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Zusammenfassung
Die Weltbevölkerung wächst und mit ihr, durch eine einhergehende Urbanisierung, der Anteil
der Menschen, die in städtischen Gebieten leben. Bei der Planung des öffentlichen Raumes wird
die tatsächliche Nutzung jedoch bisher nur rudimentär berücksichtigt. Um hier Abhilfe zu schaf-
fen, ist ein Wandel zu einem nutzerorientierten Gestaltungs- und Planungsansatz unabdingbar.
Die Kenntnis über die Anzahl der Nutzer und deren Nutzung des Raumes ist für einen solchen
Übergang entscheidend. Derzeit werden diese Daten hauptsächlich durch manuelle Beobach-
tungen erhoben. Die Durchführung derartiger Beobachtungen ist jedoch mit einem hohen Zeit-
und Arbeitsaufwand verbunden und erfolgt daher in der Regel nur für kurze Zeiträume.
Sensorbasierte Monitoringsysteme können diese Situation verbessern, indem sie Langzeitbe-
obachtungen und automatisierte Analysen ermöglichen. Das Ziel dieser Arbeit ist es daher,
ein technisches Monitoringsystem als Proof-of-Concept zu entwickeln, das eine evidenzbasierte
Datenbasis über die Flächennutzung für stadtplanerische Prozesse liefern kann. Der Einsatz
solcher Systeme ist jedoch, insbesondere in Deutschland, durch gesetzliche Vorgaben stark ein-
geschränkt. Diese erschweren den Einsatz herkömmlicher bildgebender Sensoren in Form von
Videoüberwachungsanlagen im öffentlichen Raum.

In Anbetracht dieser Einschränkungen wird ein System auf der Grundlage von Dynamic
Vision Sensors (DVS) entwickelt. Diese optischen Sensoren unterscheiden sich in ihrem Funk-
tionsparadigma grundlegend von herkömmlichen bildgebenden Sensoren. Die Pixel dieser Sen-
soren werden durch lokale Helligkeitsänderungen getriggert, anstatt eine feste Verschlusszeit
oder Bildrate zu verwenden. Änderungen der logarithmischen Pixelhelligkeit werden unabhängig
voneinander erkannt und asynchron übertragen. Das Resultat ist ein räumlich dünn besetzter,
mehrdimensionaler Ausgabestrom mit hoher zeitlicher Auflösung und variabler Datenrate an-
stelle einer Sequenz konventioneller 2D-Bilder. Dies ermöglicht eine Verarbeitung ohne direkte
Berücksichtigung von Grauwerten oder Farbwerten.

Die Sensorausgabe erfolgt in Form von separaten Events, die die detektierten Helligkeits-
änderungen beschreiben. Dies stellt im Sinne der klassischen Computer Vision eine unkonven-
tionelle Form dar. Eine Vielzahl von Repräsentationsformen, einschließlich 2D-Frames, Voxel-
Gitter und 3D Space-Time Event Clouds, eignen sich für deren Verarbeitung. Derzeit existiert
keine etablierte Standardrepräsentation, die für verschiedene Anwendungen verwendet wird.
Daher werden diese verschiedenen Repräsentationen in Verbindung mit unterschiedlichen Deep
Learning basierten Verarbeitungsansätzen eingehend miteinander verglichen. Der Schwerpunkt
liegt dabei auf der Repräsentation in Form von Event Clouds, da diese Eventrepräsentation
nahezu nativ aus der Sensorausgabe erstellt werden kann, während die volle Auflösung und
“Sparsity” des Signals erhalten bleibt.
Es wird ein DVS-basiertes Monitoringsystem entwickelt. Dabei werden verschiedene Heraus-
forderungen bei der Verarbeitung berücksichtigt, insbesondere die im Signal enthaltenen Um-
welteinflüsse, die aus dem realen Messaufbau im Freien resultieren. Im Rahmen einer Lang-
zeitbeobachtung eines öffentlichen Freiraums erfolgt ein Vergleich der Repräsentationen für die
Aufgabenstellung der semantischen Segmentierung, sowie der Instanzsegmentierung. Das ent-
wickelte System umfasst dabei die gesamte Verarbeitungspipeline von der Datenerfassung und
Filterung über die Objektsegmentierung bis hin zur Visualisierung der Ergebnisse.

