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ABSTRACT 
 
Campylobacter jejuni is one of the most important bacterial pathogens causing food-borne 

illness worldwide. In industrialized countries Campylobacter are found to cause 

gastroenteritis more than 2-7 times as frequently as compared to Salmonella and Shigella 

species. Crossing the host epithelial barrier and invasion by C. jejuni is considered as one of 

the primary reasons of gut tissue damage, but the molecular mechanisms and the major factors 

involved in this process are widely unclear.  

In the present study, I characterized the serine protease HtrA (high-temperature requirement 

A) of C. jejuni and its function in secretion and cleavage of the host junctional protein and 

tumor suppressor E-cadherin. In vitro cleavage assays and infection experiments showed that 

secreted HtrA triggers E-cadherin ectodomain shedding from MKN-28 polarized epithelial 

cells. A deletion of the htrA gene in C. jejuni led to severe defects in E-cadherin cleavage and 

transmigration of the bacteria. These results suggest that HtrA-mediated E-cadherin cleavage 

is involved in C. jejuni crossing of the epithelial barrier via the paracellular route between 

cells and represents a novel mechanism in pathogenesis.  

Having established how C. jejuni reaches basolateral surfaces, the next aim was to investigate 

how this pathogen can enter the host cells. Using different molecular biological methods and 

various knockout cell lines derived from fibronectin-/-, integrin-β1-/- and focal adhesion kinase 

(FAK)-/- deficient mice and corresponding wild-type controls it could be shown, that these 

host cell factors play a role in the activation of small Rho GTPases, such as Rac1 and Cdc42. 

Furthermore, membrane ruffling, filopodia formation, tight engulfment of the bacteria and 

invasion were only seen during infection of wild-type control cells. It was also demonstrated 

that C. jejuni activates FAK autophosphorylation activity which is required for stimulation of 

the guanine exchange factors DOCK180, Tiam-1 and Vav2. siRNA studies show that 

DOCK180 and Tiam-1 act cooperatively to trigger Rac1 activation, while siRNA and the use 

of Vav-1/2 -/- knockout cells showed that Vav2 is required for Cdc42 activation and C. jejuni 

invasion. Moreover, evidence is presented that activation of Rac1 and Cdc42 involves the 

bacterial fibronectin-binding protein CadF and the flagella apparatus. CadF appears to be a bi-

functional protein enabling bacterial binding to host cells and stimulating signalling, which 

leads to the activation of downstream factors inducing GTPase signalling and host cell 

invasion by C. jejuni. Collectively, the results of this work suggest that C. jejuni can invade 

host cells by a unique mechanism and that fibronectin, integrins, FAK and the small Rho 

GTPases Rac1 and Cdc42 play crucial roles in the invasion process.  
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2. INTRODUCTION 
 
2.1 Invasion of the gastrointestinal tract: an infection strategy by bacteria 
 
The gastrointestinal tract in humans is one of its largest and most important organs. In an 

adult male, the gastrointestinal tract can be up to 6.5 m in size and is covered by the intestinal 

epithelium giving rise to a total surface of approximately 400-500 m2. This epithelium 

exhibits not only crucial absorptive and digestive properties, but also represents an efficient 

barrier against the existing commensal microbial flora as well as intruding food-borne 

microbial pathogens. The normal gut flora consists of more than 1,000 microbial species, 

which represent a highly complex and dynamic community (Hooper and Gordon 2001; 

Eckburg et al., 2005). Exclusion of these microbes is not only a result of the continuous 

physical barrier formed by the tightly associated epithelial cells; the intestinal epithelium also 

has important host immune functions in order to recognise and tolerate commensals, and to 

eliminate pathogens (Backert and König, 2005; Tegtmeyer et al., 2012). The human immune 

system controls the resident microflora and defends against microbial infections through two 

crucial functional arms, the innate and adaptive immunity (Sansonetti 2004; Tsolis et al., 

2008). 

An important feature of several foodborne pathogens is their ability to bind to and invade 

eukaryotic cells. For many pathogenic bacteria the invasion into eukaryotic cells is an 

important initial step during infection and provide the bacteria with different advantages, such 

as avoiding the attacks of the host immune system or the effects by antibiotic treatments 

(Falkow et al., 1992; Oelschlaeger et al., 1999; Dersch, 2002). To access deeper tissues and 

cause short- or longterm infections, the pathogenic bacteria must overcome the epithelial 

barrier (Kazmierczak et al., 2001). Bacterial pathogens are able to enter host epithelial cells 

by different routes, known as the paracellular route and the transcellular route. The 

transcellular route means, that bacteria entering apical cell surfaces and leave the cell at the 

basolateral surface. In contrast, bacteria using the paracellular route cross the epithelial barrier 

by entering between epithelial cells and overcome the tight junctions and adherens junctions 

(Balkovetz and Katz, 2003).Several bacteria are even able to invade deeper tissues during 

their invasion process, as well as some other bacteria are able to strongly increase their 

numbers and thus triggering the apoptosis of these cells or other responses. Many but not all 

invasive bacteria are also able to enter non-phagocytic cells and/or phagocytes, such as 

neutrophil granulocytes or macrophages and survive in these cells (Moss et al., 1999).  
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Bacterial pathogens can be basically divided into two main categories, invasive and non-

invasive bacteria. On the one hand invasive bacteria are able to induce their own uptake and 

on the other hand bacteria play a passive role during phagocytosis by phagocytes.  

 

The success of an infection depends on both, the bacteria and the cell and the “signals” that 

they send to each other (Finlay and Cossart, 1997).    

After binding to the cell, bacteria activate different signalling cascades, which are also 

important for other functions of the cells, such as cell migration, cell division, cell adhesion 

and endocytosis (Finlay and Cossart, 1997). 

In contrast to passive phagocytosis several pathogenic bacteria can cause their internalization 

directly, activated by specific virulence factors. This kind of invasion process begins with the 

binding of specific bacterial surface proteins to certain host cell receptors. By these 

interactions different intracellular signal transduction pathways can be induced, resulting in 

various rearrangements of the cytoskeleton and changes in the cell membrane structure at the 

position of bacterial adhesion and trigger by this way the uptake of the bacteria (Finlay and 

Cossart, 1997; Galan, 1994). In general, two different strategies for bacteria uptake are 

distinguished, the “zipper”- and the “trigger”- mechanism (Fig.1A, B). 

The receptor-mediated invasion process of pathogenic bacteria is characterized by actin 

polymerization and formation of membrane ruffles. These changes inducing the uptake of the 

bacteria into the host cell. Several well-known pathogens, such as Listeria monocytogenes, 

Yersinia pseudotuberculosis and Staphylococcus aureus use this “zipper” mechanism to 

invade host target cells. By binding of the bacteria, different host signalling pathways are 

activated without additional involvement of the pathogen (Cossart and Sansonetti, 2004). 

Figure 1A shows the several proposed steps of invasion by the “zipper” mechanism.  
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Figure 1:Primary mechanisms of bacterial invasion into non-phagocytic host epithelial 
cells. Schematic representation of the two different routes of entry by intracellular bacterial 
pathogens. The pathogens induce their own uptake into target cells by subversion of host cell signaling 
pathways using the “zipper” and “trigger” invasion mechanism, respectively. (A) Bacterial 
gastrointestinal pathogens commonly colonize the gastric epithelium [step 1]. The “zipper” 
mechanism of invasion involves the high-affinity binding of bacterial surface adhesins to their cognate 
receptors on mammalian cells [step 2], which is required to initiate cytoskeleton-mediated zippering of 
the host cell plasma membrane around the bacterium [step 3]. Subsequently the bacterium is 
internalized into a vacuole. Some bacteria developed strategies to survive within or to escape from this 
compartment [step 4]. (B) The “trigger” mechanism is used by Shigella or Salmonella spp. which also 
colonize the intestinal epithelium [step 1]. These pathogens use sophisticated type III or type IV 
secretion system (T3SS or T4SS) to inject various effector proteins into the host cell cytoplasm [step 
2]. These factors manipulate a variety of signalling events including the activation of small Rho 
GTPases and cytoskeletal reorganization to induce membrane ruffling and subsequently bacterial 
uptake [step 3]. As a consequence of this signalling, the bacteria are internalized into a vacuole [step 
4], followed by the induction of different signaling pathways for intracellular survival and trafficking. 
This figure was adapted from Tegtmeyer et al. (2012). 
 

During the “trigger” mechanism the pathogen injects different effector proteins into the host 

target cell. This invasion process is induced by highly invasive bacteria, such as Salmonella or 

Shigella. The pathogens injects the effector proteins by sophisticated type III- or type IV 

secretion systems (T3SS or T4SS) into the host cell and this can induce actin polymerisation 
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events and membrane ruffles. These cellular changes are local and trigger the uptake of the 

bacteria into a given epithelial target cell (Cossart and Sansonetti, 2004). The process of the 

“trigger”-mechanism is schematically depicted in Figure1B.  

As some bacteria can enter host epithelial cells by the paracellular route, they must disrupt 

epithelial intercellular and cell matrix junctions, such as tight junctions, adherens junctions or 

focal adhesions (Fig. 2A).  

Tight junctions are important structures to lock the intercellular space between neighboring 

epithelial cells (Balda and Matta, 1998) and for maintaining the epithelial cell polarity. Tight 

junctions are narrow bands of membrane proteins which completely surround epithelial cells. 

In this way, tight junctions completely close the spaces between associated epithelial cells and 

serve as a diffusion barrier. This barrier controls effectively the flow of molecules over the 

epithelium. Tight junctions inhibit that membrane components pass from the apical surface to 

the lateral part and reverse. The probably best described tight junction proteins are the family 

of claudins, occludins and junctional adhesion molecules (JAMs). These integral membrane 

proteins are reticular arranged and bring the membrane of two adjacent cells directly in 

contact with each other (Fig. 2A). They form pores through which certain molecules can pass. 

Specificity of this diffusion barrier is adjusted to the epithelium by a different composition of 

claudins. Claudins and occludins are associated with zonula occludens proteins which build 

the linkage to the intracellular actin cytoskeleton (Alberts et al., 2002). JAMs are members of 

the immunoglobulin superfamily and as part of the tight junctions, they are also connected 

with the actin cytoskeleton (Praetor et al., 2009). Formation of tight junctions between 

epithelial cells and their ability to form a lock is dependent on the interaction of the tight 

junction protein complex with actin filaments (Fanning et al., 1999) and are also controlled by 

E-cadherin-mediated cell-to-cell adhesions in the adherens junctions (Gumbiner and Simons, 

1986). 

Adherens junctions represent a group of adhesion connections, such as zonula adherens, 

fascia adherens and punctum adherens. The adherens junctions establish the linkage between 

actin-filaments of two neighboring cells. Typical adherens junctions exist in epithelial cells, 

directly below tight junctions (Fig. 2A). The most important proteins of adherens junctions 

are the family of cadherins. Cadherins are Ca2+ dependent proteins which interact over several 

anchor proteins, such as catenins, vinculin or α−actinin with the actin cytoskeleton (Geiger et 

al., 1985). The best described cadherin family member is E-cadherin, which interacts by its 

cytoplasmic domain with the intracellular protein catenin and by this way catenin connects E-
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cadherin to the cytoskeleton. This interaction is essential for the complete adhesive activity of 

cadherins and the formation of adherens junctions (Aberle et al., 1996). 

Focal adhesions are cell junctions which link the actin cytoskeleton of the cell to the 

extracellular matrix (ECM) at basolateral surfaces. They serve as anchoring structures with 

the cell and as signalling carrier. Focal adhesions consist of more than 50 different proteins. 

The contact to the ECM is mediated by transmembrane integrin receptors. Integrins are 

heterodimers consisting of α– and β−subunits, which bind to the different ECM proteins. The 

β−subunit is linked to the actin filaments by adaptor proteins, such as talin, α-actinin, filamin 

or vinculin. In focal adhesions not only structural proteins could be found, but also signalling 

proteins, such as tyrosine kinases including c-Src or focal adhesion kinase (FAK) (Zamir and 

Geiger, 2001). 

Figure 2B-D shows the different cell-cell and cell-matrix complexes of a normal polarized 

epithelial cell layer and the proposed signalling pathways in the different intercellular 

junctions during the infection with the model pathogenic organism Helicobacter pylori 

(Wessler and Backert, 2008).   

As mentioned above, the human mucosa and especially the gastric mucosal epithelium is an 

important cell layer which forms the first barrier against several bacterial pathogens, including 

Helicobacter pylori. This human pathogen can colonize the gastric epithelium as a unique 

niche in the stomach and has developed different remarkable strategies to modify epithelial 

cell-cell and cell-matrix adhesions which induce to inflammation, proliferation, cell migration 

and invasive growth (Fig. 2B-D). Helicobacter pylori secrete a toxin (VacA) into the 

supernatant and inject CagA into cells by a T4SS. Both proteins interfere with tight junctional 

proteins (Fig. 2B). Injected CagA has also been shown to interact with the cytoplasmic 

domain of E-cadherin and disturbs cell polarity be inactivating the kinase Par1b (Fig. 2C). It 

has also been shown that a commonly known periplasmic protease of H. pylori, called HtrA 

(high-temperature requirement A), is secreted into the extracellular space, where it can 

cleave-off the ectodomain of E-cadherin directly (Hoy et al., 2010). HtrA-mediated cleavage 

of E-cadherin resulted in disruption of epithelial barrier functions and entry of bacteria 

between two adjacent cells. This mechanism could explain how H. pylori can make contact 

with the basolateral receptor of the T4SS, which is known as the integrin member α5β1 

(Kwok et al., 2007; Wessler and Backert, 2008), to inject the CagA effector proteins, probably 

from the basolateral side of infected epithelial cells. Injected CagA is then phosphorylated by 

host kinases and interferes with various signalling pathways as indicated (Fig. 2D).  
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Figure 2: Epithelial intercellular junctions of the host and interactions with Helicobacter pylori. 
(A) A schematic presentation of a polarized cell layer in healthy epithelium. The different types of 
intercellular junctions are shown, including the tight junctions (TJs, blue), adherens junctions (AJs, 
violet) and focal adhesions (FAs, orange), which exhibit specific localization in the lateral or basal 
membranes as indicated. (B-D) Schematic presentation of specific junctional complexes and particular 
signalling pathways that are induced during infection with H. pylori. (B) TJs comprise at least four 
types of transmembrane proteins: occludin, claudins, junctional adhesion molecules (JAMs) and 
several cytoplasmic peripheral proteins. Whereas the transmembrane proteins mediate cell–cell 
adhesion, the cytosolic TJ plaque contains various types of proteins [e.g. PSD-95/Drosophila disc 
large/ZO-1 homology (PDZ) proteins such as the ZO protein-1, -2 and -3, cingulin and multi-PDZ 
protein-1 (MUPP1)] that link TJ transmembrane proteins to the underlying actin cytoskeleton. These 
adapters also recruit regulatory proteins, such as protein kinases, phosphatases, small GTPases and 
transcription factors, to the TJ. The integrity of TJs is maintained by a regulatory complex, for 
example, atypical PKC (aPKC), Rac1, Cdc42, Par6 and Par3. At TJs, aPKC phosphorylates Par1b 
kinase on Thr595. Activated Par1b specifically localizes to the basal and lateral membranes to regulate 
cell polarity [step 1]. H. pylori injects CagA proteins into the host-cell cytoplasm via a T4SS pilus 
[step 2]. Injected CagA binds Par1b and thereby inhibits PKC-mediated phosphorylation of Par1b on 
Thr595 [step 3]. The CagA–Par1b complex mislocalizes to TJs and apical membranes [step 4]. This 
signaling results in the disruption of TJs [step 5] and loss of cell polarity [step 6]. H. pylori secretes a 
second factor, the VacA toxin, which is internalized by RPTP receptors, followed by opening TJs 
using an unknown mechanism [step 7]. (C) The calcium-dependent integrity of AJs is stabilized by 
binding of E-cadherin to catenins. The proximal C-terminal domain of E-cadherin binds to the 
cytoplasmic protein β−catenin.The p120 catenin (p120ctn) binds to the juxtamembrane part of E-
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cadherin and stabilizes the entire adherence complex. The E-cadherin–β-catenin complex is connected 
to the actin cytoskeleton via binding to α-catenin and EPLIN (epithelial protein lost in neoplasm). If 
not bound to the E-cadherin complex, β-catenin can translocate into the nucleus where it plays a part 
in nuclear gene transcription driven by transcription factors of the Tcf/LEF family to promote the 
expression of a wide range of target genes, including the proto-oncogenes c-myc and cyclinD1. CagA 
is injected by H. pylori [step 1] and can be recruited to E-cadherin in the AJs [step 2]. Binding of 
CagA to E-cadherin induces the release of β-catenin from the AJ complex, causing its cytoplasmic 
accumulation in a deregulated Wnt pathway comprising GSK-3b and adenomatous polyposis coli 
(APC) [step 3] and, subsequently, nuclear localization [step 4]. Nuclear β-catenin activates Tcf/LEF-
mediated transcription, leading to cell proliferation [step 5]. Recent data also showed that the protease 
HtrA is secreted by H. pylori [step 6], and can cleave E-cadherin directly (Hoy et al., 2010). (D) In 
FAs, basal integrin α5β1 binds H. pylori CagL [step 1], a specialized adhesin on the T4SS pilus that is 
necessary for the injection of CagA [step 2]. CagL-dependent stimulation of integrin and the FAK 
kinase also activates Src, the tyrosine kinase of tyrosine-phosphorylated CagA (CagAPY) [step 3]. 
CagAPY can stimulate multiple motility-inducing signaling cascades such as the activation of ERK 
kinase [step 4] and c-Abl and CrkII [step 5]. The CagAPY–Abl–Crk complex stimulates Dock180, a 
guanine-nucleotide-exchange factor for the GTPase Rac1, which can control F-actin polymerization 
necessary for host-cell motility [step 6]. CagL also activates the FAK→Src→JNK pathway [step 7] 
and paxillin [step 8]. Binding of CagAPY to Csk inactivates Src followed by dephosphorylation of 
ezrin, vinculin and cortactin [step 9]. Finally, CagAPY binds the tyrosine phosphatase Shp-2, which 
activates ERK (4) and negatively regulates FAK signaling [step 10], all of which contribute to host-
cell motility and elongation. This figure was adapted from Wessler and Backert, (2008).  
 
 
 
2.2 Epidemiology and clinical aspects of Campylobacter 
 
The group of Prof. Backert is especially interested in molecular mechanisms of 

Campylobacter infections. The importance and appearance of Campylobacter infections in 

public health and food safety topics take a rapidly development in the last years. 

Campylobacter-like organisms were first observed in microscopic studies by Theodor 

Escherich in 1886. He noted some non-culturable spiral-shaped bacteria that were later 

typically described as Campylobacter (Vandamme, 2000; King and Adams, 2008; Vandamme 

et al., 2010). Campylobacter was then also identified by two British veterinarians in 1906. 

They found typical bacteria in the uterine mucus of a pregnant sheep and described the 

presence of “large numbers of a peculiar organisms” (Skirrow, 2006; Zilbauer et al., 2008). 

First successful isolation of Campylobacter as Vibrio fetus was established in 1913 from 

aborted sheep by McFadyean and Stockman. In 1957, King and co-workers described the 

isolation from blood samples of children with diarrhoea and in 1963 the genus Campylobacter 

was first proposed by Sebald and Véron (On, 2001). In 1972 a Belgian clinical microbiologist 

first isolated Campylobacter from stool samples of patient with diarrhoea (Kist, 1985). A 

study of Butzler et al., in 1973 raised the interest in Campylobacter, because doctors and 

scientists noted their high incidence in human diarrhoea samples (On, 2001). 
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With the development of selective growth media as common method in diagnostics, 

Campylobacter enteritis was recognized and Campylobacter spp. were established as human 

pathogens. In the last years the taxonomic structure of the genus Campylobacter has 

extensivly changed, is still controverse discussed and requires further investigations (On, 

2001; Debruyne et al., 2005). At present some research groups proposed 16 species with six 

subspecies in the genus Campylobacter (On, 2001; Foster et al., 2004). The best characterized 

member of the genus is C. jejuni, which is responsible for as much as 80-85% of all 

Campylobacter infections in humans, but there exists a number of other Campylobacter 

species which can also cause human diseases (Moore et al., 2005). Together, three 

Campylobacter species (C. jejuni, Campylobacter coli and Campylobacter fetus) are most 

frequently found in infected humans (Konkel et al., 2001). Futhermore several other members 

of the Campylobacter spp such as Campylobacter lari, Campylobacter upsaliensis or 

Campylobacter hyointestinalis are suspected to cause infections in various animals (Butzler, 

2004, Bourke et al., 1998; Engberg et al., 2000).  

Today, infections with Campylobacter are the most common cause of acute diarrhoeal disease 

in developed countries and is one of the leading cause of enteric bacterial infections 

worldwide (Young et al., 2007; Nachamkin et al., 2008). Observations by the WHO suggest 

that worldwide about 4.5 billion incidences of diarrhoea every year, causing approximately 

1.8 million deaths (WHO, 2004). Among those, Campylobacter infections may be responsible 

for as many as 400-500 million gastroenteritis cases annually worldwide (Friedmann et al., 

2000). Statistical data showed that infections with Campylobacter cause very high use of 

medication and health service burden. For example, some reports indicated 2.5 million cases 

of campylobacteriosis per year with more than 200 deaths in the USA (Tauxe et. al, 1992; 

Forsythe, 2000). 

In the USA, Campylobacter–associated illnesses cost up to 6.2 billion dollar per year 

(Forsythe, 2000). In the United Kingdom infections with C. jejuni are responsible for about 

34% of all gastroenteritis cases and statistical data shows a new infection rate of 1% per year 

(Skirrow and Blaser, 1992). According to Skirrow (1991) the infection rates increase about 

four fold in one decade. In different studies it was found, that Campylobacter can cause acute 

diarrhoea more than 2-7 times as frequently as Salmonella and Shigella species or pathogenic 

Escherichia coli, thus underlining their overall importance among other foodborne microbial 

pathogens (Allos, 2001; Tam, 2001). 

A statistical report from the Robert Koch Institute showed increasing Campylobacter cases in 

Germany. In 2006, 63/100,000 Campylobacter cases with a total amount of 52,000 cases and 
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in 2011 from January to September 40,000 cases of acute diarrhoea caused by C. jejuni were 

reported (Robert Koch Institut, Berlin/Germany; http://www.rki.de). This implicates that 

Campylobacter is on third position of pathogens, which cause acute diarrhoea, behind 

Norovirus and Rotavirus, but ranking before Salmonella. 

Campylobacter is a Gram-negative, spiral shaped bacterium. It is 0.2 to 0.8 µm wide and 0.5 

to 5.0 µm long and has non-spore-forming rods. Campylobacter possess bipolar flagella, 

which provide a high degree of bacterial motility.  

Campylobacter neither ferments nor oxidizes carbohydrates, because it lacks the glycolytic 

enzyme phosphofructokinase. Thus, Campylobacter uses amino acids and intermediate 

metabolites of the tricarboxylic acid cycle as a source of energy (Vandamme et al., 2000). It 

seems that Campylobacter is dependent on amino acids provided by its hosts or the associated 

intestinal microbial flora (Dasti et al., 2010). The optimal growth temperature for 

Campylobacter varies from 37°C to 42°C, the latter corresponding to the approximate body 

temperature of poultry species (41°C–42°C) (Nachamkin, 1995). Thus, Campylobacters are 

very often found in the gastrointestinal tract of multiple avian species. Campylobacter prefers 

growing in a microaerophilic environment, requiring 5–10% O2 and 10% CO2. The bacterium 

is sensitive to salinity, acid conditions (pH < 5.0), drying and freezing (Altekruse et al., 

1999).  

Campylobacter jejuni has a small genome with a size of 1.6 – 1.7 Mb. The singular, circular 

chromosome has a G + C ratio of 30.3 to 30.6% and a high gene content of 94 to 94.3%. 

These features make it to one of the most dense bacterial genomes sequenced to date (Parkhill 

et al., 2000; Fouts et al., 2005; Hofreuter et al., 2006). Until now, the complete genome 

sequences from seven different Campylobacter strains are available, including the four C. 

jejuni strains, 81-176 (Hofreuter et al., 2006), NCTC 111-68 (Parkhill et al., 2000), RM1221 

(Fouts et al., 2005) and CG8486 (Poly et al., 2007). Furthermore, the genome sequences of C. 

coli strain RM2228, C. lari strain RM2100 and C. upsaliensis strain RM3195 (Fouts et al., 

2005) are also available.  

Different Campylobacter species live predominantly as commensals in a wide range of 

different wild and domestic mammals and birds, including poultry. Campylobacter jejuni is a 

classical zoonotic pathogen. Campylobacter jejuni and C. coli mainly colonize birds, poultry, 

dairy cows and domestic pets. Campylobacter jejuni is a part of the intestinal flora in various 

birds and mammals and is also found in many foods of animal origin. These facts implicated, 

that poultry, meat of porks, beef, raw milk and milk products sources of human infections 

(Oyarzabal and Backert, 2012).  
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It is well-known that most retail poultry is contaminated with C. jejuni. In a study by Stern 

and Line (1992), an isolation rate of 98% for chicken meat was reported. A further study 

showed, that 12% of raw milk samples in the USA are contaminated with Campylobacter 

jejuni (Rohrbach et al., 1992). Campylobacter jejuni is also found in various meat products. It 

was detected in 5% of raw ground beef and in 40% of veal specimens (Lammerding et al., 

1988). Other Campylobacter species such as C. coli mainly colonize swines (Kist and 

Bereswill, 2001; Newell, 2001), as well as C. fetus which colonize cattle and sheep (Blaser, 

1993).  

Large outbreaks of human campylobacteriosis are rather sporadic and have different 

epidemiologic characteristics. There are often outbreaks reported during spring and autum 

(Tauxe et al., 1992), which are linked to the consumption of contaminated water (Mentzing, 

1981; Jones and Roworth, 1996; Koenraad et al., 1997; Kuusi et al., 2005; Schuster et al., 

2005) and raw milk (Korlath et al., 1985; Evans et al., 1996; Frost et al., 2002). Raw milk 

was the cause of infection in 30 of the 80 outbreaks of human campylobacteriosis between 

1973 and 1992 in the USA (CDC, 1983 and 2002). Sporadic cases of human 

campylobacteriosis are more common (Friedman et al., 2004). Risk factors for sporadic 

infections are handling of raw poultry (Norkrans et al., 1982; Hopkins and Scott, 1983) and 

eating unsufficiently cooked poultry and meat (Kapperud et al., 1992; Oosterum et al., 1984; 

Hopkins et al., 1984; Harris et al., 1986; Deming et al., 1987). Carcasses contaminated with 

Campylobacter are the main cause of human sporadic infections (Adak et al., 1995; 2005). 

Friedman and co-workers showed in one study, that consumption of unproperly prepared 

chicken in restaurants is a major risk factor for Campylobacter infections in the USA 

(Friedman et al., 2004).  

Other risk factors are probably not so important for the outcome of a sporadic illness, for 

example the contact with pets including cats (Hopkins et al., 1984; Deming et al., 1987) and 

dogs (Kapperud et al., 1992), as well as a person to person transmission is rather uncommon 

(Norkrans et al., 1982; Schmid et al., 1987).  

Campylobacter is also an important problem in developing countries. The main causes for 

human campylobacteriosis in these countries are chickens, the poor sanitations and the close 

contact with the poultry and other animals in households (Coker et al., 2002). In these 

countries infection is very common in early childhood, mostly occuring in the first two life 

years (Skirrow, 1991, 1994; Taylor et al., 1993; Lindblom et al., 1995; Coker et al., 2002). 

In industrial countries campylobacteriosis appears in all age groups, but infants and young 

adults at the age of 15 to 29 years exhibit the highest Campylobacter isolation rates (Allos and 
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Blaser, 1995; Friedman et al., 2000; Kist, 2002). Some statistic studies showed that in all age 

groups the incidence rate in men is 30% higher than in women (Friedman et al., 2000; Kist, 

2002). 

