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Abstract: Wearable devices have gained increasing attention for use in multifunctional
applications related to health monitoring, particularly in research of the circadian rhythms
of cognitive functions and metabolic processes. In this comprehensive review, we encom-
pass how wearables can be used to study circadian rhythms in health and disease. We
highlight the importance of these rhythms as markers of health and well-being and as
potential predictors for health outcomes. We focus on the use of wearable technologies in
sleep research, circadian medicine, and chronomedicine beyond the circadian domain and
emphasize actigraphy as a validated tool for monitoring sleep, activity, and light exposure.
We discuss various mathematical methods currently used to analyze actigraphic data, such
as parametric and non-parametric approaches, linear, non-linear, and neural network-based
methods applied to quantify circadian and non-circadian variability. We also introduce
novel actigraphy-derived markers, which can be used as personalized proxies of health
status, assisting in discriminating between health and disease, offering insights into neu-
robehavioral and metabolic status. We discuss how lifestyle factors such as physical activity
and light exposure can modulate brain functions and metabolic health. We emphasize the
importance of establishing reference standards for actigraphic measures to further refine
data interpretation and improve clinical and research outcomes. The review calls for further
research to refine existing tools and methods, deepen our understanding of circadian health,
and develop personalized healthcare strategies.

Keywords: wearables; actigraphy; circadian rhythms; health; monitoring; chronobiology;
neurodegeneration; metabolism; risk factors; epidemiology; longevity; biological age

1. Introduction
Rhythms are recognized as hallmarks of health [1]. These oscillations can be measured

and quantified utilizing diverse mathematical methods and modeling approaches. When
such oscillations deviate from their optimal ranges, they can be harnessed as early warning
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signs for the detection of impending risk and for the implementation of countermeasures
to improve health outcomes [2–7], epitomizing a pivotal element in the burgeoning domain
of circadian medicine [4,7–9]. Perturbations in circadian rhythms, both at the molecular
and systemic levels, are correlated with the processes of aging and the pathogenesis of
diseases [1–3,7,10–12]. The meticulous assessment of the normal range of physiological
variables necessitates the employment of sophisticated monitoring techniques that involve
both data collection and data analysis for a chronobiological interpretation of the results.
In the field of circadian medicine research, and chronomedicine more generally (also con-
cerned with time structures other than circadian rhythms), various wearable technologies
are utilized to monitor and study sleep patterns, activity levels, and other physiological
markers that align with our biological clocks.

In the investigation of the optimal characteristics of rhythmic structures, quantitative
measures are assessed, alongside deviations from the optimum that may be associated with
health risks. These deviations typically encompass both parametric and non-parametric
measures. Parametric measures are useful for many circadian functions, which can be
described using sinusoidal curves or multi-component models. To accurately characterize
the parameters of biological rhythms—namely amplitude, phase, and period length—data
collection must occur at suitable intervals across one or, preferably, multiple cycles. Ideally,
this collection should be sampled at regular, equidistant intervals; however, it is also
feasible with irregular intervals [13,14]. Assessing the intrinsic period in real-life scenarios
poses challenges, as its determination necessitates specific, controlled conditions within a
laboratory setting, such as the “constant routine” or “forced desynchrony protocol” [15].
Conversely, amplitude and phase evaluations are more feasible in real-life circumstances.
By collecting data over several cycles, researchers can introduce a “regularity” domain to
measure the stability of phase and amplitude across cycles. Non-parametric measures can
be preferred for functions with abrupt transition points, such as wake–sleep–wake states,
and include characteristics that eschew the sinusoidal rhythm model yet still facilitate
the characterization of amplitude, timing, stability, and fragmentation. Longitudinal and
dense data sampling enables a thorough assessment of physiological variability and any
divergence from the normal range.

Monitoring and wearable technologies offer excellent means to achieve this objective.
Physical activity, temperature, heart rate, and light exposure are among the most accessible
and trackable variables by wearables. Moreover, these variables hold greater physiological
significance and, in addition to mere step counts, allow for the sampling of quantified
values. The selection of the most appropriate method for data analysis is contingent upon
the specific physiological variable under consideration. For instance, physical activity
may be best characterized through non-parametric approaches due to its non-sinusoidal
patterns, whereas temperature typically exhibits a more sinusoidal nature. While wearable
technologies offer significant advancements in health monitoring, they are not without
limitations. For instance, measurements of wrist temperature, though less intrusive, are
often marred by substantial noise in comparison to core body temperature. Their timing
may be nearly, though not precisely, in antiphase with those of core temperature. They
reflect the work of a special mechanism that ensures a decrease in basal temperature
in the evening/night due to heat dissipation, which is necessary for falling asleep and
maintaining sleep [16,17]. On the other hand, professional-grade wearables, such as
actigraphs, facilitate the assessment of phase alignment among various physiological
variables. This is particularly pertinent when incorporating measurements of light exposure,
which serves as the principal circadian synchronizer.

In the fields of circadian medicine research and chronomedicine, various wearable
technologies are utilized to monitor and study sleep patterns, activity levels, and other
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physiological markers that align with our biological clocks. Some types of wearables
already in use or still in development in this area are summarized in Table 1. Overall,
innovative wearables and analytical tools work together to derive refined reference ranges
and identify new biomarkers to assess health quality and disease risk [18–25]. It has been
emphasized that devices should be evaluated for their intended use in relevant popula-
tions, such as patients with mild cognitive impairment at risk of developing Alzheimer’s
disease for their intended use [26]. The design of new devices should also keep these
specific patient groups in mind. Analysis of electrocardiogram time series using machine
learning (ML) algorithms made it possible to reliably identify sleep phases, rapid eye
movement/non-rapid eye movement (REM/NREM) [27,28], indicating great prospects for
using ML in somnology and chronobiology. However, despite the variety of affordable
multisensory wearable devices on the market, their wide public use and Bluetooth compati-
bility, actigraphy remains a tool best validated scientifically for research in chronomedicine.
It provides objective, real-life insights into an individual’s sleep, activity, and light exposure
patterns, providing full access to raw data, which is highly important in research [20].
Earlier actigraphs’ embedded accelerometers allowed the device to record body move-
ments, providing a representation of activity levels over extended durations [29–31]. It
was commonly used to assess sleep quality but also had applications in various medical
fields [32,33], including psychiatry, neurology, oncology [34], and geriatrics. Actigra-
phy has proven to be a valuable tool in diagnosing and managing various conditions,
including depression, narcolepsy [35], Alzheimer’s disease, Parkinson’s disease, and de-
mentia [36–38]. Actigraphy also serves as a quantitative measure of physical activity
throughout the day. Monitoring movement enables researchers to evaluate an individual’s
average activity, periods of sedentary behavior, and compliance with study protocols. To
estimate measures of physical activity, including energy expenditure, wrist- and hip-worn
devices produce comparable results [39]. Advanced actigraphy units are now equipped
with sensors for wrist temperature and ambient light [40], allowing for a more compre-
hensive examination of rhythms and their perturbations. Through the analysis of activity
patterns and wrist temperature, researchers can deduce information about the internal
circadian clock and its influence on health.

Table 1. Wearables for circadian medicine/chronomedicine.

Accelerometry-Based: Others:

Actigraphs: usually wrist-worn or hip-worn devices that track
movement to estimate sleep patterns over extended periods,
some can also measure physical activity, skin and ambient
temperature, and light exposure. Issues to resolve: lack of

unified standards for quality of minimal sampling requirements,
light sensors are distant from organ of vision and can be covered

by clothes. Poor precision in assessment of sleep latency.

Heart Rate Monitors: can be used as stand-alone devices or
integrated into other wearables, offering data on heart rate
variability, which can correlate with cardiovascular health,

stress and sleep quality. Limitation: highly variable and
depends on various external and internal factors.

Sleep Trackers: specialized watches and bands that monitor
sleep stages, and overall sleep quality. Merit: can be used more
widely than professional devices. Issues include inconsistent

and limited accuracy across devices, as well as reduced
reliability when compared to professional actigraphs.

Blood Pressure Monitors: Blood pressure monitors can be
utilized in chronomedicine to track 24 h changes in blood

pressure throughout the day and night and how these changes
vary from day to day. Limitation: regarded obtrusive by most

users, interfere with quality of sleep.
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Table 1. Cont.

Accelerometry-Based: Others:

Smart Watches: commercially available devices that come with
built-in features to track physical activity. Merit: can be used

more widely than professional devices. Issues include
inconsistent and limited accuracy across devices, as well as

reduced reliability when compared to professional actigraphs.

Continuous Glucose Monitors (CGMs): while not exclusively
for circadian research, CGMs can provide data on metabolic

changes throughout the day and night. From the viewpoint of
diabetes research, glucose variability is now considered as

important a biomarker as the A1c. Sensitive to meal regimens
and contents, which can be both limitation and merit depending

on purpose of research. However, CGMs are invaluable for
health in patients with diabetes.

Fitness Trackers: similar to smartwatches, these devices track
steps, activity, heart rate, all of which can be relevant to
circadian rhythms. Merit: can be used more widely than

professional devices. Issues include inconsistent and limited
accuracy across devices, as well as reduced reliability when

compared to professional actigraphs.

Photopletysmography (PPG) Monitors: PPG monitors can be
used to measure changes in blood volume in the body,

providing valuable data on heart rate variability and respiration
rate. By analyzing these metrics over a 24 h period, healthcare

providers can gain insight into an individual’s circadian rhythm
and identify any deviations or abnormalities that may be

indicative of increased risk of disease. Benefits: cost-effective,
user-friendly, non-invasive, real-time monitoring of

cardiovascular metrics. Limitations: sensitivity to motion
artifacts, variability in accuracy based on skin characteristics.

Smart Rings: devices like the Oura Ring track sleep,
temperature, and activity, and light providing insights into 24 h
rhythms. Merits and issues are overall similar to smart watches

and fitness trackers. Can be regarded as more convenient by
some users. Light sensors are less dependent on clothes, while
depend on gloves in location with low ambient temperature.