Anhand von Aufzeichnungen wird gezeigt, dass eine entwickelte Auswahl von Zeitfenstern
mit Events, die durch eine vordefinierte Menge von Objektklassen ausgelöst werden, eine hohe
Qualität bei gleichzeitig geringem Bedarf an Rechenressourcen aufweist. Darüber hinaus wird
gezeigt, dass das System in der Lage ist, die Anzahl der Nutzer mit hoher Genauigkeit zu
bestimmen, indem die ermittelten Ergebnisse mit Referenzzählungen verglichen werden, die
von menschlichen Annotatoren erstellt wurden. Eine Heatmap-Visualisierung wird entwickelt,
um die räumliche Verteilung der Nutzung zusammenzufassen. Diese Visualisierung wird getestet
und erweist sich als intuitiv verständlich für die Stakeholder, an die sich das Monitoring richtet.
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Abstract
The world’s population is growing, and with it the proportion of people living in urban areas.
Currently, the actual utilization of urban public spaces is only rudimentarily considered in
their planning. To address this, a shift towards a user-oriented design approach is essential.
Knowledge about the number of users and their spatial distribution within the space is crucial
to enable such a transition. However, manual observation is currently the primary method used
to collect such data. These observations are generally time-consuming and labor-intensive, and
are therefore typically conducted only for short periods of time.

Sensor-based monitoring systems can improve this situation by enabling long-term observations
and automated analysis. Thus, the objective of this work is to develop a technical monitoring
system as a proof-of-concept that can create an evidence-based database on the long-term use
of public space as a basis for decision-making in urban planning processes. However, the use of
such systems is subject to legal requirements, which are particularly strict in Germany. These
regulations make the use of traditional image sensors in the form of CCTV systems in public
spaces very difficult.

Addressing these limitations, a system based on Dynamic Vision Sensors (DVS), also known
as event cameras, is developed. These optical sensors are fundamentally different from con-
ventional frame-based sensors due to their underlying operating paradigm. The sensor’s pixels
are triggered by changes in brightness, rather than using a fixed exposure time or frame rate.
Changes in logarithmic pixel brightness are detected independently and transmitted asyn-
chronously. The result is a spatially sparse, multidimensional output stream of high temporal
resolution at a variable data rate, instead of a sequence of traditional 2D frames. This allows
processing without direct consideration of any gray or color values in software.

The output, in the form of separate events describing the detected changes in brightness, is
unconventional in terms of classical computer vision, as it is spatially sparse, unordered, and
asynchronous. For processing, these events can be represented in a variety of data structures,
including 2D frames, voxel grids, and 3D space-time event clouds. Currently, there is no de
facto standard representation that is commonly used for different processing tasks. There-
fore, these different representations, coupled with different deep learning-based processing
approaches, are extensively compared. The focus of this work is on event cloud representa-
tions, since this data structure is built almost natively from the sensor output, while preserving
the full resolution and sparsity of the signal.

A DVS-based monitoring system is developed and evaluated. For this application, differ-
ent processing challenges are considered, including environmental influences contained in the
sensor signal resulting from the real-world outdoor measurement setup. In the context of a
performed long-term monitoring of a public outdoor space, a comparison is conducted with re-
spect to the application task of creating semantic and instance segmentations. The developed
monitoring system covers the entire processing pipeline from data acquisition and filtering to
object segmentation and visualization of the results.

Based on recordings acquired during the conducted long-term outdoor monitoring, a se-
lection of temporal segments containing events triggered by a predefined set of object classes
is shown to be of high quality, while requiring low computational resources on-site. Further-
more, the system’s ability to estimate the user volume in the recorded data is shown to be
highly accurate by comparison with reference counts generated by multiple human annotators.
A heat map visualization is developed and evaluated to aggregate details about the spatial
distribution of usage. This visualization is tested and found to be intuitively understandable
by the stakeholders for whom the monitoring is intended.
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Chapter 1

Introduction

1.1 Motivation

The global world population is continuously growing [United Nations, 2019]. In the course of
this population growth, an urbanization of the chosen habitat can be observed. In 1950, less
than one-third of the world’s population lived in cities. By 2010, that proportion had already
risen to more than half. Recent calculations by the United Nations predict that by 2050, out
of a total of approximately 10 billion people, more than 7 billion will live in urban metropolises
[United Nations, 2018].

