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Abstract: Maternal diabetes mellitus in early pregnancy leads to hyperlipidemia in reproductive
tract organs and an altered embryonic environment. To investigate the consequences on embryonic
metabolism, the effect of high environmental-lipid levels was studied in rabbit blastocysts cultured
with a lipid mixture in vitro and in blastocysts from diabetic, hyperlipidemic rabbits in vivo. The
gene and protein expression of marker molecules involved in lipid metabolism and stress response
were analyzed. In diabetic rabbits, the expression of embryoblast genes encoding carnitine palmityl
transferase 1 and peroxisome proliferator-activated receptors α and γ increased, whereas trophoblast
genes encoding for proteins associated with fatty acid synthesis and β-oxidation decreased. Markers
for endoplasmic (activating transcription factor 4) and oxidative stress (nuclear factor erythroid
2-related factor 2) were increased in embryoblasts, while markers for cellular redox status (superoxide
dismutase 2) and stress (heat shock protein 70) were increased in trophoblasts from diabetic rabbits.
The observed regulation pattern in vivo was consistent with an adaptation response to the hyperlipi-
demic environment, suggesting that maternal lipids have an impact on the intracellular metabolism of
the preimplantation embryo in diabetic pregnancy and that embryoblasts are particularly vulnerable
to metabolic stress.

Keywords: embryoblast; trophoblast; lipid metabolism; fatty-acid uptake; preimplantation embryo;
oxidative stress

1. Introduction

The preimplantation stage of embryo development is a period of well-orchestrated
molecular events, starting with fertilization of the oocyte and ending with the implantation
of the embryo in the uterus [1]. During this period of time, the embryo goes from a relatively
inactive metabolic tissue at ovulation to a rapidly metabolizing tissue at implantation [2].
Understanding the embryo metabolism during these first steps of development is critical
for deciphering long-lasting effects. For example, maternal metabolic diseases like diabetes
mellitus can impair preimplantation development and reprogram offspring metabolism,
affecting postnatal growth trajectories [3]. Diabetes mellitus, which is characterized by
hyperglycemia as well as hyperlipidemia [4–6], alters normal cellular metabolism and
signaling. Animal studies have shown that maternal diabetes mellitus can contribute to
offspring metabolic programming at very early stages of development through molecular
and structural changes to preimplantation embryos [7,8]. In this context, embryonic lipid
metabolism is increasingly attracting scientific research [9].

Cellular lipid metabolism is tightly controlled by transcription factors, especially per-
oxisome proliferator-activated receptors (PPARs). Fatty acids and lipid metabolites can
serve as endogenous PPAR ligands to exert an adaptive metabolic response to changes in
metabolism [10]. PPARα and PPARγ act as key transcription factors of lipid metabolism
and regulate a wide range of genes, including the key enzyme for β-oxidation, carnitine O-
palmitoyltransferase 1 (CPT1), as well as fatty acid binding proteins (FABPs) and fatty acid
transport proteins (FATPs) [11,12]. In addition, PPARs exert indirect effects on intracellular
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lipid metabolism via the transcription factor sterol regulatory element-binding protein 1c
(SREBP1c), and thereby regulate the key enzymes for de novo lipogenesis: acetyl-CoA car-
boxylase (ACC), fatty acid synthase (FASN), and stearoyl-CoA desaturase 1 (SCD1) [13–15].
The effects of PPAR signaling are directly related to their interaction with co-regulators. For
example, PPARγ coactivator 1α (PGC1α), which interacts with both PPARα and PPARγ,
plays a pivotal role in the regulation of cellular energy metabolism [16].

In addition to metabolic changes, PPAR signaling also impacts redox status by reg-
ulating mitochondrial biogenesis and anti-oxidant defense [17]. PPARγ and PPARα are
involved in the regulation of mitochondrial superoxide dismutase 2 (Sod2), which has a
crucial role in regulating cellular redox status [18–20]. Numerous studies have shown direct
and indirect interactions between PPARγ and nuclear factor erythroid 2-related factor 2
(Nrf2, also named NFE2L2) in the regulation of oxidative stress defense and mitochondrial
biogenesis [21]. Together with PGC1α, PPARγ activates Nrf2 and the mitochondrial tran-
scription factor A. The activation of both factors leads to the synthesis of mitochondrial
DNA and proteins, which eventually results in the biogenesis of new mitochondria [22].
Heat shock protein 70 (Hsp70) also serves as a cytoplasmic antioxidant by shielding sen-
sitive sites of target proteins [23]. Cell lines overexpressing Hsp70 are protected against
oxidative stress and apoptotic stimuli [24,25]. Hyperglycemia and diabetes mellitus are
associated with higher Hsp70 levels in human serum [26]. Endoplasmic reticulum (ER)
stress has been observed in embryos from diabetic pregnancies [27–29]. One important
marker of ER stress is cyclic AMP-dependent transcription factor ATF-4 (ATF4) [30]. In a
previous study, ATF4 expression was highly increased in embryoblast (EB) cells, the inner
cell mass of blastocysts, from diabetic rabbits [31].