Wearables for Monitoring Biochemicals: wearables that can
monitor biochemicals such as C-reactive protein, interleukin-1b,

and cortisol can provide important information on
inflammation levels, immune system function, and stress levels
throughout the day and night. By tracking these biochemical

markers over time, healthcare providers can better understand
how individuals’ circadian rhythm may be influencing their

overall health and make informed treatment decisions. Merits:
offers unique opportunity to monitor biochemicals and gene

expression providing unprecedented personalized insight into
non-invasive health tracking. Limitations: newly evolving field,

which encounters challenges of data accuracy, interpretation,
privacy concerns, and the complexities of obtaining necessary

approvals and compliance with health regulations.

Footnote: Each accelerometry-based device can contribute to a better understanding of circadian rhythms and
their effect on health, though it is important to note that not all are validated for research purposes to the same
extent as actigraphy.

2. Actigraphy Features: Beyond Sleep
Considering the thorough exploration of implications, constraints, and viewpoints

of actigraphy within the realm of sleep medicine, as detailed in prior literature [24,41–45],
this review aims to encompass the infrequently employed, yet increasingly acknowledged
applications of actigraphy for the quantification of physical activity, assessment of metabolic
health, and the prognostication of lifespan. Subsequently, this review will also deliberate
on the eminent roles of commercially available wearable devices in the sphere of circadian
medicine and chronomedicine more broadly, including rhythms with periods outside
the circadian domain [1,2,7]. These applications do not solely revolve around sleep, as
they also involve quantifying circadian (about 24 h–20 to 28 h range) and extra-circadian
(ultradian, with periods less than 20 h, and infradian, with periods longer than 28 h)
variability, based on dense (usually every minute) and longitudinal (usually weeklong)
sampling. To examine time structures of the rest-activity cycle as it changes over time,
actigraphy can be empowered with several mathematical tools. In a parametric approach,
the period, τ, is the duration of one cycle; the MESOR (Midline Estimating Statistics Of
Rhythm) is a rhythm-adjusted mean; the amplitude is a measure of half the extent of
predictable change within a cycle; and the acrophase is a measure of the timing of overall
high values recurring in each cycle [13]. It extends from circadian to both ultradian and
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infradian rhythms in a comprehensive spectral analysis [11,46,47]. Acigraphy also includes
a non-parametric approach used to derive the following indices: M10, M10 Onset, L5, L5
Onset, inter-daily stability (IS), intra-daily variability (IV), relative amplitude, circadian
function index, etc., as features of physical activity [48–52]. The same parametric and
non-parametric approaches can also be applied to the other variables (wrist temperature,
ambient light measured at different wavelengths, e.g., red, green, blue, ultraviolet A,
ultraviolet B, infrared, or even spectrally resolved). Furthermore, they can be used to
calculate novel, more sensitive health markers such as indices of daytime light deficit and
nocturnal light excess [53], scalar regression markers [54], phase angles between activity
and light [55,56], or integrated variables such as TAP, which incorporates measures of three
variables (temperature, activity, and position) [50]. A personalized approach to searching
for circadian markers of health and disease, quantified by wearable technologies, can be
most fruitful, as certain genetic-, gender-, or geographically related phenotypes may be
particularly vulnerable to circadian disruption [53].

Actigraphy acquired a growing interest in studies of metabolic health and circadian
syndrome, which can be a more precise definition of metabolic syndrome [57,58]. By
continuously tracking physical activity and sleep duration, actigraphy provides valuable
data that can be correlated to various metabolic endpoints, such as glucose concentrations,
insulin sensitivity, and lipid profiles [56,59–64]. This approach offers a holistic view of daily
habits and their putative effect on metabolic health. Furthermore, integrating actigraphy
data with biobank big data enhances the depth of analysis, allowing researchers to explore
correlations between activity patterns, genetic factors, and metabolic outcomes on a large
scale. Biobanks, repositories of biological samples and associated health data, play a
crucial role in advancing our understanding of complex diseases like diabetes, obesity, and
cardiovascular disorders, in addition to neurodegenerative diseases and mood disorders
that were extensively investigated previously. Actigraphy is promising in identifying
early markers to predict cardio-metabolic risks and providing personalized preventive
strategies. Furthermore, actigraphy can be used to evaluate the effectiveness of strategies
for improving sleep or optimizing the amount and timing of physical activity.

Several important topics, including the comparative analysis of circuit design, power
supply, device longevity, measurement accuracy, noise characteristics, calibration methods,
and the advantages and limitations of device types such as GPS, accelerometers, and light
sensors, as well as the performance and reliability of wearable devices, warrant specific
attention in a separate review, as they are outside our scope herein.

3. Overview of Actigraphic Health Markers
Actigraphy and other wearable technologies provide a non-invasive and efficient

method for continually monitoring physiological functions in real-world environments.
These tools have a wide range of applications in research, clinical practice, and personal
health monitoring, making them an invaluable resource for quantifying and comprehending
various aspects of health and well-being. They are particularly useful when used in
conjunction with the central synchronizer of the circadian clock, light, to measure circadian
light hygiene and its influence on health and well-being. By combining objective data
on light exposure with information on sleep patterns and circadian rhythms, actigraphy
can help to pinpoint strategies for promoting optimal circadian alignment and enhancing
overall health outcomes. Most common forms of circadian disruptions that are revealed by
actigraphy are summarized in Table 2 and schematized in Figure 1.
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average value; (b) changes in the duration of periods of activity, sleep, daylight exposure, etc.; (c) 
phase deviations; (d) decrease in amplitude; (e) changes in optimal parameters within the time 
epoch (example of light exposure); suboptimal circadian light hygiene implies deficit of daytime 
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Table 2. Most common forms of circadian disruptions: typical and alternative features. 

Circadian Disruption 
Marker Typical Deviation Alternatives/Comments 

Circadian rhythm measures 

Amplitude 
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[11,12,36,38,56,61,62,65–83] 

↑ Transient elevation of amplitude due to jet lag, 
or shift work, over-swinging functions such as 

blood pressure 
[84–87] 

Figure 1. Wearables available and schematics for the most typical circadian deviations. Left: Available
monitoring technologies: actigraphy tracked variables (framed): activity, wrist temperature, wrist
or hip light exposure; other wearables tracked variables: near-eye light dosimeters (Lidos), blood
pressure, heart rate, photoplethysmography (PPG)s, biochemical variables (cortisol, interleukin-1β
and C-reactive protein). Right: schematic markers of circadian disruptions: (a) deviation of average
value; (b) changes in the duration of periods of activity, sleep, daylight exposure, etc.; (c) phase
deviations; (d) decrease in amplitude; (e) changes in optimal parameters within the time epoch
(example of light exposure); suboptimal circadian light hygiene implies deficit of daytime light and
(or) excess of light at night, that can be gauged as areas outside the curve of recommendations for
optimal 24 h light hygiene; see Figures 2 and 3 for further details).

Table 2. Most common forms of circadian disruptions: typical and alternative features.

Circadian Disruption Marker Typical Deviation Alternatives/Comments

Circadian rhythm measures

Amplitude ↓
[11,12,36,38,56,61,62,65–83]

↑ Transient elevation of amplitude due to jet
lag, or shift work, over-swinging functions

such as blood pressure
[84–87]

Phase Delay→
[61,72,79–82,88–91]

Both delay→ or advance← (optimal phase
position is determined by circadian clock

precision
[81,91–93]

Waveform (circadian robustness)
Reduced fitness of the curve to
predictable best-fitted model

[36,61,62,72]

Flexibility rather than rigidity can be useful
for adaptive needs, i.e., heart rate variability
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Table 2. Cont.

Circadian Disruption Marker Typical Deviation Alternatives/Comments

Variability measures

Fragmentation
and regularity (activity and sleep)

IV (intra-daily variability) ↑
IS (inter-daily stability) ↓

[38,51,61,62,72,74,75,77,80,94]

Can be beneficial in certain cases such as
short-term adaptation requiring high

vigilance [95,96]
Large inter- and intra-individual differences
in the duration of sleep cycles throughout the

night [46,47]

Spectral composition

Extra-circadian dissemination (ECD):
ratio between circadian and

non-circadian (ultradian/infradian)
amplitudes ↓
[2,10–12,97]

Some ultradian and infradian components
are built-in and beneficial for health

[47,98–102]

Alignment

Misalignment: disturbed phase
relationship between circadian marker

rhythms
[55,56,103]

Optimal phase angles may vary depending
on genotype, age, light environment: season
and latitude; and meal timing if peripheral

rhythms’ phases are considered.

Composite markers (area under
curve), AUCs; function-on-scalar

regression (FOSR), etc.

↑ or ↓
[53,54,63,76,104–106]

Optimal reference curves may depend on
genotype, age, light environment: season and

latitude; and meal timing if peripheral
rhythms’ phases are considered.

Social jet lag ↑
[107–114]

Largely varies with age [111] and social
obligations [115], may depend on the number
of actual working days per week. All these

factors can modify hazards of SJL for health.

A decline in circadian robustness with age and disease is considered a general bio-
logical feature and may serve as an unspecific marker of biological age to predict healthy
aging and longevity [1,2,10,11,65–68]. The following parametric/non-parametric indices
are commonly used to characterize circadian and 24 h variability of physiological variables
such as activity, temperature, and light exposure.

Parametric [13]:

y(t) = M + ΣiAicos (2πt/τi + φi), i = 1, . . ., k (1)

(usually, τ1 = 24 h accounts for most of the variance and its parameters (A1, φ1) are
useful biomarkers)

y—related data; t—time
acrophase (φi), moment in time when component with period τi reaches its peak in

relation to a given reference time;
MESOR—Midline Estimating Statistics Of Rhythm (a rhythm-adjusted mean);
Ai—Amplitude of component with period τi.
Note that a multi-component cosinor is usually most appropriate (e.g., blood pressure

and heart rate are usually fitted with a 2-component model, including the 12 h harmonic
term). While composite models yield a better approximation of the rhythm’s waveform,
the fundamental component, with a period of 24 h, often accounts for most of the variance,
and its parameters can serve as valuable biomarkers.