The major disease symptom for an Campylobacter infection in industrialized countries is the 

acute inflammatory gastroenteritis, whereas in developing countries the typical symptom is a 

watery, non-inflammatory diarrhoea. These observations show that symptoms which can be 

triggered by Campylobacter are dependent on the geographic location and socioeconomic 

circumstances (Taylor, 1992; Oberhelman and Taylor, 2000). 

Until today it is widely unknown which particular mechanisms are responsibly for the 

different clinical outcomes of Campylobacter infections in humans in industrialized and 

developing countries. It seems that several host- and pathogen-specific factors are involved in 

the pathogenesis and the different clinical manifestation of Campylobacter infections. It was 

proposed that different levels of immunity and different natural immune stimulants in the 

environment play arole (Blaser et al., 1980). Furthermore, humans which are 

immunocompromised, such as patients with AIDS have a higher risk of acquiring C. jejuni 

than the non-HIV population (Butzler et al., 2004). 

As described above, infections with Campylobacters are one of the main causes for acute 

diarrhoea worldwide. C. jejuni and C. coli are typical pathogens which cause acute 

gastroenteritis. To manifest an infection, C. jejuni must bypass the mechanical and 

immunological barriers of the human gastrointestinal tract. First line of defence is the mucus 

layer of the gastrointestinal tract. To interact with the epithelial cells Campylobacter must 

pass through the mucus layer (McSweegan and Walker, 1986). The bacteria colonize the 

distal small intestine and the colon and induce by this way mucosal edema, cellular infiltrates, 

small abscesses and focal ulcerations (Colgan et al., 1980). Clinical features of gastroenteritis 

due to Campylobacter are indistinguishable from disease symptoms induced by other enteric 

pathogens such as Salmonella or Shigella. Clinical manifestations are characterized by 

inflammation, abdominal cramps, fever and watery or bloody diarrhoea (Allos and Blaser, 

1995). The average incubation time is three days, it ranges between one to seven days, with an 

infectious dose as low as 500-800 bacteria (Robinson, 1981). To develop symptomatic 

disease, ingestion of as few as 500 bacteria is sufficient (Black et al., 1988). Early symptoms 

of a Campylobacter infection are headache, back pain, myalgia and low fever, including 

abrupt onset of abdominal pain and diarrhoea (Kist and Bereswill, 2001). Acute illness is 

characterized by cramping abdominal pain, high fever and diarrhoea. In about 15% of all 

cases bloody stool was observed on the second or third day (Skirrow and Blaser, 2000). The 
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disease is typically resolved in one week and generally considered as a self limiting illness. 

Despite these facts C. jejuni infection is a significant cause for morbidity and mortality in 

humans, especially in developing nations (Mead et al., 1999).  

Important late complications of C. jejuni infections are rheumatic and neurological 

complications, such as post infectious arthritis (Reiter´s syndrome) (Peterson, 1994b) or 

Guillain-Barré- and Miller-Fisher syndrome (Nachamkin, 2002; Yuki et al., 2004; 2005; Yuki 

and Koga, 2006). The Guillian-Barré syndrome (GBS) is an acute neurological disease 

affecting the peripheral nervous system and is characterized by loss of reflexes and symmetric 

paralysis. To date different observations suggest that GBS is mediated by an immune 

response to C. jejuni infection and that both the C. jejuni genotype and host differences are 

determinants for the development of GBS (Nachamkin et al., 1999; 2002; Blaser and 

Engberg, 2008). Recent studies suggest that carbohydrate mimicry of C. jejuni 

lipooligosaccharide (LOS) by human ganglioside can be a cause of GBS (Yuki et al., 2004; 

2005; Yuki and Koga, 2006). The association between C. jejuni infections and the irritable 

bowel syndrome (Spiller, 2007) and immunoproliferative intestinal lymphomas (IPSID) 

(Lecuit et al., 2004) are not yet clear and still under investigation. 

 

 

2.3 Pathogenesis and virulence mechanisms of Campylobacter jejuni  
 
Host cell invasion of C. jejuni has been reported as one of the primary reasons of tissue 

damage in humans but the molecular mechanisms are widely unclear. To estimate the risk 

potential of Campylobacter it is important to know much more about the pathogenicity and 

involved bacterial virulence factors. By comparison to other neteric pathogens such as 

Salmonella and others, very little is known about specific virulence mechanisms of C. jejuni.  

The adhesion of Campylobacter to the intestinal epithelium and the followed host cell entry 

are features which correlate with the pathogenesis of Campylobacter strains (Kist, 2002). In 

the Campylobacter spp. different virulence mechanisms have been proposed and it could be 

shown, that a combination of different potential virulence factors exhibit different 

pathogenicity mechanisms (Hänel et al., 1999).  

Several C. jejuni pathogenicity-associated factors have proposed roles during host infection, 

but many of them were not yet clearly shown to play a major role (Ketley et al., 1997). In 

addition, it should be noted that significant genome variation exists among different strains 

which might play a role for the outcome of infections. Campylobacter jejuni infections are 

most frequently caused by contaminated food products. These infections are often harmless in 
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animals, but can make humans ill. Futhermore different observations have shown that the 

specific interaction between host and bacterium play a crucial role for an infection 

(Wassenaar and Blaser, 1999). 

Among the potential pathogenicity and virulence properties, bacterial motility, chemotaxis,  

adhesion, invasion, toxins, iron acquisition, surface polysaccharide structures, oxidative stress 

response, heat shock response, and the flagella are the best characterized features and shared 

by all known C. jejuni strains (Dasti et al., 2010). In contrast, toxin production e.g. the 

cytolethal distending toxin (CDT) and structure of lipopolysaccharide (LPS) vary between 

different C. jejuni strains (Wassenaar and Blaser, 1999). The major known bacterial factors 

which play a crucial role in C. jejuni infection are presented and summarized in Table 1.  

Campylobacter jejuni exhibit very high motility through its spiral shape and a single 

flagellum present at each pole (Ferrero and Lee, 1988). Flagellar-mediated motility is 

important for C. jejuni colonization of the host and its ability to enter the intestine (Lee et al., 

1986). More than 40 genes are involved in the flagella biosynthesis and assembly (Wösten et 

al., 2004, 2008). The flagellum is composed of a couple of major structures including the 

basal body, the hook and the flagellar filament. The basal body is embedded in the membrane 

and serves as a motor for flagella rotation and subsequent bacterial movement (Wassenaar and 

Blaser, 1999). 

The filament consists of two different flagellin subunits, the major FlaA and the minor one 

FlaB proteins (Guerry et al., 1990; Nuijten et al., 1990). Both are combined in the flagellum, 

but expression of FlaA is higher than that of FlaB. The flagellar filament protein expression is 

controlled by different transcription factors. The flaA gene is regulated by promotor σ28 

(Guerry et al., 1990) and the flaB gene is regulated by the promoter σ54 (Alm et al., 1992; 

Wassenaar et al., 1994; Hendrixson et al., 2001). Recently, it was reported that the flaA gene 

is essential for invasion of intestinal epithelial cells, because it could be shown that deletion of 

the flaA gene leads to a trunced flagellar filament and a strong reduction in bacterial motility. 

In contrast, a mutation in the flaB gene had no effect on the motility (Guerry, 2007). These 

and other observations showed that the flaA gene is responsible for adherence, colonization of 

the gastrointestinaltract and invasion of host cells by C. jejuni (Jain et al., 2008). If this is 

mediated by its role in bacterial motility or another function is not yet clear.  

Glycosylation of flagellin is an important feature in export and/or polymerization of flagellin. 

These glyco–modifications are encoded by an O–glycosylation locus (Guerry et al., 2006). 

The C. jejuni flagellum is composed of O–linked glycosylated flagellin; a two component 

system of the sensor FlgS and the regulator FlgR and this FlgS–FlgR–system is essential for 
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regulation of the flagellum and the flagellar biosynthesis (Hendrixson and DiRita, 2003; 

Wösten et al., 2004; Dasti et al., 2010). Furthermore, it seems that attached glycans can 

influence the flagella-mediated auto–agglutination and colony formation (Guerry, 2007; 

Guerry et al., 2006; van Alphen et al., 2008). The flagella have been shown as the first 

determinants identified to be involved in cellular attachment and this adhesion is dependent 

on motility and flagellar expression (Wassenaar et al., 1991; Grant et al., 1993). In studies 

with different animal models it could be shown that different C. jejuni flagellar deletion 

mutants have a reduced motility and adherence and are widely deficient in invasion (Yao et 

al., 1994). Additionally it has been reported, that the flagellum is essential for colonization in 

various animal models (Morroka et al., 1985; Pavlovskis et al., 1991; Nachamkin et al., 1993; 

Wassenaar et al., 1993; Hendrixson and DiRita, 2004). These findings indicate that the C. 

jejuni flagellum maybe involved in host cell adhesion, but other bacterial determinants must 

be involved in invasion, too. 

 

C. jejuni is able to enter cells in the epithelium of the gastrointestinal tract. To invade, the 

bacteria first attach to the intestinal epithelial cells (Wassenaar and Blaser, 1999) and this 

adherence seems to be an essential prerequisite for subsequent C. jejuni colonization and 

pathogenesis.  

Bacterial adherence involves several binding factors and/or their respective receptors on the 

host side. The binding of these factors is proposed to be fundamental for an efficient 

interaction with host cells. The molecular mechanisms by which C. jejuni adhere to the host 

cells are still not fully understood, but different proteins are proposed to act as bacterial 

adhesins and to be involved in the invasion process. Currently, the proteins CadF 

(Campylobacter adhesin to fibronectin), JlpA (jejuni lipoprotein A), PEB1 (periplasmic 

binding protein), FlpA (Fibronectin like protein A), MOMP (major outer membrane protein), 

CapA (Campylobacter autotransporter protein A) and P95 are proposed to act as C. jejuni 

adhesins. 
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Table 1: Bacterial factors and proposed roles in Campylobacter  jejuni infection a 

Bacterial 
factor 

Proposed 
function 

Applied  
experimental  
methods 

Strains used Cell  
system  
used 

References 

AspA, 
AspB 

Aspartate ammonia 
lyase and amino 
transferase 

Infection in vitro, GPA, 
ISA 

81-176 T84 Novik et al., 2010 

CadF Adhesin to 
fibronectin 

Infection in vitro and 
chickens, GPA, FBA, 
CBA, ELISA  

F38011, 
11168, 81-176 

INT-407, T84, 
LMH  

Konkel et al., 
1997; Ziprin et al. 
1999; Monteville 
et al., 2002; Scott 
et al., 2010 

CapA Adhesin/Invasin Infection in vitro and 
chickens, GPA  

11168, 
F38011 

Caco-2, LMH Ashgar et al., 
2007; Flanagan et 
al., 2009 

CDT Cytolethal 
distending toxin 

Treatment of cells in vitro, 
MI, FACS, IFM, DNAse 
assays 

81-176 COS-1, 
REF52, 
Henle-407 

Lara-Tejero and 
Galan, 2000 

CiaB, 
CiaC 

Invasin Infection in vitro, GPA, 
MLA, T3SS assays 

F38011, 
11168 

INT407 Konkel, 1999b; 
Christensen, 2009 

CiaI Intracellular 
survival 

Infection in vitro, GPA, 
MLA, IFM 

F38011 INT407, 
HeLa 

Buelow et al., 
2011 

CJ0977 b Invasion Infection in vitro and 
ferrets, EM, MA, GPA  

81-176 INT407 Goon et al., 2006 

CstII LOS sialylation Infection in vitro, GPA GB2, GB11, 
GB19 

CACO-2, T84 Louwen et al., 
2008 

FlaC Invasin Infection in vitro, MA, 
EM, cell fractionation, 
GPA, IFM 

TGH9011 HEp-2  Song et al., 2004 

FlpA Adhesin to 
fibronectin 

Infection in vitro and 
chickens, FBA, ABB, 
GPA, IFM, ELISA  

F38011 INT-407, 
Hela, LMH  

Flanagan et al., 
2009; Konkel et 
al., 2010, Eucker 
and Konkel, 2011 

GGT Gamma-glutamyl 
transpeptidase 

Infection in vitro, mice and 
chickens, cell 
fractionation, MA, GPA, 
HPS, AA  

RM1221, 81-
176, 81116, 
11168 

INT-407, 
CCD841 CoN  

Hofreuter et al., 
2006; 2008; 
Barnes et al., 2007 

HtrA Periplasmic 
protease and 
chaperone 

Infection in vitro, GPA 11168 INT-407 Baek et al., 2011 
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JlpA c Adhesin to HSP90-
α, proinflammatory 
responses 

Infection in vitro, GPA, 
BRP, ABB, ligand 
overlays, geldanamycin 
inhibitor, p38/NF-κB 
activation using AABs 

TGH9011 HEp-2  Jin et al., 2001; Jin 
et al., 2003 

KpsE, 
KpsM, 
KpsT 

Capsule proteins, 
invasion 

Infection in vitro, infection 
of chicken and ferrets, 
GPA  

81-176, 81116 INT-407 Bacon et al., 2001; 
Bachtiar et al., 
2007 

Peb1, 
Peb3 and 
Peb4 d 

Transport proteins 
and Chaperones 

Infection in vitro and mice, 
BRP, GPA  

81-176, 11168 Hela , INT407 Leon-Kempis et 
al., 2006; Min et 
al., 2009, Asakura 
et al., 2007; Kale 
et al., 2011 

PflA Motility  Infection in vitro, GPA 81-176 INT407 Yao et al., 1994 

PorA 
(MOMP) 

Major outer 
membrane protein 

Infection in vitro, BRP K22, 1767 INT407 Schroeder & 
Moser, 1997; 
Moser et al., 1997 

SodB Superoxide 
dismutase 

Infection in vitro and mice, 
GPA, ISA  

81-176 T84 Novik et al., 2010 

VirK Intracellular 
survival 

Infection in vitro and mice, 
GPA, IFM  

81-176 T84, COS-7 Novik et al., 2009 

a Abbreviations:  AA (apoptosis assay); AB (antibody); AAB (activation-specific antibodies); ABB (antibody blocking); 
BRP (binding assays using recombinant or purified protein); CBA (competitive binding assay); EM (electron 
mciroscopy); FACS (Fluorescence-activated cell sorting); FBA (fibronectin binding assay); GPA (gentamicin 
protection assay); HPS (hydrogen peroxide susceptibility test); IFM (immunofluorescence microscopy); ISA 
(intracellular survival assay); MI (microinjection of proteins); MA (motility assay on agar); MLA (35S-methionine 
labelling assay); T3SS assays (transolaction assay using the Yersinia type III secretion apparatus);  

b Another report indicated that the Cj0097 mutant has a deficiency in motility in liquid broth (Novik et al., 
2010) 

c Identified as an adhesin in strain TGH9011, but no effect observed with jlpA mutants in either 11168 or 81-
176 strains(Van Alpen et al., 2008; Novik et al., 2010) 

d These structural studies along with other assays suggest primary roles in protein transport. Originally, the 
Peb’s were identified as putative adhesins (Pei et al., 1991). 

      (this table was adapted from O’Croinin and Backert, 2012) 
 

 

The most extensively investigated adhesive protein is CadF, a 37 kDa outer membrane protein 

that mediate the binding of C. jejuni to the ECM protein fibronectin (Konkel et al., 1997, 

1999a, 2005). A ∆cadF mutant showed a reduced binding to and invasion into INT-407 cells 

(Montville and Konkel, 2002; Montville et al., 2003; Krause-Gruszczynska et al., 2007a, 

2007b) and was unable to colonize chickens (Ziprin et al. 1999). FlpA is a 46 kDa protein that 

also contributes to the binding of Campylobacter to epithelial cells and fibronectin. Konkel 

and co–workers reported that the binding of a ∆flpA mutant to INT407–cells is significantly 

reduced compared to the wild type strain. Futhermore they showed a dose dependent binding 

of FlpA to fibronectin (Konkel et al., 2010; Euker and Konkel, 2011). These results suggest 

that both CadF and FlpA may mediate C. jeuni adherence to the host cells via fibronectin. 
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JlpA is a 43.2 kDa protein. Mutation in the jlpA gene leads to a 18 – 19.4% reduction in 

adhesion of C. jejuni to HEp-2 cells (Jin et al., 2001, 2003). Furthermore, Jin and co-workers 

showed that a pre-incubation of HEp-2 cells with recombinant JlpA results in a dose–

dependent reduction of adherence of C. jejuni (Jin et al., 2001). Moreover, PEB1 is a 28 kDa 

protein and a disruption of peb1A reduced the binding of C. jejuni to HeLa cells by 50–to 

100–fold and is unable to colonize mice (Pei et al., 1998). MOMP (Moser et al., 1997), CapA 

(Ashgar et al., 2007) and P95 (Kelle et al., 1998) are also proposed to function as adhesins, 

but are still not well investigated.  

The HtrA protease is another protein, which was identified to influence the adherence and 

invasion levels of C. jejuni. HtrA and its homologs constitute a group of heat shock induced 

serine proteases, similar to its counterpart observed in H. pylori (Hoy et al., 2010). Most 

bacterial HtrAs are described to localize in the periplasm and are involved in various aspects 

of protein quality control (Clausen et al., 2002). HtrA proteases were first described in 

Escherichia coli (Lipinska et al., 1989, Strauch et al., 1989), it are widely conserved in its 

protease domain and the involved in heat shock response. Several investigations in the last 

few years, shows that C. jejuni HtrA is a bifunctional protein, which has, in addition to its 

proteolytic function, a chaperone activity that can be switched on and off (reviewed in 

Clausen et al., 2011). Furthermore, it appears that the chaperone activity of C. jejuni HtrA 

may play a crucial role at stress tolerance and it has a regulatory function by its protease 

activity (Bæk et al., 2011). If C. jejuni HtrA, like its H. pylori counterpart, can be secreted 

into the cell culture supernatant, where it could possibly cleave host cell factors, has not been 

investigated yet. 

In general, the ability of C. jejuni to enter non-phagocytic epithelial cells during infection is 

thought to be very important for its pathogenesis. There are some reports proposing that, 

similar to other foodborne pathogens including Salmonella and Shigella, C. jejuni can actively 

secrete a cocktail of potential virulence factors into the culture supernatant (Konkel et al., 

2004). In fact, C. jejuni secretes a set of proteins called the Campylobacter invasion antigens 

or Cia proteins (Konkel et al., 1999b). The secretion mechanism and the function of the 

secreted proteins, however, are poorly characterized. One of the best characterized Cia 

proteins is the 73 kDa protein CiaB. CiaB appears to be required for the secretion process 

itself and is necessary for efficient entry of C. jejuni into the host cells (Konkel et al., 1999b). 

Internalization assays revealed a significant reduction in invasion of a ∆ciaB deletion mutant 

as compared to wild-type C. jejuni, and the ∆ciaB mutant also exhibited reduced chicken 

colonization (Ziprin et al., 2001). Interestingly, Campylobacter jejuni does not encode a 
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classical T3SS or T4SS (Parkhill et al., 2000; Fouts et al., 2005; Hofreuter et al., 2006). 

Instead, Konkel and co–workers showed that the flagellar apparatus serves as a T3SS for the 

export of Cia proteins (Konkel et al., 2001). These findings indicate that the flagellar export 

system may secrete both flagellar and non–flagellar proteins (Konkel et al., 2004; Song et al., 

2004). FlaC, another recently identified C. jejuni protein, was also described to be secreted 

from the flagellar export apparatus. ∆flaC mutants are motile and show a functional flagellum, 

but they are defective in invasion of epithelial cells (Song et al., 2004). All these findings 

indicate that the flagellar export apparatus could be an important secretion device, explaining 

its requirement for C. jejuni host cell invasion. Novel findings, however, raised substantial 

doubt on the above CiaB importance in secretion of virulence factors and cell invasion (Novik 

et al., 2010). Thus, it is still unclear whether the flagellar structure is directly involved in 

secretion of Cia proteins triggering bacterial internalization or whether the seen entry defect 

by flagellar deletion mutants is due to loss of flagella-driven motility and subsequently less 

bacterial contact with its host target cell. 

Another important pathogenicity-associated mechanism in early states of infection of C. jejuni 

is the production of toxins. Different research groups reported about their findings of certain 

cytotoxins, enterotoxins or both (Wassenaar 1997; Pickett, 2000). It is well known, that C. 

jejuni produce three different kinds of toxins including a thermo-labile protein cytotoxin 

(Misawa et al., 1994), an enterotoxin with antigenetic features to heat-labile enterotoxin 

(Klipstein and Engert, 1984a, 1984b; Ruiz-Palacios et al., 1983) and the cytolethal distending 

toxin CDT (Whitehouse et al., 1998). The best characterized toxin is CDT which was first 

discovered in Escherichia coli, Shigella flexneri and Salmonella enterica. In 2000, it was 

reported that CDT is also produced by most C. jejuni strains (Lara-Tejero and Galan, 2000).  

CDT consists of three subunits, CdtA (30 kDa), CdtB (29 kDa) and CdtC (21 kDa) 

(Heywood, 2005). Different investigations showed that CdtA and CdtC are essential for 

binding to host cells and the subunit CdtB is the toxic part of the Cdt-ABC complex (Pickett 

and Whitehouse, 1999). It seems that CdtA and CdtC interact with each other and form with 

CdtB the CDT holotoxin, and this holotoxin is essential for delivery of CdtB into host cells 

(Lara-Tejero and Galan, 2001). In particular, the entry of CdtB into the nucleus is necessary 

for the cytotoxic activity (McSweeney and Dreyfus, 2004). The enzymatically active part the 

subunit CdtB leads to the cytotoxic effect, and biochemical assays have shown that CdtB is 

the first described toxin having DNAse activity and has sequence similarity with the family of 

DNAseI-like proteins (Lara-Tejero and Galan, 2000). The entry of CdtB to the nucleus of host 

cells leads to chromosomal DNA damage by causing a cell cycle arrest in the G2/M transition 
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phase (Pickett and Whitehouse, 1999). In several reports, it was shown that cytotoxicity and 

cell cycle arrest was caused by adding a combination of all three toxin subunits to cultured 

epithelial cells or microinjection of CdtB alone (Lee et al., 2003; Lara-Tejero and Galan, 

2001). Thus, CdtA and CdtC may bind specifically to one or more yet unknown host cell 

surface receptor(s), and mediate the delivery of CdtB into target cells (Lara-Tejero and Galan, 

2001; Lee et al., 2003).  

It was also observed that CDT is able to interfer with the activity of different cells of the 

immune system, such as B- or T-cells (Lara-Tejero and Galan, 2002). CDT in C. jejuni might 

play a role in modulation of the immune response and invasion (Purdy et al., 2000). 

Furthermore, it could be shown, that C. jejuni ∆cdt mutants are able to colonize NF-κB-

deficient mice, but are unable to induce gastroenteritis (Fox et al., 2004). However, CDT 

caused IL-8 production in humans, which in turn recruits dendritic cells, macrophages and 

neutrophils to the infection site and induced inflammation of the intestine (Hickey et al., 

1999). It was further reported that C. jejuni CDT can cause apoptosis in monocytic cells in 

vitro (Hickey et al., 2005).  

In contrast to the host response reported in humans, C. jejuni CDT obviously does not induce 

inflammation of the intestinal epithelium in chickens (reviewed in Young et al., 2007). CDT 

promotes the production of neutralizing antibodies only in humans, not in chicken. These 

findings indicate a host specific recognition of C. jejuni antigens. Difficulties to explain the 

specific role of CDT during campylobacteriosis are further documented by the finding of 

CDT-negative strains in humans with enteric diseases (AbuOun et al., 2005). Thus, the 

benefit of CDT toxins for the bacteria and associated infection cycle is not yet fully clear and 

needs further investigation. 

 

Campylobacter jejuni is a classical zoonotic pathogen and can be found at the intestinal flora 

of bird and mammals. In this way C. jejuni can contaminate food and water. In association 

with contaminated water or food products C. jejuni enters the human intestine crossing the 

stomach acid barrier and colonizes the ileum and the colon. Chemotaxis is an effective feature 

of C. jejuni for human colonization and stimulus to respond to different environmental 

conditions. It is known, that C. jejuni are able to move along chemical gradients. Chemotaxis 

is necessary for C. jejuni colonization, because it could be shown that non-chemotactic 

mutants are unable to colonize host cells (Takata et al., 1992). At the genome sequence level, 

several chemotaxis genes have been identified in C. jejuni including cheA, cheW, cheV, cheY, 

cheR and cheB. Mutagenesis studies have shown that several of these genes are also involved 
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in colonization of the chicken intestine (Hendrixson and DiRita, 2004). Yao and co-workers 

reported that CheY plays a special role in flagellar rotation and is essential for bacterial 

gastroenteritis in the ferret animal model (Yao et al., 1994; Yao et al., 1997). They showed 

that a C. jejuni ∆cheY mutant is more adherent and invasive as compared to the corresponding 

wild-type strain (Yao et al., 1997). The observations that cheY and cheA mutants are unable to 

colonize the intestine of mice and chicken suggested that chemotaxis is essential for 

colonization in different hosts (Takara et al., 1992; Yao et al., 1997; Hendrixson and DiRita, 

2004). 

 

Another important pathogenicity feature of C. jejuni is the acquisition of iron from its host. 

Iron acquisition is important for the bacteria, because they must survive in low iron 

environments in the host, especially in the gastrointestinal tract (Braun and Killmann, 1999). 

Campylobacter possess several uptake systems for iron acquisition and is able to use iron of 

several sources, such as ferric iron bound to glycoproteins and siderophores, ferric iron in 

heme or ferrous iron (in “Campylobacter”, ed. I. Nachamkin, C.M. Szymanski and M. 

Blaser, 2008). Campylobacter jejuni can only use low amounts of iron in compounds (Field et 

al., 1986) and is unable to produce siderophores itself, but it can use exogenous siderophores 

of the host and several haem-based compounds, which are produced at the site of 

inflammation (Pickett et al., 1992). 

Campylobacter jejuni uses a transport system for iron which is encoded by the ceu 

(campylobacter-enterochelin-uptake) operon  (Richardson and Park, 1995). The observations 

of Crawthraw and co-workers suggested that ceu is not the only iron uptake system in C. 

jejuni, because they could show that a C. jejuni ∆ceu mutant is still able to colonize chicken 

(Cawthraw et al., 1996). Therefore, more studies are necessary to unravel the various 

colonization-associated iron uptake systems in C. jejuni. 

Additionally, C. jejuni and other bacteria are able to store iron intracellularly. This ability is 

important for the growth of the bacteria especially in low iron environments and it also 

protects the bacteria against an iron overload. This protection is necessary, because too much 

iron results in an oxidative damage of several cellular components (reviewed in van Vliet et 

al., 2002). Wai and co-workers reported that C. jejuni is able to produce ferritin (Wai et al., 

1995). Ferritin is an iron storage protein which helps C. jejuni to colonize the host and to 

protect it especially under conditions of varying O2 levels (Ketley, 1997). 
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2.4 Host factors involved in the interaction of C. jejuni with target cells 
 
Multiple microbial pathogens have evolved complex functional interfaces to affect the host-

cell signalling pathways, to enter host cells, and to replicate and survive within host cells 

(Pizarro-Cerda and Cossart, 2006). Thus, different pathogens have developed several 

strategies to manipulate host cell functions and initiate disease. Very often, manipulations of 

host cell factors involved specific bacterial factors which can hijack host cell factors for 

bacterial advantage and spread. Increasing amounts of data accumulated in the last decade 

showing that Campylobacter damages intestinal epithelial cells and functions directly by cell 

invasion and production of toxins. Futhermore, Campylobacter is able to trigger inflammatory 

responses (Ketley, 1997; Wooldridge and Ketley, 1997). Thus, the entry of human intestinal 

epithelial tissue results in a loss of crucial cellular functions and is an important pathogenic 

mechanism of C. jejuni.  

Previous reports and examinations of intestinal biopsies from patients, primates and other 

experimental animal models showed that C. jejuni is able to enter gut tissue cells in vivo. The 

same results were indicated by infections of cultured human intestinal epithelial cell lines in 

vitro (Russel et al., 1993; Babakhani et al., 1993).  