The metabolic capacities of the EB and trophoblast (TB; trophectoderm tissue) are
different. In mouse blastocysts, the inner cell mass is metabolically “quieter” than the
trophectoderm [32]. Cells of the trophectoderm are responsible for creating the environment
within the blastocoel, consume more oxygen, and appear to have more mitochondria [33].
In rabbits, the EB and TB cells respond differently to metabolic challenges imposed by
maternal diabetes mellitus [34,35]. For example, EB cells tend to accumulate intracellular
lipid droplets and predominantly express FABP4 and adipophilin genes [35]. In addition,
the metabolic profiles of the EB and TB cells are differentially affected by maternal diabetes
mellitus [36]. While saturated fatty acids (palmitic and stearic acid) were elevated in the EB
cells of diabetic rabbits, polyunsaturated fatty acids, such as docosahexaenoic acid, were
decreased [36]. In contrast, lower levels of palmitic and stearic acid and higher levels of
oleic acid were observed in the TB cells [36].

To determine the potential consequences of cellular stress adaptation, we investigated
embryonic lipid metabolism in EB and TB cells separately in rabbit blastocysts from diabetic
pregnancies. Diabetes mellitus is associated with maternal and fetal dyslipidemia, which
manifests as high plasma triglyceride concentrations, elevated concentrations of nones-
terified fatty acids, increased concentrations of low-density lipoprotein cholesterol, and
decreased levels of high-density lipoprotein cholesterol [37,38]. To show that the observed
changes are due to the maternal hyperlipidemia [35], we used in vitro experiments that
analyzed the effect of the hyperlipidemic environment.

2. Results
2.1. Expression of Key Lipogenic Markers in Blastocysts

The gene expression of key signaling molecules regulating intracellular lipid metabolism
was analyzed, including PPARα (gene name: PPARA), PPARγ (PPARG), CPT1, and CD36
in rabbit morulae (day 3 post coitum (p.c.)) and peri-implanting blastocysts, using reverse
transcription-polymerase chain reaction (RT-PCR) (Figure 1).
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Figure 1. mRNA expression pattern of lipogenic marker genes. (A) RT-PCR was performed with 
specific primers for PPARα, PPARγ, CPT1, and CD36 genes on cDNA from early rabbit embryos. 
In (A): morulae at day (d) 3, blastocysts at d4, d5, d6, and d8 post coitum. In (B): non-gastrulated 
6-day-old blastocysts at stage 0 (St. 0) and 6-day-old blastocysts at gastrulation stages 1, 2, and 3 
(St. 1–3), In gastrulating blastocysts, RT-PCR was performed separately in embryoblasts (EBs) and 
trophectoderms (TBs). A sample without cDNA was used as negative control (ntc) in each experi-
ment. A liver cDNA probe was used as a positive control (+). cDNA integrity was verified with RT-
PCR on the GAPDH gene in all probes. (bp: base pairs). 

Transcripts of PPARα, PPARγ, CPT1, and CD36 were detected in all analyzed devel-
opmental stages. At the morula stage on day 3 p.c., PPARγ and CD36 had relatively lower 
band intensities compared with the blastocyst stage, indicating that the expression of 
these genes increased during development. Expression levels of PPARγ were different in 
TBs, with a higher level of PPARγ in TBs. 

2.2. PPAR Expression in Blastocysts from Diabetic Rabbits In Vivo 
Maternal diabetes type 1 alters the expression of PPARα and PPARγ in gastrulating 

blastocysts, depending on the cellular lineage. In EB cells, PPARα and PPARγ protein lev-
els were significantly increased (Figure 2A,B), whereas levels remained constant in the TB 
cells. 

PPARγ protein level correlated with the mRNA abundance (Table 1), while the tran-
scription of PPARα was not significantly altered. 

PPARα protein expression results were confirmed using whole-mount immunofluo-
rescence (Supplemental Data, Figure S1). PPARα signal intensity was stronger in EB than 
TB cells in both normoinsulinemic and diabetic animals. 

In addition, we analyzed the expression of PGC1α, the transcriptional coactivator of 
PPARα and PPARγ, in blastocysts from diabetic rabbits. PGC1α protein abundance was 
increased in both EB and TB cells (Figure 2C). 

Figure 1. mRNA expression pattern of lipogenic marker genes. (A) RT-PCR was performed with
specific primers for PPARα, PPARγ, CPT1, and CD36 genes on cDNA from early rabbit embryos.
In (A): morulae at day (d) 3, blastocysts at d4, d5, d6, and d8 post coitum. In (B): non-gastrulated
6-day-old blastocysts at stage 0 (St. 0) and 6-day-old blastocysts at gastrulation stages 1, 2, and 3
(St. 1–3), In gastrulating blastocysts, RT-PCR was performed separately in embryoblasts (EBs) and
trophectoderms (TBs). A sample without cDNA was used as negative control (ntc) in each experiment.
A liver cDNA probe was used as a positive control (+). cDNA integrity was verified with RT-PCR on
the GAPDH gene in all probes. (bp: base pairs).

