 
health, focusing on privacy, ethical compliance, bias mitigation, domain adaptation, generalization, and accuracy. 
The solution space includes design requirements and respective design principles for responsible AI use in digital 
health computer vision and enhancing model robustness for synthetic image data. 

Robust & 
Generalizable 

Constructs 

To ensure robust constructs, the design theory is based on value-sensitive design and sociotechnical systems 
theory, incorporating a multi-method (i.e., focus group, think-aloud sessions, qualitative theory building) approach 
and heuristic theorizing across two design cycles, presenting design requirements and principles as the main 
artifact and theorized constructs. These primarily apply to the use of synthetic image data in digital health 
computer vision but can be utilized and adapted across various deep learning domains. Moreover, the design 
theory contains generally applicable design principles that should be applied regardless of the specific application 
domain. 

Explicit 
Methodologies & 

Processes 

The development of the design theory followed a structured approach using a heuristic design theorizing 
methodology (Gregory & Muntermann, 2014) over two completed design science research cycles. In addition, 
the theory-driven approach of learning from abstract theoretical knowledge (i.e., our kernel theories and the 
literature) and translating it to solve a problem (Schoormann et al., 2024) and formulating rigorous design 
principles (Gregor et al., 2020) for conceptualizing fewer abstract artifacts was applied. 

Rationale for Design 
Choices 

The multi-faceted study approach ensures that the design requirements and principles are not arbitrary but are 
grounded in conceptual and theoretical work (Schoormann et al., 2024). The rationale for design choices 
emphasizes that ethics and privacy are consistent with value-sensitive design and sociotechnical imperatives, 
preventing the technical subsystem from undermining the social subsystem in digital health AI. We argue that 
design decisions are never neutral, prioritizing individuality and generalizability to ensure our models’ adaptability 
across diverse healthcare contexts. A focus on accuracy and precision in data generation underpins the reliability 
and effectiveness of healthcare applications. Finally, our emphasis on realism and healthcare relevance in 
synthetic data underscores our commitment to creating technically and ethically sound, user-centered solutions. 

Variability & 
Adaptation 

Proactively anticipating the need for variability and adaptation in the rapidly evolving nature of both digital health 
and synthetic image data, we provide guidelines for adapting our theory to evolving technologies and ethical 
values, ensuring ongoing relevance. Our approach accounts for future advances and changes in the field, both 
technically and ethically, and maintains the applicability of the theory in diverse and changing scenarios by not 
only proposing design principles that are generally applicable (e.g., DP4) regardless of the target domain, but 
also by choosing a wording that is invariant to future developments and maintains clarity (e.g., DP1 - ethical 
guidelines and laws may change, but adherence to them should not). This foresight underscores our commitment 
to a flexible, responsive design that can adapt to new ethical imperatives and technological developments, 
reinforcing the theory’s robustness and longevity. 

Iterative Testing & 
Feedback 

Given the nature of DSR, we emphasized the importance of iterative testing and feedback, advocating a 
continuous refinement process beyond the two cycles presented. This iterative approach allows for the consistent 
incorporation of new insights and technological advancements, ensuring the design theory remains relevant and 
effective. By incorporating reconvened think-aloud sessions addressing the design theory’s constructs, we 
categorize their reusability in terms of accessibility, importance, novelty & insightfulness, actability & guidance, 
and effectiveness (Iivari et al., 2021). Hence, we specifically targeted design theory indeterminacy (Lukyanenko 
& Parsons, 2020), enabling the theory to be applied in various contexts with minimal modifications, extended to 
cover broader scenarios, and scaled to accommodate different levels of use. 

Result 
Documentation & 

Sharing 

In our design theory, we underscore the significance of meticulously documenting and sharing comprehensive 
data and results by grounding the design theory’s constructs with their theory-grounding and theory-building 
foundations. Therefore, we chose to unfold our qualitative content analysis following Gioia et al. (2013) to ensure 
traceability and comprehensibility throughout the design process. This commitment to transparency allows other 
researchers and practitioners to replicate, validate, and extend our findings, guided by our work. We ensure that 
every aspect of our research process, from initial theory-grounding, theory-building, and formulation of design 
requirements and principles to iterative reusability evaluation results, is thoroughly recorded and accessible. By 
sharing detailed data and results, we foster a deeper understanding of the development and application of our 
theory and encourage collaborative improvement. 



