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Abstract

Borehole heat exchangers (BHEs) are a cornerstone of shallow geothermal energy systems,
enabling efficient thermal exchange with the subsurface. However, in densely configured
BHE fields, uncontrolled heat extraction or injection can lead to thermal imbalances in the
ground, jeopardizing system performance and regulatory compliance. These issues are further
compounded by uncertainty in the characterization of subsurface properties, fluctuations in
predefined energy demand, imprecise description of the governing thermal processes, and
failure to account for their transient behavior. As a result, flexible planning tools and more
inclusive management strategies are needed to mitigate these issues in BHE fields.

To address these challenges, this doctoral dissertation introduces an integrated framework
that combines simulation, optimization, and uncertainty quantification methods to enhance
the thermal performance and sustainability of BHE fields throughout their operational lifetime.

The core of the presented work is the development of a flexible framework that com-
bines simulation and optimization methods to identify optimal load balancing plans among
BHEs. The development of the framework is initiated by accounting for uncertainties in
temperature predictions and uncertainty in energy demand. A sequential optimization strat-
egy that incorporates monthly temperature measurements enables adaptive load distribution
among BHEs, minimizing the maximum temperature changes throughout the entire opera-
tional lifetime of the BHE field. Case studies with two different field configurations—five and
26 BHEs—demonstrate the effectiveness of this approach, achieving reductions in thermal
anomalies of 2.9 K and 8.9 K, respectively, over 15 years of operation and highlighting its
potential for strategic load management.

To further address uncertainties in dynamic (hydro)geological conditions, an existing semi-
analytical modeling method (Moving Finite Line Source, MFLS) is modified to include tran-
sient groundwater velocity. Validated against numerical simulations under different groundwa-
ter flow fluctuation patterns and BHE configurations, the model shows a maximum mean abso-
lute error of 0.18 K over ten years of operation. When embedded in a calibration-optimization
framework, this method reduces temperature variations by 10 %, illustrating the advantages
of accounting for temporal variability and parameter estimation in more reliable energy man-
agement.

As the next step, this work extends the modeling of BHE systems from a deterministic to
a stochastic approach. A Bayesian inference framework is introduced to improve long-term
temperature predictions under complex subsurface settings, demonstrated in a case with three
layers, each having distinct material properties and groundwater velocities. The proposed
methodology employs an affine invariant ensemble sampler to estimate nine highly correlated
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Abstract

subsurface parameters and their associated uncertainties during the monitoring and operation
of the BHE field. Comparison with a numerical model, along with extensive statistical analysis
of the applied Markov Chain Monte Carlo-based sampler’s performance, demonstrates that
the proposed approach reduces prediction uncertainty by more than 90 % over a five-year
simulation horizon, when temperatures are measured and assimilated for 32 months using the
MFLS with anisotropy model. These advancements, through data assimilation techniques,
enhance the applicability of analytical models for reliability-based planning and decision-making
in BHE systems.

All the procedures developed in the presented study enable the integration of efficient
analytical modeling tools, dynamic optimization, and Bayesian learning to support the long-
term viability of closed-loop geothermal systems and promote dynamic planning in BHE system
operations. This study offers a more robust approach that minimizes extreme thermal changes
in the subsurface while flexibly addressing different sources of uncertainty. Future research
should focus on implementing the developed methodology using real measurements from BHE
fields in various (hydro)geological and operational settings.
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Zusammenfassung

Erdwärmesonden (EWS) sind ein zentraler Bestandteil oberflächennaher geothermischer Sys-
teme, die einen effizienten Wärmeaustausch mit dem Untergrund gewährleisten. In dicht
beieinanderliegenden EWS-Feldern kann jedoch eine unkontrollierte Wärmeentnahme oder -
einspeisung zu thermischen Ungleichgewichten im Boden führen, die sowohl die Systemleistung
beeinträchtigen als auch die Einhaltung von Vorschriften gefährden. Diese Herausforderun-
gen werden weiter verschärft durch Unsicherheiten in der Bestimmung der Untergrundbedin-
gungen, Schwankungen in dem prognostizierten Energiebedarf, ungenaue Modellierungen der
zugrunde liegenden thermischen Prozesse, sowie das Versäumnis, deren transienten Eigen-
schaften zu berücksichtigen. Infolgedessen sind flexible Planungsansätze und umfassendere
Managementstrategien notwendig, um diesen Herausforderungen in EWS-Feldern zu begeg-
nen. Aus diesem Grund wird in dieser Dissertation ein integrierter Ansatz vorgestellt, der Sim-
ulation, Optimierung und Unsicherheitsquantifizierung kombiniert, um die thermische Leistung
und Nachhaltigkeit von EWS-Feldern über ihre gesamte Betriebsdauer zu verbessern.

Der Kern dieser Arbeit liegt in der Entwicklung eines flexiblen Ansatzes, der Simulation
und Optimierung kombiniert, um die optimale Verteilung der Wärmeentnahme für die EWS
zu ermitteln. Die Entwicklung der Methodik basiert auf der Berücksichtigung von Unsicher-
heiten, sowohl in den Temperaturprognosen als auch in dem zu erwartenden Energiebedarf.
Eine sequenzielle Optimierungsstrategie, die monatliche Temperaturmessungen berücksichtigt,
ermöglicht eine adaptive Verteilung der Wärmeentnahme zwischen den EWS und minimiert
die maximalen Temperaturänderungen über die gesamte Betriebsdauer des EWS-Feldes. Fall-
studien mit zwei unterschiedlichen Feldkonfigurationen – fünf und 26 EWS – belegen die
Wirksamkeit dieses Ansatzes, indem sie eine Reduktion der thermischen Anomalien um 2,9 K
bzw. 8,9 K über eine Betriebsdauer von 15 Jahren erzielen und somit das Potenzial für ein
strategisches Wärmemanagement aufzeigen.

Um zusätzliche Unsicherheiten in transienten (hydro)geologischen Bedingungen zu berück-
sichtigen, wird eine bestehende semianalytische Modellierungsmethode (Moving Finite Line
Source, MFLS) angepasst, um instationäre Grundwasserflussraten zu integrieren. Durch
die Validierung mit numerischen Simulationen unter verschiedenen Szenarien von Grund-
wasserströmungsschwankungen und EWS-Konfigurationen erzielt das Modell einen Mittleren
absoluten Fehler von maximal 0,18 K über einen Zeitraum von zehn Betriebsjahren. Im
Rahmen eines Kalibrierungs- und Optimierungsprozesses verringert die Methodik die Tem-
peraturschwankungen um 10 % und verdeutlicht die Vorteile der Berücksichtigung zeitlicher
Schwankungen sowie der präzisen Parameterschätzung für eine zuverlässigere Energiemanage-
mentstrategie.
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Zusammenfassung

Im nächsten Schritt erweitert diese Arbeit die Modellierung von EWS-Systemen von einem
deterministischen auf einen stochastischen Ansatz. Ein Bayessches Inferenzverfahren wird
eingeführt, um langfristige Temperaturprognosen unter komplexen Untergrundbedingungen
zu optimieren. Dies wird anhand eines Fallbeispiels mit drei Schichten veranschaulicht, die
jeweils unterschiedliche Materialeigenschaften und Grundwasserströmungsgeschwindigkeiten
aufweisen. Die vorgestellte Methode verwendet einen Affine Invariant Ensemble Sampler zur
Schätzung von neun stark korrelierten Untergrundparametern und den damit verbundenen
Unsicherheiten während der Überwachung und des Betriebs des EWS-Feldes. Der Vergle-
ich mit einem numerischen Modell, sowie eine umfassende statistische Analyse der Leistung
des Markov-Chain-Monte-Carlo-basierten Samplers, zeigen, dass der vorgeschlagene Ansatz
die Vorhersageunsicherheit über einen fünfjährigen Simulationszeitraum um mehr als 90 %
reduziert, wenn Temperaturmessungen in das Modell integriert und über 32 Monate hinweg
mithilfe des MFLS mit Anisotropie Models assimiliert werden. Durch den Einsatz von Date-
nassimilationstechniken erweitern diese Fortschritte die Anwendbarkeit analytischer Modelle
und ermöglichen eine zuverlässigkeitsbasierte Planung sowie fundierte Entscheidungsfindung
in EWS-Systemen.

Alle in dieser Studie entwickelten Methoden ermöglichen die effiziente Integration ana-
lytischer Modellierungsverfahren, dynamischer Optimierung und Bayesschen Lernens, um die
langfristige Rentabilität geothermischer Systeme zu gewährleisten und die dynamische Pla-
nung des EWS-Betriebs zu unterstützen. Diese Studie bietet einen robusteren Ansatz, der
extreme thermische Veränderungen im Untergrund reduziert und gleichzeitig flexibel auf unter-
schiedliche Unsicherheitsquellen reagiert. Zukünftige Forschungen sollten sich darauf konzen-
trieren, die entwickelte Methodik unter Verwendung realer Messdaten aus EWS-Feldern in
unterschiedlichen (hydro)geologischen und betrieblichen Kontexten umzusetzen.
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xi





Acknowledgments

First and foremost, I would like to express my deepest appreciation to Peter Bayer for the
opportunity to work under his supervision over the past (almost) five years. My journey began
during the strict COVID-19 pandemic lockdown, a time when international travel was severely
restricted. Yet, I was fortunate to be one of the few able to take to the skies and make my
way to Germany, all with Peter’s unwavering support.
Over the years, Peter has been a constant source of motivation and encouragement. There
were many moments when I felt on the verge of giving up, as things were not progressing
as smoothly as I had hoped. However, Peter’s patience and steady-state optimism kept me
moving forward. I am deeply grateful for the flexible boundary conditions he provided, his
constant support, and the freedom he gave me to pursue my own research while helping me
grow as an independent researcher.

Next, I would like to thank my co-authors for their invaluable contributions to my research,
particularly Lisa Ringel and Christoph Bott, who generously took unlimited time to listen to
my problems and help me find solutions. Without their support, this work would not have
been possible.

A special thanks to Hannes Hemmerle for his insightful ideas and for sharing his creativity,
particularly in helping to improve some of the graphics in my work.
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1 Introduction

Ground source heat pump (GSHP) systems are currently the most widely used geothermal
technology worldwide (Figueira et al., 2024; Lund and Toth, 2021). The growth in the number
of GSHP systems, particularly over the past two decades, has been accompanied by extensive
research efforts to support reliable planning, design, and operation of these systems. A key
component of GSHP systems is the use of heat exchangers installed in the ground, enabling
the extraction or injection of heat (Cui et al., 2024). These ground heat exchangers operate
within narrow temperature ranges and supply energy to an aboveground heat pump, which
is connected to a building’s heating and/or cooling system. GSHP systems commonly use
borehole heat exchangers (BHEs), where a heat carrier fluid circulates through closed tubes
within boreholes. Depending on energy demands, these systems may use either a single BHE
or an array of BHEs arranged in borehole fields.

The ground offers a compelling energy source for several reasons. Geothermal energy is
widely available, and by drilling boreholes to depths ranging from tens to hundreds of meters,
substantial volumes of the ground can be accessed for various applications, such as heating and
cooling (Walch et al., 2022), energy storage (Shah et al., 2024), and integration with other
energy systems (Olabi et al., 2020). Compared to air-source heat pumps, the ground provides
much higher energy density and far less temperature variability for GSHP systems (Aprianti
et al., 2021; Violante et al., 2022). However, heat transport in the ground is generally slower,
primarily governed by conduction, and can be accompanied by coupled processes such as
advection due to groundwater flow (Abesser et al., 2023).

The slow thermal transport in the ground is a critical aspect for the long-term operation
of BHEs (Gebhardt et al., 2024). Over decades, imbalanced energy extraction or injection
leads to the gradual development of thermal anomalies—areas of altered ground temperature
that grow in size and intensity. These anomalies often result in a gradual decline in overall
system efficiency (Cai et al., 2022; Chen et al., 2021). Thermal regeneration of the ground is
similarly slow, with recovery times comparable to or even exceeding the operational lifespan
of the system (Hein et al., 2016).

To address these concerns, precautionary regulations restrict the extent of induced ground
temperature changes and the excessive spread of thermal anomalies in the subsurface (Haehn-
lein et al., 2010). These restrictions are not only aimed at addressing the long recovery times
but also at preserving soil and groundwater ecosystems (Blum et al., 2021; Soltani et al.,
2021). Hence, such measures help prevent conflicts between neighboring systems, ensuring
that adjacent installations do not extremely interfere with each other (Fasc̀ı, 2023; Hähn-
lein et al., 2013). Especially in Central European cities and cold climates, concerns about
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the thermal overuse of urban ground are increasing (Noethen et al., 2023a). As a result,
there is a rising demand for improved strategies to regulate and control shallow geothermal
development (Adebayo et al., 2024; Gheysari et al., 2021; Kirschstein et al., 2024).

1.1 Borehole heat exchanger (BHE)

BHEs are essential components in shallow geothermal energy systems, enabling efficient heat-
ing and cooling by harnessing the stable temperature of the subsurface. As part of GSHP
technology, these systems tap into the stored thermal energy in the subsurface. BHEs transfer
heat between the ground and a fluid that circulates in pipe loops. For closed-loop systems,
boreholes are drilled into the ground, and pipes are typically installed horizontally or vertically.
In the cold season, the fluid absorbs heat from the ground to warm a building, while in the
warm season, it can return heat to the ground to cool the building. Vertical BHEs are typi-
cally used in urban areas due to their ability to reach greater depths in the subsurface while
requiring less surface area. In terms of technical design, BHEs are commonly configured using
U-tube, double U-tube, or coaxial systems(Figure 1.1), each suited to different environmental
conditions and system requirements (Aresti et al., 2018). The U-tube BHE is the simplest
design, consisting of two pipes bent into a U-shape inside the borehole. One pipe carries the
fluid downward, while the other returns it to the surface. The double U-tube BHE design
features two U-shaped pipes placed close to each other within the borehole. This setup en-
hances the system’s thermal transfer capacity, making it more efficient in areas with lower
ground thermal conductivity. By allowing more fluid to circulate, it improves the system’s
overall thermal performance. The coaxial BHE design features a smaller pipe inside a larger
one, with the heat transfer fluid flowing through both pipes in opposite directions. The choice
of BHE design depends on factors such as the type of soil or rock, the depth of the boreholes,
the available surface area, and the building’s heat demand. The schematic depiction of the
various BHE configurations is shown in Figure 1.1, which is taken from (Rees, 2016).

Figure 1.1: Various configurations of borehole heat exchangers in vertical systems (Rees,
2016).
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1.2 Modeling of BHEs

A wide variety of models exist for simulating BHEs, and it is not feasible to present them in
detail within the scope of this thesis. Therefore, the focus will be on the models most relevant
to this work. Eskilson (1987) introduced the concept of g-functions, which are dimensionless
response functions for heat step impulses. These functions were initially determined through
simulations using radially symmetric two-dimensional numerical models. By superimposing
g-functions, the transient heat extraction/injection at a BHE can be simulated, and the bore-
hole wall temperature, depending on the heat extraction/injection per borehole length, can
be calculated. BHE fields can be characterized by g-functions derived for specific geometries
or by superimposing individual BHE g-functions. Planning software, such as the Earth En-
ergy Designer (EED), utilizes a library of various g-functions to determine the required BHE
properties and suggest the best choice from a set of available options. Over time, the num-
ber of g-functions and related computational methods has grown, incorporating additional
geometries and varying conditions.

Modeling techniques for BHEs generally fall into two main categories: numerical and an-
alytical methods. Numerical modeling platforms offer significant flexibility (Boockmeyer and
Bauer, 2016; Casasso and Sethi, 2014; Chen et al., 2022, 2020; Chwieduk, 2021; Gebhardt
et al., 2024; Harris et al., 2024; Häfner et al., 2015; Hein et al., 2016; Nguyen et al., 2017; Zhao
et al., 2023), though this comes at the cost of relatively high computational demands. The
computational expense, data requirements, and time needed to build and calibrate numerical
models limit their practical applicability.

To address these limitations, (semi-)analytical models, such as those based on g-functions
(Eskilson, 1987), offer a convenient way to approximate the thermal response of the subsur-
face using closed-form solutions (Cui et al., 2024; Li and Lai, 2015). Despite efforts to expand
their applicability—by incorporating multi-layer subsurfaces (Guo et al., 2023), accounting
for advective heat transfer due to groundwater flow (Erol and François, 2018; Molina-Giraldo
et al., 2011), addressing discontinuous and heterogeneous thermal loads (Coen et al., 2021),
considering land use and surface conditions (Guo et al., 2024; Rivera et al., 2015), BHE incli-
nation (Lazzarotto, 2016; Lazzarotto and Björk, 2016), and interference between neighboring
BHEs (Fasc̀ı et al., 2023)—many analytical models still rely on conceptual simplifications that
limit their accuracy and broader applicability in realistic settings.

While these models offer specific advantages, as mentioned above, they face challenges
in handling combinations of multiple complexities and often rely on simplistic assumptions.
For instance, line source solutions (Zeng et al., 2002) typically assume a constant extrac-
tion/injection rate along the borehole wall, which can vary across a BHE field. Although this
assumption is convenient, it simplifies the system and deviates from Eskilson’s original con-
ditions for g-functions. To address this, several researchers (Cimmino, 2015, 2016; Chiasson
and Elhashmi, 2017) have proposed adjustments to the specific extraction/injection rate per
borehole or segment to maintain a constant borehole wall temperature. Such adjustments
are particularly important for thermal interactions within borehole fields, as assuming a con-
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stant extraction/injection can lead to overestimations in Eskilson’s g-functions (Claesson and
Javed, 2011; Fasc̀ı et al., 2021), and consequently, the temperatures in the field. While these
assumptions can be practical in some scenarios, they are not entirely realistic (Cimmino, 2015).

Analytical models are favored thanks to their computational efficiency, but oversimplifica-
tions can limit their realism. A potential research direction for further investigation is to com-
bine data-driven approaches with existing efficient analytical models, rather than developing
entirely new models with different constraints or simplifications. This synergy should improve
model accuracy and applicability by relaxing simplifying assumptions, such as a constant heat
extraction rate, to better align with real-world conditions.

1.3 Uncertainty in BHE systems

Understanding the thermal processes in shallow ground is essential for further developing regu-
lations and planning subsurface energy use in urban areas, as well as for the optimal design and
operation of GSHP systems. To this end, computer-based simulation tools and model-based
planning are continuously advancing, enabling process-based predictions of ground tempera-
ture changes and geothermal system performance throughout their lifespan.