Transcripts of PPARα, PPARγ, CPT1, and CD36 were detected in all analyzed devel-
opmental stages. At the morula stage on day 3 p.c., PPARγ and CD36 had relatively lower
band intensities compared with the blastocyst stage, indicating that the expression of these
genes increased during development. Expression levels of PPARγ were different in TBs,
with a higher level of PPARγ in TBs.

2.2. PPAR Expression in Blastocysts from Diabetic Rabbits In Vivo

Maternal diabetes type 1 alters the expression of PPARα and PPARγ in gastrulating
blastocysts, depending on the cellular lineage. In EB cells, PPARα and PPARγ protein
levels were significantly increased (Figure 2A,B), whereas levels remained constant in the
TB cells.

PPARγ protein level correlated with the mRNA abundance (Table 1), while the tran-
scription of PPARα was not significantly altered.

PPARα protein expression results were confirmed using whole-mount immunofluo-
rescence (Supplemental Data, Figure S1). PPARα signal intensity was stronger in EB than
TB cells in both normoinsulinemic and diabetic animals.

In addition, we analyzed the expression of PGC1α, the transcriptional coactivator of
PPARα and PPARγ, in blastocysts from diabetic rabbits. PGC1α protein abundance was
increased in both EB and TB cells (Figure 2C).

2.3. Lipogenic Marker Expression in Blastocysts from Diabetic Rabbits In Vivo

While CPT1 was increased 3-fold in EB cells, expression was significantly decreased
in TB cells (Figure 3A), indicating that the overall increase resulted from changes in the
EB cells. CD36, an important factor for fatty-acid uptake, was not changed under diabetic
developmental conditions, neither in EB nor in TB cells (Table 1).

In the EB cells from diabetic rabbits, the protein amount of the phosphorylated ACC
was increased compared with that of the normoinsulinemic control rabbits (Figure 3B). The
key enzyme for fatty-acid synthesis, FASN, which is not regulated at the mRNA level [35],
decreased at the protein level by 20% in the TB (Figure 3C). The expression of SCD1, which
catalyzes the rate-limiting step in the formation of monosaturated fatty acids, decreased in
both EB and TB cells from diabetic rabbits (Figure 3D).
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Figure 2. Relative protein abundance of PPARγ, PPARα, and PGC1α in blastocysts from diabetic 
rabbits. Protein abundance of PPARα (A), PPARγ (B), and PGC1α (C) was quantified in 6-day-old 
blastocysts from diabetic [DT1, white bars] and normoinsulinemic [NI, black bars] rabbits. For West-
ern blot analysis, samples from at least three independent experiments with 8 to 10 blastocysts per 
sample were used (N ≥ 3; n = 8–10). Representative Western blots are shown with two samples per 
treatment group and cell lineages. Band intensities were measured using densitometry and normal-
ized to levels of β-actin in the same membrane. In the graphs, protein amounts are relative to nor-
moinsulinemic controls (100%). Values are expressed as mean ± SEM in % of non-diabetic controls. 
(n ≥ 8; * p < 0.05). 

Table 1. Relative mRNA abundance of lipogenic target genes in embryoblast (EB) and trophoblast 
(TB) cells from normoinsulinemic and diabetic rabbits. 

 Relative mRNA Amount (in % of Normoinsulinaemic EB) 
 Embryoblast Trophoblast 

Gene Normoinsulinemic Diabetic Normoinsulinemic Diabetic 

PPARα 100.0 ± 16.9 116.0 ± 11.8 44.4 ± 8.6 b 29.1 ± 6.3 b 
PPARγ 100.0 ± 15.1 177.9 ± 35.4 a 753.1 ± 58.9 b 528.2 ± 135.8 b 
CPT1 100.0 ± 16.2 125.1 ± 35.4 222.4 ± 58.1 90.8 ± 15.9 
CD36 100.0 ± 24.3 60.3 ± 11.3 286.6 ± 29.1 b 295.4 ± 41.6 b 

Results are shown as [mean ± SEM] in percentage of the amount in the embryoblast gene expression 
from normoinsulinemic rabbits (N = 3; n ≥ 10). a—significantly different between normoinsulinemic 
and diabetic rabbits (p < 0.05). b—significantly different between EB and TB cells (p < 0.05). 

Figure 2. Relative protein abundance of PPARγ, PPARα, and PGC1α in blastocysts from diabetic
rabbits. Protein abundance of PPARα (A), PPARγ (B), and PGC1α (C) was quantified in 6-day-old
blastocysts from diabetic [DT1, white bars] and normoinsulinemic [NI, black bars] rabbits. For
Western blot analysis, samples from at least three independent experiments with 8 to 10 blastocysts
per sample were used (N ≥ 3; n = 8–10). Representative Western blots are shown with two samples
per treatment group and cell lineages. Band intensities were measured using densitometry and
normalized to levels of β-actin in the same membrane. In the graphs, protein amounts are relative
to normoinsulinemic controls (100%). Values are expressed as mean ± SEM in % of non-diabetic
controls. (n ≥ 8; * p < 0.05).