Our approach emphasizes that the projectability of 
design theories - their applicability in different contexts 
- determines their relevance and utility in DSR. We 
argue that while generalizability often emphasizes 
broad applicability, projectability shifts the focus to 
ensuring that design principles can be effectively 
applied in specific but diverse scenarios. As the 
empirical justification of design principles or theories in 
DSR is based on their prescriptive projectability rather 
than descriptive generalizability, this concept is 
especially critical in the rapidly evolving fields of AI and 
digital health, where the ability to adapt theories to new 
technologies and ethical considerations is paramount. 
By framing projectability as a prescriptive alternative 
to traditional generalizability (Baskerville & Pries-Heje, 
2019), we emphasize its importance in the broader 
DSR landscape. In this context, high projectability 
suggests that our design theory is not only applicable 
within the initial domain of synthetic imagery but is also 
adaptable to future advances and other domains (vom 
Brocke et al., 2020). On the other hand, the replication 
aspect of our design theory (Table 5), in line with the 
framework proposed by Brendel and Muntermann 
(2022), further ensures the robustness of the design 
theory. Nonetheless, the traditional aspects of 
generalizability and transferability of our design theory 
are ensured by its emphasis on fundamental design 
principles that are broadly applicable across domains. 
Specifically, DP4, DP5, DP7, and DP9 are constructed 
to be adaptable and effective beyond the initial domain 
of digital health. These principles are grounded in AI 
literature (e.g., Alzubaidi et al., 2021; Giuffrè & Shung, 
2023; Gonzales et al., 2023; Murtaza et al., 2023; 
Scheck et al., 2020) and ensure that the synthetic 
image data generation process captures diverse and 
varied scenarios, supporting the applicability of the 
theory across contexts (e.g., fall detection, 
autonomous driving, or robotics). Interestingly, this 
could also have implications for the use of generative 
AI and the feeding of computer vision models with AI-
generated (synthetic) images (which would mean that 
AI applications feed AI applications, the vicious cycle 
of AI collaboration). As AI models increasingly rely on 
synthetic data generated by other AI systems/models, 
we could see the emergence of self-sustaining AI 
ecosystems that operate independently of human 
input, which could raise concerns about the oversight 
and control of such systems – and, as such, require 
ethical safeguards. 
Furthermore, our study contributes to next-generation 
theorizing in IS research (Burton-Jones et al., 2021; 
Young et al., 2021) by envisioning a new (design) 
theory that studies a new phenomenon (i.e., synthetic 
image data) emerging in a changing world (i.e., the 
digital health and ethics domain), especially from a 
DSR focus (Brendel et al., 2022) to adapt to 
concurrent and emerging research conversations. We 

extend the application of Iivari et al.’s (2021) design 
principle reusability framework by proposing three 
levels of reusability to evaluate design requirements, 
thereby advancing theoretical evaluation approaches 
within the DSR domain. We argue that this may lead 
to more nuanced and multifaceted evaluations of 
design theories in the future, in line with next-
generation theorizing (Burton-Jones et al., 2021). In 
this context, we advocate for a transparent and 
replicable approach to design theorizing, emphasizing 
the importance of heuristic theorizing across multiple 
design cycles alternating between (re)structuring the 
problem and generating new design constructs 
(Gregory & Muntermann, 2014; Brendel & 
Muntermann, 2022). Finally, with our design features 
and instantiation, we actively worked to mitigate the 
phenomenon of theory fetishism in IS (Ivari, 2020) by 
promoting a judicious use of theory that bridges the 
gap between abstract theoretical concepts and 
practical design applications. 

The Value-Sensitive Design Perspective 
In the context of our theoretical lens and two kernel 
theories, our design theory can enrich the theoretical 
discourse around the kernel theory of value-sensitive 
design as conceptualized by Friedman et al. (2002, 
2013), particularly in the context of the use of synthetic 
image data in digital health. By addressing the ethical 
and practical challenges associated with deep 
learning models, this research not only aligns with the 
foundational constructs of value-sensitive design but 
also extends them in meaningful ways. Central to 
value-sensitive design is the integration of human 
values such as privacy, fairness, and accountability 
into the design process. Here, we extend Stilgoe et 
al.’s (2020) concept of responsible innovation by 
integrating these ethical values into the core design 
process in the context of IS and DSR, thereby offering 
a practical application that takes responsible 
innovation beyond theoretical discourse and aligns 
with its anticipatory dimension, which emphasizes the 
importance of anticipating the potential impacts of 
emerging technologies such as AI and synthetic data. 
Our design theory builds on this by embedding these 
ethical considerations into the design of synthetic 
image data systems to ensure that privacy is 
protected, bias is mitigated, and fairness is promoted, 
resonating with the principles emphasized by Owen et 
al. (2013), who advocate for anticipatory, reflective, 
and inclusive practices in innovation. In addition, our 
design theory extends the theoretical discourse 
around value-sensitive design by addressing the need 
to capture the diversity and individuality inherent in 
real-world healthcare scenarios, ensuring that AI 
models apply to diverse populations. This commitment 
to generalizability and inclusivity is informed by value-
sensitive design’s emphasis on respecting 



stakeholder diversity and autonomy, as highlighted in 
the work of Yetim (2011) and Dadgar and Joshi 
(2018). Furthermore, our design theory advances 
value-sensitive design by providing concrete 
operational steps for implementing ethical principles, 
particularly in managing complexity and ensuring data 
realism in synthetic image generation. This practical 
focus is in line with Denning et al. (2010) and Mueller 
et al. (2018), who emphasize the importance of 
balancing technical accuracy with ethical 
considerations in AI. By introducing structured 
heuristics for resolving value conflicts - such as those 
between precision and transparency, or privacy and 
accountability - our artifact provides a more nuanced 
approach to integrating ethical values into technology 
design, thereby expanding the applicability of value-
sensitive design in complex ethical landscapes. In 
addition, the generalizability of the design theory 
across different AI and computer vision contexts 
extends the reach of value-sensitive design theory, 
providing a framework that can adapt to different 
industries while maintaining its relevance in the 
evolving landscape of AI and healthcare. 