Non-parametric [48]:
M10—the average of 10 h of highest values.
M10 onset—the start of the M10 period.
L5—the average of 5 h of lowest values.
L5 onset—the start of the L5 period.
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RA (relative amplitude); RA = (M10 − L5)/(M10 + L5)
IV (intra-daily variability) estimates how variable activity is within a day and can

range from 0 to ∞, where higher values represent higher fragmentation. IV is calculated
by the following formula, where N—total number of measurements in the full time series,
Xi—individual values at time i, Xm—mean of all Xi values:

IV =

N
N
∑

i=2
(Xi − Xi−1)

2

(N − 1)
N
∑

i=1

(
Xi − X

)2
(2)

IS (inter-daily stability) measures how constant the rest-activity pattern is between
days and ranges from 0 to 1. Values closer to 1 mean more constant rest-activity patterns.
Assuming that measurements are binned over hourly equal intervals per day over the
whole time series, IS is calculated by the following formula, where N—total number of
measurements in the overall time series, p—number of data points per 24 h, Xi—individual
values at time i, Xm—mean of the overall time series, Xmh—hourly means:

IS =

N
p
∑

h=1

(
Xh − X

)2

p
N
∑

i=1

(
Xi − X

)2
(3)

Note that additional measures of activity-rest patterns were recently proposed [52]:
the activity balance index (ABI), transition probability (TP), self-similarity parameter (α),
which may have merits beyond IV and IS, being independent of differentiation between
rest/activity states that currently lack standardization. However, unlike IV or IS, ABI and
α are sensitive to extreme values that could be observed in the data.

The activity balance index (ABI) estimates how balanced activity is during the ob-
servation span. It ranges from 0 to 1, with values closer to 1 meaning a more balanced
activity distribution.

The transition probability (TP) estimates transitions from rest to activity state (A→ R,
AR) or vice versa (R→ A) at a given time point t. TP ranges from 0 to 1. Higher values
indicate higher transitions from activity to rest or vice versa.

The self-similarity parameter (α) approaches self-similarity of the acceleration signal
during the observation span. It ranges from 0 to 2. If the values fall between 0 and 1, it
indicates that the motion is steady and predictable. When the values are between 1 and 2,
it suggests that the motion is more erratic and unpredictable. There are some key points to
note: a value of 0.5 represents random noise, 1 indicates a pattern called fractal noise, and
1.5 signifies a random walk, which is a type of movement that seems to take random steps.

The Sleep Regularity Index (SRI) is another novel metric [94,116], which can be applied
to evaluate an individual’s sleep patterns for their consistency. The SRI is calculated by
determining the percentage probability that an individual’s sleep state (asleep or awake)
remains the same when comparing two time points that are 24 h apart. This probability
is then averaged over the entire observational period, providing an overall indication of
sleep regularity. It can range from 0 to 1. A higher SRI indicates a more consistent sleep
pattern, whereas lower values mean greater variability in sleep-wake conditions. SRI can
be re-scaled as y = 200 (x − 1/2) to scale in the range from −100 to 100 [94]. After such
re-scaling, regularity of sleep patterns gauged by SRI typically ranges between an SRI of 0
(random or irregular sleep) and 100 (structured or periodic sleep).

Different approaches for the precise assessment of circadian phase in field studies can
be used with relative merits that may depend on research purposes and conditions [117,118]
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and also on the extent of alignment between activity and light exposure [119]. For certain
purposes, such as delayed sleep–wake phase disorder, light-based methods incorporating
multiple linear regressions of light exposure for phase assessment were recommended [88],
while activity-based models can be useful in older adults (aged 58 to 86 years) [120] who
tend to advance their sleep phase. Activity-based phase modeling has been shown to
outperform light-based modeling in predicting the dim light melatonin onset (DLMO)
in shift workers [121]. Our own data suggest that the same may hold true for cosinor-
based models. However, their effectiveness may depend on ambient light conditions
and the circadian light hygiene index [122], both of which can vary significantly with
the seasons [123]. Furthermore, in view of substantial individual differences in light
sensitivity [124], predictions can vary widely among individuals, influenced not only by
genetic factors but also by other co-factors, such as a history of COVID-19. This history can
affect circadian patterns and light sensitivity related to actigraphy-based measures [125] as
well as blood pressure [126].

Estimates of amplitude and phase as proxies of circadian rhythm may require different
methods with distinct inherent strengths in modeling biological oscillations:

Cosinor Analysis was developed specifically for the purpose of modeling cyclic
data and is particularly useful for estimating rhythm parameters like amplitude and
acrophase [13,125,127–131]. While the single-component model assumes the pattern to be
sinusoidal, consideration of additional harmonic terms with periods of e.g., 12, 8, and 6 h
can approximate the waveform more precisely, including phase estimation.

Non-parametric Actigraphy Indices [48–52] capture informative features of the circa-
dian rhythms of activity and light exposure, such as their extent of irregularity. However,
their precision in quantifying amplitude may be more subjective in interpretation, leading
to greater variability in results.

Moving Linear Regression Models used for sleep/wake scoring over short (e.g., 1-min)
intervals are widely applied to characterize basic sleep parameters [33,132,133], thereby
capturing important features of the circadian rhythm other than the amplitude and phase.

Artificial Neural Networks (ANNs) are capable of handling complex correlations
and can therefore determine amplitude and phase for various types of data [134–136].
Nevertheless, the efficiency of the networks directly depends on the availability of sufficient
data for training. These techniques may not be as easy to use for the purpose of estimating
amplitude and phase as is the case with cosinor. Results from a study using actigraphy data
of blue light and temperature indicated that the ANN model was capable of predicting
circadian timing within ±2 h for most individuals following diurnal schedules. This
method, however, did not extend to night shift scenarios [126].

Limit-Cycle Oscillator Modeling effectively represents biological oscillations and can
provide information on feedback mechanisms, allowing dynamic estimations of amplitude
and phase. On the other hand, their complexity and need for extensive computational
resources can limit their practical applications. Limit-cycle oscillator modeling is most
effective for estimating parameters with non-sinusoidal patterns and when phase stability
is low (shift work) [135,137].

Approximation-Based Least-Squares Methods [33,138] offer significant versatility,
being capable of accommodating a wide range of models, including non-linear ones, which
makes it particularly useful for estimating amplitude and phase. These methods efficiently
reduce residuals to enhance model fit; however, they can require substantial computational
resources, especially when working with highly complex models. Additionally, their
implementation may be less convenient and more challenging to interpret, potentially
complicating their practical application.
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Furthermore, several methods can improve cosine decomposition, particularly in
investigations of ultradian oscillations and their interpretation:

Fourier transformation decomposes a signal into constituent frequencies, allowing
for the analysis of periodic components. It is effective for analyzing periodic signals
and identifying dominant frequencies in spectra [139]. Fourier transformation can utilize
walking accelerometer data to predict somatic health [140] and can outperform a non-
parametric approach in identifying depression [141]. However, like other methods, it can
be sensitive to noise, outliers, and non-stationarities of the signal (when mean, variance,
and autocorrelation structure are not consistent over time).

Wavelet transformation [142,143] allows a thorough analysis of non-stationary signals
and detects transient features in circadian and extra-circadian signals. However, it is more
complex to implement and interpret than traditional methods and requires careful and
subjective selection of parameters.

Hilbert transformation [144–146] is useful for extracting instantaneous frequency and
amplitude of oscillations, providing insights into complex rhythmic patterns and their
phase relationship [147]. It can be used for analyzing non-linear and non-stationary signals.
However, it is also sensitive to noise and requires continuous data; furthermore, interpreta-
tion may be challenging without a solid understanding of the underlying mathematics.

The choice between different methods of actigraphy/wearables data analyses largely
depends on the specific research goals, the sources of the data, and the expected rhythms
to be analyzed. Table 3 provides a brief comparison of the relative merits of the different
methods used to analyze data from wearables.

Table 3. Summary of methods for analyzing wearable device data.

Method Advantages Disadvantages

Moving Linear Regression Models Easy to implement and interpret, widely accessible.
Good agreement with questionnaires [148]. Assume linear relationships.

Non-parametric Actigraphy Indices
Effectively capture informative features of the circadian

rhythms of activity and light exposure such as their
extent of irregularity; less sensitive to noise in the data.

Provide information on some features of the
rhythm but do not quantify the shape of
circadian rhythms. Interpretation can be

subjective, when sleep patterns are irregular.
Non-parametric analyses might overlook
underlying multi-frequency patterns or

relationships that parametric methods capture.

Parametric Cosinor Analysis

Effectively models periodic data and quantifies
amplitude and acrophase. Optimal for oscillations that

demonstrate a tied fit to the fitted model. Provides
statistical tests for the presence of a rhythm and a

measure of uncertainty for the estimation of its
parameters, making it easier to draw conclusions about

the presence and shape of rhythms.

May require the consideration of multiple
harmonic terms for non-sinusoidal waveforms.

Approximation-Based
Least-Squares Methods

Flexible for fitting various non-linear models. Can be
applied to a wide range of models, including linear,

polynomial, and non-linear functions.
Effective in minimizing residuals, thus enabling a

better model fit.

Can become complex to implement and
interpret with intricate models.

Require advanced computational resources.
Higher-order modeling overestimates
amplitude when data have gaps [138].

Fourier Transformation

Provides analysis of periodic components, which is
effective for analysis of periodic signals to identify

dominant frequencies.
Transformation of time-domain data into

frequency-domain amplitudes and phases at specified
frequencies simplifies the identification of cycles.

Assumption that the signal is stationary (its
statistical properties do not change over time)

is not always true for real-life data.
Provides complex output, which may lack

physiological relevance and requires
additional expertise for meaningful

interpretation of the results.
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Table 3. Cont.