Table 1. Relative mRNA abundance of lipogenic target genes in embryoblast (EB) and trophoblast
(TB) cells from normoinsulinemic and diabetic rabbits.

Relative mRNA Amount (in % of Normoinsulinaemic EB)

Embryoblast Trophoblast
Gene Normoinsulinemic Diabetic Normoinsulinemic Diabetic

PPARα 100.0 ± 16.9 116.0 ± 11.8 44.4 ± 8.6 b 29.1 ± 6.3 b

PPARγ 100.0 ± 15.1 177.9 ± 35.4 a 753.1 ± 58.9 b 528.2 ± 135.8 b

CPT1 100.0 ± 16.2 125.1 ± 35.4 222.4 ± 58.1 90.8 ± 15.9
CD36 100.0 ± 24.3 60.3 ± 11.3 286.6 ± 29.1 b 295.4 ± 41.6 b

Results are shown as [mean ± SEM] in percentage of the amount in the embryoblast gene expression from
normoinsulinemic rabbits (N = 3; n ≥ 10). a—significantly different between normoinsulinemic and diabetic
rabbits (p < 0.05). b—significantly different between EB and TB cells (p < 0.05).
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from diabetic rabbits. Protein abundance of CPT1 (A), phosphorylated ACC (B), FASN (C), and 
SCD1 (D) was quantified in 6-day-old blastocysts from diabetic [DT1, white bars] and normoin-
sulinemic [NI, black bares] rabbits. Representative Western blots are shown with two experimen-
tally independent samples. For quantification, samples from at least three independent experiments 
with 8 to 10 blastocysts per sample were used (N ≥ 3; n = 8–10). Relative amounts are shown in bar 
diagrams after normalization relative to β-actin levels. Values are expressed as mean ± SEM in % of 
non-diabetic controls. (n ≥ 8; * p < 0.05). 

In the EB cells from diabetic rabbits, the protein amount of the phosphorylated ACC 
was increased compared with that of the normoinsulinemic control rabbits (Figure 3B). 
The key enzyme for fatty-acid synthesis, FASN, which is not regulated at the mRNA level 
[35], decreased at the protein level by 20% in the TB (Figure 3C). The expression of SCD1, 
which catalyzes the rate-limiting step in the formation of monosaturated fatty acids, de-
creased in both EB and TB cells from diabetic rabbits (Figure 3D). 

2.4. Stress Marker Expression in Blastocysts from Diabetic Rabbits In Vivo 

Figure 3. Relative protein abundance of CPT1, phosphorylated ACC, FASN, and SCD1 in blastocysts
from diabetic rabbits. Protein abundance of CPT1 (A), phosphorylated ACC (B), FASN (C), and
SCD1 (D) was quantified in 6-day-old blastocysts from diabetic [DT1, white bars] and normoinsu-
linemic [NI, black bares] rabbits. Representative Western blots are shown with two experimentally
independent samples. For quantification, samples from at least three independent experiments with
8 to 10 blastocysts per sample were used (N ≥ 3; n = 8–10). Relative amounts are shown in bar
diagrams after normalization relative to β-actin levels. Values are expressed as mean ± SEM in % of
non-diabetic controls. (n ≥ 8; * p < 0.05).

2.4. Stress Marker Expression in Blastocysts from Diabetic Rabbits In Vivo

Since both PPARα and PPARγ are regulatory factors involved in cellular ER and
oxidative stress responses, the markers Sod2, Nrf2, and Hsp70 were analyzed. Sod2
protein was differentially affected by diabetic conditions: it was downregulated in EB and
upregulated in TB cells (Figure 4A).

Nrf2, a marker for oxidative stress, increased by almost 100% in EB cells and was
unchanged in TB cells (Figure 4B). In contrast, Hsp70 was upregulated by about 20% in the
TB cells only (Figure 4C).

2.5. Lipid-Dependent Regulation of Intracellular Lipid Accumulation in In
Vitro-Cultured Blastocysts

To elucidate whether the changes we observed were directly caused by a high external
lipid load, rabbit blastocysts were cultured for 6 h with a commercially available lipid
mixture. First, we analyzed whether external lipids alter intracellular lipid accumulation in
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rabbit blastocysts. EB and TB cells showed a higher abundance of red-stained lipid vesicles
compared with the control without lipids (Figure 5).
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2.5. Lipid-Dependent Regulation of Intracellular Lipid Accumulation in In Vitro-Cultured Blas-
tocysts 
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Figure 4. Relative protein abundance of Sod2, Nrf2, and Hsp70 in blastocysts from diabetic rabbits.
Protein abundance of Sod2 (A), Nrf2 (B), and Hsp70 (C) was quantified in 6-day-old blastocysts from
diabetic [DT1, white bars] and normoinsulinemic [NI, black bars] rabbits. Representative Western
blots are shown with two experimentally independent samples. Quantification was performed in
at least 3 independent experiments with 8 to 10 blastocysts per sample (N ≥ 3; n = 8–10). Relative
amounts are shown in bar diagrams after normalization relative to levels of β-actin. Values are
expressed as mean ± SEM in % of non-diabetic controls. (n ≥ 8; * p < 0.05).

