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Abstract (Deutsch)

Die bildbasierte Phänotypisierung von ganzen Pflanzen und Pflanzenorga-
nen mit hochauflösenden optischen Sensoren hat sich als bevorzugte Meth-
ode zur nicht-destruktiven und hochdurchsatzfähigen Erfassung quantita-
tiver Pflanzenmerkmale etabliert. Aufgrund verschiedener technischer und
natürlicher Faktoren unterliegt das optische Erscheinungsbild von Pflanzen-
und Hintergrundstrukturen erheblichen Schwankungen. Folglich stellt die au-
tomatisierte Analyse großer phänotypischer Daten ein anspruchsvolles Prob-
lem dar. Die inhärente Komplexität phänotypischer Bilddaten erfordert
höhere kognitive Ansätze für die Musterklassifikation und Segmentierung, wie
beispielsweise Convolutional Neural Networks (CNN). Allerdings erfordern
die fortschrittlichen CNN-Methoden eine große Menge an repräsentativen
Referenzdaten (sog. ground truth), was einen Flaschenhals für ihre direkte
Anwendung darstellt. Folglich befasst sich diese Arbeit mit der Untersuchung
und Entwicklung halb- und vollautomatischer Bildverarbeitungsansätze zur
Segmentierung und Erkennung von komplexen pflanzlichen Strukturen in
Anwendung zur Hochdurchsatz-Pflanzenphänotypisierung. Der anwendung-
sorientierte Aufwand dieser Arbeit liegt insbesondere in der Analyse großer
Bilddaten von großen Hochdurchsatz-Bildgebungsplattformen am IPK, ein-
schließlich mehrerer Gewächshausanlagen zur Spross- und Wurzelphänotyp-
isierung. Beginnend mit halbautomatischen Ansätzen wurde eine Genauigkeit
von mehr als 80% bei der Wurzel- und Grannenbildsegmentierung erreicht.
Aufbauend auf den ground truth Daten aus der semi-automatisierter Bildseg-
mentierung wurden U-net CNN Modelle entwickelt und trainiert, die bei der
vollständigen Automatisierung eine Genauigkeit von mehr als 90% in Wurzel
und Sprosssegmentierung erreicht haben. In diesen Anwendungen konnte
gezeigt werden, dass die vorgeschlagenen U-net-basierten Bildsegmentierung-
modelle verschiedenen modernen CNN-Methoden überlegen sind. Darüber
hinaus sind die hier vorgeschlagenen CNN-Modelle weniger komplex und
besser in der Lage, unterschiedliche optische Szenen zu segmentieren. Zusam-
menfassend zeigt diese Arbeit das große Potenzial neuartiger Deep-Learning-
Ansätze für die vollautomatische Verarbeitung großer Bilddatenmengen auf,
was wesentlich dazu beiträgt, eine Lücke in der Hochdurchsatzplanzenphäno-
typisierung und Biodaten-basierenden Pflanzenforschung zu schließen.
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Abstract (English)

Image-based phenotyping of whole plants and plant organs with high-resolution
optical sensors became a method of choice for assessing quantitative plant
traits in a non-destructive, high-throughput manner. Due to several technical
and natural factors, optical appearance of plant and background structures
undergoes substantial variations. Consequently, automated analysis of large
phenotypic data renders a challenging problem. The intrinsic complexity
of phenotypic image data requires higher-level cognitive approaches to pat-
tern classification and segmentation, such as convolutional neural networks
(CNN). However, the advanced CNN methods require a large amount of rep-
resentative ground truth data, which poses a bottle-neck for their straight-
forward application. Consequently, this thesis deals with investigating and
developing semi-and fully automated image processing approaches to plant
image segmentation and pattern detection in application to high-throughput
plant phenotyping. In particular, the application-oriented effort of this work
is on the analysis of large image data from major IPK high-throughput imag-
ing platforms, including multiple greenhouse shoot and root phenotyping fa-
cilities. Starting with semi-automated approaches, more than 80% accuracy
of root and spike image segmentation was achieved. Based on the ground
truth data from the semi-automated image segmentation, U-net CNN mod-
els were developed and trained, which achieved an accuracy of more than
90% for fully automated root and shoot segmentation. In these applications,
the proposed U-net-based image segmentation models were shown to be su-
perior compared to various CNN architectures and state-of-the-art methods.
Furthermore, the proposed CNN models are less complex and more capable
of segmenting different optical scenes including greenhouse and field-like im-
ages. Ultimately, this thesis shows a great potential of novel deep learning
approaches to fully automated processing of large image data which essen-
tially helps to bridging a gap in high-throughput plant phenotyping and
bio-data driven research.
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1. Introduction

1.1 Plant Phenotyping

Crop plants play a central role in ecological systems and represent an es-
sential source of nutrients for 7.5 billion people [2]. However, the increasing
world population and climate change pose new challenges for sustainable crop
production [3]. To address these challenges, concentrated research efforts to-
wards a deeper understanding of genetic and environmental factors affecting
crop yield are required [4, 5]. Crop yield is a critical and multifaceted param-
eter in agriculture, and it defines the amount of crop grown, such as Wheat
and Barley, per unit of area land. The higher the crop yield, productivity
and profitability, the higher.

An essential tool for understanding, predicting, and improving crop yield
is plant phenotyping. The comprehensive definition of plant phenotyping
involves the assessment of plant traits such as growth, development, archi-
tecture, physiology, tolerance, resistance, and fundamental measurement of
specific quantitative parameters such as such as leaf area, root length and
plant height [6, 5]. The relationship between crop yield and plant pheno-
typing is intricate, involving the systematic measurement and analysis of
various plant traits, encompassing morphological, developmental, and func-
tional properties to enhance crop productivity [7].

Plant phenotyping is considered a basis for any plant breeding selec-
tion process, and it requires knowledge integrated from multidisciplinary
sciences (covering biological sciences, computer science, mathematics, and
engineering). Especially in the case of precision agriculture, plant pheno-
typing emerged as a powerful tool for examining how phenotypes interact
locally and dynamically with the temporally and spatially dynamic environ-
ment above (shoot) and below ground (root) as shown in Figure 1.1. Diverse
plant structural and functional elements, such as plant biomass [8], root mor-
phology [9, 10], leaf properties [11], and fruit traits [12], are directly quanti-
fied in the phenotype. By studying the language of plant traits, researchers
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and practitioners can exploit this knowledge to breed resilient crops, enhance
agricultural sustainability, and address the challenges of changing climate.

Figure 1.1: Aim of plant phenotyping: Analyze the interaction between geno-
type and environmental conditions that promote a particular phenotype [1].

The methods for plant phenotyping can be categorized as destructive and
non-destructive, depending on whether the plant is harmed or altered dur-
ing measurement. The destructive phenotyping alters the plant tissue while
measuring or collecting plant traits manually, such as height and width, and
renders the plant unsuitable for further analysis [13, 14]. These methods
are not only destructive but also labour-intensive and time-consuming, in-
creasing the plant population size required in phenotyping studies [15]. On
the other hand, non-destructive phenotyping methods enable the repeated
measurement of plant traits without causing harm to the plant. Computer-
assisted methods for phenotyping, particularly imaging techniques, are be-
coming more popular [16, 17], enabling the analysis of a large number of
plants with less human effort in an automated and high-throughput manner.
This technique benefits longitudinal research and high throughput plant phe-
notyping breeding programs. Further sections will discuss an overview and
challenges of various plant image analysis solutions for high-throughput phe-
notyping.
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1.2 State-of-the-Art and Research Require-

ments

Plant image analysis has emerged as a pivotal tool in various scientific disci-
plines, revolutionizing how researchers study, monitor, and manage plant life.
This multidisciplinary field integrates advanced imaging technologies, image
processing algorithms, and data analytics to extract meaningful information
from visual data. The importance of plant image analysis is underscored
by its applications in precision agriculture [18], genetic research[15], environ-
mental monitoring [19], and automated farming systems [20]. Automated
analysis of extensive image data from high-throughput screening studies,
such as greenhouse and microscopic measurements, is pivotal for quantita-
tively evaluating phenotypic plant traits. However, efficient and accurate
analysis of extensive image data is a non-trivial task that represents one of
the major bottlenecks of quantitative plant biology [21].

Figure 1.2: Image-based plant phenotyping: (a) Exemplary Arabidopsis
shoot system captured in the greenhouse (b) segmented target plant pix-
els from background pixels. The morphology of the segmented shoot system,
called traits, is calculated to study genotype-phenotype characterization.

The primary tasks by analysis of plant image data include pixel-wise iden-
tification (segmentation) and/or localization (detection) of whole plants or
plant parts/organs, followed by a quantitative description of segmented/detected
image regions in terms of morphological, developmental and, functional traits
(e.g., diverse shape-, colour-, growth- and health-traits) as shown in Figure
1.2. However, a straightforward segmentation and detection of plant struc-

3



tures are often hampered by several natural and technical factors, including
the complexity of optical scenes (e.g., shadows, reflections), dynamic ap-
pearance of growing organisms, presence of statistical and structural noise,
differences in the appearance of plant structures in different image modal-
ities. Thereby, it is essential to consider that the reliability of phenotypic
traits depends on the accuracy of the first critical step of image processing -
the identification of targeted image regions, i.e., pixel-wise image segmenta-
tion and object detection.

The thesis focuses on developing image segmentation solutions for major
plant organs, such as roots, shoots, and tiny objects in grainy crops (Barley
spikes, barbs in Barley awns), for non-destructive plant phenotyping ap-
proaches.

Figure 1.3: Segmentation of conventional thresholding techniques on root
images from different setups: (a) Barley plant roots in the soil environment
(b) Rapeseed roots grown in transparent containers filled with agar gel (c)
scanned washed Maize roots on an Epson Expression 10 000 XL scanner.
Segmentation of roots from the soil background in the image (d) is very
noisy compared to the other setups in (e) and (f).

To date, most of the root image analysis approaches WinRHIZO [22],
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EZ-RHIZO [23], SmartRoot[24] and, IJ Rhizo [25] have focused on segment-
ing roots from well-contrasting background media such as transparent liquids
(agar) and manually scanned roots as shown in Figure 1.3b and 1.3c respec-
tively. However, optically contrasting substrates do not represent a natural
root environment. In recent imaging systems [26, 27], roots are grown and
imaged in their natural opaque soil environment (soil-root image in Figure
1.3a). However, conventional thresholding techniques [28] are insufficient to
accurately differentiate between root and non-root pixels of these soil-root
images compared to the high contrast background mediums as shown in Fig-
ure 1.3 d, e, f. Moreover, the distribution of root and non-root pixels in
these three imaging modalities was analysed using pairwise distances (Pdist
= pdist2(A, B)), where A and B are root and non-root pixel vectors, re-
spectively. The histogram study in Figure 1.4 briefs that the soil-root image
exhibits a substantial overlap between grayscale values of root and non-root
pixels compared to other non-soil imaging modalities. Therefore, it is evident
that both root and non-root pixels in the soil-root images exhibit similar or
even the same intensity. This results in significantly higher background noise
pixels in the segmented soil-root image (Figure 1.3b).

Figure 1.4: Histograms of root (blue) and non-root (green) intensity values
of different imaging modalities shown in Figure 1.3. The pairwise distance
(Pdist) between root and non-root histograms, which serves as a quantita-
tive measure for separability of root and non-root image structures, indicates
that soil-root images represent the most challenging modality for image seg-
mentation.

Furthermore, the intensity among the root structures varies rapidly across
the soil-root image of different plant types and time points of root growth.
Figure 1.5a shows the sparse root system architecture (RSA) in the soil en-
vironment where contrast among the root and background soil pixels is re-
duced from top to bottom of the image because of varying soil distributions.
Furthermore, the aged plants tend to have high inhomogeneity between the
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primary (or thin) and lateral (or fine) roots, as shown in Figure 1.5b. These
addressed limitations make the segmentation of roots under soil background
a challenging task.

Figure 1.5: Challenges in root image segmentation: (a) contrast between the
root and background pixels varying along the image. The roots at the bottom
of the image contain very low contrast compared to the upper part of the
image. (b) aged root system architecture contains both primary and lateral
roots in the image. However, primary roots are over-exposed compared to
the lateral roots, which results in high inhomogeneity between them.

Along with the root system, the shoot system also undergoes significant
changes in appearance during plant development. This study focuses on seg-
menting plant shoot images from Arabidopsis, Barley, and Maize, in which
the optical appearance of shoot systems dynamically varies a lot in real time.
Figure 1.6 displays the growth of Arabidopsis plants under different condi-
tions over time. Initially, the shoots are light green in colour (Figure 1.6a),
but as they mature and the leaves grow larger, they become darker and may
have white-coloured flowers (1.6b). Eventually, due to stress and/or ageing,
the colours of the shoots change completely to brown, yellow, and red, as
shown in Figure 1.6c. Likewise, the side view shoot images of Arabidopsis
and Barley in Figure 1.7 exhibit varying contrast shoot structures due to the
reflection of plant structures on the background walls of greenhouse photo
chambers and inhomogeneous colours of leaves and tilers over the plant age-
ing. Because of this complexity, state-of-the-art solutions based on reference
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Figure 1.6: Growth of Arabidopsis plants in top view under different con-
ditions over time: In the early stage (a), the plant has healthier green
leaves. Over time, flowers appear in the shoot system (b), and leaves tend
to change their colours (c) because of stress conditions like high temperature
and drought.

Figure 1.7: Challenges in segmenting side view shoot images: (a) Due to
the reflection of plant structures on the background, the upper region of the
Arabidopsis plant exhibits very low contrast compared to the bottom areas
(b) also, leaves and tilers exhibit inhomogeneous colours over the plant’s
ageing.

frames [29, 30] and pixel-based supervised learning methods [31, 32] are gen-
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erally not sufficiently robust for unsupervised analysis of sizeable variable
image data. Segmenting plant root and shoot systems poses a challenging
task. Therefore, more advanced methods with higher abstraction capabilities
are required to cope with the tasks of noisy image segmentation.

Figure 1.8: Visibility of spikes in Wheat plants: segmentation of spikes cov-
ered by leaves (c) makes it difficult to see them compared to non-overlapping
spikes (b).

Phenotyping plant organs in grain crops is crucial for improving crop qual-
ity and ensuring food security for the growing population [33]. In addition
to studying plant roots and shoot systems, researchers need to study spikes
in Wheat and Barley plants from 2D images, as shown in Figure 1.8a. Till
date, many state-of-the-art solutions are based on single spikes and require
cutting off spikes from plants to classify different Wheat varieties using mor-
phological image processing algorithms, Hu moments, and neural networks
[34, 35, 36]. For the first time, Qiongyan et al. [37] proposed a novel ap-
proach for detecting (young) spikes in digital images of Wheat plants based
on Law’s textural (energy) features and a neural network. However, the pro-
cess of phenotyping spikes is challenging due to the variational spike texture
and visibility of spikes in the plants. Leaves partially or entirely cover spikes;
some leaves cross over spikes, making it difficult to segment them from the
plants. One can see this example in Figure 1.8c, where the leaves obscure
the spikes, compared to Figure 1.8b, where the spike is fully visible.

Another novel application in the phenotyping plant organs is the detec-
tion and phenotyping of barbs in microscopic Barley awn images to study
awn roughness, as illustrated in Figure 1.9a. Awns, which are bristle-like ex-
tensions of the glumes or husks of various grass species, including significant
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Figure 1.9: Overview of Barley awn barb structures: Due to the location and
density of barbs on the awn surface, they exhibit various morphology (c) and
contrast (d) compared to the standard barb strictures (b).

crop plants like Wheat and Barley, are the focus of this research. The pres-
ence of barbs gives awns a rough texture that can be harmful during manual
harvest or lowers the quality of Barley as a feed crop [38]. Awn barbs gen-
erally are upward-oriented single-cell structures, see Figure 1.9b. However,
accurate segmentation of barbs is a critical and challenging task because of
its limited spatial resolution, low contrast, and considerable variability, as
shown in Figure 1.9c and d. To our knowledge, no appropriate state of the
art image processing solutions are available for accurate barb segmentation
and phenotyping in awn images.

Although image modalities and applications in plant phenotyping may
differ substantially, common challenges are observed across a broad spectrum
of root-and-shoot image analysis. They include, for example, (i) low contrast
between fore- and background image regions, (ii) dynamic appearance of
plant structures in the course of plant development (over time), and, as a
result, absence of trivial invariant features that could be universally used for
segmentation, detection and classification of plant from non-plant structures.
Therefore, more advanced computer vision methods with a higher level of
abstraction capabilities such as deep learning, are required to overcome these
challenges.
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1.3 Convolutional Neural Network (CNN)

Technologies related to computer vision are growing in popularity. They are
utilized in a wide range of systems and applications, including data analy-
sis systems in medicine, face, fingerprint, and iris recognition for personal
identification tasks, security video surveillance systems that use license plate
recognition to identify cars, and many more [39, 40, 41]. The development
of large image bases and increased processing power have made it feasible to
train deep neural networks to handle computer vision tasks like recognition
and classification. According to research (2020) [42], the deep learning in-
dustry’s global market value will increase to $60.5 billion by 2025 from $12.3
billion in 2020, representing a 37.5% growth rate. Among industrial sectors,
agriculture is one of the slowest to adopt deep learning but has a high po-
tential for its use to combat global food insecurity.

Convolutional Neural Networks (CNNs) are a deep learning model de-
signed for processing structured grid data, such as images and videos [43, 41,
39]. They are neural networks with convolution layers that have been shown
to outperform traditional methods associated with higher-level cognitive abil-
ities in many computer vision applications [44, 45]. Typically, convolutional
neural networks include a fully connected layer and a sub-sampling layer,
also known as a pooling layer. Convolutional neural networks are employed
in various tasks such as semantic segmentation, object detection, pattern
recognition, and image classification [43, 46]. Several ”levels” of neurons,
referred to as feature maps or channels, make up convolution layers and sub-
samplings in convolutional neural networks. A tiny area of the preceding
layer, known as the receptive field, is connected to every neuron in this layer.
A feature map in the context of an image is a two-dimensional neural ar-
ray or just a matrix. Simultaneously, despite the practical application of
such networks, the issue of selecting the best architecture and configuring
the neural network’s parameters continues to be open. In this view, the
work aims to develop the most efficient convolutional neural networks and
practical recommendations on choosing the best architecture and setting the
neural network’s parameters according to the problem’s specifics.

In recent years, an emerging trend in quantitative plant sciences has been
using CNNs for automated image analysis and plant phenotyping such as the
detection of Wheat roots grown in germination paper [47], segmentation of
roots from the soil in X-ray tomography [48] and segmentation of spikes
in Wheat plants [49]. However, because of the wide variation in optical
plant appearance, variations in experimental setups [50, 48], and lack of

10



labelled ground truth data [51, 52], dependable software tools appropriate
for a specific plant species are rarely available. As a result, very few software
tools are currently available for high-throughput plant image analysis and
phenotyping.

1.4 Research Objectives

The thesis aims to develop efficient and automatic plant image segmentation
algorithms and phenotyping tools for a broad spectrum of applications in-
cluding root-and-shoot image analysis, spike detection in Wheat plants and
barbs in microscopic images of Barley awn cultivars. In brief, this thesis fo-
cuses on the development of image processing and deep learning solutions for
automatic high-throughput plant phenotyping. The objectives of the thesis
are:

• Development of a semi-automated root image segmentation algorithm
and phenotyping tool using traditional image processing algorithms
and evaluating the tool’s performance with state-of-the-art tools. This
tool can generate ground truth data for subsequent training of deep
learning models. (¬ Chapter 2)

• Research on CNN models for the segmentation of roots from soil back-
ground and compare the performance of the proposed model with the
state-of-the-art CNN models for root image analysis. (¬ Chapter 3)

• Investigation of shallow learning-based neural networks and different
deep learning models for the segmentation of different plant shoot im-
ages (Arabidopsis, Barley and Maize) at different developmental stages
(e.g., juvenile, adult) in different views (e.g., top and side views) and
evaluate their performance with the proposed CNN model. (¬ Chap-
ter 4)

• Enhancement of wheat spike detection algorithm in 2D images using
shallow learning-based neural networks and studying the robustness of
the model on European cultivars. (¬ Chapter 5)

• Developing a CNN model for the segmentation of barbs in microscopic
images of Barley awn cultivars and studying the robustness of the pro-
posed model by genotype-phenotypic characterization and classification
of awns. (¬ Chapter 6)

• Developing a GUI-based front end for efficiently handling the above
algorithmic frameworks is also suitable for IT-unskilled users.
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2. Semi-automated Root Image
Analysis (saRIA)

Paper 1: Narisetti, N., Henke, M., Seiler, C. et al. Semi-automated Root
Image Analysis (saRIA). Sci Rep 9, 19674 (2019). https://doi.org/10.1038/s41598-
019-55876-3

Impact Factor: 4.38 (according to SCImago Journal Rank, January 2024)
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Abstract

Quantitative characterization of root system architecture and its devel-
opment is important for the assessment of a complete plant phenotype. To
enable high-throughput phenotyping of plant roots efficient solutions for
automated image analysis are required. Since plants naturally grow in an
opaque soil environment, automated analysis of optically heterogeneous and
noisy soil-root images represents a challenging task. Here, we present a
user-friendly GUI-based tool for semi-automated analysis of soil-root images
which allows to perform an efficient image segmentation using a combina-
tion of adaptive thresholding and morphological filtering and to derive var-
ious quantitative descriptors of the root system architecture including total
length, local width, projection area, volume, spatial distribution and orien-
tation. The results of our semi-automated root image segmentation are in
good conformity with the reference ground-truth data (mean dice coefficient
= 0.82) compared to IJ Rhizo and GiAroots. Root biomass values calcu-
lated with our tool within a few seconds show a high correlation (Pearson
coefficient = 0.8) with the results obtained using conventional, pure manual
segmentation approaches. Equipped with a number of adjustable parameters
and optional correction tools our software is capable of significantly acceler-
ating quantitative analysis and phenotyping of soil-, agar- and washed root
images.
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2.1 Introduction

Plant roots are key drivers of plant development and growth. They absorb
the water and inorganic nutrients from the soil [1, 2, 3] and provide anchor-
ing of the plant body [4, 5]. Root system architecture (RSA), the spatial
configuration of a root system [1] is known to be an important phenotypic
feature closely related to crop yield variability upon changes in environmen-
tal conditions [6, 7]. In general, the RSA and its response to the environment
are known to be dependent on multiple factors including the plant species,
the plant genotype, composition of the soil, availability of nutrients and the
environmental conditions [8]. The emerging discipline of plant phenomics
aims to extract the plant anatomical and physiological properties to study
the plant performance under given conditions [1]. In the case of roots, the
relevant traits include descriptors of global and local root morphology (like
total length, are, volume, and diameter, or lateral branching, the direction of
a tangent, etc.) [9, 10, 11, 12]. Monitoring of these traits enables conclusions
about the ability of plants response to variable environmental factors such
as drought, cold, starvation, etc., [13].

In recent years, a number of approaches to root imaging and image anal-
ysis were suggested [14]. However, most of these works rely on the mea-
surement of washed roots or roots grown in artificial, optically transparent
media such as liquids or gels [15, 16] that allow a straightforward image analy-
sis. Further non-destructive methods including X-ray computed tomography
[17, 18, 19, 20], nuclear magnetic resonance (NMR) microscopy [21], magnetic
resonance imaging [22, 23] and laser scanning [24] provide unique insights
into 3D organization of living root architecture, however, their throughput
capabilities are presently rather limited. To enable 2D imaging of roots in
a soil-like environment, near-infrared (NIR) imaging of roots growing along
surfaces of transparent pots or minirhizotron was designed and tested [25, 26].
Special long pass filters were used to block root exposure to visible light and
the images were taken by NIR sensitive camera with suitable illumination.
The system allows a non-invasive acquisition of root images in darkness [26].

To analyze a large number of root images in an automated high-throughput
manner, a number of software tools are available. Most of these tools were,
however, designed to extract RSA traits from specific imaging systems, e.g.,
images from minirhizotron [25] and images of roots grown in agar [27]. In
addition, some general tools are available for in-depth analysis of monocot
root systems regardless of root structure. These tools depends on significant
user input for processing even though they can be used in a batch mode
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[28, 29, 30, 31]. Moreover, some tools can be used as a plugin for general im-
age processing platforms like ImageJ to perform specific tasks for the manual
segmentation of roots in the image [32].

The majority of software for root image analysis is rather tailored to arti-
ficial setups such as transparent growing media that cannot be applied to the
analysis of heterogeneous and noisy soil-root images. With exception of soft-
ware for analysis of X-ray micro-computed tomography (µCT) images [33]
and Root1 [34], which still requires extensive human-computer interaction
and suitable for X-ray tomography 3D images. In recently published works
[35, 36, 37], novel machine and deep learning approaches to automated seg-
mentation of soil-grown root image were presented. However, the presented
approaches rely on colour information and require substantial amount of
ground truth training data as well as substational computational resources.

In this work, we present a GUI-based handy tool for semi-automated root
image analysis (saRIA) which enables rapid segmentation of diverse 2D root
images including potting soil and artificial media setups in a high-through
manner. Based on a combination of adaptive image enhancement, adjustable
thresholding and filtering as well as optional manual correction, saRIA repre-
sents a broadly appliable tool for quantitative analysis of diverse root image
modalities as well as generation of quality ground truth reference images for
training of advanced machine learning/deep learning algorithms.

The paper is structured as follows: Materials and Methods section de-
scribes the methodological framework of saRIA including data preparation,
segmentation algorithm, and root trait computation. Results section shows
the segmentation capabilities of saRIA with respect to freely available tools
and presents the results of roots traits derivation from manually and saRIA
segmented root images. In Discussion, we summarize the results of an eval-
uation study using the saRIA root image segmentation and give an outlook
of possible future improvements.

2.2 Methods

2.2.1 Image Data

Three different modalities for imaging of root system architecture were ana-
lyzed in this study including

• Soil-root Image: This type of digital image is taken by a monochrome
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camera (UI-5490SE-M-GL, IDS) with LED illumination (UV, 380nm)
in a custom-made imaging box similar to our previously published
setup [26]. In brief, plants are grown in transparent pots [77x77x97mm
(WxLxH))] filled with potting substrate (Potgrond P, Klasmann). An
example of soil-root images acquired with this system is shown in Figure
2.1a. Depending on the developmental stage, plant health, environmen-
tal factors (e.g., temperature, humidity), these images may, in general,
exhibit diverse artifacts including low contrast between the root archi-
tecture and heterogeneous soil, inhomogeneous scene illumination (i.e.
vertical intensity gradient), water condensation at the pot walls, see
Figure 2.1b. Identification of relevant root architecture in such struc-
turally and statistically noisy images represents a challenging task.

Figure 2.1: Examples of root images from different setups: (a) Arabidopsis
plant roots 28 days after sowing, (b) Arabidopsis plant roots with conden-
sation noise 28 days after sowing, (c) roots grown in agar, (d) washed roots.
The white colour bar on each image represents the scale of 1cm in length.

• Agar-root Image: During this experiment, the plants were grown
on 1/2 MS, 1.5% (w/v) agar medium (pH 5.6 without sugar) in Petri
dishes for 5 days. The images were captured by scanning the dishes
in grayscale at 300 dots per inch resolution using an Epson Expres-
sion 10 000 XL scanner (Seiko Epson) [26]. An exemplary image of
Rapeseed roots is shown in Figure 2.1c. This image has a clear con-
trast between roots and homogeneous background. Nevertheless, the
background pixels have some morphological artifacts which will be dis-
cussed in the next subsection.

• Washed-roots Image: Maize plants were grown in transparent pots
filled with mixture of substrate (self-made compost, IPK) and sand
(1:1) for 3 weeks. This digital image is obtained by scanning the washed
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maize roots on an Epson Expression 10 000 XL scanner (Seiko Epson)
as shown in Figure 2.1d. Compared to the above two types of root
images, it is less noisy and the contrast between roots and background
is significantly higher.

Consequently, the classification between root and non-root pixels in these
three image modalities is unequally difficult. Figure 2.2 shows histograms and
pairwise distances (Pdist=pdist2(A, B)) between root and non-root grayscale
distributions corresponding to soil-root, agar and washed roots images in Fig-
ure 2.1, respectively. As expected, soil-root images exhibit a strong overlap
between grayscale values of root and non-root pixels and the distance be-
tween them is the lowest among these three imaging modalities. Therefore,
here we focused on soil-root image analysis only. Application of our ap-
proach to higher contrast image modalities (i.e. agar, washed roots images)
is, however, trivial, and only requires inverting the grayscale values.

(a) (b) (c)

Pdist = 1.3e+4 Pdist = 4.1e+4 Pdist = 8.2e+4

Root Pixels

Non-root Pixels

Root Pixels

Non-root Pixels

Root Pixels

Non-root Pixels

Figure 2.2: Histograms of root (blue) and non-root (green) intensity values of
different imaging modalities shown in Figure 2.1: (a) soil-root, (b) agar grown
roots and (c) washed roots images. The pairwise distance (Pdist) between
root and non-root histograms, which serves as a quantitative measure for
separability of root and non-root image structures, indicates that soil-root
images represent the most challenging modality for image segmentation.

2.2.2 Image Analysis

Image analysis algorithms, as well as the graphic user interface (GUI) were
implemented under the MATLAB 2018b environment [38]. The major goal of
image analysis consists of segmentation of root architecture and calculation
of phenotypic features of root architecture and image intensity (i.e. colour).
In case of colour images, the input image is converted to a grayscale image
using rgb2gray Matlab routine. In general, the pipeline of image analysis
includes the following steps:
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Figure 2.3: Basic steps of root image processing and analysis in saRIA: (a)
Arabidopsis soil-root image, (b) adaptive thresholding, (c) morphological
filtering, (d) root skeleton.

• Image I/O:Most standard image formats (such as *.jpg, *.png, *.bmp,
*.tif) can be imported for further processing and analysis. Stepwise sin-
gle image, as well as automated processing of large image datasets is
implemented.

• Image preprocessing: Depending on the imaging modality (e.g.,
soil-root or agar-root images) and presence of noisy or structural arti-
facts, preprocessing steps may include cropping of the region of interest
(ROI), inverting of image intensity, despeckling and smoothing. In case
of agar and washed-root images, inversion of image intensity has to be
performed prior to image analysis. Otherwise, the procedure of agar
and washed-root image analysis is similar to soil-root images.

• Adaptive image thresholding: Preprocessed images are segmented
into a foreground (roots) and background using adaptive thresholding
based on Gaussian weighted mean as suggested by [39]. This technique
tolerates global inhomogeneity of image intensity such as vertical image
gradient in our soil-root images. An example of an adaptive threshold-
ing of an Arabidopsis soil-root image (Figure 2.3a) is shown in Figure
2.3b.