Method Advantages Disadvantages

Wavelet Transformation

Decomposes a signal into wavelets, localized in both
time and frequency. This method is useful for

analyzing non-stationary signals.
Provides information on the dominant mode of

variability and how it varies over time.

Requirement of choosing the appropriate
wavelet for a specific application is often not

straightforward and may require trial and
error, and may often lack
physiological relevance.

Aimed to analyze non-stationary signals, it
relies on certain assumptions of signal

behavior that may not hold true for
physiological data from wearables, potentially

leading to inaccurate conclusions.

Hilbert Transformation

Useful to analyze the phase of the reference signal
against the phase of the target signal and measure

phase relationships between signals [147].
Can be used to decipher non-linear and

non-stationary signals.

While it can be applied for non-stationary
signals, this method assumes that the signal is

relatively smooth and continuous.
Swift changes in the amplitude-phase domain,
data gaps and noisy data limit the accuracy of

the results

Artificial Neural Networks Capable of modeling complex, non-linear relationships.
Can learn from large datasets and improve over time.

Requires large databases for training.
Often seen as a “black box,” making the
interpretation of results challenging and

less transparent.

Limit-Cycle Oscillator Models
Provide a dynamic representation of circadian rhythms.
Can incorporate feedback mechanisms, adding depth

to the modeling process.

Complex to implement and understand, which
may deter some users.

Require advanced computational resources
and expertise, making them less accessible.

4. Interpretation of Deviant Parameters
4.1. Faded Circadian Oscillation (Amplitude Decrease)

Examples are reduced relative amplitude of activity with a non-parametric approach:
lower daytime physical activity or light exposure (M10) that can be accompanied by higher
nocturnal activity or light exposure (L5) is indicative of poorer sleep or light hygiene.
Reduced circadian amplitude of activity by cosinor or other non-linear approximations
similarly relates to lower daytime but higher evening physical activity, Figure 2. In addition,
the regularity of physical activity or light exposure patterns can be assessed by comparing
the ratio of the amplitude assessed by separate 24 h cycles (A24) to the amplitude approxi-
mated over the entire monitoring period, e.g., week (Aw). When activity or light exposure
occurs irregularly, Aw/A24 is reduced. The normalized amplitude (NA) can serve as a
valuable metric to quantify both physical activity (PA) and light exposure (LE), Figure 3.
It is particularly advantageous for LE, which often assumes extremely low or null values
during the nighttime. Applying a log transformation can effectively normalize these values,
albeit at the cost of reducing daytime variations when LE is generally high.
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Figure 2. Examples of cases with relatively high (left) and low (right) motor activity with about
2-fold MESOR and almost 3-fold amplitude differences, while acrophases are similar. (A) 7-day
actograms; (B) average 24 h patterns, (C) average 7-day patterns with approximated best-fitted 24 h
cosine function with its parameters. PIM—activity data processed using proportional integration
mode, a measure of activity level or vigor of motion [41].
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Figure 3. Examples of light hygiene measures: (A) 24 h average patterns of blue light exposure in
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of light exposure (NAbl) of individuals with poor (NAbl = 0.7, left) and fair (NAbl = 1.52, right)
circadian light hygiene; and (C) geometric indices of cumulative daylight deficit and nocturnal light
excess [53], our reference curve modification, based on recommendations for light exposure [69],
left: individual with poor circadian light hygiene (DDIbl = 473 NEIbl = 13.38); right: individual with
fair light hygiene (DDIbl = 397 NEIbl = 0.17). DDIbl—Daylight Deficit Index for blue light exposure
(green areas—area under the curve of recommended daylight); NEIbl—Nocturnal Excess Index of
blue light exposure (black areas—area above the curve of recommended nocturnal light).

Mean values for physical activity, ambient light, and wrist temperature (24 h, diurnal,
such as M10, nocturnal, such as L5) can be indicative—and serve as proxies—of health and
as mortality and morbidity risk factors for certain diseases (Figure 1, Table 2). Examples are
low 24 h physical activity, increased or decreased temperature, and low sunlight exposure.
Mean values, however, can be restricted to the daytime or to the nighttime, and this
information needs to be specified as it affects its interpretation. Indeed, health hazards stem
from lowered diurnal, but elevated nocturnal activity, and from low daylight exposure
but light-at-night. Therefore, deviations in circadian endpoints other than the mean value
also deserve consideration. Changes in the 24 h amplitude and in circadian robustness are
cases in point. They can be estimated by absolute measures of A or RA or their normalized
values (relative to the individual mean), NA/NRA. The latter may be preferred when inter-
individual variability of averages (or MESORs) is high. Alternatively, a measure of circadian
robustness can consider the spectral domain of ultradian and infradian frequencies to
incorporate the analysis of the relative amplitudes among particular ultradian and infradian
frequencies to the circadian, which adds valuable new information. The circadian rhythm
is usually the dominant component with the highest power or amplitude in weeklong
records of physiological variables that can be recorded with wearable monitoring devices.
The relative decrease in circadian prominence to extra-circadian domains is defined as
extra-circadian dissemination, ECD [2,10,11]. Another approach includes integrative values
for three related actigraphy variables (temperature, position, and activity, TAP), used to
estimate the Circadian Function Index [50]. A decrease in circadian robustness, as gauged
by either of these methods, is a feature associated with aging, diseases, and health risks.

To ensure comparability among the aforementioned quantitative indices of circadian
health, it is imperative to standardize the following essential sampling attributes across
various studies: total duration of recording, frequency of observations within the time
series, and the number, timing, and extent of interruptions in the dataset. When data
are non-equidistant, a measure of the distribution in time of the observations can help
determine the frequency region within which reliable results can be anticipated.

4.2. Phase Deviations

Phase deviations—both too late and too early maximal values—may serve as health
risk predictors. However, stronger evidence has accumulated to explain a phase delay
since it is closely linked to and can be driven by poor circadian light hygiene. Phase
relationship—phase lag between light and activity (or sleep and melatonin) that can be
predicted by wrist temperature (wT) provides more specific information, which, however,
can strongly depend on the power of light signaling that varies profoundly depending on
the local light environment and seasonal photoperiodism.

A diminution in circadian robustness may stem from a true reduction in amplitude or
a deterioration of phase stability. For example, irregular circadian timing (e.g., irregular
sleep–wake patterns), which has been associated with a higher mortality risk [149], leads
to a reduced amplitude when data are analyzed over several days but not when data
are analyzed over a single day (cycle). Indeed, the most common health risks related to
circadian disruption are a reduced amplitude, a deviation from sinusoidality, a delayed
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phase, a compromised phase alignment, and an increased day-to-day instability and
fragmentation of the circadian activity rhythm (Table 2).

Phase instability usually means misalignment between circadian oscillations of the
distinct circadian functions. It can be caused by a weakened light signaling due to poor
circadian light hygiene [4–6,150–153] or by a compromised light perception due to issues
with retinal ganglion cells [69,92,103,154,155]. As far as measurable overt rhythms are
concerned, it can also be due to the uncoupling between peripheral oscillations or the
perception of central clock signaling to peripheral clocks [7,153,156,157]. Phase scattering
may occur without changes in mean phase position, or it can be accompanied by a phase
delay or phase advance. Accumulating evidence indicates that a phase delay, which is
usually linked to a late chronotype, is a common health risk factor (Table 2). A phase
delay is associated with evening light exposure and lack of diurnal light [153], or light
perception [154,155], but it can also be attributed to certain clock genes or clock-controlled
genes related to chronotype [158].

4.3. Fragmentation and Ultradian/Infradian Modifications

Modifications of circadian oscillations may occur within a cycle (fragmentation, or
prominence in ultradian harmonics) or between consecutive cycles (scattered, unstable
circadian parameters such as the 24 h phase, or higher prominence of infradian components).
They can be accompanied by a greater deviation of the best-fitted model from an ideal sine
curve, i.e., a reduction in the percentage of rhythm. In actigraphy, the most commonly
used indices are the non-parametric indices IV and IS [48], which can be used to predict
numerous health hazards (Table 2). Quantified approaches to estimate the loss of regularity
can be applied to characterize sleep and its stages [46,47].

In addition to deviations in characteristics of circadian rhythms, modifications can
be observed in the relationships between circadian and extra-circadian components, such
as regular oscillations in the ultradian (periods shorter than 20 h) or infradian (periods
longer than 28 h) domains. Regular movement patterns during sleep (locomotor inactivity
during sleep) were first described by pioneers in sleep research [159]. They were observed
using early accelerometer-based techniques [30] and again recently in modern actigraphy
studies [46]. Regular ultradian oscillations with a period of about 110 min characterize
activity during sleep. Such oscillations gradually fade across the night. The amplitude
of this ultradian rhythm does not depend on sex but is modified by sleep duration and
shift work, and gradually declines with age [46]. Ultradian sleep cycles may belong to
endogenous biological rhythms and are influenced by factors such as age, gender, and
the balance of sleep needs; however, in individuals who are healthy and sleep well, these
cycles do not directly change in response to moderate environmental stimuli [47]. Infradian
rhythms can be related to geophysical and social cycles and include yearly, monthly, and
weekly fluctuations [160–163]. There is indirect evidence that circaseptan (about-weekly)
rhythms [164,165] and circa-lunar cycles [166–168] may also be partly endogenous.

In addition to non-parametric indices, inter-daily stability and intra-daily variability can
also be assessed by using an ECD model, such as the computation of ultradian-to-circadian
and/or infradian-to-circadian rhythm amplitude ratios [2,10,11]. The relative prominence of
circadian, ultradian, and infradian rhythms changes with age and disease for different physio-
logical variables such as heart rate, blood pressure, and temperature [11,12,66]. Due to the fact
that changes in ultradian and infradian components are influenced by distinct physiological
mechanisms [2,11], it is essential to utilize these methods to examine variability and identify
disease-specific predictors. As modern wearables acquire a wider range of functions, which
can be naturally more sinusoidal than physical activity, characterization of spectral domains
(ultradian, circadian, infradian) and their interplay can become a fruitful approach.