Histological studies showed that C. jejuni can adhere to colonic epithelial cells after the 

passage through the gastrointestinal tract. This indicates that pathology basically is in the 

colon, but also in the intestinal crypts (van Speeuwel et al., 1985). During intestinal epithelial 

cell penetration specific bacteria–host interactions can cause diarrhoea and gastroenteritis. 

These observations indicated that invasion of host cells are the main cause of tissue damage 

by C. jejuni in vivo (Kopecko et al., 2001). To study C. jejuni invasion levels, the model 

strain 81-176 and gentamicin protection assays are commonly used in worldwide studies. The 

strain 81-176 is a clinical isolate of a patient with gastroenteritis. It has a very high invasion 

efficiency of host cells and the genome sequence is well known (Hu and Kopecko 1999; Hu et 

al., 2006a; Hofreuter et al., 2006; Krause-Gruszczynska et al., 2007a, 2007b).  

We only know very little about host cell factors playing role in the adherence and invasion 

processes of C. jejuni. Most of our knowledge is based on studies using pharmacological 

inhibitors and gentamicin protection assays. For example, inhibition of protein tyrosine 

kinases reduces the amount of viable intracellular C. jejuni colony-forming units (CFU) 

(Wooldridge et al., 1996; Biswas et al., 2000, 2004; Hu et al., 2006a) and C. jejuni infection 

induces tyrosine phosphorylation of several yet unidentified host cell proteins (Biswas et al., 

2004; Hu et al., 2006a). 



2. Introduction                                                                                                                                          

 22 

Host cell surface receptor proteins comprise three main families: ion–channel–linked 

receptors, G–protein–coupled receptors and enzyme–linked receptors. Inhibition of 

heterodimeric G–proteins seems to donwregulate C. jejuni uptake as judged by gentamicin 

protection assays (Wooldridge et al., 1996). In addition, the host cells respond to an increase 

of intracellular Ca2+ level by rearranging the cytoskeleton and the Ca2+ release from 

intracellular host stores are necessary for the uptake of C. jejuni (Hu et al., 2005). In general, 

it has been proposed that C. jejuni induces Ca2+ release and triggers the activation of G -

proteins, calmodulin, PKC (protein kinase C ), PI–3–kinase (phosphatidyl-inositol–3–kinase), 

MAPKs (mitogen–activated protein kinases) and caveolae, which seem to be required for 

efficient invasion of host cells and requires polymerized microtubules (Nachamkin et al., 

2008; Watson and Galan, 2008).  

However, bacterial host cell entry by C. jejuni can proceed by microtubule–dependent (actin–

filament–independent) and/or actin–dependent–pathways (Oelschlaeger et al., 1993; Hu and 

Kopecko 1999; Biswas et al., 2000, 2003; Monteville et al., 2003).  

In 1992, Konkel and co-workers first reported a perinuclear migration of several internalized 

C. jejuni strains (Konkel et al., 1992b). Different studies showed that C. jejuni can survive 

within the endosome during passage through the host cell (Konkel et al., 1992b; Oelschlaeger 

et al., 1993; Watson and Galan, 2008; Buelow et al., 2011).  

It was also proposed that the microtubule-associated motor proteins dynein and kinesin may 

play a major role for movement of the endosomes containing Campylobacter jejuni. Hu and 

Kopecko could show by immunofluorescence microscopy that internalised C. jejuni strain 

81–176 co-localized with dynein and microtubules during the invasion process (Hu and 

Kopecko, 1999). 

Once C. jejuni is internalized it can survive within epithelial cells (Konkel, et al., 1992b; Day 

et al., 2000). It is also able to evade the host immune system and cause an acute infection or a 

long–term persistend infection (Lastovica et al., 1996; Day et al., 2000). 

The various roles of certain bacterial factors in host cell invasion and the mechanism by 

which C. jejuni triggers its eukaryotic cell entry is not well characterized to date. Only few 

results are currently reported about bacterial factors as well as host cell factors which are 

involved in the uptake of C. jejuni (Biswas et al., 2004). Our current knowledge on the 

potential role of several host cell factors in C. jejuni infections as well as the experimental 

methods and used strains is summarised in Table 2. 
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Table 2: Host factors and their proposed roles in Campylobacter jejuni infection  

Host factor Proposed 
function 

Applied 
experimental 
methods 

Strains used Cell 
system 
used 

References 

Actin 
filaments 

Invasion Infection in vitro, 
Cytochalasin D and 
mycalolide B inhibitors, 
GPA, IFM 

81116, HP5100, 
CCUG7800, 
F38011, 81-176 

INT-407 Biswas et al., 2003; 
Monteville et al., 
2003 

Calcium Invasion Infection in vitro, 
BAPTA inhibitors, 
GPA 

81-176 INT-407 Hu et al., 2005 

Cdc42 Invasion Infection in vitro, CA 
and DN constructs, 
GMT, CRIB-PD, GPA, 
IF, FESEM 

81-176, 84-25, 
F38011 

INT-407 Krause-Gruszczynska 
et al., 2007b 

Caveolae Invasion Infection in vitro, 
filipin-III and MβCD 
inhibitors, DN 
constructs, GPA, IFM 

N82, 81-176 Caco-2, 
INT-407, 
Cos-1 

Wooldridge et al., 
1996; Hu et al., 
2006a; Watson and 
Galan, 2008 

Dynein Invasion, 
intracellular 
trafficking 

Infection in vitro, 
nocodazole and o-Van 
inhibitor, GPA, IFM 

81-176 INT-407 Hu and Kopecko, 
1999 

EGF receptor Invasion Infection in vitro, ABB, 
PD168393 and erlotinib 
inhibitors, GPA 

F38011 INT-407 Eucker and Konkel, 
2011 

Fibronectin Adhesion, 
invasion 

Binding and infection 
in vitro, CBA, TWA, 
ABB, use of cadF 
mutant, GPA 

F38011, 81-176 INT-407, 
T84 

Monteville et al., 
2003, Monteville and 
Konkel, 2002 

G proteins Invasion Infection in vitro, 
pertussis and cholera 
toxin treatments, GPA 

N82, 81-176 Caco-2, 
INT-407 

Wooldridge et al., 
1996; Hu et al., 
2006a 

Lysosomes Intracellular 
trafficking 

Infection in vitro, IFM 
with EEA-1, Lamp-1, 
Rab4 and Rab5 

81-176 Cos-1 Watson and Galan, 
2008 

MAPK Inflamma-
tory 
signalling, 
invasion 

Infection in vitro, 
binding of GST-JlpA in 
vitro; AABs for Erk, 
JNK and p38; MAPK 
inhibitors 

THG9011, 81-
176, 11168 
 
 

HEp-2, 
T84, 
Caco-2, 
human 
colonic 
explants, 
INT-407 

Jin et al., 2003; 
MacCallum et al., 
2005; Chen et al., 
2006; Hu et al., 
2006a 

Microtubule 
filaments 

Invasion Infection in vitro; 
nocodazole inhibitor 

81-176, VC84 INT-407 Oelschlaeger et al., 
1993 

Mucin 
(chicken) 

Inhibition of 
bacterial 
virulence 

Binding studies, GPA 81-176 HCT-8 Alemka et al., 2010 

Myd88 Colonisation 
controlled 
by TLRs 

Colonisation of Myd88-

/- but not wt control 
mice 

81-176 Myd88-/- 

mice 
Watson et al., 2007 

NF-κB Inflamma-
tory 
signaling 

Binding of GST-JlpA in 
vitro, AABs, cytokine 
release 

THG9011 HEp-2 Jin et al., 2003 

Nramp1 Colonisation 
of mice 

Colonisation enhanced 
in Nramp1-/- mice 

81-176 Nramp1-/- 

mice 
Watson et al., 2007 

Occludin Impaired 
epithelial 
barrier 
functions 

infection in vitro, TER, 
hyperphosphorylation 
of occludin, NF-κB 
activation, AABs, GPA 

81-176, 11168 T84 Chen et al. 2006 

Paxillin Invasion Phosphorylation of F38011 INT-407 Monteville et al., 
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paxillin, infection in 
vitro, IP, AAB, GPA 

2003 

PI-3 kinase Invasion infection in vitro, 
LY294002 and 
wortmannin inhibitors, 
GPA 

N82, 81-176; 27 
clinical strains 

INT-407 Wooldridge et al., 
1996; Hu et al., 
2006a; Biswas et al., 
2000 

PKC Invasion infection in vitro, 
Calphostin C inhibitor, 
GPA 

81-176;  
27 clinical 
strains 

INT-407  Hu et al., 2005; 
Biswas et al. 2000 

Rac-1 Invasion CA and DN constructs, 
GMT, CRIB-PD, GPA, 
IFM, FESEM 

81-176, F38011, 
84-25 

INT-407 Krause-Gruszczynska 
et al., 2007b 

Src kinase Invasion Infection in vitro, PP2 
inhibitor, GPA 

F38011 INT-407 Eucker and Konkel, 
2011 

a Abbreviations: AB (antibody); AAB (activation-specific antibody), ABB (antibody blocking), CBA  
(competitive binding assay); MβCD (methyl-beta cyclodextrin); CA constructs (constitutive-active constructs),  
DN constructs (dominant-negative constructs), IP (immunoprecipitation), CRIB-PD (pull-down experiments  
to quantify GTPase-GTP levels), EEA-1 (early endosomal marker 1); FESEM (field emission scanning electron  
microscopy); G-lisa (ELISA-based GTPase-GTP quantification system); GPA (gentamicin protection assay), 
GST-JlpA (glutathione-S- transferase-tagged JlpA); GMT (GTPase-modifying toxins such as toxin B or CNF,  
which either inhibit or activate GTPases); IFM (immunofluorescence microscopy), IP (immunoprecipiation);  
MAPK (Mitogen-activated protein kinases); MyD88 (myeloid differentiation factor 88), o-Van (ortho-Vanadate  
inhibitor); PKC (protein kinase C); TER (transepithelial resistance); TWA (Transwell assays with polarised cells);  
wt (wild-type). 
      (this table was adapted from O’Croinin and Backert, 2012) 
 
 

2.5 Host cellular responses associated with C. jejuni infections 
 
Campylobacter jejuni is one of the leading causes of acute gastroenteritis in humans. Despite 

its major clinical relevance, the molecular basis of these gastrointestinal infections and the 

human immune responses to C. jejuni is still poorly investigated and understood. Healthy 

immunocompetent adult humans can usually resolve an infection with C. jejuni quickly, 

before an adaptive immune response appears, but can cause severe complications in children, 

elderly or immunocompromised people (Allos and Blaser, 1995). Campylobacter jejuni is 

able to stimulate the production of proinflammatory cytokines in vivo and in vitro. At first, C. 

jejuni must pass the acidic enviroment of the stomach and the intestinal epithelium, which 

forms an effective physical barrier. In the colon C. jejuni induces secretion of interleukin–8 

(IL-8) when intestinal epithelial cells are infected. IL-8 is a proinflammatory cytokine which 

is well-known for its potential to recruit phagocytic cells to the site of infection (Hickey et al., 

1999).   

Additionaly, in the intestine, C. jejuni induces innate immune responses (Doorduyn et al., 

2007; Neal et al., 1996), for example through the stimulation of Toll–like receptors (TLRs). 

These TLRs are the first immunological challenge that C. jejuni must overcome during 

infection. One of the most important TLRs are the members TLR-5, the pattern recognition 

receptor for bacterial flagellin (Andersen–Nissen et al., 2005; Grimbacher et al., 2003) and 
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TLR-9, which is a receptor for CpG disnucleotides, but it seems that both are not profoundly 

stimulated during infection and are rather avoided by C. jejuni (Dalpke et al., 2006). 

However, an important signaling molecule downstream of TLRs is MyD88, an adaptor 

protein myeloid differentiation factor, which is essential for signaling through the TLRs and is 

important for an efficient colonization by C. jejuni. In different experiments with MyD88 

deficient mice (Akira et al., 2001) it could be shown that these mice are susceptible to C. 

jejuni infection and can be easily colonised while wild-type mice clear the infection (Watson 

et al., 2007). These facts indicate that at least one of the TLR pathways has an important role 

in the control and the defense of C. jejuni infections. Different research groups could show 

that C. jejuni lipopolysaccharide and flagellin are not potential TLR–ligands (Hu and Hickey, 

2005; Watson and Galan, 2005; Johanesen and Dwinell, 2006). Thus, what C. jejuni factor(s) 

is/are recognised by TLRs is yet unclear and needs to be investigated in future studies. 

Recently, Zilbauer and co–workers showed that the innate immune response to C. jejuni is 

also dependent on the nucleotide–binding oligomerization domain (NOD) proteins. This 

intracellular pathogen recognition receptor is normally able to react with conserved microbial 

components and plays an important role in immune stimulation, but the actually involved C. 

jejuni factor(s) are also unknown (Akira and Taked 2004; Chen et al., 2006; Johanesen and 

Dwinell, 2006; Zilbauer et al., 2007). 

Furthermore, the resistance–associated macrophage protein appears to be important to the 

defence of C. jejuni because it is involved in the activation of macrophages (Watson et al., 

2007). 

During C. jejuni infection of human intestinal cells they produce proinflammatory cytokines 

and chemokines. The most important is the neutrophile chemoattractant IL–8, but also IL–1α, 

IL–1β, IL–6 and TNFα (Hickey et al., 1999; Jones et al., 2003; Hu and Hickey, 2005; 

Bakhiet et al., 2004; Johanesen and Dwinell 2006). Production of these cytokines and 

chemokines cause the recruitment of neutrophils and monocytes and promote a potent activity 

against C. jejuni (Zilbauer et al., 2005). The exact role of monocytes and macrophages in 

campylobacteriosis, however, is still controverse discussed in the literature. 

Several groups have shown that NF-κB and IL–1β are induced in monocytes. Futhermore, 

these monocytes are able to undergo apoptosis if they are infected with some C. jejuni strains 

(Szymanski et al., 2003; Wassenaar et al., 1997, Hickey et al., 2005). However, the role of 

macrophages in all these interactions is not fully clear because, on one hand, it is reported that 

C. jejuni is killed by macrophages (Kiehlbach et al., 1985) while other research groups could 

show that C. jejuni can survive for several days within murine macrophages (Hickey et al., 
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2005; Day et al., 2000; Nachamkin and Yang, 1989). Nevertheless, these findings are in 

agreement with the idea that C. jejuni infections are very often self–limiting. Furthermore, an 

important finding is that C. jejuni can induce the production of IL–8 from intestinal epithelial 

cells by different stimuli (Hickey et al., 1999). The most important factor is probably CDT, a 

major antigen for antibody production, which was required for NF-κB stimulation and IL–8 

secretion in infected polarised intestinal epithelial cells (Zheng et al., 2008). But Hickey and 

co–workers have shown in a different study that CDT is not required for IL–8 induction in 

infected non-polarised INT-407 cells (Hickey et al., 2000). These observations indicate that 

other stimuli must exist which can induce CDT-independent IL–8 release. Which C. jejuni 

factors can trigger these innate immune responses must be further investigated. Taken 

together, our knowledge about the interplay between the innate immunity and Campylobacter 

infections is still incomplete and requires more work in future studies. 

 

 

2.6 Role of other C. jejuni surface structures 
 
Many microbiological pathogens encode specific cell–surface–structures, such as capsules, 

flagellins or surface–layer proteins. In addition, the outer membrane of Gram-negative 

bacteria, such as C. jejuni, commonly consists lipopolysaccharides (LPS) and 

lipooligosaccharides (LOS). LPS and LOS are often involved in serum resistance, 

endotoxicity and cell adhesion (Backert and König, 2005). The varying composition of these 

cell surface molecules may play an important role in the virulence of various bacteria and can 

probably help C. jejuni to evade antibody response (Moran et al., 1996). It has been reported 

that C. jejuni has a variety of different cell surface carbohydrates (Guerry et al., 2002; 

Karlyshev et al., 2005b; Moran et al., 2000; Prendergast et al., 2004). LPS and LOS are 

phosphorylated lipoglycans and glycolipids. LOS are composed of a lipid A molecule and a 

core oligosaccharide. The majority of the cell wall oligosaccharides of C. jejuni is attached to 

the lipid A molecule. The core oligosaccharide of C. jejuni is variable in structure (Parker et 

al., 2008; Gilbert et al., 2002), but the biological importance is yet unknown. LOS of C. jejuni 

contains sialic acids (NeuNAc) (Godschalk et al., 2004; Guerry et al., 2002; St.Michael et al., 

2002). These acids can affect the immunogenicity and serum resistance of C. jejuni and they 

are important for the formation of ganglioside–like structures which are known and similar to 

that of H. pylori, Haemophilus influenzae, Haemophilus ducreyi and several Neisseria 

species. These ganglioside–like mimicking structures have been implicated in the induction of 

the paralytic disorders Guillian–Barré–syndrome as well as Miller–Fisher syndrome 
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(Komagamine and Yuki, 2006; Prendergast and Moran, 2000). Several research groups have 

shown that these neurological disorders are induced by an autoimmune response to 

ganglioside–like–structures and are also involved in induction of cross–reacting antibodies 

(Gilbert et al., 2002; Godschalk et al., 2004; Yuki et al., 2004, 2005; Yuki and Koga 2006). 

To date it seems that the ability to generate several LOS structures may help C. jejuni to 

survive in the host. 

It has been also shown that LPS of C. jejuni may play a role as adhesion molecule 

(McSweegan and Walker, 1986) and it can vary between different strains (Wassenaar and 

Blaser, 1999). Different analyses showed that some wild–type strains produce LPS with an 

O–specific chain and other produce LPS with a short polysaccharide and lipid A (Szymanski 

et al., 2003; Karlyshev et al., 2005a; Szymanski and Wren, 2005) The endotoxic properties of 

LPS is mediated by the lipid A component (Moran, 1995). Investigation of the biochemical 

features showed that C. jejuni LPS consists of a low–molecular–mass fraction that is similar 

to that in Neisseria and Haemophilus LPS (Conrad and Galanos, 1990; Moran et al., 1991; 

Aspinall et al., 1992, 1993a, 1993b; Mills et al., 1992) and a high–molecular–mass fraction 

(Mills et al., 1992). The crucial role of LPS in colonization, invasion and inflammation of C. 

jejuni is still not fully clear and should be investigated in more detail.  

 

The biological function of capsules is diverse and varies between different bacteria. Many 

Gram-negative bacteria contain a class of cell surface molecules that are called capsular 

polysaccharides (CPS) (Karlyshev et al., 2005a). CPS has different functions, such as 

protecting the bacteria of adverse environments and plays a crucial role in pathogenesis 

(Roberts, 1996; Taylor and Roberts, 2005). CPS is loosely associated with the bacterial cell 

surface and can be released under mild conditions (Withfield and Roberts, 1999). The CPS is 

attached to the bacterial surface via phospholipids (Schmidt and Jann, 1982), which is in 

contrast to LPS and LOS, that binds to the outer membrane lipid A (Moran, 1995; Moran et 

al., 1991). CPS exhibits high biochemical significance for the bacteria and is the major 

antigen of the Penner serotyping system, that distinguishes C. jejuni isolates and based on its 

differences in capsule structure (Moran and Penner, 1999; Karlyshev et al., 2000). These 

serotyping schemes of C. jejuni strains showed that the variable structure of capsular 

polysaccharides may play an important role in host colonization, as well as evasion of host 

immune response. Karlyshev and co-workers could show a strong immune response against 

Penner-antisera in rabbits (Karlyshev et al., 2000; Kilcoyne et al., 2006), but this is in contrast 

to a impaired immune response in chickens (Jeurissen et al., 1998). These could be a reason 
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for the ability of C. jejuni to colonize and persist in chicken. To date the role of CPS in 

chicken colonization is controverse discussed in the literature, because CPS could prevent 

several adhesion molecules from interacting with host cell receptors, but in contrast non-

capsulated bacteria exhibit a reduced ability in colonization of chickens (Bachtiar et al., 2007; 

Grant et al., 2005).  

Furthermore, it seems that C. jejuni CPS maybe also involved in biofilm formation of the 

bacetria. This feature could contribute to the virulence of C. jejuni and may lead to an 

increase of resistance to antibacterial drugs (Moran and Ljungh, 2003; Otto, 2006). It has also 

been reported that C. jejuni CPS can induce an increasing surface hydrophilicity (Bacon et al., 

2001). However, the role of CPS and CPS structures in host-bacteria interactions and 

development of gastroenteritis need more investigations in future. 

 

 

2.7 Role of small RhoGTPases in C. jejuni invasion 
 
The internalization of Campylobacter jejuni and other bacterial pathogens has been reported 

to be induced by rearrangements of the actin cytoskeleton caused by activation of small Rho 

GTPases (Hardt et al., 1998; Criss et al., 2001; Kazmierczak et al., 2001; Cossart and 

Sansonetti, 2004; Rottner et al., 2004; Pizzaro-Cerda and Cossart, 2006). Small Rho GTPases 

are monomeric guanine nucleotide-binding proteins with a molecular mass of about 20-25 

kDa. To date the family consists of ~20 members. GTPases act as molecular switches that 

regulate many fundamental processes in healthy cells including growth, morphogenesis, cell 

mobility, axonal guidence, cytokine production and trafficking. Small Rho GTPases appear 

either in an inactive or active form, as they cycle between GDP-bound and GTP-bound 

conformations. In the GDP-bound state they are inactive and in the GTP-bound state they are 

active. In the active state GTPases transmitt extracellular signals to several downstream 

effector molecules (reviewed in Schmidt and Hall, 2002). 

Small Rho GTPase family consist three subfamilies, Rho, Rac and Cdc42 and these have a 

distinct effect on the actin cytoskeleton. The most and best characterized members are RhoA, 

Rac1 and Cdc42 (Jaffe and Hall, 2005). RhoA proteins are involved in formation of stress 

fibers and focal adhesion complexes, while Rac1 proteins trigger lamellipodia and membrane 

ruffling, and Cdc42 proteins can induce filopodia formation (Scita et al., 2000). A growing 

number of known bacterial virulence factors acting on small Rho family GTPases comprises 

GEFs (guanine exchange factors) and GAPs (GTPase activating proteins). GEFs and GAPs 

are capable of regulating localized signalling to actin rearrangements at the site of bacterial 
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invasion. In addition many bacterial protein toxins are specialized to activate, inhibit or 

modify small Rho GTPases.  

Recently, our group has reported that small Rho GTPases are involved in C. jejuni invasion 

(Krause-Gruszczynska et al., 2007b). In particular, the internalization of C. jejuni into INT-

407 cells is accompanied by a time-dependent activation of both Rac-1 and Cdc42 (Krause-

Gruszczynska et al., 2007b). Using specific GTPase-modifying toxins, inhibitors and GTPase 

expression constructs it was shown by immunofluorescence, gentamicin protection assay and 

other studies that Rac-1 and Cdc42, but not RhoA, play a role in C. jejuni invasion (Krause-

Gruszczynska et al., 2007b). Maximal GTPase-GTP levels induced by C. jejuni also involved 

several host kinase activities as supported by inhibitor studies, and the bacterial fibronectin-

binding protein CadF (Krause-Gruszczynska et al., 2007b). However, the molecular pathways 

involved in C. jejuni-triggered GTPase activation remained widely unclear. 

 
 
2.8 Aim of the study 
 
Foodborne infections with pathogenic bacteria have been reported to be one of the primary 

reasons of morbidity and death in humans worldwide. Host cell invasion of C. jejuni 

represents one of the leading causes of tissue damage in infected humans. However, the 

molecular mechanisms and factors which play a crucial role in this process are widely 

unclear.  
 

The present work was performed to investigate and characterize bacterial pathogenicity 

factors and host cell signalling pathways, which are involved in infection, transmigration and 

invasion of epithelial cells by C. jejuni.  

 

1.) To study the function and importance of C. jejuni HtrA in secretion, cleavage of E-

cadherin and transmigration across polarised epithelial cells. 

2.) To study the role of fibronectin, integrin-β1 receptor, focal adhesion kinase (FAK) and 

Src kinases for the induction of GTPase signalling and uptake of C. jejuni.  

3.) To study the role of the above host cell components during the invasion process of C. 

jejuni using high-resolution electron microscopy.  

4.) To identify crucial guanine-exchange factors (GEFs) involved in the activation of 

Rac1 and Cdc42. 

5.) To investigate the role of the bacterial fibronectin-binding protein CadF and the 

flagellum for the induction of GTPase signalling and bacterial invasion. 
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3. MATERIALS 
 
3.1 Bacterial strains  
3.1.1 Campylobacter strains 

 
Campylobacter jejuni wild type isolates and their isogenic mutants used in this work were 
provided by different cooperation partners. They are listed in Table 3 and 4. 

 
Table 3:  Campylobacter jejuni wild type strains. 

Campylobacter jejuni wild type 
isolates 

origin 

81-176,  NCTC11168 
 
 

Dr. William G. Miller, USDA, ARS, WRRC, 
Produce Safety and Microbiology Research 
Unit, Albany, USA 

F38011 
 
 

Prof. Dr. Michael E. Konkel, School of 
Molecular Biosciences, Center for 
Biotechnology, Washington State University, 
Pullman, USA 

NCTC81116 
 
 

Prof. Dr. Jos P. M. van Putten, Department of 
Infectious Diseases and Immunology, Utrecht 
University, Utrecht, The Netherlands  

84-25 Prof. Martin J. Blaser, Department of Medicine, 
New York University School of Medicine, New 
York, USA 

0097, C130, 128/94 Dr. Ingrid Haenel, Federal Research Institute 
for Animal Health, Jena, Germany 

ST3046, 1543/01, RM1221, 2703/01 Institute of Medical Microbiology, Magdeburg, 
Germany 

 
 
Table 4.  Campylobacter jejuni isogenic mutants. 

Campylobacter jejuni wild type 
isolates 

origin 

81-176∆htrA Prof. Steffen Backert, University College Dublin, 
School of Biomolecular and Biomedical Science, 
Ireland 

81-176∆flaA/B 
 
 
81-176∆flhA 

Prof. Martin J. Blaser, Department of Medicine, 
New York University School of Medicine, New 
York, USA 
Prof. Patricia Guerry, Enteric Diseases 
Department, Naval Medical Research Center, 
Silver Spring, Maryland, USA 

F38011∆cadF, F38011∆flpA, 
F38011∆cadF/∆flpA 
 
 

Prof. Dr. Michael E. Konkel, School of 
Molecular Biosciences, Center for 
Biotechnology, Washington State University, 
Pullman, USA 

81116∆cadF 
 
 

Prof. Dr. Jos P. M. van Putten, Department of 
Infectious Diseases and Immunology, Utrecht 
University, Utrecht, The Netherlands 

84-25∆kps Prof. Martin J. Blaser, Department of Medicine, New 
York University School of Medicine, New York, USA 
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3.1.2 Escherichia coli (E.coli) strains  
 

E. coli strains used in this work are presented in Table 5.  
 
Table 5:  Escherichia coli strains. 

E.coli strain Genotype 
TOP10 F– mcrA ∆(mrr-hsdRMS-mcrBC) 

Φ80lacZ∆M15 ∆lacX74 recA1 araD139 
∆(ara-leu)7697 galU galK rspL (StrR) 
endA1 nupG     

BL21 F– ompT hsdSB(rB– mB–) gal dcm 
 

 
3.2 Eukaryotic cell culture 
 
Different cell lines used in this work are listed in Table 6. 