• Morphological filtering: To remove white noise and small non-root
blob-like structures (such as sand, gravel or water condensation arti-
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fact in Figure 2.1b) morphological filtering is applied. Thereby, roots
are considered to be elongated line-/curve-like structures that differ
from this kind of non-root blobs with respect to their area, length, and
shape (i.e. eccentricity). In the case the root region represents a sin-
gle connected structure, filtering can be performed merely by applying
intensity and area thresholds. If roots are represented by disconnected
structures, differentiation of root from non-root structures is performed
using additional shape descriptors such as length and eccentricity, i.e.
a descriptor of the object’s Eigenellipse elongation, which is zero for
an absolutely round and 1 for a line-object. By appropriate setting of
thresholds for these three parameters, non-root blobby structures are
removed. Figure 2.3c shows an example of a morphological filtering of
a preliminary segmented root image.

• Skeletonization: Root skeleton is calculated on the basis of the seg-
mented and filtered image. In addition to the filtering steps described
above, additional thinning or eroding of the binary image is applied to
suppress high-frequency noise. The exemplary image for the skeleton
extraction is shown in Figure 2.3d.

• Root feature calculation: The distance transform of the cleaned
binary image is calculated for assessment of the local root width (or
diameter) measured in pixels of the root skeleton. Further root fea-
tures include root length, root angles with respect to a vertical axis,
branching and end points of the roots skeleton, the intensity of root pix-
els and their standard statistical descriptors (i.e. mean, stdev values).
The complete list of a total of 44 root traits can be found in Supplemen-
tary Information (Table S1). Note that all traits are extracted using
pixel-wise calculation irrespective of number of root systems in the im-
age. In addition, the RSA traits can also be written out in mm. For
this purpose, the user have to set the pixel-to-mm conversion factor in
the saRIA GUI. Here, we derived the pixel-to-mm factor by measuring
a reference line (white colour bar) in the images as shown in Figure 1.
The pixel-to-mm conversion factor (CF) is then defined as follows:

CF =
length of the reference line in mm

length of the reference line in pixels
(2.1)

The workflow of image analysis is also shown in Figure 2.4
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   Input
   Image

Pre-processing
      Adaptive 
   Thresholding

   Morphological 
        Filtering

   Segmented 
        Image

  Skeleton 
Estimation

     Trait 
Calculation

  RSA Traits

  Root 
Skeleton

Figure 2.4: Workflow of image processing and analysis in saRIA. Colour
filled icons indicate the data modalities, framed rectangles describe image
processing steps.

• Evaluation: To examine the performance of image segmentation, a
standard statistical metric, the Dice similarity coefficient (DSC) [40],
is used. The DSC evaluates the spatial overlap between two binary im-
ages and its value ranges between 0 (no overlap) to 1 (perfect overlap).
The DSC is defined as follows:

DSC =
2 ∗ TP

2 ∗ TP + FP + FN
, (2.2)

Where TP, FP, and FN are true positive, false positive and false nega-
tive pixels, respectively.

2.3 Results

2.3.1 Semi-automated Segmentation of Soil-Root Im-
ages

To evaluate the performance of our algorithms, segmentation of 100 Ara-
bidopsis soil-root images was performed automatically and compared with
the results of fully manual segmentation. Thereby, manual segmentation
was also carried out with saRIA by applying a low intensity threshold for
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selection of all high- as well as low-intensity roots, and subsequently followed
by manual removal of all remaining artifacts including solitary objects as
well as noise regions attached to the root (which cannot be otherwise identi-
fied and quantified as a separate object) using the ‘clearInside’ saRIA tool.
This step was done by two biologists (co-authors of this manuscript) with an
expertise in RSA. In contrast, for semi-automated image segmentation user
merely has to adjust the four basic algorithmic parameters (controlled by the
four GUI sliders) according to the subjectively best result of visual inspection
of a few test images. Once the best combination of algorithmic parameters
is defined, segmentation of all remaining images can be performed in a fully
unsupervised manner.

Figure 2.5: The accuracy of root image detection using saRIA vs. manual
segmentation (ground-truth data) in terms of the dice similarity coefficient
(DSC). The green line points to the mean DSC value over 100 tested soil-root
images. The red colour bars indicate a few cases of poor saRIA performance
with a low DSC value that corresponds to roots in the early stage of plant
development.
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Figure 2.5 shows the performance of image segmentation compared to
manual segmentation of 100 soil-plant images for the intensity threshold (T)
0.12, minimum area 450, minimum length 46 and minimum eccentricity 0.49.
This figure shows that approximately 90% images have DSC value greater
than 0.7 and the mean DSC value is 0.82.

To validate the robustness of the saRIA image segmentation of the above
100 images, we have also compared with two other freely available tools called
IJ Rhizo [41] and GiA roots [42]. Table 2.1 shows the mean DSC value for
the subjectively best possible configuration of IJ Rhizo, GiAroots with three
different thresholding methods and saRIA. The table briefs that saRIA sig-
nificantly outperformed with the combination of Gaussian adaptive thresh-
olding and all morphological parameters (area, length, circularity) compared
to the IJ Rhizo and GiAroots. The brief discussion on parameter configu-
ration of IJ Rhizo and GiaRoots can be found at [41] and [42] respectively.

Parameter IJ Rhizo GiAroots-
Global
threshold

GiAroots-
Adaptive
thresh-
old

GiAroots-
Double
adaptive
threshold

saRIA

Mean
DSC

0.43 0.50 0.54 0.69 0.82

Threshold T1=50,
T2=255

T=50 Mean
shift=-
2.0096

Bound drop
value=5

T=0.12

Minimum
area

5 mm 450 450 450 450

Minimum
length

x x x x 46

Circularity 0.7 x x x 0.49
(0-line,
1-circle)

(0-circle,
1-line)

Table 2.1: Comparison of saRIA image segmentation quality (i.e. mean DSC)
and parameters with IJ Rhizo and GiAroots.
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2.3.2 Evaluation of Phenotypic Traits vs. SmartRoot

Here, the results of phenotypic root characterization obtained with saRIA are
evaluated in comparison with SmartRoot [32]. The SmartRoot is the most
widely used for the traits quantification of disconnected RSA and each part
of the root is traced manually by placing multiple landmarks finally inter-
connected to the root skeleton. However, the SmartRoot doesn’t deliver the
single segmented binary (reference) image for the comparison with saRIA.
Therefore, the root traits derived from such manually segmented images can
be seen as a reference ground-truth data. To quantify the (dis)similarity
between saRIA and SmartRoot results, the correlation coefficient of determi-
nation R2 and significance level p-value are used. They represent the percent
of the saRIA calculated traits that is closest to the ground-truth data and
model validation respectively. Figure 2.6 shows the correlation between the
SmartRoot (x-axis) and saRIA (y-axis) outputs for three traits where each
point denotes one particular image out of 126 Arabidopsis root images ac-
quired with our in-house soil-root imaging system. Note that the images
used for traits evaluation are different from above segmentation evaluation
data. The three traits used for evaluation are the total root length, total
root surface area, and total root volume. As one can see, for all three traits
correlation between saRIA semi-automatically and SmartRoot manually seg-
mented images exhibit R2 values higher than 0.84, 0.86, 0.77 and p-values
7.7e-53, 5.25e-55, 3.35e-42 respectively.

Total Length Total Surface Area Total Volume

Figure 2.6: Correlation between root traits calculated using semi-automated
saRIA (y-axis) and manual SmartRoot (x-axis) image segmentation. Each
point represents a trait value estimated from one of 126 soil-root images. The
red colour solid line and dotted lines represent a fitted curve and 95% confi-
dence bounds, respectively. The R2 value indicates good conformity between
saRIA and SmartRoot results of image segmentation and trait calculation.
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2.3.3 Visualization of Root Features

In addition to numerical outputs, saRIA software generates root features
(e.g., distance maps, skeletons, width distributions, etc) for visualization
purposes. Figure 2.7 shows an example of images of root width and orien-
tation. The root width is calculated as the Euclidean distance between the
root skeleton and root boundary pixels. Figure 2.7b depicts the Euclidean
distance map of the root object Figure 2.7a where high-intensity central pix-
els represent the root width. The corresponding width colour map is shown
in Figure 2.7c. The width feature is useful to calculate the root volume and
surface area for biomass estimation.

Figure 2.7d displays the absolute orientation of each root skeleton pixel
with respect to the horizontal axis in black-yellow colour-map representation.
Here, a validated linear regression model was used to calculate the slope of a
pixel in the skeleton image. The local slope in i-th pixel is obtained by fitting
a tangent line to the fraction of root skeleton framed by a 15x15 pixel mask
around the i-th pixel. An exemplary figure for the local linear fit can be
found in Supplementary Information (Figure S1). The validated regression
model means that only pixels satisfying the regression model with a high
confidence level (i.e. p-value < 0.05 and R2 > 0.5) were accepted. Pixels
with a low confidence of the linear fit model such as root branches with
non-linear distribution of skeleton pixels were excluded by the calculation of
global statistics of root orientation.

(b) (c) (d)(a)

Figure 2.7: Visualization of root features: (a) binary root image, (b) corre-
sponding Euclidean distance map, (c) overlay of the binary image with the
root skeleton coloured according to the local root width (gray-scale map),
(d) overlay of the binary image with the root skeleton coloured according to
the local root tangent (black-yellow colour map).
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2.4 Discussion & Conclusion

The objectives of our GUI-based saRIA tool are to automatize the time-
consuming manual segmentation of structurally complex and noisy root im-
ages and to enable calculation of RSA traits from different root imaging
modalities including soil, agar and washed roots images. Using this ap-
proach, root architecture can be rapidly segmented and quantified by ad-
justing a small set of algorithmic parameters. Segmentation with saRIA is
particularly efficient when background structures differ from roots in geomet-
rical parameters (such as shape and size) and grayscale intensity. Artifacts
resembling optical root appearance, e.g., scratches on the pot surface or high-
intensity areas resulting from water condensation, are, in contrast, difficult
to eliminate in a fully automated manner. Such artifacts can, however, be
removed using manual segmentation tool also available with saRIA.

The accuracy of trait estimation in saRIA depends on the quality of semi-
automated image segmentation. Our solution for analyzing a large number
of images is to define the best possible set of algorithmic parameters for a
subset of representative root images and then to apply this configuration to
all remaining images in a fully automated manner. Here, 15% of input data
with different scenarios (low, medium and high dense root images) are con-
sidered for the best possible configuration settings.

The quality of image segmentation from Table 2.1 explains that the global
thresholding methods in IJ Rhizo (bi-level threshold) and GiAroots (single-
level threshold) under-performed than adaptive thresholding methods. Since
the global thresholding methods contain one or two threshold values for a
complete image that preserve the high-intensity noisy objects and removes
the low-intensity roots in the soil-root image. However, the GiAroots also im-
plemented based on adaptive thresholding but it lacks the Gaussian smooth-
ing filter in the preprocessing step and morphological constraints (i.e. length
and circularity) on binary root objects, represented as x in Table 2.1. There-
fore, the combination of adaptive thresholding and morphological filtering
promising more accurate segmentation in saRIA for soil-root images.

From the summary of our automated image analysis in Figure 2.5, it
is evident that accuracy of root image segmentation is tendentially higher
(DSC > 0.9) for images with large root architecture. Figure 2.8 shows ex-
ample images of small and large root architecture that exhibit low and high
DSC of automated segmentation vs. ground-truth, respectively. Because
the large root architecture requires a low value for threshold and high value
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for morphological parameters compared to the small root architecture image
where most of the disconnected root components are small in morphology. It
results in the removal of small sized roots and keeping the (both disconneted
root and heterogeneous soil) structures which are big in morphology. This
observation confirms that the relative error in segmentation of small root
architecture (see red colour bars in Figure 2.5) from background pixels is
higher for automated segmentation in comparison to the large roots. How-
ever, these artifacts can be overcome by setting low values for morphological
parameters in the segmentation configuration.

Figure 2.8: Comparison of root image segmentation for young/small vs.
large/adult plants. Top row shows (a) original, (b) ground-truth and high-
DSC saRIA-segmented images of a large root, bottom row (d-f) shows an
example of a relatively small root at the early stage of Arabidopsis plant de-
velopment with a low DSC corresponding to the red bar number 91 in Figure
2.5.
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The quantitative comparison of saRIA is limited to SmartRoot because
other software solutions for root image analysis are either tailored to non-
interrupted representation of root architecture like RootNav [43] or restricted
to high contrast imaging modalities, e.g., agar grown or washed roots, like
GiARoots [42] that is no longer under development and closed source and
not promising more accurate segmentation as shown in Table 2.1.

As mentioned earlier, saRIA is capable of calculating 44 number of root
traits. In brief, they are categorized into 11 features named area (number
of root pixels), number of disconnected root objects, total length, surface
area, volume, number of branching and ending points, statistical distribu-
tion (mean, median, standard deviation, skewness, kurtosis and percentile)
of root geometry in horizontal and vertical direction, width and orientation.
Among those, three important features for root biomass calculation are pre-
sented for saRIA traits evaluation.

The results of our evaluation tests in Figure 2.6 show that root traits
obtained using saRIA are highly correlating (R2 > 0.8) and significant (p−
value < 0.05) with manual segmentation in SmartRoot software. Conse-
quently, one can perform comparatively high-quality root phenotyping with
saRIA 20 or more times faster than with manual annotation of root struc-
tures pixel by pixel.

The difference in trait estimates between saRIA and SmartRoot might
result from the image segmentation parameters and root thickness. First,
the morphological parameters remove tiny roots which have small area and
length. Second, the local thickness of roots in saRIA is defined as the av-
erage diameter automatically segmented roots which includes high-intensity
structures originating from tiny root hairs that can be avoided in manual
segmentation. This may lead to differences in average root width, length
and volume assessed with saRIA vs. SmartRoot. However, the ability to
interactively adjust parameters is available in the saRIA to improve the trait
extraction and even to produce a set of alternative image segmentation in
an automated manner, i.e. automated root tracing and trait extraction for
selected configuration.

Here, we present a user-friendly GUI-based software solution for high-
throughput analysis of root images of different image modalities, includ-
ing challenging soil-root images. Figure 2.9 shows the GUI of saRIA soft-
ware which is freely available as a precompiled executable program from
https://ag-ba.ipk-gatersleben.de/saria.html. Further examples of agar and
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Figure 2.9: The graphical user interface of saRIA. Green coloured pixels
indicate segmented root regions of the soil-root image.

washed roots image segmentation using saRIA are included in the Supple-
mentary Information, see Figure S2 and Figure S3. The saRIA software can
be applied for analysis of single images or large image datasets to automat-
ically detect and extract multiple root traits. This software is designed for
end-users with limited technical knowledge to enable them widely automated
analysis of complex soil-root images in an intuitive and transparent manner.
The saRIA segmentation, root tracing and trait calculation algorithms re-
quire, in average, 5 seconds to process and analyze a 6-megapixel (cropped)
image (on Intel(R) Core(TM) i5-4570S CPU @ 2.90GHz, 64-bit quadracore
processor with 4GB ram and 500GB HDD) which is significantly faster in
comparison to conventional manual segmentation, e.g., SmartRoot. Table 2.2
summarizes the essential features of saRIA vs. other well-established root
image analysis tools (SmartRoot, EZ-RHIZO, and WinRHIZO). The major
difference between the saRIA and other available tools (Plant Root - roots
grown in cloth substrate in custom rhizoboxes, RootReader2D - need high
contrast images and RootNav - supports nested root architectures) is that it
is capable of segmenting contrast varying disconnected root architectures (in

28



semi-automated manner with automated trait extraction) in both potting
soil and artificial growing media.

In addition to routine analysis of root images, saRIA can be used for rapid
generation of ground-truth segmentation data that are highly demanded for
advanced machine learning/deep learning techniques.

The study of plant genotype with root phenotype requires a contribu-
tion of many groups and utilization of molecular, physiological and imaging
techniques. In addition, the performance of phenotype analysis depends
on the image quality. The segmentation algorithm currently bundled in
saRIA is based on intensity gradient among the pixels. Further extensions
of the saRIA segmentation pipeline including advanced machine learning ap-
proaches and additional static and dynamic RSA traits like topological data
(number of primary and lateral roots, branching angles, lateral density) are
planned in the future.

Feature saRIA SmartRoot EZ-RHIZO WinRHIZO

License Free,Closed
source

Free,Open
source

Free,Closed
source

Commercial

Platform Linux,Windows Cross-Platform,
it is an ImageJ
Plugin

Windows
only

Windows
only

Language MATLAB Java C++ x

Root
Tracing

Semi-automated Manual Manual and Automated

Automated

Medium Soil,Agar,Washed Soil,Agar,Washed Agar Washed
roots,Agar

Database
Support

No,but has CSV
export support

SQL SQL No,data files
are saved in
ASCII text
format

Table 2.2: The feature comparison of saRIA with other software for root
segmentation and trait extraction
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Table S1. Root Traits: The description of estimated root system architecture traits in saRIA 

software. 

 

Trait Name Description 

Area  Number of root pixels in the image 

Number of Regions Number of disconnected root objects in the 

image 

Total Length The sum of major axis length of each root object 

approximated by fitting ellipse to the root object 

Total Volume (V) The sum of local volume at each root object of 

skeleton approximated by tubular shape whose 

average radius is estimated from image 

 

𝑉 =∑𝜋𝑟𝑖
2

𝑛

𝑖=0

 

Where 𝑟𝑖 is the average radius of  𝑖𝑡ℎ root 

component in the image. 

 

Total Surface Area (SA) The sum of surface area at each root object of 

skeleton approximated by tubular shape whose 

average radius is estimated from image 

 

𝑆𝐴 =∑2𝜋𝑟𝑖

𝑛

𝑖=0

 

Where 𝑟𝑖 is the average radius of  𝑖𝑡ℎ root 

component in the image. 

 

Specific Root Length The ratio of total length and total volume of 

roots in the image. 

Number of Branching Points The total number of branches in the root 

skeleton 

Number of End Points The total number of end points in the root 

skeleton 

Geometrical X_mean, Y_mean The mean value of root pixels distribution in 

horizontal and vertical direction 

Geometrical X_median, Y_median The median value of root pixels distribution in 
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horizontal and vertical direction 

Geometrical X_std, Y_std The standard deviation of root pixels distribution 

in horizontal and vertical direction 

Geometrical X_skew, Y_skew The skewness of root pixels distribution in 

horizontal and vertical direction 

Geometrical X_kurt, Y_kurt The kurtosis of root pixels distribution in 

horizontal and vertical direction 

Geometrical X_p25, Y_p25 The 25 percentile of root pixels distribution in 

horizontal and vertical direction 

Geometrical X_p50, Y_p50 The 50 percentile of root pixels distribution in 

horizontal and vertical direction 

Geometrical X_p75, Y_p75 The 75 percentile of root pixels distribution in 

horizontal and vertical direction 

Geometrical X_p99, Y_99 The 75 percentile of root pixels distribution in 

horizontal and vertical direction 

Width mean Average root diameter 

Width median Median root diameter 

Width std Standard deviation of the root diameter 

Width skew Skewness of root diameter 

Width kurt Kurtosis of root diameter 

Width p25 25 percentile of root diameter 

Width p50 50 percentile of root diameter 

Width p75 75 percentile of root diameter 

Width p99 99 percentile of root diameter 

Orientation mean Average root Orientation 

Orientation median Median root Orientation 

Orientation std Standard deviation of the root Orientation 

Orientation skew Skewness of root Orientation 

Orientation kurt Kurtosis of root Orientation 

Orientation p25 25 percentile of root Orientation 

Orientation p50 50 percentile of root Orientation 

Orientation p75 75 percentile of root Orientation 

Orientation p99 99 percentile of root Orientation 

 

Table S2. Data set: Data used for traits comparison of saRIA (automatic) Vs Smart root 

(manual) (See attached excel spread sheet to the supplementary information) 
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Figure S1: Linear regression fit: An exemplary analysis of linear regression fit with 10 

neighbor pixels. Where βi represents the measured angle between the central pixel (green 

color blob) and a fitted tangent (gray dotted line).     

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

Figure S2: saRIA software: The graphical user interface of saRIA software. Green colour 

pixels represents the detected roots in the Agar root image. 
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Figure S3: saRIA software: The graphical user interface of saRIA software. Green colour 

pixels represents the detected roots in the scanned image. 
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filename  S_Length  S_Surface  Area  S_Volume

1826CS006_20180716_100851_SV1 13.39279459 0.53167794 0.00232

1826CS010_20180716_102121_SV1 6.267686365 0.234390449 0.0009

1826CS010_20180716_102127_SV2 7.31497732 0.333042349 0.00162

1826CS014_20180716_102154_SV1 7.972931642 0.304594734 0.00128

1826CS018_20180716_103407_SV1 2.74631221 0.126297701 0.00062

1826CS018_20180716_103413_SV2 0.67884886 0.04944127 3.35E-04

1826CS018_20180716_103418_SV3 1.390074 0.0455144 1.65E-04

1826CS026_20180716_104641_SV1 8.70849059 0.279934674 0.00103

1826CS026_20180716_104647_SV2 0.38969532 0.003146374 1.01E-05

1826CS026_20180716_104656_SV4 2.57417825 0.139765049 0.0007

1826CS030_20180716_104718_SV1 7.784439161 0.284274516 0.00102

1826CS030_20180716_104734_SV4 1.517378 0.118905365 8.02E-04

1826CS034_20180716_104817_SV1 13.16748644 0.638003488 0.00363

1826CS034_20180716_104832_SV2 1.6691192 0.11515787 7.07E-04

1826CS034_20180716_104838_SV3 0.6796204 0.042654432 3.01E-04

1826CS038_20180716_104748_SV1 7.84851047 0.301444444 0.00117

1826CS038_20180716_104802_SV4 2.0990834 0.073185452 0.00027

1826CS042_20180716_103600_SV1 14.53306011 0.574594043 0.0027

1826CS042_20180716_103616_SV4 6.86951359 0.401201668 0.00234

1826CS046_20180716_103529_SV1 3.358901674 0.109038349 0.00038

1826CS046_20180716_103535_SV2 1.0557042 0.05176327 2.28E-04

1826CS058_20180716_100959_SV1 3.220126376 0.09509028 0.00034

1826CS062_20180716_100930_SV1 23.8768452 0.949239339 0.00512

1826CS062_20180716_100937_SV2 3.043874345 0.112148224 0.0005

1826CS066_20180716_101039_SV1 22.7305876 1.051377958 0.00502

1826CS066_20180716_101054_SV4 7.87975261 0.470038265 0.00264

1826CS070_20180716_101110_SV1 5.057206138 0.142136617 0.00054

1826CS070_20180716_101118_SV2 2.57829285 0.162372079 0.00098

1826CS082_20180716_103641_SV1 5.101411038 0.173935792 0.00065

1826CS086_20180716_103708_SV1 17.03917727 0.762231872 0.00379

1826CS086_20180716_103723_SV4 2.01279638 0.10032657 0.00047

1826CS094_20180716_104902_SV1 20.37718286 0.920677838 0.00455

1826CS094_20180716_104907_SV2 4.3607907 0.232455083 0.00132

1826CS098_20180716_105035_SV1 2.828279756 0.075585475 0.00026

1826CS098_20180716_105040_SV2 0.89516711 0.032090169 0.00013

1826CS110_20180716_103736_SV1 15.57383647 0.689428159 0.00305

1826CS114_20180716_102451_SV1 6.26634825 0.214931312 0.00084

1826CS114_20180716_102456_SV2 2.887417166 0.109780067 0.00054

1826CS118_20180716_102421_SV1 19.01537712 0.785252441 0.00327

1826CS122_20180716_101216_SV1 17.06688279 0.788688548 0.00386

1826CS122_20180716_101231_SV4 2.43710809 0.089987174 0.00038

1826CS130_20180716_101246_SV1 17.31861458 0.84067454 0.00485

1826CS130_20180716_101304_SV4 3.61329585 0.173477852 0.00084

1826CS138_20180716_102521_SV1 15.32852511 0.661995578 0.00313

1826CS138_20180716_102527_SV2 7.446346938 0.324695612 0.00177

1826CS138_20180716_102537_SV4 1.38550834 0.053719423 0.00022

1826CS142_20180716_102550_SV1 9.264297598 0.254494767 0.00078

1826CS146_20180716_103831_SV1 33.44295993 1.35432328 0.0072

1826CS146_20180716_103837_SV2 5.13579315 0.252332952 0.0016
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1826CS146_20180716_103846_SV4 0.8452682 0.06345203 4.47E-04

1826CS150_20180716_103859_SV1 7.15229178 0.362872573 0.00231

1826CS154_20180716_105003_SV1 4.354021538 0.120289815 0.00037

1826CS166_20180716_105135_SV1 9.466691596 0.37372527 0.00175

1826CS170_20180716_103953_SV1 17.03467918 0.999458132 0.0069

1826CS170_20180716_103958_SV2 5.50082966 0.301744475 0.0016

1826CS174_20180716_103925_SV1 10.37631676 0.341182868 0.00129

1826CS174_20180716_103931_SV2 0.75021 0.03504683 1.66E-04

1826CS178_20180716_102648_SV1 36.19724357 1.482164306 0.00689

1826CS178_20180716_102654_SV2 2.73286984 0.145649495 0.00081

1826CS178_20180716_102704_SV4 3.42089765 0.127407248 0.00053

1826CS182_20180716_102619_SV1 6.26376322 0.294465847 0.00144

1826CS182_20180716_102625_SV2 1.57884188 0.064890727 0.00028

1826CS182_20180716_102635_SV4 4.60554176 0.289414507 0.00216

1826CS186_20180716_101416_SV1 19.00869469 0.728924433 0.00325

1826CS186_20180716_101434_SV4 2.597215513 0.120453879 0.00072

1826CS198_20180716_102034_SV1 7.9601377 0.203017254 0.00065

1826CS210_20180716_104526_SV1 25.88972136 0.95082515 0.00393

1826CS210_20180716_104532_SV2 1.27647059 0.066820473 0.00038

1826CS214_20180716_104553_SV1 9.53293044 0.420915774 0.00207

1826CS218_20180716_105704_SV1 25.77887426 1.122147571 0.00602

1826CS218_20180716_105710_SV2 4.52079126 0.17697617 0.00083

1826CS218_20180716_105718_SV4 1.1229599 0.0711277 4.19E-04

1826CS222_20180716_105733_SV1 6.549464019 0.464155242 0.00371

1826CS230_20180716_105628_SV1 15.16112447 0.582580714 0.00298

1826CS230_20180716_105633_SV2 1.0156255 0.036544386 1.50E-04

1826CS234_20180716_104457_SV1 17.91106481 0.826931707 0.0049

1826CS238_20180716_104429_SV1 3.765152973 0.131268293 0.00065

1826CS242_20180716_103213_SV1 18.47610775 0.825607714 0.00434

1826CS242_20180716_103219_SV2 3.53229104 0.127857258 0.00049

1826CS246_20180716_103143_SV1 23.14317442 1.157591842 0.00639

1826CS246_20180716_103149_SV2 1.43493165 0.051693453 0.00022

1826CS246_20180716_103153_SV3 1.6451689 0.09455021 5.37E-04

1826CS250_20180716_101925_SV1 14.22037917 0.641288169 0.00296

1826CS250_20180716_101940_SV4 2.6434867 0.12775119 5.46E-04

1826CS258_20180716_101756_SV1 23.57651551 1.308475125 0.00852

1826CS258_20180716_101801_SV2 0.6057517 0.029093144 1.41E-04

1826CS262_20180716_101827_SV1 11.60694036 0.493776319 0.00263

1826CS262_20180716_101833_SV2 2.00111963 0.062224443 0.00021

1826CS262_20180716_101842_SV4 12.58472005 0.931494449 0.00743

1826CS270_20180716_103115_SV1 15.10240575 0.556026199 0.0021

1826CS274_20180716_104326_SV1 7.688917736 0.228431554 0.00101

1826CS282_20180716_105535_SV1 23.1953477 0.985072815 0.00493

1826CS282_20180716_105540_SV2 2.31383472 0.124622712 0.00068

1826CS282_20180716_105549_SV4 2.9632268 0.155271646 0.00079

1826CS286_20180716_105602_SV1 17.56742844 0.802130099 0.00415

1826CS290_20180716_105505_SV1 2.54118072 0.090698015 0.00039

1826CS294_20180716_105431_SV1 3.370595211 0.109282365 0.00051

1826CS298_20180716_104258_SV1 12.99082947 0.557608471 0.00264

1826CS302_20180716_104231_SV1 19.33981111 0.79114425 0.00389
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1826CS302_20180716_104245_SV4 1.8158042 0.08572725 3.61E-04

1826CS306_20180716_103011_SV1 6.467614329 0.216276528 0.00108

1826CS306_20180716_103016_SV2 1.8106617 0.066894162 0.00027

1826CS314_20180716_101728_SV1 10.46746289 0.392852297 0.00156

1826CS314_20180716_101733_SV2 2.02140939 0.101212548 0.00065

1826CS314_20180716_101742_SV4 5.464604443 0.360325045 0.0023

1826CS322_20180716_101600_SV1 16.43773322 0.989236839 0.00749

1826CS326_20180716_101629_SV1 16.00884094 0.767354254 0.00444

1826CS326_20180716_101635_SV2 4.611843625 0.159553371 0.00065

1826CS326_20180716_101644_SV4 1.85975586 0.093800177 0.00049

1826CS338_20180716_104135_SV1 22.4123341 1.138751828 0.00729

1826CS338_20180716_104149_SV4 4.07600268 0.212386828 0.00111

1826CS342_20180716_104204_SV1 9.35797239 0.456265026 0.00212

1826CS342_20180716_104209_SV2 1.1405361 0.07450396 4.41E-04

1826CS346_20180716_105339_SV1 22.90230309 1.206162774 0.00819

1826CS346_20180716_105344_SV2 5.30397777 0.327155979 0.00192

1826CS346_20180716_105352_SV4 3.4841715 0.237562559 0.00161

1826CS350_20180716_105405_SV1 10.60125155 0.450270101 0.00263

1826CS350_20180716_105410_SV2 3.65058567 0.142798551 0.00064

1826CS354_20180716_105307_SV1 17.09156029 0.633285754 0.00289

1826CS354_20180716_105322_SV4 6.537711025 0.281383522 0.00136

1826CS358_20180716_105236_SV1 8.566186341 0.278752198 0.00102

1826CS358_20180716_105243_SV2 5.00246579 0.237303798 0.00119

1826CS362_20180716_104104_SV1 28.49074313 1.24523764 0.00593

1826CS370_20180716_102810_SV1 5.854270073 0.193435719 0.00071

1826CS378_20180716_101530_SV1 3.894538921 0.100338835 0.00033

1826CS382_20180716_101453_SV1 16.70517549 0.648931896 0.00304
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sa_Length sa_Surface Area sa_Volume