The Sociotechnical Systems Perspective 
From a sociotechnical systems theory perspective, our 
design theory may contribute to the specific demands 
of digital (health) environments, particularly in how we 
understand the dynamic interplay between social and 
technical systems in applying synthetic image data 
and its ethical imperatives. We drew on the concept of 
joint optimization (Trist & Bamforth, 1951), 
emphasizing that ethical considerations (the social 
subsystem) and the technical requirements of deep 
learning models (the technical subsystem) must be 
addressed simultaneously to ensure robust yet ethical 
AI applications. Our design theory, further informed by 
Mumford’s (2006) perspective on sociotechnical 
systems, ensures that ethical values (as defined per 
DR1), privacy protections, and responsible AI 
practices are not afterthoughts but are embedded at 
the heart of the design process. For instance, while 
synthetic image data offers the promise of scalable 
and diverse datasets necessary for robust AI models, 
it is the careful calibration of these datasets - through 
mechanisms such as synthetic scene diversity (DP4) 
and controlled scene composition (DP5) - that 
prevents the oversimplification or distortion of real-
world healthcare scenarios. Our study thus extends 
the discourse of sociotechnical systems theory by 
applying its constructs to the dynamic and evolving 
field of (synthetically trained) AI in digital health. As 
such, our design theory not only accommodates but 
also anticipates the ethical challenges that arise as 
digital health and AI technologies evolve. This 
approach is consistent with Bostrom and Heinen’s 
(1977) emphasis on integrating behavioral and 

organizational considerations into system design, 
ensuring that the social implications of synthetic data 
use are addressed as rigorously as the technical ones. 
Moreover, our design theory goes beyond simply 
applying the principles of sociotechnical systems 
theory and actively extends them. For example, Baxter 
and Sommerville’s (2011) concepts of affordances 
and constraints are used to refine the interaction 
between users and synthetic data systems, ensuring 
that these systems are not only technically sound but 
also socially responsive. This nuanced approach 
allows us to address the tensions between ethical 
imperatives and technical requirements, and to 
propose a framework in which both can be optimized 
simultaneously, thereby avoiding the pitfalls of ethical 
negligence. We argue that ethical integration is not 
simply a matter of adding ethical safeguards; it 
requires a fundamental rethinking of how we approach 
the design of digital health systems, especially when 
the generation of synthetic data is just a click away. 
This will ensure that such systems are as focused on 
the social and ethical complexities of healthcare as 
they are on the technical demands of AI. 

Implications for Synthetic Image Data and AI 
Ethics 
Besides methodological and kernel theory 
perspectives, our design theory adds new 
perspectives and specific domain applications to 
synthetic image data in computer vision (Alzubaidi et 
al., 2021; Aranjuelo et al., 2021; Kuhnke & Ostermann, 
2019; Scheck et al., 2020; Seib et al, 2020; Valtchev 
& Wu, 2021), and introduces and extends such 
phenomena in digital health (Giuffrè & Shung, 2023; 
Gonzales et al., 2023; Murtaza et al., 2023) with an 
explicit focus on digital ethics (Kern et al., 2022; 
McBride, 2014; Russel & Norvig, 2021). Our study 
responds to the call for more measures to protect 
patient well-being and maintain ethical standards 
while working with synthetic data in healthcare (Giuffrè 
& Shung, 2023). While Giuffrè and Shung (2023) laid 
a strong general technical and regulatory foundation 
for synthetic data in healthcare, our study extends this 
work by building design knowledge that addresses the 
socio-technical and critical ethical dimensions, 
providing a theoretical framework to guide the 
responsible and equitable use of synthetic data in 
digital health applications. We argue that while 
synthetic data is often perceived as inherently private 
due to its artificial nature, it still has significant ethical 
implications that must be addressed through rigorous 
theoretical and practical frameworks. Thus, our design 
theory challenges the assumption that synthetic data 
is free from privacy and bias risks and highlights the 
need for robust mechanisms to prevent re-
identification, mitigate bias, and ensure fairness in AI 
applications.  