However, despite ongoing improvements in modeling techniques, the accuracy of these pre-
dictions depends not only on the conceptual maturity of the models but also on the accuracy
of the model parameters. Many of these parameters are linked to subsurface conditions,
which remain highly variable and difficult to measure directly. In-situ methods such as ther-
mal response tests (TRTs) (Gehlin, 2002), borehole drilling, and hydraulic testing (Lembcke
et al., 2016; Wagner et al., 2014) can provide useful data, but they cannot fully capture the
complexities and transient dynamic of the subsurface.

Current BHE design guidelines often assume a homogeneous ground medium, ignoring spa-
tial heterogeneity (e.g., VDI (2001)). While this simplification can be reasonable in cases
of moderate thermal and hydraulic variation, it becomes problematic when significant het-
erogeneity is present. In such cases, a complex pattern of overlapping thermal anomalies
can emerge (Noethen et al., 2023b,a), making accurate modeling difficult without detailed
knowledge of the subsurface—something that is unattainable. This uncertainty, referred to as
“descriptive uncertainty”, can be mitigated through field tests and site characterizations, but
these investigations are costly. As a result, safety factors are typically used, such as increasing
the required borehole length, which increases costs.

When average or expected ground properties are used for design, these values are often
uncertain or only applicable to the close vicinity of the measurement point, such as those
derived from TRTs. Moreover, uncertain ground properties are not the only challenge to the
successful operation of GSHP systems. Other sources of uncertainty, including rough predic-
tions of seasonal energy demand, temperature variability, and climate change, introduce a new
category of uncertainty, which we refer to as “predictive uncertainty.” This type of uncertainty
extends beyond site characterization or model parameter identification and calls for short-term
system integration to account for its impact on long-term performance (Koenigsdorff and van
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Treeck, 2006). These various sources of uncertainty, each with its own implications, call for
dynamic strategies. Modeling and optimization tools should be capable of accounting for
these uncertainties to ensure the long-term sustainability of the systems.

1.4 Optimization of BHEs

BHE field optimization is not commonly incorporated into the design tools used during the
planning and operational stages of shallow geothermal systems. Instead, the most common
approach involves selecting the best configuration—such as the geometric arrangement and
borehole depth—by choosing from a set of predefined options. In some cases, sensitivity
analyses are performed to identify optimal configurations (Casasso and Sethi, 2014). However,
this approach often fails to account for the complexities of thermal processes in the subsurface,
which are inherently slow and gradual. Uncontrolled energy extraction can disrupt this delicate
balance, resulting in irreversible and potentially critical thermal anomalies. In the short term,
such anomalies reduce the performance of heat pumps, and in the long term, their correction
becomes increasingly difficult, often leading to environmental and technical challenges that
could jeopardize the continued viability of the system (Cai et al., 2022; Chen et al., 2021).

To mitigate these risks, various optimization strategies have been developed to better dis-
tribute heating and cooling demands across individual BHEs within a field. Beck et al. (2010)
were pioneers in applying mathematical optimization to BHE fields, focusing on minimizing
temperature anomalies through load adjustments. Building on this work, Bayer et al. (2014)
proposed improving field performance by taking underperforming BHEs out of operation. Fur-
ther advancements were made by Hecht-Méndez et al. (2013), incorporating groundwater flow
(GWF) into a combined simulation-optimization framework. In several other studies (Cim-
mino and Bernier, 2014b; Egidi et al., 2023; Noel and Cimmino, 2022; Spitler et al., 2020),
optimization frameworks were expanded by mathematically optimizing parameters such as
spacing, placement, and borehole length for fields with fixed energy demands. However, these
efforts primarily focus on minimizing capital costs and achieving economic efficiency, often at
the expense of operational parameters. Moreover, they rely on static, deterministic models
that fail to consider the naturally variable and uncertain thermal states of the ground over
time, basing solutions on initial predictions alone.

Given the complexity of subsurface thermal evolution and associated uncertainties (Heim
et al., 2022), dynamic optimal control strategies provide a more practical solution for real-
world applications. These strategies use continuous simulations and real-time feedback to
adjust model inputs and optimize solutions (Javadi et al., 2019; Kümpel et al., 2022; Stoffel
et al., 2022, 2023). Although advanced control algorithms have been applied to geothermal
systems (Ma et al., 2020; Noye et al., 2022), the predictive models often oversimplify the
thermal dynamics, hindering accurate representation of subsurface behavior (Heim et al.,
2024a; Ikeda et al., 2017).

Therefore, further research is needed on simulation-based frameworks that leverage contin-
uous monitoring during BHE field operations and incorporate new insights as they emerge.
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These frameworks should be able to flexibly revise optimal operational plans and address model
uncertainties, enabling an adaptive optimal control strategy.

1.5 Bayesian inference for modeling BHEs

Modeling subsurface thermal processes requires input parameters, typically estimated through
TRTs (Gehlin, 2002; Spitler and Gehlin, 2015). Optimization methods are often used to es-
timate key thermal properties, focusing on a limited set of parameters (Dion et al., 2024a,b;
Puttige et al., 2020). However, in complex environments, multiple parameters are strongly cor-
related, making the search for optimal values less effective than understanding their statistical
dependencies.

Probabilistic methods, which rely on statistical inference from data, offer a better under-
standing of parameter distributions compared to traditional calibration methods. Therefore,
further exploration of Bayesian approaches potential in BHE field site characterization and
modeling.

Bayesian inference is a statistical method used to estimate parameters by updating prior
knowledge with measured data (Bolstad and Curran, 2016). It begins with an initial set of
assumptions, known as the prior distribution P (θ), and as new measurements d are made,
these assumptions are updated to form a posterior distribution p(θ|d). This update is made
using Bayes’ theorem, which is expressed as:

p(θ|d) = p(d|θ)p(θ)
p(d)

where p(θ) represents the prior distribution, which contains the initial assumptions or available
information about the parameters; p(d|θ) is the likelihood, or the probability of the data given
the parameters; and p(d) is the marginal likelihood, which normalizes the distribution. This
process combines prior knowledge with the likelihood of the measured data, indicating how
well the model parameters explain the measurements in real time. The result is a refined
estimate of the parameters that incorporates both prior knowledge and new data (Scheidt
et al., 2018).

While calibration techniques and Bayesian methods have primarily been used to analyze
the short-term characterizations of the BHE systems (Choi et al., 2022, 2018b,a; Menberg
et al., 2019; Pasquier and Marcotte, 2020; Pasquier et al., 2019; Shoji et al., 2023), their
potential as data assimilation tools for long-term BHE field simulations and optimal control
strategies remains insufficiently investigated. Given the subsurface’s inherent uncertainties,
ground properties and operational parameters should be treated as dynamic systems requiring
continuous monitoring and updated understanding (Shin et al., 2024). Bayesian inference,
specifically, enables probabilistic modeling of BHEs by accounting for a range of parameter
values, offering a reliability-based framework for operational decision-making. This approach
treats discrepancies between model predictions and actual measurements over time as an
inverse problem, allowing for continuous improvements in prediction reliability.
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1.6 Objectives and scope of this thesis

1.6.1 Main objectives

This cumulative doctoral thesis explores the potential for enhancing various components of a
combined simulation-optimization approach for the sustainable, long-term operation of fields
equipped with multiple BHEs, used for energy supply through shallow geothermal systems.

The first objective of this research is to investigate the feasibility of extending the simulation-
based optimization framework for load distribution among BHEs into dynamic routines. The
extended framework aims to move beyond static optimal solutions for load distribution pat-
terns, enabling dynamic control of individual BHE loads over time. By dynamic control, it
is meant that the framework should be capable of self-tuning as new information becomes
available or when the current thermal state of the subsurface deviates from predefined as-
sumptions.

The second objective is to evaluate the framework in scenarios where uncertainties can be
explained from a physics-based perspective, particularly in cases where heat transfer mecha-
nisms are influenced by transient hydrogeological conditions. Since these conditions may not
be easily predicted initially, dynamic revisions of the optimal load distribution patterns are
necessary. To further enhance the reliability of the simulations and the resulting optimal load
distributions, the integration of parameter estimation into the simulation-optimization process
should be explored.

The third objective is to explore the potential of Bayesian data assimilation methods to
enhance the applicability and predictive accuracy of analytical BHE modeling tools. This
approach should allow the modeling framework to identify and statistically analyze deviations
between temperature simulations and measurements, using these insights to adjust the model
parameters accordingly.

1.6.2 Scope and limitations

To define the scope and limitations, the key features of the BHE systems and case study
settings that will be examined in this dissertation are outlined as follows:

• The BHEs will be limited to closed-loop shallow systems, defined as those operating at
depths of no more than a few hundred meters.

• The BHEs will be vertical and operate in parallel, enabling individual control of each
BHE.

• Given the iterative nature of optimization routines, computational efficiency will be
essential for the integrated predictive model. Therefore, the presented work will utilize
computationally efficient line-source analytical models for temperature simulations.

• Temperature simulations will refer to temperature changes in the surrounding subsurface
of the BHEs at specified observation points.
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• The objective function of optimization procedures will aim to minimize thermal anoma-
lies in the subsurface, without directly optimizing GSHP operations.

• Application cases will consider the effects of subsurface heterogeneity, groundwater flow,
and fluctuations in expected energy demand. However, subsurface heterogeneities are
limited to layered structures.

• Simulation, optimization, and data integration will be performed monthly, but the
methodology will not be restricted to a specific time resolution.

• Although the procedures will be developed for various operation modes, all case studies
will focus solely on heating applications.

• Numerical models will be used to design case study setups and will be implemented
using COMSOL Multiphysics®. Additional implementations and visualizations will be
created using MATLAB and Python programming languages.
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2 Sequential optimization of BHE fields
under uncertainty

Abstract

Unmanaged heat extraction, as well as the adjacency of multiple BHEs in a field, can lead to
undesirable thermal conditions in the ground. The failure to properly control induced thermal
anomalies is perceived as a severe risk to closed-loop geothermal systems, as the detrimental
effects on the ground can substantially deteriorate performance or nullify the compatibility of
an operating system with regulatory mandates. This chapter presents a flexible framework for
the combined simulation-optimization of BHE fields during the entire lifespan. The proposed
method accounts for the uncertainties in subsurface characteristics and energy consumption in
order to minimize the temperature change caused by the heat extraction during the operation.
The descriptive uncertainty is introduced as a deviation of the monitored temperature from
the simulated temperature change, whereas the variation of the energy demand appears as
over- or under-consumption against the scheduled demand. The presented new sequential
procedure, by updating the thermal conditions of the ground with temperature measurements,
continuously executes the optimization during the operation period and enables the generation
of revised load distributions. In this chapter, two fields with five and 26 BHEs are considered to
demonstrate the performance of the proposed method. Sequential optimization outperforms
single-step optimization by providing the basis for more strategic load-balancing patterns and
yielding lower temperature anomalies of about 2.9 K and 8.9 K in each BHE configuration,
respectively, over 15 operational years.

2.1 Introduction

Environmental concerns, climate change, and global energy crisis are all among the reasons
that compel us to use renewable energy resources. In recent decades, shallow geothermal
energy has emerged as one of the potential resources to achieve this goal, especially for heating
and cooling purposes. Worldwide, geothermal resources provided approximately 108,000 MW
of thermal energy in 2019 for 88 countries, representing a growth of about 52 % compared
to 2014 (Lund and Toth, 2021; Lund and Boyd, 2016). Shallow geothermal energy as an
omnipresent resource can be accessed by means of drilling boreholes to a depth of a few tens
of meters to a couple of hundred meters in the ground. The boreholes equipped with tubes
are BHEs that circulate a heat carrier fluid connected with an aboveground heat pump to
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supply a given heating (or cooling) demand (Gil et al., 2020). The energy supplied by a BHE
for a given time can be termed as “load”.

Since the subsurface thermal processes are normally slow, unmanaged energy harvesting can
yield undesired local cooling, and in the worst case trigger thermal shocks that the ground
cannot fully dissipate. Imbalanced operation of multiple BHEs or disproportionate extraction
or injection can cause environmental and technical issues that may jeopardize the efficiency and
even the feasibility of operation. Exemplifying this issue, Chen et al. (2021) have assessed the
under-performance of a field of 56 BHEs in Leicester, UK, by comparing numerical simulation
with monitoring data. They found that the studied BHE field can be efficiently operated
for a maximum of 20 years under the designed scenario due to heat accumulation in the
central BHEs. In addition to a potential technical malfunction, long-term performance of
BHE systems can result in subsurface thermal anomalies that violate local environmental
regulations. In most countries with geothermal plants (Blum et al., 2021; Gil and Moreno,
2020; Haehnlein et al., 2010; Tsagarakis et al., 2020), there is a defined maximum threshold
for the tolerable induced temperature anomalies in the ground, which is the basis for the design
and operation of such systems.

To counteract the shortcomings in the performance of BHE fields and to mitigate the ther-
mal anomalies, accurate subsurface characterization and simulation of the long-term system
performance are needed. In order to properly design and operate BHE systems, it is crucial
to have a thorough knowledge of the thermal properties of the ground, such as thermal con-
ductivity and borehole resistivity (Erol and François, 2014; Heim et al., 2022; Hein et al.,
2016). The most straightforward approach in practice for obtaining these parameters is to
conduct in-situ measurements such as the TRT (Gehlin, 2002; Spitler and Gehlin, 2015).
Given that TRTs are local measurements over a short period of time before the start of oper-
ation, they only examine the in-situ conditions in the vicinity of a borehole and they cannot
resolve characteristic subsurface heterogeneities (Boban et al., 2020; Lee, 2011; Luo et al.,
2014; Pasquier et al., 2019; Raymond and Lamarche, 2013; Wagner et al., 2012; Zhang et al.,
2022). Aside from this, multiple further factors influence the performance of BHEs such as
groundwater flow (Antelmi et al., 2023; Previati and Crosta, 2024; Signorelli et al., 2007;
Zanchini et al., 2012), surface water bodies (Perego et al., 2022), ground-surface thermal
coupling (Bidarmaghz et al., 2016; Nguyen et al., 2017), seasonal variations and consumer
behavior (Yoshioka et al., 2022), and the type or the arrangement of BHEs (Zhang et al.,
2021). This limited predictability of the system’s performance over the operational lifespan
motivates the use of optimization and control techniques. The concept of individual load opti-
mization in a BHE field was introduced by Beck et al. (2010), and it was further developed to
also consider groundwater (Hecht-Méndez et al., 2013). Beck et al. (2013) suggested a pro-
cedure for optimal BHE positioning and allocation of loads, and this was modified to detect
the least effective BHEs and put them out of service (Bayer et al., 2014). Several alternative
solutions have been presented to optimize irregular BHE spacing and minimize their numbers
while fulfilling a given energy demand (Cimmino and Bernier, 2014b; Egidi et al., 2023; Noel
and Cimmino, 2022; Spitler et al., 2022, 2020). Notwithstanding, these optimization concepts
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Figure 2.1: Conceptual diagram of the sequential optimization.

do not take into account the dynamics of the ground and possible uncertainties that may arise
due to the interaction of multiple BHEs (Ma et al., 2020).

The general idea of optimal control techniques is to regularly monitor the ground during
operation to provide an automated mechanism that compares the model-based simulations
with the recorded data at specific time intervals (BniLam and Al-Khoury, 2020; Shoji et al.,
2023). Some studies have presented several optimum operating scenarios, but the derived
operational strategy is based on the comparison of a limited number of selected scenarios (Liu
et al., 2015; Yavuzturk and Spitler, 2000; Zhou et al., 2016). Available control methods
typically focus on applying dynamic programming, model predictive control, or artificial neural
networks, while the adopted BHE and subsurface simulation models are often simplified (Atam
et al., 2016; De Ridder et al., 2011; Gang et al., 2014). As pointed out by Ikeda et al. (2017),
one of the main concerns with optimal control strategies is that the developed methodologies
mostly fail to properly account for the thermal conditions and response of the ground.

The main motivation of this chapter is to enhance the flexibility of combined simulation-
optimization for computing the heating load patterns in order to efficiently prolong the oper-
ational life and simultaneously comply with regulatory requirements and environmental con-
cerns. Although this study only focuses on cases with heating applications, the proposed
framework is also applicable to cooling purposes. Our approach is to simultaneously monitor
the subsurface temperature evolution and actual energy demand at the particular time-steps
to be able to update the subsurface thermal conditions for optimization of load balancing in
an iterative framework. Hence, initial postulates and rough estimations are used to initialize
the operation in an optimal way. A schematic illustration of our methodology is shown in
Figure 2.1. In this chapter, we first present the governing equations for the simulation of the
temporal temperature change caused by multiple BHEs in a field. Thereafter, the objective
function and the relevant optimization constraints are defined. For demonstration of the new
proposed procedure, two theoretical case studies are developed, and in the next section, the
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maximum temperature changes in both fields are compared when single-step and sequential
optimization are applied. The results section proceeds with a comparative study on the op-
timal load distributions, and the capability of the new sequential optimization procedure to
deal with uncertainties in energy demand is evaluated.

2.2 Methodology

2.2.1 Simulation of a borehole heat exchanger field

The spatial and temporal temperature change induced by a single BHE can be approximated
by a finite line-source (FLS) model (Beck et al., 2013; Stauffer et al., 2013; Zeng et al., 2002):

∆T (q, ∆x, ∆y, ∆z, t) = q
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This assumes conduction in a homogeneous and isotropic subsurface medium with properties
that are independent of the temperature. In the equation, ∆T = T∞ − T refers to the
deviation from the ambient, unperturbed temperature distribution T∞. Since we are only
concerned with the evaluation of temperature change in this chapter and FLS assumes a
uniform and undisturbed temperature at t = 0 in the whole domain, the absolute value of T∞

is not relevant for our study, and exclusively the temperature change is attributed to operation.
L is the length of the borehole, λ is the thermal conductivity, α is the thermal diffusivity, and
r represents the horizontal distance to the borehole axis ∆x, ∆y, and the vertical axis of
a borehole (z − z′), such that r =

√
∆x2 + ∆y2 + (z − z′)2. q is the heat flow rate per

length of the borehole, which is a positive value in the case of heat extraction. If cooling is
intended to be taken into account, this is realized by heat injection rather than extraction and
is expressed by a negative sign.