13.968 0.82568 0.0051249

5.3676 0.27489 0.0016131

7.5888 0.42599 0.0024661

12.0672 0.54914 0.0031709

3.8952 0.23954 0.0014817

4.6908 0.2188 0.0010833

4.5612 0.26802 0.001749

14.2524 0.55078 0.0030586

7.2828 0.3765 0.0021808

6.8004 0.30194 0.0018239

12.9348 0.60832 0.0032981

4.6368 0.24061 0.001713

14.778 0.89086 0.0059265

6.1308 0.34598 0.0020476

3.906 0.29166 0.0018816

16.488 0.942 0.0052866

10.1232 0.48152 0.0024948

16.0992 0.69722 0.0039555

11.8836 0.69951 0.0049528

7.1208 0.43123 0.0026771

7.5672 0.38927 0.0020809

6.2532 0.31837 0.0019848

21.7656 1.1945 0.0070213

9.5472 0.38856 0.0024611

24.75 1.6582 0.010531

11.5056 0.53351 0.0033212

10.6128 0.45769 0.0023966

10.2312 0.47567 0.0027216

11.2284 0.65469 0.0037751

16.1244 0.90123 0.0055968

5.4828 0.30251 0.0017741

23.1156 1.1028 0.0065449

14.7564 0.63826 0.0039029

7.3224 0.33836 0.0018317

3.2832 0.15576 0.00080264

22.2012 0.91573 0.0047928

14.4072 0.58245 0.003468

9.9468 0.53079 0.0029342

24.1596 1.2287 0.0067831

17.3124 0.98726 0.0058309

7.83 0.38129 0.0024219

16.9416 1.0353 0.0070054

8.802 0.54451 0.003885

19.7316 0.85074 0.0053969

11.97 0.56975 0.0037809

4.86 0.23859 0.0013446

9.6228 0.49328 0.0025518

40.5828 1.8292 0.010968

7.0164 0.32946 0.0020807
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3.834 0.21055 0.001237

7.7436 0.46946 0.0032013

11.4516 0.44914 0.0022446

15.7608 0.78414 0.0045379

12.546 0.94187 0.0062013

8.6724 0.40076 0.0026739

18.6984 0.74836 0.004153

4.986 0.23939 0.0014065

40.77 2.301 0.014136

14.2452 0.61196 0.0037118

11.8584 0.57684 0.0036686

10.7748 0.54677 0.0035086

5.7456 0.31268 0.0019911

6.336 0.26136 0.001464

18.2052 0.92498 0.0055578

4.3596 0.25586 0.0017769

9.306 0.42344 0.0020348

22.2768 1.1082 0.0063461

3.1464 0.14415 0.00095372

8.6868 0.50251 0.0031783

24.8796 1.4821 0.0091577

7.2216 0.43518 0.0030575

4.5612 0.0024947 0.3105

13.2624 0.67315 0.0047676

17.2476 0.85335 0.0046254

3.4848 0.26832 0.0018302

20.8044 1.0995 0.006308

7.8768 0.44403 0.0031693

17.6904 0.95581 0.0057693

8.5752 0.43706 0.0027241

28.89 1.5413 0.0099498

10.8324 0.46047 0.0025111

5.3352 0.27644 0.0020935

18.3348 1.1424 0.0072331

11.1924 0.55726 0.0031746

26.7876 1.4612 0.0095269

3.8556 0.17859 0.00099997

14.1552 0.83206 0.0049762

4.6944 0.32646 0.0019419

14.8068 0.94696 0.0069502

19.5012 1.0916 0.0064984

13.8636 0.64979 0.003679

29.2608 1.5381 0.0091507

7.1676 0.48206 0.0034807

8.2908 0.44694 0.0030728

16.38 0.95839 0.0058703

4.2732 0.25348 0.0015677

5.1804 0.26235 0.0016532

19.0152 0.977 0.0057926

20.466 1.0901 0.0066466
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9.6624 0.41168 0.0024332

9.7272 0.53457 0.0031706

6.0624 0.33797 0.0020439

12.3372 0.69315 0.0041297

7.1784 0.35964 0.0023691

11.952 0.69814 0.0053054

19.1772 1.0792 0.0070472

18.09 0.93852 0.0055979

8.2152 0.44302 0.0026692

4.7592 0.24427 0.0014593

23.3856 1.1559 0.0073077

12.1932 0.60161 0.0036688

11.52 0.56066 0.0032562

3.5028 0.22347 0.0015247

21.1788 1.4141 0.0090078

8.388 0.60615 0.0043689

10.2384 0.65625 0.0044838

13.626 0.70326 0.0039054

18.9504 0.74138 0.0039552

22.5864 0.95366 0.0052474

15.7104 0.82863 0.0055637

12.8088 0.7896 0.0044167

10.1124 0.53876 0.0030974

31.2012 1.4928 0.0084237

12.9132 0.57305 0.0031856

5.346 0.22125 0.0010722

24.9084 1.0277 0.0060848
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Notes:

S_length = SmartRoot Length

S_Surface Area = SmartRoot Surface Area 

S_Volume = SmartRoot Volume

sa_Length = saRIA Length

sa_Surface Area = saRIA Surface Area

sa_Volume = saRIA Volume
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[6] Stéphane Compant, Marcel GA Van Der Heijden, and Angela Sessitsch.
Climate change effects on beneficial plant–microorganism interactions.
FEMS microbiology ecology, 73(2):197–214, 2010.

[7] H Charles J Godfray, John R Beddington, Ian R Crute, Lawrence Had-
dad, David Lawrence, James F Muir, Jules Pretty, Sherman Robinson,
Sandy M Thomas, and Camilla Toulmin. Food security: the challenge
of feeding 9 billion people. science, 327(5967):812–818, 2010.

[8] JE Malamy. Intrinsic and environmental response pathways that regu-
late root system architecture. Plant, cell & environment, 28(1):67–77,
2005.

[9] David M Eissenstat. On the relationship between specific root length
and the rate of root proliferation: a field study using citrus rootstocks.
New Phytologist, 118(1):63–68, 1991.

42



[10] Sophie de Dorlodot, Brian Forster, Löıc Pagès, Adam Price, Roberto
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Abstract

High-throughput root phenotyping in the soil became an indispensable
quantitative tool for the assessment of effects of climatic factors and molec-
ular perturbation on plant root morphology, development and function. To
efficiently analyse a large amount of structurally complex soil-root images ad-
vanced methods for automated image segmentation are required. Due to of-
ten unavoidable overlap between the intensity of fore- and background regions
simple thresholding methods are, generally, not suitable for the segmentation
of root regions. Higher-level cognitive models such as convolutional neural
networks (CNN) provide capabilities for segmenting roots from heterogeneous
and noisy background structures, however, they require a representative set
of manually segmented (ground truth) images. Here, we present a GUI-based
tool for fully automated quantitative analysis of root images (faRIA) using
a pre-trained CNN model, which relies on an extension of the U-net archi-
tecture. The developed CNN framework was designed to efficiently segment
root structures of different size, shape and optical contrast using low budget
hardware systems. The CNN model was trained on a set of 6465 masks de-
rived from 182 manually segmented near-infrared (NIR) maize root images.
Our experimental results show that the proposed approach achieves a Dice
coefficient of 0.87 and outperforms existing tools (e.g., SegRoot) with Dice
coefficient of 0.67 by application not only to NIR but also to other imaging
modalities and plant species such as barley and arabidopsis soil-root images
from LED-rhizotron and UV imaging systems, respectively. In summary,
the developed software framework enables users to efficiently analyse soil-
root images in an automated manner (i.e. without manual interaction with
data and/or parameter tuning) providing quantitative plant scientists with
a powerful analytical tool.
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3.1 Introduction

Image based high-throughput phenotyping of roots is one of the emerging
disciplines in plant phenomics. It aims to extract the plant morphological
and physiological properties in a non-destructive manner to study the plant
performance under given conditions [1]. Traditional approaches to root phe-
notyping have relied on destructive and artificial grown mediums such as
liquids or gels [2, 3]. However, the root growth is known to be dependent on
physical conditions [4] and such studies have shown a non-typical response
of the roots in soil [5, 6].

More recently, non-destructive methods such as X-ray computed tomog-
raphy [7, 8], nuclear magnetic resonance (NMR) microscopy [9] and laser
scanning [10] provide unique insights into 3D organization of living root ar-
chitecture, however, their throughput capabilities are presently rather lim-
ited. Moreover, minirhizotrons [11, 12] and rhizotron systems [13, 14] have
gained popularity to enable non-invasive imaging of roots in a soil envi-
ronment. However, the minirhizotrons require a repeated photographing of
roots through a transparent surface of below ground observation tubes [15].
In contrast, rhizotron systems contain rectangular glass pots which requires
a single photographing of roots [16]. Recently, near-infrared (NIR) imaging
of roots growing along transparent pots were presented in our previous works
[17, 18]. These systems contain special low pass filters to block root expo-
sure to visible light and the images were taken by NIR camera under suitable
illumination.

Due to high level of optical soil heterogeneity, soil-root images exhibit
a relatively low contrast between back- and foreground structures. Conse-
quently, at the local scale root and soil pixels cannot be distinguished on the
basis of their intensity values only. Several root image solutions were sug-
gested in the past, however, most of them were designed for a specific imag-
ing system [19, 20, 21, 22, 23]. Examples of general-purpose semi-automated
tools include GiA Roots [24], IJ-Rhizo [25] as well as our previously pub-
lished saRIA software [26]. All these tool rely on thresholding and morpho-
logical filtering techniques to segment the roots from background. Other root
phenotyping solutions like SmartRoot [27, 28] require manual segmentation
by placing multiple landmarks along the roots that are subsequently inter-
connected to the root skeleton. All the above software solutions are time
consuming, have limited throughput capabilities, and require expertise in
parameter tuning.
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To overcome the limitations of existing methods, automated root image
segmentation solutions are required for high-throughput root image segmen-
tation and phenotyping. In the last five years, deep learning gained high
attention especially in computer vision applications, because of the ability
to directly extract and train relevant multi-level features from data without
prior knowledge and human effort in feature design. Convolutional neural
networks (CNNs) are a class of deep learning approaches that have shown to
outperform traditional methods in many applications of the computer vision
that are associated with higher level cognitive abilities [29]. CNNs have been
shown to outperform conventional approaches when applied to traditionally
difficult tasks of image analysis including pattern detection and object seg-
mentation in biomedical images [30, 31], traffic scenes [32] and remote sensing
[33]. In recent years, they were also used for high-throughput plant pheno-
typing such as detection of wheat roots grown in germination paper [34],
segmentation of roots from soil in X-ray tomography [35] and segmentation
of spikes in wheat plants [36]. However, most of these works present ex-
emplary application and/or computational frameworks that can hardly be
handled by end-users without advanced programming skills.

The focus of this work is on semantic segmentation of soil-root images
by which root pixels are automatically segmented from soil regions. For this
kind of approach, CNNs often use encoder-decoder architecture. Till date,
several papers have been published on this type of CNN architecture for
biomedical [30, 31] and areal applications [32, 33]. Moreover, this type of
architectures are constantly improving by cascading or fusing the CNNs in
biomedical [37, 38] and remote sensing applications [39].

Application of CNNs to automated image analysis and plant phenotyping
became an emerging trend in quantitative plant sciences in the recent years
[40]. However, reliable software tools suitable for a particular plant type
are rarely available due to the large variability of optical plant appearance,
differences between experimental setups [35, 40], and the absence of labelled
ground truth data [41, 42]. Consequently, only a few software tools for high-
throughput plant image analysis and phenotyping are presently known.

Previously published state of the art encoder-decoder CNN solutions for
root image segmentation include RootNav 2.0 [43], SegRoot [44] and RootNet
[45]. Among those, RootNav 2.0 and RootNet tools were primarily developed
for particular experimental setups such as roots grown on germination paper
with high contrast between root and (blue) background pixels, and, thus,
cannot be expected to perform accurately by application to other imaging
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modalities such as noisy soil-root images in this work.

Among the above mentioned tools, SegRoot appears to be the most suit-
able one for soil-root image segmentation as it is previously shown to be
capable of segmenting roots from soil background in minirhizotrons systems.
Moreover, the architecture of SegRoot is somewhat similar to U-net and it
transfers the location of feature maps to decoder for image segmentation.
However, this approach failed to detect fine, blurry and low contrast roots,
which, in turn, compromises the accuracy of resulting phenotypic traits such
as estimated root biomass and other geometric features. To overcome these
limitations, here, we adopted a U-net [30] based encoder-decoder architecture
which transfers both location and pixel information of the feature maps to
the decoder. Also, it is especially useful when large amount of manually an-
notated data is challenging, such as often the case in biomedical applications.

The aim of this work was to develop an efficient and handy tool for fully
automated root image segmentation and quantification using a pre-trained
deep CNN framework which could be used in a straightforward manner even
by unskilled users. Although, our approach relies on supervised model train-
ing, for the end-users such a model-based image analysis is performed in a
fully automated manner (i.e. without interaction with data and/or parameter
tuning) in contrast to purely manual or semi-automated image segmentation
approaches where such interactions are required. Consequently, we termed
this approach fully-automated root image analysis (faRIA). The main con-
tributions of this work include:

• Development of a CNN approach to automated root image segmenta-
tion based on the U-net architecture from [30],

• Training and application of the CNN model for efficient segmentation
of root structures of different size, shape and optical contrast on low
budget hardware systems using image masking approach,

• Evaluation and comparison of our CNN model vs. other state-of-the-
art tools for root image analysis using the Dice similarity metrics,

• Evaluation of our CNN framework performance on images of different
root imaging modalities,

• Development of a GUI based front-end for efficient handling of the
algorithmic framework suitable also for IT-unskilled users.
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The paper is structured as follows: first, we describe the methodological
framework of proposed U-net based deep learning algorithm and performance
matrices for soil-root segmentation. Then, a brief experimental setup consist
of data preparation, training and prediction procedure are discussed. Fol-
lowed by, the results of experimental investigation are presented including
a comparison of faRIA performance to other image segmentation tools, per-
formance on resized images and robustness by application to other image
modalities and plant species. In Discussion, we summarize the results of an
evaluation study using faRIA image segmentation and present its GUI im-
plementation for efficient application in high-throughput root phenotyping.

3.2 Methods & Computational Setup

3.2.1 Deep CNN Model for Root Image Segmentation

The proposed CNN architecture is derived from the original U-net [30] which
provides a versatile framework for semantic image segmentation consisting
of encoder and corresponding decoder units. Our CNN model has a depth
of 3 which is less than original U-net depth of 4 due to the smaller input
image size. Further, in our approach the batch normalization [46] is applied
after each convolutional layer in contrast to the original U-net architecture
where it was not the case. The motivation behind the batch normalization
is it is known to make model performance more faster and stable [47, 46].
Furthermore, the original U-net [30] used Dropout layer which we avoided
because in some cases the combination of batch normalization and dropout
layers can cause worse results [48]. Also, kernel size of the convolutional
layers was set larger in our approach than in the original U-net to improve
the continuity in segmentation of roots [49]. The details of the convolutional
parameters in comparison to the original U-net are summarized in Table 3.1.

Motivated by the encoder-decoder architecture of U-net, a network frame-
work for soil-root image segmentation was constructed, see Figure 3.1. In
particular, our network was designed to be trained on patches of input im-
ages in original resolution. This was introduced in order to enable model
training using larger amount of ground truth data on consumer GPUs while
preserving high-frequency image information which otherwise would be lost
either by restricting the training set to maximum possible capacity of GPU
RAM or by image downscaling. Furthermore, training of CNN on image
patches instead of full-size images is known to be more advantageous for
learning local features [50]. Therefore, the architecture was designed in such
a way that it has input and output layers of the size 256x256. In what fol-
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Table 3.1: Convolutional parameters of the original U-net and proposed
modifications.

Convolutional
parameters

Original U-net Proposed modifica-
tions

Kernel size 3x3 7x7
Transposed
kernel size

2x2 3x3

Stride 1x1 2x2
Padding unpadded padding with zeros
Depth 4 3
Number of fil-
ters

(64, 128, 256, 512,
1028)

(16, 32, 64, 128)

lows, the details of network encoder and decoder layers are described.

Figure 3.1: The proposed U-net architecture for soil-root image segmenta-
tion.

Encoder network: The encoder network consists of 3 encoder blocks. The
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first encoder block takes the image patches of size 256x256 as input and pro-
duces corresponding feature maps of size (256x256x16) as output. Then the
feature maps are forwarded to the second and third encoder blocks to gener-
ate further feature maps for the root detection. Each encoder block consists
of two convolutional layers to learn feature maps at respective levels, where
each convolutional layer consists of 7x7 convolution filter followed by batch
normalization [46] and a non-linear activation function called Rectified Linear
Unit (ReLU) [51]. Here, batch normalization improves the network perfor-
mance and stability by normalizing the feature maps at respective levels [46].
Followed by each encoder block, max-pooling operation using general win-
dow size of 2x2 [50, 52] is applied for down-sampling the feature maps by
half of its original size. This results in aggregate features are generated more
efficiently. All three encoders are repeated with varying depth of 16, 32 and
64 to detect diverse root features respectively. The details of each encoder
block and corresponding max-pool layers are given in Table 3.2.

Followed by encoder network, a bridge encoder block without max-pooling
layer is applied. This results in 128 feature maps of each size 32x32 are gen-
erated.

Decoder network: The output from the bridge encoder (32x32x128) is
upsampled using 3x3 transpose convolution with same padding and stride 2.
This means size of feature maps (32x32x128) were double to (64x64x128) by
applying filter of size 3x3 to all input elements and boarder elements were
computed using zero padding. Then the resulting feature map is concate-
nated with the corresponding encoder feature maps. This results in feature
maps of size (64x64x256) are generated. Then it is passed through a con-
volutional layers like encoder block but having decreasing channel depth of
64. This process is repeated for remaining decoder blocks with decreasing
channel depth of 32 and 16. The details of each decoder block and corre-
sponding transpose layer outputs are given in Table 3.3. Finally, the output
of the final decoder block is fed into a convolutional layer of size 1x1x1 with
”Softmax” activation function [53] to classify each pixel as root or non-root
at the patch level. The output of proposed architecture is a predicted mask
of size 256x256 like the input image patch a shown in Figure 3.1.

3.2.2 Performance Metrics

To evaluate the performance of the proposed U-net model during training
and testing stage, Dice coefficient (DC) [54] is used. It measures the area
of intersection between the model and ground truth segmentation and its
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Table 3.2: Details of all encoder blocks and corresponding max-pool
layer output

Encoder
Block #

Input to
encoder
block

Conv-
olution
filter
size

Number
of fea-
ture
maps

Output
of en-
coder
block

Input to
max-pool

Max-pool
output

Block 1 256x256 7x7 16 256x256x16 256x256x16 128x128x16
Block 2 128x128 7x7 32 128x128x32 128x128x32 64x64x32
Block 1 64x64 7x7 64 64x64x64 64x64x64 32x32x64

Table 3.3: Details of all decoder blocks and corresponding transpose
convolutional layers

Decoder
Block #

Input to
trans-
posed
convolu-
tion

Output
of trans-
posed
convolu-
tion

Number
of de-
coder
blocks

Conv-
olution
filter
size

Number
of fea-
ture
maps

Output
of de-
coder
block

Block 1 32x32x128 64x64x128 64x64x128 7x7 128 64x64x64
Block 2 64x64x64 128x128x64 128x128x64 7x7 64 128x128x32
Block 2 128x128x32 256x256x32 256x256x32 7x7 32 256x256x16

value ranges from 0 to 1, where 1 corresponds to 100% perfect and 0 to false
segmentation. The Dice coefficient is defined as:

DC =
2 ∗ (P ∩G)

P ∪G
=

2 ∗
∑N

i PiGi∑N
i Pi +

∑N
i Gi

, (3.1)

where P and G are predicted and ground truth binary images respectively.
Pi and Gi are output values 0 and 1 of pixel i in predicted and ground truth
binary image respectively. Also, the above equation can be re-written as
following:

DC = 2 ∗ precision ∗ recall
precision + recall

. (3.2)
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From Equation 3.2 it follows that the model would likely overestimate
soil pixels and underestimate root pixels in the segmented image, because
root images typically contain significantly more background pixels than root
pixels. In that case, precision defines the ratio of correctly predicted root
pixels to the number of pixels predicted to be root and recall is the ratio
of correctly predicted root pixels to the number of actual root pixels in the
image.

3.2.3 Data and Image Annotation

Near-infrared (NIR) images of Maize plant roots grown in soil were captured
by using IPK plant phenotyping system for large plants [17]. Images are
taken by one side-view 12MP monochrome camera (UI-5200SE-M-GL, IDS)
with chip sensitive in NIR portion of electromagnetic spectrum and suitable
distortion-free lens (V1228-MPY). Also, it includes homogeneous infrared
LED light source (850 nm) and filters preventing reflections during image
acquisition. In brief, plants were grown in rhizopots [342x350 mm (WxL)]
filled with the potting substrate (Potgrond P, Klassmann).

200 greyscale root images of Maize plants acquired with the IPK plant
phenotyping system were selected for the ground truth segmentation. This
labelling task is performed by agronomists using our previously published
software for semi-automated root image analysis (saRIA) [26] which pro-
vides an efficient graphical user interface for tuning parameters of image
segmentation including intensity threshold, morphology and noise removal
to generate an accurate segmentation of roots in soil. The images acquired
with the above imaging system have resolution of 2345x2665. A detailed root
annotation with saRIA took approximately 5-10 minutes per image depend-
ing on the amount of root pixels in the image. Figure 3.2 shows an example
of IPK plant phenotyping system images and their corresponding binary seg-
mentation using saRIA. This binary mask contains all roots as foreground in
white and the remaining pixels as background in black.

To enable application of the proposed model to a broad range of root
imaging modalities, the model originally developed for NIR root image seg-
mentation was applied to LED-based rhizotron and ultraviolet (UV) imaging
systems [18, 26]. In fact, such approach is feasible because root structures
in both image modalities exhibit large similarities. The rhizotron system
contains a root camera (Allied Vision Prosilica GT 6600) and uses white
LED illumination to image the roots growing in soil along plexiglass plates.
The UV system contains two monochrome UV-sensitive cameras (UI-5490SE-
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Figure 3.2: Exemplary root image from IPK plant phenotyping system: (a)
Maize plant roots 28 days after sowing, (b) corresponding root segmentation
from soil performed using saRIA.

M-GL, IDS) with two sets of LED illumination panels (UV, 380 nm) in a
custom-made imaging box. It is suitable for capturing small plants in trans-
parent pots of size [77x77x97mm (WxLxH)] filled with the potting substrate
(Potgrond P, Klasmann). This system allows non-invasive acquisition of root
images in darkness [18].

3.2.4 Training

The proposed U-net model was developed under Python 3.6.1 using Tensor-
Flow [55] library with Keras API [56, 57]. Image processing functions like
cropping and morphological functions (dilation, erosion) were implemented
using PIL, Numpy [58] and Scikit-Image [59] packages. Then the model was
trained on Linux operating system (Intel(R) Xeon(R) Gold 6130 CPU @
2.10GHz) with NVIDIA Tesla P100-PCIE-16GB graphic card.

Images analysed in this work contain both thin and fine root structures
that may have only one or few pixels in width. To preserve such fine struc-
tures the binary masks were dilated similar to strategy applied in SegRoot
[44]. Originally 2345x2665 sized root images of maize plants are analysed
step-wise using the 256x256 crop masks. Thereby, the original image edges
were padded with zeros so that both its width and height are divisible by
256. Hence, original image size is increased to 2560x2816 with zero-padding.
Then each image is partitioned into 110 non-overlapping 256x256 crop masks
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and approximately 20000 crop masks are generated for all images. However,
2/3 of those cropped masks contain only background structures that con-
tribute to training network the background appearance. To avoid potential
imbalance between plant and non-plant training masks, only cropped regions
with both root and background pixels information of the size 256x256 were
selected from 182 original images. Then each cropped image is normalized
in the range of [0, 1] for feature consistency in the CNN network.

Subsequently, the data set was partitioned into training and validation
sets in the ratio of 85:15. The training set is used to optimize the proposed
model with Adam optimizer [60] in such way that the weight parameters
improve the model segmentation performance. Also, the initial weights of
the networks were defined randomly as proposed by Krizhevsky et al. [61]
with the mean 0 and the standard deviation of 0.05. Here, the model train-
ing was initialized for maximum of 200 epochs with 16 number of convolu-
tional channel features and batch size of 128 as per system constraints. Loss
functions quantify the unhappiness of our network during training and it
defines the difference between predicted output and ground truth generated
by saRIA. The result of loss function can be improved by updating weights
of the network in an iterative manner. Here, more commonly used ”binary
cross-entropy loss” function [50] is used to predict binary class label (i.e.,
roots and non-roots) at each patch level. This function compares each pixel
prediction (0: non-root, 1: root) to the corresponding ground truth pixel and
averages all pixels loss for computing total loss of the image. Therefore, each
pixel contributes to the overall objective loss function. Then the learning
rate of the Adam optimizer [60] was estimated from a range of reasonable
values (0.00001, 0.0001, 0.001, 0.1, 1 and 10) while monitoring the training
and validation Dice coefficient of the model.

3.2.5 Prediction

As stated in image annotation subsection, the images from IPK plant pheno-
typing system have the original resolution of 2345x2665, while the proposed
U-net model requires input images of the size 256x256. In the preprocessing
stage, zero padding is applied to test images similar as it was done in the
training stage. Then non-overlapping 256x256 masks were generated. The
model does predictions on these 256x256 masks that are then combined to
one single output image. Finally, the zero padded pixels were removed and
the segmented image with resolution identical to the original input image
was generated. This complete process is dynamic and automatized in the
prediction stage as shown in Figure 3.3. Since the output layer is given by
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Figure 3.3: Workflow of the pipeline for image processing and segmentation
in faRIA. Green and orange colour boxes represents the operations of image
segmentation and trait calculation: (a) original image, (b) original image
patches of size 256x256, (c) segmented image patches of size 256x256, (d)
binary segmentation of original image, (e) binary skeleton of (d).

the Sigmoid activation function, the predicted segmentation is a probability
map with values ranging between 0 and 1. Hence the generated probabil-
ity map was converted to a binary image using threshold T. Here, the root
pixels with a relatively high T ≥ 0.9 is chosen to avoid misclassification for
the soil-root image segmentation. After fully automated segmentation, the
proposed model performs phenotyping of segmented root structures similar
to saRIA [26].

In practice, the end-users prefer to have an easy-to-use software solu-
tion including the Graphical User Interface (GUI). Therefore, a user-friendly
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GUI front-end was developed under the MATLAB 2019b environment [62] to
comfortably operate the complex algorithmic framework of faRIA software.
Figure 3.3 shows the complete workflow involved in faRIA for automatic
root segmentation and trait extraction. For import of deep learning models
trained under Python the MATLAB interoperability routine importKeras-
Network [62] was used. According to specification of this function, the U-net
models trained in Python were exported in the so-called h5 file format, which
is supported by the recent versions of MATLAB including 2019b.

In addition to 256 cropped masks, the proposed U-net model was ex-
tended to train on full images. This model has an input and output images
of size 1024x1024 as per our system constraints. So that the original and
ground truth images were resized to 1024x1024 using bi-linear interpolation
method [63]. Also, the model consist of an additional encoder and decoder
blocks with convolution mask of size 5x5 in their respective networks. There-
fore, encoder network generates the feature maps from size 1024x1024x1 to
32x32x128 and inverse size in the decoder network. To distinguish both
networks, the proposed U-net model on 256 and 1024 masks are named as
faRIA:256 and faRIA:1024, respectively.

3.3 Results

3.3.1 Training and Validation of faRIA

As discussed above, the training and validation of faRIA:256 model was per-
formed on totally 6465 image patches in the ratio of 85:15 between train and
test images, respectively. The performance of the trained model is analysed
using binary cross-entropy loss, Dice coefficient, precision and recall at each
epoch during learning stage of the network. Figure 3.4 shows the training
and validation performance of the faRIA:256 over 200 epochs. It turned out
that the training loss (Figure 3.4a) was minimized and platen the curve near
to zero after epoch number 140. Simultaneously, training DC, precision and
recall were maximized and achieved more than 90% of the accuracy from
epoch number 100. But generalized performance of the model is measured
using validation parameters. Figure 3.4b explains that the proposed model
achieved maximum validation Dice coefficient of 0.874 and minimum valida-
tion loss of 0.033 at epoch number 71.

60



Figure 3.4: Training and validation performance of the faRIA:256 model over
200 epochs. X- and Y-axes represent the epoch number and performance
measure, respectively.

3.3.2 Evaluation of faRIA vs. SegRoot

For comparing the performance of faRIA:256 model with existing tools, Seg-
Root [44] was trained on the same image data set. For this purpose, the
SegRoot model was trained on 256x256 image blocks for 200 epochs with
best practical parameters of depth 5 and width 8 as suggested in Wang et
al. [44]. In addition, to validate the performance of proposed model on
full image instead of 256x256 blocks (faRIA:256), faRIA:1024 was proposed.
The faRIA:1024 model was trained for 200 epochs with training configura-
tions similar to faRIA:256. Table 3.4 and 3.5 show the training parameters
and performance measures of the faRIA:256 with respect to SegRoot and
faRIA:1024.

Followed by training performance, an exemplary performance of above
three models on test image was performed, see in Figure 3.5. Thereby, the
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Table 3.4: Training parameters of SegRoot, faRIA:1024 and faRIA:256
over 200 epochs

Training parameter SegRoot-8-5 faRIA:1024 faRIA:256

Learning rate 0.01 0.001 0.001
Batch size 128 3 128
Epochs 200 200 200

Table 3.5: Training performance of SegRoot, faRIA:1024 and
faRIA:256 over 200 epochs

Validation measure SegRoot-8-5 faRIA:1024 faRIA:256

Cross-entropy loss 0.374 0.043 0.033
Dice coefficient 0.666 0.888 0.874
Precision 0.652 0.901 0.849
Recall 0.735 0.824 0.846

faRIA:256 model showed the DC of 0.83 whereas SegRoot and faRIA:1024
achieved 0.42 and 0.44 respectively. Also, the presence of marginal artefacts
in faRIA:1024 and faRIA:256 compared to ground truth are shown in Figure
3.6.

Figure 3.5: Segmentation performance: (a) original image, (b) ground truth
segmentation by saRIA, (c) SegRoot with DC: 0.42, (d) faRIA:1024 with
DC: 0.44, (e) faRIA:256 with DC: 0.83.
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Figure 3.6: Segmentation artefacts: (a) original root structure, (b)
faRIA:1024: noisy segmentation of (a) at root edges, (c) faRIA:256: noise-
free segmentation of (a).