Moreover, as synthetic data generation becomes 
more accessible and automated, the potential for its 
misuse increases, particularly when assumptions of 
inherent privacy lead to a lack of critical oversight. We 
argue that without robust safeguards, synthetic 
datasets may propagate systemic biases or be 
exploited in ways that compromise the very ethical 
standards they are intended to uphold, underscoring 
the urgency of a proactive and multifaceted 
governance approach. By operationalizing the ethical 
values into actionable design principles, our research 
provides a structured approach to navigating the 
complex ethical landscape of AI in digital health, 
ensuring that synthetic image data is used responsibly 
and ethically. Specifically, it contributes to the 
discourse on ethical AI in healthcare. While existing 
literature (Mittelstadt et al., 2016; Spiekermann et al., 
2020) primarily focuses on the ethical implications of 
AI, our design theory goes a step further by 
operationalizing these ethical considerations. As such, 
our design theory makes a distinctive contribution by 
addressing the specific ethical risks associated with 
synthetic image data in digital health through 
actionable design principles, complementing the 
broader meta-level frameworks of Myers and Venable 
(2014) and Herwix et al. (2022), which provide 
valuable general guidance but do not fully encompass 
the specific socio-technical challenges in this 
particular domain, and shifting the conversation from 
what should be done to how it can be done. Thus, 
narrowing the scope can enhance value, particularly in 
sciences that prioritize practical applicability, but if the 
IS community typically favors a broader scope, we risk 
lacking the detailed information needed to fully 
understand IS phenomena (Siponen et al., 2023).  
Furthermore, our study draws on Floridi and Cowls’ 
(2019) framework of AI ethics, which emphasizes the 
importance of AI being beneficial rather than 
detrimental to humanity. This aligns with our focus on 
developing AI systems that improve health care while 
mitigating risks such as bias, privacy violations, and 
ethical dilemmas. We also integrate insights from 
Topol (2019) and therefore address the discourse on 
deep medicine, exploring how AI can transform 
healthcare by personalizing medicine, increasing 
diagnostic accuracy, improving patient care, and 
ensuring that our AI designs contribute positively to 
these aspects. Finally, our design theory advances AI 
in healthcare by providing a structured, ethical 
framework for using synthetic image data, addressing 
key concerns like privacy, bias mitigation, and ethical 
compliance (Obermeyer et al., 2019; Panch et al., 
2019; Rajkomar et al., 2019). It builds on Panch et al.’s 
(2019) discussion by offering actionable principles, 
responds to Obermeyer et al.’s (2019) findings on 
racial bias, and aligns with Raji et al.’s (2020) and 
Vayena et al.’s (2018) emphasis on ethical challenges 

and fairness in medical deep learning. Thus, our 
research addresses the concerns raised in AI and 
digital health systems about the potential risks of AI 
exacerbating existing inequities if not properly 
managed (Panch et al., 2018). In response to calls for 
transparency in the design, deployment, and 
evaluation of deep learning models to build trust and 
accountability (Rajkomar et al., 2018), we advocate for 
clear documentation and explanation of data 
generation processes, model design decisions, and 
ethical considerations to ensure that models do not 
perpetuate disparities. 
Integrating related theoretical perspectives from 
philosophical, sociotechnical, and phenomenological 
design ethics deepened our understanding of the 
moral and ethical responsibilities inherent in using 
synthetic data for digital health. Donia and Shaw 
(2021) highlight that design decisions are shaped by 
the agency of designers, who must navigate external 
pressures (often commercial and technical) while 
embedding ethical values in their work. Thus, our 
study may reinforce the idea that design is never 
neutral, as moral implications are inherent in every 
decision, especially in sensitive areas such as 
healthcare. Findeli’s (1994) concept of “technoethics” 
further emphasizes that this responsibility for ethical 
implications in system design goes beyond mere 
functionalism. We argue that adopting a more 
speculative and adaptive approach to design - one that 
anticipates and responds to the broader societal 
impacts of technology - is critical to addressing the 
evolving challenges posed by synthetic data (Lupton, 
2017; Burton-Jones et al., 2021). Through the lens of 
our sociotechnical systems theory, and as 
emphasized by Albrechtslund (2006), we contend that 
the multistability of technology demands ethical 
adaptability. The unpredictable ways in which 
innovative technologies, such as synthetic data, will be 
used once they are deployed underscore the need for 
flexible design frameworks that can accommodate 
unforeseen ethical challenges. Finally, in line with 
Luhmann’s (1996) reflections on ethical systems as 
adaptive and reflective processes, we contend that 
ongoing ethical deliberation is essential to ensure that 
synthetic data systems remain ethically sound as they 
evolve in the dynamic landscape of health care. 

Practical Implications 
By immersing ourselves in the practical world of 
healthcare, we have developed a design theory that is 
not only grounded in the realities of synthetic data use 
but also anticipates future challenges. It provides 
practitioners with a robust framework for the ethical 
use of synthetic data, not just in terms of theoretical 
considerations but with actionable insights and 
guidelines that can be directly implemented in real-