2.6. Lipid-Dependent Expression of Lipogenic Marker Genes in In Vitro-Cultured Blastocysts

EB and TB cells responded to the high lipid environment differently. In the EB cells,
genes important for fatty-acid uptake, CD36 and FATP4, and binding, FABP4, as well as
PPARα and PPARγ, were increased (Table 2 and Figure 6A,B).

This model closely reflected the regulation pattern observed in the in vivo hyperlipi-
demic environment. In the TB, FABP4 and PGC1α were elevated (Table 2 and Figure 6C).
Gene transcription of PPARα, CPT1, and FASN was decreased (Table 2). At the protein level,
CPT1 abundance was not altered, while FASN was increased due to the hyperlipidemic
in vitro culture conditions (Figure 6D,E).
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formed in groups of at least 4 blastocysts in each treatment group and repeated in three independent 
replicates (N = 3; n ≥ 4). 
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Figure 5. Intracellular lipid accumulation in blastocysts cultured in vitro in media containing a lipid
mixture. Six-day-old blastocysts were cultured in vitro with a lipid mixture for 6 h. Lipid droplets
were stained red with Oil Red O (red dots). Nuclei were counterstained blue with hematoxylin.
Representative images from EB and TB cells are shown (scale bar = 50 µm). Experiments were per-
formed in groups of at least 4 blastocysts in each treatment group and repeated in three independent
replicates (N = 3; n ≥ 4).

Table 2. Relative mRNA abundance of lipogenic target genes in embryoblast (EB) and trophoblast
(TB) cells of 6-day-old rabbit blastocysts after 6 h in vitro exposure with a lipid mixture.

Relative mRNA Amount [5 of Nontreated Control]

Gene Embryoblast Trophoblast

mRNA Treatment Control Lipid Mixture Treatment Control Lipid Mixture

PPARα 100.0 ± 7.8 112.1 ± 11.0 100.0 ± 10.3 70.6 ± 6.6 *
PPARγ 100.0 ± 8.6 169.9 ± 20.4 * 100.0 ± 10.5 101.3 ± 11.7
CPT1 100.0 ± 9.9 136.9 ± 19.7 100.0 ± 13.8 59.1 ± 6.6 *
FASN 100.0 ± 10.9 167.9 ± 49.2 100.0 ± 12.4 49.7 ± 6.4 *
FABP4 100.0 ± 7.1 170.1 ± 23.4 * 100.0 ± 7.8 200.3 ± 24.7 *
FATP4 100.0 ± 11.5 141.0 ± 11.9 * 100.0 ± 13.8 85.2 ± 9.5
CD36 100.0 ± 16.6 238.5 ± 43.9 * 100.0 ± 9.3 104.4 ± 11.2

Results are shown as percentages of the amount in the EB or TB cells in blastocysts without the lipid mixture
(control) with mean ± SEM; N = 3; n ≥ 10. * abundance significantly different between control and lipid mixture
groups (p < 0.05).

2.7. Lipid-Dependent Expression of Stress Markers in In Vitro-Cultured Blastocysts

Similar to the in vivo results, blastocysts cultured in vitro with the lipid mixture
showed an increased protein abundance of ATF4 and Nrf2 and reduced Sod2 in the EB
(Figure 7). No changes in ATF4 and Nrf2 were observed in TB cells (Figure 7A,B). In
contrast to the regulation pattern observed in vivo, Sod2 was decreased in the TB cells
(Figure 7).
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taining a lipid mixture. Six-day-old blastocysts were cultured in vitro in groups of 4–5 blastocysts 
(n = 4–5) in media with a lipid mixture (LM) and without (TC) for 6 h. The stimulation experiment 
was repeated at least three times (N ≥ 3). Protein levels of PPARγ (A), PPARα (B), PGC1α (C), CPT1 
(D), and FASN (E) were quantified using Western blot. Relative amounts are shown as mean ± SEM 
(* p < 0.05). Controls without the lipid mixture were set to 100%. 

Figure 6. Relative expression of lipogenic genes in rabbit blastocysts cultured in vitro in media
containing a lipid mixture. Six-day-old blastocysts were cultured in vitro in groups of 4–5 blastocysts
(n = 4–5) in media with a lipid mixture (LM) and without (TC) for 6 h. The stimulation experiment was
repeated at least three times (N ≥ 3). Protein levels of PPARγ (A), PPARα (B), PGC1α (C), CPT1 (D),
and FASN (E) were quantified using Western blot. Relative amounts are shown as mean ± SEM
(* p < 0.05). Controls without the lipid mixture were set to 100%.
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Figure 7. Relative expression of stress markers in rabbit blastocysts cultured in vitro in media
containing a lipid mixture. Six-day-old blastocysts were cultured in vitro in groups of 4–5 blastocysts
(n = 4–5) in media with a lipid mixture (LM) and without (TC) for 6 h. The stimulation experiment
was repeated at least three times (N ≥ 3). Gene transcript levels of ATF4 (A) and protein levels of
Nrf2 (B) and SOD2 (C) were quantified with RT-PCR (A) or Western blot (B,C). Relative amounts are
shown as mean ± SEM (* p < 0.05). Controls without the lipid mixture were set to 100%.