3.3.3 Segmentation of Further Image Modalities

The faRIA:256 model originally trained on maize plant roots from IPK plant
phenotyping system is applied to LED-based rhizotron and UV imaging sys-
tems for the root segmentation from soil. Figure 3.7 and 3.9 shows the
DC of faRIA:256 model over 40 barley and 30 arabidopsis root images from
rhizotron and UV imaging system and achieved mean DC of 0.85 and 0.68
respectively. An exemplary segmentation of rhizotron (image number 4 in
Figure 3.7) and UV image (image number 6 in Figure 3.9) are shown in Fig-
ure 3.8 a, b, c, e and 3.10 a, b, c, e respectively. Here, the faRIA:256 model
resulted DC of 0.87 and 0.79 for rhizotron and UV image compared to the
ground truth generated by saRIA respectively. In addition, the performance
of the SegRoot on same rhizotron and UV image compared to the ground
truth is shown in the Figure 3.8 d, f and 3.10 d, f respectively. Here, false
negative (green) and false positive (pink) pixels represents the undetected
and falsely classified root pixels in the predicted segmentation compared to
the ground truth.

3.3.4 Evaluation of Phenotypic Traits vs. saRIA

In addition to the segmentation performance, phenotyping characterization
obtained with faRIA are also evaluated in comparison to saRIA. Here, corre-
lation coefficient of determination R2 and significance level p-value are used
to measure the percent of the faRIA calculated traits that are close to the
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Figure 3.7: Dice coefficient of faRIA:256 over 40 barley soil-root images from
rhizotron imaging system. The orange line represents the mean DC value.

ground-truth (from saRIA) and model validation respectively. Figure 3.11
shows the correlation between the saRIA (x-axis) and faRIA (y-axis) out-
puts for four traits where each point denotes one particular image out of 40
Barley root images from rhizotron imaging system. Out of 75 traits, only
four important traits for root biomass calculation are presented for faRIA
evaluation. They are total root area, total root length, total root surface
area and total root volume. Further information on definition of traits is
included in the Supplementary Information, see Table S1. Figure 3.11 shows
that correlations between traits calculated with saRIA and faRIA are highly
significant and exhibit R2 values greater than 0.98, 0.97, 0.98 and 0.98 and
p-values 1.59e-40, 5.01e-38, 7.63e-42, and 5.13e-42, respectively.

3.3.5 Graphical User Interface and Runtime

Figure 3.12 shows the GUI of faRIA software which is freely available as a pre-
compiled executable program from https://ag-ba.ipk-gatersleben.de/faria.html.
In addition to fully automated image segmentation, faRIA calculates 75 root
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Figure 3.8: Applicability of faRIA on rhizotron soil-root images: (a) image
of Barley plant roots at lateral stage, (b) ground truth segmentation gen-
erated by saRIA, (c) predicted segmentation using faRIA:256, (d) predicted
segmentation using SegRoot, (e) overlay of faRIA prediction on ground truth
with DC = 0.87, (f) overlay of SegRoot prediction on ground truth with DC
= 0.73. Green, pink and white colour pixels represents false negatives, false
positives and correctly segmented pixels in the predicted image with respect
to ground truth respectively.

traits that are categorized into 12 feature groups named area (number of root
pixels), number of disconnected root objects, total length, surface area, vol-
ume, number of branching and ending points, statistical distribution (mean,
median, standard deviation, skewness, kurtosis, percentile and bootstrap)
of root geometry in horizontal and vertical direction, width, orientation and
convex-hull. In the present release, the phenotyping module of faRIA is iden-
tical to our saRIA software [26]. Further information on definition of traits
is included in the Supplementary Information, see Table S1.
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Figure 3.9: Dice coefficient of faRIA:256 over 30 Arabidopsis soil-root images
from UV imaging system. The orange line represents the mean DC value.

The faRIA software provides users with an option to select faRIA:256
or faRIA:1024 model depending on image quality, time and accuracy. The
faRIA software can analyse a single image or large image data set to automat-
ically detect and extract multiple root traits. Regarding timing performance,
the faRIA segmentation, root tracing and trait calculation all together take,
in average, 80 seconds using faRIA:256 and 15 seconds using faRIA:1024
models to process and analyse a 6-megapixel (cropped) image on a system
with Intel(R) Xeon(R) Gold 6130 CPU @2.10GHz. Therefore, faRIA:1024
can process at least 3 times faster than faRIA:256 for root image analysis.

3.4 Discussion & Conclusion

Our experimental results on different plant species from different imaging sys-
tems have demonstrated a remarkable accuracy of an adopted U-net model
for fully automated soil-root image segmentation. During the training stage,
the faRIA:256 model achieved nearly zero loss and ≥95% of accuracy mea-
sured by the Dice coefficient (DC) crossover 200 epochs, see Figure 3.4. By
application to the test images, the best performance was found at the epoch
number 71 with the maximum DC of 0.874 and minimum loss of 0.033. For
larger number of epochs, validation error was just marginally higher. How-
ever, the precision and recall are contrasting each other at low DC epochs,
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Figure 3.10: Applicability of faRIA on UV soil-root images: (a) image of
Arabidopsis plant roots from UV imaging system, (b) ground truth segmen-
tation generated by saRIA, (c) predicted segmentation using faRIA:256, (d)
predicted segmentation using SegRoot, (e) overlay of faRIA prediction on
ground truth with DC = 0.80, (f) overlay of SegRoot prediction on ground
truth with DC = 0.67. Green, pink and white colour pixels represents false
negatives, false positives and correctly segmented pixels in the predicted im-
age with respect to ground truth respectively.

and both achieved maximum at epoch number 71. Therefore, the network
weights and optimization parameters at epoch number 71 are adopted as the
best model for soil-root image segmentation.

The performance of the faRIA:256 model was compared with the SegRoot.
From the summary in Table 3.5, it is evident that faRIA:256 is significantly
outperforming the SegRoot on our data set improving the cross-entropy loss
by the factor 10 and DC by 20%, respectively. We draw this results back
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(a) Total Area (b) Total Length

(c) Total Surface Area (d) Total Volume

Figure 3.11: Correlation between root traits calculated using semi-automated
saRIA (x-axis) and fully-automated faRIA (y-axis) image segmentation.
Each point represents a trait value estimated from one of 40 soil-root images
from rhizotron imaging system. The red colour solid line and dotted lines
represent a fitted curve and 95% confidence bounds, respectively. The R2

value indicates good conformity between saRIA and faRIA results of image
segmentation and trait calculation.

to the fact that the SegRoot model transfers only max-pooling indices (i.e.,
location of feature maps) from encoder to decoder for feature concatena-
tion and reconstruction, whereas our U-net model transfers complete feature
map information (i.e., both location and pixel values) to the decoder. This
leads to detection of both primary and secondary low contrast roots with
the improved DC in comparison to the SegRoot, see Figure 3.5. However,
more information required for U-net makes the decoder path expensive and
requires more memory (9.47 MB) than the SegRoot (1.49 MB).
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In addition to the faRIA:256 model, which was trained on 256x256 patches
of original large root images, the performance of proposed U-net architecture
was reformulated on full images and validated with images downscaled to
the size of 1024x1024 due to our hardware limitations using the faRIA:1024
model. While both faRIA:1024 and faRIA:256 models demonstrated a com-
parable accuracy in the training stage, faRIA:256 exhibits more balanced
performance between precision and recall than faRIA:1024. This imbalance
is cased by the pixels of intermediate intensity on the boundary between
the soil and root regions that correspond to average values calculated by
downscaling. Pixels of intermediate intensities lead to false positive detec-
tion (Figure 3.5b). In particular, it is the case by segmentation of thin root
structures in downscaled images using the faRIA:1024 model.

Figure 3.12: Graphical user interface of faRIA. Green colour pixels represent
root regions automatically segmented by the U-net model.

Since roots and background regions exhibit similar structural properties in
images of different modalities and plant species, our model originally trained
on NIR maize roots images could also be applied to barley and arabidopsis
roots from LED-rhizotron and UV imaging systems, respectively. For rhi-
zotron images it achieved the minimum accuracy of 80% for all images with
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exception of the image number 19 in Figure 3.7. The overall mean DC=0.85
indicates a fairly accurate segmentation of rhizotron images. The exceptional
image with the number 19 exhibit low DC due to the presence of high inten-
sity noise similar to root structures. Moreover, our model preserves the root
thickness and continuity in the secondary roots compared to the SegRoot as
shown in Figure 3.8 e, f. This results in DC of rhizotron image 0.87 is higher
than the SegRoot 0.73.

The application of faRIA on UV images, the accuracy of the faRIA:256
model ranged between 60-83% with the mean DC=0.7, see Figure 3.9. A
relatively low DC for some UV images is due to the presence of diverse arte-
facts including low contrast between the root architecture and heterogeneous
soil regions, in-homogeneous scene illumination (i.e., vertical intensity gra-
dient). This results in inaccurate segmentation (pink colour pixels) of low
contrast structures and false detection of high intensity background struc-
tures as shown in Figure 3.10. However, faRIA:256 achieved the continuity
in the root segmentation along the contrast varying root structures with DC
of 0.80 (Figure 3.10 e) whereas SegRoot results in discontinues root struc-
tures with DC of 0.67 (Figure 3.10 f). Therefore, approximately 80% of the
root pixels were correctly detected by faRIA:256 compared to the ground
truth. Further examples of NIR, rhizotron and UV root image segmentation
for juvenile or adult plants are in the Supplementary Information (see Fig-
ures S1-S6).

Furthermore, a direct comparison between phenotypic traits calculated
with semi-automated (saRIA) and fully automated (faRIA) approaches shows
a highly significant correlation which indicates that root image segmentation
and phenotyping using faRIA as practically as good as human-supervised one.

Further, investigations with extended and/or augmented image data are
required to improve the accuracy of segmentation of other root images that
were not included in the original training set. On the other hand, it can-
not be excluded that training of dedicated models with a narrow focus on a
particular type of imaging modality and image structures could be a more
reliable strategy to achieve more accurate results.

In conclusion, automated segmentation and analysis of a large amount of
structurally heterogeneous and noisy soil-root images is a challenging task
which solution is highly demanded in quantitative plant science. Here, we
present an efficient GUI-based software tool for fully automated soil-root im-
age segmentation which relies on the U-net CNN architecture trained on a set
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of 6465 masks derived from 182 manually segmented soil-root images. The
proposed algorithmic framework is capable to efficiently segment root struc-
tures of different size, shape and contrast with higher accuracy of DC=0.87
in comparison to the state-of-the-art solutions (SegRoot: DC=0.67). Our ex-
perimental results showed that the model trained with representative patches
of root and background structures enables consideration of a larger amount
ground truth data than original full-size images. Thereby, the faRIA:256
model trained on smaller size masks outperforms the larger mask model
(faRIA1024) with respect to the overall precision and recall by compari-
son with ground truth data. In addition to NIR maize root images that
were originally used for CNN model training, the faRIA tool can also be
applied to other imaging modalities and plants species that exhibit similar
structural properties of root and background regions. In addition to root
image segmentation, faRIA calculates a number of useful phenotypic traits
that in our experimental studies were shown to exhibit a significant corre-
lation (R2 = 0.98) with the ground truth traits. While the present CNN
framework was predominantly trained with regular soil-root images, further
investigations are required to address such challenging problems as segmen-
tation of roots overlaid with a large scale noise (for example, due to water
condensation) or filling artificial gaps in the root system that occur due to
inhomogeneous scene illumination. Possible approaches to addressing these
problems include, for example, appropriate augmentation of the training data
set and/or alternative CNN models.
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Table S1. Root Traits: The description of estimated root system architecture traits in faRIA 
software.

Trait Name Description

Area Number of root pixels in the image

Number of Regions Number of disconnected root objects in the 
image

Total Length The sum of major axis length of each root object
approximated by fitting ellipse to the root object

Total Volume (V) The sum of local volume at each root object of 
skeleton approximated by tubular shape whose 
average radius is estimated from image

V=∑
i=0

n

π ri
2

Where r i is the average radius of  ith root 
component in the image.

Total Surface Area (SA) The sum of surface area at each root object of 
skeleton approximated by tubular shape whose 
average radius is estimated from image

SA=∑
i=0

n

2π ri

Where r i is the average radius of  ith root 
component in the image.

Specific Root Length The ratio of total length and total volume of 
roots in the image.

Number of Branching Points The total number of branches in the root 
skeleton

Number of End Points The total number of end points in the root 
skeleton

Geometrical X_mean, Y_mean The mean value of root pixels distribution in 
horizontal and vertical direction

Geometrical X_median, Y_median The median value of root pixels distribution in 
horizontal and vertical direction

Geometrical X_std, Y_std The standard deviation of root pixels distribution
in horizontal and vertical direction
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Geometrical X_skew, Y_skew The skewness of root pixels distribution in 
horizontal and vertical direction

Geometrical X_kurt, Y_kurt The kurtosis of root pixels distribution in 
horizontal and vertical direction

Geometrical X_p25, Y_p25 The 25 percentile of root pixels distribution in 
horizontal and vertical direction

Geometrical X_p50, Y_p50 The 50 percentile of root pixels distribution in 
horizontal and vertical direction

Geometrical X_p75, Y_p75 The 75 percentile of root pixels distribution in 
horizontal and vertical direction

Geometrical X_p99, Y_99 The 75 percentile of root pixels distribution in 
horizontal and vertical direction

Geometrical X_bootstrap_mean,    
Y_bootstrap_mean

The mean value of bootstrapping root pixels 
distribution in horizontal and vertical direction

Geometrical X_bootstrap_stdev,    
Y_bootstrap_stdev

The median value of bootstrapping root pixels 
distribution in horizontal and vertical direction

Width mean Average root diameter

Width median Median root diameter

Width std Standard deviation of the root diameter

Width skew Skewness of root diameter

Width kurt Kurtosis of root diameter

Width p25 25 percentile of root diameter

Width p51 50 percentile of root diameter

Width p75 75 percentile of root diameter

Width p99 99 percentile of root diameter

Width  bootstrap_mean The mean value of bootstrapping root pixels 
width 

Width bootstrap_median The median value of bootstrapping root pixels 
width 

Orientation mean Average root Orientation

Orientation median Median root Orientation

Orientation std Standard deviation of the root Orientation

Orientation skew Skewness of root Orientation

Orientation kurt Kurtosis of root Orientation

Orientation p25 25 percentile of root Orientation

Orientation p50 50 percentile of root Orientation

Orientation p75 75 percentile of root Orientation

Orientation p99 99 percentile of root Orientation

Orientation bootstrap_mean The mean value of bootstrapping root pixels 
orientation
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Orientation bootstrap_median The median value of bootstrapping root pixels 
orientation

SeedAngle mean Mean orientation of root pixels with respect to 
root originating seed point in RSA

SeedAngle median Median orientation of root pixels with respect to 
root originating seed point in RSA

SeedAngle skew Skewness of root pixels with respect to root 
originating seed point in RSA

SeedAngle kurt Kurtosis of root pixels with respect to root 
originating seed point in RSA

SeedAngle p25 25 percentile of root pixels with respect to root 
originating seed point in RSA

SeedAngle p50 50 percentile of root pixels with respect to root 
originating seed point in RSA

SeedAngle p75 75 percentile of root pixels with respect to root 
originating seed point in RSA

SeedAngle p99 99 percentile of root pixels with respect to root 
originating seed point in RSA

SeedAngle bootstrap_mean The mean value of bootstrapping root pixels 
seed orientation

SeedAngle bootstrap_stdev The median value of bootstrapping root pixels 
orientation

ConvexHull area Area of convex-hull of RSA

ConvexHull width Width of convex-hull of RSA

ConvexHull height Height of convex-hull of RSA

ConvexHull specific_area The ratio of convex-hull area and actual area of 
RSA
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Figure S1. Example of NIR root image segmentation for juvenile Maize plant using the 
faRIA:256 model. 

               
(a) Original Image (b) Segmented Image

Figure S2. Example of NIR root image segmentation for adult Maize plant using the 
faRIA:256 model. 

               
(a) Original Image (b) Segmented Image
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Figure S3. Example of Rhizotron root image segmentation for juvenile Barley plant using 
the faRIA:256 model. 

               
(a) Original Image (b) Segmented Image

Figure S4. Example of Rhizotron root image segmentation for adult Barley plant using the 
faRIA:256 model. 

               
(a) Original Image (b) Segmented Image
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Figure S5. Example of UV root image segmentation for juvenile Arabidopsis plant using 
the faRIA:256 model. 

               
(a) Original Image (b) Segmented Image

Figure S6. Example of UV root image segmentation for adult Arabidopsis plant using the 
faRIA:256 model. 

               
(a) Original Image (b) Segmented Image
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Abstract

Background Automated analysis of large image data is highly demanded in
high-throughput plant phenotyping. Due to large variability in optical plant
appearance and experimental setups, advanced machine and deep learning
techniques are required for automated detection and segmentation of plant
structures in complex optical scenes.

Methods Here, we present a GUI-based software tool (DeepShoot) for effi-
cient, fully automated segmentation and quantitative analysis of greenhouse-
grown shoots which is based on pre-trained U-net deep learning models of
arabidopsis, maize and wheat plant appearance in different rotational side-
and top-views.

ResultsOur experimental results show that the developed algorithmic frame-
work performs automated segmentation of side- and top-view images of differ-
ent shoots acquired at different developmental stages using different pheno-
typing facilities with an average accuracy of more than 90% and outperforms
shallow as well as conventional and encoder backbones networks in cross-
validation tests with respect to both precision and performance time.

Conclusion The DeepShoot tool presented in this work provides an effi-
cient solution for automated segmentation and phenotypic characterization of
greenhouse-grown plant shoots suitable also for end-users without advanced
IT skills. Primarily trained on images of three selected plants, this tool can be
applied to images of other plant species exhibiting similar optical properties.
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4.1 Introduction

Image-based high-throughput plant phenotyping became a method of choice
in quantitative plant sciences aiming to reveal casual links between pheno-
typic and genomic plant traits under varying environmental conditions [1].
The ultimate goal is to make assessment of plant phenotypic traits data as
efficient and scalable as genomic screening [2, 3]. However, efficient and accu-
rate processing and analysis of large image data from different optical set-ups
represents a challenging task constituting one of the major bottle necks in
the pipeline of phenome-genome correlation [4].

The first critical step by quantitative analysis of plant image data is the
image segmentation, which aims to classify all image pixels into two or more
distinctive classes, e.g., foreground (plant) and background (non-plant) re-
gions. Due to a number of natural and technical factors, segmentation of
plant structures from background regions renders a challenging task. Inho-
mogeneous illumination, shadows, occlusions, reflections and dynamic opti-
cal appearance of growing plants complicate definition of invariant criterions
for detection of different parts (e.g., leaves, flowers, fruits, spikes) of different
plant types (e.g., arabidopsis, maize, wheat) at different developmental stages
(e.g., juvenile, adult) in different views (e.g., top or multiple side views) [5].
Consequently, conventional methods that are typically based on some suit-
able image features and tailored to a particular data cannot be extended to
new data in a straight forward manner. For example, one such popular ap-
proach to unsupervised image segmentation is based on analysis of differences
between plant-containing and ’empty’ reference images [6]. Thereby, it is as-
sumed that background intensity/colours remain unchanged after plants were
moved into photo chamber. However, due to shadows and reflections both
background and plant regions change their optical appearance. Moreover,
these changes are dynamically progressing in course of plant development.
Consequently, an ’empty’ background image does not provide an ideal refer-
ence for straightforward segmentation of plant structures. Mapping of RGB
image onto alternative colour spaces such as HSV and/or L*a*b is known to
be useful for separability of fore- and background colours [7, 8, 9]. However,
it cannot completely solve the problem of overlapping plant and background
colours.

To overcome the above limitations of uni-modal image analysis, a registration-
classification approach to plant image segmentation was suggested in our
previous work [10], which relies on pre-segmentation of plant regions in im-
age modalities with higher fore-/background contrast, such as fluorescence
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images, followed by their co-registration with low-contrast image modali-
ties (e.g., visible light or near-infrared images). Since segmentation masks
derived from one image modality does not perfectly match to another im-
age modality, classification of plant and marginal background structures in
masked image regions has to be subsequently performed using pre-trained
intensity/colour models. In some rare cases of severe plant movements due
to relocation of carriers from one photo chamber to another one, substantial
differences between plant contours in two different image modalities can oc-
cur. Although, the registration-classification showed relatively high accuracy
of final segmentation results, the principle requirement of high-contrast mul-
timodal data as well as occasional movement artefacts limit its application
to experiments where only one single image modality (typically visible light
images) is acquired.

Numerous further supervised approaches to intensity-/colour-based plant
image segmentation was proposed in the past. In [11], automated segmenta-
tion of arabidopsis top-view images using a super pixel- and random forest
classification-based algorithm was presented. In this approach, pre-labelled
masks were used to segment each plant from the multi-tray experiment. How-
ever, as many other colour-based models it is limited to a particular experi-
mental setup and plant type. More recently, [12] proposed a neural network
based shallow learning method for the segmentation of side view visible light
images. This approach classifies each pixel based on neighbourhood pixel
information of the trained ground truth data and outperforms conventional
thresholding methods.

All the above state of the art techniques requires reference images, pres-
ence of particular image features and expertise in manual parameter tuning
for each image to be segmented. Consequently, conventional supervised tech-
niques are typically trained on and applied to particular types of plants,
experimental set-ups and illumination scenes. However, high-throughput
phenotyping of thousands and millions of plant images demands a fully
automated, efficient and accurate segmentation algorithms with higher or-
der cognitive abilities that can tolerate variation in scene illumination and
plant/background colours.

In recent times, convolutional neural networks (CNNs) gained high at-
tention especially in computer vision applications, because of the ability to
directly extract and train relevant multi-level features from data without
prior knowledge and human effort in feature design. CNNs have been shown
to outperform conventional approaches when applied to many traditionally
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difficult tasks of image analysis including pattern detection and object seg-
mentation in biomedical images [13, 14], traffic scenes [15] and remote sensing
[16]. In recent years, they were also used for high-throughput plant pheno-
typing such as detection of wheat roots grown in germination paper [17],
segmentation of roots from soil in X-ray tomography [18] and segmentation
of spikes in wheat plants [19]. However, most of these works present ex-
emplary applications and/or computational frameworks that can hardly be
handled by end-users without advanced programming skills.

The aim of this work is to develop an efficient and handy tool for auto-
mated shoot image segmentation and quantification for different plant types
using a pre-trained deep CNN framework which could be used in a straight
forward manner even by unskilled users. The GUI software tool (DeepShot)
developed for this purpose relies on the U-net segmentation model from [13]
which was trained on ground truth images of three different plants (arabidop-
sis, maize and barley) acquired from two different views (side, top) in different
stages of their development. The article is structured as follows. First, we
present our methodological framework including the proposed U-net based
framework for shoot image segmentation, ground truth data generation as
well as training and evaluation procedures. Then, the results of experimental
investigations are presented including model performance by application to
segmentation of test shoot images vs. alternative state-of-the-art solutions.

4.2 Materials and Methods

4.2.1 Image Data

The deep learning-based shoot image analysis tool (DeepShoot) is designed
for automated segmentation and quantification of visible light (VIS) images
of arabidopsis, maize and barley shoots acquired from greenhouse pheno-
typing experiments using LemnaTec-Scanalyzer3D high throughput plant
phenotyping platforms (LemnaTec GmbH, Aachen, Germany). Figure 4.1
shows examples of arabidopsis, maize and barely images from three different
LemnaTec phenotyping platforms tailored to screening of large, mid-size and
small plants. All three phenotypic platforms have different designs of photo
chambers, illumination, colours of background walls and camera resolutions
ranging between 1-6 Mpx.
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Figure 4.1: Examples of side- and top-view images of arabidopsis (a, b),
barley (c, d) and maize (e, f) plants acquired with three different plant
phenotyping platforms.
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4.2.2 Ground Truth Generation

For training of CNN segmentation models, a representative set of ground
truth images with an accurate annotation of fore- and background image
regions is required. In this work, generation of ground truth images of differ-
ent greenhouse cultured plants was performed using the GUI software tool
(kmSeg) [9], which allows to efficiently annotate image regions by manual
selection of pre-calculated k-means colour clusters corresponding to targeted
plant structures. Background structures that exhibit similar colour finger-
print as plant regions and, thus, could not be separated by colour cluster-
ing are excluded or subsequently removed using manual region masking and
cleaning likewise provided with the kmSeg tool. Semi-automated segmenta-
tion of a typical greenhouse image using kmSeg takes between 1-5 minutes
depending on colour composition and structural complexity of a given plant
shoot image.

4.2.3 Image Segmentation using CNN

The proposed CNN model is derived from the original encoder-decoder archi-
tecture of U-net [13], which provides a versatile framework for the semantic
segmentation. In our model, batch normalization [20] is applied after each
convolution layer in contrast to the original U-net. Because batch normal-
ization improves the network performance and stability by normalizing the
feature maps at respective levels [20, 21]. Furthermore, original U-net used
dropout layers to remove outliers in the feature maps. But we avoided this
layer because the combination of batch normalization and dropout layers can
cause worse results [22]. Also, to improve the segmentation quality on largely
connected patterns, a larger kernel size is considered in our approach com-
pared to the original U-net [23]. Finally, our CNN model has less depth (of
3) compared to the original U-net depth of 4 due to the smaller input image
size. The detailed comparison of convolutional parameters with respect to
original U-net are summarized in Table 4.1.

Under consideration of the above suggested modifications, the U-net
framework was adapted to the task of multimodal shoot image segmenta-
tion, see Figure 4.2. This network is designed in such way that training and
testing are performed on patches of input images in original resolution. The
advantage of this image masking approach is that it enables model training
using large amount of ground truth data on consumer GPUs without loosing
high frequency information due to image downscaling. Furthermore, training
of CNNs on image patches is more advantageous for learning local features
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Table 4.1: Convolutional parameters of the original U-net and proposed mod-
ifications.

Convolutional parame-
ters

Original U-net Proposed modifications

Kernel size 3x3 7x7
Transposed kernel size 2x2 3x3
Stride 1x1 2x2
Padding unpadded padding with zeros
Depth 4 3
Number of filters (64, 128, 256, 512, 1028) (16, 32, 64, 128)

than full-size images [24]. Therefore, the input and output layers of the net-
work are designed to operate on images of the size 256x256. Further details
of network encoder and decoder layers are described below.

Figure 4.2: The proposed U-net architecture for shoot image segmentation.

Encoder network: The encoder network consists of 3 encoder blocks. The
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first encoder block takes the image patches of size 256x256 as input and pro-
duces corresponding feature maps of size (256x256x16) as output. Then, the
feature maps are forwarded to the second and third encoder blocks to gen-
erate further feature maps for the plant pixel detection. Each encoder block
consists of two convolutional layers to learn feature maps at respective levels,
where each convolutional layer consists of 7x7 convolution filter followed by
batch normalization [20] and a non-linear activation function called Rectified
Linear Unit (ReLU) [25]. Followed by each encoder block, max-pooling oper-
ation using general window size of 2x2 [24, 26] is applied for down-sampling
the feature maps by half of its original size. The above steps enable a more
efficient aggregation of image features. All three encoders are repeated with
varying depth of 16, 32 and 64 to detect diverse plant features respectively.

Followed by encoder network, a bridge encoder block without max-pooling
layer is applied. This results in 128 feature maps of the size 32x32.

Decoder network: The output from the bridge encoder (32x32x128) is up-
sampled using 3x3 transpose convolution with the same padding and stride
2. This means size of feature maps (32x32x128) were doubled to (64x64x128)
by applying filter of size 3x3 to all input elements and boarder elements were
computed using zero padding. Then the resulting feature map is concate-
nated with the corresponding encoder feature maps. This results in feature
maps of size (64x64x256) that are subsequently passed through a convolu-
tional layer like encoder block but having decreasing channel depth of 64.
This process is repeated for remaining decoder blocks with decreasing chan-
nel depth of 32 and 16. Finally, the output of the final decoder block is fed
into a convolutional layer of size 1x1x1 with ”Softmax” activation function
[27] to classify each pixel as plant or non-plant at the patch level. The output
of proposed architecture is a predicted mask of size 256x256 like the input
image patch a shown in Figure 4.2.

4.2.4 Performance Metrics

To evaluate the performance of the proposed U-net model during training
and testing stage, Dice coefficient (DC) [28] is used. It measures the area
of intersection between the model and ground truth segmentation and its
value ranges from 0 to 1, where 1 corresponds to 100% perfect and 0 to false
segmentation. The Dice coefficient is defined as:

DC =
2 ∗ (P ∩G)

P ∪G
=

2 ∗
∑N

i PiGi∑N
i Pi +

∑N
i Gi

(4.1)
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where P and G are predicted and ground truth binary images respectively.
Pi and Gi are output values 0 and 1 of pixel i in predicted and ground truth
binary image respectively.

4.2.5 Computational Implementation

Training

The proposed U-net architecture was developed under Python 3.8 using Ten-
sorFlow [29] with Keras API. In addition, image processing operations like
reading, cropping and training data preparation were done using PIL, Numpy
[30] and Scikit-Image [31] packages. Then the proposed model was trained on
GPU machine with Linux operating system (Intel(R) Core (TM) i7-10700K
CPU @ 3.80GHz) and NVIDIA RTX 3090 - 24GB graphic card. As discussed
above, the model is designed in such way that training will be performed on
patches of original image. So, to generate non-overlapping patches of size
256x256, original images were padded with zeros at the image edges so that its
width and height are divisible by 256. Out of these non-overlapping patches,
both plant and background masks are considered in equal proportion to avoid
potential imbalance between plant and non-plant training masks. Then each
cropped mask is normalized in the range of [0, 1] for feature consistency in
the CNN network. The overview of prepared training data of arabidopsis,
barley and maize and their growth stages are described in Table 4.2 and
4.3 respectively. Regarding information on growth stages, an approximately
equal number of images from different developmental stages (early, mid and
late developmental phases) were analysed in this study.

Table 4.2: Overview of training data including images of arabidopsis, barley
and maize plants.

Side view Top view

Plant Original
resolution

#of images #of
masks

#of images #of
masks

Arabidopsis 2056x2454 197 17730 193 17730
Barley 1234x1624 100 3395 100 1908
Maize 2056x2454 100 3669 55 1036
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Table 4.3: Overview of growth stages of training data from arabidopsis,
barley and maize plants.