Diagnostics 2025, 15, 327 15 of 42

Increased sleep irregularity gauged by SRI was linked to several health hazards: a
higher 10-year risk of cardiovascular disease, as well as higher rates of obesity, hypertension,
elevated fasting glucose levels, hemoglobin A1C, and diabetes [169]. Additionally, higher
SRI was associated with higher levels of perceived stress and depression [169,170] and
higher body mass index [171]. SRI also showed a U-shaped relationship with the risk of
developing dementia. Irregular sleep patterns could be a new risk factor for dementia, and
gray matter and hippocampal volume [172].

4.4. Misalignment (Intrinsic Desynchrony)

Increased intrinsic desynchrony or circadian misalignment between variables has
been shown to be a significant predictor of health risks (Table 2). Examples include the
light-activity phase lag [56] and the surrogate index of phase of entrainment, specifically
the sleep–temperature phase relationship [173,174]. The temperature phase can serve as a
substitute for the golden standard of the melatonin phase, as the phases of temperature
and melatonin exhibit a relatively close relationship [175–177]. Misalignment between the
central clock phase and phases of local or peripheral oscillations [103] can be assessed by
the integration of novel sensors into wearables.

4.5. Social Jet Lag: Objective Characterization by Wearables

Social jet lag (SJL) refers to the regular misalignment between the personal endogenous
circadian clock and social obligations, such as work or school schedules [178,179]. It can
occur when individuals stay up later and sleep in on weekends or holidays, causing their
internal body clock to be out of sync with their typical weekday routine. It can lead to fatigue,
difficulty concentrating, and overall reduced well-being [179]. Greater SJL is associated
with an increased risk of cardio-metabolic [107–111] and mood [110,112–114] disorders. As
actigraphy provides objective measures of activity and temperature, these data can be used
to assess circadian health and phase changes on a daily basis in weeklong records [180]. The
most abundant actigraphy data that were collected and made available for large database
analysis include physical activity. When adopting sampling frameworks that account for
weekly patterns, it becomes crucial to calibrate or rectify the data to reflect the actual number
of workdays versus days off, including instances of shift work or sporadic commitments
that necessitate awakening outside the regular schedule. Furthermore, incorporating details
regarding the timing and length of daytime naps enriches the dataset, particularly for the
accurate calculation of sleep-related metrics. In older adults, SJL very often approaches zero,
which is due to the fact that upon retirement, the main external factor (work schedule) ceases
to affect them [111]. Therefore, studying the acute effects of SJL on the health of older people
is usually ineffective. The most promising in this case is the study of the chronic effects of SJL
on human health.

4.6. Composite Markers

Searching for markers that are specific to the risks of certain pathologies can yield
positive results when analytical focus is placed on timeframes that correlate with phases
of increased sensitivity and physiological response (Table 2). Examples are: (1) areas
above (nocturnal excess index, NEI) or under (Daylight Deficit Index, DDI) the curve of
optimal 24 h exposure to light [53], where thresholds are based on existing consensus
recommendations [181]; (2) MLiT500, the average clock time of all aggregated data above
500 lux [104]; and (3) FOSR (function-on-scalar regression), a method seeking time-of-day
differences in a comparison of models fitted to groups defined by the presence or absence of
a given risk factor or pathology [54]. NEI and MLiT500 were predictive of body mass index;
NEI was also linked to metabolic issues within the 9:30 to 00:30 timeframe, specifically in
carriers of common melatonin receptor gene polymorphism, MTNR1b rs10830963; DDI was
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linked to elevated cortisol concentrations [53]. The FOSR method detected daytime and
evening timeframes of higher activity and variability in activity, which were predictive of
Alzheimer’s disease with PET-confirmed beta-amyloid Aβ deposition [54]. Novel wearable-
based digital markers, encompassing circadian amplitude, phase, and physical activity
for biological age evaluation [131], can be useful for further advancement in preventive
strategies of circadian medicine.

In relation to blood pressure and heart rate, chronobiological reference values were
derived to assess the percentage time elevation/reduction, the amount of excess/deficit,
and their timing along the 24 h scale. Similar reference values, qualified by gender and age,
derived for all circadian parameters, identified new risk factors related to the amplitude
and phase. These abnormal features of the circadian variation in blood pressure and
heart rate, known as vascular variability disorders (VVDs), were shown to predict adverse
cardiovascular outcomes in several outcome studies [84,85,182,183].

5. Circadian Health Markers from Actigraphy
As major markers of circadian disruption described in Table 2 are unspecific and can

be related to frailty, aging, or different diseases, further study should seek more specific
manifestations of compromised circadian robustness. They can be successful in tracking
specific variables and specific indices, also seeking polymorphic gene variants in core-
clock or clock-controlled genes [7]. Several genes (e.g., CLOCK, BMAL1, PER1,2,3, and
MTNR1B) have SNPs that were consistently linked to compromised circadian health related
to cardio-metabolic [5,53,184] or neurodegenerative [5,120,121,184–186] diseases.

Establishing reference standards for actigraphy-derived measures is a pressing need
that has begun to be addressed. These standards are crucial for providing benchmarks
or normal ranges against which individuals’ sleep–wake patterns, activity patterns, and
circadian and light hygiene patterns can be compared. By defining these norms, we can
better understand deviations that may indicate underlying health issues, facilitating more
accurate diagnoses and personalized treatment strategies. Developing reference standards
for actigraphy-based parametric and non-parametric indices is a significant step forward
in the field of circadian medicine and sleep research. Establishing reference standards
for different indices of the distinct measurable variables will allow better interpretation
of wearable-collected data and facilitate comparisons across studies and populations. It
will enable clinicians and researchers to identify deviations from normal ranges, which
may indicate sleep disorders, circadian rhythm disturbances, or other health issues. When
light exposure is tracked, drastic seasonal changes, especially at higher latitudes, must be
considered as well [53]. Certain individual phenotypic traits, such as disease conditions [26]
or skin color [20], that may have an effect on data quality should also be considered.

Recent studies have delved into deviations from optimal circadian health using
actigraphy, with a significant portion of them utilizing extensive databases like the UK
Biobank [36,70–73] and NHANES in the USA [68,74–76]. While many studies focused on
disruptions in the circadian rhythm of physical activity, some also explored deviations in
temperature and light exposure rhythms. The following sections outline key findings that
highlight the associations between actigraphy or wearable-based circadian measures of
health and various health outcomes, including morbidities, frailty, mortality, and longevity.
Table 2 provides a comprehensive summary of these studies, detailing the specific aspects
of circadian health that were found to be altered in relation to health status. These aspects,
however, can strongly depend on the power of light signaling that varies profoundly
depending on the local light environment and seasonal photoperiodism.

The circadian rhythm of physical activity plays a crucial role in maintaining
bodily [89,187–189] and mental [90,190,191] health. A recent retrospective assessment
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of actigraphy data from a large UK biobank cohort (over 100,000 participants, 40–69 years
of age) revealed that a large amplitude of the circadian activity rhythm is associated with
lower risks of numerous health issues, including cardiovascular, metabolic, respiratory,
infectious, cancer, and all-cause mortality [71]. Similar results were obtained in a prospec-
tive 16-year-long survey of over 1000 adults [72]. Moreover, 73 out of 423 (17%) disease
phenotypes were significantly associated with a reduced circadian amplitude of the wrist
temperature rhythm in actigraphy records from over 100,000 participants, the strongest
associations found in relation to type 2 diabetes, non-alcoholic fatty liver disease, hyperten-
sion, and pneumonia [73]. A smaller amplitude and reduced circadian robustness were
associated with an increased susceptibility to mood disorders such as major depressive
disorder and bipolar disorder, mood instability, and neuroticism [70]. Similar markers
predicted cognitive deficits in Alzheimer’s and Parkinson’s diseases [36,38]. A larger RA
and lesser fragmentation (higher IV, lower IS) of wrist temperature were associated with
better sleep quality in Japanese adults [77].

In addition to amplitude and fragmentation, a deviant circadian phase or deviant non-
parametric estimates of indices such as M10 or L5 Onset were also indicative of elevated
morbidity/mortality risks. Besides a smaller amplitude, a delayed activity phase was
related to higher mortality from cancer and stroke [187] and higher risks of dementia or
mild cognitive impairment in community-dwelling elderly women [190]. Earlier or later L5
onset vs. intermediate values in the range of 3:00–3:29 from 7-day actigraphy records from
88,282 adults in the UK Biobank was linked to a 20% higher risk of all-cause mortality [91].
Another study including records from 103,712 UK Biobank participants found a relationship
between earlier or later sleep onset (compared to optimal onset between 22:00 and 23:00)
and the risk of developing cardiovascular diseases, particularly in women [93].

Given that L5 onset and sleep mid-time are markers of chronotype, both studies
suggest that the relationship between chronotype and health hazards is non-linear, as
opposed to linear. Since chronotype changes with age (also in the 40–70 age range) sex-
dependently [192,193], as shown in the UK Biobank database, a more sophisticated analysis
is warranted that adjusts some metrics from the UK Biobank or other large databases for
age and gender. Such adjustments in the estimation of circadian timing can be helpful
to address the question of whether the optimal circadian phase position can be assessed
considering the circadian resonance concept, which links longevity to an intermediate
morning chronotype. This concept is expected to be indicative of the precise intrinsic
circadian clock phenotype in humans [158,194].

As was first revealed by self-measurements for body temperature, amplitude and
phase disruptions are present in prediabetes and further worsen in diabetes [78]. Actigraphy
validates and further develops approaches to quantify metabolic risks related to obesity
and diabetes [53,56,61–63,79,195,196]. Again, a smaller circadian amplitude and a delayed
phase [62], a weaker coupling between light and activity [56], and a reduced quality
of circadian light hygiene, such as excessive evening light [53,63], are linked to greater
metabolic risks. In a study of 84,790 UK Biobank participants wearing light sensors for
a week, the circadian amplitude and phase were modeled from light data, showing a
relationship between exposure to light at night and type 2 diabetes risk [79]. A higher risk
of type 2 diabetes was associated with brighter night light exposure, a smaller circadian
amplitude, and a displaced position of the circadian phase, independently of genetic risk
factors [79]. In this study, an association was also found between a higher type 2 diabetes
risk and lower daytime light levels, which became non-significant when physical activity
was included as a co-factor in the model.