The superposition principle can be applied to account for a set of boreholes k = 1, . . . , NBHE

at locations (xk, yk) and a temporal variation of the load as a series of l = 1, . . . , Nt load
pulses q =

(
q1,1, . . . , qNBHE,1, . . . , q1,Nt , . . . , qNBHE,Nt

)T
for each borehole (Abdelaziz et al.,

2014; Bernier et al., 2004; Cimmino et al., 2013; Cimmino and Bernier, 2014a; Eskilson, 1987;
Fasc̀ı et al., 2021; Lamarche, 2011; Lazzarotto, 2016; Lazzarotto and Björk, 2016; Marcotte
et al., 2010; Marcotte and Pasquier, 2008; Michopoulos and Kyriakis, 2009). This leads to
an estimation of the temperature change at any location relative to a borehole ∆xi, ∆yj at
time t

∆T(q, ∆xi, ∆yj , t) =
Nt∑
l=1

NBHE∑
k=1

qk,l ωk,l(∆xi, ∆yj , t) (2.2)
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with the response coefficient:
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)
dz′

+
∫ 0

−L

1
r

erfc
(

r√
4α(t − tl)

)
dz′
)

(2.3)

where t is the current time t ≥ tl (Beck et al., 2013). Due to the assumption of temperature-
independent parameters, the temperature distribution can be formulated as a linear problem

∆T(q, ∆xi, ∆yj , t) = ω(∆xi, ∆yj , t)q (2.4)

with ω =
(
ω1,1, . . . , ωNBHE,1, . . . , ω1,Nt , . . . , ωNBHE,Nt

)
. As initial condition,

∆T(q, ∆xi, ∆yj , t0) = 0 holds for t0 = 0.

2.2.2 Optimization objective

The optimization procedure we use here is adopted from the method that was proposed
by de Paly et al. (2012). The objective is to avoid local ground temperature decline in the
field by minimizing the maximum temperature change induced by all BHE operations. The
underlying rationale is that the ground heat exchange is optimal when “cold” BHEs are avoided,
and thus also the performance of the heat pump is indirectly optimized. In the mathematical
formulation this means identifying the position in the considered region ∆xi, ∆yj ∈ S where
the maximum temperature change occurs, and distributing the loads temporarily and spatially
such that the weighted sum of the maximum temperature change of the entire operation
period and the timestep-wise maximum temperature change is minimized:

arg min
(

w · max
(

(∆T (q, ∆xi, ∆yj , tNt)) +
Nt∑
l=1

max (∆T (q, ∆xi, ∆yj , tl))
))

(2.5)

subject to

El =
NBHE∑
k=1

qk,l, ∆xi, ∆yj ∈ S, ∀l = 1, . . . , Nt (2.6)

The first constraint ensures that the heat demand is met in each time-step and the latter
restricts the max-norm to the investigated region. Nt specifies the number of time segments l

and thus defines the time resolution, e.g., for computation of daily or monthly changing optimal
individual BHE loads. The first term in the objective function is of greater importance to us
since the primary concern is to minimize the temperature change for the entire time period
and not for individual time-steps. To make this superiority explicit, a weighting factor w is
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2 Sequential optimization of BHE fields under uncertainty

defined that grants a higher weight to the first term. w is fixed at 100 in this chapter. If the
entire operation time is discretized by l segments, and an optimal transient loading pattern is
derived based on the given initial conditions at t0 before the operation of the BHE field only,
then we define this procedure as “single-step optimization”.

2.2.3 Sequential optimization procedure

We investigate the potential to learn during BHE field operation. Most convenient is to re-run
the optimization after a period of operation and take the prevailing ground thermal state
as a new initial condition. In our application example, we study the case where the monthly
extracted heat demand deviates from the predicted one. Furthermore, we assume that the line-
source model is not exact due to simplifying assumptions on the ground thermal properties and
processes. The resulting deviations between simulated and observed real thermal conditions
in the ground are regularly inspected during the course of operation and the BHE loading
strategy is optimized again.

For this purpose, the previously defined objective function (Equation (2.5)) is reformulated
such that the optimization problem can be posed and solved as linear problems by applying
auxiliary virtual variables τ0 and τl:

min
(

w · τ0 +
Nt∑
l=1

τl

)
(2.7)

subject to the constraints:

∆T (q, ∆xi, ∆yj , tNt) − τ0e < 0,

−∆T (q, ∆xi, ∆yj , tNt) − τ0e < 0,

∆T (q, ∆xi, ∆yj , tl) − τle < 0,

−∆T (q, ∆xi, ∆yj , tl) − τle < 0,

El =
NBHE∑
k=1

qk,l, ∆xi, ∆yj ∈ S, ∀l = 1, . . . , Nt.

(2.8)

e denotes the vector of ones with NBHE entries. The optimization is repeated iteratively for
predefined time-steps tm (m = 1, . . . , Ntopt), which we call “sequential optimization”.

Based on the actual extracted energy and the measured ground temperatures at each time-
step, the real-time subsurface temperature change, ∆Tmeas(∆xi, ∆yj , tm−1), is determined,
which differs from the model-based simulations, ∆T(q, ∆xi, ∆yj , tm−1). This real tempera-
ture change of the BHE field is considered as the most accurate starting point for the recal-
culation of the optimal load patterns of the upcoming months. The measured temperature
is assumed to be a representative proxy for the current thermal response and conditions of
the ground. The final outcome of the sequential optimization at each time-step is a new load
allocation, q, for the individual boreholes in the remaining time-steps.
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2.2 Methodology

This sequential optimization is realized as a loop for m = 1, . . . , Ntopt :

min
(

w · τ0 +
Nt∑

l=m

τl

)
(2.9)

subject to the constraints:

∆T (q, ∆xi, ∆yj , tNt) − ∆T (q, ∆xi, ∆yj , tm−1) − τ0e < −∆Tmeas(q, ∆xi, ∆yj , tm−1),

−∆T (q, ∆xi, ∆yj , tNt) + ∆T (q, ∆xi, ∆yj , tm−1) − τ0e < ∆Tmeas(q, ∆xi, ∆yj , tm−1),

∆T (q, ∆xi, ∆yj , tl) − ∆T (q, ∆xi, ∆yj , tm−1) − τle < −∆Tmeas(q, ∆xi, ∆yj , tm−1),

−∆T (q, ∆xi, ∆yj , tl) + ∆T (q, ∆xi, ∆yj , tm−1) − τle < ∆Tmeas(q, ∆xi, ∆yj , tm−1),

El =
Nbhe∑
k=1

qk,l, ∆xi, ∆yj ∈ S, ∀l = m, . . . , Nt.

(2.10)
In this loop, the simulated temperature change from previous time-steps is iteratively replaced
with the actual measured temperature. For m = 1, the results of the sequential and single-
step optimization coincide. The flowchart of the proposed method is shown in Figure 2.2.

2.2.4 Parameter settings of case studies

Two hypothetical case studies with different configurations of the BHE field are defined. In
case study I, five BHEs, and in case study II, 26 BHEs are considered for layouts as shown in
a top view in Figure 2.3. The BHEs are located in a 35 m × 40 m and 50 m × 60 m area,
respectively, where their positions are denoted by circles. The spacing between the BHEs is
set to 5 m, which in practice may be sufficient to prevent strong thermal interference from
adjacent boreholes (Gultekin et al., 2016; VDI, 2001), but commonly long-term operation
yields superpositioning of the thermal effects of neighboring BHEs (Rivera et al., 2017). Only
conductive heat transfer to the BHEs is simulated based on Equation (2.1), respecting a given
time-dependent heat demand profile for an operating period of 15 years.

We account for inaccuracy in the models used to predict the ground temperatures of the two
cases. It is assumed that the thermal response of the boreholes, which are represented by filled
circles in Figure 2.3, are prone to deviations from the simulation. In both case studies, the
temperature change is calculated once before the start of operation using Equation (2.1) for
all time-steps and considered as a prior value. At each time-step, the simulated temperature
change is compared to the measured temperature (Equation (2.10)). To construct a virtual
reality that resembles the measured temperature, an uncertainty percentage is assumed at the
location of each borehole. Figure 2.3 shows the assumed distribution of the uncertainty rates
in both fields, and the structure of this variation can be attributed to local heterogeneity of
the subsurface.

In addition to that, the BHEs can be subject to further sources of uncertainty such as
the thermal impact of underground infrastructures like underground car parks (Noethen et al.,

19



2 Sequential optimization of BHE fields under uncertainty

Figure 2.2: Flowchart of the sequential optimization method.

2023b), clogged wells (Song et al., 2020), or interference with other subsurface thermal systems
such as other active BHE fields or aquifer thermal energy storage systems (Noethen et al.,
2023a). The mentioned examples have in common that their effect on the temperature
changes in the ground cannot be explicitly captured by the FLS model (Equation (2.1)).
Instead, this is reflected by incorporating measured temperature changes in the sequential
optimization (Equation (2.10)). In case studies I and II, the maximum uncertainty range
is up to 5 % and 7 %, respectively. These values that represent the descriptive uncertainty
rates are multiplied by the increase or decrease of temperature from the previous time-step,
∆TDU(∆xi, ∆yj , tm), and added to the simulated value, ∆Tsim(∆xi, ∆yj , tm), in order to
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2.2 Methodology

Figure 2.3: Geometric layout of numbered BHEs of (a) case study I and (b) case study II. The
numbers on the arrows in (b) indicate the index of the BHEs, from left to right,
in each row of the array. These numbers are used to refer to each individual BHE.

generate the true temperature change. The temperature change caused by the excess load,
∆Texcess, is the other source of temperature variation that has to be included in the measured
values. We can summarize the components of the measured temperature change by:

∆Tmeas(∆xi, ∆yj , tm) = ∆Tsim(∆xi, ∆yj , tm)

+ ∆TDU(∆xi, ∆yj , tm)

+ ∆Texcess(∆xi, ∆yj , tm) (2.11)

Both hypothetical BHE fields are located at a site where the ground consists mainly of clay
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2 Sequential optimization of BHE fields under uncertainty

Figure 2.4: Original monthly heat demand profile and the corresponding excess load for the
case with (a) 5 BHEs and (b) 26 BHEs.

and silt. The subsurface is considered homogeneous with negligible groundwater flow. The
values for the thermal properties are taken from the guidelines of the Association of German
Engineers (VDI, 2001), and the parameter specifications are listed in Table 2.1. Under the
assumption that each individual borehole is 100 m long, the heat extraction rate per length
is 24 Wm-1, and the annual operating time is 1,800 h (de Paly et al., 2012; VDI, 2001). The
total annual energy demands are 21.6 and 112.32 MWh for case studies I and II, respectively.
This total energy demand is non-uniformly distributed over 12 months of the year, based on
the assumption that the site is located in a country with Central European climate conditions
and there is no heating demand during the summer months (June, July, and August). Even
though the heating demand of consumers such as for space heating can be predicted, the true
demand often varies significantly depending in particular on consumer behavior and climate
variability. In order to account for this, our study considers a discrepancy between planned
and actual energy demand in each month, the so-called excess load as shown in Figure 2.4.
The optimal workloads in this chapter are always calculated based on the predefined heating

Table 2.1: Parameter specifications for case studies.
Parameter Value Unit
Length of borehole, L 100 m
Thermal conductivity, λ 1.7 W m−1 K−1

Thermal diffusivity, α 7 × 10-7 m2 s−1
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2.3 Results and discussion

demand. At the end of each month, the current optimal load pattern is then scaled relatively
to fulfill the surplus, or shortfall load. Subsequently, the temperature change resulting from
this over- or underload is calculated and applied as new knowledge in the next iteration of
optimization. Sequential optimization gradually considers the deviation in the extracted load.
Evidently, this cannot alter the past months, but it may be beneficial to modify the optimal
patterns in the remainder of the operational lifetime. Here, as default it is assumed that the
planned energy demand is always underestimated in comparison to the real demand.

Given the arrangement of the fields and the 180-month operation, this linear programming
optimization problem for case study I and II covers 1,261 and 5,041 decision variables, com-
posed of 900 loads, q, along with 361 virtual variables, and 4,680 loads, q, along with 361
virtual variables, respectively. Aside from this, the formulations include 4,861 and 23,761
constraints associated with the five and 26 BHEs, respectively.

In the next section, the optimal load allocation patterns proposed by both optimization
methods are assessed. The criterion for evaluating the efficiency of the optimization tech-
niques is the maximum of imposed thermal anomaly in the ground at the end of the operating
time by applying the proposed patterns. For both case studies, the distribution of subsurface
temperature changes at 50 m depth are calculated. The mid-depth temperature is chosen in
line with previous work (Bayer et al., 2014) and according to the suggestions by Zeng et al.
(2002) to consider this temperature as a representative value for applications. However, any
site-specific conditions or e.g. layered heterogeneity of ground properties may be accounted for
by alternative models (Erol and François, 2018). To compare the performance of single-step
and sequential optimization, we need to scale the proposed scenarios of single-step optimiza-
tion, which is only possible at the end of the operational time in order to have equal amounts
of extracted load. This means, the optimized BHE loads of the single-step optimization are
increased or decreased relatively to match the realized heat demand. This is based on the
assumption that the initially optimized relative load pattern is implemented, but depending
on the true heat demand the overall load may need to be adjusted.

The circle colors in Figure 2.3 indicate the assumed percentagewise deviation of the monthly
temperature change compared to the simulated values for the given month due to the subsur-
face descriptive heterogeneity. So, the darker the color of BHEs, the higher the uncertainty.

2.3 Results and discussion

2.3.1 Maximum temperature change profiles

In this section, the maximum temperature changes during the operating time are presented for
cases where single-step and sequential optimization procedures are applied. As demonstrated
for both configurations in Figure 2.5, the resulting subsurface temperature changes from
sequential optimization are significantly lower. The trend shows that in the first months of
operation, there is no noticeable difference between the two optimization methods, but in the
long run, the sequential outperforms the single-step method. There is an obvious benefit from

23



2 Sequential optimization of BHE fields under uncertainty

Figure 2.5: Maximum of temperature change at 50 m depth over 15 operational years by using
single-step and sequential optimization for (a) case study I and (b) case study II.

the adaptive strategy underlying the sequential framework, where the subsurface temperature
changes in the field are repeatedly measured during operation, and they are compared with
the expected values at the end of each month. At each time-step, the implemented deviation
between simulated and measured data implies that we were not able to optimize the system
perfectly in the last month, but we can react. Thus, there is an opportunity to avert cumulative
deviations in the upcoming months. By measuring the thermal state of the ground each month,
new initial thermal conditions can be used to revise the prediction of the model. This leads to
a new starting point for the optimizer and to potentially different optimal load distributions
for the remaining months. Figure 2.5 reveals that the optimal patterns from the sequential
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Figure 2.6: Temperature change evolution of each single borehole at 50 m depth in the (a, b)
five BHEs and (c, d) 26 BHE field using (a, c) single-step optimization and (b,
d) sequential optimization. The pictogram at the top left of each plot shows the
relative position of the BHEs in the field based on Figure 2.3

variant result in lower temperature anomalies of about 2.9 K and 8.9 K in case studies I and
II, respectively, over 15 years of operation. This means that the proposed approach leads
to 27 % lower temperature changes in the case of five BHEs and 34 % lower temperature
changes in the case of 26 BHEs compared to the single-step optimization at the end of the 15
years of operation. In Figure 2.5, only the maximum temperature change of the BHE fields
over time is shown. Note that this is the criterion of the objective function (Equation (2.5)).
However, for a more detailed insight into which BHE induces the maximum temperature
change, Figure 2.6 presents the temperature change evolution of each BHE individually for case
studies I and II. Obviously, in case study I the underestimation of the thermal effect of BHEs
#1 and #4 (in accordance with Figure 2.3a) is critical for the solution obtained by single-step
optimization. Together with the uncertainties in the heating demand, the single-step solution
does not react to deviations and there is an increasing local cooling at these boreholes in
Figure 2.6a. Figure 2.6b demonstrates that the general characteristics and seasonal dynamics
of the temperature variations for all BHEs are in a similar range in the sequential framework.
In contrast, the optimizer responds properly and mitigates the local cooling effects at #1 and
#4. This is compensated by higher loads for the other BHEs. Interestingly,the critical BHEs
in the sequential optimization result (Figure 2.6b) are other BHEs, the central BHEs BHEs
#2, #3, and #5. This indicates that these BHEs have strongest interference with neighboring
ones.

25



2 Sequential optimization of BHE fields under uncertainty

In a similar manner, the maximum temperature change in each borehole for case study II is
calculated. For a better visual comparison in this dense case, only the imposed temperature
change by critical BHEs are shown in different colors and the remaining BHEs with similar
temperature change trend are not distinguished. Figure 2.6c shows that neglect of subsurface
heterogeneity at the position of BHE BHE #7 and not considering the actual extracted energy
again is unfavorable. A maximum temperature change in around seven years by single-step
optimization is of the same order of magnitude as the maximum temperature change caused
by sequential optimization in 15 years (Figure 2.6d). Figure 2.6 confirms that sequential opti-
mization tends to result in a more uniform temperature change across the entire field, thereby
compensating for the uncertainties in the prediction of the induced temperature changes and
heating demand. In the case of five BHEs for the single-step optimization, the BHEs expe-
rience a temperature change in the range of about 6.2 K to 10.5 K, while in the sequential
optimization, the temperature change for all BHEs is approximately 7.5 K at the end of 15
years. In the case of 26 BHEs, single-step optimization leads to temperature changes be-
tween 15.6 K to 25.5 K, whereas the sequential optimization patterns restrict the temperature
change for all BHEs to a tight range of about 17 K after 15 years.

2.3.2 Optimal load patterns

In this part, we present the distribution patterns of the optimal loads over the operating
period resulting from the single-step as well as the sequential optimization for both case
studies. The optimal load patterns of four time-steps are shown exemplarily in Figure 2.7 as
a visual comparison of the load assignments by two methods. The single-step and sequential
optimization propose an identical initial load distribution for both case studies, but over time
they diverge from each other. In order to compare the different patterns, the values of the
allocated loads on each individual borehole are divided by their length (100 m, Table 2.1) to
derive a specific heat extraction rate, q. To simplify visual inspection, the intensity of the color
and the size of the circles at the positions of the BHEs indicate the scale of load allocation
to each particular BHE.

In an operating field with a similar configuration as case study I, if the thermal properties of
the ground were fully known and there were no uncertainties, BHE #2 would be more likely
to yield a more pronounced temperature anomaly in the subsurface than the others while this
BHE is surrounded by the other BHEs that are actively operating. In the automatic optimal
design of this field with the objective of minimizing the temperature change in the ground,
the algorithm tends to reduce the assigned load on BHE #2 and distribute the excess load
fairly evenly among the other BHEs. Figure 2.7a shows that the single-step algorithm adopts
a similar strategy in case study I. In contrast, the sequential algorithm recognizes that previous
model predictions do not match the truth. Therefore, the algorithm learns and automatically
modifies the previously proposed scenarios for upcoming months (Figure 2.7b). It prevents
local cooling by reducing the load of the BHEs where strong thermal anomalies have been
created. It reduces the heat extraction of the poorly performing BHEs #1 and #4, and rather
accentuates the role of other BHEs. This demonstrates that an underestimated temperature
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Figure 2.7: The resulting optimal load patterns at some selected operating intervals that are
obtained for case study I by using (row a) single-step optimization, (row b) sequen-
tial optimization and for case study II by using (row c) single-step optimization and
(row d) sequential optimization. The darker the color and the larger the BHEs,
the higher the heat extraction rate.

change of 5 % compared to the prediction by the analytical model each month already causes
bad performance during long-term operation. Figure 2.7c shows that the single-step algorithm
attempts to minimize the temperature change following the reasonable strategy of assigning
the loads to the fringe of the field rather than to the inner part. As soon as the system is
confronted with unexpected thermal behavior in these outer boreholes, this strategy no longer
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works. For example, BHE #7, which is located on the edge of the field, is susceptible to a
higher level of uncertainty. Similar to case study I, the single-step optimization will not be
informed of the gradual thermal evolution of the ground and thus causes a relatively strong
local cooling here. This is avoided by the sequential procedure (Figure 2.7d).