Growth stage

Plant/View # of images Early Mid Late

Arabidopsis/Side 197 62 65 70
Arabidopsis/Top 193 62 65 66
Barley/Side 100 30 35 35
Barley/Top 100 30 35 35
Maize/Side 100 30 35 35
Maize/Top 50 20 20 15

Subsequently, based on our experience and previous works [32, 33], the
above prepared data sets were partitioned into training and validation in the
ratio of 85:15 respectively. The initial weights of the proposed model were
defined randomly with zero mean and standard deviation of 0.05 as proposed
by Krizhevsky et al. [34]. Then the model was optimized with Adam opti-
mizer [35] to improve the segmentation performance on training data sets.
Binary cross-entropy loss function [36] is used to measure the unhappiness
of the model during training and it defines the difference between predicted
output and ground truth generated by the kmSeg tool as described above.
This function compares each pixel prediction (0: non-plant, 1: plant) with
ground truth pixel and averages all pixels loss for computing total loss of
the image. Therefore, each pixel contributes to the overall objective loss
function. Then the model was trained for 100 epochs with 16 number of con-
volutional channel features and batch size of 128 as per system constraints.
The learning rate alters the magnitude of the updates to the model weights
during each iteration and initialized with 0.001. Then a learning rate sched-
uler was used to dynamically reduce the learning rate by a factor of 0.2 if
the validation loss is not improved in the next 5 iterations. Because a large
learning rate will update weights too large which result performance of model
will oscillate over training epochs. Whereas a too small learning rate may
never converge and get stuck on suboptimal solution [37]. Here, note that all
data sets (arabidopsis, barley and maize) were trained in similar way with
same parameter configuration.
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Prediction

As stated above, original shoot images have variational resolution where as
proposed model requires input images of the size 256x256. So, during the
prediction stage, original images are padded with zeros then non-overlapping
256x256 masks were generated similar as it was done in the training stage.
The model does predictions on these 256x256 masks then they are combined
to a single output image as shown in Figure 4.3. This process is dynamic,
that means any image with resolution greater than 256x256 can be segmented
in an automated manner.

Figure 4.3: Workflow of the pipeline for image processing and segmentation in
the DeepShoot tool. Green and orange colour boxes represents the operations
of image segmentation and trait calculation: (a) original image, (b) original
image patches of size256x256, (c) segmented image patches of size 256x256,
(d) binary segmentation of original image, (e) RGB colour space of (d).
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Since the output layer of the model is a Sigmoid activation function, the
predicted segmentation is a probability map with values ranging in between
0 and 1. Hence, this probability map is converted to a binary image using
threshold ’T’. Here, relatively, plant pixels will have high probabilities com-
pared to the background pixels. Therefore, T ≥ 0.6 is chosen to consider all
high probability pixels as plant pixels in the final segmentation. After fully
automated segmentation, phenotypic traits of segmented plant structures
were calculated in the final step.

Graphical User Interface

In practice, end-users prefer to have an easy-to-use software solution with
a Graphical User Interface (GUI). Therefore, a user-friendly GUI front-end
was developed under the MATLAB 2021a environment [38] to comfortably
operate the complex algorithmic framework of shoot segmentation software.
Figure 4.3 shows the complete workflow involved in shoot tool for automated
plant segmentation and trait extraction. For import of deep learning models
trained under Python the MATLAB interoperability routine importKeras-
Network [38] was used. According to specification of this function, the U-net
models trained in Python were exported in the so-called h5 file format, which
is supported by the recent versions of MATLAB including 2021a.

4.2.6 Method Comparison

The performance of our proposed model is compared with the recently pub-
lished shallow learning based neural network (NN) by Adams et al. [12]
which was developed and evaluated for the same application as ours, namely,
segmentation of greenhouse shoot images. This algorithm classifies each pixel
based on 3x3 neighbourhood information from red, green and blue channels
using fully-connected neural networks. In this study, the same NN model
architecture was retrained on our image data set with a large number of
neighbourhoods features 5,939,562 and higher batch size of 4096 compared
to the original study of 51,353 and 1024 respectively.

In addition, proposed encoder backbone of the U-net architecture is com-
pared with different encoder backbones include vgg19 [39], resnet50 [40] and
xception [41]. These models were trained on same image data set with sim-
ilar training configuration except increased number of filters (64, 128, 256,
512) as discussed in subsection 4.2.5.
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4.3 Results

4.3.1 Training and Validation

As described above, the proposed network was trained and validated on six
different data sets including arabidopsis, barley and maize images acquired
from three different plant phenotyping facilities. Thereby, each these three
data sets were subdivided into training and validation sets in the ratio of
85:15, respectively. The model performance is analysed using binary cross-
entropy loss (CE loss) and Dice coefficient at each epoch during the learning
stage of the network. Because of dynamic optical appearance of growing
plants, segmentation of shoot regions in side view images represents a more
difficult task. This results in discontinuous shoot structures in segmented
images. Therefore, it is important to give equal weights to errors related to
both background and plant pixels in this study using Dice coefficient. Figure
4.4 shows the training and validation performance of the proposed model on
six different data sets over 100 epochs. It shows that the training loss of six
models was minimized and platen the curve after epoch number 60. Simul-
taneously, training DC was maximized and achieved more than 90% of the
accuracy for all models by the end of the training epochs. In turn, general-
ized performance of the model is measured using validation measurements.
Likewise training performance, validation DC also achieved more than 90%
accuracy with low value of loss for all models at the end of the epochs. The
brief overview of training and validation measurements are shown in Table
4.4.

Table 4.4: Training and validation performance of the shoot models.

Training Validation

Plant CE loss DC CE loss DC

Arabidopsis side view 0.00075 0.9821 0.00083 0.9707
Arabidopsis top view 0.00297 0.9907 0.00345 0.9846
Barley side view 0.01172 0.9737 0.01300 0.9589
Barley top view 0.02986 0.9593 0.03366 0.9551
Maize side view 0.00687 0.9834 0.00906 0.9731
Maize top view 0.05433 0.9742 0.05673 0.9671
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Figure 4.4: Training and validation performance of the shoot model over
100 epochs. X- and Y-axes represent the epoch number and performance
measure, respectively. For visualization purpose, logarithmic cross-entropy
values are plotted for all models.
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Figure 4.5: Segmentation performance: first, second and third row represents
the original RGB image, ground truth segmentation by the kmSeg tool and
predicted segmentation by shoot tool, respectively. The DC of each image as
following: (a) 0.9117 (b) 0.9876 (c) 0.9384 (d) 0.9617 (e) 0.9709 (f) 0.9843.

In addition to the training performance, the exemplary segmentation of
all models on test images is shown in Figure 4.5. It turns out that all models
performed with a relatively higher DC of 0.95 except of arabidopsis side-view
model which has the DC of 0.9117 compared to the ground truth generated
by the kmSeg tool. Furthermore, trained models were tested on variational
data sets from arabidopsis top-view like stress and multi-tray experiments as
shown in Figure 4.6. Here, the model resulted in DC of 0.9664 and 0.9873
for stress and multi-tray experiments image compared to the ground truth
respectively.

4.3.2 Evaluation on the Reference Dataset

To measure the performance of the model on unseen data, our CNN model
trained on arabidopsis top-view images from LemnaTec-Scanalyzer3D was
applied to the set of arabidopsis top-view from Scharr et al. [42]. This dataset
was frequently used for CNN model training and evaluation in a number
of previous works within the scope of CVPPP competitions (https://www.
plant-phenotyping.org/CVPPP2018, https://www.plant-phenotyping.org/
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Figure 4.6: Segmentation performance on variational data sets: DC of stress
and multi-tray experiments are 0.9664 and 0.9873, respectively.

CVPPP2019 https://www.plant-phenotyping.org/CVPPP2020). However,
here it is only used for cross-validation of our model trained on images from
our phenotyping facility. Figure 4.7 shows the mean DC of single and multi-
tray experiments from Scharr et al. data set. The model resulted in the mean
DC of 0.93 over 100 images and 0.95 over 27 images for single and multi-tray
experiments respectively. Examples of segmentation of single-tray images
from the references data set are shown in Figure 4.8.

4.3.3 Evaluation of DeepShoot vs. Alternative Solu-
tions

The proposed U-net was compared with the recently published shallow learn-
ing based neural network (NN) by Adams et al. [12] which was originally
developed and evaluated for shoot side view image segmentation. Figure 4.9
shows the comparative analysis of 17, 25 and 20 side view images of ara-
bidopsis, barley and maize plants, respectively. It briefs that proposed U-net
outperforms with DC > 0.9 for all images where as neural networks predic-
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Figure 4.7: Evaluation of image segmentation on the references data set from
Scharr et al.: Dice coefficient of arabidopsis top-view model over 100 and
27 images for single- and multi-tray experiments, respectively. The dotted
orange line represents the mean DC value.

Figure 4.8: Examples of segmentation of arabidopsis top-view images from
Scharr et al. All images were segmented with DC over 0.9.

tions have DC in between 0.5 and 0.8. An exemplary segmentation of three
plants using neural network and proposed U-net with respect to ground truth
is shown in Figure 4.10. Also, the computational time of both segmentation
models required for the prediction on Intel(R) Xeon(R) Gold CPU @2.10
GHz with 20 CPU cores is listed in Table 4.5.

Furthermore, a comparison of different encoder backbones (vgg19, resnet50
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Figure 4.9: Performance of neural network (blue) and proposed U-net (or-
ange) segmentation models on (a) 17 arabidopsis (b) 25 barley (c) 20 maize
side view images.

Table 4.5: Computational time of shoot segmentation algorithms in seconds
per image on a system with Intel(R) Xeon(R) Gold 6130 CPU @2.10GHz
with 20 CPU cores.

Algorithm Arabidopsis
(2056x2454)

Barley
(1234x1624)

Maize
(2056x2454)

Neural networks 20410 13100 20410

Proposed U-net 7.2 3.05 7.2

and xception) of the U-net architecture was performed. Figure 4.11 shows
the performance of alternative U-net backbones by training on arabidopsis
top view images. It shows that both resnet50 and xception networks have
higher validation loss (> 0.004) and it increases over number of iterations.
On the other hand, vgg19 and proposed U-net are promising comparable per-
formance with lower validation loss of 0.0033. In addition, the complexity
of alternative U-net models with different encoder backbones on arabidopsis
top view images is shown in Table 4.6.

4.3.4 DeepShoot GUI Tool

Figure 4.12 shows the GUI of DeepShoot software which is freely available as
a precompiled executable program from https://ag-ba.ipk-gatersleben.de/ds.html.
In addition to automated image segmentation, DeepShooot calculates 35
shoot traits that are categorized into 4 feature groups (i.e. area, bounding
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Figure 4.10: Evaluation of neural network segmentation with respect to the
proposed U-net on arabidopsis, barley and maize side view images. (a) NN
DC: 0.7824, DeepShoot DC: 0.8342 (b) NN DC: 0.6973, DeepShoot DC:
0.8924 (c) NN DC: 0.8746, DeepShoot DC: 0.9360.

box traits, convex-hull area and statistical colour features). Further infor-
mation on definition of traits can be found in the Supplementary Table S1
accompanying this paper.

In order to restrict the analysis to the region of interest (ROI), users
can define a custom ROI as a rectangle or polynomial shape using crop or
Clear outside buttons of the DeepShoot GUI. The DeepShoot tool can be
applied for analysis single images in a step-by-step manner or for automated
processing of all images in a selected folder. Regarding DeepShoot time
performance, image segmentation and traits calculation all together take in
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Figure 4.11: Loss performance of alternative U-net models with different
encoder backbones on arabidopsis top view images.

Table 4.6: Complexity of alternative U-net models with different encoder
backbones on arabidopsis top view images.

Parameter Proposed
U-net

vgg19 resnet50 xception

#of trainable
parameters

2,484,721 24,780,993 15,053,121 5,583,065

average 18.5 seconds to process and analyse a 5-megapixel image on a system
with Intel(R) Xeon(R) Gold 6130 CPU @2.10GHz with 20 CPU cores.

4.4 Discussion & Conclusion

Automated processing and quantitative analysis of a large amount of phe-
notypic image data represents a critical point determining the efficiency and
accuracy of trait computation. The deep learning-based tool for automated
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Figure 4.12: Graphical User Interface of the DeepShoot tool: left, middle
and right images represent the original image, predicted probability map
and predicted colour image, respectively.

shoot image segmentation and phenotypic analysis developed in this work
aims to address this challenging task. Our experimental tests on three differ-
ent plant types (arabidopsis, barley and maize) and two different views (side
and top) showed that performance of the model during the training is im-
proved over the number of iterations. On the other hand, model trained (for
all plants) before iteration number 40 was under performed and showed worse
performance for model validation. However, due to the dynamic reduction
in learning rate by a factor of 0.2 a stable performance with more than 90%
Dice coefficient for all shoot models was achieved. Additional information on
impact of learning rate can be found in Supplementary Figure S1 accompa-
nied with this paper. Moreover, arabidopsis and maize models achieved low
CE loss values where as barley models have slightly higher CE loss values
due to the variational leaves like yellow and brown colour leaves. This is
reflected in lower DC of barley side- and top-view test images (0.9384 and
0.9617) compared to the arabidopsis top-view and maize models (> 0.97).
Also, the trained model exhibited a low value of DC (0.9117) for arabidopsis
side view test image compared to the other models due to the low contrast
of secondary stems which have intensity similar to the background pixels.
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In addition, the trained arabidopsis top-view model is validated on ref-
erence data sets including examples of stressed and multi-tray experiments.
Our experimental results showed that model achieved a remarkably high DC
of 0.9664 (stressed plants) and 0.9873 (multi-tray images) on these unseen
data. However, small background noisy objects which have intensity and
patterns similar to the leaves require additional application morphological
operations (e.g., min cluster size) that are also available with the DeepShoot
GUI tool. Furthermore, the model achieved very high DC (> 0.9) especially
on untrained images with different background from Scharr et al. dataset.
Overall our results indicate that the CNN model trained a particular set of
images can also be applied to unseen data exhibiting similar plant shoot pat-
terns but different background regions.

The performance of proposed U-net was compared with the shallow learn-
ing neural networks. Thereby, it was shown that most of the arabidopsis and
maize images have relatively low discrepancy between predicted DC of both
algorithms, because these images contain, mostly, high contrast green colour
pixels for the target structures. In contrast, the shallow neural network
exhibited a significantly lower DC on barley images. We draw the obser-
vation back to the fact that barley plants have more variable colour finger-
print including brown and yellow leaves. This shows that neural network is
only capable of segmenting high contrast shoot structures whereas the U-net
model is capable of segmenting both high contrast and colour-altering shoot
structures. Because CNN frameworks are capable of generating multi-level
features including neighbourhood information, colour, spatial patterns and
textural features compared to shallow learning methods where only neigh-
bourhood information was calculated. Therefore, rich in information makes
DeepShoot outperforms the shallow networks. Furthermore, tests of compu-
tational performance of the shallow neural network vs. the proposed U-net
model demonstrated the superior performance of the latter. In summary, the
DeepShoot tool enables users to perform segmentation and analysis of plant
shoot images faster and more accurate in comparison to the shallow neural
network.

Furthermore, performance of proposed U-net model is compared with
vgg19, resnet50 and xception encoder backbones. Thereby, it was observed
that lower depth architecture vgg19 achieved better results in comparison to
deep depth architectures such as resnet50 and xception that tend to over-
fitting. This can be attributed to higher complexity of these multi-layer
networks that generate too many redundant features. However, vgg19 model
still contains a large number of convolution layers with trainable weights
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which makes it 10 times larger in size than our proposed U-net. Therefore,
our proposed model achieves optimum results at the lower level of complexity
which enables to perform high-throughput plant phenotyping on both lower
and higher hardware configuration systems in real time.

It is known that U-net captures not only colour but also spatial pattern in-
formation. From this perspective, one can expect larger segmentation errors
by application of DeepShoot to optical scenes strongly deviating from plant
and background structures used by our model training. Nevertheless, our
tests with unseen shoot images indicated that the present CNN framework
can also be applied to analysis of quite different optical scenes or filed-like
images as long as the target plant structures are optically somewhat simi-
lar to images used in our training sets. Users are free to try and evaluate
the performance of provided segmentation models on their particular images.
From that perspective there are no other restrictions as the requirement of
RGB image with the size ≥256x256.

Moreover, segmentation of thin or twisted leaves, flowers as well as shad-
owed or light-reflecting regions (such as metallic surfaces) is more prone to
misclassification, which in turn may lead to fracturing of targeted structures
or false-segmented background regions. Nevertheless, improvements of model
accuracy and generability can be certainly expected by extending the training
set of ground truth images with more and more variable data, in particular,
more examples of stressed/aged phenotypes exhibiting non-green colours,
e.g., brown, yellow, red leaves. Furthermore, the tool can be extended by
an automated detection of the plant type and the camera view (side or top)
that have to be manually selected in the present implementation from the
list of pre-trained CNN models. Finally, further investigations are required
to quantitatively assess and to compare different model architectures as well
as performance of binary vs. multi-class segmentation models.
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Supplementary Material: 

Deep learning based greenhouse image segmentation and shoot phenotyping (DeepShoot), 

N. Narisetti*, M. Henke, K. Neumann, T. Altmann, E. Gladilin*.  

Table S1. Shoot Traits: The description of estimated shoot phenotypic traits in 

DeepShoot software. 

Feature name Description 
Shoot Area Total number of pixels in the segmented shoot image 

BBX Area Total number of pixels in the bounding box of the 
segmented shoot image 

Shoot Area to BBX Area Ratio of actual shoot area to bounding box area 

BBX Height Bounding box height of the segmented  shoot image 

BBX Width Bounding box width of the segmented shoot image 

Mean X Mean of the geometrical distribution of segmented 
shoot pixels in horizontal direction 

Stdev X Standard deviation of the geometrical distribution of 
segmented shoot pixels in horizontal direction 

Mean Y Mean of the geometrical distribution of segmented 
shoot pixels in vertical direction 

Stdev Y Standard deviation of the geometrical distribution of 
segmented shoot pixels in vertical direction 

CH Area to BBX Area Ratio of convex-hull area to the bonding box area of 
segmented shoot image 

Shoot Area to CH Area Ratio of actual number of segmented pixels to convex-
hull area 

R mean, G mean, B mean Mean value of red, green and blue (RGB) channels of 
segmented shoot image respectively 

R stdev, G stdev, B stdev Standard deviation of red, green and blue (RGB) 
channels of segmented shoot image respectively 

H mean, S mean, V mean Mean value of hue, saturation and value (HSV) channels 
of segmented shoot image respectively 

H stdev, S stdev, V stdev Standard deviation of hue, saturation and value (HSV) 
channels of segmented shoot image respectively 

L mean, a mean, b mean Mean value of CIE Lab channels of segmented shoot 
image respectively 

L stdev, a stdev, b stdev Standard deviation of CIE Lab channels of segmented 
shoot image respectively 

R mean, G mean, B mean Mean value of red, green and blue (RGB) channel of 
segmented shoot image respectively 

R stdev, G stdev, B stdev Standard deviation of red, green and blue (RGB) channel 
of segmented shoot image respectively 

hny_H mean, hny_S mean, hny_Y mean Mean value of hue, saturation and luminance (HSY) 
channel of segmented shoot image respectively 

hny_H stdev, hny_S stdev, hny_Y stdev Standard deviation of hue, saturation and luminance 
(HSY) channel of segmented shoot image respectively 
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Figure S1: Impact of learning rate (lr) on model training. X-axis represents number of 

iteration model trained and y-axis represents calculated binary cross entropy loss. 

 

Note: Model with learning rate 0.001 represents optimally trained model with 

exponential reduction in loss at initial iterations and stabilized loss over the 

iterations.    
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Abstract

Spike is one of the crop yield organs in wheat plants. Determination
of the phenological stages, including heading time point (HTP), and area
of spike from non-invasive phenotyping images provides the necessary infor-
mation for the inference of growth-related traits. The algorithm previously
developed by Qiongyan et al. for spike detection in 2-D images turns out to
be less accurate when applied to the European cultivars that produce many
more leaves. Therefore, we here present an improved and extended method
where (i) wavelet amplitude is used as an input to the Laws texture energy-
based neural network instead of original grayscale images and (ii) non-spike
structures (e.g., leaves) are subsequently suppressed by combining the result
of the neural network prediction with a Frangi-filtered image. Using this
two-step approach, a 98.6% overall accuracy of neural network segmenta-
tion based on direct comparison with ground-truth data could be achieved.
Moreover, the comparative error rate in spike HTP detection and growth
correlation among the ground truth, the algorithm developed by Qiongyan
et al., and the proposed algorithm are discussed in this paper. The pro-
posed algorithm was also capable of significantly reducing the error rate of
the HTP detection by 75% and improving the accuracy of spike area estima-
tion by 50% in comparison with the Qionagyan et al. method. With these
algorithmic improvements, HTP detection on a diverse set of 369 plants was
performed in a high-throughput manner. This analysis demonstrated that
the HTP of 104 plants (comprises of 57 genotypes) with lower biomass and
tillering range (e.g., earlier-heading types) were correctly determined. How-
ever, fine-tuning or extension of the developed method is required for high
biomass plants where spike emerges within green bushes. In conclusion, our
proposed method allows significantly more reliable results for HTP detection
and spike growth analysis to be achieved in application to European cultivars
with earlier-heading types.
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5.1 Introduction

Wheat is one of the major crop species in the world, with 762 million tons
of grain produced annually (FAOSTAT 2018) and providing ≥ 20% of the
world’s calorie and protein demand [1]. However, the increasing world pop-
ulation and climate change are major threats to sustainable crop production
[2]. Therefore, concentrated efforts are required to increase crop yield and
production to meet future needs. Information-based plant breeding and pre-
cision agriculture are fundamental for identifying suitable wheat varieties to
increase wheat productivity and production. One of the important compo-
nents in both crop breeding and precision agriculture is the monitoring of
plant developmental growth stages to apply informed-decision-based treat-
ments in field or greenhouse experiments. Phenology influences grain yield
components both directly and indirectly [3, 4], and in this aspect, quan-
titative assessment of crop phenology plays an important role in precision
phenotyping as a quantifier of crop performance.

According to the Feekes scale, wheat growth can be classified into four
major growth stages: tillering, stem elongation, heading, and ripening. A
more detailed sub-classification is made in the BBCH scale [5], with BBCH
classes 49–59 representing phenology from heading to flowering. The deter-
mination of phenological stages is necessary for the interpretation of growth-
related traits and stress tolerance acquired from non-invasive phenotyping. It
is well-known that the major flowering time gene PPD-H1 has a direct influ-
ence on leaf growth in barley [6], and flowering time genes have an impact on
abiotic stress tolerance [7, 8]. In a study employing non-invasive phenotyp-
ing of barley growth, correlation of biomass and tipping time (BBCH49) was
high [9] and resulted in a constitutive biomass QTL in the region of PPD-
H1 (Dhanagond et al., 2019). However, tipping time had to be assessed by
a time-consuming visual inspection of individual plant images across time.
The relationship of biomass to flowering time also holds true for wheat: both
crops have delayed flowering in an environment with long growing seasons
to allow longer and higher vegetative growth [10]. Similar to barley, sensi-
tive or insensitive Ppd-D1 alleles in wheat have been shown to correspond
to differences in leaf area [11]. In winter wheat, an earlier flowering time
of semidwarf cultivars was associated with reduced biomass at anthesis [12].
In dryland regions, simulations showed that higher yield derives from an in-
creased biomass before anthesis leading to an increased grain number [4].
Non-invasive imaging experiments with a large wheat collection have been
conducted to genetically dissect drought and heat-stress tolerance (unpub-
lished data). An automated solution is urgently required for an effective
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determination of flowering time-related growth stages through non-invasive
imaging.

As a first step, a reliable method for spike detection is needed. Once this is
established, the time point of the first detection of spikes across a time course
can be determined. To date, there have been relatively few studies concerned
with wheat spike detection and growth analysis from digital images. Most
of them are based on single spikes and needed to cut off spikes to classify
different wheat varieties using morphological image processing algorithms,
Hu moments, and neural networks [13, 14, 15]. However, these methods are
unsuitable for non-invasively detecting spikes from a whole plant with over-
lapping of leaves and young developing spikes in a high-throughput manner.

Qiongyan et al. [16] proposed a novel approach for detecting (young)
spikes in digital images of wheat plants based on Law’s textural (energy)
features and a neural network. This approach is based on the fact that
spikes and leaves have a high color similarity but differ clearly in texture.
However, when we applied this algorithm to one of our data sets, it turned
out to be sensitive to the high-energy leaf edges and tillers, which led to
false classifications of spike and non-spike pixels (or noisy pixels) as shown
in Figure 5.1. However, their method was based on four Australian wheat
varieties. In contrast, our data set is based on a diverse collection of high-
yielding mainly European elite cultivars that are much more diverse in their
plant architecture and produce more leaves and biomass compared to Aus-
tralian genotypes. Accordingly, due to the presence of noisy pixels in the
final image segmentation, the heading time point (HTP) BBCH55 was de-
tected too early on our dataset compared to the ground truth data using
their method. Thus, solely depending on Law’s textural features lead to
false detection of spikes in our wheat panel. Therefore, to overcome these
artifacts, an improved and extended novel approach is proposed in this paper.

The paper is structured as follows. Section 2 deals with the improved
methodological framework of spike detection, including data preparation,
segmentation, and post-processing algorithms. Section 3 describes the im-
provement of our algorithm compared to the existing method for HTP de-
tection and the spike growth analysis. In summary (section 4), we draw
conclusions regarding the performance of our algorithm and discuss its fu-
ture improvements.
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Figure 5.1: Limitations of wheat spike detection using Qiongyan et al. algo-
rithm. (a) represents the detection of spike and non-spike pixels in the wheat
plant. (b) Zoomed version of detected pixels in (a).

5.2 Materials and Methods

5.2.1 Dataset

We used images from one experiment with 260 diverse winter wheat culti-
vars of mainly Central European origin. Of these lines, 220 correspond to the
collection described in [17] and represent high-yielding cultivars of the past
decades. The remaining 40 lines are winter wheat elite cultivars from the
Gabi-Wheat collection [18], representing a similar breeding pool. Each cul-
tivar was represented by two biological replicates. Sowing was done in small
turf trays, and 14 days after sowing (DAS) at about the 2-leaf stage, plants
were placed for vernalization into a growth chamber with an 8-h light period
and 4◦C day/night. After 8 weeks of vernalization, turf trays were placed in
a greenhouse with 15-h light and 16◦/12◦C during the day/night for 3 days to
acclimate the plants to higher temperatures. The plants were then repotted
from the trays to 2-l-volume pots and were grown in the same greenhouse for
another 7 days before they were placed on the imaging system, a LemnaTec
3D Scanalyzer (LemnaTec GmbH, Aachen, Germany). They were imaged
and watered daily, with watering by target weight option corresponding to
89% of the plant-available water content in the soil [19]. Temperatures in
the greenhouse of the imaging system were raised over the time course of the
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experiment from 16°/12°C in four steps to 30◦/12◦C to simulate a German
spring/summer growing period, including 10 days of heat stress. In total,
plants lasted 50 days on the imaging system before they were transferred to
a normal greenhouse at 130 days after sowing (DAS) to grow to maturity
and to evaluate the yield components. During the imaging period, the tiller
number per plant was counted manually at the end of the heat period (at
125 DAS).

Images were taken from three side view angles (0◦, 45◦, 90◦) and one
top view using RGB cameras. The top view camera (a Manta G-504) had
a resolution of 2,452 × 2,056 pixels with a pixel size of 3.45 × 3.45 µm,
while the side view camera had a resolution of 6,576 × 4,384 pixels and a
pixel size of 5.5 µm x 5.5 µm. Plant images were later visually inspected to
determine the time point of heading when the ear was half out of the flag leaf
(BBCH55). Here, top view images turned out not to be suitable as, from the
top, an emerging ear has a very low visible area and might be easily hidden
under a bending leaf. Moreover, it is hard to define how much of the ear is
above the flag leaves. Therefore, this determination was done on inspecting
the three side view images. In this case, only the pots were rotated; the
camera is stable. Out of all 520 plants, 369 reached BBCH55 during the
imaging period belonging to 202 different cultivars. These 369 plants from
202 genotypes were available for testing our spike detection algorithm. These
plants exhibit strong differences in plant architecture and are challenging for
this kind of analysis, for example, spikes with or without awns, short and
tall plants (plant height range at harvest time from 34 to 119 cm), and
especially low and high tillering genotypes ranging from 1 to 38 tillers per
plant counted at 125 DAS during the imaging period. Further, the data set
exhibits differences in BBCH55 timing of 29 days.

5.2.2 Methodology

The workflow for spike detection following image acquisition is shown in
Figure 5.2. This algorithm was developed in the MATLAB environment
(MATLAB 2019a). The methodology involved in the proposed algorithm is
as follows:

In the initial step, the original image (Figure 5.3a) is converted to a
grayscale image using MATLAB’s rgb2gray routine. To enhance the separa-
bility between the plant and background pixels, discrete wavelet transform
(DWT) is applied in the preprocessing step using the Haar basis function
[20]. The DWT is a single level 2-D wavelet decomposition that produces a
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Figure 5.2: The workflow of the proposed spike detection algorithm using
image processing methods. Framed rectangles represent the data modalities,
and other rectangles describe the image processing operations.

featured image called an approximation coefficients image (A). This image
is half the size of the original image and is useful for characterizing unique
textures. Then, a neural network-based Laws texture energy method is ap-
plied to image A, as proposed in [21, 16], to segment the spike pixels from
the plant pixels. Here, the segmentation of plant pixels from the background
is called color index-based segmentation (CIS). Example images of the CIS
and the neural network segmentation are shown in Figures 5.3b and 5.3c re-
spectively. However, the Laws texture energy is sensitive to the high-energy
noisy edges (or pixels on leaves and leaf crossings) in the plant. To eliminate
those noisy edges, a combination of a multi-scale Frangi-filtered image [22]
and the neural network segmented image is considered. Because the Frangi
filter delivers a strength estimate of edges in the image, noisy edges can be
suppressed by smoothing the image over multiple scales and orientations [22].
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Therefore, this combination suppresses the tiny leaf edges and leaf crossings
in the segmented image. Here, the Frangi filter is applied to an L component
of the L*a*b color space image because the intensity values in the L compo-
nent are closely matched with the human perception and contrast between
the plant and non-plant pixels is high compared to in the a and b channels.

The Frangi-filtered image is considered one of the post-processing steps,
because as a pre-processing step, it might lead to false representation of tex-
tures in the image. In other words, there might be a possibility of suppressing
the spike pixels, hence modifying the unique textural characteristics of the
spikes and leaves. Examples of a Frangi-filtered image and a segmented im-
age are shown in Figures 5.3d and 5.3e, respectively. The complete spike is
then recovered by applying morphological binary operations to the Frangi
segmented image, as shown in Figure 5.3f.