3. Discussion

Preimplantation embryos are remarkably sensitive to their environment, which in-
fluences signaling pathways and gene regulatory networks. Diabetes mellitus impairs
maternal and embryonic metabolism, leading to increased intracellular lipid accumula-
tion in day 6 blastocysts, with a more pronounced effect in the EB cells [35]. However,
lipid droplets are more than just a ‘storage unit’ for lipids. Recently, Mau and co-workers
demonstrated that the accumulation and mobilization of lipid droplets are causal in mor-
phogenesis of the pluripotent epiblast [39]. The excessive amount of lipid droplets in
blastocysts from diabetic rabbits can be due either to an increased production of lipids by
de novo lipogenesis or by an increased uptake of fatty acids into the cell, leading to an
ectopic lipid accumulation. We have previously shown enhanced uptake of fatty acids
in blastocysts from diabetic rabbits, as indicated by the increased expression of FATP4
and FABP4 [35]. These genes are expressed in mouse blastocysts [40] and human TB
cells [41,42], indicating the importance of these transporters for early embryo development.
In the current study, in vitro hyperlipidemic conditions increased the expression of fatty
acid transporters and binding proteins predominantly in the EB cells. This observation
may explain why lipid accumulation is more increased in EB than in TB under diabetic
conditions [35]. Aside from the active uptake of fatty acids by protein-facilitated transfer,
passive diffusion through the lipid bilayer is also possible, but this process is not fully un-
derstood. Further studies are required to trace fatty-acid movement to determine whether
they are taken up passively and if this mechanism is altered in diabetic pregnancy.
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The upregulation of fatty-acid transporters and binding proteins correlates with an
increased abundance of PPARγ and PPARα in EB cells. PPARs serve as major transcriptional
sensors of fatty acids and regulate the expression of FATP4, FABP4, and CD36 [11,12].
FABP4 has a particular importance in lipid metabolism. In addition to transporting fatty
acids into the mitochondria for β-oxidation or to lipid droplets for intracellular storage,
FABP4 transports fatty acids into the nucleus to act as ligands for the transcription factor
PPARγ [43,44]. Blastocysts from diabetic rabbits show a more intense staining of FABP4 in
the nuclei compared with healthy control rabbits [35], indicating an enhanced interaction
of FABP4 and PPARγ. PPARγ promotes lipid droplet formation and lipid metabolism
in the placenta [45]. The observed increased abundance of intracellular lipids, especially
in the EB cells of rabbit blastocysts [35], may be a direct result of elevated FABP4 and
PPARγ expression.

PPARα regulates fatty-acid uptake mainly through the modulation of CD36 and CPT1
expression, leading to altered β-oxidation [46]. A previous study showed that the overall
protein expression of CPT1, the key enzyme in β-oxidation, increased in whole blastocysts
in diabetic pregnancy [47]. A different picture emerged when EB and TB cells were analyzed
separately. In EB cells from diabetic rabbits, the expression of PPARα and CPT1 was
increased, indicating that β-oxidation is likely higher. In TB cells, CPT1 was significantly
downregulated. β-oxidation is an essential metabolic pathway for preimplantation embryo
development in various species [48–51]. The inhibition of CPT1 during oocyte maturation
and zygote cleavage impairs subsequent blastocyst development [49]. In the current study,
a diabetic hyperlipidemic environment supported β-oxidation in EB cells, which may have
long-lasting effects on further embryo development.

De novo lipogenesis is essential for proper embryo development. For example, dele-
tion of FASN results in embryonic lethality [52]. Together with ACC, FASN regulates the
lipogenic flux from malonyl-CoA into palmitate. In blastocysts from diabetic rabbits, gene
activation of ACC and a lower abundance of FASN and SCD1 were observed in EB and TB
cells from diabetic rabbits, demonstrating a possible reduction in endogenous palmitate
production and conversion of palmitate and stearate into monounsaturated fatty acids [53].
Insulin can regulate SCD1 and FASN via SREBP1c in human cells and sheep [54,55]. The
lack of insulin is directly connected to the observed lower abundance of SCD1 and FASN
in embryos from diabetic mothers.