Given the interplay between physical activity and daylight on the circadian amplitude
and robustness [197], it also suggests that physical activity may influence the relation-
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ship between light exposure and diabetes risk. However, another mechanism for the
association between circadian misalignment and metabolic disorders cannot be ruled out.
Zambrano et al. [198] showed that a simultaneous increase in insulin and melatonin levels
leads to a deterioration in insulin signal transduction in adipocytes in vitro. It cannot be
excluded that a similar effect will be caused by regular consumption of high-glycemic-index
food late in the evening/at night, as well as regular intake of pharmacological prepara-
tions of melatonin before dinner. Overall, aligned circadian rhythms of physical activity
and daylight exposure, with sufficient activity and light exposure during daytime hours,
facilitate a strong circadian amplitude and robustness, also of the circadian rhythm in
temperature [197,199–202]. Small amplitudes and shifted phases of circadian rhythms in
physical activity are attributes of depressed individuals [80–82] and of individuals with
binge eating disorder [83]. Fragmentation of the physical activity rhythm was linked to
food addiction and emotional eating in young adults [203].

6. Molecular Insights on the Interaction Between Timed Physical Activity
and Brain Health

Regular physical activity and optimally scheduled exercise exert multifaceted effects
on health and well-being, helping to improve metabolic health via modulating the lipid
profile [204–207] and reducing inflammation [208]. Optimization of exercise by its timing
can be particularly useful for maintaining healthy triglycerides, TG [209], and the ratio
between TG and high-density lipids, HDL, since these lipids are closely coupled with
circadian factors [53,210,211]. Effects of optimally scheduled physical activity involve the
modulation of metabolomics [212], which establishes the molecular background for brain
health [208,213]. Even short-term (about 30 min) bouts of physical activity improved inflam-
matory profiles by increasing adiponectin while decreasing leptin and interleukin-6 [214],
while also increasing brain-derived neurotrophic factor (BDNF) and insulin-like growth
factor 1 (IGF-1) [215]. Regular physical activity can influence protein synthesis and break-
down, which can affect the 24 h balance of lipids and amino acids. For instance, scheduled
physical activity can provide cardio-metabolic protection by stimulating the production of
lactoylphenylalanine, or Lac-Phe, by carnosine dipeptidase II (CNDP2) cells in diverse tis-
sues that reduces food intake without affecting motor activity or energy expenditure [216].
It has potential effects on food addiction, mood, depression, and anxiety, and it also regu-
lates the timing of food intake, which can be a necessary co-factor for exercise to maintain
metabolic health [217,218].

Acute moderate physical exercise improves lipid metabolism via increasing circulating
12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in men and women of different
age groups [219]. Activity modulates regulatory factors of the circadian rhythm (Dbp, Tef,
Nr1d2, and Per3) in mesenchymal stem cells, the process that was shown to be crucial for
multi-tissue molecular responses to exercise and obesity [220]. Physical activity is coupled
with the central carbon metabolism, which involves glycolysis and the pentose-phosphate
pathway (PPP) that works to oxidize glucose, resulting in the production of NADH and
NADPH. NADPH metabolism modulates circadian rhythm parameters, including the
period length of the circadian activity rhythm via the pentose-phosphate pathway [221].

Such interaction between the circadian clock and the timing of physical activity recruits
the nuclear factor Nrf2 (erythroid-derived 2)-like 2) pathway. Nrf2 is a transcription factor
involved in the expression of over 250 genes, i.e., providing feedback between redox
oscillations and the circadian transcriptional rhythms through the secondary core-clock
loop gene NR1D [221,222]. Nrf2 also affects brain functions, increasing glucose uptake
in neurons and astrocytes [223]. Nrf2 is also involved in maintaining large-amplitude
circadian rhythms in organs and tissues by regulating expression of the core-clock Cry2
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gene [224]. Therefore, major beneficial effects of timed exercise may rely on the interaction
between Nrf2 and glucose metabolism [225].

Greater benefits of evening exercise in patients with metabolic disorders are hypothe-
sized to be explained by the Nrf2-dependent activation of the antioxidant response element
(ARE) region in skeletal muscles, binding to the promoter region of the interleukin 6 (IL-6)
gene. Transcription and translation of IL-6 protein are thereby increased, which then stimu-
lates AMP-activated protein kinase (AMPK), which itself is activated by exercise and also
activates Nrf2, closing this feedback loop [225]. Physical activity activates PPARs (peroxi-
some proliferator-activated receptors) [226] that help to integrate the circadian clocks with
energy metabolism [227] and are expressed in mammalian tissues in a circadian-dependent
manner [228]. Given that the balance between these factors differs between morning and
evening, the effects of exercise at different times of day also vary [225].

In a mouse model, lifelong exercise exerted geroprotective effects by restoring (mainly
by readjusting) the rhythmic machinery via the core circadian clock protein BMAL1 and
resetting circadian transcriptomic programs of younger animals, mainly in the central
nervous system and vascular endothelial cells [229]. Sustained physical activity exerts
profound effects on the endogenous endocannabinoid system that may help to enhance
mood and learning abilities and modulate the endogenous 24 h balance of serotonin,
melatonin, and dopamine [230], especially in the presence of sufficient outdoor exposure to
sunlight [197].

7. Wearables to Track Circadian Markers in Neurodegenerative Diseases
Alterations in the interaction between light exposure and circadian rhythms can be

utilized to track early changes associated with neurobehavioral and neurodegenerative
pathologies. Precision measurement is essential to increase statistical power and ensure
reproducibility in human neuroscience, potentially revolutionizing the field through en-
hanced methodological rigor and improved scientific outcomes [231]. Research suggests
a significant correlation between metabolic changes and the progression of neurodegen-
erative diseases. Epidemiological studies have consistently linked conditions like obesity
and metabolic disorders to the onset of neurodegenerative diseases [232,233]. Hormones
such as leptin, ghrelin, insulin, and IGF-1 play a central role in protecting against neuronal
damage, resisting harmful stimuli, and other neurodegenerative mechanisms [233].

In addition to actigraphy, wearable GPS sensors and commercial accelerometers
offer a non-invasive method for monitoring the mobility and physical activity of indi-
viduals with neurodegenerative disorders, potentially serving as biomarkers for disease
tracking and treatment response. Despite challenges in standardizing remote monitoring
methods [26], recent research [234] has shown limited use of GPS but extensive application
of accelerometers in patients with neurodegenerative disorders, resulting in promising
clinical trial outcomes and strong correlations with disease progression and patient activi-
ties. The next steps involve standardizing these technologies for broader application and
validation of their effectiveness in larger patient populations to improve disease monitor-
ing and management. A meta-analysis of 48 studies on circadian disruption in dementia
using wearable technology revealed that adults with dementia exhibit lower activity levels,
disrupted sleep–wake patterns, increased fragmentation, and reduced normal daytime
activity compared to non-dementia individuals [235].

The main circadian brain clock synchronizers, such as light [236,237] and
melatonin [92,154,155,238–240], can be effective in preventing and/or mitigating neuroin-
flammation and neurodegeneration. Enhancement of circadian light signaling by daytime
light exposure and/or melatonin administration at night can improve circadian robustness
by increasing the circadian amplitude, aligning the phase, and strengthening signal robust-



Diagnostics 2025, 15, 327 20 of 42

ness in overt phenotypic functions measured by wearables. However, currently, very few
studies have addressed light or melatonin therapies using protocols that are personalized
for an individual patient’s circadian phase or chronotype. However, a recent phase 2 clinical
trial showed that biologically directed daylight therapy improved restorative deep sleep
in individuals with mild to moderate Parkinson’s disease, with no significant difference
between controlled daylight and melanopsin booster light [37]. The findings suggest that
personalized indoor daylight therapy could be effective in improving sleep in early to
moderate stages of the disease, calling for further research in advanced Parkinson’s disease.

We recently reviewed newer actigraphs that are available to assess circadian light
hygiene for appearance, dimensions, weight, mounting, battery, sensors, features, commu-
nication interface, and software [40]. Actigraphs equipped with light sensors can help to
track the intensity and duration of light exposure throughout the day, analyze its effect
on circadian rhythms, and adjust an individual’s light exposure (circadian light hygiene)
according to the recent recommendations [181]. These data help quantify the amount of
light a person is exposed to during different times of the day, including natural light from
the sun and artificial light sources indoors. The timing of light exposure can be analyzed
relative to key circadian markers, such as the onset of melatonin secretion in the evening
and the offset of melatonin secretion in the morning. This information helps assess whether
individuals’ light exposure aligns with their natural circadian rhythms. By correlating light
exposure data from actigraphy with sleep patterns, researchers can evaluate how light
exposure influences the timing and quality of sleep.

In a recent study of Arctic residents [53] during the spring equinox, a higher BMI was
found to be linked to higher blue light exposure within distinct time windows and also to a
lower wrist temperature MESOR. An evening time window between 9:30 p.m. and 0:30 a.m.
was identified when 95% confidence intervals of blue light exposure (BLE) were non-
overlapping between groups with a BMI < 25 or BMI > 25 kg/m2. Such link was coupled
to the MTNR1B rs10830963 G-allele. A novel Nocturnal Excess Index (NEI) was suggested
to estimate evening light overexposure along with the Daylight Deficit Index (DDI), which
was associated with morning cortisol values [53]. Another study used a method known
as FOSR to divide an average 24 h activity signal into 48 30 min segments and evaluate
differences between two groups within each 30 min segment. This approach found that
the Aβ-positive group exhibited significantly higher activity levels than the Aβ-negative
group between 1:00 p.m. and 3:30 p.m. Additionally, by analyzing the standard deviation
of activity in each segment, the authors demonstrated that the Aβ-positive group displayed
more consistent activity patterns during the early afternoon throughout the recording
period [54]. In this study, light exposure was not assessed, although it is likely that episodes
of elevated activity and corresponding variability could be attributed to simultaneous
differences in light exposure. Indeed, some studies suggest that excessive evening light
may be linked to cognitive impairment [241,242]. A characteristic motor activity profile
in older adults with dementia has been previously described, termed “sundowning”—
an increase in the level of motor activity in the late afternoon [234,243,244], occurring in
approximately 20% of patients with Alzheimer’s disease [245].