Wavelet Decomposition

The wavelet-based texture classification is important because (1) it decor-
relates the data [23] by stretching the color differences between plant and
non-plant pixels in the image, (2) provides a non-redundant compressed im-
age which reduces the computation complexity significantly compared to the
original gray-scale image. Typically, wavelets are defined for 1-D signals.
So, the extension to 2-D signals is usually performed by using a product of
1-D filters. The practical implementation of the wavelet transforms using
different filters as follows:

A = [Lx ∗ [Ly ∗ I]↓2,1]↓1,2
H = [Lx ∗ [Gy ∗ I]↓2,1]↓1,2
V = [Gx ∗ [Ly ∗ I]↓2,1]↓1,2
D = [Gx ∗ [Gy ∗ I]↓2,1]↓1,2

(5.1)

where ∗ denotes the convolution operator, (↓ 2, 1) and (↓ 1, 2) represents
the downscaling along rows and columns respectively. L and G are the low
and high pass filters and I is the original image.

The DWT decomposes an image into four sub-bands called approxima-
tion coefficients (A), horizontal (H), vertical (V), and diagonal (D), as shown
in Figure 5.4. Sub-band A is obtained by the low-pass filtering and is accord-
ingly called the low-resolution image, the size of which is dependent on the
level of decomposition and input image size. In contrast, H, V, and D are
obtained by bandpass filtering in a specific direction. Therefore, they pro-
vide detailed directional information for the image. Among these sub-bands,
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Figure 5.3: The methodology of the proposed spike detection algorithm with
example images: (a) wheat plant of ID 1817KN373 with 150 days after sow-
ing (b) Green color indices based segmented image (c) DWT + Laws textural
features based NN segmented image (d) Frangi enhanced image in multiple
scales and orientations (e) Final binary segmentation: one leaf crossing arti-
fact is suppressed with Frangi enhanced image (f) Detected spikes after the
morphological reconstruction.

A is an essential feature image (or coefficients image) bearing the textural
information relevant to image segmentation. Consequently, the A wavelet
coefficient image is used here for texture characterization.
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Figure 5.4: DWT Decomposition: The coefficient image (A) is again decom-
posed in the multilevel DWT decomposition.

Laws textural features based image segmentation using neural net-
works

Laws texture energy method [24] is a classical pixel-wise texture analysis
approach and it has been used in many applications [25, 26, 27, 28]. This
approach uses 1-D local masks to detect various types of micro-structure
textural features. The typical 1-D local masks are level detection, edge de-
tection, and spot detection as shown in equation 5.2. However, the image is
a two-dimensional and which requires the 2-D masks for the texture analysis.

L3 = [1 2 1] - Level detection
E3 = [-1 0 1] - Edge Detection
S3 = [-1 2 -1] - Spot Detection

(5.2)

The 2-D masks are generated from the 1-D masks by convolving the
vertical 1-D mask with the horizontal 1-D mask. For example, the mask
S3L3 is calculated by a convolving vertical S3 mask with the horizontal L3
mask and it is a zero-sum mask. In contrast, the mask L3L3 is a non-zero-
sum mask which is not considered for the texture analysis. The list of 2-D
masks used for the texture analysis is given as the following:

L3E3 = L3T ∗ E3; E3S3 = E3T ∗ E3;
L3S3 = L3T ∗ S3; S3L3 = S3T ∗ L3;
E3L3 = E3T ∗ L3; S3E3 = S3T ∗ E3;
E3E3 = E3T ∗ E3; S3S3 = S3T ∗ S3;

(5.3)

The textural features are calculated in two steps [25] using 2-D masks.
In the first step, the input image is convolved with all the above 2-D masks.
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Then each individual resulting image is normalized with a unit standard
deviation and average mean over the window size of 25. Consequently, 8
textural feature images are generated for every input image. However, these
feature images have both plant and background pixels which increase the
computational complexity of the neural network for spike detection.

To overcome the computational complexity of the image segmentation,
the plant pixels (PP) are segmented from the background pixels using the
CIS method [21] as follows

PP = 2g − r − b; (5.4)

This method decorrelates the dominating green plant pixels from the
background. Then a plant binary image is generated using the binarization
technique (pixel value > 0), see Figure 5.3b. As a result, the number of pixels
for the neural network-based segmentation is reduced significantly.

The neural network is used to perform the classification of spike and non-
spike pixels in the study. In practice, the neural network is trained with a
large quantity of spike and non-spike pixels from the different wheat plants.
Then the trained neural network parameters are adapted to perform the
spike detection in an automated manner. Here, totally 218282 spike- and
731054 non-spike pixels were extracted from 150 manually segmented im-
ages and subsequently used for training, testing and validation a network
model in the sample proportion 70:15:15. The performance of the network
model with the eight input nodes, one hidden layer with 10 hidden nodes
and 2 output nodes was assessed using the conventional confusion matrix
[TP FP; FN TN], components of which indicate the total number of cor-
rectly and incorrectly classified spike and non-spike pixels, respectively. The
true positive (TP), true negative (TN) rates as well as the overall accuracy
(TP+TN)/(TP+FP+FN+TN) are summarized in table 5.1.

Frangi Filter Enhancement

The Frangi filter is a multi-scale second-order vessel enhancement method
developed by Frangi et al. [22] that is frequently used in biomedical applica-
tions [29, 30, 31]. The Frangi filter is used for enhancement of high-contrast
vessel structures or edges along with the suppression of the non-vessel struc-
tures and thin vessel edges. Since wheat shoots have multiple leaf crossings,
they exhibit vessel-like thin structures producing high-energy signals similar
to spikes. In turn, this can lead to false spike detection at leaf crossings by
the network model, as shown in Figure 5.1. The Frangi filter is applied to
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Training Testing Validation Total

Spike pixels 152793 32773 32716 218282

Non-spike pixels 511743 109627 109684 731054

TP rate (%) 96.2 96.4 96.0 96.2

TN rate (%) 99.3 99.3 99.3 99.3

Accuracy (%) 98.5 98.6 98.5 98.6

Table 5.1: The statistical performance of the neural network in the training
stage.

suppress edges resulting from such leaf crossings in the neural network seg-
mented images.

Frangi-based vessel enhancement is achieved based on Hessian and eigen-
values. The Hessian matrix of image I is computed as follows:

H =

[
h11 h12

h21 h22

]
= σ

[
∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

]
(5.5)

where h11, h12, h21, h22 are the second-order partial derivatives of the image
and σ denotes a variable scaling factor.

To extract the information on structural-patterns from the Hessian ma-
trix, the eigenvalues λ1 and λ2 are calculated, while σ is used for the enhance-
ment of structures at different scales, see Table 5.2. Since we are interested in
detecting and suppressing the bright vessel-like structures in the plant leaves,
the image enhancement is performed under the assumption that a pixel be-
longing to a vessel region should have a very low value of λ1 and a very high
magnitude of λ2, see equation 5.6. Furthermore, the bright vessel-like struc-
tures emerge with negative λ2 and the filter response of the corresponding
pixel with λ2 > 0 is considered as zero in the enhanced image.

| λ1 |≤| λ2 | (5.6)

The enhanced image is defined as follows:

IE =

{
if λ2 > 0 : 0,

otherwise : exp(
−R2

B

2β2 )(1− exp(−S2

2c2
))

(5.7)
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λ1 λ2 Structure pattern

N N noisy, no preferred direction

L H- vessel structure (bright)

L H+ vessel structure (dark)

H- H- blob like structure (bright)

H+ H+ blob like structure (dark)

Table 5.2: Possible structural patterns in 2D images depending on eigen
values λ1 and λ2. H = high, L = low, +/- indicates the sign of the eigen
value [22].

where RB = λ1

λ2
, S =

√
λ2
1 + λ2

2 and c, β are constants that control the
sensitivity of the filter. The enhanced image IE is obtained at various scales,
i.e., σ = 1, 3, 5, 7, 9. Since the maximum scale approximately matches the
size of the vessel to detect, the final enhanced image IFE can be obtained
according to [22] by taking a maximum among all scales as defined in equation
5.8.

IFE = maxσIE (5.8)

An example of edge suppression (leaf crossings) using the Frangi filter is
shown in Figure 5.5.

Consequently, the result of the neural network segmentation is subse-
quently filtered under consideration of leaf crossing regions detected by the
Frangi filter (Figure 5.3d). This is done by eliminating the regions corre-
sponding to leaf edges in the binary segmentation mask, see Figure 5.3e.

Spike reconstruction using morphological filters

As shown in Figure 5.3e, only some parts of the spikes were detected using the
proposed algorithm compared to the CIS image in Figure 5.3b. To recover
the complete spikes, the logical ’and’ operation of the CIS image and the
Frangi segmented image were performed. Then the morphological binary
operations (erosion and dilation) were sequentially applied to recover the
final spike area in the CIS image, see Figure 5.3f.
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Figure 5.5: Example of suppression of leaf crossings using the Frangi Filter.
From left to right: (a) original image of a wheat shoot, (b) Fringi filter
enhanced image, (c) examples of Frangi enhanced regions, (d) examples of
leaf crossings detected in the original image.

5.3 Results and Discussion

The above-described algorithm was applied to calculate the yield-related fea-
tures at the transition from the tillering to flowering growth stages of wheat
plants with an age of more than 90 DAS. Accordingly, the results of this
study are presented in two sections dedicated to (i) detection of the time
point of spike emergence and (ii) spike growth analysis from RGB images ac-
quired using visible light cameras during an experiment with diverse winter
wheat varieties. In the first section, the spike emergence was tested on 369
wheat plants from 202 different genotypes. Here, the HTP was defined as the
first time in the imaging time course when the detected spike satisfied the
minimum area constraint of 500 pixels. The spike area was then measured
in a time series from the HTP to perform real-time growth analysis for a few
selected plants.

Image analysis was performed on an Intel Xeon CPU E5-2640-based work-
station running under the Linux OS. The algorithms were implemented under
MATLAB 2019a (MathWorks Inc.). Training of a neural network on 949336
manually segmented spike and non-spike pixels using ten 2.40GHz CPUs
with a total of 20 cores in parallel mode took approximately 80 s. The spike
detection algorithm takes approximately 2.5 s to process an 8-megapixel test
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image. However, the processing time might vary depending on the test image
size.

The root mean square error (RMSE) is used for quantification of the
deviations of predictions from our model and Qiongyan et al.’s model from
ground truth data,:

RMSE =

√√√√ n∑
i=1

(yi − ŷi)2 (5.9)

where y is the ground truth value and ŷ is the model predicted value. For con-
sistent comparison of performance, the Qiongyan et al. model was retrained
with the European cultivars.

5.3.1 Spike Emergence

The time-series images of a single plant described in Section 2 have three
orientations. Accordingly, two factors are considered to estimate the HTP
from multiple orientations: the spike should (1) appear in at least two orien-
tations and (2) remain present in all days of the experiment. This means the
spike or spikes should be continuously detected until the last day to avoid
false emerging time points.

Figure 5.6 shows HTP detection in the wheat plant side-view images.
These nine different wheat plants from the early-flowering genotypes pos-
sessing a single spike (1817KN397, 1817KN422) and multiple spikes (remain-
ing seven plants) were considered for the training a model because we were
aware that the later-flowering genotypes, which produce more biomass, will
present much greater difficulties with spike visibility due to a higher prob-
ability that the spike will be covered by leaves. Figure 5.6 indicates that
HTP values obtained by the proposed method have a significant correlation
with the ground-truth HTPs, with an RMSE of 1.94, whereas the Qiongyan
et al. method underperforms, with an RMSE of 7.8. This indicates that
the Qiongyan et al. method is highly sensitive to the leaf artifacts whose
energy is similar to that of the spike pixels but that those leaf artifacts were
suppressed by the proposed method, as shown in Figure 5.5.

On the other hand, the proposed method resulted in high HTP error rates
of 4 days more and 3 days less for plant ID 1817KN373 and 1817KN412, re-
spectively. For plant ID 1817KN373, this was because the spikes were narrow
and the pixel-wise textural energy was similar to that of the leaves, as shown
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Figure 5.6: The HTP detection using Qiongyan et al. and our proposed
method in comparison to the ground truth.

in Figure 5.7a compared to the other spikes in Figure 5.7b. Therefore, the
HTP was detected 4 days later. In the case of plant ID 1817KN412, it turned
out that the visually scored time point was determined too late, most likely
by not carefully inspecting all side view angles (in the first, at 00◦, the later
time point looks correct, but at the 450◦ and 900◦ angles, it is visible that
the earlier one is correct). Example spike images for the early HTP detection
are shown in Figures 5.7c and 5.7d.

The advantages and significance of the results with the proposed method
showed that it is feasible for high-throughput analysis of HTP detection.
Consequently, we applied the method to all 369 diverse plants in our data
set that reached heading within the imaging period. As expected, 104 plants
corresponding to the supposedly earlier-heading genotypes obtained a good
and reliable estimation of the true heading time point. Figure 5.8 shows the
results for the high-throughput analysis of 104 plants. It is observed that the
proposed method outperforms the Qiongyan et al. method, with an R2 value
of 0.776 compared to the R2 value (0.193) of the Qiongyan et al. method.
Since the European elite cultivars possess more leaves, overlay artifacts re-
sult in too early HTP detection using the Qiongyan et al. method on 90%
of our data. In the remaining 265 plants, the spike emerged in the final days
according to the ground truth data, and they have early-stage spike textural
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Figure 5.7: Limitations of the proposed method: (a) the early stage spike
texture failed to detect in plant ID 1817KN373 (b) the detected spike texture
in plant ID 1817KN373 (c) example spike geometry less than BBCH55 scale
in plant ID 1817KN412 (d) spike geometry according to BBCH scale in plant
ID 1817KN412.

features that are similar to the leaves. This resulted in the proposed algo-
rithm failing to detect the spikes in the final days with a day number 0 in
the output. This leads to a low value of the correlation coefficient R2 0.0586
for the remaining 265 plants.

We compared the general plant architecture features of all 369 plants
tested and classified them into three categories: (i) both plants of the geno-
type were classified correctly by our algorithm (94 plants from 47 genotypes,
(ii) only one out the two plants of a genotype were classified correctly by
our algorithm (20 plants from 10 genotypes), and (iii) none of the two plants
of a genotype were classified correctly by our algorithm (Table 5.3; Sup-
plementary Material). It turned out that the method performed better for
earlier-flowering plants with an accordingly lower number of tillers and less
biomass. Moreover, in 26 out of all 39 plants with awned spikes, heading time
could be reliably estimated by our algorithm. This might arise from two fac-
tors: first, awned genotypes are more abundant in the earlier-flowering group
and possess less biomass, and therefore spikes are less often hidden by leaves,
and second, the model was trained based on nine early-flowering plant IDs
with a bias toward awned types. Further, it might very well be that the fine
awn structures, in general, help in the differentiation of the spike from the
leaf background.

Table 5.3 shows mean phenotypic trait values, with minimum and max-
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Figure 5.8: Comparison of the HTP detection using our and Qiongyan et al
method vs. ground truth in 104 wheat plants.

imum in brackets, of plants successfully and non-successfully classified re-
garding their time point of heading.

5.3.2 Spike Area

Spike area is one of the key yield measures in wheat plants, so we have ex-
amined the total spike growth of a single wheat plant in three orientations
from the spike emergence day for all images. In section 5.3.1, nine wheat
plants were considered for HTP detection. Among those, only three plants
(1817KN374, 1817KN409, and 1817KN422) with a single spike and two with
multiple spikes are considered for the spike growth analysis. Here, the spike
area of a plant per day is calculated by taking the maximum area among
the three orientations. The measured area of both algorithms is validated
by the RMSE and R2. The RMSE quantifies the difference between the
ground truth area and the predicted area for all days from the ear-emergence
day. The R2 value compares the goodness of our proposed models and of the
Qiongyan et al. model compared to the ground truth data.

Figure 5.9 shows the results of spike growth analysis with the Qiongyan
et al. method and with our proposed method compared to the ground truth
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Phenotypic traits
Phenotypic mean values

2 out of 2 plants 1 plant of 2 0 out of 2 plants
successful successful successful

ground truth BBCH55
(DAS)

115.5 (107-120) 118.1 (101-127) 125.5 (120-130)

days to maturity
(DAS)

175.4 (159-203) 185.2 (160-222) 193.8 (166-283)

presence of awns
(1=no, 2=yes)

1.3 1.2 1.0

final plant height(cm) 57.1 (34-101) 64.0 (37-96) 60.9 (38-119)

Tiller number at DAS
125

7.5 (3-19) 8.4 (1-17) 11.4 (4-38)

Spike number at har-
vest

7.5 (3-16) 7.8 (1-14) 9.8 (4-22)

total plant biomass at
harvest

15.2 (5.7-26.8) 17.5 (4.5-28.1) 21.4 (8.1-48.0)

(grains + straw) (g)

total plant straw
weight at harvest (g)

9.9 (3.5-15.6) 12.8 (5.7-20.0) 15.7 (5.8-38.2)

Table 5.3: Gene classification and comparison of architectural features of 369
plants.

data. Here, the ground truth data are prepared manually by segmenting
the spikes using GIMP image processing software (https://www.gimp.org).
The number of non-zero pixels in the segmented image represents the actual
spike area or the ground-truth spike area of the image. This figure shows
that the proposed method outperforms the Qiongyan et al. method overall,
with a low RMSE and a high value of R2. Moreover, the RMSE is profoundly
improved by more than 50% and the R2 value is significantly improved for
plant ID 1817KN373 (Figure 5.9a) and 1817KN422 (Figure 5.9c). Neverthe-
less, plant ID 1817KN409 (Figure 5.9b) exhibits a high RMSE compared to
the other plants in the spike growth analysis.

The high RMSE value for the Qiongyan et al. method is caused by the
classification of leaf artifacts as spikes, which leads to an increase in the total
spike area. In our method, these artifacts were eliminated using DWT and
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Figure 5.9: Spike growth analysis: Day number 1 represents the first day
of the ear emergence in the wheat plants. (a) plant ID 1817KN374 with
multiple spikes (b) plant ID 1817KN409 with multiple spikes (c) plant ID
1817KN422 with a single spike.
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Figure 5.10: The detected leaf artifacts in (a) result in a high spike area com-
pared to (b) for the spike growth analysis. The segmented objects are rep-
resented with blue color curves and red color rectangle boxes. (a) Qiongyan
et al method, (b) proposed method.

Figure 5.11: Morphological reconstruction of the spikes: (a) Frangi based
spike segmentation (b) CIS image (c) Morphologically reconstructed image
using a and b (d) Detected spikes in the original image represented with blue
color lines and red color rectangle box.
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the Frangi filter. Example images of the improved spike detection are shown
in Figure 5.10. On the other hand, the high error rate observed for plant
ID 1817KN409 is due to the morphological reconstruction at the final step.
This leads to the fusion of neighboring spikes with the connected stems and
leaves, as shown in Figure 5.11.

5.4 Conclusion

Here, we present an improved method for wheat spike detection in a test data
set with 369 plants from 202 diverse winter wheat varieties corresponding to
mainly high-yielding Central European varieties [17]. Our work relies on
the algorithm proposed by Qiongyan et al, which was originally tailored to
four Australian wheat varieties. By application to European elite cultivars,
that earlier algorithm turned out to be too sensitive to the leaf crossing or
overlay artifacts and aged leaves. This resulted in a high rate of false detec-
tion of spikes and, consequently, incorrect (too early) detection of heading
time points. To overcome these limitations, we developed and evaluated an
algorithmic pipeline extended by DWT and the Frangi filter that enable de-
tection and suppression of high-energy regions caused by a high density of
leaves. The proposed method has significantly improved the accuracy of the
detection of spikes and the time point of heading, resulting in a reduction
of the error rate (RMSE) by 75% compared to the Qiongyan et al. model.
Similar improvement was also achieved in the analysis of spike growth, where
the error rate of model predictions vs. ground truth data was reduced by
50% compared to Qiongyan et al. With these algorithmic improvements,
detection of the heading time and analysis of spike growth can be performed
in a high-throughput manner with sufficiently high accuracy.

In contrast to the majority of previous method studies, our approach was
tested on a diverse set of genotypes with strong morphological differences
regarding spike architecture (with or without awns), height, tiller number,
biomass, and heading time. Such a data set is very challenging as it is easier
to find an algorithm for identifying the plant organs in a small genotype set
with much more uniform morphology. However, the biological truth is that
many studies employ non-invasive phenotyping to screen genotype collections
that exhibit a high phenotypic diversity [32, 19]. This requires algorithms
with high performance across a highly heterogeneous background. Our pro-
posed method represents a good starting point, as it correctly determined the
heading date in 47 genotypes for both biological replicates and for at least one
of the two biological replicates in a further 10 genotypes. These were mainly
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plants from lower biomass and tillering range and, therefore, on-average ear-
lier heading. The method is thus expected to perform well in germplasm
with relatively low biomass and tillering, as would be the case for collections
from hot or dry environments. However, it also clearly showed limitations in
genotypes with high biomass and high tillering (mostly later-heading types),
where the spike emerges within a green “bush.” The fine-tuning or extension
of the developed method for reliable spike detection in such high-biomass,
high-tillering genotypes will be conducted in the near future. Further, we
aim at application to other existing data sets of spring barley and spring
wheat collections, where ground truth data still have to be generated. It
is likely that in collections with many or exclusively awned genotypes, the
method would already be applicable and yield meaningful results. It is also
conceivable that the presented method will work well in bi-parental mapping
populations if both parents come from the lower-biomass and tiller-number
spectrum.

In conclusion, the proposed approach has the potential to predict the
spike yield in other cereal plants such as barley, rice, and rye over time.

In the future, we shall explore the possibility of advancing spike detection
methods in an automated manner using deep learning technologies. We also
plan to perform a time series analysis of spike growth over a large experimen-
tal population (¿ 500 plants) to further improve the algorithm and to deliver
more sophisticated solutions for plant breeders and cereal crop researchers.
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Cultivar Year_of_release_finclass Quality_recentRelease_stateHybrid.statusGroup group in paper

Apertus 2013 2010-13 A Deutschlandnon-hybrid SK one

Granada 1980 1980ies B Deutschlandnon-hybrid SK one

Hylux 2012 2010-13 B Frankreich hybrid FK one

Mex. 17 bb NA Mexico non-hybrid FK one

Sperber 1982 1980ies A Deutschlandnon-hybrid SK one

Alixan 2005 2000nds A Frankreich non-hybrid FK two

Apache 1997 1990ies A CZ non-hybrid FK two

Arlequin 2007 2000nds Frankreich non-hybrid FK two

BCD 1302/83 NA Moldavien non-hybrid FK two

Benni multifloret 1980 1980ies SRW/Pr USA/Indiananon-hybrid FL two

Cajeme 71 1971 1970ies HRS Mexico non-hybrid FK two

Camp Remy 1980 1980ies B Deutschlandnon-hybrid FK two

Centurk 1971 1970ies HRW/ Ex USA non-hybrid FL two

Helios 2013 2010-13 USA non-hybrid SK two

Highbury 1968 1960ies A GBR non-hybrid FK two

Hope NA USA/(S.Dakota)non-hybrid FL two

Hystar 2007 2000nds B Frankreich hybrid FK two

INTRO 615 NA USA non-hybrid FK two

Isengrain 1996 1990ies B FR/SI/ES non-hybrid FK two

Ivanka 1998 1990ies B1 Serbien non-hybrid FK two

KWS Ferrum 2012 2010-13 B Deutschlandnon-hybrid FK two

Maris Huntsman 1975 1970ies A Deutschlandnon-hybrid SK two

Muskat 2010 2010-13 C Deutschlandnon-hybrid FK two

NS 22/92 NA Serbien non-hybrid FL two

NS 46/90 NA Serbien non-hybrid FK two

NS 66/92 NA Serbien non-hybrid FK two

Phoenix 1981 1980ies HWW/Gd AUS:New-South-Wales,USA:Californianon-hybrid FL two

Pobeda 1990 1990ies A1-A2 Serbien non-hybrid FK two

Renesansa 1995 1990ies A2-A1 Serbien non-hybrid FK two

Soissons 1987 1980ies B/A BE, Es, FR, IE, IT; SInon-hybrid FK two

Tremie 1991 1990ies ES, FR, IT, non-hybrid FK two

Vel NA USA non-hybrid FL two

Xanthippe 2011 2010-13 C Deutschlandnon-hybrid SK two

Admiral 1968 1960ies A Deutschlandnon-hybrid SL #N/A

Akratos 2004 2000nds A Deutschlandnon-hybrid SL #N/A

Akteur 2003 2000nds E Deutschlandnon-hybrid SL #N/A

Alidos 1987 1980ies E Deutschlandnon-hybrid SL #N/A

Altos 2000 2000nds E Deutschlandnon-hybrid SK #N/A

Alves 2010 2010-13 A Deutschlandnon-hybrid SL #N/A

Anapolis 2013 2010-13 C Deutschlandnon-hybrid SK #N/A

Anthus 2005 2000nds B Deutschlandnon-hybrid SK #N/A

Apollo 1984 1980ies C Deutschlandnon-hybrid SL #N/A

Aquila 1979 1970ies C GRB/IT non-hybrid SL #N/A

Ares 1983 1980ies B Deutschlandnon-hybrid SL #N/A

Aristos 1997 1990ies A Deutschlandnon-hybrid SL #N/A

Arktis 2010 2010-13 E Deutschlandnon-hybrid SK #N/A
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Aron 1992 1990ies E Deutschlandnon-hybrid SL #N/A

Asketis 1998 1990ies A Deutschlandnon-hybrid SL #N/A

Astron 1989 1980ies A Deutschlandnon-hybrid SL #N/A

Aszita 2005 2000nds B Deutschlandnon-hybrid SL #N/A

Atomic 2012 2010-13 A Deutschlandnon-hybrid SK #N/A

Avalon 1980 1980ies B/Gd GBR; non-hybrid FK #N/A

Avenir 2013 2010-13 A Deutschlandnon-hybrid SK #N/A

Basalt 1980 1980ies B Deutschlandnon-hybrid SL #N/A

Batis 1994 1990ies A Deutschlandnon-hybrid SL #N/A

Benno 1973 1970ies E Deutschlandnon-hybrid SL #N/A

Biscay 2000 2000nds C Deutschlandnon-hybrid SK #N/A

Bombus 2012 2010-13 C Deutschlandnon-hybrid SK #N/A

Boregar 2007 2000nds A Frankreich non-hybrid FK #N/A

Boxer 2013 2010-13 C Deutschlandnon-hybrid SL #N/A

Brigand 1979 1970ies BISC; D GBR non-hybrid SK #N/A

Brillant 2005 2000nds A Deutschlandnon-hybrid SK #N/A

Bussard 1990 1990ies E Deutschlandnon-hybrid SL #N/A

Butaro 2009 2000nds E Deutschlandnon-hybrid SL #N/A

Capelle Desprez 1946 1940ies C FR, CHL, GBR, NLnon-hybrid SL #N/A

Caphorn 2000 2000nds Frankreich non-hybrid FK #N/A

Capone 2012 2010-13 A Deutschlandnon-hybrid SK #N/A

Cardos 1998 1990ies A Deutschlandnon-hybrid FK #N/A

Carenius 2006 2000nds B Deutschlandnon-hybrid SK #N/A

Caribo 1968 1960ies B Deutschlandnon-hybrid SL #N/A

Carimulti 1975 1970ies C Deutschlandnon-hybrid SL #N/A

Carisuper 1975 1970ies A Deutschlandnon-hybrid SL #N/A

Chevalier 2005 2000nds A AT, CZ, LT, LUnon-hybrid SK #N/A

Claire 1999 1990ies C IE/UK non-hybrid SK #N/A

Colonia 2011 2010-13 B DE/BE/HU non-hybrid SK #N/A

Contra 1990 1990ies C Deutschlandnon-hybrid SK #N/A

Cordiale 2003 2000nds England non-hybrid FK #N/A

Cubus 2002 2000nds A Deutschlandnon-hybrid SK #N/A

Dekan 1999 1990ies B Deutschlandnon-hybrid SK #N/A

Desamo 2013 2010-13 B Deutschlandnon-hybrid SK #N/A

Diplomat 1966 1960ies A Deutschlandnon-hybrid SL #N/A

Discus 2007 2000nds A Deutschlandnon-hybrid SK #N/A

Disponent 1975 1970ies A Deutschlandnon-hybrid SL #N/A

Drifter 1999 1990ies B Deutschlandnon-hybrid SK #N/A

Durin NA Frankreich non-hybrid SK #N/A

Edgar 2010 2010-13 B Deutschlandnon-hybrid SK #N/A

Edward 2013 2010-13 B Deutschlandnon-hybrid SK #N/A

Einstein 2004 2000nds B GB non-hybrid SK #N/A

Elixer 2012 2010-13 C Deutschlandnon-hybrid SK #N/A

Ellvis 2002 2000nds A Deutschlandnon-hybrid SK #N/A

Enorm 2002 2000nds E Deutschlandnon-hybrid SK #N/A

Esket 2007 2000nds A Deutschlandnon-hybrid SK #N/A

Estivus 2012 2010-13 A Deutschlandnon-hybrid SK #N/A
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Event 2009 2000nds E Deutschlandnon-hybrid SK #N/A