As the heat in the case examples of this chapter is transferred through conduction, the
strongest thermal anomalies occur in the vicinity of the BHEs. Therefore, the uniformity
of the thermal field is inversely proportional to the maximum temperature change. This is
exemplified in the study by de Paly et al. (2012). Since the sequential optimization outperforms
the single-step variant, it can be conceptually proven that the temperature field is much more
uniform with sequential optimization.

2.3.3 Sensitivity analysis on the variability of heating demand

In the previous sections, the optimization procedure is applied assuming that the uncertainty
in the heat demand is only due to an underestimation of the heat demand profile. Thus,
as shown in Figure 2.4, this means that we were dealing only with excess heating loads.
To further evaluate the general applicability of the proposed approach, the performance of
sequential optimization under various uncertainty patterns of heat demand is tested. For this
purpose, a stochastic study case is defined where the heat demand in each month can be
overestimated, underestimated, or experience no uncertainty. We consider the configuration
of the BHEs in case study I to conduct this analysis. In order to investigate the sensitivity of
the proposed optimization method to varying loads, 10,000 samples are drawn from a normal
distribution, ∼ N(0, 1). Each random sample provides a unique and new energy demand
profile for the entire year that spans a differing range of uncertainty levels for each month.
The optimizations, both the single-step and the sequential variants, are performed under the
assumption that each random sample is a new heat demand that needs to be met. Error bars in
Figure 2.8 show that the range of uncertainty in heat demand can vary from -50 % to +100 %
of the initially planned profile (red bars). While all other scenario settings remain unchanged,
each of these random samples is treated as an independent and unique energy demand profile
for the optimization. Then, the maximum temperature change of each optimized sample is
calculated over 15 operational years. A 95 % confidence interval in addition to the mean of
all induced temperature changes by both optimization methods is shown in Figure 2.9.

Figure 2.9 shows even with this mixed combination of uncertainties in heat demand, the
sequential method outperforms the single-step optimization by imposing on average a smaller
maximum temperature change of about 2.7 K in the subsurface. This analysis guarantees
that the proposed method is not tied to any particular mode or range of heating demand
uncertainty. In addition, it can be stated that the seasonality of the temperature change
dynamic can be captured by the proposed method in different ranges of the heat demand
variations.
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Figure 2.8: Original heat demand profile with the corresponding uncertainty range.

Figure 2.9: Maximum temperature change at 50 m depth considering 10,000 distinct series
of uncertainty in heating demand profile by using (a) single-step optimization (b)
sequential optimization for case study I.
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2.4 Conclusions and outlook

Our presented work builds upon existing concepts of individual load optimization of BHEs
operated together in a field. The novelty is that observations during operation are utilized to
restart load optimization. This sequential concept revises the operational mode to avoid local
cooling in a field. This straightforward procedure is implemented to account for deficiencies in
describing ground thermal processes. We introduced the compound effect of any influencing
factors that cause inaccuracy in the performance prediction in the form of a BHE-specific tem-
perature change uncertainty level. In addition to ground-related uncertainties, the implication
of energy demand variability on the evolution of thermal conditions is considered.

The results of two case studies reveal that the flexibility of sequential optimization in acquir-
ing new information and possibility of load pattern modifications is beneficial. The allocated
load patterns proposed by sequential optimization lead to lower temperature anomalies of
2.9 K and 8.9 K for fields with five and 26 BHEs, respectively, over 15 years of operation,
compared to single-step optimization. The flexibility of our approach is in favor of extending
the sustainable life of the system and alleviating negative environmental impacts by post-
poning the occurrence of the permissible maximum temperature change. In detail, the role
of underestimation and overestimation of heating demand on the deterioration of optimized
patterns is investigated. The advantage of the sequential optimization is demonstrated by the
case studies with underestimated demand, and generally for fluctuations in heating demand
in the range of -50 % and up to +100 % of the planned loads in a stochastic framework. As a
next step, it is also recommended to further develop the current methodology to a procedure
that not only updates the thermal conditions as a modified initial point for re-optimization,
but also revises model settings in order to reduce the prediction uncertainty during the course
of operation. Furthermore, it is suggested that in addition to optimizing the heat load distri-
bution, the efficiency of the GSHP could also be included in the objective function to achieve
a more inclusive optimization framework for the entire system.
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3 Adaptive management of BHE fields
considering transient groundwater flow

Abstract

Uncontrolled heat extraction by multiple interacting BHEs in high-density energy-use districts
can lead to undesirable thermal conditions in the subsurface which can affect both system
performance and regulatory compliance. The difficulty in controlling heat extraction arises in
particular from predictive uncertainties, such as when forecasting trends in energy demand or
groundwater flow. In this chapter, a combined simulation-calibration-optimization framework
is introduced to consider BHE fields with the presence of a transient groundwater flow regime.
In the first part, a semi-analytical modeling technique is proposed based on temporal super-
positioning of variable flow conditions. Two synthetic case studies verify its accuracy under
different groundwater fluctuation patterns. The mean absolute error of the proposed model in
comparison to numerical calculation does not exceed 0.18 K over ten years of operation. In the
second part, the model is augmented by a parameter estimation algorithm that is employed for
continuous model updating. The benefit of resolving transient flow conditions is demonstrated
by using this approach for monthly optimization of individual BHE heat extraction. The result
of dynamic optimization compared to a synthetic case without calibration shows a 10 % lower
imposed temperature change in the subsurface.

3.1 Introduction

In recent decades, shallow geothermal systems have arisen as a promising solution for meeting
energy needs in the heating and cooling of buildings (Benz et al., 2022). Interest in these
systems is driven by the pursuit of an energy transition and the impetus to reduce carbon
emissions. Due to the relatively constant temperatures of the ground, sustainable heating
and cooling is achieved by extracting and injecting heat through a heat carrier fluid within
BHEs coupled with GSHP (Stauffer et al., 2013). Even though BHEs are the cornerstone of
shallow geothermal systems, their optimal performance depends on various factors, including
the often overlooked dynamic hydrogeological conditions of the subsurface. Beyond consid-
ering engineering and mechanical aspects, a detailed insight into the thermal properties of
the subsurface is crucial for the reliable design of these systems. To this end, TRTs are the
standard procedure to thermally characterize the subsurface that is the target for installation
of single or multiple BHE fields. Here, a controlled thermal load is imposed and the subse-
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quent temperature response of the subsurface is measured (Gehlin, 2002; Spitler and Gehlin,
2015). The main limitation of TRTs is their short-term nature and they are mainly carried out
during the design phase. While TRTs provide valuable initial characteristics of a field including
GWF effects, they cannot capture the long-term transient behavior of the subsurface thermal
regime. This is due to dynamic factors and uncertainties such as seasonal variations (Yoshioka
et al., 2022), long-term climatic changes (Noethen et al., 2023a), heterogeneity (Heim et al.,
2022; Lee, 2011; Robert et al., 2022; Wagner et al., 2012; Zhang et al., 2022),and transient
hydrogeological conditions of the subsurface (Luo et al., 2018), which can profoundly affect
the performance of operating BHE fields in practice (Albers et al., 2024; Zhang et al., 2023a).

The role of hydrogeological conditions in a field with operating BHEs has been examined in
various studies as they affect the governing heat transfer mechanism in the subsurface (Banks,
2015; Zhao et al., 2022). For example, Ma et al. (2021), in a system of BHEs coupled with
pumping-injection well, investigated the role of groundwater-forced seepage on the thermal
performance of BHEs. The impact of tidal-induced GWF on the heat exchange rate of a
BHE was evaluated by Moreira et al. (2022). He et al. (2024), by creating a numerical model
in combination with a physical sandbox experiment, studied various BHE configurations to
optimize the operation in the presence of GWF. Deng et al. (2024) investigated the consid-
eration of thermal imbalance in BHEs during operating periods in areas with strong seasonal
groundwater fluctuations. The underlying rationale was that the accumulated heat can be
balanced by the use of groundwater heat in the other seasons, thus achieving a year-round
thermal balance. In a laboratory seepage box supported by a numerical model, Li et al. (2020)
attempted to determine the role of GWF on the heat exchange of a BHE in a layered geological
setting with saturated and unsaturated zones.

Most studies focused on investigating the role of GWF in the performance of BHEs. This
emphasis stems from the constraints imposed by economic considerations and legislation,
as significant changes in subsurface thermal conditions of groundwater bodies are often re-
stricted (Blum et al., 2021; VDI, 2001). As the thermal processes in the subsurface are gen-
erally gradual and slow, uncontrolled energy extraction can lead to irreversible and potentially
critical thermal anomalies. Short-term thermal imbalances directly affect the performance of
heat pumps, while rectifying these anomalies in the long term poses a significant hurdle and
can lead to environmental and technical complications that may call into question the feasibil-
ity of continued operation. As a remedy, various optimization methods have been developed
to systemically distribute the heating/cooling demand among individual BHEs in a field. Beck
et al. (2010, 2013) pioneered mathematical optimization of BHE fields, aiming to minimize
temperature anomalies by tuning individual loads, thus addressing both ecological and eco-
nomic concerns. Bayer et al. (2014) followed the same optimization concept and suggested
identifying inefficient BHEs and decommissioning them to enhance the overall performance
of the field. In further work, Hecht-Méndez et al. (2013) integrated GWF into the combined
simulation-optimization framework. Aside from these earlier works, multiple efforts were un-
dertaken to mathematically fine-tune the spacing, placement, length, and number of BHEs
in fields with fixed energy demand Cimmino and Bernier (2014b); Egidi et al. (2023); Noel
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and Cimmino (2022); Spitler et al. (2022, 2020). However, these optimization procedures
primarily target minimizing capital costs and achieving economic efficiency by optimizing the
design parameters and not the operational parameters. These procedures rely entirely on de-
terministic models in a commonly static manner. Static means that the modeling tool does
not take into account naturally variable or uncertain future thermal states of the ground and
optimal solutions are fully based on the initial prediction. However, the thermal evolution in
the subsurface for several decades, given the wide array of complexities in the ground, and the
ramifications of initial uncertainties, can hardly be predicted.

To increase the applicability of optimization algorithms for real world cases, it is advanta-
geous to use dynamic optimal control strategies. The underlying idea of most optimal control
strategies is centered on model simulation and retrieving feedback from the real system in a
given time horizon (Heim et al., 2024a; Javadi et al., 2019). In these algorithms, by moni-
toring measurements and using the deviation between the measurements and the simulations,
the model input parameters are adjusted and consequently, new optimized parameters are
provided (Kümpel et al., 2022; Stoffel et al., 2022, 2023). Although advanced control al-
gorithms have been employed for geothermal systems (Atam et al., 2016; De Ridder et al.,
2011; Gang et al., 2014), the applied predictive models are highly simplified and typically
cannot accurately reproduce the thermal dynamics of the subsurface (Ikeda et al., 2017). For
instance, Soltan Mohammadi et al. (2023, 2024a) extended the optimization of load balancing
in a BHE field in a sequential fashion to account for subsurface and energy demand uncer-
tainties. However, advective heat transfer was not considered, the model parameters were not
calibrated, and the uncertainty in the subsurface thermal response was not addressed from a
physics-based perspective.

To make this approach more robust, the novel strategy in this work is to revisit the opti-
mization process systematically at a certain frequency, and to update the proposals for the
next months’ load patterns by calibrating the model parameter based on the measured thermal
history of the field. However, the frequency of model calibration can differ from the temporal
resolution of the optimal load proposals. In this chapter, the learning potential of iterative
simulation-optimization for management of a BHE field with transient hydrogeological con-
ditions during the operation is investigated. The general proposed approach is to reperform
the optimization after a certain period of operation, here on a monthly basis, and to take the
measured thermal state of the ground as the new initial condition for the simulation of the
upcoming months. By sequentially minimizing the maximum temperature variations arising
from the operation of the BHEs, it is intended to impede local decline of the underground
temperatures. The key idea is to mitigate extreme cooling by switching the allocated energy
demand from the most critical BHEs to the ones that are theoretically less prone to local
cool-downs based on the simulated results of a predictive model.

For testing and demonstration, we investigate scenarios in which the subsurface thermal
conditions change due to the natural dynamics of GWF. For this, in Section 3.2.1 the moving
finite line source (MFLS) is formulated to include transient GWF conditions. All details about
the integration of this model in a sequential optimization-calibration process are described in
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Section 3.2.2. The configuration of the BHEs, the model parameters, and the groundwater
fluctuation patterns in different scenarios are presented in Section 3.2.3. In Sections 3.3.1 and
3.3.2, numerical models are developed and employed to verify the accuracy of the proposed
formulation of the analytical model for a single BHE and a BHE field, respectively. The results
of optimized load patterns for the BHE field and the calibration are presented in Section 3.3.3.
Section 3.4 concludes the current work with an outlook on future studies.

3.2 Methodology

3.2.1 Simulation of a borehole heat exchanger field

The spatial and temporal evolution of the temperature distribution in the subsurface due to
the operation of a BHE system in an aquifer can be estimated by a semi-analytical solution,
the so-called MFLS model (Molina-Giraldo et al., 2011; Zeng et al., 2002):

∆T (q, x, y, z, t) = q

2πλ
exp

(
νT x

2α

)(∫ L

0

1
4r

(
exp

(−νT r

2α

)
erfc

(
r − νT t

2
√

αt

)

+ exp
(

νT r

2α

)
erfc

(
r + νT t

2
√

αt

))
dz′

−
∫ 0

−L

1
4r

(
exp

(−νT r

2α

)
erfc

(
r − νT t

2
√

αt

)

+ exp
(

νT r

2α

)
erfc

(
r + νT t

2
√

αt

))
dz′
)

. (3.1)

This assumes that heat is distributed through both conduction and advection via GWF in a
homogeneous subsurface with an isotropic thermal conductivity. The properties of the porous
media do not depend on the temperature. Further assumptions are that the subsurface is
initially at thermal equilibrium conditions, that the surface temperature is constant, and that
the heat is extracted at a constant rate over the BHE length.

In Equation (3.1), ∆T = T∞ − T refers to the temperature change with respect to the
undisturbed temperature T∞. L denotes the borehole length, λ is the thermal conductivity,
α is the thermal diffusivity, and r signifies the horizontal distance to the BHE axis (∆x, ∆y)
and the vertical axis of a borehole (z − z′), calculated as r =

√
∆x2 + ∆y2 + (z − z′)2. It

is important to emphasize that the MFLS solution provides temperature at specific distances
and depths, denoted by r and z, respectively, and should not be regarded as a fully resolved
3D solution. q stands for the heat injection/extraction per length of the BHE, with a positive
value indicating heat extraction. u is the specific discharge, va is the seepage velocity, and νT

is the effective heat transport velocity determined by the following equations:

vhcs = csρs (3.2)

vhcw = cwρw (3.3)
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vhcm = (1 − n) × vhcs + n × vhcw (3.4)

va = u/n (3.5)

νT = vα × n × vhcw/vhcm (3.6)

The superposition principle can be applied to account for a set of boreholes k = 1, . . . , NBHE

at locations (xk, yk), a temporal variation of the load as a series of l = 1, . . . , Nt load pulses
q = (q1,1, . . . , qNBHE,1, . . . , q1,Nt , . . . , qNBHE,Nt)

T for each borehole and each time-step, and
a velocity νT,l that changes in each time-step l (Beck et al., 2010; Hecht-Méndez et al.,
2013). This results in determining the temperature variation at any given location relative to
a borehole, denoted as xi, yj , and at a specific time t:

∆T(q, xi, yj , z, t) =
Nt∑
l=1

NBHE∑
k=1

qk,l ωk,l(xi, yj , z, t), (3.7)

with the response coefficient ωk,l(xi, yj , z, t, νT,l) defined as:
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In Equations (3.7) and (3.8), the time-steps are calculated as ∆tl−1 = t−tl−1 and ∆tl = t−tl,
where t is the current time, t ≥ tl (Bayer et al., 2014; Beck et al., 2010, 2013; de Paly et al.,
2012; Erol and François, 2018; Erol et al., 2015). Due to the assumption of temperature-
independent parameters, the temperature distribution can be formulated as a linear problem
according to:

∆T(q, xi, yj , t, νT,l) = ω(xi, yj , t, νT,l)q (3.9)
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with ω = (ω1,1, . . . , ωNBHE,1, . . . , ω1,Nt , . . . , ωNBHE,Nt). As an initial condition,
∆T(q, xi, yj , t0) = 0 holds for t0 = 0.
Due to the simplifying assumptions of MFLS, the absolute temperatures simulated by this
model may not fully represent the exact thermal conditions in the subsurface (Fossa, 2011).
However, it can approximate the relative thermal states around BHEs accurately (Pasquier
and Lamarche, 2022; Zhao et al., 2022). Since the proposed optimization approach does not
depend on absolute temperature simulations, MFLS is used as a fast proxy to estimate the
effects of groundwater flow in a field with multiple active BHEs. This allows for assessing the
contribution of each BHE in providing the heating/cooling demands in an iterative optimization
framework.

3.2.2 Optimization-calibration procedure

The underlying optimization strategy is derived from the approach originally developed by
de Paly et al. (2012). Mathematically, the proposed approach involves determining the position
of the BHE within a field domain xi, yj ∈ S at which the highest temperature change occurs.
Based on this, it reallocates the loads temporally and spatially to the other available BHEs in
order to minimize the weighted sum of the maximum temperature changes over the operating
time and the individual time-steps:

arg min
(

w · max (∆T(q, xi, yj , tNt)) +
Nt∑
l=1

max (∆T(q, xi, yj , tl))
)

, (3.10)

subject to the constraints

El =
NBHE∑
k=1

qk,l, ∀xi, yj ∈ S, l = 1, . . . , Nt (3.11)

Within the optimization framework, this constraint serves as an essential criterion, ensuring
the consistent fulfillment of energy demands across all time-steps. In Equation (3.10), priority
is given to the primary term to minimize temperature variance across the entire temporal
spectrum by applying a weighting factor of w = 100. The original concept of tuning BHE
loads is to divide the operating time into l discrete intervals and derive an optimal transient
heat load distribution based solely on the initial conditions at time t0 (before the BHE field
is operated), which hereafter is referred to as “single-step optimization”. This approach can
only propose optimal patterns at the design stage based on the initial thermal conditions of a
field.