Ectopic lipid accumulation is increased in response to a high lipid environment,
leading to damage to cell organelles, particularly in the ER and mitochondria [56–58].
In mitochondria, the elevation of β-oxidation produces higher reactive oxygen species,
impairing normal mitochondrial function and leading to DNA damage [59–61]. In addition
to direct effects on the redox state, PPARγ and PGC1α also regulate the expression of anti-
oxidative enzymes such as Sod2 and Nrf2. Sod2 gene expression is modulated by PPARγ
via the transcription factor cAMP-responsive element binding protein (CREB) [18,62]. In
rabbit blastocysts, CREB is regulated in a cell lineage-specific manner [31]. In the EB
cells, CREB activity was increased due to maternal diabetes. In the TB cells, CREB was
inactive. The oxidative stress marker Nrf2 is modulated by PPARγ via PGC1 [21,22,63]. In
EB cells, the expression of PPARγ and PGC1α were positively correlated with Nrf2 protein
expression. Oxidative stress can diminish cell membrane integrity, organelle function,
and the regulation of gene expression, thereby contributing to cell death [64]. Therefore,
the induction of Nrf2 may contribute to increased apoptosis, higher embryo loss, and
developmental delay in diabetic pregnancies which specifically affect the EB cells [65,66].

ER stress has also been reported in embryos from diabetic mice [27–29]. Impaired
function of the ER affects protein secretion and the induction of autophagy [64,67,68]. Au-
tophagy activity was altered in blastocysts from diabetic rabbits, as shown by a reduced
abundance of p62, a marker for autophagic activity and lysosomal vesicles [34]. ATF4
is another biomarker for ER stress [30]. ATF4 is expressed in the rabbit preimplantation
embryo, and maternal diabetes mellitus led to increased transcription of ATF4 in the EB
cells [31]. In the current study, we could show via in vitro experiments that the increase
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in ATF4 transcription could be related to ectopic lipid accumulation. In a mouse model,
depletion of ATF4 resulted in reduced expression of PPARγ, SREBP1c, and FASN [69], indi-
cating that changes in ATF4 abundance could directly affect intracellular lipid metabolism.
These results imply that ER stress and its triggered adaptive response mechanism can affect
lipid metabolism.

Blastocyst metabolism regulates more than the steady energy supply from ATP pro-
duction. It is becoming increasingly evident that exogenous metabolites and cofactors are
important regulators of embryo fate, putting environmental interactions at the forefront.
Therefore, alterations of the surrounding milieu of the preimplantation embryo can have
profound implications for an organism’s health and predisposition to diseases later in
life. We have shown that maternal diabetes mellitus affects embryonic lipid metabolism
in a cell lineage-specific manner, leading to an altered stress response in EB and TB cells
only a few hours after gastrulation has started. This effect can be explained in part by
diabetes-associated hyperlipidemia. In summary, preimplantation embryo development
is a vulnerable period in an individual’s life and can program adult disease susceptibil-
ity. Therefore, changes in embryonic metabolism and stress response may have severe
consequences for future health trajectories.

4. Materials and Methods
4.1. Alloxan Treatment

Experimental insulin-dependent diabetes was induced in mature 18–20-week-old
female non-pregnant rabbits by alloxan treatment (Sigma-Aldrich, Darmstadt, Germany),
as described previously [65]. Rabbits were held in a diabetic condition with permanent
blood glucose concentrations > 14 mmol/L by regular insulin supplementation three times
per day (Huminsulin® Basal, Lilly Deutschland GmbH, Bad Homburg, Germany), starting
at the second day after alloxan treatment. Blood glucose level was monitored as described
previously [32].

4.2. Embryo Recovery and In Vitro Culture

Mating and embryo recovery were performed as described [31]. At day 6 p.c., rabbits
were euthanized with a lethal dose of sodium pentobarbital. Embryos were flushed
from the uteri, washed three times with basal synthetic medium II (serum- and growth-
factor-free) [70], characterized morphologically using a stereomicroscope, and classified for
gastrulation stages [71]. Gastrulation stages 1 (gastrulation stage with anterior marginal
crest) and 2 (gastrulation stage with posterior gastrulation extension) were used for in vivo
analysis and in vitro culture.

In vitro culture of day 6 blastocysts was performed in groups of 4 to 5, if embryos
were used for RNA analyses or 9 to 10 for protein analyses. In vitro culture was performed
at 37 ◦C in a water-saturated atmosphere of 5% O2, 5% CO2, and 90% N2, for 6 h with a
commercial lipid mixture (chemically defined lipid mixture #11905, Thermo Fisher, Dreieich,
Germany) diluted 1:100 as recommended in standard culture medium. The lipid mixture
contained fatty acids, cholesterol, and phospholipids and has been used in other studies to
create hyperlipidemic developmental conditions [72,73]. Control embryos were cultured
without the lipid mixture in standard culture medium.