Famulus 2010 2010-13 E Deutschlandnon-hybrid SK #N/A

Fedor 2007 2000nds A Deutschlandnon-hybrid SK #N/A

Flair 1996 1990ies B Deutschlandnon-hybrid SK #N/A

Florian 2010 2010-13 E Deutschlandnon-hybrid SK #N/A

Florida 1984 1980ies USA non-hybrid FK #N/A

Forum 2012 2010-13 A DE/EE/PO/SEnon-hybrid SK #N/A

Gaucho 1993 1990ies USA non-hybrid SK #N/A

Genius 2010 2010-13 E Deutschlandnon-hybrid SK #N/A

Glaucus 2011 2010-13 A Deutschlandnon-hybrid SK #N/A

Global 2009 2000nds B DE/AT non-hybrid SK #N/A

Gordian 2013 2010-13 B Deutschlandnon-hybrid SK #N/A

Götz 1978 1970ies B Deutschlandnon-hybrid SK #N/A

Gourmet 2013 2010-13 E Deutschlandnon-hybrid SK #N/A

Greif 1989 1980ies B Deutschlandnon-hybrid SK #N/A

Hermann 2004 2000nds C Deutschlandnon-hybrid SK #N/A

Herzog 1986 1980ies A Deutschlandnon-hybrid SK #N/A

Hybery 2010 2010-13 B Frankreich hybrid FK #N/A

Hybred 2003 2000nds B DE/FR hybrid FK #N/A

Hyland 2009 2000nds B DE/HU hybrid FK #N/A

Ibis 1991 1990ies A Deutschlandnon-hybrid SL #N/A

Impression 2005 2000nds A Deutschlandnon-hybrid SK #N/A

Inspiration 2007 2000nds B Deutschlandnon-hybrid SK #N/A

Intro 2011 2010-13 B Deutschland/Frankreichnon-hybrid SK #N/A

Jafet 2008 2000nds E Deutschlandnon-hybrid SK #N/A

JB Asano 2008 2000nds A Deutschlandnon-hybrid SK #N/A

Jenga 2007 2000nds A Deutschlandnon-hybrid SK #N/A

Joker 2012 2010-13 A Deutschlandnon-hybrid SK #N/A

Joss 1972 1970ies C Deutschlandnon-hybrid SK #N/A

Kalahari 2010 2010-13 B DE/BE non-hybrid SK #N/A

Kanzler 1980 1980ies B Deutschlandnon-hybrid SL #N/A

Kerubino 2004 2000nds E Deutschlandnon-hybrid SK #N/A

Knirps 1985 1980ies B Deutschlandnon-hybrid SL #N/A

Kobold 1978 1970ies B Deutschlandnon-hybrid SL #N/A

Kometus 2011 2010-13 A Deutschlandnon-hybrid SK #N/A

Konsul 1990 1990ies B Deutschlandnon-hybrid SL #N/A

Kontrast 1990 1990ies A Deutschlandnon-hybrid FK #N/A

Kormoran 1973 1970ies A Deutschlandnon-hybrid SL #N/A

Kraka 1982 1980ies A Deutschlandnon-hybrid SL #N/A

Kranich 1969 1960ies A Deutschlandnon-hybrid SK #N/A

Kredo 2009 2000nds B Deutschlandnon-hybrid SK #N/A

Kronjuwel 1980 1980ies B Deutschlandnon-hybrid SK #N/A

Kurt 2013 2010-13 B Deutschlandnon-hybrid SK #N/A

KWS Cobalt 2013 2010-13 A Deutschlandnon-hybrid SK #N/A

KWS Milaneco 2013 2010-13 E Deutschlandnon-hybrid SL #N/A

KWS Pius 2010 2010-13 A Deutschlandnon-hybrid SK #N/A

KWS Santiago 2011 2010-13 C England non-hybrid SK #N/A
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Lambriego Inia 1980 1980ies Chile non-hybrid FK #N/A

Landsknecht 2013 2010-13 C Deutschlandnon-hybrid SK #N/A

Limes 2003 2000nds B Deutschlandnon-hybrid SK #N/A

Linus 2010 2010-13 A Deutschlandnon-hybrid SK #N/A

Lucius 2006 2000nds A Deutschlandnon-hybrid SK #N/A

Ludwig 1998 1990ies A Deutschlandnon-hybrid SL #N/A

Magister 2005 2000nds E Deutschlandnon-hybrid SK #N/A

Magnus 2000 2000nds A Deutschlandnon-hybrid SL #N/A

Manager 2006 2000nds B Deutschlandnon-hybrid SK #N/A

Matrix 2010 2010-13 B Deutschlandnon-hybrid SK #N/A

Meister 2010 2010-13 A Deutschlandnon-hybrid SK #N/A

Memory 2013 2010-13 B Deutschlandnon-hybrid SK #N/A

Mentor 2012 2010-13 B Deutschlandnon-hybrid SK #N/A

Mex. 3 NA Mexico non-hybrid FK #N/A

Mironovska 808 1963 1960ies STR/Medium hard/HgUkraine non-hybrid FL #N/A

Monopol 1975 1970ies E Deutschlandnon-hybrid SL #N/A

Mulan 2006 2000nds B Deutschlandnon-hybrid SK #N/A

NaturaStar 2002 2000nds A Deutschlandnon-hybrid SL #N/A

Nelson 2011 2010-13 E Deutschlandnon-hybrid SK #N/A

Nimbus 1975 1970ies B Deutschlandnon-hybrid FK #N/A

Oakley 2008 2000nds C UK/BE non-hybrid SK #N/A

Obelisk 1987 1980ies B NE; DE non-hybrid SK #N/A

Oberst 1980 1980ies A Deutschlandnon-hybrid SL #N/A

Orcas 2010 2010-13 B Deutschlandnon-hybrid FK #N/A

Orestis 1988 1980ies B Deutschlandnon-hybrid SK #N/A

Oxal 2010 2010-13 B Deutschlandnon-hybrid SK #N/A

Pantus 1966 1960ies A Deutschlandnon-hybrid SK #N/A

Paroli 2004 2000nds A Deutschlandnon-hybrid SK #N/A

Patras 2012 2010-13 A Deutschlandnon-hybrid SK #N/A

Pegassos 1994 1990ies A AT, CH, DE, LT, PL, SI, SKnon-hybrid FK #N/A

Piko 1994 1990ies B Deutschlandnon-hybrid FK #N/A

Pionier 2013 2010-13 A Deutschlandnon-hybrid SK #N/A

Potenzial 2006 2000nds A Deutschlandnon-hybrid SK #N/A

Premio 2006 2000nds B Frankreich non-hybrid FK #N/A

Primus 2009 2000nds B Deutschlandnon-hybrid SK #N/A

Profilus 2008 2000nds A Deutschlandnon-hybrid SK #N/A

Progress 1969 1960ies A Deutschlandnon-hybrid SK #N/A

Rebell 2013 2010-13 A Deutschlandnon-hybrid SK #N/A

Rektor 1980 1980ies E Deutschlandnon-hybrid SL #N/A

Ritmo 1993 1990ies B Deutschlandnon-hybrid SK #N/A

Robigous 2004 2000nds B England non-hybrid SK #N/A

Rumor 2013 2010-13 B Deutschlandnon-hybrid FK #N/A

Saturn 1973 1970ies C Deutschlandnon-hybrid SK #N/A

Schamane 2005 2000nds A Deutschlandnon-hybrid SK #N/A

Severin 1980 1980ies E Deutschlandnon-hybrid SK #N/A

Siete Cerros 1966 1960ies HWS/Pr MdMexiko non-hybrid FK #N/A

Skagen 2006 2000nds E Deutschlandnon-hybrid SK #N/A
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Skalmeje 2006 2000nds C Deutschlandnon-hybrid SK #N/A

Skater 2000 2000nds B Deutschlandnon-hybrid SK #N/A

Sokrates 2001 2000nds A Deutschlandnon-hybrid SL #N/A

Solstice 2001 2000nds England non-hybrid SK #N/A

Sonalika 1967 1960ies HWS/Hg Indien non-hybrid FK #N/A

Sorbas 1985 1980ies B Deutschlandnon-hybrid SK #N/A

Sponsor 1994 1990ies FR, IE non-hybrid SK #N/A

SUR99820 NA Frankreich non-hybrid #N/A

SW Topper 2002 2000nds E Deutschlandnon-hybrid SK #N/A

SY Ferry 2012 2010-13 B Deutschlandnon-hybrid SK #N/A

Tabasco 2008 2000nds C Deutschlandnon-hybrid SK #N/A

Tabor 1979 1970ies A Deutschlandnon-hybrid SK #N/A

Tambor 1993 1990ies A Deutschlandnon-hybrid SL #N/A

Tarso 1992 1990ies A Deutschlandnon-hybrid SK #N/A

Terrier 2001 2000nds B Deutschlandnon-hybrid SK #N/A

Tiger 2001 2000nds A Deutschlandnon-hybrid SL #N/A

TJB 990-15 1980 1980ies BISC; D GBR non-hybrid SK #N/A

Tobak 2011 2010-13 B Deutschlandnon-hybrid SK #N/A

Tommi 2002 2000nds A Deutschlandnon-hybrid SK #N/A

Topfit 1972 1970ies B Deutschlandnon-hybrid SL #N/A

Toronto 1990 1990ies A Deutschlandnon-hybrid SK #N/A

Torrild 2005 2000nds A Deutschlandnon-hybrid SK #N/A

Transit 1994 1990ies A Deutschlandnon-hybrid SK #N/A

Triple dirk \S\"" NA Australien non-hybrid FK #N/A

Tuareg 2005 2000nds A Deutschlandnon-hybrid SK #N/A

Türkis 2004 2000nds A Deutschlandnon-hybrid SK #N/A

Urban 1980 1980ies E Deutschlandnon-hybrid SK #N/A

Vuka 1975 1970ies A Deutschlandnon-hybrid SL #N/A

Winnetou 2002 2000nds C Deutschlandnon-hybrid SK #N/A

WW 4180 (Kongo) 2012 2010-13 Deutschlandnon-hybrid FK #N/A

Zappa 2009 2000nds C Deutschlandnon-hybrid SK #N/A

Zentos 1989 1980ies E Deutschlandnon-hybrid SL #N/A

Zobel 2006 2000nds A Deutschlandnon-hybrid SK #N/A
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Abstract

Consideration of the properties of awns is important for the phenotypic
description of grain crops. Awns have a number of important functions in
grasses, including assimilation, mechanical protection and seed dispersal and
burial. An important feature of the awn is the presence or absence of barbs, -
tiny hook-like single-celled trichomes on the outer awn surface that can be vi-
sualized using microscopic imaging. There are, however, no suitable software
tools for the automated analysis of these small, semi-transparent structures
in a high-throughput manner. Further, automated analysis of barbs using
conventional methods of pattern detection and segmentation is hampered by
high variability of their optical appearance including size, shape and surface
density. In this work, we present a software tool for automated detection
and phenotyping of barbs in microscopic images of awns which is based on
a dedicated deep learning model (BarbNet).Our experimental results show
that BarbNet is capable of detecting barb structures in different awn pheno-
types with an average accuracy of 90%. Furthermore, we demonstrate that
phenotypic traits derived from BarbNet-segmented images enable a quite ro-
bust categorization of four contrasting awn phenotypes with an accuracy of
> 85%. Based on the promising results of this work, we see that the proposed
model has potential applications in the automation of barley awns sorting
for plant developmental analysis.
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6.1 Introduction

Awns are bristle-like extensions of the glumes and/or husks of many grass
species including the major crop plants such as wheat, rice, barley, and rye.
The awns provide protection against pests and foraging animals. They are
considered important due to their physiological role in photosynthesis [1].
Barley plants, for example, typically have long, thin awns extending from
the outer husk called “lemma”.

Most awns bear barb-like structures on the surface which primarily aid
in the dispersal of the plant’s seeds by facilitating, in the case of wild grass
species, the adherence to the animal furs [2]. The barbs are upward-oriented
single-celled trichomes with highly silicified cell walls [3] having different
sizes and structures. Their presence gives awns a rough texture which can
be harmful during manual harvest or lowers barley quality when producing
barley as a feed crop. The barbed barley awn is called a “rough” awn. These
cultivars bear large and more dense barbs covering the awns from the apical
to the basal part. However, the density and size of the barbs vary across
the species and cultivars, defining the intensity of awn roughness. Individual
barley cultivars lack completely any barbs, except a few at the apical part of
the awns, giving the awns a completely smooth surface texture and cultivars
are referred to as smooth awn barley.

To look into the genetic control of the intensity of barb formation in
barley, a genome-wide association study (GWAS) was conducted on 1,000
barley accessions [4]. Two highly significant loci were associated with the
awn roughness trait and one major gene HvRaw1 could be isolated (Milner
et al. 2019).

For the genetic mapping of the second genetic locus and to gain insight
into the independent and interactive effect of both loci, we conducted a ge-
netic mapping study using a biparental F2 population derived from a cross
between a rough variety “Barke” and a smooth mutant “MHOR597”, both
of which were confirmed to carry different allelic states at the two loci con-
trolling awn roughness. By genotyping we confirmed the segregation of all
expected nine possible genetic classes (own unpublished data), however, we
observed only four different phenotypic classes of awn roughness, bearing
barbs of varying density and structure, which is explained by the dominant
inheritance of the wild-type alleles of both genes and the additive epistasis
between both loci (own unpublished data).
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To enable high-throughput screening with the unbiased classification of all
different phenotypic classes, we evaluated different techniques of awn imag-
ing to measure barb structure and density. One approach, scanning electron
microscopy (SEM) allows to visualize barbs at the highest resolution and a
great level of detail [4]. These techniques allow researchers to analyze the
size, shape, and arrangement of the barbs on the surface of plant awns, as
well as other features such as the presence of glandular structures or the
distribution of pigments.

Barbs can also be monitored using conventional light microscopy, how-
ever, here they are only distinguishable on the edges of the awns, see Figure
6.2a. For analysis of visible light images, conventional analytic tools such
as ImageJ [5], and GIMP [6] can be used. However, accurate segmentation
and quantification of small, semi-transparent and often also occluding barb
structures are challenging and time expensive. In the absence of appropriate
software tools, analysis of barbs in awn images (e.g., counting, measurement)
is widely done manually. This approach requires a lot of time and human ef-
fort and can be hardly scaled to large datasets. Therefore, automated image
processing algorithms are required to detect, quantify and classify the barb
structures in different crop plants.

Since we are interested not only in the detection and counting of barbs
but also in a more comprehensive assessment of barb morphology, a con-
sistent image segmentation approach was used in this study. The accurate
segmentation of barbs like tiny objects is a critical and challenging task be-
cause of its limited spatial resolution, low contrast and large variability. Deep
learning-based methods have emerged as powerful tools for segmenting small
objects like cells [7], nuclei [8] and subcellular structures [9] in biomedical
images. Because they can learn complex features and patterns that are diffi-
cult to capture with traditional image analysis methods. In the case of plant
image analysis, several approaches were proposed for the detection of plant
organs like roots [10, 11, 12], shoots [13, 14] and flowers [15] and their high-
throughput phenotyping. However, very few studies for automated analysis
of small and optically variable plant organs, such as grain spikes [16, 17]
were presented in the literature. To the best of our knowledge, no appro-
priate tools suitable for accurate barb segmentation in awn images are known.

This paper presents a deep learning, convolutional neural network (CNNs)
based approach to the segmentation of barbs in microscopic images of barley
cultivars. For the task of image segmentation, a well-known encoder-decoder
CNN architecture with fully convolutional layers is used. Our approach to
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barb segmentation is based on the extension of the U-net segmentation model
from Ronneberger et. al [18]. Here, we present our methodological framework
including the proposed U-net-based framework for barb detection, ground
truth data generation, and training and evaluation procedures. Then, the
results of experimental investigations are presented including a model per-
formance by application to the segmentation of test images and genotype-
phenotypic analysis.

6.2 Materials and Methods

6.2.1 Plant Material

In this study, we used an F2 population that was segregating for two inde-
pendent rough awn loci: Raw1 (A) on chromosome 5H and Raw7HS (B) on
chromosome 7H, which were previously detected in a GWAS study (Milner
et al. 2019). The population was derived from the cross between rough awn
variety “Barke”, wild-type at both loci (AABB), and the smooth awned,
x-ray mutagenized, mutant named “MHOR597” (GBIS/I, IPK Genebank)
carrying the recessive mutant alleles at both loci (aabb). For image analysis,
we selected 70 plants based on their either homozygous genotypic consti-
tution at either locus. The plants were grown under controlled greenhouse
conditions: 21°C day and 17°C night temperature, with 16 hours duration of
artificial light.

6.2.2 Image Data

The roughness of the awn surface is determined by the density of the barbs,
which is controlled independently by each of the two mentioned loci. There-
fore, we needed to perform robust phenotyping by optically assessing the
awns at specific “central” and “basal” locations. To achieve this, we col-
lected three awns from the centre of the main tiller spikes of each plant at
the harvest stage and taped them on an imaging slide. We used a digital
microscope (Keyence VHX) to capture images of the adaxial side of the awns
at 100x magnification ( Figure 6.1).

6.2.3 Genotyping

To study the association between barb density and allelic state of the plants
at both loci, the genotyping was performed using Kompetitive Allele-Specific
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Figure 6.1: Awn imaging (a) The central three awns were collected from
the main spike of each plant. The central and basal parts of the awns were
taped on an imaging slide and the micrographs were generated under a digital
microscope. (b) The representative micrographs of the adaxial side of the
basal part of the awns. All possible homozygous genetic classes for the two
alternative alleles at the two awn roughness controlling loci (“A” and “B”)
show varying density and size of barbs.

PCR (KASP) markers (from PACE® at 3crbio.com), which enable bi-allelic
scoring at both loci.

6.2.4 Ground Truth Generation

In order to develop CNN segmentation models, a representative set of ground
truth images with an accurate annotation of fore- and background image
regions is required. In this study, ground truth images of different microscopic
awn images were generated using ImageJ [5]. This tool contains an image-
filling option in the toolbar which allows for the efficient annotation or filling
of image regions by manually drawing a polygon around each barb in the
image. Figure6.2(b) shows an example of generated ground truth image.
Manual annotation of barbs using ImageJ takes between 10-30 minutes per
image depending on the number and structural complexity of the barbs of a
given awn image.

6.2.5 Barb Detection using CNN

The BarbNet model is a modified version of the original encoder-decoder
CNN architecture of U-net [18], which is designed for semantic segmentation

156

3crbio.com


Figure 6.2: Example of barley awn image captured under the microscope.
(a) Original image with the resolution of 1200 x 1600 (b) Ground truth mask
generated by ImageJ.

of barley awn barbs. Unlike the U-net model, BarbNet includes batch nor-
malization [19] after each convolution layer to enhance network performance
and stability by normalizing the feature maps at respective levels [19, 20].
Dropout layers are not used in BarbNet because combining batch normal-
ization and dropout layers can lead to poor results [21]. Additionally, the
kernel size is increased to improve the segmentation quality of varying and
elongated target patterns [22]. Finally, the depth of BarbNet is increased to
5 compared to the original U-net depth of 4 due to the larger input image
size. Table 6.1 provides a detailed comparison of convolutional parameters
with respect to the original U-net.

The U-net framework was utilized for the task of barb detection on bar-
ley awns by incorporating the suggested modifications. Training and testing
phases of the network were conducted on input images at their original res-
olution of 1024 x 1600.

The encoder network is responsible for extracting features from input
image patches. It consists of five encoder blocks, each with two convolutional
layers with 5 x 5 filters, followed by batch normalization [19] and ReLU
activation function [23]. Max-pooling operations are used to down-sample
the feature maps by half of their original size [24, 25]. These steps enable
a more efficient aggregation of image features. The bridge encoder block
without a max-pooling layer is applied to generate 512 feature maps of size
32 x 50. The decoder network is responsible for upsampling the feature maps
and generating the final output. It is composed of four decoder blocks, where
the output from the bridge encoder is up-sampled using 3 x 3 transpose
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Table 6.1: Convolutional parameters of the original U-net and
BarbNet.

Convolutional pa-
rameters

Original U-net BarbNet

Kernel size 3x3 5x5
Transposed kernel
size

2x2 3x3

Stride 1x1 2x2
Padding unpadded padding with zeros
Depth 4 5
Number of filters (64, 128, 256, 512,

1028)
(16, 32, 64, 128, 256,
512)

Figure 6.3: The proposed U-net architecture for barb detection on barley
awn images.

convolution and stride 2. The resulting feature map is concatenated with
the corresponding encoder feature maps and subsequently passed through a
convolutional layer with decreasing channel depth (128, 64, 32, and 16). The
output of the final decoder block is fed into a convolutional layer with the
logistic function [26] to classify each pixel as barb or non-barb in the image.
The output of the proposed architecture is a probability image with values
ranging between 0 and 1 of size 1024 x 1600, similar to the input image
shown in Figure 6.3. Overall, the U-net-based model demonstrates strong

158



performance in detecting barb pixels in images.

6.2.6 Performance Metrics

During the training and testing phase, the performance of the proposed model
(BarbNet) is evaluated using binary cross entropy loss function [25] and the
Dice coefficient (DC) [27]. The binary cross-entropy loss function compares
each pixel prediction (0: non-barb, 1: barb) with the ground truth pixel
and averaged all pixels losses to calculate the total image loss in the training
stage.

Binary cross entropy loss = 1/N
N∑
i=1

−(Yi.logŶi+(1−Yi).log(1− Ŷi)) (6.1)

The DC quantifies the similarity between the model’s predicted segmen-
tation and the ground truth segmentation, with values ranging from 0 to
1. A DC value of 0 indicates completely false segmentation (0% similarity),
while a DC value of 1 indicates perfect segmentation (100% similarity). It
is calculated as 2 times the area of overlap divided by the total number of
pixels in both the model predicted and ground truth binary images.

DC =
2 ∗ (Ŷ ∩ Y )

Ŷ ∪ Y
=

2 ∗
∑N

i=1 ŷiyi∑N
i=1 ŷi +

∑N
i yi

(6.2)

The symbols Ŷ and Y represent the predicted and ground truth binary
images, respectively. The values of ŷi and yi correspond to the output of
pixel i in the predicted and ground truth binary images, with possible values
of either 0 or 1.

6.2.7 Computational implementation

The BarbNet model was developed under Python 3.8 using TensorFlow [28]
with Keras API. Furthermore, image processing operations such as reading,
cropping, and training data preparation were performed using PIL, Numpy
[29], and Scikit-Image [30] packages. The model was trained on a GPU ma-
chine with a Linux operating system (Ubuntu 20.04 LTS, Intel(R) Core (TM)
i7-10700K CPU @ 3.80GHz) and NVIDIA RTX 3090 with 24GB VRAM
graphic card.

As stated above, 348 images were annotated using ImageJ to train a pro-
posed BarbNet model on barely awn images. Afterwards, the dataset was
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partitioned into a training set and a validation set in the ratio of 85:15, re-
spectively, based on our experience and literature [31, 32]. Each image is
cropped from the original resolution (1200 x 1600) to 1024 x 1600 and nor-
malized in the range of [0, 1] using the min-max method to ensure feature
consistency in the CNN network without losing the distribution of original
data. The BarbNet’s initial weights were set randomly with zero mean and
SD of 0.05, as suggested by Krizhevsky et. al [33]. An Adam optimizer [34]
was applied in the model optimization process to improve the segmentation
performance on training data. Since the output of the model is a binary seg-
mentation, the binary cross-entropy loss function [25] was used to measure
the error rate of the model during the training stage. The model was trained
for 100 epochs with a batch size of 12 as per system constraints. The learning
rate of the Adam optimizer is initialized with 0.001 and it updates the model
weights during each training iteration of the model. To avoid a too-quick
convergence of the model to a suboptimal solution, a dynamic learning rate
scheduler was introduced to reduce the learning rate by a factor of 0.2 until
0.0001 if the validation loss is not improved in the next 5 iterations. This
results in overfitting in the case of a large learning rate and getting stuck
on the suboptimal solution in the case of a too-small learning rate can be
eliminated [35]. Finally, an early stopping criterion is introduced if training
cross-entropy loss is not improved in the next 10 iterations.

In the next step, the optimized BarbNet model was used for the segmenta-
tion of barbs structures and subsequent assessment of their phenotypic traits.
The MATLAB 2021a routines performing this analysis were compiled to a
single license-free executable tool which can be downloaded from electronic
Data Archive Library (e!DAL).

The output layer of the model consisted of a logistic activation function,
which produced a probability map ranging from 0 to 1 for the segmentation.
To convert this probability map into a binary image, a threshold value, de-
noted as tsh, was chosen. Since the probability of barb pixels is higher than
that of background pixels, a threshold value of tsh ≥ 0.5 was selected to
classify all high-probability pixels as barb pixels in the final segmentation.
In the post-processing step, segmented objects with an area less than 15 pix-
els were removed to eliminate false (awn barbs) positives by the phenotypic
traits calculation.
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6.3 Results

6.3.1 Training and Validation of BarbNet

The training and validation of BarbNet were performed on a set of total 348
images which were subdivided into training and validation subsets with a
ratio of 85:15, respectively. The dataset contains different awn phenotypes
including barbs of different sizes and densities (smooth, sparse, moderate
and dense). During the training stage of the network, the performance of
the model was analyzed using binary cross-entropy loss and Dice coefficient
(DC) at each epoch. Figure 6.4 shows the training and validation of BarbNet
over 75 epochs. It shows that training loss (Figure 6.4a) was minimized
and platen the curve 50 epochs. Simultaneously, training DC (Figure 6.4b)
achieved more than 0.91 from epoch number 50. However, the generalized
performance of the optimized model is analyzed using validation metrics.
The BarbNet model achieved a maximum validation Dice coefficient of 0.91
and a minimum validation loss of 0.0076 at epoch number 61. Thenceforth,
model training was not improved and terminated at epoch number 72.

Figure 6.4: Training and validation performance of the BarbNet model over
75 epochs with respect to (a) the cross entropy loss and (b) the Dice coeffi-
cient. X- and Y-axes represent the epoch number and performance measure,
respectively.

6.3.2 Evaluation and Comparison of U-net Models

The BarbNet model represents an extension of the U-net framework from
[18]. In order to adapt the U-net to the task of barb (small object) segmen-
tation several modifications were introduced including (i) inclusion of batch
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normalization (original U-net + BN); (ii) exclusion of dropout layers (orig-
inal U-net + BN + No Dropout); (iii) increased kernel size of 5 (original
U-net + BN + No Dropout + K5) and (iv) increased depth of the model
to 5 and reduced number of filters (original U-net + BN + No Dropout +
K5 + D5). The last U-net modification (iv) turned out to show the best
performance of barb segmentation is further termed as BarbNet. For the
evaluation and comparison of these models, the same image sets for training
and validation were used. Figure 6.5 shows a comparison of performance
of all four modified U-net models vs the original U-net for the task of barb
segmentation. It shows that the validation loss of both ”original U-net +
BN + No Dropout + K5” and BarbNet decreases after epoch number 40
and converges earlier than the remaining three U-net models with a higher
validation loss. However, BarbNet outperforms all the other U-net models
with respect to the Dice accuracy measure of image segmentation beginning
from the epoch number 30. The details on validation metrics for all four
modified and original U-net models are summarized in Table 6.2.

Figure 6.5: Comparison of performance metric of BarbNet vs U-net with
respect to (a) the cross entropy loss and (b) the Dice coefficient. X- and
Y-axes represent the epoch number and performance measure, respectively.

The performance of all CNN segmentation models is also evaluated on a
test set of completely unseen 19 images that were not used for model train-
ing, see Table 6.3. It shows that BarbNet outperforms the original as well as
all other modified U-net models with a mean accuracy of more than 90% for
all test images. Examples of BarbNet segmented images including smooth
(image number 2), sparse (image number 9), moderate (image number 11)
and dense (image number 14) barb distributions can be found in Supplemen-
tary information, Figure S1, S2, S3 and S4 respectively. Thereby, the largest
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Table 6.2: Comparison of performance of four modified vs. original U-net
model over 100 training epochs with respect to the cross entropy loss and
the Dice coefficient.

Model Cross entropy loss Dice coefficient

Original U-net 0.0081 0.85
Original U-net+BN 0.0082 0.84
Original U-
net+BN+No Dropout

0.0086 0.82

Original U-
net+BN+No
Dropout+K5

0.0070 0.85

BarbNet 0.0076 0.91

differences in performance between BarbNet and other U-net models were
observed for the smooth awn phenotype. The average computational time
required for the BarbNet to segment a 1600 x 1024 test image on a PC with
Intel(R) Xeon(R) CPU E5-2640 2.40GHz CPU is 1.10 seconds.

Table 6.3: Comparison of mean Dice coefficient of U-net models on a test
dataset of 19 images.

Model Mean Dice coefficient

Original U-net 0.82
Original U-net+BN 0.86
Original U-net+BN+No Dropout 0.80
Original U-net+BN+No
Dropout+K5

0.83

BarbNet 0.93

6.3.3 Evaluation of Phenotypic Traits

In addition to segmentation performance, phenotypic properties of awns cal-
culated using our automated segmentation models were compared to man-
ually segmented (ground truth) data. For this purpose, 10 phenotypic fea-
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tures are proposed in this study. Further information on the definition of
traits is included in the Supplementary Information, see Table S1. Out of 10
traits, only 3 important features for awns and barbs characterization named
total barb count, mean barb area and mean barb length in pixels are pre-
sented. Figure 6.6 shows the correlation between the ground truth (x-axis)
and predicted barbs count (y-axis) over 156 awn images. Differently from
the above-mentioned set of ground truth segmented 348 images, this dataset
is independently prepared by biologists for evaluation of barb count predic-
tions. Here, the p-value represents that the BarbNet is a highly significant
(< 0.05) model which exhibits a higher correlation coefficient of determi-
nation (R-squared) value of 0.86. It indicates that BarbNet exhibits 86%
conformity between the ground truth and predicted barbs count.

Figure 6.6: Correlation between the ground truth (x-axis) and predicted
(y-axis) barbs count over 156 awn images. Each point represents the total
number of barbs per awn image. The red colour solid line and dotted lines
represent a fitted curve and 95% confidence bounds, respectively. The R-
squared value indicates good conformity between ground truth and BarbNet
count of image segmentation and trait calculation.
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6.3.4 Genotypic-Phenotypic Classification

Four major awn phenotypes were observed in this study including smooth
(aabb) sparse (aaBB), moderate (AABB) and dense (AAbb) on the basis
of the density and size of the barbs. Here, A and B are two independently
segregating (unlinked) genes each represented by a dominant wild-type (cap-
ital letter) and a recessive mutant (small letter) allele. In an F2 progeny,
the genes may segregate among others into four distinct, fully homozygous
genotypic classes i.e., AABB, aaBB, AAbb or aabb. In total, 326 awn images
of basal (176) and central (150) regions from these respective four genotypes
were used. Further details on data distribution among the four genotypic
classes are listed in Table 6.4 and 6.5.

Next, we tested how accurately awn regions (basal or central) can be
assigned to one of these four genetic classes using features derived from
BarbNet-segmented images. For this purpose, 10 phenotypic features and
their pair-wise combinations were compared. The classification was per-
formed using unsupervised k-means clustering after normalizing the trait
values in between 0 and 1 using the min-max method, and subsequently
starting with estimates of cluster centroids obtained from original density
clusters as shown in Figure 6.7. Our proposed prediction model accurately
clustered the phenotype, confirming the precision of our predictions in clas-
sifying the phenotype into the expected number of clusters defined by the
genotype. The best-performing pair of features turn out to be total barb
count and barb area (average accuracy of 86%) and total barb count and
barb length (average accuracy of 88%) on awns central regions, see Table 6.4
and 6.5.

Table 6.4: F1-score of four genotypes with count and area features.

Count vs Area Basal (# of images) Central (# of im-
ages)

aabb 0.89 (36) 0.91 (35)
aaBB 0.68 (62) 0.85 (60)
AABB 0.90 (40) 0.81 (32)
AAbb 0.75 (38) 0.85 (23)
Mean F1-score 0.81 (176) 0.86 (150)
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Figure 6.7: Clustering of phenotypic traits on four different barb distribu-
tions (smooth, sparse, moderate and dense) using k-means. (a) basal region:
Count vs Area, mean F1 score: 0.81 (b) central region: Count vs Area, mean
F1 score: 0.86 (c) basal region: Count vs Length, mean F1 score: 0.81 (d)
central region: Count vs Length, mean F1 score: 0.88. These four genotypes
were well clustered with an F1-score of > 85% on central regions of awns in
both phenotypic traits. Area and length features are measured in pixels.