To enable a computationally efficient solution, the previously defined objective function
(Equation (3.10)) is revised to facilitate posing and solving the optimization problem as a
linear one. This is accomplished by introducing virtual auxiliary variables τ0 and τl:

min
(

w · τ0 +
Nt∑
l=1

τl

)
(3.12)
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subject to the constraints
∆T(q, xi, yj , tNt) − τ0e < 0,

−∆T(q, xi, yj , tNt) − τ0e < 0,

∆T(q, xi, yj , tl) − τle < 0,

−∆T(q, xi, yj , tl) − τle < 0,

El =
NBHE∑
k=1

qk,l, xi, yj ∈ S,

(3.13)

for all l = 1, . . . , Nt. e denotes the vector of ones with NBHE entries.
In the adaptive strategy, monthly deviations between the simulated and measured tempera-

tures form the basis for a new optimization and the allocation of the new load patterns for the
following months. The adaptive optimization process is conducted iteratively over predefined
time intervals tm (m = 1, . . . , Ntopt). ∆Tmeas(xi, yj , tm−1) is considered as the real-time
monitored data in the field, and ∆T(q, xi, yj , tm−1) is the output of simulations based on
the proposed MFLS model. Taking into account the monthly measured temperature as an
indicator of the actual thermal conditions of the subsurface, a revised optimal load pattern,
q, is computed for the individual BHEs at each time-step. This approach is implemented as
an iterative loop for m = 1, . . . , Ntopt :

min
(

τ0 +
Nt∑

l=m

wlτl

)
, (3.14)

subject to the constraints:

∆T(q, xi, yj , tNt) − ∆T(q, xi, yj , tm−1) − τ0e < −∆Tmeas(xi, yj , tm−1),

−∆T(q, xi, yj , tNt) + ∆T(q, xi, yj , tm−1) − τ0e < ∆Tmeas(xi, yj , tm−1),

∆T(q, xi, yj , tl) − ∆T(q, xi, yj , tm−1) − wlτle < −∆Tmeas(xi, yj , tm−1),

−∆T(q, xi, yj , tl) + ∆T(q, xi, yj , tm−1) − wlτle < ∆Tmeas(xi, yj , tm−1),

El =
NBHE∑
k=1

qk,l,

xi, yj ∈ S,

(3.15)

for all l = m, . . . , Nt. In this iterative process, the simulated temperatures are replaced by
the measured temperatures, when they become available.

As a further modification, the first term of the objective function is divided into two separate
time windows: a short-term horizon (upcoming 12 months) with higher significance (wl = 100)
and a long-term horizon (remaining time until the end of the operational lifetime) with lower
significance (wl = 1). Since the proposed optimization is an iterative process, at some point
all time-steps will be considered as short time horizons with higher impact. The rationale for
this is that due to different and mostly unpredictable uncertainties in long-time horizons, e.g.,
a few decades, it is better to consider the next year as the short-time horizon, which merits a
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3 Adaptive management of BHE fields considering transient groundwater flow

higher weight since its predictability is better.
In addition, the assumed model parameters will be updated simultaneously based on the

measured data from all previous time-steps. This enables the algorithm not only to initiate the
optimization from a correct thermal state but also to learn about the evolution of time-varying
parameters that could be the cause of the deviations between the measurements and the
simulations, thereby avoiding accumulation of errors. This proposed simulation-optimization-
calibration procedure is referred to hereafter as “sequential optimization”.

To consider the effects of GWF on optimal BHE load patterns and system performance, this
chapter assumes that the only model parameter that varies is the GWF velocity. Therefore, in
the example cases, unknown GWF evolution during the course of BHE field operation is the
only cause of uncertainty in the subsurface temperatures. To calibrate the GWF velocity, the
problem is mathematically formulated as nonlinear least squares minimization. The discrep-
ancy between the measured and simulated temperature is considered as an argument for the
objective function. The Trust-Region-Reflective algorithm, implemented in MATLAB as an
optimization technique, is employed to solve this problem. In this method, the optimization
variables are iteratively adjusted within a trust region, i.e., a local region around the current
solution. This algorithm effectively balances local and global information to navigate efficiently
through the optimization domain, making it robust for dealing with nonlinear constraints and
boundary conditions on the optimization variables. By adaptively updating the size of the
confidence region and the model parameter, the algorithm converges to a local minimum of
the objective function and provides a solution to the parameter estimation problem (Byrd
et al., 2000).

In the proposed adaptive framework, the temporal resolution of calibration and optimization
does not necessarily have to be identical. However, in this chapter, it is assumed that at the
end of each month, the optimal load patterns are modified and proposed for the remaining
months. Since it is presumed that monitoring takes place at the end of each month as well,
the model is also calibrated on a monthly basis. Therefore, in this chapter, both the iteration
of the optimization and the calibration have a length of one month. To start the optimization,
the initial estimate of GWF velocity is assumed to be correct for the first month based on the
site characterization measurements before the field is commissioned. From the second month
onwards, once no more true information is available to revise the model parameters, model
calibration makes sense. In calibration calculations, the previous month’s GWF velocity is used
as the initial guess. This serves as the best rough estimate. By minimizing the calibration
function, a new GWF is determined and used as the input for the simulation and optimal
proposals of the next months. The flowchart of the proposed method is shown in Figure 3.1.

3.2.3 Model setup

In this chapter, two scenarios of BHEs are considered; one is a single BHE, and the other is
an array of ten BHEs with a spacing of 10 m. As depicted in Figure 3.2a and c, the BHEs
are located in an area with a length of 200 m in each direction to reduce the influence of the
model domain and boundary conditions on the results. Apart from conductive heat transfer,
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Figure 3.1: Conceptual flowchart of the proposed adaptive optimization of individual loads for
BHEs in a field.

Figure 3.2: Spatial 3D layout of a field with (a) one BHE and (c) multiple BHEs. Subplots
(b) and (d) depict groundwater flow direction and the top view of the field with
one BHE and multiple BHEs, respectively.

advective heat transport due to GWF also contributes to the evolution of the thermal regime
of the subsurface. Therefore, it is required to consider a distance of 10 m between the BHEs in
order not to violate any of the underlying thermal equilibrium assumptions of the MFLS model
and to avert extreme thermal influences of neighboring BHEs (Cimmino, 2015; Hecht-Méndez
et al., 2013). Figure 3.2b and d illustrate the GFW direction as well as the top view of the
lattice arrangement of the BHEs. Here, BHE numbers are also introduced, which will be used
in the following to refer to each particular BHE. All required materials and physical properties
of the subsurface and the BHEs used for the MFLS and numerical models are given in Ta-
ble 3.1. For each BHE configuration, a monthly heating demand profile for the considered
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Table 3.1: Parameter specifications for case studies.
Parameter Value Unit
Length of borehole, L 100 m
Thermal conductivity, λ 2.42 W m−1 K−1

Thermal diffusivity, α 4.32 × 10-7 m2 s−1

Specific heat capacity of solid, cs 1920 J kg−1 K−1

Specific heat capacity of water, cw 4192 J kg−1 K−1

Volumetric heat capacity, vhc 4819200 J m−3 K−1

Solid density, ρs 2650 kg m−3

Fluid density (at 15 °C), ρw 1000 kg m−3

Porosity, n 0.26 -

Figure 3.3: Monthly heat demand profile for both BHE fields.

BHE fields is presented in Figure 3.3. This pattern is repeated for ten years of operation. The
presented energy demand is estimated for a BHE field with an annual operational duration of
1800 h. We assume a specific heat extraction rate of 50 Wm−1 is assumed, with a monthly
distribution for a field located in a site with Central European weather conditions, only with
heating application, and no energy demand in summer months. In the considered scenario with
multiple BHEs, the operation takes place in parallel and each BHE is individually controllable.
To evaluate the impact of GWF, six different theoretical transient GWF fluctuation patterns
with monthly resolution are considered. Different evolution patterns, including linear, non-
linear, and periodic with increasing, decreasing, or noisy trends, are introduced to validate
the proposed rearrangement of the MFLS model (Equation (3.8)). This includes transient
GWF. All GWF patterns vary from 1 × 10-8 ms-1 to 1 × 10-7 ms-1, and they are presented
in Figure 3.4. In order to characterize the relative dominance of advection to diffusion in the
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transport of heat in the field, the Péclet number is defined as:

Pé = vaρwcwH

λ
(3.16)

where the spacing of the BHEs is considered as the characteristic length (H). The Péclet
number varies in the range of 0.58 to 5.78, which represents groundwater flow velocities from
low to high. These Péclet numbers indicate a broad range of heat transfer mechanisms, from
scenarios where conduction dominates over advection (Pé < 1) to those where advection is
the dominant heat transfer mechanism (Pé > 1). To evaluate transient heat transfer in the
field, the Fourier number is calculated as:

Fo = αt

H2 (3.17)

The Fourier number for a characteristic time of ten years results in a value of 1.36.

3.3 Results and discussion

3.3.1 Single borehole heat exchanger

This section investigates the accuracy of heat transfer simulations using the proposed rear-
rangement of MFLS (Equations (3.7), (3.8), and (3.9)). To validate the results obtained from
this semi-analytical solution, a numerical model is employed. The numerical model is im-
plemented using the COMSOL Multiphysics® software. Temperature changes are simulated
over ten years, recording the temperature change with a monthly resolution, based on the
monthly energy demand profile presented in Figure 3.3. Temperature changes are recorded at
four measurement locations (north, east, west, and south) around the BHE with a distance of
0.5 m from the BHE, at a depth of 50 m. The top surface of the numerical model has a fixed
temperature boundary condition, and all other model boundaries are thermally insulated. A
fixed temperature is applied throughout the domain as the initial undisturbed ground temper-
ature for the model. The numerical model is carefully examined to ensure that the domain is
sufficiently large, preventing any undesired effects from the boundaries due to thermal isola-
tion. The BHEs are implemented as line heat sources with constant heat extraction rates along
their lengths. To ensure the robustness of the approach, the temperature variations under the
six different GWF scenarios of Figure 3.4 are considered. Figure 3.5 illustrates the resulting
temperature evolution corresponding to each GWF pattern (A–F) over time. The color-coded
circles in the figures indicate the error between the results obtained from the semi-analytical
and numerical models. Further, the mean absolute error (MAE) of temperature change is
reported for each hydrogeological scenario. The accuracy of the proposed formulation for a
single BHE case among all six GWF patterns is substantiated by an acceptable error level and
the replicated temperature trend, which mimics the trend of the numerical results. Across
all scenarios, the MAE is between 0.07 and 0.11 K. Comparing patterns A–D indicates that
decreasing GWF velocities lead to a slightly lower error level than the increasing patterns,
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Figure 3.4: Fluctuation in groundwater velocity over the ten years of operation with (A) linearly
decreasing, (B) linearly increasing, (C) non-linearly decreasing, (D) non-linearly
increasing, (E) periodic, and (F) periodically decreasing pattern. Pattern (F) is
the overlay of a nonlinear decreasing trend, a periodic pattern, and a random noise.

which can be attributed to slower heat propagation with decreasing thermal gradients. This
is consistent with the initial thermal equilibrium assumptions made during the development
of the semi-analytical model. Simultaneously, more fluctuating patterns (case E and F) still
show a good agreement between the semi-analytical and numerical models. The magnitude of
the error for this case is in the range of the measurement error of standard monitoring devices
and therefore considered acceptable in practice.

44



3.3 Results and discussion

Figure 3.5: Single BHE temperature obtained at a depth of 50 m for the groundwater flow
patterns A–F (see Figure 3.4).

3.3.2 Multiple borehole heat exchangers

In the previous section, the applicability and accuracy of the rearranged MFLS model are
validated against a numerical model for a single BHE. However, since the optimization of
BHE fields is the ultimate goal of this study, the applicability of the proposed semi-analytical
formulation in an operational field with multiple BHEs needs to be verified. For this purpose,
a field with ten BHEs in operation with the layout as shown in Figure 3.2 is considered. To
investigate the effects of transient GWF, patterns C and F are selected for this case study
(Figure 3.4). Pattern C is chosen because its nonlinear decreasing trend of GWF highlights
the importance of optimization-calibration. Without model parameter estimation, the high
GWF velocity at the beginning is considered for the entire operational period. Therefore, local
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cooling is expected to be naturally mitigated by the high-velocity heat transport, reducing the
need for optimization. However, if the hydrogeological regime changes such that the GWF
decreases, the incorrect proposed load patterns can cause local thermal anomalies, if this
information is not incorporated into the model. Furthermore, Pattern F is also chosen since it
exhibits random fluctuations in addition to the decreasing tendency, which further complicates
the simulation.

A similar numerical model is employed to serve as a reference and the accuracy of the
temperature changes simulated with the MFLS model is compared with it. The boundary
conditions of the numerical model are the same as those in the case of the single BHE. The
temperatures are compared at a depth of 50 m and at four points evenly distributed around all
individual BHEs at a distance of 0.5 m. As this is a symmetrical case, Figure 3.6 only shows
the temperature development of BHE #1, #3, and #5 for both the numerical and the semi-
analytical model over ten years of operation. Similarly, the color within the circles corresponds
to the discrepancy between the two models. It should be noted that the maximum MAE is
slightly higher for the case with multiple BHEs compared to a single BHE. Figure 3.5 shows
the MAE for the whole system under six different GWF patterns, while Figure 3.6 indicates
the MAE at the position of three BHEs and only for GWF patterns C and F. Therefore,
the MAE values in these figures should be carefully compared. To better assess the error
in each case study, the range of error for the case with one BHE is reported as 0.29 K,
whereas for multiple BHES, this is 0.56 K. Despite the higher level of error, the results of the
semi-analytical model for the field with multiple BHEs are still encouraging, as the absolute
temperature change is also higher compared to the case with a single BHE. In addition to
comparing the absolute values of the models, the evolution trend of the temperature change is
also entirely consistent, which is an essential factor for optimization. The results confirm that
the proposed restructured MFLS formulation can be adopted as a sound proxy for integration
into a combined simulation-optimization-calibration framework for this BHEs configuration
and the GWF patterns.

3.3.3 Optimal load balancing

In this section, the results of the proposed optimal load pattern for the case with ten BHEs
assuming GWF pattern C are presented. The superiority of the proposed adaptive method
compared to the single-step optimization approach for three selected time-steps is shown in
Figure 3.7. The size of the circles depicts the relative load distribution among the BHEs in
the field and the red circles show the position of the BHEs that cause the maximum temper-
ature change. The advantage of the proposed method lies not only in the lower maximum
temperature change, but also in the repositioning of the critical BHEs, which affects the loca-
tion of the highest temperature change. Figure 3.7 shows a modest improvement manifested
in a 10% reduction in the imposed temperature change, but it should be emphasized that
both scenarios are subject to optimization, and this slight improvement highlights the role of
model parameter estimation through the adaptive optimization strategy. It is also important
to recognize that this discrepancy increases with longer operating time. The lack of calibra-
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Figure 3.6: Temperature change profile (analytical vs. numerical) for BHEs #1, #3, and #5
of the considered BHE field for groundwater flow velocity pattern C and F (see
Figure 3.4) over 10 years of operation.

tion functionality in the initial case by the single-step optimization, which assumes a steady
and constant GWF over the operating time, leads to a misinterpretation of the critical BHEs.
Essentially, the results highlight that the use of a data assimilation strategy favors a more
even load distribution within the BHE field and mitigates the impact of GWF magnitude on
the upstream BHEs. The calibrated GWF values compared to the real trend are shown in
Figure 3.8. One interesting aspect is that, for calibration, the highest deviations occur in the
summer months. This is evident as stagnation is attributed to the absence of any heating
demand in the field. Thus, no new insights into the thermal conditions of the ground can be
gained, which delays the learning process of the calibration, as no better values than in the
previous months can be determined.
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Figure 3.7: Optimal load patterns at three time-steps for the BHE field using the single-step
optimization (top row) and the adaptive technique (bottom row). The size of the
circles indicates the assigned load on each BHE and the red circle shows the BHE
with the highest temperature change. The empty circles in the legend represent
the relationship between heat extraction and the size of the circles.

Figure 3.8: Comparison of the monthly calibrated groundwater flow velocity values obtained
by adaptive optimization (blue line) with the true pattern (dashed line).

The thermal plume from the top view at a depth of 50 m is presented in Figure 3.9. To
avoid errors in reporting the absolute values of temperature change in this section, the optimal
load balancing is executed using the proposed approach by the semi-analytical model due
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Figure 3.9: Distribution of the resulting heat plume at a depth of 50 m after 10 years of
operation in the case with simulation-optimization-calibration.

to its computational efficiency and flexibility enabling the combined optimization-calibration
algorithm. The absolute temperature values are based on the implementation of resulting load
patterns in a numerical model.

3.4 Conclusions and outlook

This chapter focuses on tuning the heating load of individual systems within a field operating
with multiple BHEs. The proposed workflow involves a four-step recursive process: simulation,
measurement, calibration, and optimization. What sets this work apart from previous studies
is twofold: firstly, the functionality of the widely used MFLS analytical modeling tool through
the rearrangement of its formulation is enhanced. This enhancement allows us to account
for transient GWF, thereby accommodating more realistic and complex subsurface conditions.
It should be recalled that although the numerical model is more reliable, due to the itera-
tive characteristic of the proposed methodology, the integration of the numerical model in
the iterative simulation-optimization procedure is not computationally comparable. Secondly,
the optimization process is more informative as it includes a parameter estimation in each
time-step. To validate the proposed formulation, numerical modeling of two case studies with
varying GWF velocity patterns as a benchmark study is conducted. Then, the modified MFLS
model is employed as the predictive tool for optimization. By solving a least square problem
based on monthly measurements and simulations, the GWF velocity for the subsequent month
is calibrated and updated optimal load patterns for the upcoming months are proposed. The
result of the optimization for the case study with multiple BHEs indicates that the potential
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of the new workflow is to provide more insightful optimal load patterns that can be continu-
ously modified. Through this modification, the imposed undesired thermal anomalies in the
subsurface will be minimized. The main target of this workflow is to improve the sustainabil-
ity and durability of closed-loop geothermal systems by addressing environmental concerns as
well as making them economically viable. For future studies, it is proposed to integrate more
robust simulation tools that can handle additional subsurface complexities, such as hetero-
geneity. Additionally, developing efficient proxy models to represent the subsurface complexity
in a computationally feasible manner is recommended. Furthermore, using intelligent learning
techniques for parameter estimation can have the potential to further enhance the efficiency
of the calibration process.
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4 Bayesian inference for stochastic
modeling of BHE fields

Abstract

Accurate temperature prediction is crucial for optimizing the performance of BHE fields. This
chapter introduces an efficient Bayesian approach for improving the forecast of temperature
changes in the ground caused by the operation of BHEs. The framework addresses the com-
plexities of multi-layer subsurface structures and groundwater flow. By utilizing an affine
invariant ensemble sampler, the framework estimates the distribution of key parameters, in-
cluding heat extraction rate, thermal conductivity, and Darcy velocity. Validation of the
proposed methodology is conducted through a synthetic case involving four active and one
inactive BHE over five years, using monthly temperature changes around BHEs from a detailed
numerical model as a reference. The moving finite line source model with anisotropy (MFLSA)
is employed as the forward model for efficient temperature approximations. Applying the pro-
posed methodology at a monthly resolution for less than three years reduces uncertainty in
long-term predictions by over 90%. Additionally, it enhances the applicability of the employed
analytical forward model in real field conditions. Thus, this advancement offers a robust tool
for stochastic prediction of thermal behavior and decision-making in BHE systems, particularly
in scenarios with complex subsurface conditions and limited prior knowledge.