 
Table 6: Eukaryotic cells 

Cell line Characteristics Origin / References 
Human cell lines   

INT-407 embryonic intestinal epithelial 
cells, adherent 

ATCC CCL-6 

MKN28 gastric epithelial cells, 
adherent  

JCRB0253  

Mouse cell lines   
GD25 Integrin subunit ß1-deficient 

fibroblasts, adherent 
Prof. Johansson; Wennerberg et 
al., 1996 

GD25-ß1A GD25 stably re-expressing 
wild-type ß1A 

Prof. Johansson; Wennerberg et 
al., 1996 

GD25-ß1ATT788-9AA GD25 stably re-expressing 
mutated integrin subunit ß1A 

Prof. Johansson; Wennerberg et 
al., 1998 

GD25-ß1AY783/795F 
 

GD25 stably re-expressing 
mutated integrin subunit ß1A 

Prof. Johansson; Wennerberg et 
al., 2000 

FAK-/-  

 
fibroblasts derived from FAK-
deficient mouse embryos 

Prof. Ch. Hauck; Sieg et al., 
1999 

FAK+/+ 

 
FAK (-) stably re-expressing 
HA-epitope-tagged FAK 

Prof. Ch. Hauck; Sieg et al., 
1999 

Fn-/-  

 
fibroblasts derived from Fn-
deficient mouse embryos 

Prof. Takahashi; Nyberg et al., 
2004, Schroeder et al., 2006 

Fn+/+ 

 
fibroblasts derived from mouse 
embryos 

Prof. Takahashi; Nyberg et al., 
2004, Schroeder et al., 2006 

SYF 
 

src
-/-

, yes
-/-

, fyn
-/- 

triple 
knockout-Zellen 

ATCC CRL-2498, Klinghoffer 
et al., 1999 

SYF + c-src 
 

src, yes, fyn knockout-Zellen + 
c-src 

ATCC CRL-2459, Klinghoffer 
et al., 1999 

Vav-1/2-/-  

 
fibroblasts derived from Vav-
deficient mouse embryos 

Prof. Ch. Hauck; Schmitter et 
al., 2007 
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3.3 Growing medium and plates 
 

Cultivation of Campylobacter strains was carried out on Campylobacter blood free selective 
agar base (Oxoid Basingstoke, UK) containing Campylobacter selective supplement. In 
addition Mueller-Hinton (MH) agar-plates with corresponding antibiotics were used or the 
bacteria were cultivated in BHI-medium. 

 
Campylobacter-plates:    

 

Campylobacter Blood Free 

Selective Agar Base 

  
 

Mueller-Hinton-Agar  

 

  
per liter 

 

    
per liter  

 

 

Nutrient Broth No. 2  25.0 g  Beef infusion solids  4.0 g 
Bacteriological charcoal  4.0 g  Casein hydrolysate  17.5 g 
Casein hydrolysate  3.0 g  Starch 1.5 g 
Sodium desoxycholate 1.0 g  Agar  15.0 g 
Ferrous sulphate  0.25 g     

Sodium pyruvate  0.25 g     
Agar  12.0 g    
 
 

 

Campylobacter Selective 

Supplement 

 

 

 
per liter 

 

 

Cefoperazone 32.0 mg 
Amphotericin B  10.0 mg 
 
 

 

Antibiotics 

 

Final 

concentration 

  
Chloramphenicol 4 µg/ml 
Tetracycline 10 µg/ml 
Kanamycin                20 µg/ml  

 
 

 

BHI medium 

 

 

 
per liter 

 

 

BHI 37.0 g 
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Cultivation of E.coli was carried out on Luria-Bertani (LB) agar plates or LB medium. 

 

 

LB medium  

 

  
per liter 

 

 

tryptone 10.0 g 
yeast extract 5.0 g 
NaCl 10.0 g 

 

 

For preparation of LB agar plates 18 g/l of agar was added to the LB medium. 
For selection of antibiotic resistant E. coli antibiotics were added to the LB medium. 

 
 

 

Antibiotics 

 

Final 

concentration 

  
Ampicillin 100 µg/ml 
Kanamycin 30 µg/ml 

 

 

3.4 Chemicals 
If not noted otherwise, chemicals in analytical pure grade (p.a.) were used from the companies 
Merck (Darmstadt, Germany), Roth (Karlsruhe, Germany), Sigma-Aldrich (Taufkirchen, 
Germany) and Fisher Scientific (Dublin, Ireland). 
 
 
3. 5 Enzymes and Proteins 
BamHI [20U/µl]                             New England Biolabs (Frankfurt / Main, Germany) 

BglII    [10U/µl]                              New England Biolabs (Frankfurt / Main, Germany) 

Bovine serum albumin (BSA)         Sigma (Taufkirchen, Germany)    

EcoRI  [20U/µl]                               New England Biolabs (Frankfurt / Main, Germany) 

Fetal calf serum (FCS)                     Gibco/ Invitrogen (Karlsruhe, Germany) 

NdeI    [20U/µl]                                New England Biolabs (Frankfurt / Main, Germany) 

NotI     [20U/µl]                                New England Biolabs (Frankfurt / Main, Germany) 

Platinum® Taq DNA-Polymerase     Invitrogen (Karlsruhe, Germany) 

High Fidelity [5U/µl] 

PstI      [20U/µl]                                 New England Biolabs (Frankfurt / Main, Germany) 

ScaI     [6U/µl]                                   New England Biolabs (Frankfurt / Main, Germany) 
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Taq-DNA-Polymerase                      Quiagen (Hilden, Germany) 

T4-DNA-Ligase                                Fermentas (St.Leon-Roth, Germany) 

Trypsin-EDTA                                  Sigma (Taufkirchen, Germany) 

XhoI    [20U/µl]                                 New England Biolabs (Frankfurt / Main, Germany) 

 

 

3.6 Antibodies 
3.6.1 Primary antibodies 

 
       Table 7: Antibodies used in this work for Western blotting analysis. 

 

Antibody  

 

Origin  
 

Purchased from  

 
Monoclonal 

 

 

 
 

 

α-DOCK180 (H-4) mouse Santa Cruz Biotechnology 
α-E-Cadherin (HECD-1)                       mouse Calbiochem 
α-Rac (clone 23A8) mouse Upstate Biotechnology 

 
Polyclonal 

 

 
 

 

α-CadF-1 rabbit BioGenes 
α-Cdc42 (P1) rabbit Santa Cruz Biotechnology 
α-E-Cadherin (H108) rabbit Santa Cruz Biotechnology 
α-E-Cadherin (K20) goat Santa Cruz Biotechnology 
α-FAK (A17) rabbit Santa Cruz Biotechnology 
α-FAK-PY-925 rabbit Biomol 
α-GAPDH (V-18) goat Santa Cruz Biotechnology 
α-HtrA rabbit Prof. Lone Broenstred, 

Denmark; BioGenes, 
α-Integrin ß1  rabbit Cell Signaling 
α-MOMP rabbit BioGenes 
α-EGFR rabbit Cell Signaling 
α-PDGFR ß rabbit Cell Signaling 
α-EGFR-PY-845 rabbit Cell Signaling 
α-PDGFR ß-PY-754 rabbit Cell Signaling 
α-Tiam1 (C-16) rabbit Santa Cruz Biotechnology 
α-Vav-2 (H-200) rabbit Santa Cruz Biotechnology 
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3.6.2 Secondary antibodies 
Secondary antibodies used in this work for Western blotting 

Polyclonal-rabbit-anti-mouse                          Dako (Hamburg, Germany) 
Immunoglobulin / HRP 
Polyclonal-rabbit-anti-goat                             Dako (Hamburg, Germany) 
Immunoglobulin / HRP 
Polyclonal-swine-anti-rabbit                           Dako (Hamburg, Germany) 
Immunoglobulin / HRP 
 
 
3.7 DNA standards 
As DNA-markers 1kb- or 100 bp-ladders from Fermentas were used (St.Leon-Roth, 

Germany). As standards for the molecular weight of proteins used prestained (10-250 kDa) - 

and prestained plus-protein ladders (Fermentas, St.Leon-Roth, Germany). 

 

 

3.8 Oligonucleotids 
Oligonucleotides used by cooperation partner Lieke B. van Alphen (Department of Infectious 

Diseases and Immunology, Utrecht University, The Netherlands) for amplification, cloning 

and sequencing of CadF protein gene cadF and its flanking regions: 

 

CadF1 Fwd: 5'-TTGCTCTAAAGGATAACCTATGA-3' 

CadF1 Rev: 5'-TATGGACGCCGCAAAGCAAG-3' 

CadF2 Fwd: 5'-CCACTCTTCTATTATCCGCTCTACC-3' 

CadF2 Rev: 5'-GGTGCTGATAACAATGTAAAATTTG-3' 
 
 

3.9 Plasmids 
 
Table 8: Plasmids used in this work. 

 
Plasmid 

 
Marker/Characteristics 

 
Origin/References 

pRK5 ColE ori, CMV Promoter, 
MCS, SV40 PolyA, SV40 
ori, f1 ori, AmpR , c-Myc  

BD Biosciences, San 
Diego, USA 

pcDNA3.1-FAK, , 
pcDNA3.1-FAK K454R, 
pcDNA3.1-FAK Pro–, 
pcDNA3.1-FAK Y925F 

pcDNA3.1 constructs 
containing cDNAs of HA-
tagged wild-type FAK or 
different FAK mutants 
 

Prof. Christof Hauck, 
Chair of Cell Biology, 
University of 
Konstanz, Konstanz, 
Germany; Sieg et al., 
1999 
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3.10 Inhibitors 
 

Inhibitors used in this study. 
 
Table 9: Pharmacological inhibitors used in this work. 

 
Name 

 
Final 
concentration 

 
Function 

 
Origin/References 

NSC23766 50 µM Inhibits Rac1 GDP/GTP 
exchange activity by 
interfering with the 
interaction between Rac1 
and its GEFs Tiam1 and 
Trio 

Calbiochem; Gao et al., 
2004 
 

MβCD 1mM-10mM Sequester cholesterol Sigma-Aldrich; Watson 
and Galan, 2008 

AG1478 10 µM Inhibits EGFR  Sigma 
AG370 10 µM Inhibits PDGFR  Sigma 
Wortmannin 1 µM Inhibits PI3- kinase Calbiochem; Biswas et 

al., 2000; Hu et al., 
2006a 

PF-573228 10 µM Inhibits FAK Tecris 
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4. METHODS 
 

4.1 Molecularbiological methods 
4.1.1 Digestion of DNA with restriction enzymes 

For analytical restriction digests 1-3 µg DNA and for preparative digests 6-10 µg DNA were 

used. Restriction enzymes (2-5 U/µg) and their corresponding buffers were used according to 

the manufactors instruction (New England Biolabs, Frankfurt/Main, Germany). The reaction 

mix was incubated for 2 hours at 37°C, followed by separation and size determination of 

DNA fragments by agarose gel electrophoresis. DNA fragments of preparative restriction 

digests were isolated from the agarose gel by using the Jetsorb Gel Extraction Kit (Genomed, 

Löhne, Germany).  

 

4.1.2 Ligation of DNA fragments 
For the ligation of DNA fragments the Rapid DNA-Ligation Kit (Fermentas, St.Leon-Roth, 

Germany) was used according to the manufactors instruction. 

For a 20 µl reaction mix used 1/5 Volume of 5x Rapid Ligation buffer, 5U T4-DNA-ligase, 

50-100 ng vector DNA and insert DNA were used. The molar ratio of insert DNA to vector 

DNA was 3:1. The ligation reaction mix was incubated for 30 min at room temperature and 

directly used for transformation of competent E.coli cells. 

 

4.1.3 Isolation of plasmid and genomic DNA 
Isolation of plasmid DNA from bacteria was carried out with the Jetstar Plasmid Purification-

Maxi-Kit according to the manufactors instruction (Genomed, Löhne, Germany). 

The method is based on a modified alkaline/SDS lysis (Birnboim and Doly, 1979) and an 

anion exchange adsorption. The precipitated DNA was redissolved in water. 

Genomic DNA was isolated as described by Wilson et al. (1989). In brief, C. jejuni growing 

on Campylobacter selective agar plates was resuspended in PBS and centrifuged (5000 x g, 5 

min, RT). The pellet were mixed with 200µl of lysis buffer (50 mM EDTA, pH8.0.,1%SDS, 

0.1 mg/ml proteinase K) and kept at 55°C for 1-2 hours to complete cell lysis. Subsequently a 

phenol-chloroform-extraction of the DNA was carried out. DNA was dried at RT and 

resuspended in water. Purified DNA was used as template for PCR amplification. 
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4.1.4 Polymerase chain reaction (PCR) 
PCR was used to amplify DNA fragments and to verify the identity of bacterial strains. 

Reactions were carried out in PTC-225 Peltier Thermal Cycler (MJ Research, Waltham, 

USA) and in Perkin Elmer GeneAmp PCR System 2400 Thermal Cycler (Perkin Elmer, 

Waltham, USA). 

DNA was amplified with specific primers (MWG-Biotech, Ebersberg, Germany) and Taq-

DNA-polymerase (Quiagen) in PCR reaction mix as listed below. Platinum®-Taq-

Polymerase (Invitrogen, Karlsruhe, Germany) was used for high fidelity amplification. 

       

 

Reagents 

 

Final 

concentration 

  

dNTP-Mix 0.2 mM 

each primer 100 pmol 

DNA (template) 50 ng 

10 x PCR buffer 5 µl 

with MgCl2 3 mM 

Taq-polymerase 2.5 U 

H2O Until 50 µl 

 

PCR included a denaturation step at 94°C for 5 min and 35 times repeated cycles consisting of 

denaturation, primer annealing and DNA synthesis. The elongation times was dependent on 

the length of the DNA fragments which were to be amplified and the elongation temperature 

on which Taq-Polymerase was used.  

 

4.1.5 Determination of DNA concentration  
Concentrations of DNA were determined spectro-photometrically by using a biophotometer 

and UV cuvettes  (Eppendorf, Hamburg, Germany). The optical density was determined at a 

wave length of 260 nm. 

By an additional measurement at wave length of 280 nm, the purification of DNA can be 

estimated. 

. 
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4.1.6 DNA extraction from agarose gel 

Isolation of DNA fragments from agarose gels was performed by using the Jetsorb Gel 

Extraction Kit (Genomed, Löhne, Germany) according to the manufactures instruction. 

Agarose gels in TBE buffer were used. To visualize the DNA bands, the gel was shaked in a 

0.02% methylenblue solution for 15 min. 

Extracted DNA was verified by standard agarose gel electrophoresis. 

 

4.1.7 Agarose gel electrophoresis 
The analytical separation of DNA fragments was performed by using horizontal gel 

electrophoresis. The principle of gel electrophoretical separation is, that the nucleid acids 

migrate through the electrical field to the anode because they have a negative charge. The 

migration-speed is dependent of the molecule size, so that smaller molecules are faster than 

larger molecules. By staining the gel with ethidiumbromide, DNA fragments become visible 

under ultraviolet fluorescence light. By using this method it is possible to determine the size 

of DNA fragments in comparison to a DNA standard ladder. 

To prepare the agarose gels (size 8 x 7cm), the agarose (Biozym, Hessisch Oldendorf; 

Germany) was dissolved in TBE buffer (44.5 mM Tris, 44.5 mM Boric acid, 1 mM EDTA, 

pH 8.0) by cooking and addition of 0.1 µg/ml ethidiumbromide (Roth, Karlsruhe, Germany). 

The concentration of agarose range between 0.7 to 1.5 %, depending of the size of the DNA 

fragments. As running buffer 0.5 x TBE–buffer was used. To the DNA samples 1/6 volume of 

6 x loading dye (Fermentas, St.Leon–Rot, Germany) was added. To determine the molecular 

size of the DNA fragments a GeneRulerTM 1 kb DNA Ladder (Fermentas, St. Leon–Rot, 

Germany) was used. The electrophoresis was carried out at room temperature and constant 

voltage (10 V/cm). The DNA gels were documentated by using Lumi Imager F1 (Roche 

Diagnostics GmbH, Mannheim, Germany). 

 
4.1.8 HtrA expression plasmids and purification  

C.jejuni htrA gene (corresponding to CjHtrA aa17-aa472) was amplified from genomic DNA. 

PCR fragments flanked by restriction sites for BamHI / XmaI were cloned into pGEX-6P-1 

(GE Healthcare). Generation of inactive HtrA S→A mutant (CjHtrA S194A) was performed 

by S→A mutations in the active center using a site-directed mutagenesis kit (Stratagene). The 

mutated constructs were transformed into E. coli BL21 (NEB). For protein purification of 

GST-CjHtrA , transformed E. coli was grown in 500 ml TB medium to an OD550 of 0.6 and 

the expression was induced by the addition of 0.1 mM isopropylthiogalactosid (IPTG). The 
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bacterial culture was pelleted at 4000×g for 30 min and lysed in 25 ml PBS by sonification. 

The lysate was cleared by centrifugation and the supernatant was incubated with glutathione 

sepharose (GE Healthcare Life Sciences) at 4°C overnight. The fusion protein was either 

eluted with 10 mM reduced glutathione for 10 min at room temperature or cleaved with 180 U 

Prescission Protease for 16 hours at 4°C (GE Healthcare Life Sciences). Elution and cleavage 

products were analyzed by SDS PAGE and zymography. Cleavage assays of purified HtrA 

with recombinant human full-length E-cadherin (R&D Systems), recombinant human His-

tagged N-terminal NTF domain (Sino Biological) or human fibronectin (Calbiochem) were 

perfomed as described by Hoy et al., 2010. 

4.1.9 Zymography  

Bacterial lysates, cell culture supernatants (filtered through a 0.21 µM sterile filter, Roth) or 

recombinant HtrA were loaded onto 0.1 % casein containing gels and separated under non-

denaturing conditions. After separation, the gel was re-naturated in 2.5% Triton X-100 

solution at room temperature for 60 min with gentle agitation, equilibrated in developing 

buffer (50 mM Tris-HCl, pH 7.4; 200 mM NaCl, 5 mM CaCl2, 0.02% Brij35) at room 

temperature for 30 min with gentle agitation, and incubated overnight at 37°C in fresh 

developing buffer. Transparent bands of caseinolytic activity were visualized by staining with 

0.5% Coomassie Blue R250. 

 

 

4.2 Proteinbiochemical methods 
4.2.1 Generation of polyclonal antibodies 

The polyclonal antisera were produced by BioGenes (Berlin, Germany). The peptides for 

immunisation of αCadF (amino acid 293-306: QDNPRSSNDTKEGR), αFlpA (amino acids 

365–378: NAVFKGIKEKRLKD), α-FlaA (amino acids 93-106: KTKATQAAQDGQSL) and 

αMOMP (amino acids 400-413: NLDQGVNTNESADH) were produced by BioGenes, too 

and conjugated to Limulus polyphemus haemocyanin carrier protein. For this purpose, it was 

immunized in two rabbits each time including one boost according to standard protocols 

(BioGenes). The antibodies were tested for its specificity in the lab of Prof. St. Backert and 

were available for me. 
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4.2.2 Immunoprecipitation 

The immunoprecipitation (IP) is a technique to determine protein–protein interactions in vitro. 

This process can be used to separate specific antigens and their interaction partners from 

whole cell lysates or cell culture supernatants by using specific antibodies. After IP the 

protein can be analysed by using immunoblotting. 

For a typical IP, 1 x 107 INT407–cells were harvested by centrifugation (5 min, 5000 rpm, 

4°C). The cell–pellet was washed with ice-cold DPBS (Lonza, BioWhittaker, Basel 

Switzerland), centrifuged (5 min, 5000 rpm, 4°C) and lysated for 30 min on ice in lysis buffer 

[20 mM Tris pH 7.2, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 10% glycerol, 1 mM 

Na3VO4, protease inhibitor cocktail (Roche)]. To lower the amount of non–specifically bind 

proteins it is necessary to pre-clear the lysates. For the pre-clearing the protein-G-sepharose 

(Amersham Bioscience, Freiburg, Germany) was washed three times with DPBS and one time 

with lysis buffer, each time centrifuged 5 min, 10000 rpm, 4°C. Following, the lysates were 

incubated with the protein-G-sepharose for 2 hours at 4°C to eliminate unspecific proteins, 

which bind to the protein-G-sepharose. Then the protein-G-sepharose and cell suspension 

were centrifuged (5 min, 3000 rpm, 4°C). The supernatant was incubated with specific 

antibody overnight at 4°C.  

The IP-complexes were incubated with washed protein-G-sepharose for 2 hours at 4°C and 

precipitated by centrifugation (5 min, 5000 rpm, 4°C). Precipitated proteins were analysed by 

SDS-PAGE and immunoblotting. 

 

4.2.3 Rac1- and Cdc42- activation assay (G-LISATM) 
The Rho family of small GTPases consists of about 20 members. The most and best 

characterized members are Rac1, RhoA and Cdc42 proteins (Jaffe and Hall, 2005). GTPases 

switch between an active GTP-bound and an inactive GDP-bound state. The G-LISATM 

assays use the fact, that Rho GTPase proteins recognized the GTP-bound state (Kazuko et al., 

1998) to measure the Rac1- and Cdc42-activation.  

Rac1 and Cdc42 activation were determined by the G-LISATM Rac1- and Cdc42-activation 

assays (Cytoskeleton, Denver, USA).  

For these assays, host cells were grown to 70% confluency in tissue culture petri dishes and 

then the cells were starved overnight. The cells were infected with C. jejuni for indicated 

periods of time. Subsequently, cells were washed with DPBS (Lonza, BioWhittaker, Basel 

Switzerland), resuspended in lysis buffer of the kit and harvested from the petri dishes with a 

cell scraper on ice. Total protein concentration in each lysate was determined by using the 
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protein assay reagent of the kit and measuring the OD600 nm of the samples with an 

Eppendorf-biophotometer plus. Cell lysates were equalized with lysis buffer to give identical 

protein concentrations.  

 

The G-LISATM Rac1 activation assay contains a Rac-GTP-binding protein immobilised on 

provided microplates. The corresponding amount of cell lysates were added to respective 

wells and incubated for 30 min under shaking (400 rpm) at 4°C. After washing the wells for 

three times with wash buffer the antigen presenting buffer was added to each well and 

incubated at room temperature for exactly 2 min. Followed by washing for three times and 

addition of the primary antibody for 45 min under shaking (400 rpm, RT). Each well was 

washed for three times with wash buffer again and subsequently the HRP-conjugated 

secondary antibody was added for 45 min under shaking (400 rpm, RT). Unbound antibody 

was removed by washing three times with wash buffer. To detect the luminescence signal, an 

HRP detection reagent was added to each well and the luminescence signal was quantified 

immediately by using a microplate reader (SpectraFluor Plus, Tecan).    

  

The G-LISATM Cdc42 activation assay contains a Cdc42-GTP-binding protein immobilised 

on provided microplates. The corresponding amount of cell lysates were added to respective 

wells and incubated for 15 min under shaking (400 rpm) at 4°C, followed by washing each 

well with wash buffer for three times. Immediately after washing the antigen presenting 

buffer was added for exactly 2 min at room temperature. After washing for three times again 

each well was incubated with the primary antibody for 30 min at room temperature under 

shaking (400 rpm). Unbound antibody was removed by three times washing with wash buffer, 

followed by incubation with an HRP-conjugated secondary antibody for 30 min under 

shaking (400 rpm, RT). After washing for three times again, HRP detection reagent was 

added to each well and incubated for 10 min at 37°C. After the incubation, stop buffer was 

added into each well and colorimetric signals were quantified by using a microplate reader 

(SpectraFluor Plus, Tecan). 

 

4.2.4 CRIB-GST pulldown assay for Rac1-GTP and Cdc42-GTP  
Rac1- and Cdc42 activation in infected cells was determined with the Rac1- and Cdc42 

activation assay kit (Cytoskeleton), based on a pulldown assay using the Cdc42–Rac1 

interactive binding domain of PAK1 fused to glutathione S-transferase, GST–CRIB (Sander 

et al., 1998). Briefly, host cells were grown to 70 % confluency and serum-starved overnight. 
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Subsequently, cells were incubated in PBS (pH 7.4) as a control or infected with C. jejuni 

(MOI of 100) in a time course. Uninfected and infected host cells were washed with PBS, 

resuspended in the assay buffer of the kit, and detached from dishes with a cell scraper. For a 

positive and negative control, a portion of the uninfected cell lysate was mixed with GTPγ-S 

and GDP for 15 min, respectively. Cell lysates (treated with bacteria, GTPγ-S, GDP or 

untreated) were mixed with the PAK-RBD slurry (1 hour, 4°C). Finally, the beads were 

collected by centrifugation and washed three times with assay buffer. Activated Rac was then 

visualized by immunoblotting as described below. To confirm equal amounts of protein for 

each sample, aliquots of the lysates from different time points were also analyzed by 

immunoblotting. The GTPase activities were quantitated as band intensities representing the 

relative amount of active Rac1-GTP and active Cdc42-GTP using the Lumi-Imager F1 

software program (Roche). 

 

4.2.5 Cellular fractionation 

To identify the different subcellular localizations of proteins in infected and non-infected cells 

a gradually extraction of three different protein fractions (cytosol, membrane and unsoluble 

fraction) was performed according Kenny and Finlay (Kenny and Finlay, 1997).  

For fractionation, Campylobacter jejuni infected and uninfected INT-407 cells (5x106) were 

harvested by centrifugation (5 min, 5000 rpm, 4°C). The cell pellet was washed with ice-cold 

DPBS (Lonza, BioWhittake, Basel/Switzerland), centrifuged (5 min, 5000 rpm, 4°C) and 

resuspended in 100 µl saponin buffer [50 mM Tris-HCL (pH 7.5), 0.4 mM Na3VO4, 1mM 

NaF, 0.2 % Saponin, COMPLETETM (Roche, Mannheim, Germany)] to permeabilise the 

cells. After 5 min of incubation and centrifugation (5 min, 10000 rpm, 4°C) the supernatant 

with the cytosolic protein fraction was resuspended in 100 µl 2 x SDS buffer [125mM Tris-

HCL (pH 6.8), 4% SDS, 0.02% bromophenol blue, 20% glycerine, 100mM DTT]. To 

dissolve the membrane protein fraction the pellet was resuspended in 50 µl Triton X-100 

buffer (Saponin buffer, 1% TritonX-100) and centrifuged (5min, 10000 rpm, 4°C). The 

supernatant with the membrane fraction was resuspended in 50 µl 2 x SDS buffer and the 

pellet, which is the insoluble protein fraction was dissolved in 100 µl 2 x SDS buffer.  

Different protein fractions were analysed by SDS-PAGE and Western blotting.  

 

4.2.6 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

The electrophoretic separation of proteins is based on their molecular size was performed by 

using denaturating, discontinuous polyacrylamide gels according to the method described by 
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Laemmli (Laemmli et al., 1970). With this technique proteins are loaded onto a gel that act as 

a molecular filter and retain larger proteins more than smaller ones. Proteins are negative 

charged and in an electrical field they migrate to the anode. For SDS-PAGE the vertical gel 

electrophoresis-Mini-Protean-IIITM of Bio-Rad (Munich, Germany) was used. The 

concentration of the stacking gel was 5% and the resolving-gel range between 6 to 12% 

(Sambrook et al., 1989). Lysates were resuspended in SDS-buffer and denatureted by heating 

for 5 min at 95°C, followed by loading 10 to 30 µl onto the gel. The electrophoretical 

separation was carried out at 120V. To determine the protein size a prestained protein ladder 

was used (Fermentas, St.Leon-Rot, Germany).    

Following electrophoresis, the proteins were stained with Coomassie-Brilliant-Blue solution 

or transferred to a polyvinylidendifluorid membrane (PVDF, Millipor, Billerica, MA, USA). 

 

 

 

Gel running 

buffer pH 8.3 

   

Transfer 

buffer pH 8.4 

  

  

10xTBS 

buffer pH 7.4 

 

 

 
per liter 
 

   
per liter 

 

   
per liter 
 

 

Tris  3.2 g  Tris  3.0 g 
 

Tris  24.2 g 
Glycine 18.8 g  Glycine 14.5 g  NaCl 80.0 g 
10% (v/v) SDS 10 ml  10% (v/v) SDS 10 ml    

 

 

TBS-T 

buffer pH 7.4 

   

Coomassie 

stain 

  

 

 

Coomassie de-

stain sol. 