In neurodegenerative diseases, the function of retinal ganglion cells (RGCs), notably
the intrinsically photosensitive cells (ipRGCs), is compromised [246–248]. Compromised
light signaling due to progressive loss of ganglion cells, including ipRGCs, is most evident
in advanced stages of glaucoma, being associated with complex circadian disruptions,
including changes in circadian alignment and robustness [69,92,103,154,155,211], altered
mood [70], and sleep [69,154,155,249]. Similarly, in Alzheimer’s disease, impaired visual
function is associated with sleep/wake disorders and cognitive decline [250]. Such al-
terations can be linked to a decreased amplitude of light–dark alternation, since both
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melatonin [92,154,155] and daylight [251] mitigate circadian disruptions. Similarly, enhanc-
ing spectral lens transmission after cataract replacement improves circadian health [252].

Besides neuroinflammation and neurodegeneration, some other factors, such as a
history of SARS-CoV-2 infection, may change the susceptibility to circadian light hygiene,
likely affecting light perception or sensitivity. A recent study showed that populations
with a history of COVID-19 had lower daytime exposure to white, blue, and ultraviolet B
light [253]. Those who had poor circadian light hygiene (estimated by a smaller normalized
circadian amplitude) were more susceptible to circadian disruptions, manifested as a phase
delay, small amplitude, and less robust circadian patterns of activity and delayed sleep.
Furthermore, the longer the time elapsed since their COVID-19 diagnosis, the poorer
circadian light hygiene the patients had.

8. Boosting Brain, Vascular and Metabolic Health by
Clock-Enhancing Strategies
8.1. Scheduled Physical Activity

To explore the mechanisms that underpin the relationship between scheduled circadian
physical activity and the maintenance of proper light hygiene, we examine their role in
promoting strong and stable circadian rhythms. Physical activity is closely linked to
circadian health since it occurs regularly within the active phase of the 24 h rhythm,
which is usually daytime for humans. The circadian clock can be entrained primarily by
light but also by physical activity and meals [197,204,254]. This means that the timing
of these daily routines can influence the body’s internal clock, helping to regulate the
sleep–wake cycle and other physiological processes. This complex interaction highlights
the importance of maintaining consistent routines and healthy habits for overall well-being.
Most common health risks related to circadian disruption, such as a reduced amplitude, a
delayed phase, increased instability, and fragmentation of rhythms, can be mitigated by
physical activity. Animal studies showed the stabilizing effect of physical activity on the
circadian rhythm [255,256]. The effect of stable circadian activity rhythms for learning and
memory was also shown [257,258].

Exercise timing occurring at the post-absorptive phase was shown to cause greater fat
oxidation compared to postprandial exercise, as confirmed by indirect calorimetry and 13C
magnetic resonance spectroscopy [259]. Timed physical activity, such as morning exercise,
decreased abdominal fat and blood pressure in women, while evening exercise improved
muscular performance. In men, evening workouts boosted fat oxidation and lowered
systolic blood pressure regardless of macronutrient intake [260]. Timed physical activity is
promising to handle neurodegenerative pathologies [261].

Furthermore, personalized physical activity adjusted for individual differences [262,263],
including individual circadian clock features such as phase and amplitude, may both preserve
robust circadian rhythms and enhance benefits of physical activity for systemic and mental
health [197]. A study showed that similar to light or melatonin, phase response curves to
exercise and physical activity exist [264], assuming that scheduled timing of regular physical
activity may facilitate circadian phase correction. A high order of “fitness” or robustness
of circadian rhythms is generally linked to a younger age and a better health status [11,12].
Recent UK Biobank-based studies found that engaging in moderate physical activity can help
reduce the negative influence of both short and long sleep duration on the risk of all-cause
mortality and cardiovascular disease [265] and the effect of short sleep on the incidence of
type 2 diabetes [266].

The analysis of UK Biobank actigraphy data from 2324 atrial fibrillation patients
revealed that engaging in over 105 min of moderate-to-vigorous physical activity weekly
reduces the risks of heart failure and all-cause mortality [267]. Intense sporadic “lifestyle
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physical activity” was correlated with a reduced incidence of cancer risk, according to
a prospective cohort study analyzing 22,398 self-reported sedentary adults from the UK
Biobank accelerometry subsample [268]. Increased activity, even when concentrated within
1 to 2 days each week (“weekend-warrior” patterns), may be effective for improving
cardiovascular risk profiles [269].

Similarly, both regular and weekend warrior patterns of moderate physical activity,
above the 150 min per week recommended by the WHO, are associated with an equal
reduction in Parkinson’s disease risk [270]. Another study suggested a linear relation-
ship between physical activity and cardiovascular health, revealing that individuals with
higher levels of physical activity consistently exhibit a reduced risk of cardiovascular
disease, with the most substantial benefits observed in those who maintain the highest
intensity of activity [271]. A longitudinal analysis of 86,556 UK Biobank participants over
an average follow-up of 6 years demonstrated that greater overall physical activity and
increased daily step count were significantly linked to a reduced incidence of cancers [272].
In a study of 81,717 UK Biobank participants, it was observed that increased engage-
ment in physical activity correlated with reduced hospitalization risks for nine out of the
twenty-five most frequent hospitalization causes, with the most significant risk reductions
seen in gallbladder disease, diabetes, and urinary tract infections [273]. In a US cohort
study involving 7607 adults, an increased accumulation of light-intensity and moderate-to-
vigorous-intensity physical activities was found to be inversely associated with stroke risk,
whereas extended periods of sedentary behavior correlated with an elevated risk [274].

Our body’s circadian rhythms govern various physiological processes, including the
timing and intensity of physical activity. Disruptions to these rhythms, such as irregular
sleep patterns or inconsistent exercise schedules, can have a detrimental effect on mental
well-being. Vice versa, regular physical activity can contribute to improving mood, reduc-
ing stress, and enhancing cognitive functions [275–278]. Not only aspects of regularity and
intensity of exercise were effective to improve health and reduce risks of cardiovascular
and metabolic pathologies, but timing of exercise is also important [279–281]. Recently
accumulated evidence underlines the benefits of exercise scheduled according to the circa-
dian clock and chronotype, also aiding metabolic health [262]. Therefore, optimization of
regular circadian timing of physical exercise can be an effective way to manage symptoms
of anxiety, depression, and other mental health conditions.

Aligning physical activity with our body’s internal clock can help optimize perfor-
mance, recovery, and overall psychological well-being. Incorporating exercise into our daily
routine at consistent times can help regulate our circadian rhythms, leading to improved
sleep quality, increased energy levels, and improved mental clarity. By synchronizing
physical activity with our body’s natural rhythms, we can promote psychological resilience,
enhance brain function, and better cope with the demands of daily life. To date, person-
alized recommendations for timing exercise, while important, are usually overlooked. In
the case of blood pressure, an N-of-1 study showed that exercise in the evening—but not
in the morning—increased the 24 h amplitude. Since the participant had an excessive
24 h amplitude of blood pressure, the personalized recommendation was to exercise in the
morning, while for others, evening exercise could be beneficial in strengthening a weakened
circadian rhythm [281].

8.2. Light Hygiene and Chronobiotics

Circadian health improvement strategies can balance the timing and amount of mela-
tonin and daylight. Boosting circadian signals through exposure to daylight [37,282–286]
or administering melatonin during the nighttime [92,287,288] can strengthen the circadian
system. Personalization of dose and timing of melatonin administration can be most
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important for its effective supplementation. Evening low-dose melatonin lowered high
blood pressure in hypertensive patients [288] and intraocular pressure in patients with
glaucoma [92], with the greatest lowering effect achieved in the morning. Melatonin also
reduced glycosylated hemoglobin levels (HbA1c) and increased high-density lipoprotein-
cholesterol [97,289]. Melatonin can be more effective in combination with an enhanced
dynamic range of light exposure.

Improving the lighting conditions in the surroundings with adaptable lighting systems
positively influenced the mood and behavior of elderly individuals [287,290]. In agreement
with phase-response curves [291–293], morning/daytime light and evening/nocturnal mela-
tonin facilitate circadian phase advancements, preventing complex negative aspects of late
chronotypes [294–297]. The combination of light therapy with melatonin [298,299] or physical
activity [300] can be effective in neurodegenerative diseases, including glaucoma [92,154,155].
Light regularity may help to maintain sleep regularity, even in healthy young adults [301].

Timed physical activity may have greater circadian effects when it coincides with
daylight exposure [197], better circadian light hygiene per se may have metabolic
benefits [122]. At high latitudes, a larger amplitude and an earlier phase of light ex-
posure, mirrored by a greater amplitude and an earlier phase of melatonin and by an earlier
sleep phase, characterize seasons with a more comfortable circadian light hygiene. These
features are also associated with better proxies of metabolic health, even when there are no
differences in the patterns of physical activity [123]. Proper timing of intake of some other
substances with pronounced circadian effects, such as coffee, can also provide benefits for
metabolism and overall health: morning coffee consumption is strongly associated with
lower all-cause, cardiovascular, and cancer-specific mortality [302]. It can also enhance
the effects of timed exercise by boosting peak power, readiness for physical efforts, and
cognitive performance [303].

Overall, circadian health rescue or enhancement implies maintenance of due am-
plitude, phase alignment, and stability of the signals that govern overt bodily functions
(activity, temperature, heart rate, blood pressure, etc.), trackable by wearable devices.