4.1 Introduction

As part of the ongoing transition to more sustainable and renewable energy sources, shallow
geothermal systems present an attractive solution for heating and cooling buildings (Benz
et al., 2022). These systems use the relatively stable temperatures found at depths ranging
from a few tens to hundreds of meters in the subsurface. At the core of these systems
are BHEs, which typically consist of high density polyethylene (HDPE) pipes arranged in U-
pipe, coaxial, or double U-pipe configurations (Gil et al., 2020). A heat transfer fluid circulates
through these pipes, absorbing heat from the ground in the cold season to supply buildings with
heat, and returning excess heat from buildings to the subsurface in the warm season (Stauffer
et al., 2013). Although BHEs are established technologies, their efficiency and ability to
meet energy demands heavily rely on precise planning. This is because BHE systems are
influenced by variable factors such as seasonal variations and time dependent, coupled physical
processes in the subsurface. Therefore, simulating these systems for a reliable prediction of
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underground thermal behavior is crucial. Accurate predictions can help avoid issues like thermal
imbalance, where excessive heat extraction or injection deteriorates the system’s efficiency over
time. Additionally, models can assist in assessing the environmental impact and ensure that a
BHE system operates sustainably throughout its intended lifespan. For example, Chen et al.
(2021) examined the underperformance of a 56-BHE field implemented in Leicester, UK. They
concluded that thermal anomalies in the center of the field prevent the system from operating
efficiently for more than two decades.

Aside from technical issues, the thermally imbalanced operation of a BHE field can violate
regulations. Haehnlein et al. (2010) and Tsagarakis et al. (2020) surveyed the legal frameworks
for shallow geothermal applications in different countries. Existing frameworks and guidelines
are diverse, and they delineate acceptable application windows constrained by factors such as
temperature thresholds (Bayer et al., 2019; Rivera et al., 2017). Blum et al. (2021) warned
that unplanned, continuous thermal exploitation of the shallow subsurface can lead to heat or
cold being deemed as a pollutant. Reliable long-term predictions are therefore needed to assess
compliance with precautionary regulations while ensuring safe and cost-efficient operation.

A wide variety of modeling tools has been developed to predict the thermal state, both inside
and outside of BHEs. These tools range from analytical and semi-analytical to fully numerical
methods. (Semi-) analytical solutions, such as those based on the so-called g-functions, offer
simplified, closed-form formulations that allow for a quick approximation of the subsurface
thermal response (Li and Lai, 2015). While these models efficiently reflect overall system
thermal performance, they have their limitations when applied to complex subsurface struc-
tures with heterogeneous material properties or coupled heat transport processes. Although
efforts have been made to extend the applicability of (semi-)analytical models to account for
multi-layer subsurface (Guo et al., 2023), advective heat transport e.g., due to groundwater
flow (Molina-Giraldo et al., 2011), land use effects and surface ground conditions (Guo et al.,
2024; Rivera et al., 2015), and heterogeneous-discontinuous thermal loads (Coen et al., 2021),
the majority of existing analytical models still have conceptual simplifications. Alternatively,
numerical models enable detailed simulations by solving complex heat transfer equations un-
der more realistic boundary conditions (Al-Khoury, 2011; Biglarian et al., 2017; Brettschneider
and Perković, 2024; Dube Kerme and Fung, 2020; Florides et al., 2013; Huang et al., 2024;
Jahangir et al., 2018; Yu et al., 2020). Numerical methods are beneficial for the design phase
and initial planning, but it remains a challenge to choose a flexible and computationally ef-
ficient predictive model for real-time optimization and control of BHE fields (Heim et al.,
2024a; Soltan Mohammadi et al., 2024a).

To simulate BHEs’ performance analytically or numerically, ground properties must be char-
acterized as a prerequisite. For this purpose, TRTs are usually performed at the beginning of
the operation to determine the thermal properties of the subsurface, such as thermal conduc-
tivity, heat capacity, and thermal resistivity (Gehlin, 2002; Spitler and Gehlin, 2015). However,
these early-phase experiments often provide only a snapshot of subsurface conditions and can-
not fully capture the complex, dynamic nature of subsurface heat transfer over time. Factors
such as seasonal temperature fluctuations, transient groundwater movement, and long-term
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thermal interactions between BHEs within a field can significantly alter the thermal conditions
in the subsurface, which initial TRT results are not able to resolve. Ideally, regular monitoring
and continuous updating of subsurface models of BHE fields would be needed to account for
uncertainties in model parameters or model simplifications (Heim et al., 2022).

When inferring subsurface thermal parameters or g-functions from TRTs, parameter iden-
tification typically involves defining a mathematical minimization problem or realizing the
statistical distributions of parameters to assess the associated uncertainty. Among model cal-
ibration strategies, for example, (Dion et al., 2022, 2024b,a), suggest a deconvolution-based
framework. This approach directly infers the transfer function from TRT data, eliminating the
need for a predefined thermal model. It uses a multi-objective optimization to reconstruct the
derivatives of the temperature, allowing for a data-driven construction of g-functions. Aside
from this, different types of optimization techniques, such as particle swarm optimization with
pattern search (Puttige et al., 2020), or trust region (Soltan Mohammadi et al., 2024b) have
been explored to calibrate model parameters and improve model predictability. However, these
procedures are commonly not applied in the long term, or they do not fully account for the
complex conditions of the underground.

While classic model calibration techniques are computationally efficient, capturing the full
complexity of subsurface conditions is challenging. This is particularly true when dealing with
advective heat transport in heterogeneous ground or when numerous model parameters need
to be characterized. Then, ill-posedness of the formulated calibration problem is likely to yield
non-unique solutions, as well as insensitive and correlated parameters. Alternatively, proba-
bilistic methods such as Kalman filters can be employed to enhance the accuracy of simula-
tions by dynamically adjusting model parameters based on monitoring data (Cupeiro Figueroa
et al., 2021; Shoji et al., 2023). While Kalman filter methods are efficient and capable of
real-time updates, they rely on Gaussian assumptions. These can lead to inaccuracies when
exploring correlated and non-Gaussian parameter spaces. Moreover, Kalman filters can en-
counter difficulties in dealing with highly nonlinear systems or when there is significant model
misspecification, resulting in suboptimal performance in complex subsurface environments.

Bayesian inference, as another probabilistic approach, represents a promising alternative,
especially through methods like Markov Chain Monte Carlo (MCMC). Unlike classic calibration
methods, Bayesian inference does not merely seek to identify optimal parameter values or
assume a specific distribution for the model parameters. Instead, it samples from the posterior
distribution to explore a wide range of probable parameter sets.

In several studies, Bayesian frameworks have been employed to estimate subsurface thermal
conductivity and borehole thermal resistance, along with the associated uncertainties (Choi
et al., 2018a, 2022). Their findings highlighted the importance of test duration in enhancing
the accuracy of the estimates. In other attempts, Bayesian methods have also been used
to distinguish between errors arising from the TRT experiments and those stemming from
the model structure itself to explicitly quantify the model bias (Choi et al., 2018b; Menberg
et al., 2019). To further improve computational efficiency in Bayesian inference, Pasquier and
Marcotte (2020) developed a new closed form likelihood formulation combined with neural
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networks which also addresses temporal correlations in TRTs for inference of five parameters.
As recently demonstrated by Shin et al. (2024) through a global sensitivity analysis, the

contribution of parameters in uncertainty assessment changes temporally during BHE opera-
tion, underscoring the need for dynamic uncertainty assessments in BHE systems. However,
the majority of previous studies on the long-term thermal evolution of BHE fields have con-
centrated on developing sophisticated modeling tools rather than utilizing data assimilation
techniques. With advancements in measurement technologies, such as distributed tempera-
ture sensing (DTS), there is an opportunity to better harness high-resolution subsurface data.
This can be used to enhance model predictability and reduce input parameter uncertainty
over the long term, particularly in cases involving complex subsurface structures and coupled
processes (Gebhardt et al., 2024; Zhang et al., 2023a).

To address this scientific gap, this chapter introduces a new Bayesian inference-based frame-
work that learns during operation and models the thermal evolution of BHE fields in a stochas-
tic manner. In particular, this chapter focuses on conditions with stratified subsurface hetero-
geneity in the presence of groundwater over five years of operation. This framework integrates
temperature measurements taken from the synthetic BHE field at defined time intervals to
infer the statistical distributions of key model parameters, such as heat extraction rates, Darcy
velocity, and thermal conductivity for each layer.

By characterizing these statistical distributions, a robust measure is achieved for assessing
uncertainties in the model’s predictions based on the most likely input parameter sets. The
incorporation of temperature measurements reflects the true thermal state, which refines the
predictive model, reduces uncertainties, and improves predictive accuracy. The continuous
updating process is a core strength of the Bayesian approach, allowing dynamic adaptation of
model parameters in response to new information.

The presented framework employs the MFLSA as the forward model (Erol and François,
2014). This model is particularly well-suited for BHE systems due to its computational ef-
ficiency, enabling the rapid evaluation of different parameter proposals during the Bayesian
inference process. The MFLSA simulates the thermal state at the monitoring location in an
operating field, considering the layered structure of the subsurface and the influence of ground-
water flow. This accounts for variability and uncertainty in boundary conditions, changes in
operational settings, and other unforeseen fluctuations in the system. A conceptual illustration
of the proposed framework is presented in Figure 4.1.

The proposed methodology introduces several important advancements in modeling and
analysis of the thermal behavior in closed-loop geothermal systems. Its primary contribution
is an extension of probabilistic modeling to simulate temperature changes in the subsurface
surrounding a BHE field over multiple years of operation. Additionally, the Bayesian frame-
work is designed to effectively manage the highly correlated, high-dimensional parameter space
associated with conductive-advective heat transport in a multi-layered subsurface, focusing on
operational thermal simulation rather than using the inversion procedures for site characteri-
zation. Furthermore, the presented work broadens the applicability of analytical FLS models
by relaxing the assumption of a constant heat extraction rate across the layers, thus enhancing
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Figure 4.1: Conceptual framework of the proposed Bayesian method for stochastic predictions
of temperature changes in the BHE field based on temperature measurements and
using the MFLSA as the forward model.

the realism of thermal predictions in heterogeneous geological settings.
Building on these advancements, the primary objective of this chapter is to employ statistical

inference to enhance the understanding of thermal state evolution within BHE fields, utilizing
high-resolution operational data over time. A secondary objective is to explore the capability of
Bayesian inversion to dynamically update model parameters, enabling the model to adaptively
reflect observed thermal states rather than developing a new modeling tool with additional
constraints.

The structure of this chapter is as follows: Section 4.2 provides an overview of the method-
ology, including the derivation of the forward model, the details of the Bayesian inference
approach, the development of a synthetic case study, and the inversion implementation. The
results of this chapter are presented and discussed in Section 4.3, followed by conclusions in
Section 4.4.

4.2 Methodology

4.2.1 Forward modeling

To assess and reduce uncertainties in predicting temperature changes in a BHE field through
a Bayesian framework, a forward model needs to be set up. This model should reproduce
the true temperature distribution, enabling the comparison with observed data and iterative
refinement of predictions. In this chapter, a line source model for BHEs is employed that
considers advection and dispersion mechanisms in a multilayer porous medium. In particular,
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Figure 4.2: The illustration of the composite model approach for a single BHE with a finite
length of L and its imaginary part passing through multi-layers.

anisotropy is added to the MFLS model. Furthermore, a composite computational approach
is applied, and layers are subdivided into segments to calculate the temperature difference at
a point of interest located in one of the layers. Groundwater flow is separately considered in
the layers. The composite method segregates the layers and their thermal properties and adds
the calculated temperature differences from each layer. For instance, if the observation point
is situated in the first layer, this layer is designated as the first segment, while the other layers
are assigned to the second segment (Figure 4.2). The temperature difference is computed as
follows:

∆T1(x, y, z, t) = q

2πλy1
exp

(
xvT 1
2αx1

)[∫ z1

0
f(x, y, z, t) dz′ −

∫ 0

−z1
f(x, y, z, t) dz′

]
(4.1)
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where q is the heat exchange rate. The subscript 1 denotes the first layer and the function
f(x, y, z, t) is given by:

f(x, y, z, t) = 1
4rA

[
exp

(
−vT 1rA

2αx1

)
erfc

(
rA − vT 1t

2
√

αx1t

)
+ exp

(
vT 1rA

2αx1

)
erfc

(
rA + vT 1t

2
√

αx1t

)] (4.2)

in which vT is the thermal transport velocity that is calculated as:

vT 1 = Pé αx1
H

= ux
ρwcw

ρmcm
(4.3)

where ax1 is the thermal diffusivity in the first segment, λx
ρmcm

, H is the characteristic length,
and Pé is the Péclet number:

Pé = uxρwcwH

λx
(4.4)

Here, ux is Darcy’s velocity in the x-direction. ρmcm is the volumetric heat capacity of the
medium, which can be calculated concerning the porosity n as the weighted arithmetic mean
of the solids ρscs and the volumetric heat capacity of water ρwcw:

ρmcm = (1 − n)ρscs + nρwcw (4.5)

The components of effective longitudinal and transverse thermal conductivities are defined in
the directions of x, y, and z as follows:

λx = λm + αlρwcwux (4.6)

λy = λz = λm + αtρwcwux (4.7)

where λm is the bulk thermal conductivity of the porous medium in the absence of groundwater
flow, αl and αt are the longitudinal and transverse dispersivities, respectively. The thermal
dispersion is a linear function of groundwater flow and relates to the anisotropy of the velocity
field.

If groundwater does not exist in a layer, the heat transport velocity vT 1 becomes zero, and
the thermal diffusivity and conductivity values take on isotropic values. The integration limits
[0z1] correspond to the depth coordinates of the BHE in the considered first segment layer
with its imaginary part. Two additional layers (i.e., layers 2 and 3) are paired by the second
segment. The subsequent layer (layer 2) is calculated as:

∆T2(x, y, z, t) = q

2π

[∫ z2

z1
fR2(x, y, z, t) dz′ −

∫ −z1

−z2
fI2(x, y, z, t) dz′

]
(4.8)

fR2(x, y, z, t) = 1
4λcR2rA

exp
(

xvT 2
2αcR2

)[
exp

(
− vT 2rA

2αcR2

)
erfc

(
rA − vT 2t

2
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αcR2t

)
+ exp

(
vT 2rA

2αcR2

)
erfc

(
rA + vT 2t

2
√

αcR2t

)] (4.9)
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The real and the imaginary parts of this mathematical solution are based on the method of
images, which is a particular use of Green’s functions. When the distribution has a geometric
center, such as the point-line source, and the boundary is a flat surface, as shown in Figure 4.2,
the method of images enables the distribution to be reflected in a straightforward mirror-like
manner to fulfill several boundary conditions. For instance, consider the heat distribution as
a function of z and a single boundary at zb. In this case, the real domain is z ≥ zb, while the
imaginary domain is z < zb. The subscript c represents the composite and R is the real part
of the geometry.

fI2(x, y, z, t) = 1
4λcI2rA

exp
(

xvT 2
2αcI2

)[
exp

(
−vT 2rA

2αcI2

)
erfc

(
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2
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αcI2t

)
+ exp

(
vT 2rA

2αcI2

)
erfc

(
rA + vT 2t

2
√

αcI2t

)] (4.10)

where I denotes the imaginary part. The computation of layer 3 in the second segment is:

∆T3(x, y, z, t) = q

2π

[∫ L

z2
fR3(x, y, z, t) dz′ −

∫ −z2

−L
fI3(x, y, z, t) dz′

]
(4.11)

where the real part of this function is:

fR3(x, y, z, t) = 1
4λcR3rA

exp
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and its imaginary part is:

fI3(x, y, z, t) = 1
4λcI3rA

exp
(

xvT 3
2αcI3

)[
exp

(
−vT 3rA

2αcI3

)
erfc

(
rA − vT 3t

2
√

αcI3t

)
+ exp

(
vT 3rA

2αcI3

)
erfc

(
rA + vT 3t

2
√

αcI3t

)] (4.13)

The detailed derivation of the model, the composite calculation equations of the thermal
properties of layers, and the verification of the analytical solution for different hydraulic and
thermal properties by comparison with a numerical solution can be found in (Erol and François,
2018). Finally, the temperature difference at the observation point A located in layer 1 is
summed up as:

∆TA(x, y, z, t) = ∆T1 + ∆T2 + ∆T3 (4.14)

If the observation point is moved to layer 2, then layer 1 and layer 3 can be regarded as being
in the second segment computation, by which layer 2 becomes the first segment (Figure 4.2d).
The same methodology can be used to assess the observation point placed in layer 3 by shifting
the segments between layers (Figure 4.2e).

The long-term temperature responses of this model over depth and time are validated for
the same (hydro)geological scenario investigated in this chapter using data from (Erol and
François, 2018). Details are given in the Appendix.
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4.2.2 Inverse modeling

A framework is proposed that leverages Bayes’ rule to invert the unknown input model param-
eters of the MFLSA using monthly temperature changes observed in a BHE field. Specifically,
the aim is to quantify the posterior probability distributions of the model parameters p(θ|dmeas)
by using the measured temperature change data, as expressed by the following relation:

p(θ|dmeas) ∝ p(dmeas|θ)p(θ) (4.15)

Here, θ represents the unknown thermal and hydraulic properties of the subsurface, which are
treated as random variables characterized by a probability density function p(θ|dmeas). The
likelihood quantifies how well the forward model, which simulates temperature changes, agrees
with the observed data. The likelihood is assumed to follow a Gaussian distribution, making
the log-likelihood function proportional to the sum of squared errors between the simulated
and observed temperature changes across all measurement points:

log p(dmeas|θ(1,...,n)) ∝ − 1
2σ2Ndmeas

Ndmeas∑
i=1

(
dmeas,i − F (θ(1,...,n))i

)2
(4.16)

where F (θ(1,...,n)) represents the simulated temperature changes computed by the forward
model, given a set of n input parameters θ(1,...,n). The prior probability distribution function
p(θ) can encapsulate any prior knowledge, assumptions, or conceptual understanding of the
model parameters. The prior can be informative, based on previous studies or expert knowl-
edge, or non-informative, such as a uniform distribution, when limited or no prior information
is available.