world scenarios to reduce design theory 
indeterminacy (Lukyanenko & Parsons, 2020). We 
argue that the practical implications of our work go 
beyond immediate applications and serve as a 
blueprint for how design theories in digital health can 
be systematically developed and implemented to 
address complex ethical challenges, thereby setting a 
precedent for future innovations in health technology. 
Importantly, recognizing that synthetic image data is 
not inherently free of privacy risks is the crucial first 
step - one that, if widely understood and accepted by 
practitioners, would constitute a significant part of the 
effort in safeguarding against potential ethical 
violations. We advocate a sensible and cautious 
approach to synthetic data that does not consider it 
inherently risk-free. However, it is certainly less risky 
than previous approaches using real image data 
(because privacy is less of an issue), but the problem 
remains, and we argue that prevention is better than 
hindsight, especially when working with sensitive 
healthcare data.  
Subsequently, model inversion and adversarial 
attacks, while likely rare, remain a critical concern, as 
advanced AI models trained on synthetic data may still 
be vulnerable to malicious actors who could reverse 
engineer the synthetic data to extract sensitive 
information. Although synthetic data is artificial, 
models may retain traces of the underlying real data, 
particularly in the case of unexplained AI models, 
exposing private details. Therefore, we argue that for 
synthetic data to be trusted, transparency about its 
origins and associated risks is essential, as 
stakeholders may overestimate privacy protections if 
they are unaware of the close link between synthetic 
and real data. As the field of digital health continues to 
evolve at a rapid pace, the implications of our design 
theory extend beyond academic discourse, fostering a 
culture of ethical mindfulness that is crucial for 
sustaining the integrity and trustworthiness of health-
related AI applications.  

At the organizational level, health authorities face 
several significant challenges when trying to introduce 
or implement innovative changes or systems (Thakur 
et al. 2012). Therefore, the implications of our 
research reach beyond academic theorizing, holding 
significant promise for real-world healthcare and 
management applications, as these authorities can 
develop and implement ethical, effective, and precise 
computer vision models based on synthetic image 
data in digital health. Our study highlights the dynamic 
nature of DSR in line with the principles outlined by 
vom Brocke et al. (2022). We show that the 
development of design theory in this context is not a 
linear process but one that evolves through 
collaboration, unexpected challenges, and new 
opportunities. This iterative process, similar to a 

“dance” between theory and practice, ensures that our 
approach remains adaptable to the complexities of 
digital health and ethics. 

Limitations & Future Research 
In light of the overall positive evaluation of our 
theorized artifact, some limitations should be 
considered. First, design artifacts in the form of design 
requirements and principles, as well as their 
development, are tied to the subjective creativity of the 
researcher, even after various data collection 
episodes and theory grounding. However, not all 
design decisions can or should be derived from 
behavioral or mathematical theories, as some degree 
of creativity is essential to developing an innovative 
design artifact (Hevner & Chatterjee, 2010; Baskerville 
et al., 2016), whereas a certain degree of rigor can be 
implemented through methodological (Fu et al., 2016; 
Gregor et al., 2020; Möller et al., 2020) or theorizing 
approaches (Gregory & Muntermann, 2014; Lee et al., 
2011). The iterative nature of DSR often means that 
the final artifact is the result of multiple refinements, 
which can lead to a divergence from the initial 
theoretical underpinnings. While this divergence is a 
natural part of the design process, it could limit the 
extent to which the final artifact embodies the 
theoretical constructs it was intended to. Therefore, 
maintaining a balance between theoretical fidelity and 
practical utility in the artifact becomes a critical 
consideration that we encourage future research to 
address. In this regard, our study acknowledges the 
potential for refinement in the abstraction and 
granularity of its design principles, as highlighted by 
one of the reviewers during the review process. We 
would like to take up this idea and see future research 
exploring strategies for optimizing the conciseness 
and specificity of design principles, depending on their 
use and actionability in theory and practice. We 
believe that initiating this ongoing dialogue is essential 
to advancing the theoretical and practical discourse on 
the use of synthetic image data in digital health and 
beyond. 
Second, as with any evaluation, the results describe 
only one sample throughout two completed design 
cycles, meaning that different results might be 
expected if a different sample were chosen. It would 
be presumptuous to assume that design theory 
contains all the necessary design knowledge to use 
synthetic image data in digital health computer vision, 
although we have tried to provide high transparency 
and rigor with our theorizing approach. Therefore, we 
encourage other researchers to challenge, adapt, or 
refine the constructs of our design theory. Here, we 
aimed to make the design theory highly replicable by 
following the framework proposed by Brendel and 
Muntermann (2022), which emphasizes the 