8.3. Optimizing Weekly Schedules

The optimal time to exercise needs to be personalized not only in terms of daytime
but also on the weekly scale. Currently, there is a lack of agreement regarding the optimal
duration, intensity, timing, and frequency of weekly physical activity for health main-
tenance. For instance, inconsistencies exist between research findings. One study [269]
suggests that one to two weekly sessions of physical activity—termed “weekend warrior”
sessions—are adequate for reducing cardiovascular risk comparably to physical activity
that is more evenly distributed throughout the week. Other studies, however, conclude that
such infrequent activity does not achieve an equivalent reduction in the cardio-metabolic
index [304] or lipid accumulation products [305]. A potential explanation for the differing
results might be the age of the target population, databases consulted, endpoints used,
or the need for individualization. The UK study by Khurshid et al. [269] encompassed
individuals aged 40–69 years from the UK Biobank, whereas the research by Xue et al. [304]
focused on a distinct cohort from the US National Health and Nutrition Examination Survey
(NHANES). The latter study determined that the correlation between physical activity and
the cardio-metabolic index was more significant in subgroups aged below 45 or above 60.

An additional crucial detail when studying weekly patterns pertains to the infradian
rhythms of physical activity. Employing chronobiological and mathematical modeling
to analyze meticulously the distribution of intensity patterns across the 24 h span and
throughout the week could provide greater insight into this matter.
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9. Perspectives of Actigraphy-Compatible Wearable
Technologies/Next-Generation Comprehensive Monitoring Systems

The simultaneous tracking of different physiological variables provides a more com-
plete picture of an individual’s circadian health status. The ability to detect subtle changes
in physiological and neurological patterns could lead to earlier and more accurate diag-
noses of conditions like sleep disorders, depression, and neurodegenerative or metabolic
diseases. For research and diagnostic purposes, this integrated approach would require ef-
fective methods for combining data from different sources while maintaining data integrity,
advanced computational methods to analyze the complex data, ways to extract meaningful
patterns, and a strategy to rigorously test the results thus obtained and validate the clinical
relevance of the findings.

Focus on extra-circadian frequency domains: ultradian rhythms, or biological rhythms
with a period shorter than 24 h, can reflect various physiological and neurological functions.
Ultradian fluctuations in brain functions [47,306,307] are under-investigated, though a
promising area of research that can utilize ultradian fluctuations and their beat harmonics
to untangle complex interactions for a better understanding of biological processes and
diagnostics applications. Beat harmonics refer to the composite frequencies produced when
two or more ultradian rhythms interact, much like the overlapping waves in acoustics
that create a new rhythm or “beat”, providing deeper insights into the synchronization
of biological rhythms. Furthermore, in-sync vs. out-of-sync ultradian harmonics may
have different outputs, such as non-overlapping lower-frequency oscillations that can
be meaningful. The concept of using data from wearables to investigate extra-circadian
modulations is innovative and holds potential for advancing medical diagnostics. The
analysis of ECG data in specific frequency domains also offers insight into the functioning
of specific brain areas [308–312].

9.1. Functional Near-Infrared Spectroscopy (fNIRS) and Photoplethysmography (PPG)

For example, integrating variables obtained by photoplethysmography [313–318] or
functional near-infrared spectroscopy (fNIRS) [319,320] with next-generation wearables
may offer a comprehensive approach to monitoring and analyzing physiological and neu-
rological functions. fNIRS stands out as a hemodynamics method that offers significant
advantages [321], particularly in terms of its portability and greater motion tolerance, areas
where functional magnetic resonance imaging (fMRI) faces constraints [322]. Wearable
fNIRS could be applied to better understand time-specified windows of global vs. lo-
cal brain signal fluctuations and functional connectivity, as suggested by previous fMRI
studies [323,324].

9.2. Biochemical Analyses

Biochemical analyses are being developed and can be integrated into wearables in
the proximal future [20,325–331]. Sweat-based wearable-enabling technology was recently
proposed to track cortisol [332] and inflammation markers such as interleukin-1β and
C-reactive protein [326,327]. To advance the understanding of perspiration’s role in ther-
moregulation and its applied use for physiological monitoring, innovative microfluidic
patches with hierarchical superhydrophilic biosponges and integrated sensors should be
adopted for efficient, real-time sweat analysis during various activities and conditions [333].
Cutting-edge wearable technologies will have the capability to track the golden standard
circadian phase marker, melatonin, but also leptin and ghrelin [20].
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9.3. Improving Light Exposure Monitoring and Analytics

Melanopic equivalent daylight illuminance (mEDI) is a metric used to quantify the
effect of light on the melanopsin-containing intrinsically photosensitive retinal ganglion
cells (ipRGCs) in the human eye [181,334–337]. These cells have a peak sensitivity in the
shorter wavelength part of the visible spectrum and play an important role in regulating
circadian rhythms. Melanopic EDI measures the effectiveness of light in stimulating
these cells, relative to a standard daylight (D65) condition. It is a valuable measure for
understanding how different light sources affect our biological clock and other non-image-
forming (NIF) effects of light. To accurately determine the melanopic EDI, it is essential to
measure irradiance and the spectral distribution of a light source. This is of importance
because the color temperature of daylight fluctuates depending on the time of day, and
light sources found in various home environments and offices may have different spectral
compositions. Further advancements in actigraphy capable of measuring the spectral
distribution or directly the melanopic EDI are necessary for this purpose. Furthermore,
positioning wearable light loggers or dosimeters closer to the eyes, such as with the
lido [338], can refine the assessment of light exposure.

Understanding the user’s challenges of wearing light dosimeters is key to designing
devices that are more acceptable and supporting research into light exposure and its
effects on health and behavior. To improve the wearer’s experience and compliance, and
therefore data quality, the device should be designed to be unobtrusive. Devices should be
adapted to the needs of different patient populations and mounting/body location methods.
In addition, comprehensive user training and motivational incentives can improve the
compliance of the wearer. The implementation of these recommendations will improve the
quality of data collected by wearable light loggers. While most actigraph models cannot
measure melanopic EDI directly, some are equipped with RGB light sensors [40]. For an
overview of current wearable light loggers and their specifications, see [335]. Devices
like the ActTrust, for example, can also monitor light intensity in the ultraviolet A (UVA),
ultraviolet B (UVB), and infrared (IR) wavelength ranges.

While this feature has not been extensively explored yet, the ability to gather pre-
cise data on UV and IR light exposure in real time holds significant potential for various
health and therapeutic uses [339–341]. For instance, it could be instrumental in manag-
ing conditions such as autoimmune diseases, mood and metabolic disorders, as well as
addictions [342,343]. Scientifically valid information on UV exposure can also be collected
by commercially available wearables [344]. Clinical records underscore the role of circadian
rhythms in determining health results and guiding medical procedures, especially when
using data from electronic health records. Yet, due to the lack of uniformity in collec-
tion methods and equipment, harnessing electronic health records for chronomedicine
demands addressing built-in biases and data patterns unrelated to biology [345]. The
precision of light logging can be further enhanced by improving light sensors and ren-
dering their position closer to the eyes [338]. Improving their metrology [346] should
improve the assessment of physiological effects of natural light and human-centric light
technologies [347].

Many commercial light loggers lack transparency in critical technical aspects such
as sensor types and data processing methods. This opacity can lead to inaccuracies, un-
detected errors, or incomplete data sets, making it difficult to ensure the accuracy and
comparability of results between different devices. As a result, there is an urgent need
for a standardized methodology to collect and analyze data from wearable light loggers.
The project “Metrology for Wearable Light Loggers and Optical Radiation Dosimeters”
(22NRM05, MeLiDos) will develop the measurement and data analysis methods needed to
characterize and validate wearable light loggers. In addition, the JTC 20 (D6/D2) technical
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report on wearable alpha-optic dosimetry and light logging will provide a comprehensive
review of current practices in the scientific literature. Additional sensors incorporating
heart rate [348], oxygen saturation [349,350], and functional near-infrared spectroscopy
techniques fNIRS [351,352] may enhance the informative capacity of wearable technologies
for digital phenotyping in the near future. Despite their limited precision, commercially
available smartphone-compatible wearables are already used to evaluate sleep disorders,
cardio-metabolic, mental health, and well-being, but the lack of standardization is causing
marked disagreement between devices [86,353–357].

9.4. Perspectives

Currently, there is consensus on optimal duration of data sampling, inclusion of both
free days and working days, minimal sampling requirements, and allowed gaps within
samplings. However, there are no clear definitions of normal ranges and how such ranges
vary depending on methods of data analysis and critical environmental factors such as local
environmental light conditions. Reference standards should aid in the development of diag-
nostic criteria and treatment guidelines, notably for sleep-related conditions. They would
serve as benchmarks for assessing treatment efficacy and monitoring patient progress over
time. Overall, the development of reference standards for actigraphy-based indices would
enhance the utility of actigraphy in clinical practice and research, ultimately improving our
understanding of sleep and circadian rhythms and advancing personalized approaches to
healthcare. While deviations from normative values in actigraphy-related variables may
often lack specificity, they can nonetheless serve as a catalyst for initiating a comprehensive
series of tests. This approach aims to identify the underlying causes, facilitating an earlier
diagnosis in the disease progression, when treatment is more likely to be effective.

New sensor technologies, enabling the collection of big data sets, to be organized
in large repositories, integrated with artificial intelligence (AI), are expected to further
enhance the prediction of health hazards and upgrade the interpretation of circadian
health by wearables. Monitoring a broader range of health proxies with standardized
sampling requirements, empowered by sophisticated AI algorithms, will allow person-
alized chronodiagnosis and may encourage large-scale studies to explore the interplay
between genetic background, environmental factors, lifestyle factors, and circadian health
outcomes. This holistic approach should facilitate the development of targeted interven-
tions to optimize health and well-being in diverse populations, based on their distinct
genetic predispositions and specifics of environmental factors and lifestyle. As these tech-
nologies evolve, they are expected to offer truly personalized prevention and management
capabilities of circadian-related disorders.
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