Embryos were washed three times in cold phosphate-buffered saline (PBS) containing
0.05% polyvinyl alcohol (PVA). Embryonic coverings were mechanically removed and
blastocysts were microdissected to harvest EB and TB cells under a stereomicroscope. RNA
analyses were performed using single embryos stored in PBS at −80 ◦C until RNA isolation
for RT-PCR. For protein analyses, EB and TB cells were pooled in groups of 8–10 for one
protein sample. Samples were stored at −80 ◦C until use in PBS buffer for RNA isolation
and radioimmunoprecipitation assay (RIPA) buffer for protein isolation.
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4.3. Staining of Rabbit Blastocysts

Blastocysts have been describe previously [35]. In brief, fixed blastocysts were used
immediately after recovery for Oil Red O (Sigma-Aldrich) staining. Embryonic tissues were
stained for 2 h, washed in 0.05% (wt/vol) PVA/PBS and embedded on SuperfrostTM slides
(Menzel Gläser, Braunschweig, Germany) using 4.8 g of MOWIOL® reagent (Merck, Darm-
stadt, Germany) dissolved in 12.0 g of glycerol (Merck, Darmstadt, Germany). Embryonic
disks were examined using light microscopy (BZ 8000, Keyence, Itasca, IL, USA).

4.4. RNA Isolation and cDNA Synthesis

DynabeadsTM Oligo(dT) 25 (Invitrogen, Darmstadt, Germany) were used to isolate
mRNA from single EB and TB cell samples. All isolated mRNA was further used for cDNA
synthesis. All procedures were carried out according to the manufacturer’s instructions
with previously described modifications by [74]. Whole mRNA samples were transcribed
into cDNA using RevertAidTM H Minus Reverse Transcriptase (200 U/µL) (Thermo Fisher
Scientific, Dreieich, Germany) in a thermocycler (Biometra, Göttingen, Germany) as follows:
10 min at 25 ◦C, 1 h at 42 ◦C, and 10 min at 70 ◦C. Sterile water was added to the samples
to a final volume of 100 µL.

4.5. Polymerase Chain Reaction (RT-PCR)

RT-PCR amplification was conducted with 0.5 µL cDNA from single blastocysts
in 25 µL volume containing 200 µM of each dNTP, 2.5 U Taq polymerase, and specific
oligonucleotides for PPARα, PPARγ, FASN, CPT1, FABP4, FATP4, CD36, and GAPDH
(primers listed in Supplemental Table S1). Amplification was performed for 40 cycles (94 ◦C
45 s, 60 ◦C 45 s, 72 ◦C 60 s). PCR products were separated by electrophoresis on 2% agarose
gels and stained with ethidium bromide.

4.6. Measurement of mRNA Levels Using Quantitative PCR (qPCR)

Amplification- and quantification-specific forward and reverse primers were designed
based on rabbit gene sequences using the Primer-BLAST online tool (NIH, Bethesda, MD,
USA; Supplemental Table S1). PCR products were sequenced and verified for specificity as
described previously [75]. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene
expression, which is unaffected by the treatment [76], was quantified as the endogenous
control for EB and TB samples. qPCR analyses were performed in duplicate using a
Quant Studio 3TM Real Time System (Thermo Fisher, Dreieich, Germany) as previously
described [77]. In brief, qPCR reactions were performed using 3 µL of cDNA and 17 µL
master mix (PowerTrack™ SYBR Green Master Mix, Thermo Fisher, Dreieich, Germany)
and with a ‘no template control’ for each primer set (Supplemental Table S1). Results
were calculated as abundances of target RNA molecules per GAPDH RNA molecules and
expressed as relative abundances in percent- or fold-change of control samples. Target gene
expression is described relative to the mean of the normoinsulinemic group.

4.7. Protein Sample Preparation

Protein isolation of pooled blastocysts was performed as described by Pendzialek et al. [78].
In brief, embryonic tissues were homogenized in ice-cold RIPA buffer containing protease
and phosphatase inhibitors (Roche, Basel, Switzerland). EB cells were homogenized in 5 µL
and TB cells in 20 µL of RIPA buffer per embryo. Protein concentration was determined
using the Pierce™ 660 nm Protein Assay (Thermo Fisher Scientific, Dreieich, Germany)
according to the manufacturer’s instructions.

4.8. Immunoblotting

For Western blot analysis, 25 µL of sample containing 20 µg of EB cells or 45 µg
of TB cells was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) on 10–12% gradient gels and electrotransferred to nitrocellulose membranes.
Immunoblotting has been described in [47]. Supplemental Table S2 describes antibody
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information. Immunoreactive signals were visualized via enhanced chemiluminescence
detection and quantified using a ChemiDoc™ Touch System and Image Lab 5.2.1 software
(Bio-Rad, Hercules, CA, USA). Relative protein abundance was calculated as the ratio of
the band intensity of the target protein to the band intensity of β-actin in the same blot to
correct for differences in protein loading.

4.9. Statistics

Statistical analyses were performed with SigmaPlot (v. 12.0; Systat Software Inc.,
San Jose, CA, USA). The level of significance between groups was calculated with a
two-tailed Student’s t-test after testing for outliers and proving normal distribution. If
normal distribution failed, the Mann–Whitney U test was used. Results are shown as
mean value ± standard error of the mean (mean ± SEM). Multiple comparisons were
made with factorial variance analysis (ANOVA) adjusted according to Bonferroni correc-
tion. Results were considered statistically significant if p < 0.05. (N) represents the number
of individual and independent experiments from which the embryos were covered and (n)
the number of samples used per measurement per group. All experiments were repeated
at least three times.
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