 

 

  
per liter 

 

   
per liter 
 

   
per liter 
 

 

10xTBS pH 7.4 100 ml  Coomassie  2.5 g  Methanol 300 ml 
Tween 20 1ml  Briliant Blue   Acetic acid 100 ml 
   Methanol 450 ml    
   Acetic acid 100 ml    

 
4.2.7 Coomassie staining 

By using the Coomassie-Brilliant-Blue solution the separated proteins can be directly stained 

on the SDS–PAGE protein gel. The sensibility of this method ranges between 1 µg to 0.1 µg 

protein. To stain the proteins, gels were shaked 30 min in Coomassie-Brilliant-Blue solution 

at room temperature. By this method the proteins are fixed by acetic acid and methanol 
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dissolves the Coomassie dye. The Coomassie dye accumulates to alkaline and aromatic side 

chains of amino acids and therefor the proteins become visible. After that, the gel was 

destained with corresponding solution. Gels and protein bands were documented and 

quantified by Lumi Imager F1 (Roche diagnostics GmbH, Mannheim, Germany). 

 

4.2.8 Western blotting 

Western or immunoblotting was used for the specific detection of proteins (Towbin et al., 

1992). Proteins which were separated by SDS-PAGE and transferred to a PDVF membrane 

(Millipore, Billerica, MA, USA) were detected by using specific antibodies. For the transfer a 

semidry-blot-apparatus (Roth, Karlsruhe, Germany) was used, which consists of two graphite 

electrodes. The PVDF membrane was activated by methanol, followed by aquilibration in 

transfer buffer. The whatman papers were also aquilibrated in transfer buffer. For the blot 

assembling three whatman papers were added to the graphite anode, followed by the 

membrane, the resolving gel, three further whatman papers and the graphite cathode. The 

protein transfer was carried out for 2 hours at 0.8 mA/cm2. During the protein transfer the 

negative charged proteins migrate towards the anode and are immobilised on the PVDF 

membrane. After blotting the PVDF membrane was washed in TBST and incubated in 

blocking buffer for 2 hours at room temperature or overnight at 4°C to saturate unspecific 

binding sites. As blocking buffer used 3 % bovine serum albumine [(BSA), Sigma, 

Taufkirchen, Germany] in TBST or 5 % milk powder (Roth, Karlsruhe, Germany) in TBST 

was used. Following blocking, the membrane was incubated with the primary antibody for 2 

hours at room temperature or overnight at 4°C. The antibodies were used to manufactores 

instructions. Unbound antibodies were removed by washing the membrane three times for 15 

min each with TBST. As secondary antibody horseradish peroxidase conjugated IgG 

(DakoCytomation, Hamburg, Germany) was added for 1 hour at room temperature in dark, 

followed by washing three times for 15 min each with TBST. The protein-antibody-complex 

was visualized by the ECL Plus Western Blotting Detection System (Amersham, Bioscience, 

Freiburg, Germany). For detection and documentation and quantification of bands the Lumi 

Imager F1 (Roche Diagnostics GmbH, Mannheim, Germany) was used. 

To re-probe the membrane with other primary antibodies, the membrane was incubated in 

stripping buffer for 45 min at 60°C. The membrane was washed several times with TBST, 

blocked and probed again as described above.  
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Stripping buffer pH 

6.7 

 

 
per 100 ml 
 

 

1M Tris  6.25 ml 
10% (v/v) SDS 20.0 ml 
ß-mercaptoethanol 0.833 ml 

 

4.3 Microbiological methods 
4.3.1 Cultivation of Campylobacter jejuni 

Campylobacter jejuni was cultivated on Campylobacter blood-free selective Agar Base 

(Oxoid Basingstoke, UK) containing Campylobacter growth selective supplement (Oxioid). 

For selection of antibiotic resistant C. jejuni strains, sterile filtered antibiotics were added to 

the media. The bacteria were streaked out with a blue loop (Greiner-Bio-One, Frickenhausen, 

Germany) from a frozen stock (-80°C) and incubated at 37°C under microaerophilic 

conditions, generated by CampyGen (Oxoid) in an Anaero-Jar (Oxoid). After 2 days the 

bacteria were diluted and streaked out on three Campylobacter plates. For the dilution a sterile 

cotton swob (Raucotupf, Lohmann and Rauscher, Rengsdorf, Deutschland) was used with 

which the bacteria were harvested and resuspended in 500 µl BHI medium (brain heart 

infusion, Fluka BioChemika, Buchs, Switzerland) and streaked out on the first Campylobacter 

plate. For the second and third plate the same cotton swob was used, resuspended in BHI-

medium and streaked out on the plates. Following, the plates were incubated for 16 hours at 

37°C under microaerophilic conditions in an Anaero-Jar with CampyGen. For C. jejuni 

infection experiments the third dilution was used. 

 

For preservation of strains, bacterial cells from an abundantly covered plate were re-

suspended in BHI-media with 20% glycerine and stored at -80°C. 

 

4.3.2 Infection experiments with Campylobacter jejuni 

4.3.2.1 Infection of host cells  

For infection experiments C. jejuni was harvested from the third agar plate with a sterile 

cotton swob (Raucotupf, Lohmann and Rauscher, Rengsdorf, Deutschland), re-suspended in 

BHI-medium and the optical density was determined by measuring at λ = 600 nm (OD600) in 

a UV/Vis spectrometer Lambda 2 (Perkin Elmer Waltham, USA). Subsequently, the bacteria 
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suspension was added to the incubated cells. At the time point of infection the confluence of 

the cells was ~ 70%. The cells were infected with a multiplicity of infection (MOI) of 100 for 

indicated periods of time at 37°C in 5 % CO2.  

 

4.3.2.2 Infection of host cells in transwell-filter-system 
Infection experiments in transwell-filter-system were used to determine the dependent of 

contact as well as the effect of the co-infected bacteria to release specific C. jejuni 

determinants. For this the transwell-filter-systems (Corning B.V. Lifescience, Schiphol, 

Niederlande) with poresize of 3.0 µm or 0.4 µm were used.  

The transwell-filter-system is a two component system, in a 12- well plate and separate filters. 

Before use, the system was pre-incubated with cell culture medium for 1 hr. Subsequently 

MKN28 cells were seeded on the filter and incubated for 14 days at 37°C in 5% CO2. During 

incubation, it is important to change the cell culture medium all 2 days and 16 hrs before 

infection the cells were washed with DPBS (Lonza, BioWhittaker, Basel, Switzerland) and 

the medium was changed again. To determine, the cells growth it is necessary to measure the 

TER (transepithelial resistance) of the cells. Infections were carried out with different C. 

jejuni-wt strains and mutants with a MOI of 50 for indicated periods of time (30 min to 24 

hrs). At each time point a particular amount of the basolateral medium of the transwell-filter-

system was plated on Mueller-Hinton-agar (MH)-plates and incubated for 4 days under 

microaerophilic conditions.  

 

4.3.3 Motility assay   
Motility phenotypes of strains were tested in MH media containing 0.4 % agar. Bacterial cells 

were harvested from a 36 hour culture on conventional agar plates and resuspended in PBS to 

obtain an optical density at 600 nm of 0.45 (approximately 1 × 109 cfu/ml). The bacteria were 

incubated for 30 min in the presence or absence of 20 µg/ml α-FlaA antibody or pre-immune 

serum as control. To ensure that equal amounts of antibody were present on the entire agar 

surface in the α-FlaA sample, 50 µl of the antibody solutions were plated onto the 

corresponding plates. Subsequently, 2 μl of a bacterial suspension of 2 × 108 cfu/ml (+/- 

antibody) were stabbed into motility agar. Plates were incubated at 37°C under 

microaerophilic conditions for 24 hours, followed by measuring the diameter of the resulting 

swarms. The results were the mean of at least five separate measurements from three 

experiments.  
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4.3.4 Gentamycin protection assay   

Gentamicin protection assay is a method which was used to analyse and quantify cellular 

invasion and number of intracellular bacteria (Kopecko et al., 2001). During infection 

gentamicin was added, followed by cell lysis and bacterial cultivation on plates. The antibiotic 

gentamicin was used because it is not able to cross the eukatyotic cell membrane, thus the 

bacterial counts of gentamicin-treated cells present internalized bacteria, whereas extracellular 

bacteria were killed.  

Corresponded eukaryotic cells were seeded to give 4 x 105 at 12 well tissue culture plates and 

infected as described above. After 6 hrs of infection cells were washed three times with pre-

warmed cell culture medium to remove non-adherend bacteria. To determine the CFUs 

(colony forming units) corresponding to intracellular bacteria, the eukaryotic cell monolayers 

were treated with 250µg/ml gentamicin (Sigma-Aldrich, Steinheim, Germany) at 37°C for 2 

hours, washed three times with medium and incubated with 0.1 % saponin (Sigma-Aldrich, 

Steinheim, Germany) in PBS at 37°C for 15 min. The treated monolayers were resuspended, 

diluted and plated on MH-agar plates. To determine the CFUs of host associated bacteria, the 

infected monolayers were incubated with 1 ml of 0.1 % saponin in PBS at 37°C for 15 min 

without prior treatment with gentamicin. The resulting suspensions were diluted and plated as 

described above. For each strain, the level of bacterial adhesion and invasion was determined 

by calculating the number of CFU. In control experiments, 250 µg/ml gentamicin killed all 

extracellular bacteria (data not shown) and all experiments were performed in triplicates. 

 

4.3.5 Inhibitor studies 
 
For performance of inhibiotion and activation studies, host cells in 1 ml cell culture medium 

were pre-treated for 30 min with corresponding inhibitors presented in Table 9 (chapter 3.10), 

followed by infection with C. jejuni.  

 

4.3.6 Cultivation and storage of Escherichia coli 
For cultivation of E. coli Luria Broth (LB) plates or LB medium with corresponding 

antibiotics were used. Bacteria were incubated overnight at 37°C in an incubator or shaker. 

For preservation of strains 20 % glycerine were added to E. coli overnight cultures and stored 

at -80°C. 
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4.3.7 Preparation and transformation of competent E. coli cells 

Transformation is called the adsorption of free DNA into competent bacteria cells. This 

method is used to transfer and amplify recombinant DNA fragments into bacteria. Most 

bacteria such as E.coli don´t exhibit natural competence, therefore they must be treated 

physically or chemically before transformation. By this way they are able to absorb DNA 

fragments. 

 

4.3.7.1 Preparation of chemical competent E. coli cells 

Competent cells for transformation with DNA fragments were made by the calciumchlorid 

method (Mandel and Higa, 1970). E.coli overnight cultures were diluted to a OD600 of 0.1 in 

LB-medium and were grown to a OD600 of 0.3 to 0.5. By centrifugation (10 min, 3.000 rpm) 

bacteria of 100 ml culture were harvested and resuspended in 50 ml ice-cold CaCl2 (100 

mM). After centrifugation (5 min, 1.500 rpm) the pellet was resuspended in 10 ml CaCl2 (100 

mM) and incubated for 30 min on ice. Then, the cells were centrifuged (5 min, 1.500 rpm) 

and the pellet was resuspended in 5 ml 100 mM CaCl2 with 10 % glycerine. The competent 

cells were divided into 100 µl aliquots and stored at -80°C. 

 

4.3.7.2 Chemically transformation of E.coli cells 

100 µl competent E. coli-TOP-10 or BL21-cells were thawed on ice and incubated with 0.25 

µg plasmid DNA or 2-5 µl ligation preparation for 20 min on ice. Subsequently cells were 

heatshocked for 1 min at 42°C and incubated for 10 min on ice again. 1ml of SOC-medium 

(2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM 

MgSO4, 20 mM glucose) was added and cells were incubated for 1 hour at 37°C under 

shaking. Following adequate amounts were plated on corresponding LB selective plates. 

 

 

4.4 Cell biological methods 
4.4.1 Cultivation of eukaryotic cell lines 

Different eukaryotic cell lines were used in this work (see Table 7 below). A adherend cell 

lines were cultivated at the indicated medium with 10% heat inactivated (30 min at 56°C) 

fetal calf serum [(FCS), Gibco/Invitrogen, Karlsruhe, Germany] and 1 % antibiotic-

antimycotic-solution (Sigma-Aldrich, Taufkirchen, Germany) at 37°C and 5 % CO2. 

Confluent growth cultures were washed two times with DPBS (Lonza, BioWhittaker, Basel, 

Switzerland) and trypsinized by trypsin-EDTA incubation (Sigma-Aldrich, Taufkirchen, 
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Germany) for 5 min at 37°C and 5% CO2. Subsequently the cells were resuspended in 

indicated medium and dispensed into new culture flasks or wells (Greiner-Bio-One, 

Frickenhausen, Germany). 

 

      Table 7: Eukaryotic cell lines used in this work. 
 

Cell line  

 

Medium  

INT-407 Eagle’s Minimum Essential Medium (MEM) containing 2 mM  
L-glutamine and Earle’s salts, 100 units (U)/ml penicillin, 100 
µg/ml streptomycin, 10% FBS (Invitrogen) 
 

MKN28 RPMI 1640  
containing 2 mM L-glutamine, 25 mM HEPES, 100 U/ml 
penicillin, 100 µg/ml streptomycin, 0.25 µg/ml amphotericin 
B,10%FBS(Invitrogen) 
 

GD25 Dulbecco’s Modified Eagle Medium (D-MEM) containing 4500 
mg/L D-glucose, 4 mM L-glutamine, 110 mg/L sodium pyruvate, 
100 U/ml penicillin, 100 µg/ml streptomycin, 0.25 µg/ml 
amphotericin B, 10% FBS (Invitrogen) 

GD25-ß1A, GD25-ß1ATT788-9AA, 
GD25-ß1AY783/795F 

See GD25 cells, with 10 µg/ml puromycin 

Fn (-/-)  D-MEM containing 4500 mg/L D-glucose, 4 mM L-glutamine,  
110 mg/L sodium pyruvate, 100 U/ml penicillin, 100 µg/ml 
streptomycin, 0.25 µg/ml amphotericin B, 10% FBS (Invitrogen) 

Fn (+/+) D-MEM containing 4500 mg/L D-glucose, 4 mM L-glutamine,  
110 mg/L sodium pyruvate, 100 U/ml penicillin, 100 µg/ml 
streptomycin, 0.25 µg/ml amphotericin B, 10% FBS (Invitrogen) 

FAK (-/-) D-MEM containing 4500 mg/L D-glucose, 4 mM L-glutamine,  
110 mg/L sodium pyruvate, 100 U/ml penicillin, 100 µg/ml 
streptomycin, 0.25 µg/ml amphotericin B, 10% FBS (Invitrogen) 

FAK (+/+) See FAK (-) cells, with 200 µg/ml hygromycin 
SYF 
 

D-MEM containing 4500 mg/L D-glucose, 4 mM L-glutamine,  
110 mg/L sodium pyruvate, 100 U/ml penicillin, 100 µg/ml 
streptomycin, 0.25 µg/ml amphotericin B, 10% FBS (Invitrogen) 

SYF + c-src 
 

D-MEM containing 4500 mg/L D-glucose, 4 mM L-glutamine,  
110 mg/L sodium pyruvate, 100 U/ml penicillin, 100 µg/ml 
streptomycin, 0.25 µg/ml amphotericin B, 10% FBS (Invitrogen) 

Vav-1/2 -/- D-MEM containing 4500 mg/L D-glucose, 4 mM L-glutamine,  
110 mg/L sodium pyruvate, 100 U/ml penicillin, 100 µg/ml 
streptomycin, 0.25 µg/ml amphotericin B, 10% FBS (Invitrogen) 

 
4.4.2 Freezing and thawing of cells 

For preservation of the cell-lines, cells were trypsinized at described in chapter 4.4.1 and 

centrifuged for 10 min, 1.000 rpm. The cell pellet was resuspended in freezing medium ( 90% 

FCS, 10% DMSO) and aliquoted into cryotubes. Cells were stored for 24 hours at -80°C and 

for long time preservation at liquid nitrogen. 

For thawing, cells were quickly (40-60 sec) warmed to 37°C, mixed with indicated culture 

medium and centrifuged at 1.000 rpm for 10 min. The cell pellet was resuspended in culture 
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medium and transfered in cell culture flasks. DMSO [(Dimethylsulfoxide), Sigma, 

Taufkirchen, Germany] rests were removed after 24 hrs by changing the culture medium.   

 
4.4.3 Transient transfection of plasmid DNA 

Transfection is the insertion of DNA, such as plasmids into eukaryotic cells. Two different 

methods are exsisting, the temporary insertion of DNA into host cells (transient transfection) 

and the durable insertion of DNA into the genome (stabile transfection).  

By transfection of expression plasmids, which contains an open reading frame for a particular 

protein, eukaryotic cells were decided to synthesize exogenous proteins. 

 

The plasmids were transfected with the transfection reagent GeneJammer (Stratagene, 

Amsterdam, Netherlands) to manufactors instruction. By mixing the DNA with the polyamine 

transfection reagent DNA-containing complexes were formed. These complexes are adsorbed 

to the cell surface and mediate the adsorption of the DNA into the cells by endocytosis. An 

amount of 3 µl/1 µg DNA was added to cells and incubated for 36 hrs. The efficiency of 

transfection was verified by Western blotting with corresponding antibodies. 

 

4.4.4 Transient transfection of siRNA 
RNA interference (RNAi) is a method to silence genes on posttranscriptional level (Cullen, 

2002).  Double stranded RNA (dsRNA) is introduced into a cell resulting in sequence specific 

degradation of homologous messengerRNA (mRNA) (Hannon, 2002). The dsRNA is cut by a 

cell specific ribonuclease (dicer) at 21-25-mere ribonucleotids (Bernstein et al., 2001). These 

RNA fragments, called small interfering RNA (siRNA), bind to different proteins and 

generate the RNA-induced silencing complex (RISC) (Hammond et al., 2000). By an ATP-

dependent cleavage of the dsRNA complex is formed, which is able to bind to the 

complementary mRNA and induce its degradation.  

However, the insertion of dsRNA with more than 30 nucleotides into mammal cells is 

difficult and leads to unspecific effects in the cell or apoptosis. To avoid these effects, siRNAs 

were used for the specific reduction of gene expression in mammal cells (Elbashir et al., 

2001; Martinez et al., 2002). 

In this work commercial siRNAs (DOCK180, Vav-2, Tiam-1) from Santa Cruz 

Biotechnology (Heidelberg, Germany) were used and transfections were carried out at 

manufactors instructions. Rac1- and Cdc42-siRNA were synthesized and obtained from 

MWG-Biotech (Ebersberg, Germany) with the following target sequences Rac1: (5'-
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AAAACTTGCCTACTGATCAGT-3') and Cdc42: (5'-TTCAGCAATGCAGACAATTAA-

3'). For downregulation of Tiam-1 both siRNA from Santa Cruz Biotechnology and MWG-

Biotech were used. The Tiam-1 target sequence is: (5'-ACAGCTTCAGAAGCCTGAC-3'). 

For transfection corresponding cells were seeded to reach 70-80% confluency. For the 

transfection two different solutions (A and B) were prepared. For solution A, 80µl 

transfection medium (serumfree cell culture medium) with 1 µg siRNA was used and for 

solution B, 80 µl transfection medium was mixed with 4.8 µl transfection reagent. Both 

solutions were incubated for 5 min, following solution A and B were mixed together, 

incubated for 20 min at room temperature and 640 µl transfection medium was added. The 

medium from the cells was removed, changed with the transfection reagent solution and 

incubated for 5-7 hours at 37°C and 5% CO2. After incubation 1ml growth medium (cell 

culture medium + 20 % FCS + 2 % PS) was added and the cells were incubated for 36 hrs at 

37°C and 5% CO2.  The efficiency of transfection was verified by Western blotting with 

appropriate antibodies.   

 

4.5 Microscopic methods  
4.5.1 Phase contrast microscopy 

For phase contrast microscopy the cells were directly analyzed on cell culture plate with a 

phase contrast microscope (Olympus, Hamburg, Germany). For documentation a CCD 

camera MP focus 5000 (Intas, Göttingen, Germany) and the ImageProPlus software 

(MediaCybernetics, Wokingham Berkshire, UK) were used.  

 

4.5.2 Field Emmision Scanning Electron Microscopy (FESEM) 

For FESEM corresponding cells were seeded to coverslips or apical membran of transwell-

filter-system and infected for an indicated period of time with C. jejuni or mutants, then fixed 

with specific fixation solution containig 5 % formaldehyde and 2 % glutaraldehyde in 

cacodylate buffer (0.1 M cacodylate, 0.01 M CaCl2, 0.01 M MgCl2, 0.09 M sucrose; pH 6.9) 

and subsequently washed several times with cacodylate buffer. Samples were dehydrated with 

a graded series of acetone (10, 30, 50, 70, 90 and 100 %) on ice for 15min for each step. 

Samples in the 100% acetone step were allowed to reach room temperature before another 

change of 100% acetone. Samples were then subjected to critical-point drying with liquid 

CO2 (CPD030, Bal-Tec, Liechtenstein). Dried samples were covered with a 10 nm thick gold 

film by sputter coating (SCD040, Bal-Tec, Liechtenstein) before examination in a field 

emission scanning electron microscope (Zeiss DSM-982-Gemini) using the Everhart 
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Thornley SE detector and the inlens detector in a 50:50 ratio at an acceleration voltage of 5 

kV. 

 

4.6 Statistical analysis  

All data were evaluated using Student t-test with SigmaStat statistical software (version 2.0). 

Statistical significance was defined by P ≤ 0.05 (*) and P ≤ 0.005 (**). All error bars shown 

in figures and those quoted following the +/- signs represent standard deviation. 
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5. RESULTS 
 
5.1 Part 1: Role of the protease HtrA during C. jejuni infection 
5.1.1 HtrA protease is conserved in H. pylori and C. jejuni 

 

The high temperature requirement A (HtrA) proteins constitute a group of heat shock induced 

serine proteases, which were identified to influence the adhesion and invasion properties of 

different bacterial pathogens. Many bacterial HtrAs have been described to be localized in the 

periplasm and are involved in various aspects of intracellular quality protein control (Clausen 

et al., 2002). The group of HtrA proteins typically consists of a signal peptide, a trypsin-like 

serine protease domain and one or two so-called PDZ domains (Fig. 3A). PDZ is an acronym 

which combines the first letters of three proteins, post synaptic density protein (PSD95), 

Drosophila disc large tumor suppressor (Dlg1), and zonula occludens-1 protein (ZO-1), that 

were first discovered to share this domain (Kennedy, 1995). The PDZ domains typically act 

as protein binding modules which interact with given target proteins (Kim et al., 2005). In 

addition, by binding of the PDZ domain in one HtrA molecule to that in other HtrA 

molecules, HtrA can build-up to highly proteolytically active oligomers (Krojer et al., 2008). 

The HtrA protease domain consists of an active site, called the catalytic triad, which is formed 

by the conserved amino acid residues histidine, asparagine and serine (Kim et al., 2005).  

Recently, the groups of Prof. S. Wessler (University Salzburg) and Prof. S. Backert 

(University Magdeburg and University College Dublin) reported the surprising finding that 

HtrA of the gastric pathogen H. pylori is specifically secreted in the cell culture supernatant, 

where it can cleave the ectodomain of the host cell adhesion protein and tumor-suppressor E-

cadherin (Hoy et al., 2010). Shedding of the E-cadherin ectodomain disrupted epithelial 

barrier functions in the infected epithelium allowing H. pylori to access the intercellular space 

and reach basolateral surfaces. Since we are interested in another gastrointestinal pathogen, 

Campylobacter jejuni, where it is completely unknown how they cross the epithelial barrier, 

we proposed in this project that the latter pathogen may also use its HtrA protease to breach 

the barrier of polarised epithelial cells. A sequence alignment of HtrAs from different C. 

jejuni and H. pylori strains was performed and revealed a high degree of similarity between 

the HtrA sequences of different species (Fig. 3B). I also found that the amino acids in the 

catalytic triad (histidine, asparagine and serine) are conserved and at the right position among 

these proteins (Fig. 3B, red, shaded with yellow). This suggests that HtrA’s are very 

conserved in various C. jejuni isolates and represent a possible candidate factor to investigate 

how this pathogen could cross the epithelial barrier.  

http://en.wikipedia.org/wiki/Acronym
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Figure 3: Comparision of C. jejuni and H. pylori HtrA proteins. (A) Schematic diagram of the 
domain arrangement of HtrAs from C. jejuni (Cj) and H. pylori (Hp). (B) Multiple sequence alignment 
of different C. jejuni and H. pylori HtrAs. The protein sequences of Cj81-176, CjRM1221, Cj 
NCTC11168, Hp26695, HpP12 and Hp35A are aligned. The conserved amino acids of the catalytic 
triad are indicated in red (H: Histidine; D: Asparagine; S: Serine). 
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5.1.2 Analysis of C. jejuni wild-type strain and isogenic ∆htrA deletion mutants by 

scanning electron microscopy 

 

To first aim was to generate and investigate htrA mutants in C. jejuni. We obtained from Prof. 

Brønsted (University Copenhagen) C. jejuni wild-type strain NCTC11168, the isogenic 

NCTC11168∆htrA deletion mutant and NCTC11168∆htrA/htrA S197A, a strain with 

complemented htrA carrying a point mutation S197A in the active centre, rendering the 

protein to be catalytically inactive (Baek et al., 2011). The nomenclature S194 was chosen by 

the authors due to the full sequence of the protein minus the cleaved-off signal peptide (Baek 

et al., 2011). In addition, we produced another ∆htrA deletion mutant in C. jejuni wild-type 

strain 81-176. Next, I aimed to investigate the morphology of the produced C. jejuni strains. 

For this purpose single bacterial colonies were grown for two days on Campylobacter blood 

free selective agar base (Oxoid) containing Campylobacter growth selective supplement 

(Oxoid) and corresponding antibiotics in agar plates and the different strains were visualized 

by scanning electron microscopy (SEM). SEM revealed that the C. jejuni wild-type strains 

81-176 and NCTC11168 revealed no obvious phenoptypical differences as compared to their 

htrA mutants. All mutants were viable and produce intact bipolar flagella as compared to their 

wild-type counterparts (Fig. 4, blue arrows), and are therefore available for subsequent 

functional studies. 
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Figure 4: Analysis of C. jejuni and C. jejuni ∆htrA mutants by scanning electron microscopy. 
Scanning electron microscopy revealed that C. jejuni and different C. jejuni ∆htrA mutants produce 
intact bipolar flagella (blue arrows). Each barr corresponds to 1µm.  
 

 

5.1.3 C. jejuni secretes HtrA into the culture supernatant 

 

The remarkable sequence homology between HtrA’s from H. pylori and C. jejuni (Fig. 3) led 

us to propose that C. jejuni HtrA maybe secreted into the cell culture supernatant, similar to 

its H. pylori counterpart. To test this hypothesis, C. jejuni wild-type strain 81-176 and 81-

176∆htrA deletion mutant were grown in BHI broth medium for 12 hours to an OD600nm=1. 

The supernatant and the cell pellets were separated by centrifugation, and the supernatant was 

further purified from remaining bacterial cells by passage through a 0.21 µm sterile filter. The 

resulting bacterial pellets and supernatants were analysed by immunoblot analysis. The results 

confirmed that the HtrA protein was not synthesized by the ∆htrA mutant, whereas HtrA is 

produced by the wild-type isolate and is secreted into the supernatant (Fig. 5). As control, the 

different fractions were reprobed with an antibody against C. jejuni MOMP. The results verify 

that equal amounts of protein were loaded in each pellet sample and exhibit the absence of 
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MOMP in the supernatants. Thus, the presence of HtrA in the bacterial supernatant is specific 

and not due to artificial lysis of the bacteria. Similar results were obtained with the 

NCTC11168 strains (data not shown). 

 

 
 

Figure 5: HtrA secretion into the supernatant of cultured C. jejuni. Wild-type (wt) strain 81-176 
and 81-176∆htrA mutant were analysed. The bacteria were grown for 12 hours in BHI liquid broth. 
The secretion of HtrA proteins during culturing was verified by immunoblotting using the α-HtrA 
antibody. As control, the blots were stripped and reprobed with an α-MOMP antibody. 
 