importance of a clear and structured approach when 
developing design theories. Future studies could 
extend our work by applying the design theory to 
different contexts or replicating the development of 
design requirements and principles. Furthermore, 
despite achieving theoretical, data, code thematic, and 
meaning saturation, we acknowledge that the 
specialized nature and size of our expert sample may 
limit the generalizability of our findings. Therefore, 
further research with diverse samples and in different 
contexts with different theoretical underpinnings is 
essential to validate and potentially extend the 
applicability of our design theory. Future studies 
should explore larger and more diverse samples to 
ensure broader applicability while maintaining the rigor 
of practitioner feedback within relevant subgroups 
(Iivari et al., 2021). In this context, the incorporation of 
organizational change management theories could 
significantly inform the application and refinement of 
the proposed design theory for synthetic image data in 
digital health. Theories such as Armenakis and 
Bedeian’s (1999) organizational change framework, 
Kotter’s (1996) eight-step process for leading change, 
and Lewin’s (1947) change management model could 
provide valuable guidance on how healthcare 
organizations could effectively adopt and implement 
the design principles outlined in our study. Given the 
diverse contexts, cultures, and regulatory 
environments across countries and healthcare 
systems, we argue that these organizational change 
management frameworks are critical for 
understanding how to tailor change strategies to 
specific organizational and national contexts. Work 
such as that of Markus and Robey (1988) on the 
interaction between technology and organizational 
change highlights the importance of understanding the 
complex dynamics at play when implementing new 
technologies. These insights are particularly valuable 
in addressing the various challenges of change 
acceptance, stakeholder involvement, and alignment 
of new technologies with existing organizational 
cultures, especially in complex and culturally sensitive 
healthcare environments. Future studies could explore 
these aspects, grounding our design theory in practical 
organizational contexts and enhancing its applicability 
across diverse healthcare settings to ensure that the 
transition to synthetic data-driven AI systems is both 
smooth and sustainable in diverse global contexts. 
Third, while the application of the reusability 
framework (Iivari et al., 2021) covered categories such 
as effectiveness, these were not empirically validated 
but only qualitatively through think-aloud sessions. 
Even after two completed DSR cycles and a certain 
degree of maturity, our design theory is at an early 
stage of development. Given the complexity of the 
topic, it was essential to focus on conceptual 
development, as theories in scientific research, 

particularly in DSR, are built on constructs and 
propositions that provide explanations and prioritize 
the utility of prescriptive theories over empirical 
confirmation (Baskerville & Pries-Heje, 2019; Gregor 
& Jones, 2007). While we propose testable 
propositions linking design requirements and design 
principles, validating these propositions relies on 
artifact instantiation rather than traditional hypothesis 
testing, which may limit generalizability. Future 
research should explore more empirical testing of 
these propositions in diverse real-world healthcare 
settings further to assess their applicability and 
effectiveness across different contexts. As such, we 
recognize the challenges posed by the rapidly evolving 
nature of digital health and AI, which means that 
certain aspects of the design theory may change as 
technology advances. We aim to validate the design 
theory longitudinally to ensure its continued relevance, 
adaptability, and feasibility. Specifically, we plan to 
implement the design theory in a real-world context 
(e.g., for fall detection, interaction design, or disease 
detection) to collect data on various metrics such as 
performance, user satisfaction, and adaptation. As the 
environmental contexts evolve, the design theory may 
be revised as we talk to experts and observe 
technological advances to ensure its validity. In this 
context, we plan to conduct a longitudinal case study 
over the lifetime of the aforementioned 
implementation. Thus, we will periodically reflect on 
the data collected and compare it to the original design 
objectives and any changes made to the design 
theory. Therefore, we encourage researchers, 
theorists, and practitioners to apply the design theory 
to new contexts to see if it remains effective. This 
could mean using the theory to solve different types of 
problems in different industries or under different 
conditions. The results of these applications serve as 
empirical evidence for or against the projectability of 
the theory. However, we also encourage future 
research to apply the design theory and compare the 
results in different case studies. Especially in deep 
learning, empirical testing of such items or model 
benchmarking (e.g., comparing synthetically trained 
models with ground truth models of real images) is an 
advisable choice. 

Conclusion 
The ongoing rapid development in both digital health 
and computer vision requires innovative and ethically 
inclusive solutions, which can be achieved, for 
example, through the generation and use of synthetic 
image data for model training. While the use of artificial 
imagery provides faster generation, infinite scalability, 
and photorealism, it often involves ethical concerns 
(i.e., bias or invasion of privacy) and error-prone 
application (i.e., poor domain adaptation). Therefore, 
it is crucial to design ethical, performant, and precise 



computer vision models based on synthetic image 
data, especially in the digital health domain with a high 
emphasis on accuracy, privacy, and feasibility. By 
theorizing the causality of how to use such artificial 
data and what effects are to be expected, we 
demonstrated a design knowledge guidance that 
contributes to the field of digital health, computer 
vision, and digital ethics. Therefore, our design theory 
not only contributes by its feasibility but also serves as 
a starting point for future research within these 
domains. 
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Appendix 
Design Principle Scheme Following Gregor et al. (2020) 

Table A.1. Design Principle 1 

Design Principle Title Ethical Healthcare Data Generation 

Aim, interpreter, and user To ensure that synthetic imagery complies with ethical and healthcare privacy regulations, 
maintaining alignment with both technical standards and social ethical frameworks. 

Context 
In digital health systems where synthetic image data is used for analysis, AI training, or decision 
support, while ensuring ethical values and the sociotechnical balance between innovation and ethical 
healthcare practices. 

Mechanism Incorporate ethical values and sociotechnical mechanisms to ensure that users account for both 
social and technical subsystems when making design decisions. 