A commonly used method for exploring the target distribution, i.e., the posterior distribution,
within the parameter space is MCMC sampling (Gilks et al., 1995). MCMC generates samples
that converge towards the target distribution and thus provide a numerical approximation to
the posterior value. Numerous strategies have been developed in the literature to efficiently
sample (Brooks et al., 2011). However, MCMC algorithms can face challenges when the
posterior distribution contains sharp correlations in the parameter space and/or when dealing
with a highly parameterized space. In these settings, convergence is often intractable, therefore
requiring extensive tuning to improve the performance.

To tackle this issue, Goodman and Weare (Goodman and Weare, 2010) introduced the
affine invariant ensemble sampler (AIES), an efficient algorithm that performs well under
these conditions. AIES initializes an ensemble of L Markov Chains, known as “walkers”,
denoted as θ⃗ = {θ1, . . . , θL}, to collectively explore the parameter space. The walkers are set
up at distinct starting positions within the parameter space. Subsequently, each walker in the
ensemble proposes new candidate parameter values (positions) by perturbing its current value
(position) through a “stretch move” mechanism that is invariant to affine transformations of
the parameter space. This means that the sampling algorithm’s performance is consistent
regardless of scaling, rotation, or translation of the target distribution. The proposal for each
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walker (θ̃i) is generated based on a random linear combination of the current positions of
the walker (θi), another randomly chosen complementary walker (θj), and an affine invariant
stretch move (ζ), ensuring that the exploration of the parameter space is robust to different
scales and correlations by using:

θ̃i = θj + ζ · (θi − θj) (4.17)

where the “stretch move” is randomly drawn from the following distribution:

g(z) ∝


1√

ζ
if ζ ∈

[
1
a , a

]
,

0 otherwise.
(4.18)

The acceptance of the proposed position is determined by comparing the log probabilities of
the proposed and current values. The Metropolis-Hastings acceptance criterion is used as:

log
(

p(dmeas|θ̃i)
p(dmeas|θi)

)
> log(s) (4.19)

where p denotes the posterior probability density, and s ∼ U(0, 1). The schematic workflow
of the sampling procedure is shown in Figure 4.3.

Figure 4.3: Schematic illustration of the affine invariant ensemble MCMC sampler strategy for
proposing new model samples.

4.2.3 Model setup for the demonstration case

This chapter explores a synthetic BHE field to demonstrate the uncertainty quantification.
The setup comprises four active BHEs and one inactive BHE, as illustrated in Figure 4.4. The
active BHEs operate only in heating mode to meet thermal demands, while the inactive BHE
functions as a DTS monitoring site, collecting data on subsurface temperature changes caused
by the heating operation of the active BHEs, following a similar configuration as in (Gebhardt
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Figure 4.4: Three-dimensional view of the numerical model with three layers and groundwater
flow in COMSOL (left) and the configuration of BHEs in the field showing the
thermal plume after five years of operation (right).

et al., 2024). Throughout this chapter, temperature prediction using Bayesian inference fo-
cuses on the temperature evolution in the subsurface at the location of the inactive BHE over
five years, resulting from the operation of the four active BHEs. Temperatures are measured
monthly with a spatial resolution of 1 m, up to a depth of 60 m. As this chapter focuses
primarily on the investigation of temperature dynamics in the field, temperature changes are
considered rather than absolute values. The subsurface of the field is characterized by its
heterogeneity, consisting of three distinct layers, each with unique thermal properties. Each
layer is assumed to be 20 m thick, and each BHE reaches a depth of 50 m.

The arrangement of the BHEs in the field is carefully designed to mitigate potential extreme
thermal impacts on the surrounding environment. Therefore, the BHEs are spaced 10 m apart,
adhering to recommendations from (Hecht-Méndez et al., 2013). This spacing is particularly
important in managing the thermal plume distribution, which is influenced by conductive heat
transfer and advective mechanisms driven by groundwater flow.

Additionally, the variability in groundwater flow velocities among the different layers is
considered, as it significantly affects the thermal conditions in the subsurface. As a result, the
thermal state of each layer is closely tied to the prevailing hydrogeological conditions, with
variations in groundwater velocity across the layers influencing the distribution and intensity
of the generated thermal plume around the BHEs.

To achieve realistic thermal dynamics within this BHE field, temperatures and heat ex-
traction rates in the layers are simulated using a numerical model developed in COMSOL
Multiphysics® software. This numerical model represents the BHEs as double U-pipes, utiliz-
ing the Pipe Flow Module to simulate heat and fluid transfer within the pipes. The inactive
BHE, which does not extract or inject heat, is solely dedicated to monitoring temperature
variations through strategically placed sensors.

For the simulation, the inlet temperature and flow rates of the heat carrier fluid need to
be specified. Each BHE is assigned a constant flow rate of 0.25 ms-1, with an inlet fluid
temperature set to 4 °C. The surface and the entire model domain are maintained at an
undisturbed temperature of 12 °C, with all remaining model boundaries thermally insulated.
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Table 4.1: Reference model parameters for different layer.
Parameter Layer 1 Layer 2 Layer 3
λm (W m−1 K−1) 1.5 2 2.5
u (ms−1) 1 × 10-7 1 × 10-6 3 × 10-6

ρm( kg m−3) 1600 2000 2000
cm ( J kg−1 K−1) 1200 1300 1500
n 0.26 0.26 0.26

The simulation domain encompasses an area of 400 m × 200 m × 100 m, divided into three
subdomains to represent the geological layers. The numerical model is sufficiently sized to
avoid unwanted effects from the model boundaries. A fine mesh with 1,073,656 elements
ensures adequate resolution and accuracy.

The Heat Transfer in the Porous Media Module is employed to account for advective heat
transfer, incorporating the material properties detailed in Table 4.1 and taken from (Erol and
François, 2018). By assuming a constant effective porosity, the groundwater flow velocity
is proportional to the presented Darcy flow rate. The horizontal component of groundwater
velocity in each layer is considered in the simulation. The study spans a simulation period
of five years, with monthly monitoring of temperature changes along the observation points
(inactive BHE) and the averaged heat extraction rates (active BHEs) from each geological
layer for each month. This simulation period allows for a thorough analysis of the long-term
thermal performance and the interaction between the BHEs and the surrounding subsurface.

Figure 4.5 shows the simulated temperature changes along the depth profile over the en-
tire time. These values are derived from the numerical model and serve as a reference for
temperature changes in the inversion process.

The average heat extraction rate from all BHEs in each layer over the entire duration is
presented in Figure 4.6. These values, obtained from the numerical model, will be used exclu-
sively to assess the efficiency of the inversion process of heat extraction rates. As illustrated
in Figure 4.6, the heat exchange rate in the BHE field is primarily influenced by the subsurface
properties and hydrogeological conditions of the first two geological layers, as the BHEs are
50 m deep. In layer 1 (0–20 m), heat transfer is dominated by conduction due to the very low
groundwater velocity and moderate thermal conductivity. As a result, the thermal anomaly
forms around the BHEs and gradually spreads outward over time. This slower heat dissipa-
tion means the heat exchange and thermal evolution will take longer to reach steady-state
conditions in this layer.

In layer 2 (20–40 m), heat exchange is more efficient because of higher thermal conductivity
and a moderate groundwater flow rate, which facilitates both conduction and convection. The
increased groundwater flow carries heat away more effectively, allowing the system to reach
steady-state conditions faster in this layer compared to layer 1.

Layer 3 (40–60 m), beyond the full reach of the BHEs, has minimal impact on heat transfer,
although heat diffuses into it over time. Layer 3 has the highest groundwater velocity and
thermal conductivity and it does not fully interact with the BHEs, limiting its effect on heat
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Figure 4.5: Reference monthly temperature changes along the depth, simulated by the numer-
ical model.

exchange. As a result, steady-state conditions in this layer are reached faster than in the
others, which has a minor influence on the overall heat exchange performance.

In the following sections, the synthetic operational scenario simulated by the numerical
model will be used to showcase the application of the proposed Bayesian procedure. It is im-
portant to note that the numerical model and its results are not part of the proposed Bayesian
framework; they are solely used to demonstrate how the procedure works. In practice, the
COMSOL model results should be replaced with field data measurements. The effectiveness
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Figure 4.6: Reference average heat extraction rate of BHEs in different layers, simulated by
the numerical model.

of the Bayesian inversion procedure in modeling and predicting the subsurface temperature
changes depends on the suitability of the forward model in accurately describing the underlying
physical processes.

To model temperature changes around the BHEs in a multi-layered subsurface with ground-
water flow, the well-established, computationally efficient MFLSA is employed, as discussed in
Section 4.2.1. This analytical model captures the key physics involved, ensuring the reliability
of the Bayesian inversion results. Although the numerical setup developed in this section serves
only as a synthetic case for measured temperatures in the field to demonstrate the proposed
approach and does not require validation, it is useful to ensure that associated uncertainties in
the inversion procedure are not caused by unexplained variability in temperature changes due
to the modeling tools. To address this, the numerical setup is validated against the MFLSA
using reference model parameter values at selected time-steps, as shown in Figure 4.7. The
MFLSA analytically simulates temperature changes at these time-steps, assuming that tem-
perature changes from earlier time-steps are measured and known. The results indicate that
the MFLSA predictions closely align with the numerical model, confirming two key points:
first, the forward model can accurately represent the numerical setup in this case, and sec-
ond, the uncertainties of interest, which will be discussed in later sections, are not due to the
inherent reliability of either the numerical or analytical model.

4.2.4 Implementation of the inversion procedure

This section details the specific setting of the inversion problem for the introduced BHE field.
The goal of the inversion process is to determine the distribution of three unknown parameters
— heat extraction rate (q), thermal conductivity (λ), and Darcy velocity (u) — across three
layers, resulting in an inverse problem with nine parameters over 60 time-steps.

For each unknown parameter, a uniform prior distribution within a specified range [α, β] is
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Figure 4.7: Validation of the numerical results against the forward model at five time-steps,
using reference input values and assuming known temperature changes from earlier
time-steps.

assumed, reflecting the absence of strong prior information:

p(θ) =


1

β−α , if α ≤ θ ≤ β,

0, otherwise.
(4.20)
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The choice of this prior ensures that all values within the range [α, β] are equally likely
before considering the observed data, thereby allowing the data to primarily drive the inversion
process.

Specifically, the range for parameters is as follows: heat extraction rate ranges from 5 to
40 Wm-1, thermal conductivity ranges from 0.5 to 4 Wm-1K-1, and Darcy velocity can vary
from 6 × 10-8 ms-1 to 6 × 10-6 ms-1.

The variance of the likelihood function in each time-step is derived from the error between
simulated and observed temperature changes in the previous time-step.

For the implementation of AIES, similar to the “walk move” formulation in Christen and Fox
(2010), this density function is simulated using a transformed uniform distribution. However,
unlike the “walk move”, which is not affine invariant, the “stretch move” applied by the AIES
formulation ensures affine invariance (Grinsted, 2018):

ζ = ((a − 1) · U(0, 1) + 1)2 /a (4.21)

Here, a is the step size and is set to 2 in our study, and U is a uniform distribution between
0 and 1.

In this chapter, the MATLAB implementation by Grinsted (2018) is used. In each time-step,
50,000 iterations and 180 walkers are employed to generate 5,040 samples for each unknown
parameter.

The temperature changes shown in Figure 4.5 are assumed to be the actual measurements,
with MFLSA being used in the forward solver for predicting temperature changes. At the
end of each time-step, the median of all samples for each parameter is considered as the
inferred model parameter for the simulation of the upcoming months. Additionally, simulated
temperature change values of the current month are replaced by measured data as they become
available. The process involves superimposing the current measured temperatures onto the
predictions for future time-steps.

4.3 Results and discussion

4.3.1 Statistical analysis of MCMC sampling

In this section, the performance of MCMC sampling with the affine invariant ensemble sampler
(AIES) algorithm is evaluated. The purpose of this analysis is to determine whether the
sampling process effectively explores the target distribution and has reached convergence—a
state where the sampled values stabilize around the target distribution.

To assess convergence and sampling efficiency, trace plots are used, which display the
progression of the parameter estimation. Trace plots help to reveal whether the ”walkers” (or
model samples) are thoroughly exploring the range of possible parameter values or, conversely,
are becoming confined to certain areas. Effective sampling should ideally result in a trace
plot where the walkers exhibit a random, well-distributed pattern, covering the parameter
space without showing a clear trend. In this chapter, trace plots are examined at five selected
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time-steps for nine unknown model parameters, including heat extraction rate (q), thermal
conductivity (λ), and Darcy velocity (u) across three different layers. For clarity, only every
tenth sample is shown in Figure 4.8. The mean of all samples is also analyzed, and an
overall trend is identified using linear regression to capture any underlying patterns. The trace
plots reveal an erratic pattern, indicating that the walkers are ”well-mixed”, i.e., they move
freely across the parameter space without becoming confined to specific regions. This pattern
suggests effective exploration of the target distribution (Brooks et al., 2011).

Most parameters in the trace plots exhibit stable, consistent patterns over time, with no
discernible trends, suggesting that the samples have reached convergence, meaning they center
around the target distribution. However, two exceptions occur: in the sixth month, thermal
conductivity in the first layer displays a slight decreasing trend, while groundwater velocity
in the third layer shows an increasing trend. These trends do not persist in later time-steps,
further supporting the finding that the walkers have reached the target distribution. Over time,
the parameter values fluctuate around a consistent mean, indicating that the samples are in
a stationary state with stabilized sampling behavior. It is also observed that the amplitude
(range) of fluctuations, in the trace plots increases slightly over time, i.e., in the earlier time-
steps, the samples exhibit a tighter range of values for the model parameters. This is because,
in the early months, larger temperature changes better constrain the parameter estimation,
narrowing the search radius within the plausible exploration space. In summary, this analysis
shows that the sampling has achieved stationarity, consistently exploring the parameter space
without exploration bias, in a well-mixed manner. In the next step, to assess whether the
generation of each sample is independent of other samples, autocorrelation plots are employed
(Figure 4.9). Autocorrelation measures the similarity between the samples as a function of
“lag”, i.e. the number of iterations between samples. Constant high autocorrelation indicates
that samples are too similar, suggesting poor mixing of the sampling methodology. Effective
MCMC sampling should display decreasing autocorrelation with increasing lag, showing that
samples become more independent as the gap between them grows (Roy, 2020).

In Figure 4.9, autocorrelation is calculated for the samples of each model parameter at vari-
ous time-steps, with a thinning factor of 100 and a maximum lag of 50. For most parameters,
autocorrelation decreases as the lag increases, indicating that realized samples are relatively
independent and that the walkers mix well. However, an exception is found in the Darcy
velocity of the first layer (u1), where repetitive spikes in autocorrelation appear at later time-
steps, indicating higher correlations between nearby samples. This pattern suggests that u1

may have converged to its target distribution earlier, resulting in less variability in subsequent
samples. This could indicate that the early temperature data strongly constrains this param-
eter, generating samples that consistently reflect the already determined target value. This
implies a so-called high information content of the temperature data during early time-steps
for the first layer.
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Figure 4.8: Trace plots of model samples for nine parameters (heat extraction rate (q), thermal
conductivity (λ), and Darcy velocity (u) for three layers) at five different time-
steps.
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Figure 4.9: Autocorrelation of the nine model parameters (heat extraction rate (q), thermal
conductivity (λ), and Darcy velocity (u) for three layers) at five different time-
steps, up to a lag of 50.
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Figure 4.10: Violin plots of the nine model parameters (heat extraction rate (q), thermal
conductivity (λ), and Darcy velocity (u) for three layers) at five different time-
steps. The dashed line represents the reference value for each parameter.
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4.3.2 Evaluation of the posterior samples

To gain a deeper understanding of the results from the MCMC sampling, violin plots are
used to visualize the distributional characteristics of the generated model parameter samples
(Figure 4.10). These plots are particularly useful in this context, as they reveal the density
and variability of the generated model samples. Figure 4.10 illustrates this information for
all parameters, using the same selected time-steps shown in the previous figures, providing a
more comprehensive view of how the uncertainty in the model samples evolves. As shown in
Figure 4.10, the parameters in the first layer are more tightly distributed when compared to
those in the other layers.

This narrower distribution in the first layer corresponds to earlier findings, which suggested
that the thermal state in this layer, influenced by lower advection, leads to more significant
temperature changes. These changes indicate high parameter sensitivity, which in turn helps
to constrain the parameter space more strictly.

In the first layer, the samples for both thermal conductivity (λ1) and Darcy velocity (u1) are
clustered around a single mode for most time-steps, indicating high certainty in the parameter
estimates. This is particularly evident for Darcy velocity (u1), where the statistical distribution
is especially tight. This aligns with the autocorrelation analysis from Figure 4.9, which showed
that after a few months, the inference of groundwater flow rate in the first layer has stabilized.
Therefore, further Bayesian investigations for this parameter would not be necessary and could
be treated as a minimization problem instead. However, the strong correlations between
parameters and interactions across layers still necessitate the use of the Bayesian framework
to understand the relationships in the parameter space.

In contrast, the distributions of Darcy velocity samples in the second (u2) and third (u3)
layers show greater variability. This can be attributed to the heat transfer dynamics in these
layers, where slower thermal changes in later time-steps lead to less pronounced temperature
shifts. As a result, a wider range of groundwater flow values can explain the observed tempera-
tures, leading to greater uncertainty in the parameters for these layers. The consistent findings
that the parameters in the first layer exhibit the strongest correlations indicate that they are
the most influential factors in determining temperature changes in the field. To further explore
the relationships between pairs of model parameters, an analysis of the correlation between the
heat extraction rate (q1), thermal conductivity (λ1), and Darcy velocity (u1) in the first layer
in the sixth month is performed. This analysis is illustrated in Figure 4.11, where the lower
left triangle of the figure displays contour plots, while the upper right triangle features hexbin
plots. Each hexagon represents a minimum of 15 samples at that position in the parameter
space, with darker colors indicating higher frequencies of samples. The diagonal subplots show
histograms of sample distributions, along with the estimated kernel density distributions.

The histogram of correlations reveals a multimodal distribution for heat extraction rate and
thermal conductivity, while a unimodal distribution is observed for groundwater flow.
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Figure 4.11: Pair plots of heat extraction rate (q1), thermal conductivity (λ1), and Darcy
velocity (u1) within the first layer at month 6.