 

5.1.4 Analysis of HtrAs in different C. jejuni wild-type strains and htrA mutants 

The next aim was to investigate if secreted HtrA from the two C. jejuni strains are 

proteolytically active. For this purpose, wild-type strains, ∆htrA deletion and point mutants  as 

control (81-176 wt, 81-176∆htrA, NCTC11168 wt, NCTC11168∆htrA and 

NCTC11168∆htrAS197A) were grown as described and purified bacterial culture 

supernatants were prepared. The caseinolytic activity of HtrA protease was then detected by 

casein zymography (Hoy et al., 2010). For this purpose bacterial lysates were loaded onto a 

0.1% casein containing gel and separated under non-denaturating conditions. The results show 

that C. jejuni HtrA’s from both wild-type strains gave rise to active multimers with a 

molecular weight of more than 200 kDa, while bands for the active monomers (ca. 53 kDa) 

were hardly detectable (Fig. 6). Corresponding signals for active HtrA’s were completely 

absent in the two ∆htrA deletion mutants. Interestingly, the NCTC11168∆htrAS197A mutant 

also formed a multimer at about 200 kDa (red asterisk), but this multimer was not active as 

expected (Fig. 6). The identity of multimeric HtrA proteins on the gels was further verified by 

mass spectrometry of the excised bands (data not shown). In addition, the casein zymography 
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gels exhibited two other C. jejuni proteins (at 63 kDa and 42 kDa, respectively) with 

proteoltyic activity on casein, but their identity is yet unknown (Fig. 6, yellow asterisks).  

 

 
 

Figure 6: Detection of proteolytically active HtrA proteins in different C. jejuni strains. 
Supernatants of C. jejuni 81-176 wild-type (wt), 81-176∆htrA, NCTC11168 wt, NCTC11168∆htrA 
and NCTC11168∆htrAS197A were tested for protease activities by casein zymography. Active (wt) 
and inactive (S197A) HtrAs were separated on non-denaturing gels and multimeric HtrA complexes 
were detected as described (Hoy et al., 2010). Active monomeric HtrA was hardly visible as indicated. 
Zymography of HtrA was performed with the kind help of Prof. Wessler and B. Hoy (University 
Salzburg). 
 

 

 

5.1.5 Multiple C. jejuni strains express active HtrA 

As next, we cloned and overexpressed C. jejuni HtrA of strain 81-176 in E. coli BL-21 with 

the help of our collaborator, Prof. S. Wessler (University Salzburg). HtrA was expressed and 

purified as GST fusion protein (Fig. 7). The GST tag was cleaved-off and HtrA was purified 

to almost homogeneity (Fig. 7, lane 8). As expected, HtrA from C. jejuni had slightly smaller 

molecular weight as compared to its H. pylori counterpart, due to the smaller size of the 

expressed protein (472 vs. 476 amino acids) (see Fig. 3B, lanes 8 and 9).  
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Figure 7: Overexpression and purification of C. jejuni HtrA. A Coomassie-stained gel of different 
fractions and purified HtrA proteins during the purification procedure is shown. Purification of HtrA 
was performed with the kind help of Prof. Wessler and B. Hoy. For details see Materials and Methods 
and text. 
 

Recombinant HtrA was then taken as a control to test if a larger collection of wild-type C. 

jejuni strains also express active HtrA proteins. For this purpose C. jejuni wild-type strains, 

including RM1221, ATCC43430, TGH-9011, NCTC11168, 1849, 81-176, 1543/01, 2703/01 

and ST3046 were grown as described above. The corresponding cell pellets were harvested 

and analyzed for HtrA protease activities by casein zymography. All tested strains expressed 

the active HtrA multimer with a molecular size of >200 kDa (Fig. 8). Interestingly, I could 

confirm that recombinant C. jejuni HtrA also formed highly active multimers at the same size 

of >200 kDa (Fig. 8A, lane 1). In addition, recombinant monomeric HtrA showed a faint band 

for monomeric protease activity at 53 kDa, while this band is only hardly visible for any wild-

type C. jejuni strain. However, these findings confirm our knowledge from HtrA in other 

bacteria such as E. coli where the HtrA multimers are highly proteolytically active rather than 

the monomer (Krojer et al., 2008). 
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Figure 8: A large variety of C. jejuni strains express active HtrA proteins. The bacteria were 
grown as described and HtrAs were separated on non-denaturing gels. Proteolytically active HtrA 
complexes were detected by casein zymography as described (Hoy et al., 2010). The position of active 
monomeric and multimeric HtrA proteins is indicated with arrows. 
 

 

5.1.6 In vitro cleavage with purified C. jejuni and H. pylori HtrAs 

As described above, our groups have recently shown that H. pylori HtrA is secreted into cell 

culture supernatant and can cleave the cell adhesion protein E-cadherin during infection in 

vivo and as recombinant protein in vitro (Hoy et al., 2010). Full length E-cadherin has a 

molecular weight of about 130 kDa and it can be cleaved by HtrA giving rise to a 90 kDa 

extracellular domain amino-terminal fragment (NTF) and a 40 kDa carboxy-terminal 

fragment (CTF1) (Fig. 9A). To determine whether C. jejuni HtrA can also cleave E-cadherin, 

recombinant HtrA was incubated with recombinant E-cadherin for 16 hrs at 37°C. The 

ectodomain shedding of E-cadherin was detected by loss of full length E-cadherin using α-E-

cadherin antibodies H-108 or HECD1 recognising the EC5 subunit in the NTF domain. It was 

shown that C. jejuni HtrA efficiently cleaved E-cadherin as monitored by the disappearance 

of full length E-cadherin protein band and increased amount of the 90 kDa NTF domain. 

Recombinant H. pylori HtrA also cleaved E-cadherin as monitored under identical conditions 



5.Results                                                                                                                                                 

 62 

as expected (Fig. 9B). As control, it could be shown that C. jejuni HtrA does not cleave 

purified fibronectin in vitro (Fig. 9C).   

 

 

 
 
Figure 9: Recombinant C. jejuni HtrA cleaves E-cadherin but not fibronectin. (A) Schematic 
presentation of the E-cadherin domain structure. E-cadherin consists five extracellular domains (EC1-
EC5), a transmembrane (TM) domain and an intracellular domain (CTF) at the C-terminus of the 
protein. Cleavage by HtrA proteases generates an extracellular N-terminal fragment (NTF). (B) In 
vitro cleavage of E-cadherin incubated with purified C. jejuni HtrA or H. pylori HtrA. (C) In vitro 
cleavage of fibronectin incubated with purified C. jejuni HtrA. All reactions were incubated for 16 hrs 
at 37°C. 
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5.1.7 In vivo cleavage of E-cadherin in C. jejuni infected INT-407 cells 

The next aim was to investigate if C. jejuni HtrA can cleave E-cadherin during infection in 

vivo. For this purpose, E-cadherin-expressing INT-407 cells were infected with C. jejuni 

strain NCTC11168 wt in a time course for an indicated periods of time (up to 6 hours) and the 

cleavage of E-cadherin was determined by immunoblotting using an α-E-cadherin antibody 

(HECD-1; Calbiochem). The results show that the overall amount of full length E-cadherin 

decreased over time but was not eliminated (Fig. 10). In addition the signals of the entire 90 

kDa NTF increased over time up to 4 hrs and then dropped somewhat as detected in the 

supernatant of infected cells. In contrast, no E-cadherin cleavage was observed during 

infection with the isogenic ∆htrA mutant (data not shown). 

 

 

 

 
 

Figure 10: In vivo cleavage of E-cadherin in infected INT-407 cells. INT-407 cells were infected 
with C.jejuni NCTC11168 wt strain for 0 to 360 min. Full length E-cadherin and the NTF- fragment 
were detected using the indiacted antibody. GAPDH expression levels were determined as loading 
control of total cellular protein. 
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5.1.8 C. jejuni wt strains transmigrate efficiently through polarised MKN-28 cell layers 

Next it was investigated, if C. jejuni can transmigrate through polarised epithelial cells and 

compared this capability with well-known invasive bacterial pathogens under identical 

settings. For this purpose, MKN-28 cells were seeded and differentiated on a transwell-filter 

system. The growth of the cells was followed by measuring the transepithelial resistance 

(TER) every 3 days of culture (Fig. 11A). After differentiation for 14 days and a TER 

between 140-150 Ω/cm2 as reported previously for effective polarisation of this cell line 

(Wroblewski et al., 2009), proper cell monolayers and junction formation were confirmed by 

E-cadherin staining in immunofluorescence microscopy (not shown). MKN-28 cells were 

then infected with different C. jejuni strains and other pathogens as controls including 

Salmonella typhimurium, Shigella flexneri, Neisseria gonorrhoea and Listeria monocytogenes 

for indicated periods of time (0.5-24 hours). The transmigrated bacteria in the lower chamber 

were collected and the CFUs determined. The CFUs showed that C. jejuni wild-type 

transmigrated quickly, even much faster than the other pathogens during the first 30 min (Fig. 

11B). As control, non-pathogenic Escherichia coli strain TOP-10 didn’t transmigrate under 

the same conditions as expected (data not shown). 
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Figure 11: Infection of polarised MKN-28 cells with different bacterial pathogens in a transwell 
filter system in a time course (0.5-24 hours). (A) Differentiation and TER establishing of MKN-28 
cells over 14 days culturing (without infection). (B) CFUs of transmigrated bacterial pathogens and C. 
jejuni wt strain 81-176 in the indicated time course. (C) TER measurement of infected MKN-28 cells 
during the indicated time course. 

 

 

Interestingly, the measurement of TER during infection revealed that while all pathogens 

including S. typhimurium, S. flexneri, N. gonorrhoea and L. monocytogenes reduced TER 

substantially, infection with C. jejuni did not influence TER (Fig. 11C). This indicates that C. 

jejuni, in contrast to the other pathogens, does induce a permanent opening of the cell-to-cell 

junctions in order to induce its transmigration. 
 

 

5.1.9 C. jejuni ∆htrA deletion mutant have a strong defect in transmigration 
 

To investigate if the expression of HtrA is important for triggering transmigration of the 

bacteria across a polarised epithelium, MKN-28 cells were grown and differentiated as 

described above, followed by infection with C. jejuni wild-type strains 81-176 or 

NCTC11168 and their isogenic ∆htrA deletion mutants. The numbers of transmigrated 

bacteria were also quantified as CFU. It could be shown that both ∆htrA mutants exhibited a 

strong defect in transmigration as compared to wild-type C. jejuni (Fig. 12). In addition, C. 

jejuni expressing the HtrA S197A point mutant and a flagellar mutant (∆flaA/B) were also 

widely deficient in transmigration, while a ∆cadF mutant showed similar transmigration rates 

at the 4 hour time point (Fig. 12). These observations suggest that secreted HtrA of C. jejuni 

and its protease activity, but also the flagellar-driven motility play crucial roles in breaching 

the epithelial barrier by this pathogen. 
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Figure 12: Transmigration of wild-type (WT) and isogenic C. jejuni mutants across polarised 
MKN-28 cells. A transwell system with differentiated MKN-28 cells (14 days) was infected with the 
indicated strains during a time course. Transmigrated bacteria were harvested from the bottom 
chambers, grown on MH plates, and CFUs were determined in triplicates. 
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5.2 Part 2: Signalling to small RhoGTPases and C. jejuni host cell entry  
 
5.2.1 Campylobacter jejuni invasion of epithelial cells is time-dependent and associated 
with accumulating levels of Rac1-GTP and Cdc42-GTP 
 
Having established that C. jejuni can breach the epithelial barrier rapidly via the paracellular 

route between cells, with secreted HtrA cleaving E-cadherin playing a role, the next aim was 

to investigate how the foodborne pathogen can enter the host cells. Host cell invasion by C. 

jejuni has been reported as one of the primary reasons of gut tissue damage in infected 

humans, but molecular invasion mechanisms and cellular factors involved in this process are 

widely unknown. Our recent data indicated that small Rho GTPases, including Rac1 and 

Cdc42 but not RhoA, are activated during infection and play a role for the invasion process 

(Krause-Gruszczynska et al., 2007b). Pharmacological inhibitor studies indicated that Rac1 

and Cdc42 are activated via two different pathways, a PI3-kinase dependent pathway leading 

to activation of Cdc42 and a PI3-kinase independent pathway leading to activation of Rac1 

(Krause-Gruszczynska et al., 2007b), but the involved signalling cascades remained to be 

established in more detail.  

Aim of the following set of experiments was therefore to continue previous work done in the 

group by Dr. Krause-Gruszczynska and to pinpoint novel signalling components involved in 

C. jejuni-mediated GTPase activation and host cell entry. First, I aimed to confirm the time 

frame required for C. jejuni invasion in INT-407 intestinal epithelial cells. For this purpose, 

the cells were infected for different time periods (ranging from 0 min to 480 min) and the 

number of intracellular bacteria was then determined by gentamicin protection assay. The 

results show that invasion of C. jejuni into non-phagocytic cells occurred as early as 30 min 

after infection and that the number of intracellular cells increased rapidly between 4 to 8 hours 

(Fig. 13A).  

Previous studies have used GST-CRIB pulldown assays to quantify the amounts of GTP-

bound GTPase during infection (Krause-Gruszczynska et al., 2007b). The next aim therefore 

was to confirm that Rac1 and Cdc42 are activated in infected INT-407 cells using a novel 

commercial kit called G-Lisa assay. The results show that infection with C. jejuni wild-type 

strain 81-176 induced the generation of active Rac1-GTP (Fig. 13B) as well as active Cdc42-

GTP in a time dependent manner during the infection (Fig. 13C). These results are in good 

agreement with the previously reported data from GST-CRIB pulldown assays (Krause-

Gruszczynska et al., 2007b) and confirmed by an independent new approach that invasion of 

C. jejuni into cultured host cells is associated with the generation of active small Rho 

GTPases Rac1 and Cdc42. 
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Figure 13: C. jejuni wt strain 81-176 enter INT-407 cells over time and this is associated with 
increasing levels of Rac1-GTP and Cdc42-GTP. (A) INT-407 cells were infected for indicated 
periods of time with C. jejuni and the number of intracellular bacteria was quantified by gentamicin 
protection assay. (B and C) Quantification of Rac1 and Cdc42 activity during the course of infection. 
The presence of active Rac1-GTP and Cdc42-GTP levels was quantified by G-Lisa. One hundred % of 
activity corresponds to the highest amount of the detected GTPase level. Similar amount of cells at 
every time point was confirmed by α-GAPDH Western blotting as control.  
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5.2.2 Lipid rafts are essential for C. jejuni host cell invasion and activation of Rac1- and 
Cdc42-GTP 
 

Host cell membranes are composed of a classical lipid bilayer, containing proteins that span 

this bilayer and interact with these membrane-attached lipids. This lipid bilayer is composed 

of two apposing leaflets, forming a two-dimensional liquid with fascinating properties 

designed to perform the functions all cells basically require (Fessler and Parks, 2011; Simons 

and Sampaio, 2011). To coordinate these functions, the bilayer has evolved the propensity to 

segregate its constituents laterally. This capability is based on dynamic liquid-liquid 

immiscibility and underlies the “lipid raft” concept of membrane sub-compartmentalization 

(Fessler and Parks, 2011; Simons and Sampaio, 2011). By definition, lipid rafts are specific 

microdomains of the plasma membrane in eukaryotic cells which are enriched in cholesterol 

and sphingolipids. These domains seem to favour the interactions of particular membrane-

associated proteins such as receptor molecules and the regulation of signalling pathways 

within cells (Fessler and Parks, 2011; Simons and Sampaio, 2011).  

Previous studies have shown that addition of the pharmacological inhibitor methyl-beta 

cyclodextrin (MβCD), an agent that sequesters cholesterol and disrupts lipid rafts, decreased 

the ability of C. jejuni to enter several cultured epithelial cell lines, suggesting that lipid rafts 

may be required for efficient host cell invasion by the pathogen (Watson and Galan, 2008). 

Thus, we proposed that intact lipid rafts in target cells may be required for C. jejuni triggered 

Rac1 and Cdc42 activation. To investigate this question, increasing concentrations of MβCD 

(1-10 mM) were added to INT-407 cells 30 min prior to infection and kept throughout the 

entire time course. As control, the viability of cells was carefully checked in order to exclude 

any toxic effects resulting in a loss of host cells from the monolayer or other damage. 

Quantification of total intracellular C. jejuni was determined by gentamicin protection assay 

and effects on the generation of active Rac1-GTP and Cdc42-GTP were analyzed. Indeed, 

addition of MβCD blocked C. jejuni-induced internalization into INT-407 cells (Fig. 14A) as 

well as the activation of Rac1 and Cdc42 in a dose-dependent manner (Fig. 14B), suggesting 

that lipid rafts maybe targeted by C. jejuni to trigger downstream signalling leading to Rac1 

activation.  
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Figure 14: Lipid rafts are necessary for C. jejuni host cell entry and activation of Rac1-GTP and 
Cdc42-GTP. (A) Effects of MβCD targeting lipid rafts on host cell internalization of C. jejuni. INT-
407 monolayers were pre-incubated with the indicated concentrations of MβCD for 30 min, followed 
by 6 hours infection with C. jejuni. Total intracellular C. jejuni were quantified by gentamicin 
protection assays. (B) The presence of active Rac1-GTP and Cdc42-GTP was analyzed by CRIB-GST 
pulldown assay and quantified. One hundred % of activity corresponds to the highest amount of 
detected GTPase-GTP level. Similar quantities of total Rac1, Cdc42 and GAPDH were confirmed by 
Western blotting. (*) P<0.05 and (**) P≤0.005 were considered as statistically significant as compared 
to the control. 
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5.2.3 Campylobacter jejuni invasion and GTPase activasion require fibronectin, integrin, 
FAK and Src 
 

Since C. jejuni encodes CadF, an outer membrane protein binding to the extracellular matrix 

protein fibronectin at the basolateral side of host cells (Konkel et al., 2001; Konkel et al., 

2004; Euker and Konkel 2011), it was proposed that a classical fibronectin→integrin-

β1→focal adhesion kinase (FAK) signalling pathway could be involved in C. jejuni-triggered 

activation of Rac1 and Cdc42 GTPase activity. To investigate this question, I utilized 

fibroblast cell lines derived from fibronectin-/- (Nyberg et al., 2004), integrin-β1-/- (so called 

GD25 cells) (Wennerberg et al., 1996), FAK-/- knockout mice (Sieg et al., 1999), and c-src-/-, 

c-yes-/-, and c-fyn-/- (SYF) triple knockout mice (Klinghoffer et al., 1999), which have the 

great advantage that the cells are completely devoid of expressing the proteins of interest. As 

controls, I utilised in parallel experiments floxed fibronectin+/+ cells, GD25 cells stably re-

expressing wild-type integrin-β1Α (GD25β1Α) and FAK-/- cells stably re-expressing wild-

type FAK. The absence and presence of expression of the respective proteins was verified by 

immunoblotting using specific antibodies as indicated (Fig. 15A-D). The cell lines were 

infected with wild-type C. jejuni, followed by invasion assays. Quantification of the 

intracellular bacteria by gentamicin protection assay showed that wild-type C. jejuni can 

effectively enter the control cells, while the knockout cells exhibited significant deficiencies 

for bacterial uptake (Fig. 15A-D). This suggests that fibronectin, integrin-β1, FAK and Src 

play a crucial role in the invasion process of C. jejuni.  

As next, the wild-type and mutant cell lines were infected with wild-type C. jejuni under 

identical conditions as described above followed by preparation of cell lysates and GST-CRIB 

pulldown assays to determine the Rac1- and Cdc42-GTP levels during infection. The results 

show that activation of Rac1 and Cdc42 are profoundly activated in the infected wild-type 

control cells, but this was strongly impaired in each of the infected knockout cell lines (Fig. 

15E-H). These findings clearly correlate with the ability of C. jejuni to enter each of these cell 

lines, suggesting that the fibronectin→integrin-β1→FAK→Src signalling cascade is upstream 

of C. jejuni–triggered GTPase activation. 
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Figure 15: Fibronectin, integrin, FAK and Src are necessary for efficient C. jejuni invasion and 
activation of Rac1 and Cdc42 Rho GTPases. The following cells lines were infected with wild-type 
(wt) C. jejuni 81-176 for 6 hours. (A) Fibronectin deficient cells (Fn-/-) and corresponding floxed wt 
cells (Fn+/+), (B) integrin-β1-deficient cells (GD25) and GD25 stably re-expressing wt integrin-β1A 
(GD25-β1A) cells, (C) FAK-deficient cells (FAK-/-) and FAK-/- cells stably re-expressing wt FAK and 
(D) Src kinase-deficient cells (SYF-/-) and SYF-/- cells stably re-expressing wt c-src. Intracellular C. 
jejuni were quantified by gentamicin protection assays. Fibronectin, integrin-β1, FAK and Src protein 
expression was verified by Westernblotting using the indicated antibodies. GAPDH expression levels 
were determined as loading control. (E-H) Rac1 and Cdc42 activation was determined under identical 
conditions by CRIB-GST pulldowns. (**) P≤0.005 was considered as statistically significant..  
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5.2.4 Campylobacter jejuni induces filopodia formation in wild-type cells 

 

The above results led us to propose that fibronectin, integrin-β1 and FAK may form a 

signalling complex to induce GTPase activity during infection. Classical features for the 

activation of Rac1 is membrane ruffling and lamellipodia formation, while Cdc42 activation 

is associated with the generation of filopodia (Schmidt and Hall, 2002). Thus, the next aim 

was to investigate if these features can be visualized by electron microscopy. First, I wanted 

to investigate if Cdc42-triggered filopodia can be seen on cells upon contact with the bacteria. 

To investigate this question, wild-type fibroblasts were infected with C. jejuni followed by 

analysis of host cells by high resolution field emission scanning electron microscopy 

(FESEM), performed by cooperation partner Prof. M. Rohde (Helmholtz Center for Infection 

Research, Braunschweig, Germany). FESEM analysis revealed that C. jejuni profoundly 

induced filopodia formation at the periphery and top of infected host cells (Fig. 16A, up to 7 

μm long, blue arrows), while only very few of these structures could be seen in non-infected 

wild-type fibroblasts as control (Fig. 16B).  

  

 
 
Figure 16: High resolution FESEM of C. jejuni-induced filopodia formation. Representative 
sections of wild-type fibroblasts incubated for 6 hours with wt C. jejuni 81-176 (A) and non-infected 
fibroblast control cells that were mock-treated (B) are shown. Infection revealed the occurrence of 
membrane protrusion events with long filopodia at the periphery and on top of cells which were only 
sporadically seen in the non-infected control cells (blue arrows).  
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5.2.5 Campylobacter jejuni induces membrane ruffling and invasion in wild-type cells but 
not in any of the investigated knockout cell lines 
 
Next, wild-type fibroblasts and their corresponding fibronectin-/-, GD25 and FAK-/-

 knockout 

cell lines were infected with C. jejuni and the interaction of C. jejuni with the surface of host 

cells were analyzed by resolution FESEM. After infection, the micrographs revealed that the 

bacteria were able to attach to the host cell surface, followed by cellular invasion which was 

observed predominantly after 4-6 hours of infection (Fig. 17). Tight engulfment of the 

bacteria and the occurrence of membrane ruffling as typical for Rac1 activation (red arrows), 

closely associated with filopodia structures (blue arrows) as well as the appearance of 

elongated microspikes (green arrowheads) were also regularly observed. Interestingly, similar 

to earlier observations in our group with infected INT-407 cells (Krause-Gruszczynska et al., 

2007b), it was found that C. jejuni entered the wild-type fibroblast cells in a very specific 

fashion, first with its flagellar tip followed by the opposite flagellar end (Fig. 17, yellow 

arrows). The time frame of observing invading bacteria correlated with the above described 

results obtained from gentamicin protection assays (Fig. 13A) and GTPase activation assays 

in a corresponding time course (Fig. 13B,C). 

 

Next, I infected fibronectin-/-, GD25 and FAK-/-
 knockout cells with wild-type C. jejuni for 6 

hours under identical conditions as described above, followed by preparation for FESEM. 

Close inspection of these infected cells also revealed bound bacteria (yellow arrows) at the 

surface of the cells with short microspikes (green arrowheads) present, but almost no 

membrane ruffles or invading C. jejuni could be detected (Fig. 18 and data not shown). The 

predominant observation of membrane ruffling and the generation of filopodia structures in 

wild-type cells confirms the typical occurrence of Rac1 and Cdc42 GTPase activation 

followed by dynamic membrane rearrangements during the C. jejuni invasion process, and 

these events appear to be dependent on the expression of three crucial host cell factors, which 

were identified as fibronectin, integrin-β1 and FAK. 
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Figure 17: High resolution field emission scanning electron microscopy of C. jejuni invasion. C. 
jejuni 81- 176 infected for 4-6 h were able to induce their entry into the wild-type (wt) fibroblast target 
cells and were regularly associated with membrane ruffles (red arrows), filopodia-like structures (blue 
arrows) as well as elongated microspikes (green arrowheads). Invading bacteria were also marked 
(yellow arrows). 
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Figure 18: High resolution field emission scanning electron microscopy of C. jejuni invasion of 
knockout cell lines. Infection of GD25 knockout cells with wild-type (wt) C. jejuni 81-176 for 6 
hours also revealed bacterial attachment, but membrane dynamics or invasion were not induced. 
Similar results were obtained during infection of fibronectin-/- and FAK-/-

 cell lines (data not shown).  
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5.2.6 Importance of FAK and CadF for C. jejuni- induced Rac1 and Cdc42 activation 

 

The above results showed that FAK is important for C. jejuni invasion and GTPase activation. 

FAK is an intracellular non-receptor tyrosine kinase and important modulator of integrin-

dependent focal adhesion cell contacts, thereby orchestrating well-known integrin-initiated 

outside-in signalling events (Sieg et al., 1999; Hauck et al., 2002). It was therefore 

hypothesized that the well-known C. jejuni fibronectin binding protein CadF (Konkel et al., 

2001; Konkel et al., 2004; Euker and Konkel 2011) could trigger fibronectin→integrin-

β1→FAK signalling cascade leading to GTPase activation. To test this idea, FAK-expressing 

wild-type cells were infected with wild-type C. jejuni and an isogenic ∆cadF mutant for 

different time periods (30–240 min) and the amount of intracellular bacteria was quantified by 

gentamicin protection assay. Quantification data show an increasing amount of intracellular 

bacteria over the time for wild-type C. jejuni while significantly less invasion was observed 

for the ∆cadF mutant (Fig. 19A). This is in well agreement with earlier publications in the 

group using a different cell line, INT-407 (Krause-Gruszczynska et al., 2007a,b). 