Table 6.5: F1-score of 4 genotypes with count and length features.

Count vs Length Basal (# of images) Central (# of im-
ages)

aabb 0.96 (36) 0.97 (35)
aaBB 0.72 (62) 0.90 (60)
AABB 0.87 (40) 0.83 (32)
AAbb 0.69 (38) 0.82 (23)
Mean F1-score 0.81 (176) 0.88 (150)
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6.4 Discussion & Conclusion

Awns are important for the phenotypic description of grain crops. But accu-
rate detection of barbs on awn surfaces is challenging because of their limited
spatial resolution, low contrast and large variability. Taking advantage of the
latest advancements in deep learning, the U-net model was considered and
applied to perform automatic analysis of awns in a high-throughput manner.
However, such direct transfer led to unsatisfactory performance because the
original U-net model was not designed for the awn image analysis. Hence, we
modified the U-net architecture to fully automated the segmentation of barbs
in microscopic images. Our experimental results have shown a remarkable
accuracy of the modified U-net model (BarbNet) for fully automated seg-
mentation of barbs of different sizes, shapes and densities.

The training and validation performance of the BarbNet model has im-
proved over the number of epochs. Besides, the model before epoch num-
ber 30 under-performed and showed the worst performance in the validation
stage. However, due to the dynamic reduction in the learning rate by a factor
of 0.2 a stable performance of approximately 90% Dice coefficient is achieved
from epoch number 50. Finally, the optimized model with maximum valida-
tion DC 0.91 and minimum cross-entropy loss 0.0076 at epoch number 61 is
saved for the automated awn phenotyping.

Comparison of the original vs. four modified U-net models lead to a
selection of the most accurate and robust one (BarbNet) crossover all awn
phenotypes. Thereby, it was observed that the original U-net as well as
the ”original U-net + BN” models failed to converge within the first 100th
epochs. We draw the reduced accuracy of these two models to the pres-
ence of dropout layers removing small or fine-grained structures with low
probability values which effectively reduces the capacity of the model. This
results in low validation Dice coefficient values, especially for the ”original
U-net + BN” model. On the other side, three other models with only batch
normalization but without dropout layers turn out to exhibit a rapid con-
vergence. Because batch normalization normalises the activations, gradients
of the training model are stabilized which reduces the likelihood of vanish-
ing or exploding gradients. As a result, a more stable gradient flow enables
smoother and more efficient optimization, leading to faster convergence of
these models.

In addition, by reducing the number of filters with increased depth of the
model, BarbNet focuses on extracting more localized and detailed features
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from the overall large awn images. It results in the DC of BarbNet being
improved by 6% compared to the other U-net models (Table 6.2). This is also
reflected in the higher DC of the BarbNet model (≥90) on all unseen awn
images with different barb distributions compared to other U-net models.
Consequently, all four modified U-net models but, in particular, BarbNet ex-
hibit a superior accuracy and robustness by segmentation of barbs crossover
different awn phenotyping.

Furthermore, phenotypic characterization and classification of awns show
a highly significant correlation for the barb’s count indicating that barb de-
tection and phenotyping using BarbNet is practically very near to the human-
supervised one. However, the difference in count estimation between ground
truth and BarbNet might result from occluding neighbour barbs. This may
lead to a reduction in barb count per image compared to the ground truth.

Since accurate pixel-wise segmentation and not just a region detection
model was used in our approach, the genotype of segmented barbs can be ac-
curately and comprehensively characterized in terms of different phenotypic
features. Our results on genotypic-phenotypic classification indicate distinct
clustering of all four observed phenotypic classes and show its correspondence
with the associated genotypic class. Moreover, it indicates that both genes
contribute independently to the awn roughness trait: gene ”A” controls the
barb density, while gene ”B” regulates the barb size. Furthermore, the lo-
cation of the pink and blue clusters on each graph suggests that gene “A”
plays a more significant role in defining the awn roughness trait.

Similarly, our experiments with different genotypes explain that a com-
bination of barb density and size provides the best results on central regions
of awns (i.e., > 85%) than basal regions (81%). In particular, the classifi-
cation accuracy of genotype aaBB is improved by more than 15%. Because
the basal regions of this genotype are smoother with almost no barbs than
the central region and this results in less classification accuracy by unsu-
pervised k-means algorithm. However, the accuracy reduction of 5% in the
central regions of genotype AABB is due to the false positives that occurred
between the moderate and dense phenotypes. Since awns have tightly con-
nected neighbourhood barbs in the dense phenotype they tend to have higher
lengths similar to the moderate barb density. Therefore, one can achieve the
best and most balanced results when features of barb (area and length) and
features of awns (count) are combined to perform phenotype-genotype anal-
ysis.
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In conclusion, our approach provides an efficient solution with 90% accu-
racy for the detection of barbs in barley awn images. Our model turns out
to be robust enough for the detection of barbs in different awn phenotypes.
Even though our model exhibits quite accurate detection rates, the topic of
barb and, more generally, small organ detection is still an emergent topic
in the broader field of plant phenotyping. Presently, our model occasionally
ignores tiny barbs, which can be attributed to the large-scale downsampling
and network depth. In addition, neighbour barbs in the dense phenotypes are
occluded together, leading to larger error rates in phenotypic traits. These
limitations may be overcome by extending the training set of ground truth
images, especially in dense and sparse phenotypes. Furthermore, alternative
segmentation and region detection CNNs such as DeepLab and YOLO can
be taken into consideration for capturing small objects such as barbs and
other plant organs.
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Table S1. Description barb traits. 
 

Trait Name Description 
Total Count Total number detected barbs per awn image. 

 

Lower Count Number of detected barbs in the lower edge of 

the awn. 

Upper Count Number of detected barbs in the upper edge of 

the awn. 

Area Number of pixels of segmented barbs. It 

measures the size of barbs. 

Length Major axis length of barbs approximated by 

fitting ellipse to the barb object. It measures the 

elongated length of each barb. 

Circularity Measures the roundness of segmented barbs. It 

indicates the shape of barbs like circle or 

elliptical. 

Perimeter Measures the length of barbs boundary. It 

indicates how large is the size of barbs. 

Compactness Ratio of area of barb to the area of ellipse. It 

measures how irregular are the boundaries of 

barbs. 

Lower_dist Euclidian distance between the neighborhood 

barbs in the lower edge of the awn. It measures 

how close barbs are places on the awn. 

Upper_dist Euclidian distance between the neighborhood 

barbs in the upper edge of the awn. It measures 

how close barbs are places on the awn. 
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Figure S1. Examples of barb segmentation on smooth awn phenotype using original 

U-net and BarbNet: (a) original image, (b) segmentation using the original U-net vs. 

ground truth (DC=0), (c) segmentation using BarbNet vs ground truth (DC = 0.83). 

For the visualization purpose, original images were cropped to the region of interest.  
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Figure S2. Examples of barb segmentation on sparse awn phenotype using original 

U-net and BarbNet: (a) original image, (b) segmentation using the original U-net vs. 

ground truth (DC=0.83), (c) segmentation using BarbNet vs ground truth (DC = 

0.94). For the visualization purpose, original images were cropped to the region of 

interest. 
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Figure S3. Examples of barb segmentation on moderate awn phenotype using 

original U-net and BarbNet: (a) original image, (b) segmentation using the original 

U-net vs. ground truth (DC=0.83), (c) segmentation using BarbNet vs ground truth 

(DC = 0.94). For the visualization purpose, original images were cropped to the 

region of interest. 
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Figure S4. Examples of barb segmentation on dense awn phenotype using original 

U-net and BarbNet: (a) original image, (b) segmentation using the original U-net vs. 

ground truth (DC=0.88), (c) segmentation using BarbNet vs ground truth (DC = 

0.95). For the visualization purpose, original images were cropped to the region of 

interest. 
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tin Trt́ılek, Jan Hejatko, and Evgeny Gladilin. Towards automated
analysis of grain spikes in greenhouse images using neural network
approaches: A comparative investigation of six methods. Sensors,
21(22):7441, 2021.

[17] Tanuj Misra, Alka Arora, Sudeep Marwaha, Viswanathan Chinnusamy,
Atmakuri Ramakrishna Rao, Rajni Jain, Rabi Narayan Sahoo, Mrin-
moy Ray, Sudhir Kumar, Dhandapani Raju, et al. Spikesegnet-a deep
learning approach utilizing encoder-decoder network with hourglass for

177



spike segmentation and counting in wheat plant from visual imaging.
Plant methods, 16(1):1–20, 2020.

[18] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In International
Conference on Medical image computing and computer-assisted inter-
vention, pages 234–241. Springer, 2015.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[20] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander
Madry. How does batch normalization help optimization?, 2019.

[21] Xiang Li, Shuo Chen, Xiaolin Hu, and Jian Yang. Understanding the
disharmony between dropout and batch normalization by variance shift,
2018.

[22] Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and Jian Sun.
Large kernel matters – improve semantic segmentation by global convo-
lutional network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[23] Forest Agostinelli, Matthew Hoffman, Peter Sadowski, and Pierre Baldi.
Learning activation functions to improve deep neural networks. arXiv
preprint arXiv:1412.6830, 2014.

[24] Limin Wang, Sheng Guo, Weilin Huang, and Yu Qiao. Places205-vggnet
models for scene recognition. arXiv preprint arXiv:1508.01667, 2015.

[25] Ranjeet Ranjan Jha, Gaurav Jaswal, Divij Gupta, Shreshth Saini, and
Aditya Nigam. Pixisegnet: Pixel-level iris segmentation network using
convolutional encoder-decoder with stacked hourglass bottleneck. IET
Biometrics, 9(1):11–24, 2019.

[26] Rob A Dunne and Norm A Campbell. On the pairing of the softmax
activation and cross-entropy penalty functions and the derivation of the
softmax activation function. In Proc. 8th Aust. Conf. on the Neural
Networks, Melbourne, volume 181, page 185. Citeseer, 1997.

[27] Kelly H Zou, Simon K Warfield, Aditya Bharatha, Clare MC Tempany,
Michael R Kaus, Steven J Haker, William M Wells III, Ferenc A Jolesz,
and Ron Kikinis. Statistical validation of image segmentation quality

178



based on a spatial overlap index1: scientific reports. Academic radiology,
11(2):178–189, 2004.

[28] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Craig
Chen Zhifeng Citro, Greg S Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.
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7. Synthesis of Results

This cumulative dissertation is based on five peer-reviewed publications. All
these articles were published in international scientific journals with a total
impact factor of about 30 (as of January 2024). All articles followed the
primary goal of the work, which is to develop automatic plant image seg-
mentation and phenotyping solutions for high-throughput plant phenotyp-
ing. This chapter aims to summarize the state-of-the-art methods, method
improvements, and main results of five publications, synthesize the individ-
ual results into broader conclusions, discuss the contributions, implications
and limitations of the performed research, and provide an outlook of future
directions.

Image-based plant phenotyping is crucial in modern agriculture and plant
science to improve crop yield by studying phenotypic traits. However, the
effectiveness and precision of trait computation depend critically on the seg-
mentation of target plant organs (root, shoot, spike and barbs in awns) in the
images. Furthermore, the appearance of plant organs varies dynamically dur-
ing plant growth. Therefore, more advanced and automatic image processing
solutions are required to process and quantify large amounts of varying image
data. The presented work approached the problem by developing advanced
computer vision solutions for root and shoot image segmentation, Wheat
spike detection and barb segmentation in Barley awns for high-throughput
plant phenotyping. The summary of each application of plant phenotyping
addressed in this thesis is given below.

7.1 Addressing Research Objectives

7.1.1 Objective 1

Development of a semi-automated root image segmentation algo-
rithm and phenotyping tool using traditional image processing al-
gorithms and evaluating the tool’s performance with state-of-the-
art tools.
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Currently, most root image analysis tools ( WinRHIZO [22], EZ-RHIZO [23],
SmartRoot[24] and, IJ Rhizo [25]]) are tailored to artificial mediums, such as
roots grown in agar gels and scanned roots. With a single threshold value,
we can segment images captured under artificial mediums with contrasting
backgrounds different from soil. However, this solution cannot segment in-
homogeneous and contrast varying roots growing under heterogeneous and
noisy soil backgrounds (soil-root images). Moreover, advanced deep-learning
solutions are unavailable because there are no publicly available datasets and
ground truth annotations on soil-root images.

To address the above limitations and consequently to develop deep learning-
based solutions, first, a semi-automated root image analysis (saRIA) method
based on adaptive thresholding [53] and morphological filtering was devel-
oped. The proposed method in saRIA tolerates global inhomogeneity of
image intensity, such as vertical image gradient in our soil-root images, by
calculating pixel-wise threshold based on its local neighbourhood compared
to the global thresholding methods in IJ Rhizo (bi-level threshold) [25] and
GiAroots (single-level threshold) [54]. The roots in the segmented image are
elongated line-/curve-like structures that differ from non-root blobs concern-
ing their area, length, and shape (i.e., eccentricity). They are removed by
applying morphological filtering, lacking in the above state-of-the-art meth-
ods. This method performs rapid segmentation and quantification of roots
under natural (soil) and artificial environments (agar and scanned mediums)
by adjusting a small set of algorithmic parameters.

The performance of saRIA is measured in both image segmentation and
phenotypic traits using dice similarity coefficient (DC) and correlation coef-
ficient of determination (R2), respectively, concerning state-of-the-art meth-
ods and/or tools. Results showed that automatic root image segmentation ¬Chapter2
of saRIA over 100 images achieved more than 80% accuracy compared to the
global thresholding methods in IJ Rhizo and GiAroots. It concludes that
root structures in soil background are highly inhomogeneous with varying
contrast, and segmentation of these structures requires different threshold
values for different parts of the image. However, selecting morphological
parameters makes it difficult to automate the image segmentation of large
and small root structures. Because of small root architectures from the early
growth stage, plants are sensitive to noisy objects similar to the roots in the
image. They also, reflected this result in the phenotypic traits, including root
length, surface area and volume calculation. It indicates that root traits ob-
tained using saRIA achieved more than 80% correlation with p-value <0.05
compared to the manually calculated traits using SmartRoot [24]. Neverthe-
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less, these limitations can be overcome by tuning parameters and removing
noise manually for each image in the saRIA tool.

The saRIA segmentation, root tracing and trait calculation algorithms
are significantly faster than conventional manual segmentation [24] and are
freely available as a precompiled executable program 1. Therefore, saRIA
can be used to generate ground-truth segmentation data to develop highly
rapidly demanded advanced machine learning/deep learning techniques.

7.1.2 Objective 2

Research on CNN models for the segmentation of roots from soil
back-ground and compare the performance of the proposed model
with the state-of-the-art CNN models for root image analysis.

Semi-automatic image analysis solutions effectively analyze single or fewer
images to detect and extract multiple root traits. In real-time scenarios,
biologists often conduct experiments over several plants for multiple days,
resulting in the need to analyze a large number (several thousand) of images.
However, semi-automatic approaches face significant challenges when deal-
ing with large image datasets. They require manual algorithmic parameter
selection, which hampers their ability to automatically segment large image
datasets with inhomogeneous and noisy root system architectures. These
limitations underscore the necessity for advanced computer vision solutions,
specifically those based on convolutional neural networks (CNN), for fully
automatic soil-root image segmentation.

The RootNav 2.0 [55] and SegRoot [56] models, while advanced in their
own right, face specific limitations in certain experimental setups. The Root-
Nav 2.0 tool, for instance, was primarily developed for roots grown on germi-
nation paper with high contrast between root and (blue) background pixels.
It is expected to perform poorly when applied to other imaging modalities,
such as noisy roots grown in soil images. Similarly, the SegRoot model, while
suitable for segmenting roots from soil background in minirhizotron systems,
struggles to identify fine, fuzzy, and low-contrast roots. This limitation could
affect the accuracy of the following phenotypic traits, including the estimated
root biomass and other geometric features. These challenges highlight the
need for more versatile and accurate solutions.

1https://ag-ba.ipk-gatersleben.de/saria.html
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A CNN approach based on the U-net architecture [44] designed to en-
hance the quality of automatic segmentation of root structures of different
sizes, shapes, and optical contrasts from the soil environment. This ap-
proach transfers the location and pixel information of the feature maps from
the encoder to the decoder. In contrast, existing solutions like SegRoot only
transfer the location of feature maps to the decoder for image segmentation.
The method is called fully-automated root image analysis (faRIA), which
fully automates the segmentation of roots and the computation of pheno-
typic traits. During the experimental setup, greyscale root images of Maize
plants acquired with a Near-infrared (NIR) based IPK plant phenotyping
system were selected and annotated by agronomists using the saRIA tool
for the ground truth segmentation. The performance of the trained model
is analyzed using binary cross-entropy loss, Dice coefficient (DC), precision
and recall.

The results show that the proposed U-net framework (faRIA) for the seg-
mentation of roots in soil significantly outperforms the SegRoot method on
our data set by improving the binary cross-entropy loss by the factor 10 and
DC by 20%, respectively. It can be concluded from this study that extensive ¬Chapter3
feature information (i.e., both location and pixel values), including low and
high-level abstract features in the faRIA model, enables the detection of both
primary and secondary low-contrast roots compared to the only max-pooling
indices in the SegRoot model. Furthermore, the segmentation of full images
resized to 1024x1024 using faRIA exhibits false positive segmentation with
low recall and high precision at the soil-root region boundary compared to
the original full-size images. It results in false phenotypic values for the root
system architecture analysis. Therefore, it is vital to calculate the accurate
phenotypic traits by preserving root structures for high-throughput plant
phenotyping.

In addition, the presence of bias in a model can hinder its generalization
capabilities. Our results show that the performance of the proposed U-net
architecture is more robust, with an accuracy of around 80% than SegRoot
on segmentation of unseen Barley and Arabidopsis soil-root images captured
under rhizotron and UV imaging systems, respectively. The study concludes
that the faRIA model adequately adapted to new, previously unseen data
drawn from the same distribution (soil-root images) as the one used to create
the model. In conclusion, end users without technical and IT knowledge can
automatically perform high-throughput root system phenotyping using the
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faRIA tool 2.

7.1.3 Objective 3

Investigation of shallow learning-based neural networks and differ-
ent deep learning models for the segmentation of different plant
shoot images (Arabidopsis, Barley and Maize) at different devel-
opmental stages (e.g., juvenile, adult) in different views (e.g., top
and side views) and evaluate their performance with the proposed
CNN model.

To fully characterize the relationship between a plant’s genotype and
phenotype, the shoot system needs to be studied in addition to the root sys-
tem. However, segmenting different parts of different plant types at different
developmental stages in different views is complicated by factors such as in-
homogeneous illumination, shadows, occlusions, reflections, and the dynamic
optical appearance of growing plants. These limitations make it challenging
to establish invariant criteria for detecting parts such as leaves, flowers, fruits,
and spikes, especially for plant types such as Arabidopsis, Maize, and Bar-
ley, and at developmental stages ranging from juvenile to adult. Moreover,
phenotyping of thousands and millions of plant images in a high-throughput
manner requires segmentation algorithms that are fully automated, accurate,
and efficient.

The state-of-the-art conventional solutions based on reference frames [29,
30] and pixel-based supervised learning methods [31, 32] are generally not
sufficiently robust for unsupervised analysis of sizeable variable image data.
Henke et al. [30] proposed a registration-classification approach based on the
same plant’s fluorescent and visible light RGB images. However, the require-
ment of multimodal data limits the application of this method to uni-modal
plant phenotyping systems. Furthermore, pixel-based supervised learning
methods [31, 32] are sensitive to noise due to the missing neighbourhood
information or patterns in the image. Also, they require expertise in manual
parameter tuning for each image or feature engineering techniques for super-
vised methods such as shallow neural network models. As of the published
works of the thesis, no appropriate deep learning solutions for accurate seg-
mentation of different plant shoot (Arabidopsis, Barley and Maize) images
are known.

2https://ag-ba.ipk-gatersleben.de/faria.html
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In this work, a deep learning-based U-net model was developed to auto-
mate and efficiently segment shoot images (DeepShoot) 3. This model can be
applied to multiple plants in both top and side views, including Arabidopsis,
Barley, and Maize, and does not require reference frames. In contrast to
many current solutions that are limited to a single plant type or view, the
proposed U-net model can generate multi-level features, such as neighbour-
hood information, colour, spatial patterns, and textural features. This is a
significant advancement over the state-of-the-art solution proposed by Adam
et al., which only considered neighbourhood information. The performance
of the proposed U-net model was evaluated with different encoder backbones,
including vgg19, resnet50, and xception. This approach has the potential to
revolutionize automated and efficient plant phenotyping.

The shoot image analysis results summarize that the proposed U-net
model significantly outperforms DC > 0.9 for all listed plants compared to
the pixel-based supervised learning methods [32] have DC between 0.5 and
0.8. Moreover, the U-net model accurately segments the optically variable ¬Chapter4
structures like brown colour stressed leaves and low contrast leaves in Ara-
bidopsis top view and Barley side view images, respectively. It confirms that
segmentation of plant shoot structures requires multi-level features, which are
missing in most state-of-the-art solutions. On the other hand, deep learn-
ing models with complex architectures (resnet50 and xception encoder back-
bones) and many redundant features result in the model’s underperformance
compared to the lower-depth architectures of the proposed U-net and vgg19.
Therefore, it is essential to maintain the complexity of features for the robust
segmentation of optically varying shoot images. In addition, the generaliz-
ability of the proposed U-net model was also tested on an unseen publicly
available Arabidopsis dataset, grown under soil background from Scharr et al.
[57]. This study concludes that our model can segment quite different optical
backgrounds or field-like images until target plant structures are similar to
images used in the training sets. However, the proposed model’s limitation
was primarily seen in side-view shoot images, where shadowed areas with
thin and twisted leaves are more likely to be misclassified.

7.1.4 Objective 4

Enhancement of wheat spike detection algorithm in 2D images us-
ing shallow learning-based neural networks and studying the ro-
bustness of the model on European cultivars.

3https://ag-ba.ipk-gatersleben.de/ds.html
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In addition to the phenotyping of plant primary (root and shoot) sys-
tems, the need and demand for image-based Wheat spike phenotyping are
increasing to contribute to studies on improving crop yield for food security
and sustainability. Nevertheless, there have been only a small number of
studies focused (until this publication) on Wheat spike detection and growth
analysis [34, 35, 36, 37] from greenhouse digital images because of the need
for imaging data and labelled ground truth. Qiongyan et al. [37] proposed a
novel approach for detecting (young) spikes in digital images of Wheat plants
based on Law’s textural (energy) features and a neural network. However,
by application to European elite cultivars, this algorithm was sensitive to the
high-energy leaf crossing or overlay artefacts and aged leaves, which led to
false classifications of spike and non-spike pixels.

To overcome the limitations of the Qiongyan et al. method, a reliable
three-step method for spike detection was proposed based on wavelet tex-
tural features [58], Frangi filter [59] and artificial neural networks. In our
method, discreet wavelet transform enhances the separability between the
plant and background pixels by resulting in a coefficient image bearing the
textural information relevant to spike segmentation. Later, the Frangi filter
was applied to suppress high-energy edges resulting from such leaf crossings
in the neural network segmented images.

The study’s findings demonstrate that the proposed approach performs
better than the current solution Qiongyan et al. [37], explicitly created for
Wheat cultivars grown in Australia. Notably, there was a 75% improvement ¬Chapter5
in the precision of spike heading time point detection for European Wheat
cultivars with bushy leaves surrounding the spike. It is also evident in the
time series growth analysis of the predicted spike area. These results conclude
that (i) textural features extracted from the discrete wavelet transform image
are much more robust than the original image, and (ii) introducing the Frangi
filter suppresses the bushy leaves surrounded by spikes in European cultivars.
Moreover, the genotype-phenotype study also indicates that the proposed
model is well-suited for plants where spikes emerge quickly with high energy
patterns (low biomass plants). However, the model failed to detect very
smooth and green colour spikes, which take a long heading time to emerge in
plants. In summary, automatic spike phenotyping of European cultivars is a
good fit for the suggested spike detection method in 2D images. Furthermore,
ground truth data creation for deep learning applications can benefit from
its use.
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7.1.5 Objective 5

Developing a CNN model for the segmentation of barbs in micro-
scopic images of Barley cultivars and studying the robustness of
the proposed model by phenotypic characterization and classifica-
tion of awns.

In addition to the spikes, awns play a significant role in the phenotypic
description of grain crops like Barley and Wheat. Awn’s roughness is a prop-
erty determined by the density and presence of structures known as barbs.
Until now, many studies have been conducted on the genetic control of the
intensity of barb formation in Barley using gene analysis [60]. However, the
potential of linking awn genotype with phenotypic traits still needs to be
included. To our knowledge, no appropriate image processing solutions are
suitable for accurate barb segmentation and phenotyping in awn images.

The identification of barbs on awn surfaces poses a challenge due to their
inconsistent appearance, low contrast, and limited spatial resolution. To ad-
dress this issue, we utilized cutting-edge deep learning techniques by initially
applying the original U-net model [44] for automated analysis of awns in
a high-throughput manner. However, we encountered unsatisfactory results
because the original U-net model needed to be specifically tailored for awn
image analysis. As a solution, we modified the U-net architecture called
BarbNet 4. to enable full automation of barb segmentation in microscopic
images. The major modifications include, unlike the original U-net model,
BarbNet includes batch normalization after each convolution layer to en-
hance network performance and stability by normalizing the feature maps at
respective levels. Dropout layers are not used in BarbNet because combining
batch normalization and dropout layers can lead to poor results [61].

The experimental results show that the proposed BarbNet model with-
out dropout layer and redundant features improved DC by 6% compared to
the originally developed U-net model for biomedical image analysis. This ¬Chapter6
results in higher DC = 93% for BarbNet on the test dataset compared to the
original and three modified U-net models (DC <85%). It briefs that reduc-
ing the number of filters with increased depth of the model and combining
batch normalization and dropout layers penalizes detecting highly variable
tiny barbs. Furthermore, U-net models with more features make diagnosing
and addressing the barb segmentation problem harder. Also, this limita-

4https://doi.ipk-gatersleben.de/DOI/ce489d84-ed66-4171-ad97-
cf4696099389/09144b48-8336-48d7-86a2-f00dfd988cba/2
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tion was observed in BarbNet for segmenting very tiny barbs in the basal
region of awns. In addition to the segmentation performance, three impor-
tant phenotypic traits for awn and barb characterization: total barb count,
mean barb area, and mean barb length in pixels are presented. Our exper-
iments with different genotypes explain that a combination of barb density
and size provides the best results on central regions of awns (i.e., >85%)
than basal regions (81%). However, one can achieve the best and most bal-
anced gene classification results by combining multiple phenotypic traits of
barbs. Therefore, the proposed model may be used to automate the sorting
of Barley awns to study plant development.

7.1.6 Objective 6

Developing a GUI-based front end for efficiently handling the above
algorithmic frameworks.

Developed plant phenotyping algorithms are designed to solve specific
problems and require programming skills to implement. However, many
plant biologists need to gain these skills, which can make these solutions
difficult to use. To address this, GUI-based solutions with an intuitive in-
terface, visualization capabilities, and experimental design and analysis tools
have been developed to enable biologists to tackle complex biological prob-
lems more effectively.

User-friendly GUI-based Windows and Linux precompiled Matlab exe-
cutable programs named saRIA, faRIA, and DeepShoot were developed for
root-and-shoot image analysis. These tools allow end-users with limited tech-
nical knowledge to perform automated analysis of plant images intuitively
and transparently. The tools can be used to analyze single images or large
image datasets to detect and extract multiple plant traits, with the ability to
define a custom region of interest and eliminate artefacts caused by external
factors. The saRIA/faRIA and DeepShoot tools calculate 70 root and 35
shoot traits, respectively. A command line-based tool for both Windows and
Linux is available for awn phenotyping. More information on the definition
of traits can be found in the Supplementary information accompanying the
corresponding articles.
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7.2 Conclusion & Future Work

As outlined, image-based high-throughput plant phenotyping systems re-
quire more advanced and fully automated computer vision solutions to deal
with complex and diverse plant structures. However, the integration of so-
phisticated computer vision solutions in plant science has been hindered by
limited data accessibility and annotation. Initially, a semi-automated image
analysis approach for root image segmentation (saRIA) and spike detection
in Wheat plants was developed to overcome these limitations. Eventually,
deep learning-based solutions for a broad spectrum of applications, including
root (faRIA), shoot (DeepShoot) image analysis (BarbNet) and phenotyping,
were developed in this thesis.

For the first, results of semi-automated approaches for root and spike
image segmentation show that both models achieved more than 80% accu-
racy on automatic image segmentation and phenotyping traits calculation.
However, the accuracy of these models can be improved by tuning the al-
gorithm’s parameters according to target patterns in the image. Moreover,
these tools provide solutions to agronomists for analysing small datasets,
variational imaging setups like roots grown in any medium, and the rapid
generation of ground truth data. However, they limit the analysis of large
amounts of images for high-throughput plant phenotyping.

Later, with the help of semi-automated approaches, fully automated CNN
models for image segmentation using low-budget hardware systems were de-
veloped. The results show that CNN models achieved approximately 90%
accuracy on root, shoot and barb segmentation in awn images. Furthermore,
the study on model complexity concludes that the proposed CNN models
outperform the deep-depth CNN architectures, which complicates the inter-
pretability of the model. This results in more generalizable CNN models for
segmenting target plant structures are similar to images used in the train-
ing sets. The major limitation of this work is the generalizability of the
developed methods to broad fields like biomedical image analysis. All meth-
ods were exclusively developed in this work based on real-time data from
plant phenotyping experiments. In conclusion, end-users with limited tech-
nical knowledge can perform analysis of large amounts of images for high-
throughput plant phenotyping.

The computer vision methods that are presented in this thesis work
brought improvements in automated plant image phenotyping for plant sci-
ence; there is a vast scope for improving and developing advanced deep learn-
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ing algorithms if ground truth data is available. Since all developed methods
in this thesis are based on binary segmentation, they can be extended to
multi-class segmentation, for example, the segmentation of primary and sec-
ondary roots and healthy and stressed/diseased leaves. Also, deep learning
algorithms can address the artificial filling of gaps in the root system that
occurred due to inhomogeneous scene illumination. Regarding shoot image
analysis, multiple plants are often screened together in a single image, and
the separation of these plants can be addressed in the future using graph
theory and/or a deep learning approach.
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