Although all parameters are correlated at this time-step, the strongest correlation is between
Darcy velocity and the heat extraction rate. For a more comprehensive analysis, the pair plots
of all nine parameters at five different time-steps are presented in the Appendix. Notably,
correlations are observed not only within individual layers but also between different layers
over time. This observation aligns with the governing heat transfer in the domain. Initially,
a significant temperature difference between the inlet fluid in the pipe and the surrounding
environment can be assumed, leading to a higher expected heat exchange rate in the first layer
at early times. Due to the higher temperature differences in the first layer, the fluid inside the
pipe extracts a relatively large amount of energy from the ground. As a result, the heated
fluid entering the second and third layers has a higher temperature, causing a decrease in the
heat extraction rate in the first layer over time. However, higher advection in the second and
third layers mitigates the cooling effect, maintaining a relatively constant heat extraction rate
in those layers. This interaction between the layers can also be identified statistically in the
pair plots of Figure 4.11.

74



4.3 Results and discussion

Figure 4.12: Comparison of simulated and observed temperature changes at month 60 over
the depth, using inferred model parameters from months 6, 12, 24, 36, and 48.

4.3.3 Simulated temperature changes

So far, the generated samples using various statistical analyses have been discussed. However,
the primary goal of this chapter is not merely to infer parameters, but to improve the prediction
of thermal states in the field. Therefore, this section focuses on predicting temperature changes
around the BHE in a stochastic manner, utilizing the measured temperatures from the inactive
BHE over the operation time. As a first scenario, five time-steps at months 6, 12, 24, 36,
and 48 are selected and at the end of each time-step, the measured temperatures are used
within the Bayesian framework to infer a set of model parameters. These inferred parameters
are then directly applied to predict temperature changes in the field across the layers after
five years of operation. The results of these predictions, with a thinning factor of ten applied
to the samples, are shown in Figure 4.12. It is revealed that over time, as more information
is gathered, the uncertainty in the predictions is significantly reduced. Initially, most of the
generated samples for the parameters in the first layer tend to underestimate the temperature,
but as time progresses, the proposals are chosen more efficiently.

To better quantify the results shown in Figure 4.12, the root mean square error (RMSE) for
temperature change predictions at month 60 is plotted in Figure 4.13. All sampled parameters
from months 6, 12, 24, 36, and 48 are included in this analysis to predict the temperature
change at the end of month 60 along the entire depth. It is observed that the maximum
RMSE for predictions using samples from month 6 is 1.17 K, which decreases to 0.05 K with
the consideration of samples from month 48. Similarly, the maximum range of temperature
change predictions reduces from 1.91 K to 0.16 K as the month progresses from 6 to 48. This
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Figure 4.13: Comparison of the root mean square error (RMSE) and the range of temperature
change predictions at month 60, based on the model samples from months 6, 12,
24, 36, and 48.

indicates that uncertainty in the temperature predictions for the final time-step reduces to 8 %
when inferred samples from month 48 are used. It should be noted that the faster dynamics of
temperature change in the early months make capturing the correct behavior of temperature
variation more challenging. However, if certain subsurface parameters, such as groundwater
flow rate, or operational parameters, like the flow rate of the heat carrier fluid, change over
time, fast temperature changes may also occur even in the later time-steps.

As expected from the statistical analysis, the first layer, due to low groundwater velocity
and local cooling, is the main source of uncertainty for predicting temperatures. It is observed
that predictions from layers 2 and 3 are more accurate, as they can more rapidly approach the
true thermal state. This is because temperature signals in these layers reach a steady state
more quickly, leading to smaller variations between time-steps. In the first case, the spatial
predictability of the proposals across the entire depth is analyzed. As a further analysis, an
examination of temperature changes within the first layer over entire time-steps is conducted.
Therefore, the same five time-steps (months 6, 12, 24, 36, and 48) are selected, and based
on the inferred parameters at each time-step, the simulated temperature change until the
end of the operation is compared. The temperature change at a depth of 10 m is presented
in Figure 4.14 This result clearly shows a reduction in temperature uncertainty over time.
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Figure 4.14: Comparison of the 95 % confidence interval, mean, and median of predicted tem-
perature changes with observed temperature changes at a depth of 10 m, using
inferred parameters from months 6, 12, 24, 36, and 48 until the end of the op-
eration.

Similar to the previous case, predictions based on early inferred parameters cannot accurately
reproduce the transient temperature evolution and tend to predict an earlier steady state
for the subsurface system. For instance, by comparing the mean and median of predicted
temperatures based on parameters from months 6 and 12, it is evident that predictions based
on parameters from month 12 better follow the nonlinear transition from the transient phase
to a quasi-steady state condition.
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4.4 Conclusions and outlook

This chapter presents a probabilistic modeling framework for predicting long-term tempera-
ture changes in the subsurface surrounding BHE fields, accounting for multi-layer subsurface
heterogeneity and groundwater flow. Leveraging a Bayesian approach, the newly developed
framework infers the high-dimensional, correlated parameter space essential for accurately
modeling heat transport in the subsurface caused by the operation of BHEs in fields with
complex geological settings.To achieve this,the affine invariant ensemble sampler within a
stochastic Bayesian method characterizes nine correlated parameters—such as heat extraction
rate, thermal conductivity, and Darcy velocity—across three distinct subsurface layers. An
efficient analytical forward solver, the MFLSA further enhances the framework’s capacity to
incorporate anisotropic conditions and groundwater flow.

To demonstrate the framework’s applicability, a synthetic five-year case study is conducted in
COMSOL Multiphysics®, involving four active BHEs and one inactive BHE. Monthly simulated
temperatures obtained at the inactive BHE by the numerical model are used as reference data
for parameter estimation and to evaluate the framework’s temperature change predictions.
Comprehensive statistical analyses confirm the successful characterization of the parameter
space, thereby achieving reliable spatial and temporal temperature predictions. Sequential
application of the framework over 32 months shows a reduction in prediction uncertainty
to 8 % by the end of the five-year operation, underscoring the framework’s effectiveness in
managing long-term temperature predictions. However, the reduction in uncertainty may be
less pronounced if operational conditions vary significantly over time.

Additionally, this framework extends the applicability of the MFLSA analytical model for
realistic, heterogeneous subsurface scenarios by eliminating the need for a constant heat ex-
traction rate across layers.

Future work will focus on applying this framework to real field data with extended, high-
resolution measurements and exploring transient boundary conditions and variable operational
parameters. Incorporating machine learning methods to further improve sampling efficiency,
along with complementary data sources such as hydrogeological measurements and geophys-
ical investigations, could refine the inversion process and enhance the reliability of inferred
parameters.

78



Conclusions and future work
5Chapter





5 Conclusions and futurework

5.1 Summary and conclusions

This dissertation presents a simulation-based optimization approach for adaptively managing
load distribution among BHEs in a field, integrating an efficient optimization technique, an-
alytical modeling tools, and a Bayesian data assimilation method. Adaptive management is
essential due to uncertainties in both descriptive and predictive aspects, which make single-
step planning for optimal load distributions impractical. This necessitates the development
of novel methods that actively incorporate real-time information and adapt dynamically to
temperature changes in BHE fields. In three interconnected chapters, this research addresses
challenges such as managing uncertainties, accounting for complex subsurface geological con-
ditions, incorporating coupled heat transfer processes, and adapting to fluctuations in heat
demand. Each chapter builds upon insights or unresolved questions from the previous one,
creating a cohesive methodology that enhances the reliability and adaptability of BHE system
modeling and optimization.

Chapter 2 focuses on extending the existing concept of individual load distribution in BHE
fields from a single-step approach to a sequential strategy that accommodates time-variant
changes in the BHE field. This effort led to the development of sequential optimization—a
dynamic approach that continuously updates optimal load distributions based on temperature
measurements (Soltan Mohammadi et al., 2024a). By revisiting and refining the optimization
process periodically, this method adjusts optimal load allocations to account for uncertainties
in temperature change predictions and deviations in energy demand. The optimization pro-
cess aims to minimize maximum subsurface temperature changes caused by BHE operations,
ensuring optimal heat extraction and reducing local thermal anomalies. This is achieved by
identifying critical BHEs in the field where temperature changes around them are most sig-
nificant and redistributing loads among BHEs to avoid these extreme temperature changes.
Constantly revisiting the BHEs and updating the thermal state in the subsurface as a new
initial condition for simulation and optimization allows the algorithm to flexibly identify new
critical BHE locations and sequentially revise the previous optimal plans. The applicability
of this methodology is assessed through two case studies. Sequential optimization is applied
to fields with five and 26 BHEs, resulting in significant reductions in maximum temperature
changes—2.9 K and 8.9 K, respectively—over 15 years of operation, compared to a single-step
optimization strategy. These findings validate the method’s ability to dynamically adapt to
new thermal and operational conditions, mitigate negative ecological impacts, and extend the
sustainable lifespan of BHE field. Additionally, the role of underestimating and overestimating
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heating demand on the deterioration of optimized patterns is investigated. In further analy-
sis, sequential optimization demonstrates good performance in cases with fluctuating heating
demand. In this case study, where fluctuations range from -50 % to +100 % of the planned
loads within a stochastic analysis, sequential optimization achieves an average reduction of
2.7 K in maximum temperature changes.

The uncertainties discussed in Chapter 2 are not approached from a physics-based perspec-
tive, but are introduced as theoretical percentage deviations from temperature measurements
at the location of BHEs. Chapter 3, employing the sequential optimization from the previous
chapter, investigates the potential of this approach in a more realistic scenario where uncer-
tainties arise from transient hydrogeological conditions in the BHE field (Soltan Mohammadi
et al., 2024b). The focus shifts to incorporating advective heat transfer—a critical factor in
subsurface thermal dynamics—into the sequential optimization framework.

To achieve this, the MFLS model (Molina-Giraldo et al., 2011) is adapted and rearranged
to account for transient groundwater flow. This adaptation allowed the model to represent
varying groundwater velocities using a superposition approach, enhancing its ability to capture
transient thermal evolution in the BHE field. The revised MFLS model is validated against
numerical models. The validation test cases cover diverse fluctuation patterns of groundwater
velocity, including linear, nonlinear, periodic, increasing, decreasing, and noisy trends. These
validation scenarios are applied to a case with one BHE and a field with ten BHEs. The
results show mean absolute errors ranging from 0.05 to 0.18 K, well within the typical margins
of common monitoring devices. This confirms the model’s reliability in representing accurate
thermal responses to transient groundwater flow.

The rearranged MFLS model is then integrated into the sequential optimization framework
for the field with ten BHEs. This extended framework treats groundwater velocity as the
primary source of uncertainty in subsurface temperature changes. An additional significant
advancement is the introduction of dynamic parameter calibration into the optimization pro-
cess. Unlike the previous chapter, which uses the current thermal condition as an updated
initial state for the simulation of the upcoming months, the new approach in this chap-
ter re-calibrates model parameters at monthly time-steps. This is done by formulating the
problem as a nonlinear least-squares minimization, solved with the Trust-Region-Reflective
algorithm (Byrd et al., 2000). The sequentially calibrated input model parameters ensure
a more accurate description of the unknown or uncertain model parameters and help avoid
cumulative errors in future simulations.

The results of Chapters 2 and 3 establish a solid foundation for extending optimization
algorithms to dynamically control thermal anomalies in the subsurface. These chapters high-
light the importance of predictive models capable of accurately describing heat transfer in
subsurface settings that are often complex and subject to dynamic changes. Such changes
typically manifest as transient boundary conditions within the modeling domain or as model
parameters that are not fully characterized and subject to uncertainties.

Beyond the need for flexible and robust modeling tools, advancements in measurement
technologies, such as distributed temperature sensing (DTS), which provides high-resolution
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spatial and temporal data (Gebhardt et al., 2024; Heim et al., 2024b; Zhang et al., 2023a,b),
inspire the development of a methodology that can more efficiently leverage the measured
data.

In response, Chapter 4 introduces a novel Bayesian framework for modeling BHE fields
(Soltan Mohammadi et al., 2025). This probabilistic framework is designed to improve the ac-
curacy of long-term temperature predictions by assimilating real-time measurements to dynam-
ically update the predictive model. This approach effectively characterizes high-dimensional
and highly correlated parameter space that is critical for accurate heat transport modeling. In
this chapter, these parameters include heat extraction rates, thermal conductivity, and Darcy
velocity across multiple subsurface layers. By employing the AIES (Goodman and Weare,
2010), the framework overcomes challenges associated with sampling from the posterior dis-
tribution of nine correlated parameters. Additionally, the integration of the MFLSA (Erol and
François, 2018) into the framework allows it to account for heterogeneous subsurface condi-
tions and accurately describe heat transfer, while also considering groundwater flow effects
across different layers.

To demonstrate its applicability, a synthetic case study involving four active BHEs is devel-
oped in this chapter. A numerical model is used to represent temperature measurements in
the BHE field over five years of operation. The proposed Bayesian approach utilizes available
measurements at monthly time-steps to infer a set of possible input parameters. The inferred
parameter sets are then used to generate an ensemble of temperature predictions rather than
a single deterministic forecast. This ensemble-based approach creates a reliability-driven and
probabilistic framework for assessing temperature changes, providing insights into the likely
range of temperature variations within each geological layer and the confidence level associ-
ated with the predictions. The sequential application of this framework in the demonstrated
example over 32 months successfully reduces prediction uncertainty to 8 % by the end of
the operation period, highlighting its effectiveness in managing long-term temperature predic-
tions. Furthermore, the framework eliminates the need to assume constant heat extraction
rates across subsurface layers, offering a more realistic approach for modeling temperature
changes in heterogeneous geological settings using analytical models.

In conclusion, this dissertation presents a set of comprehensive and innovative strategies for
modeling and optimizing BHE field operations, aimed at managing uncertainties and adapting
to the complexities of (hydro)geological systems, thus advancing the sustainable and efficient
utilization of closed-loop geothermal systems.

5.2 Outlook

Although the advancements presented in this work have contributed to the modeling, op-
timization, and adaptive management of BHE fields, there remain several opportunities for
further research and development.
The next step should focus on integrating the proposed Bayesian framework into optimization
routines and applying the developed methodologies to real-world data from operational BHE

83



5 Conclusions and future work

fields. Further analysis is needed to explore the potential of the Bayesian framework, particu-
larly in models with transient boundary conditions and heterogeneous operational parameters,
which are common in complex subsurface settings.
To enhance the efficiency of the Bayesian framework, improvements in sampling strategies
could be made by incorporating a learning tool that continuously adapts the sampling process
based on feedback from real-time measurements (Liang et al., 2011). This approach could
focus on identifying and sampling the most relevant regions of the parameter space, thus
accelerating the computational process and improving the precision of the results.
Another suggestion for improvement is the integration of additional data sources, such as ge-
ological logs or geophysical surveys. These complementary data sources could help constrain
the inversion process, reduce implausible samples, and improve the geological realism of the
results (Hermans et al., 2018, 2014; Thibaut et al., 2022).
While the optimization efforts in this thesis focused on minimizing temperature changes in-
duced by BHE operations, expanding the scope of optimization to include heat pumps is
a promising direction. By considering the efficiency and performance of the heat pumps in
addition to the thermal anomalies in the subsurface, this extension would allow full system per-
formance optimization (Kümpel et al., 2022). To support this, the modeling of BHEs should
be expanded to account for temperature dynamics both inside and outside the borehole. Al-
ternatively, a comprehensive sensitivity analysis might provide a viable approach to finding
proxies for outlet temperatures based on other parameters, such as heat extraction rates and
the thermal resistivity of the borehole. This could help further refine the optimization process
and enhance the overall system’s performance and sustainability.
Throughout this thesis, the time-steps for measurements, simulation, calibration and parame-
ter inference were assumed to be monthly. However, a further parameter study is necessary to
determine the optimal temporal resolution for calibration, parameter inference and optimiza-
tion, particularly given the heat transfer dynamic in the subsurface, which is typically slow.
Investigating the impact of higher-resolution measurements, such as weekly, daily, or hourly
data, on the simulations and load proposal could provide insights into whether finer temporal
data integartion justifies the additional computational costs.
Another important consideration for future work is the potential impact of climate change on
subsurface thermal regimes. As global temperatures rise, the thermal state of subsurface also
changes, potentially affecting the long-term performance of BHE systems. Integrating climate
change projections into the modeling framework will enable an assessment of whether the op-
timal load proposals remain valid under future climatic conditions or require adaptation. This
extension could involve coupling the current framework with climate models to incorporate
trends in subsurface temperature, groundwater temperature, and other relevant factors (Benz
et al., 2024, 2022; Hemmerle et al., 2022).
As another avenue for future work, leveraging reduced-order models (ROM) and/or physics-
informed machine learning techniques offers significant potential to address the computational
challenges associated with modeling BHE systems in complex geological settings, an area that
remains largely unexplored. While numerical methods are accurate, they are often prohibitively
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computationally expensive when applied to large-scale BHE fields, making them unsuitable for
fast simulations in the context of optimal control strategies. ROM techniques can mitigate
these issues by simplifying high-dimensional models into a lower-order space that captures
the essential physical characteristics of the system, significantly reducing computational de-
mand (Cupeiro Figueroa et al., 2021; Menberg et al., 2020; Verhelst and Helsen, 2011).
Additionally, the emerging paradigm of physics-informed machine learning (Karniadakis et al.,
2021) combines data-driven algorithms with the physical principles governing heat transfer,
enabling models to learn from existing data while ensuring that predictions remain physically
plausible. These models can be trained on available data to approximate the behavior of the
full system with much lower computational cost, making them particularly suitable for real-
time simulations and optimal control of BHE systems in the field (Ahmed et al., 2023; Arroyo
et al., 2022; Ishitsuka and Lin, 2023; Li et al., 2024).
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Appendix

A. Supplementary material for Chapter 4

Validation of the forward solver over depth and time (30 years), using data and results from
(Erol and François, 2018) for the (hydro)geological settings provided in Table 4.1.

Figure A.1: Validation of the forward solver (MFLSA) with numerical results over depth.
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Figure A.2: Validation of the forward solver (MFLSA) with numerical results over time.
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A. Supplementary material for Chapter 4

Pair plots for all nine parameters at different time-steps:

Figure A.3: Pair plots of all nine parameters at month 6.
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Figure A.4: Pair plots of all nine parameters at month 12.
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A. Supplementary material for Chapter 4

Figure A.5: Pair plots of all nine parameters at month 24.
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Figure A.6: Pair plots of all nine parameters at month 36.
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A. Supplementary material for Chapter 4

Figure A.7: Pair plots of all nine parameters at month 48.
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anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt und die den benutzten
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