 

To investigate if CadF and FAK are required for C. jejuni induced Rac1 and Cdc42 activation, 

FAK-/-
 knockout cells and FAK-/-

 cells re-expressing FAK were infected under the same 

conditions as shown in Figure 16A, followed by CRIB-GST pull-down assays. While growing 

levels of activated Rac1 and Cdc42 were detected in FAK-positive cells infected with wild-

type C. jejuni over time, only very small amounts of detectable activation of Rac1 (Fig. 19B) 

and Cdc42 (Fig. 19C) was found in FAK-/-
 cells during the entire course of infection. This 

again indicates the clear involvement of FAK in signalling upstream of Rac1 and Cdc42 

activation during C. jejuni invasion. Furthermore, significantly reduced Rac1-GTP (Fig. 19B, 

right lanes) and Cdc42-GTP (Fig. 19C, right lanes) levels were observed in both FAK-

positive and FAK-/- cells infected with the ΔcadF mutant under the same settings. These 

findings support the view that the CadF protein plays a role not only in sole binding of the 

bacteria to host cells but also in signalling leading to FAK-mediated activation of Rac1 and 

Cdc42. However, the ΔcadF mutant was still able to induce some Rac1- and Cdc42-GTPase 

activation in FAK-positive cells (Fig. 19B and C, right lanes), suggesting that CadF is not the 

sole signalling component in C. jejuni, but other bacterial factors are also implicated in this 

signalling cascade.  
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Figure 19: Importance of FAK for C. jejuni-induced Rac1 and Cdc42 activation and role of the 
bacterial CadF protein. (A) FAK-positive fibroblasts were infected with wild-type (wt) C. jejuni 
strain F38011 or isogenic F38011∆cadF for indicated periods of time. Intracellular bacteria were 
quantified by gentamicin protection assay. (B, C) Quantification of Rac1 and Cdc42 GTPase activity 
during the course ofinfection. FAK-positive and FAK-deficient cells were infected with C. jejuni wt 
strain F38011 or F38011∆cadF mutant for the indicated periods of time. The presence of bound, 
active Rac1- GTP or was analyzed in CRIB-GST pull-down assays. One hundred % of activity 
corresponds to the highest amount of detected GTPase-GTP level. (*)P≤0.05 and (**)P≤0.005 were 
considered as statistically significant as compared to the control.  
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5.2.7 Wild-type C. jejuni but not ∆cadF mutant induces profound FAK, EGFR and 
PDGFR phosphorylation during infection 
 

Having established that expression of FAK tyrosine kinase is crucial for C. jejuni-triggered 

signalling and invasion, the next aim was to investigate if C. jejuni infection activates FAK 

autophosphorylation and if this is associated with the activation of growth factor receptor 

tyrosine kinases including EGFR (epidermal growth factor receptor) and PDGFR (platelet-

derived growth factor receptor), which are also present in membrane lipid rafts. For this 

purpose, host cells were infected with wild-type C. jejuni and an isogenic ΔcadF deletion 

mutant in a time course. Protein lysates from the infected cells were prepared and subjected to 

Western blotting using commercially available activation-specific phospho-antibodies for 

FAK, EGFR and PDGFR (Fig. 20A). The results shows that wild-type C. jejuni significantly 

induced the autophosphorylation of FAK at tyrosine residue Y-397 in the active centre (PhD 

thesis of M. Krause-Gruszczynska) and Y-925 at the carboxy-terminus of FAK, the 

phosphorylation of EGFR at Y-845 and the phosphorylation of PDGFR at Y-754 over time 

(Fig. 20A). This data indicated that maximal levels of kinase phosphorylation  appeared after 

4 hours of infection (Fig. 20B), which correlated with increasing Cdc42-GTP levels over time 

(Fig. 13C) and the invasion capabilities of wild-type C. jejuni, as determined by gentamicin 

protection assays (Fig. 19A).  

 

Interestingly, infection with the ΔcadF mutant, as examined under identical conditions as 

described above, revealed that phosphorylation of FAK, EGFR and PDGFR were widely 

impaired (Fig. 20A, B) and this also correlated with the reduced invasiveness of this mutant 

(Fig. 19A). In agreement with this observation, Krause-Gruszczynska reported that Y-397 in 

FAK is also much less phosphorylated during infection with the same isogenic ΔcadF 

deletion mutant in a time course (PhD thesis of M. Krause-Gruszczynska). These findings 

collectively suggest that the bacterial CadF protein is involved in C. jejuni-induced FAK, 

EGFR and PDGFR kinase activities, as well as in host cell invasion of the bacteria.  
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Figure 20: Importance of CadF for C. jejuni-induced FAK, EGFR and PDGFR activation. (A) 
FAK-positive fibroblasts were infected with wild-type (wt) C. jejuni strain F38011 or isogenic 
F38011∆cadF mutant for the indicated periods of time. FAK, EGFR or PDGFR 
phosphorylation/activation was analysed by immunoblotting with the indicated phosphor-specific 
antibodies. Total PDGFR expression levels were determined as loading control. (B) Quantification of 
FAK, EGFR and PDGFR kinase phosphorylation during the course of infection was done using the 
Lumi-imager F1 (Roche). One hundred % of activity corresponds to the highest amount of 
phosphorylation detected per experiment and selected kinase (lane 5). (*) P≤0.05 and (**) P≤0.005 
were considered as statistically significant.  
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5.2.8 Activities of FAK, EGFR, PDGFR and PI3-kinase are also important for C. jejuni-  
induced Cdc42-GTP levels and invasion  
 

Previous results in the group have shown that pharmacological inhibition of EGFR, PDGFR 

and PI3-kinase did not downregulate the C. jejuni-mediated activation of Rac1-GTP (Krause-

Gruszczynska et al., 2007b). It was therefore proposed that activated EGFR, PDGFR and PI3-

kinase (and also FAK) could play an important role for the induction of Cdc42-GTP levels. 

To test this idea, INT-407 cells were pre-treated for 30 min with the pharmacological 

inhibitors AG1478 (EGFR inhibitor), AG370 (PDGFR inhibitor), wortmannin (PI3-kinase 

inhibitor) or PF-573228 (FAK inhibitor) followed by infection with wild-type C. jejuni. The 

results show that inhibition of each of these kinases had a profound suppressive effect on both 

Cdc42-GTP levels and bacterial invasion (Fig. 21). Complementary gentamicin protection 

assays exhibited a significant reduction of intracellular C. jejuni, confirming the involvement 

of PDGFR, EGFR and FAK in the uptake of C. jejuni (Fig. 21). 

 
 

 
 

Figure 21: Importance of FAK, EGFR, PDGFR and PI3-kinase activities for C. jejuni-induced 
activation of Cdc42 and bacterial invasion. INT-407 monolayers were pre-incubated for 30 min 
with the indicated pharmacological inhibitors and infected with wild-type (wt) C. jejuni 81-176 for 6 
hours. Intracellular C. jejuni were quantified by gentamicin protection assays. The presence of active 
Cdc42-GTP was quantified by CRIB-GST pull-downs. One hundred % of activity corresponds to the 
highest amount of detected Cdc42-GTP level (lane 2). (*) P≤0.05 and (**) P≤0.005 were considered 
as statistically significant.  
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5.2.9 The guanine exchange factors Tiam1, DOCK180 and Vav2 are required for Rac1 
and Cdc42 activation and C. jejuni invasion 
 
Cycling of small Rho GTPases between the inactive and active forms is commonly stimulated 

by a class of proteins called guanine nucleotide exchange factors (GEFs) and negatively 

regulated by GTPase activating proteins (GAPs). GEFs trigger the exchange of GDP for GTP 

to generate the active form of a given GTPase, which is then capable of recognizing 

downstream targets (Schmidt and Hall, 2002; Hsia et al., 2003; Tomar and Schlaepfer, 2009). 

Thus, it would be important to find out which GEFs are involved in the activation pathways 

of Cdc42 and Rac1. Previous results in the group have shown that downregulation of various 

typical GEFs including Vav2, Tiam-1, DOCK180, but not Trio, downregulated C. jejuni 

invasion as measured by gentamicin protection assays (PhD thesis of M. Krause-

Gruszczynska). However, it remained unknown which of these GEFs is upstream of Cdc42 

and Rac1, and if there are differences in GEF specificity for activating either GTPase during 

infection.  

 

To identify which GEFs are involved in C. jejuni–induced Cdc42 or Rac1 activation, the 

expression of the three candidate GEFs including Vav2, DOCK180 and Tiam-1 was 

downregulated using target-specific siRNA, followed by infection with wild-type C. jejuni 

and CRIB-GST pulldowns. Western blotting controls verified that each of these GEFs is 

downregulated as expected but a scrambled non-targeting siRNA control did not influence the 

expression of any of the chosen GEFs. The results of subsequent CRIB-GST pulldown assays 

showed that, while the downregulation of Vav2 led to the predominant inhibition of Cdc42-

GTP levels (Fig. 22A), both downregulation of Tiam-1 and DOCK180 (Fig. 22B, C) or 

transfection of scrambled siRNA control had no significant effect on C. jejuni-triggered 

Cdc42-GTP production (Fig. 22D-F). Importantly, downregulation of Vav2 did not 

significantly reduced Rac1-GTP levels in the same assay, while downregulation of Tiam-1 

and DOCK180 led to the predominant inhibition of Rac1-GTP levels (Fig. 22D-F). These 

findings are in agreement with the hypothesis that different GEFs regulate different GTPases 

during C. jejuni infection. Vav2, but not Tiam-1 or DOCK180, plays a crucial role in C. 

jejuni-induced Cdc42 activation; while Tiam-1 and DOCK180, but not Vav2 are involved in 

C. jejuni-induced Rac1 activation.  
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Figure 22: Importance of guanine exchange factors for C. jejuni-induced Rac1- and Cdc42 
activation. INT-407 cells were transfected for 48 hrs with siRNA for Vav2 (A), Tiam-1 (B) or 
DOCK180 (C) as well as a scrambled siRNA as control for each experiment. Immunoblotting with the 
indicated antibodies confirmed knockdown of the respective proteins. GAPDH expression levels were 
determined as loading control. Quantification of Rac1- and Cdc42-GTPase activity after infection with 
C. jejuni wt 81-176 for 6 hrs. The presence of active Rac1-GTP and Cdc42-GTP was analyzed by 
CRIB-GST pulldown assays followed by Western blotting using α-Rac1 and α-Cdc42 antibodies (D-
F). One hundred % of activity corresponds to the highest amount of detected Rac1- and Cdc42-GTP 
level. 
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5.2.10 Tiam-1 and DOCK180 act cooperatively to trigger Rac1 activation and C. jejuni 
invasion downstream of FAK  
 

In the above experiments it was noted that downregulation of the GEFs Tiam-1 or DOCK180 

did not lead to a complete blockade of Rac1 activity and C. jejuni uptake. Therefore, it was 

proposed that both GEFs may act together in C. jejuni-infected cells. To investigate this 

question, Tiam-1 and DOCK180 expression was downregulated by siRNA, either alone or 

simultaneously, followed infection with wild-type C. jejuni and G-Lisa to determine Rac1 

activity. The results show that simultaneous downregulation of Tiam-1 and DOCK180 led to 

a profound block of C. jejuni-induced Rac1 activity (Fig. 23A, B). A similar strong blockade 

of Rac1 levels was achieved in infected FAK-/- cells (Fig. 19B) or by infection in the presence 

of the FAK kinase inhibitor PF-573228 (Fig. 23C). As expected, simultaneous 

downregulation of Tiam-1 and DOCK180 resulted not only in the profound inhibition of Rac1 

activity but also profound blockade of C. jejuni invasion (Fig. 23D). These data suggest that 

the above experiments work identified an important pathway of C. jejuni host cell entry, 

proceeding by activation of a FAK→Tiam-1/DOCK180→Rac1 signalling cascade 

downstream of fibronectin and intergin-β1.  
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Figure 23: Importance of Tiam-1, DOCK180 and FAK activation in C. jejuni-induced Rac1 
activation and bacterial invasion. (A) INT-407 cells were transfected for 48 hrs with siRNA for 
Tiam-1, DOCK180 or a scrambled siRNA as control. Quantification of Rac1 GTPase activity after 
infection with wild-type (wt) C. jejuni 81-176 for 6 hours. The presence of bound, active Rac1-GTP 
was analyzed by G-Lisa. One hundred % of activity corresponds to the highest amount of detected 
GTPase-GTP level (lane 1). (B) Immunoblotting with the indicated antibodies confirmed knockdown 
of the proteins. GAPDH expression levels were determined as control. (C) Addition of FAK kinase 
inhibitor PF-573228 during a 6 hour infection led to the disappearance of Rac1-GTP and FAK 
phosphorylated at Y-397. Active Rac1-GTP levels were determined by CRIB-GST pulldowns. (D) 
Intracellular bacteria were quantified by gentamicin protection assays in the indicated siRNA-treated 
cells. (**) P≤0.001 were considered as statistically significant as compared to the control.  
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5.2.11 The flagellum is also involved in C. jejuni-induced Rac1 activation and invasion 

 

The above experiments and previously published work (Krause-Gruszczynska et al., 2007b) 

indicated that CadF is not the sole bacterial gene involved in C. jejuni-induced GTPase 

activation. Thus, the following experiments were desgined to search for other bacterial factors 

playing a role in this signalling. The flagellar apparatus was reported to be one of the most 

intensively investigated pathogenicity determinant in C. jejuni (Konkel et al., 2004; Guerry, 

2007). To test the hypothesis that the flagellar apparatus maybe also involved in GTPase 

activation, host cells were infected with the wild-type strain 81-176 and its isogenic mutants 

ΔflaA/B, lacking the two major flagella subunits FlaA and FlaB (Goon et al., 2006), and 

ΔflhA, a key element involved in the coordinate regulation of late flagellar genes and other 

factors in C. jejuni (Carillo et al., 2004). First, I confirmed the absence of flagella in both 

mutants (Fig. 24A), followed by infection assays. As expected activated Rac1 and Cdc42 was 

detected in FAK-positive cells after infection with wild-type C. jejuni (Fig. 24B). In contrast, 

no detectable Rac1 and Cdc42 activation was found in cells infected with ΔflaA/B or ΔflhA 

mutants during the entire course of infection (Fig. 24B), indicating an important role of the 

flagellum in activating Rac1 and Cdc42 by C. jejuni, in addition to the contribution by CadF 

as shown above.  

 

There is some controversy in the literature about whether the C. jejuni flagellum-mediated 

bacterial motility is important for invasion or if the flagellum can secrete invasion-related 

bacterial factors in the supernatant (Konkel et al., 2004; Novik et al., 2010). To investigate if 

the flagellar effect on invasion is direct or indirect, we were searching for a condition in 

which the flagellar motility is not affected, but invasion can be impaired. An α-FlaA antibody 

against a conserved region at the amino-terminus of FlaA was generated, and this antibody 

recognises C. jejuni FlaA proteins in Westernblots (Fig. 25D). Wild-type C. jejuni was then 

pre-incubated with the α-FlaA antibody or pre-immune serum as control followed by motility 

assays in soft agar. Treatment of any of the used C. jejuni strains with the pre-immune serum 

revealed no significant differences in bacterial motility or invasion as compared to non-treated 

bacteria (Fig. 25A, C and data not shown). The results also showed that while the presence of 

α-FlaA antibody had a slight but no significant effect on motility of wild-type C. jejuni or 

ΔcadF mutant (Fig. 25A, B), bacterial invasion was significantly impaired as determined by 

gentamicin protection assay (Fig. 25C, D). This suggests that the flagellum of C. jejuni has a 

motility-independent activity which is involved in bacterial entry into host target cells.  
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Figure 24: Importance of the flagellar apparatus for C. jejuni-induced activation of Rac1 and 
bacterial invasion. (A) High resolution field emission scanning electron microscopy of C. jejuni wild-
type (wt) 81-176, 81-176∆flaA/B and 81-176∆flhA mutants. (B) FAK- positive cells were infected 
with the indicated strains in a time course. The presence of bound, active Rac1-GTP was analyzed in 
CRIB-GST pulldown assays. One hundred % of activity corresponds to the highest amount of detected 
GTPase-GTP level. The amount of intracellular bacteria was quantified by gentamicin protection 
assays. (**) P≤0.001 were considered as statistically significant as compared to the control. 
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Figure 25: Different effects of an α-FlaA antibody on C. jejuni motility and host cell invasion. (A) 
Quantification of motility using the indicated wt and mutant strains in the presence of 20 µg/ml α-
FlaA antibody or pre-immune (PI) serum as control. One hundred % of motility corresponds to the 
highest motility presented by C. jejuni wt strain 81-176. (B) Examples of motility phenotypes with 
indicated strains. (C) INT-407 cells were infected with the indicated wt and mutant strains for 6 hrs in 
presence or absence of 20 µg/ml α-FlaA antibody or PI serum as control. Intracellular Campylobacter 
cells were quantified by gentamicin protection assays. (D) The α-FlaA immunoblot shows that 
flagellin is expressed in wt and ΔcadF C. jejuni, but not in flagellar mutant bacteria. The α-MOMP 
immunoblot served as loading control. (*) P≤0.05 and (**) P≤0.005 were considered as statistically 
significant when compared to the control. 
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6. DISCUSSION 
 

Campylobacter species are commensals in many birds and domestic mammals, and have been 

described as being the most important cause of bacteria-caused food poisoning worldwide. 

Campylobacter jejuni is the most predominant and best described species in this genus. 

Infection with C. jejuni is the major cause of human bacterial gastroenteritis worldwide and 

may be responsible for as many as 400–500 million cases annually (Friedman et al., 2000). 

The “U.S. Centers for Disease Control and Prevention” estimated that C. jejuni causes food-

borne illness per year in about 1% of the entire population in the United States (Hu et al., 

2008). Disease outcome varies from mild, non-inflammatory, self-limiting diarrhea to severe, 

inflammatory, bloody diarrhea lasting for several weeks, but is also associated with the 

development of the reactive arthritis and peripheral neuropathies, the Miller–Fisher and 

Guillain–Barrè syndromes (Wassenaar and Blaser, 1999; Young et al., 2007; Poly and 

Guerry, 2008; Blaser and Engberg, 2008). The availability of numerous complete genome 

sequences of different C. jejuni strains has unravelled an organism that exhibits a large degree 

of strain to strain variation. This natural heterogeneity has made studying the pathogenicity 

mechanisms of this pathogen particularly challenging. However, significant progress has been 

made in recent years in contributing to our understanding of the role of several key factors 

including the cytolethal distending toxin CDT (Lara-Tejero and Galan, 2000; Ge et al., 2008) 

as well as glycosylation and molecular mimicry processes (Guerry and Szymanski, 2008; 

Nothaft and Szymanski, 2010). However, one of the key differences between infection of 

humans and chickens by C. jejuni and other species is the apparently increased number of 

bacteria invading epithelial cells in the human host (Young et al., 2007; Nachamkin et al., 

2008). This suggests that both bacterial adherence to and invasion into intestinal epithelial 

cells as well as breaching the epithelial barrier in the gut system may be critical virulence 

mechansims that are essential for disease development. Genome analyses revealed a notable 

absence of numerous classical pathogenicity factors in C. jejuni, making predictions very 

difficult. Since a suitable animal model system mimicking human infection is also not 

available, a wide variety of in vitro cell culture models have been applied to identify the C. 

jejuni factors that play a role in adherence and invasion (Table 1). Unfortunately, the use of 

different C. jejuni strains and various cell models of infection led to substantial confusion and 

controversies in the literature. Thus, the identification of novel bacterial and host factors as 

well as signalling pathways and other mechanisms involved in infection processes is a 

http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2007.00971.x/full#b1#b1
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pressing issue and the key for better understanding of the pathogenesis and developing 

therapeutics to treat corresponding infections in future. 

 

 
6.1 Role of the HtrA protease in C. jejuni transmigration across polarised epithelial cells 

 

The intestinal mucosa in the human gut forms a tight barrier which protects against invasion 

of the host by commensal non-pathogenic microbes residing in the intestinal lumen. Some 

enteric pathogenic bacteria, such as Salmonella, Shigella, or Listeria, have specific tissue-

invading properties and can physically breach the intestinal mucosal barrier (Salyers and 

Whitt, 1994; Cossart and Sansonetti, 2004; Rottner et al., 2005; Backert and Koenig, 2005). 

In general, bacterial pathogens can translocate via a paracellular route (migration from the 

apical to the basolateral cell surface by passage between neighbouring cells) or a transcellular 

route (migration from the apical to the basolateral cell surface by host cell uptake, followed 

by intracellular trafficking). Pathogen-induced passage of the human intestinal mucosa may 

involve crossing of absorptive enterocytes or passage through the specialized microfold cells 

(so-called M-cells) in the gut epithelium. In addition to transcellular entry, some other 

bacterial pathogens can disrupt the tight junctions between enterocytes and cross via the 

paracellular mechanism (Cossart and Sansonetti, 2004; Rottner et al., 2005; van Alphen et al., 

2008). A well studied example is Salmonella enterica serovar Typhimurium which can also 

cross the intestinal barrier. All known Salmonella are highly invasive, facultative intracellular 

pathogens that preferentially enter the M cells overlaying small intestinal Peyer’s patches, 

although they can also enter and pass through epithelial cells of the intestinal tract in vivo and 

in cultured polarized epithelial cells in vitro (Gerlach and Hensel, 2007; Stecher and Hardt, 

2008; Tsolis et al., 2008). In addition, Salmonella can penetrate the intestinal epithelial barrier 

by uptake into dendritic cells (DCs) that protrude into the intestinal lumen (Niess et al., 2005). 

Once the Salmonella have crossed the epithelium, they are present either inside the DCs or are 

quickly taken up by those cells or macrophages within the lamina propria. Once internalized, 

macrophages then transport the bacteria from the gastrointestinal tract to the bloodstream, 

ultimately leading to a systemic infection in the human body (Cossart and Sansonetti, 2004; 

Gerlach and Hensel, 2007; Tsolis et al., 2008). Shigella flexneri may also breach the intestinal 

barrier by transcytosis across M cells (Cossart and Sansonetti, 2004; Rottner et al., 2005). On 

the other hand, very little is known about C. jejuni. It has previously been reported to undergo 

transcellular translocation across polarised mucosa; but there have also been reports on the 

http://www3.interscience.wiley.com/cgi-bin/fulltext/121358192/main.html,ftx_abs#b6#b6
http://www3.interscience.wiley.com/cgi-bin/fulltext/121358192/main.html,ftx_abs#b6#b6
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paracellular translocation of this pathogen (Konkel et al., 1992a; Everest et al., 1992; Harvey 

et al., 1999; Monteville and Konkel, 2002; Hu et al., 2008; Rees et al., 2008; Kalischuk et al., 

2009). The reason for these discrepancies is not fully clear, but is probably due to the lack of 

bacterial factors involved in transmigration and different methodologies, as will be discussed 

below and compared with the data obtained in the present study. 
 
Cultured mammalian cells are commonly used as a simple model system in order to 

investigate the interactions between a given bacterial pathogen and the host epithelial cell, and 

this system is more easily controlled as compared to infection studies in whole animals. The 

MKN-28, Caco-2, HT29, and T84 human cell lines exhibit the ability to form polarized cell 

monolayers when grown under appropriate conditions, thereby affording a model to assess the 

ability of bacteria to translocate across an intact epithelial cell barrier (Monteville and Konkel, 

2002; Wroblewski et al., 2009). Polarized cells are characterized by defined apical and 

basolateral cell surfaces separated by tight junctions (Fig. 26A), which limit the passage of 

solutes through the paracellular spaces (Balkovetz and Katz, 2003). Transepithelial electrical 

resistance (TER) is very often used as an index of tight junction permeability and cell 

monolayer integrity. Disruption of the intercellular tight junctions by certain damage or 

infections can result in a decrease in TER. Previous work has revealed that C. jejuni can 

translocate Caco-2 and other polarized cell monolayers without a concomitant loss in TER 

(Konkel et al., 1992a; Everest et al., 1992; Harvey et al., 1999; Bras and Ketley, 1999), 

indicating that C. jejuni can translocate across a given polarised cell monolayer whose 

integrity, however, remains intact. In contrast, other research groups reported on a time-

dependent decrease of TER caused by C. jejuni infection while the bacterial factor(s) 

triggering a reduction in TER were not addressed (Chen et al., 2006; Wine et al., 2008; 

Pogacar et al., 2010). Thus, there are some conflicting data in the literature and a consensus is 

yet to be reached among investigators as to the mechanism of translocation. 
 

One major aim of the present work was therefore to address some of the above questions 

directly. For example, we asked if the serine protease HtrA in C. jejuni could play a role in 

targeting host proteins and could be involved in bacterial crossing the polarised epithelial cell 

layer? The idea for this project came when the groups of Prof. S. Wessler (University 

Salzburg) and Prof. S. Backert (University Magdeburg and University College Dublin) 

discovered that HtrA from the related bacterial pathogen Helicobacter pylori is actively 

secreted into the culture supernatant (Hoy et al., 2010). This was a very surprising finding at 

that time because it is well known that HtrA is a chaperone and protease in the periplasm of 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pogacar%20MS%22%5BAuthor%5D
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many bacteria including E. coli, playing crucial roles in protein quality control, protein 

folding, and preventing host induced protein-denaturation and bacterial unfolded protein 

responses (Clausen et al., 2011). Moreover, Hoy and co-workers could show that H. pylori 

HtrA cleaves the ectodomain of the cell adhesion protein and tumor suppressor E-cadherin 

and in this way H. pylori disrupted the intercellular barrier between polarised MKN-28 host 

cells, allowing H. pylori to access the intercellular space and basolateral surfaces (Hoy et al., 

2010). We therefore asked if the above new findings may represent a common phenomenon in 

bacterial pathogenesis including that of C. jejuni ?  

 

Novel data presented in this work show that HtrA from C. jejuni can be indeed secreted into 

the cell culture supernatant during bacterial growth in BHI medium or during infection of 

MKN-28 cells. In addition, it was shown that C. jejuni can cross polarised MKN-28 

monolayers very rapidly. The first viable transmigrated wild-type C. jejuni CFU were 

detected after 15-30 min (Fig. 11 and data not shown). In contrast, invasion of different types 

of host cells was observed at much later time points and was obvious between 4-6 hours of 

infection (Figs. 13, 17). These facts alone already indicate that transmigration of C. jejuni via 

the transcellular route would take much longer time until the first bacteria would reach 

basolateral surface as observed in the transwell assays. Instead, these findings strongly argue 

for the paracellular route mainly used by these bacteria. Moreover, it was found that the 

generated isogenic C. jejuni ∆htrA mutants exhibited a strongly reduced transmigration 

potential, indicating that HtrA indeed plays a role in this process. In addition, evidence was 

presented that recombinant HtrA from C. jejuni can cleave E-cadherin in vitro, and during 

infection in vivo. the NTF domain from E-cadherin, while it leaves the receptor molecule 

fibronectin uncleaved. Thus, cleavage of E-cadherin may be involved in C. jejuni 

transmigration. (Figs. 9, 10). The exact cleavage sites are yet unknown, but this is under 

investigation by other lab members in our groups. In addition, the total amount of cell-based 

E-cadherin dropped down during the course of infection, but did not lead to a complete 

cleavage even at late time points of infection (6 hrs). We propose that cleavage of E-cadherin 

by HtrA during infection is a temporary and locally restricted process, possibly achieved by 

surface-exposed and/or secreted HtrA proteins when the bacteria enter the intercellular space. 

Host cells continuously translate large amounts of E-cadherin proteins, and therefore cleaved 

proteins could be rapidly replaced by the host cell machinery. This hypothesis could also 

explain why no significant reduction in TER was observed during infection with C. jejuni.  
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Figure 26: Proposed model of epithelial intercellular junctions and interactions with C. jejuni. 
(A) Schematic presentation of a polarized cell layer in epithelium. Different types of cell junctions are 
shown, including the tight junctions (TJs, blue), adherens junctions (AJs, violet) and focal adhesions 
(FAs, orange) before C. jejuni entry the host cell. (B) Campylobacter jejuni secretes the HtrA protease 
into the extracellular space where it can cleave the junctional protein E-cadherin, allowing C. jejuni to 
enter the cell monolayer by the paracellular route. (C) Once C. jejuni reaches basolateral surfaces, it 
can bind to the fibronectin/integrin host cell receptor complex and activate different signalling 
cascades which result in C. jejuni engulfment and uptake into the cells. 
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Although significant progress with respect to identification of the first C. jejuni factor and the 

first host cell target involved in transmigration of the pathogen has been clearly identified in 

this work, a couple of questions were not yet addressed and need to be answered in future 

studies. First, it is not yet clear how HtrA, both from C. jejuni and H. pylori, is secreted into 

the extracellular space. HtrA from both species have a conserved signal peptide at the amino-

terminus (Fig. 3), which is used for its transport to the periplasm, explaining the commonly 

known periplasmic nature of HtrA. This explains how the protein can pass the inner bacterial 

membrane by a classical Sec-dependent transport pathway, but does not give a hint how the 

protein can pass the outer membrane of the Gram-negative bacterium. However, very recent 

data from our group and Swedish collaborators on the composition of shedded outer 

membrane vesicles (OMVs) from H. pylori showed that HtrA is predominantly present in 

these extracellular compartments (Olofsson et al., 2010). HtrA from Chlamydia trachomatis 

may also be present in OMVs as shown recently (Wu et al., 2011). Thus, this secretion route 

can certainly represent one possible mechanism how HtrA can be transported outside of the 

bacteria. However, the process of bacterial OMV generation in cell culture takes several hours 

(Olofsson et al., 2010), which does not explain the rapid transmigration of C. jejuni in the 

transwell assays. Therefore, we propose that another more rapid secretion mechanism must 

exist in these bacteria, which should be investigated in future studies.  