Rationale 

Drawing on the theory of value-sensitive design (Friedman et al., 2002; 2013), ethical AI theories 
(Floridi & Cowls, 2019), and meta-level ethics (Myers & Venable; Herwix et al., 2022), this principle 
recognizes that healthcare data generation processes are not inherently private (Giuffrè & Shung, 
2023) and must respect the ethical imperative to protect individuals’ rights. Since design decisions 
are not neutral (Findeli, 1994), the principle stresses the balance between social and technical 
elements (Mumford, 2006), ensuring that ethical considerations, such as bias mitigation and privacy, 
are not overlooked in technical implementations. 

Table A.2. Design Principle 2 

Design Principle Title Comprehensive Privacy Protection 

Aim, interpreter, and user To ensure the protection of sensitive healthcare data, upholding privacy, data security, and alignment 
with technical and social/ethical imperatives. 

Context In digital health systems where synthetic image data must adhere to strict privacy protection 
frameworks, ensuring compliance with healthcare privacy regulations and ethical values. 

Mechanism 
Apply robust monitoring techniques to ensure that the synthetically generated image data does not 
contain sensible real-world reference data to prevent re-identification or leakage of sensitive 
information, taking into account both technical and social aspects. 

Rationale 

Rooted in sociotechnical systems theory (Mumford, 2006) and based on flexible ethical designs 
(Albrechtslund, 2007) as well as privacy protection theories (Hansen & Baroody, 2020; Raji et al., 
2020), this principle emphasizes that synthetic data, though artificial, is not inherently free from 
privacy risks. Rigorous privacy measures must be implemented to safeguard sensitive information, 
as mandated by meta-ethical frameworks (Myers & Venable, 2014). 

  



Table A.3. Design Principle 3 

Design Principle Title Adaptive Data Governance 

Aim, interpreter, and user To establish adaptive governance frameworks that ensure the ethical and secure creation, use, and 
distribution of synthetic data in computer vision healthcare settings. 

Context In dynamic computer vision digital health environments where governance frameworks must respond 
to both technological changes and evolving social/ethical values. 

Mechanism 
Implement adaptive policies and governance mechanisms that can flexibly respond to emerging 
ethical challenges while ensuring compliance with both social imperatives and technical standards, 
recognizing that synthetic image data is not inherently free from risks related to privacy, security, and 
ethical concerns. 

Rationale 

Informed by socio-technical systems theory (Mumford, 2006) and adaptive ethical healthcare 
concepts (Panch et al., 2019; Rajkomar et al., 2018; 2019) for ethical values (Friedman et al., 2002; 
2013), this principle emphasizes the need for ethical governance structures to address both privacy 
concerns and ethical dilemmas that arise during synthetic data generation and usage (Giuffrè & 
Shung, 2023; Vayena et al., 2018). 

Table A.4. Design Principle 4 

Design Principle Title Synthetic Scene Diversity 

Aim, interpreter, and user To enhance model generalization and performance by incorporating diverse synthetic scenes that 
align with both social and technical learning imperatives. 

Context In computer vision models for healthcare, where synthetic scenes must be both technically proficient 
and represent a variety of social, cultural, and environmental contexts without reinforcing biases. 

Mechanism Introduce diverse textures, objects, and backgrounds into synthetic scenes to ensure models learn 
across a variety of scenarios, avoiding overfitting and social biases. 

Rationale 
Based on bias mitigation strategies (Obermeyer et al., 2019; Raji et al., 2020) and the need for cross-
domain generalization (Scheck et al., 2020), this principle ensures that computer vision models 
trained on diverse data (i.e., scenes) perform well in varied real-world scenarios (Seib et al., 2020; 
Valtchev & Wu, 2021), reflecting socio-cultural variability (Donia & Shaw, 2021). 

Table A.5. Design Principle 5 

Design Principle Title Controlled Scene Composition 

Aim, interpreter, and user To ensure that key features of synthetic scenes in healthcare are represented accurately, with a 
balance between scene randomness, diversity, and control. 

Context In the generation of synthetic image data for healthcare systems, where scene diversity is required, 
but important features must remain under control to prevent distortion and falsification. 

Mechanism Control object scale, orientation, and spatial relationships in synthetic scenes to ensure accurate 
representation of key healthcare factors, balancing randomness with precision and accuracy. 

Rationale 
Drawing on ethical-aesthetic aspects in design (Albrechtslund, 2007; Findeli, 1994) and scene 
composition techniques (Krump et al., 2020), this principle stresses that while randomness is 
beneficial, it must not overshadow core healthcare features, which are crucial for model 
generalization (Scheck et al., 2020). 



Table A.6. Design Principle 6 

Design Principle Title Flexible Complexity Management 

Aim, interpreter, and user To optimize social and technical model learning by managing the complexity of synthetic scenes 
through gradual introduction and balancing. 

Context In computer vision models for healthcare, which require adaptive learning environments to handle 
the dynamic complexity of healthcare scenarios from both a social and technical perspective. 

Mechanism Gradually introduce synthetic scenes of varying social and technical complexity and monitor model 
performance to prevent overfitting and encourage robust learning. 