 

Second, it is not yet clear how C. jejuni passes the tight junctions between polarised cells, 

which are located above the E-cadherin-based adherens junctions (Fig. 26A). An interesting 

hypothesis is that HtrA might also cleave other host cell surface proteins possibly including 

tight junction proteins. If this is the case is not yet clear. In this context, however, it should be 

also noted that I have identified two other C. jejuni protein candidates (at 63 kDa and 42 kDa) 

with proteolytic activity in casein assays (Fig. 6). The identity of these proteins should be 

identified and functional studies must be performed. Third, it would be also highly interesting 

to investigate if C. jejuni HtrA can cleave chicken E-cadherin, because the current work is 

restricted to human E-cadherin. Human and chicken E-cadherins differ by certain 

polymorphisms, and when chicken E-cadherin cannot be cleaved by HtrA this could explain 

why C. jejuni is not invasive in avian species and lives there as a commensal. Thus, the 

present work also provides a series of new ideas for future experiments. 
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6.2 The small Rho GTPases Rac1 and Cdc42 play a crucial role in C. jejuni host cell 

invasion 

 
After having established that C. jejuni can mainly cross the epithelial barrier via the 

paracellular route between neighbouring cells, with secreted HtrA cleaving E-cadherin 

playing a role (Fig. 26), the next aim was to investigate how this pathogen can enter the host 

target cells directly. Host cell invasion is an important process during infection of many 

pathogenic bacterial species and involves numerous steps such as bacterial binding at specific 

receptor sites, signalling to the host cell, re-programming of intracellular host signal 

transduction pathways, membrane and cytoskeletal rearrangements, and eventual engulfment 

of the bacterium (Cossart and Sansonetti, 2004; Rottner et al., 2005; Backert and Koenig, 

2005). The latter processes commonly involve the activity of one or more small Rho 

GTPases. Rho GTPase family members, including its major members Rac1, Cdc42 and 

RhoA, are small GTP-binding proteins that serve as guanine nucleotide-regulated switches 

which transmit external stimuli to modulate different cellular functions (Tran Van Nhieu et 

al., 1999; Cossart and Sansonetti, 2004; Schmidt and Hall, 2002; Rottner et al., 2005; Tomar 

and Schlaepfer, 2009). Importantly, host cell entry of C. jejuni is considered as one of the 

primary reasons for bacterial-caused tissue damage of this pathogen, however, the molecular 

mechanism(s) of C. jejuni invasion is/are widely unclear. The group of Prof. S.Backert has 

previously shown that C. jejuni invasion of INT-407 cells is accompanied by time-dependent 

activation of small Rho GTPases Rac1 and Cdc42 (Krause-Gruszczynska et al., 2007b), but 

the specific signalling cascades remained to be investigated. The second main aim of this PhD 

thesis was therefore to continue this work and pinpoint more signalling factors in these Rho 

GTPase activation pathways. Combined with the data of the PhD thesis of M. Krause-

Gruszczynska (2008), the present work leads to the completion of two independent GTPase 

cascades which are embedded in an overall model of C. jejuni-induced disease-associated 

signalling pathways as presented in Figure 27.  

 

Our previous work using specific GTPase-modifying toxins, inhibitors and GTPase 

expression constructs showed that Rac1 and Cdc42 activity is clearly involved in C. jejuni 

invasion (Krause-Gruszczynska et al., 2007b). In this work, I started with confirming that 

infection with C. jejuni induces the activation of Cdc42-GTP and Rac1-GTP levels using a 

novel ELISA-based procedure, called G-Lisa. The obtained results were in good agreement 

with the previously published time-dependent activation of both small Rho GTPase members 

(Krause-Gruszczynska et al., 2007b). Further experiments using the lipid raft-disrupting 
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compound methyl-beta cyclodextrin (MβCD), sequestering cholesterol, indicated that lipid 

rafts and possibly one or more lipid raft-associated host receptor(s) are involved both in 

bacterial invasion and GTPase activation. Using knockout cell lines of different host receptors 

(fibronectin -/-, GD25 integrin-β1-/-) and kinases (FAK-/-), siRNA transfection, G-Lisa, CRIB 

pulldowns, gentamicin protection assays and electron microscopy I was able to demonstrate 

that C. jejuni exploits two pathways leading to Rac1 or Cdc42 activation. The first identified 

pathway involves a fibronectin→integrin-β1→FAK→DOCK180/Tiam1 signalling cascade, 

which is important for triggering Rac1 GTPase activity followed by bacterial entry of host 

target cells. Using the same knockout cells lines of several host receptors and kinases and 

additionally the SYF knockout cell line and similar methodology, it could be shown that C. 

jejuni exploits a fibronectin→integrin-β1→FAK/Src→EGFR/PDGFR→PI3-kinase→Vav2 

signalling pathway, which is crucial for triggering Cdc42 GTPase activation and invasion.  

 

Most of the recent studies in the literature investigating C. jejuni invasion processes utilized 

pharmacological inhibitors or dominant-negative constructs which may have side effects, and 

thus only provide very limited clarity on host factors playing crucial roles in the bacterial 

entry process. In this work, I was using a series of knockout cell lines for infection assays. 

These cell lines have the important advantage over other cell systems that the respective genes 

of interest were completely deleted in the chromosomes. Thus, not even small traces of 

protein are expressed, allowing clear answers if certain genes are involved in a given response 

or not. In addition, C. jejuni has two reported fibronectin-binding proteins, CadF and FlpA 

(Moser et al., 1997; Konkel et al., 2010; Euker and Konkel, 2011), and maximal host cell 

entry of C. jejuni shown here was widely dependent on the expression of fibronectin, integrin-

β1 and FAK. Since integrin-β1 is the natural receptor of fibronectin (Hauck et al., 2002; Hsia 

et al., 2003), the data of this work suggest a cascade of signalling events in a 

fibronectin→integrin-β1→FAK dependent fashion. In addition, it was found that Rac1-GTP 

and Cdc42-GTP levels induced by C. jejuni were significantly elevated in infected FAK-

expressing but not in FAK-deficient cells, and GTPase activation was confirmed conclusively 

by two independent approaches, GST-CRIB pulldown and G-Lisa. In line with these 

observations, high-resolution electron microscopy (FESEM) revealed membrane dynamics, 

ruffling, filopodia formation and tight engulfment of C. jejuni upon infection with wild-type 

control cells, but not in any of the infected knockout cell lines. These findings provided 

further clear evidence that fibronectin, integrin-β1 and FAK are major host factors playing not 

only a role in Rac1 and Cdc42 activation but also in host cell entry of the C. jejuni. 
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Interestingly, our electron microscopic observations are very similar to that reported for 

Staphylococcus aureus, a Gram-positive pathogen also expressing various fibronectin-binding 

proteins, because infected fibronectin-/- or FAK-/- cells were also severely impaired in their 

ability to internalize the latter bacteria (Agerer et al., 2005; Schroeder et al., 2006). 

Furthermore, integrin-mediated uptake of S. aureus depends on the integrity of membrane-

associated lipid raft microdomains (Hoffmann et al., 2010), and this is in line with the finding 

that MβCD-treatment blocked internalization of C. jejuni. 

 

By engaging fibronectin and integrin-β1, C. jejuni seems to exploit the ability of this receptor 

complex to dynamically associate with the intracellular cytoskeleton and to generate the 

necessary pulling forces to promote bacterial uptake by the host cell. In non-infected healthy 

tissues, integrin-β1-containing fibrillar cell adhesions are important for the organisation of the 

extracellular matrix, as they co-align with fibronectin fibrils, and genetic elimination of 

integrin-β1 in GD25 cells results in defects in the assembly of a fibrillar meshwork of 

extracellular fibronectin (Danen et al., 2001; Wennerberg et al., 1996, Leiss et al., 2008). 

Cellular pulling forces generated via an integrin-β1-mediated linkage to the actin-myosin 

network seem to be critical for fibronectin fibril formation, as force triggered conformational 

changes are essential to expose cryptic oligomerisation motifs within the fibronectin 

molecules (Sechler et al., 2001). Importantly, FAK has been shown to play a key role in the 

formation of a fibrillar fibronectin extracellular matrix. Cultured FAK-/- cells in vitro, as well 

as FAK-/- mouse embryos in vivo, fail to properly assemble fibronectin fibrils (Ilic et al., 2004; 

Leiss et al., 2008). In accordance with the fact that FAK-/- cells are unable to properly organise 

the extracellular fibronectin matrix, it could be found that these cells are deficient in the 

ability to internalise C. jejuni, suggesting that fibronectin/integrin-linkages to the actin 

myosin network are disrupted and pulling forces are not provided. As one would expect from 

these results, C. jejuni profoundly stimulated FAK phosphorylation linked to its kinase 

activity during infection (Fig. 20). The activation of FAK has also been described for other 

pathogens targeting integrins for bacterial invasion or other purposes, including S. aureus 

(Agerer et al., 2005), Yersinia pseudotuberculosis (Alrutz and Isberg, 1998; Eitel et al., 2005) 

and Helicobacter pylori (Kwok et al., 2007; Tegtmeyer et al., 2010), thus FAK seems a 

favourite target in bacterial pathogenesis and is not restricted to C. jejuni invasion. 

 

The observation that FAK expression and activation is required for both C. jejuni-triggered 

Rac1 and Cdc42 activity and invasion, led us to investigate the involved downstream 
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signalling in more detail. A series of well-described GEFs downstream of FAK are 

DOCK180, Tiam1 and Vav2 (Hauck et al., 2002; Hsia et al., 2003). Using siRNA knockdown 

assays, the importance of GEFs including Tiam-1, DOCK180 or Vav2, was investigated for 

the production of Rac1-GTP and Cdc42-GTP levels in infected cells. Importantly, it was 

found that while siRNAs against DOCK180 or Tiam1 exhibited diverse downregulatory 

effects but no complete elimination of Rac1-GTP when applied separately, the double 

knockdown of both GEFs eliminated Rac1-GTP almost completely. Thus, DOCK180 and 

Tiam1 seem to act cooperatively to activate Rac1. Furthermore, Vav2 (but not Tiam-1 or 

DOCK180) was required for C. jejuni-induced Cdc42 activation as verified by siRNA 

knockdown. Thus, there are two separate signalling pathways downstream of FAK leading to 

activation of Rac1 and Cdc42. 

 

The observation that FAK expression and activation is required for C. jejuni-triggered Rac1 

activity and invasion represents a novel signalling pathway. In fact, C. jejuni induced the 

phosphorylation of FAK at Y-397 and Y-925, and expression of FAK point mutants including 

Y397F, K454R, Y925F or ∆PR1/2 (two proline-rich domains, required for protein-protein 

interactions) in FAK-/- cells did not restore bacterial uptake as compared to wt FAK (this work 

and PhD thesis of M. Krause-Gruszczynska, 2008). A well-described GEF downstream of this 

FAK signalling is DOCK180 (Hauck et al., 2002; Hsia et al., 2003). The signalling cascade 

involves p130Cas, an adapter molecule binding to proline-rich residues in the carboxyl-

terminal domain of FAK. p130Cas then associates with the adapter protein Crk and this 

complex activates DOCK180. In addition, it has been shown that expression of phospho-

mimetic FAK-Y925E enhanced cell protrusions together with activation of the same 

DOCK180-dependent Rac1 signalling pathway, thus, phosphorylation of FAK at Y-925 is 

also involved this scenario (Deramaudt et al., 2011). These observations are in well 

agreement with our findings, suggesting that C. jejuni activates a classical 

FAK→p130CAS→Crk→DOCK180→Rac1 signalling pathway. However, as mentioned 

above, siRNA knockdown of DOCK180 expression was not sufficient to completely 

eliminate Rac1 activity and bacterial invasion. The other GEF required for C. jejuni-induced 

Rac1 activation was Tiam-1, but the molecular mechanism how FAK can target Tiam-1 is not 

yet clear. Interestingly, syndecan-2-mediated cell migration was diminished when cells were 

transfected with non-phosphorylatable FAK Y397F mutant or siRNA against Tiam-1, 

suggesting that a FAK→Tiam-1→Rac1 signalling pathway is activated (Park et al., 2005). If 
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FAK can stimulate Tiam-1 directly or via another factor during infection with C. jejuni, 

however, needs to be investigated in future studies.  

 

 

 
 

Figure  27: Hypothetical model for C. jejuni-induced signalling events leading to bacterial 
invasion and establishing infections. C. jejuni adheres to host cells via numerous reported 
and unknown factors. Several indicated host cell receptors have been proposed to play a role 
in the uptake of the bacteria, including two pathways via fibronectin, integrin and FAK 
leading to the activation of GTPases Rac1 and Cdc42, respectively. This potentially causes 
localized F-actin and/or microtubule rearrangements at the site of C. jejuni entry, resulting in 
engulfment and bacterial uptake. Several other indicated host cell signalling pathways such as 
Caveolin-dependent entry and intracellular survival in Campylobacter-containing vacuoles 
(CCVs) have been reported in in vitro infection models and may play a role during 
pathogenesis in vivo. Numerous other bacterial and host factors shown here are described in 
Tables 1 and 2. For more details, see text. 
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The above siRNA data indicate that Vav2 was required for C. jejuni-induced Cdc42 

activation. The importance of Vav2 was then confirmed by the expression of dominant-

negative plasmid constructs and the use of Vav1/2 knockout cells in infection assays (Fig. 

23). Bacterial adhesion was also reduced in infected Vav1/2 knockout cells, which can be 

explained by reduced GTPase activation as compared to wild-type cells. This is in agreement 

with reports showing that Vav2 is also involved in the uptake of other pathogens including 

Yersinia and Chlamydia (Lane et al., 2008; McGee et al., 2003). Moreover, in our previous 

studies the expression of various point mutations in Vav2 clearly linked this signalling 

directly to growth factor receptors and PI3-kinase (PhD thesis of M. Krause-Gruszczynska, 

2008). The application of selective inhibitors during C. jejuni infection showed then that the 

kinase activities of EGFR, PDGFR and PI3-kinase are also required for Cdc42 activation. 

This was also confirmed by the expression of dominant-negative versions of EGFR or 

PDGFR, which exhibited suppressive effects on C. jejuni uptake (PhD thesis of M. Krause-

Gruszczynska, 2008). Extensive research on the regulation of growth factor receptor 

activation and signalling by integrin-mediated cell adhesion indicates that these two classes of 

receptors work cooperatively. Several studies showed that integrin ligation allows for the 

maximal activation of EGFR or PDGFR, thereby producing robust intracellular signals 

including small Rho GTPase activation (Cadobi et al., 2004; Alexi et al., 2011). These 

observations are in well agreement with our findings, suggesting that C. jejuni activates, via 

fibronectin and integrins, a FAK/Src→EGFR/PDGFR→PI3-kinase→Vav2→Cdc42 

signalling pathway (Fig. 27). However, transfection with both dominant-negative PDGFR and 

dominant-negative EGFR constructs resulted in no additive reduction of C. jejuni invasion 

(PhD thesis of M. Krause-Gruszczynska, 2008). These latter finding suggests that besides 

EGFR and PDGFR other signalling pathway(s) are also implicated in C. jejuni internalization. 

 

Previous studies in Prof. Backert’s group indicated that C. jejuni pathogenicity factors such as 

cytolethal distending toxin CDT, plasmid pVir, the adhesin PEB1 or certain capsular genes 

are not required for C. jejuni-induced Rac1 and Cdc42 activation (Krause-Gruszczynska et 

al., 2007b). In the present work, I found that an isogenic ΔcadF mutant less efficiently 

induced activation of Rac1-GTP and Cdc42-GTP as compared to wild-type C. jejuni, 

suggesting that the fibronectin-binding protein CadF, probably in concert with another 

proposed novel fibronectin-binding protein FlpA (Eucker and Konkel, 2011), could be 

involved in GTPase activation. It therefore appears that CadF does not only act as a canonical 

adhesin for bacterial attachment to fibronectin, but could also stimulate integrins as well as 
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FAK, EGFR and PDGFR kinase activity, which subsequently may activate Vav2 and Cdc42, 

important for maximal C. jejuni invasion. Since ΔflaA/B or ΔflhA knockout mutants lacking 

the flagella induced only very little Rac1-GTP and Cdc42-GTP levels, another C. jejuni 

determinant playing a role in Rac1 and Cdc42 activation is the flagellar apparatus. The 

flagellum appears to be a major colonization determinant of Campylobacter, shown to be 

essential for successful infection of several animal models (Morooka et al., 1985; Wassenaar 

et al., 1993; Hendrixson and DiRita, 2004). In addition, FlaA/B proteins play a profound role 

in C. jejuni invasion of epithelial cells (Poly and Guerry, 2008; Wassenaar et al., 1991; Grant 

et al., 1993; Yao et al., 1994). However, the possible impact of flagellar proteins in host cell 

entry is controverse in the literature. One hypothesis is that the flagella, like their evolutionary 

related T3SS counterparts, can secrete invasion-associated factors such as CiaB and others 

into the culture supernatant (Konkel et al., 1999b, 2001, 2004; Eucker and Konkel, 2011). 

The other hypothesis is that flagella-mediated bacterial motility is the driving force to permit 

host cell entry, but deletion of ciaB has no impact (Novik et al., 2010). Thus, it is still not 

clear if the flagellum, unlike its well-known function in bacterial motility, may transport 

bacterial effectors into the medium or into the host cell. Alternatively, the flagellum itself may 

target a host cell receptor directly to trigger signalling involved in invasion (Fig. 27), which 

should be investigated in future studies. 
 

 

6.3 C. jejuni host cell invasion by the “zipper” or the “trigger” mechanism ? 

 

There are two general strategies by which the multitude of enteric bacterial pathogens can 

enter host target cells. According to specific characteristics of the invasion process, we can 

distinguish between the classical “zipper”- and “trigger”-mechanisms, respectively (Cossart 

and Sansonetti, 2004). The “zipper”-mechanism is initiated by one or more bacterial surface 

proteins (commonly comprising adhesins and invasins) which bind to one or more specific 

host cell receptors followed by internalization, as reported for Staphylococcus, Yersinia or 

Listeria species (Fig. 28A). On the other hand, the “trigger”-mechanism involves T3SSs and 

T4SSs injecting bacterial proteins which often mimic or hijack specific host cell factors to 

trigger the bacterial uptake process, as described for Salmonella, Bartonella and Shigella (Fig. 

28B). 
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Figure 28: Primary mechanisms of bacterial invasion into non-phagocytic host epithelial cells. 
Schematic representation of the two different routes of entry by intracellular bacterial pathogens. The 
pathogens induce their own uptake into target cells by subversion of host cell signalling pathways 
using the “zipper” (A) and “trigger” (B) invasion mechanism, respectively, as described in Figure 1. 
(C) High resolution field emission scanning electron microscopy showing examples of invading C. 
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jejuni. Campylobacter jejuni 81- 176 infected for 4-6 hours were able to induce their entry into the 
wild-type fibroblast target cells and were regularly associated with membrane ruffles (red arrows) and 
filopodia structures (blue arrows). Invading bacteria were also marked (yellow arrows). (D) Electron 
micrograph of C. jejuni entering the intercellular space between two neighbouring epithelial cells. This 
picture was kindly provided by M. Konkel (Pullman University, USA). (E) Electron micrographs of C. 
jejuni–containing vacuoles (CCVs) that do not co-localize with BSA-gold (top) and CCVs that co-
localize with BSA-Gold and resemble lysosomes (bottom, arrows) are shown. The two pictures were 
kindly provided by J. Galan (Yale University, USA). 
 

 

It is well known that different pathogens such as Salmonella or Shigella inject bacterial GEFs 

directly into the host cells by a T3SS and induce intensive membrane ruffling by a “trigger” 

mechanism resulting in the uptake of the bacteria (Cossart and Sansonetti, 2004). 

Campylobacter jejuni does not encode a classical T3SS and T4SS (Konkel et al., 1999b; 

Hofreuter et al., 2006) nor bacterial GEFs as known from Salmonella or Shigella. In 

agreement with this observation, this work describes a set of three host cell GEFs playing an 

important role in activating Rac1 and Cdc42 GTPases involved in invasion. The model of Cia 

protein secretion through the flagellum (Euker and Konkel, 2011) is very tempting and would 

support the idea that Campylobacter uses a “trigger mechanism” of invasion involving the 

secretion of effector proteins directly into the cell to induce their uptake. Some electron 

microscopic evidence exists that would support this model (Fig. 28C), but it should be noted 

again that a recent study has suggested that CiaB plays a minimal or no role in invasion 

(Novik et al., 2010). Thus, much more work is required to confirm the role of the flagellum as 

a secretion system for effector proteins involved in invasion. On the other hand, the 

underlined importance of CadF and the fibronectin/integrin receptor complex as shown in this 

work might also give support to a “zipper”-like mechanism of invasion as used by Listeria or 

Yersinia species. Some electron microscopic pictures presented here may also support the 

latter model. 

 

In conclusion, it is very difficult at present to conclusively state how C. jejuni facilitates its 

uptake into host epithelial cells. There is evidence presented in this work and specifically 

electron microscopic images which give support for both the “zipper” and “trigger” 

mechanisms of invasion, underlining the concept that C. jejuni enters epithelial cells by a 

unique mechanism. It may be that C. jejuni has developed during evolution a strategy which 

shares features of both of these mechanisms, but more work is clearly required to pinpoint the 

crosstalk of certain pathways used by this important pathogen to enter and survive in 

intestinal epithelial cells. At the moment, we favour a model where two major receptor-
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involved pathways give rise to C. jejuni invasion, the fibronectin/integrin cascade leading to 

Rac1 or Cdc42 activation (this work), and possibly another entry route via caveolae structures 

as reported by another group (Watson and Galan, 2008) (Fig. 27). Future studies should 

investigate how this occurs exactly and if certain C. jejuni strains favour one or the other 

pathway to trigger its uptake. Although I included several strains in my studies, including the 

C. jejuni model strains 81-176, RM1221 and F38011, more strains from different origins 

should be investigated. It should be also studied what are the triggered pulling forces by the 

host cell that mediate engulfment, uptake and also membrane closure behind the entering 

bacteria. It will be also important to investigate the intracellular survival concept and spread 

of the bacteria in more detail as well as how they can infect even other organs such as the 

liver. It therefore appears that the major foodborne pathogen C. jejuni will continue to be a 

fascinating and rewarding research subject in the future. 
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ZUSAMMENFASSUNG 
 

Campylobacter jejuni ist ein Gram-negatives Bakterium der Gattung Campylobacter. Die 

Infektion mit diesem Pathogen ist eine der wichtigsten und häufigsten Ursachen für 

lebensmittelbedingte Durchfallerkrankungen und bestimmte Neuropathien beim Menschen. 

Durch C. jejuni verursachte Gastroenterititiden treten in Industrieländern 2-7 mal häufiger auf 

als bei Infektionen mit Salmonella and Shigella. Das Durchdringen der epithelialen 

Barrierefunktion von Wirtszellen im humanen Darmtrakt und die zelluläre Invasion von C. 

jejuni sind die wichtigsten Ursachen für Schäden im infizierten Gewebe, allerdings sind die 

molekularen Mechanismen und beteiligten Faktoren in diesen Prozessen noch nicht genau 

bekannt.  

Im ersten Teil der vorliegenden Arbeit wurde gezeigt, das Wildtyp C. jejuni die 

Barrierefunktion von polarisierten MKN-28 Zellen im Transwell-System effizient überwindet. 

Ein bakterieller Faktor wurde identifiziert, die Serinprotease HtrA (high-temperature 

requirement A), welche hierbei eine entscheidende Rolle spielt. Es wurde gezeigt, dass C. 

jejuni HtrA aktiv in den Überstand des Mediums sekretiert, wo die Protease die Spaltung des 

bedeutenden „adherens junction“ Proteins und Tumorsuppressors E-Cadherin induziert. In in 

vitro Assays mit rekombinantem HtrA und in Infektionsexperimenten konnte gezeigt werden, 

dass HtrA zur Abspaltung der Ektodomäne von E-Cadherin in Wirtszellen führt. Außerdem 

konnte nachgewiesen werden, dass der Verlust des htrA Gens in C. jejuni zu einem Defekt in 

der Fähigkeit zur E-Cadherin Spaltung führt und damit auch zum weitgehenden Verlust der 

Fähigkeit der bakteriellen Transmigration in polarisierten MKN-28 Zellen. Diese Ergebnisse 

führten zu der Hypothese, dass die HtrA-vermittelte Abspaltung von E-Cadherin eine 

wichtige Rolle bei der Transmigration von C. jejuni über polarisierte Zellen mit Hilfe eines 

parazellulären Signalweges spielt. 

Nachdem gezeigt werden konnte, dass C. jejuni zur Transmigration von polarisierten Zellen 

befähigt ist, sollte im zweiten Teil der Arbeit untersucht werden, wie C. jejuni in die 

Wirtszellen von der basolateralen Seite eindringt. Durch die Verwendung verschiedener 

molekularbiologischer Methoden und „knockout“ Zelllinien von Fibronektin, Integrin-β1 und 

fokaler Adhäsionskinase (FAK) aus defizienten Mäusen sowie den entsprechenden Wildtyp 

Zelllinien konnte gezeigt werden, dass diese Wirtszellfaktoren eine entscheidende Rolle für 

die Aktivierung von kleinen Rho GTPasen (Rac1 und Cdc42) und die bakterielle Invasion 

spielen. In Übereinstimmung mit diesen Befunden konnte weiterhin gezeigt werden, dass C. 

jejuni eine Kräuselung der Membranen (ruffling) und Filopodien-Bildung nur in den 
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infizierten Wildtyp Zellen verursacht. Außerdem konnte die durch C. jejuni aktivierte 

Autophosphorylierung von FAK und bestimmten Rezeptor-Tyrosinkinasen (EGFR und 

PDGRF) nachgewiesen werden. Diese Signalmoleküle stellen wiederum wichtige 

Schaltstellen für die Stimulierung von Guaninaustauschfaktoren dar, die hier als DOCK180, 

Tiam-1 und Vav2 identifiziert wurden. Durch siRNA Studien wurde anschliessend gezeigt, 

dass DOCK180 und Tiam-1 gemeinsam für die Aktivierung von Rac1 erforderlich sind, 

während Vav2 für die Aktivierung von Cdc42 verantwortlich ist. Weiterhin wurden 

Ergebnisse gewonnen, die zeigen, dass das Fibronektin-bindende Protein CadF und die 

Flagellen von C. jejuni in die Signaltransduktion zur Aktivierung von Rac1 und Cdc42 

involviert sind. CadF ist somit ein bifunktionales Protein, welches nicht nur für die Bindung 

des Bakteriums an den Fibronektin/Integrin-Rezeptorkomplex der Wirtszelle verantwortlich 

ist, sondern trägt auch zur Aktivierung von downstream Faktoren und Invasion von C. jejuni 

in die Wirtszellen bei.  

Zusammenfassend zeigen die Ergebnisse dieser Arbeit, dass C. jejuni fähig ist, durch einen 

besonderen Mechanismus die Barrierefunktion von Epithelzellen zu überwinden, wobei die 

Protease HtrA und E-Cadherin wichtige Signalfaktoren darstellen. Desweiteren wurde 

gezeigt, dass C. jejuni auch in die Wirtszellen eindringen kann und das Fibronektin, Integrin, 

FAK, verschiedene weitere Kinasen und die kleinen Rho GTPasen Rac1 und Cdc42 sowie 

bestimmte bakterielle Faktoren wie CadF und die Flagellen eine entscheidende Rolle im 

Invasionsprozess dieses bedeutenden Krankheitserregers spielen.  
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