Rationale 

Drawing from the value trade-off between security needs and usability (Denning et al., 2014), this 
principle emphasizes the dynamic introduction of complex elements in synthetic scenes to help 
models build foundational learning before confronting more challenging, social or technical, scenarios 
(Alzubaidi et al., 2021; Bird et al., 2020). Based on adaptive complexity management in socio-
technical systems theory (Mumford, 2006; Bostrom & Heinen, 1977), this principle ensures that 
models encounter diverse complexity levels, building robust learning mechanisms (Alzubaidi et al., 
2021). 

Table A.7. Design Principle 7 

Design Principle Title Data Augmentation 

Aim, interpreter, and user To enhance model robustness by applying augmentation techniques that simulate and promote 
variations in synthetic image scenes. 

Context In computer vision healthcare models where synthetic image data must simulate a range of real-
world conditions to improve generalizability and reliability. 

Mechanism 
Use geometric transformations, colour modifications, noise introduction, and random elements to 
diversify synthetic scenes, ensuring that models learn to adapt to various conditions and focus on 
the key characteristics. 

Rationale 

Drawing from augmentation techniques in AI (Müller et al., 2018; Seib et al., 2020; Zhang et al., 
2018), this principle highlights the importance of diverse data augmentation strategies to prevent 
overfitting and ensure robustness across different healthcare environments. It reflects the general 
socio-technical imperative to create synthetic data that can be generalized across different 
healthcare settings and patient populations, ensuring that computer vision models are adaptable and 
sustainable (Emery & Trist, 1960). 

  



Table A.8. Design Principle 8 

Design Principle Title Responsible AI 

Aim, interpreter, and user To promote ethical and accountable AI practices in healthcare computer vision, focusing on bias 
detection, fairness, and explainability. 

Context In digital health systems where computer vision models must be both technically reliable and socially 
responsible, aligning with ethical healthcare practices. 

Mechanism Implement fairness assessments, bias detection, and transparency mechanisms to ensure that 
computer vision systems in healthcare operate ethically and are accountable to their users. 

Rationale 

Based on ethical AI practices (Floridi & Cowls, 2019; McBride, 2014; Russel & Norvig, 2021) and 
bias mitigation theories (Obermeyer et al., 2019), this principle emphasizes the importance of 
ensuring that healthcare AI models are fair, transparent, and free from bias, supporting trust in digital 
health technologies (Vayena et al., 2018). It emphasizes that while synthetic data is used in AI 
development, it does not inherently eliminate bias or ensure fairness, which is critical in value-
sensitive environments (Friedmann et al., 2002; 2013; Herwix et al., 2022), where the responsibility 
of AI developers is balanced between technical and social/ethical imperatives (Mumford, 2006, Donia 
& Shaw, 2021; Luhmann, 1996). 

Table A.9. Design Principle 9 

Design Principle Title Transfer Learning Guidelines 

Aim, interpreter, and user To guide the domain adaptation of models trained on synthetic data to real-world healthcare 
applications, ensuring they generalize and perform well. 

Context In healthcare settings where computer vision models must be fine-tuned for specific applications to 
ensure they perform effectively in real-world scenarios. 

Mechanism Provide protocols for domain adaptation and fine-tuning, ensuring that models trained on synthetic 
data and their parameters are optimized for real-world healthcare data and environments. 

Rationale 

Based on domain adaptation and transfer learning foundations (Murtaza et al., 2023; Kuhnke and 
Ostermann, 2019; Lahiri et al., 2018); Venkateswara et al., 2017), this principle ensures that models 
maintain high performance when transitioning from synthetic data environments to real-world 
healthcare applications. Its adaptability is based on socio-technical imperatives (Emery & Trist, 
1960), which emphasize the need for systems to evolve and remain effective in dynamic 
environments. 

  



Table A.10. Design Principle 10 

Design Principle Title Robustness Checks 

Aim, interpreter, and user To rigorously test the robustness of computer vision models against varying healthcare conditions 
and environmental inputs to align technical processes with social/ethical values. 

Context In healthcare computer vision models where reliability, adaptability, and resilience are critical to 
ensuring performance in unpredictable and ethically-sensitive real-world scenarios. 

Mechanism Conduct thorough model testing across a wide range of environmental conditions and healthcare 
scenarios to ensure computer vision model robustness and reliability. 

Rationale 

Based on technological marginalization concerns (Deng et al., 2016) and the need for robustness 
testing in models trained on synthetic data (Giuffrè & Shung, 2023), this principle emphasizes the 
need for extensive testing to ensure that computer vision systems can handle real-world healthcare 
variations without sacrificing accuracy/performance and ethical aspects (Floridi and Cowls, 2019; 
Giuffrè and Shung, 2023; Gonzales et al., 2023; Rajkomar et al., 2019; Russel and Norvig, 2021; 
Valtchev and Wu, 2021). In these scenarios, particularly in the digital health domain, and in light of a 
common utilitarian view that often overlooks social complexity (Lupton, 2017), it seems reasonable 
to stress test AI models to assess their resilience to extreme or rare scenarios. 
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