As a result, public space in cities will be used more and more. Contrary to predictions made
in the seventies of the last century, more people are rediscovering public space for themselves
and are using it in different ways [Selle, 2010, pp. 51 ff.]. As a result, new challenges are
emerging for the design of public spaces. These challenges require detailed knowledge about
the needs and behaviors of different user groups in the public realm. Currently, these diverse
needs are rarely considered in urban planning processes [Selle, 2010, p. 26]. The reasons for
this can be found in different planning trends [Schmid, 2015] and especially in the problem
of generating knowledge about the current use of an urban space and being able to use it in
design processes.

In addition to formats of citizen participation such as surveys, sociological urban research
uses various methods of observation to gain more precise insights [Eckardt, 2014, p. 177]
[Gehl and Svarre, 2013, pp. 21 ff.]. These observations include questions about who uses
public space, at what times, and in what ways. The problem here is that in most cases these
observations have to be carried out manually and are therefore time and personnel intensive,
resulting in rather expensive user studies. This makes it difficult to incorporate such findings
into design processes. However, the detailed description and identification of urban space
usage is the fundamental basis for a user-centered design process and has a significant impact
on the final design result.

Therefore, the aim of this work is to address this problem with a technical solution in the
form of a sensor-based observation system. The goal is to provide a system that is able to
create an evidence-based database on the long-term use of public space as a basis for decision-
making in the urban planning process. However, due to the application context of public space
monitoring, special aspects and requirements arise for this observation system. In particular,
it is necessary to comply with local data protection laws for data collection and interpretation.
For this purpose, an approach and a monitoring system are presented, which addresses and
mitigates these problems already by the choice of the applied sensor technology.
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1.1.1 Challenges in Public Space Monitoring
Until now, the analysis of usage and interaction in public spaces is generally based on analog
methods. However, classical CCTV video recordings of public spaces could form the data
basis for such a monitoring system. They can be used to objectively determine, analyze and
document the behavior of the users involved. Thanks to recent advances in computer vision,
this could also be achieved in an automated way. However, the use of classical image sensors
has limitations that must be taken into account in a public surveillance system.

The use of conventional video surveillance systems can be subject to numerous regulatory
requirements and laws. These regulations vary greatly depending on the location of the system,
as national legislation differs from country to country. In the context of German legislation,
images of people are considered as “personal data” and are therefore subject to special and very
strict requirements for protection. These protection requirements, especially in the context of
recording in public spaces, can prevent or significantly complicate the use of traditional video
surveillance in Germany from a legal and regulatory perspective. Furthermore, the use of
machine pattern recognition in public spaces may also raise ethical concerns [Gehl and Svarre,
2013].

1.1.2 Monitoring Approach
Therefore, the aim of this dissertation is the development of a technical monitoring system on
the basis of an alternative sensor technology for long-term monitoring in the context of urban
planning. This system utilizes an optical recording paradigm that differs from conventional
frame-generating sensors. In this way, privacy and personality rights are addressed at the
hardware level, minimizing potential ethical and legal concerns.

The developed system is based on the Dynamic Vision Sensor (DVS), a sensor from the field
of neuromorphic engineering. The pixels of a DVS operate independently and asynchronously,
encoding only detected changes in brightness. The sensor output is not a traditional frame,
but rather a spatially sparse data stream with a variable rate of triggered events at high
temporal resolution. This change in the fundamental output paradigm has the consequence
that computer vision methods developed and widely used over the last decades cannot be
directly applied to the sensor signal of a DVS. This poses the challenge of developing an
adapted processing with respect to the sensor signal.

The following Section 1.2 and Section 1.3 briefly introduce the research field of neuromorphic
engineering and explain the operating principle of a Dynamic Vision Sensor. The Section 1.4
summarizes the challenges of DVS-related signal processing and presents common data repre-
sentations that are used in the processing.

1.2 Neuromorphic Engineering
Neuromorphic engineering is an interdisciplinary field of research that brings together biology,
physics, mathematics, computer science, and electrical engineering to design and implement
artificial neural systems that mimic nature. Very Large Scale Integrated Circuits (VLSI)
attempt to reproduce the underlying biological principles and functions in electrical circuits.
A major pioneer in this field of research is Carver Mead, whose work in the late 1980s laid the
groundwork and influenced further work [Mead, 1989].

Misha Mahowald, one of Mead’s doctoral students, developed the first “silicon retina”
in the course of her dissertation [Mahowald, 1992]. This retina retains the biological signal
processing idea of a retina and the idiom of transmission of action potentials in the nervous
system.

6
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Figure 1.1: Visual pathway: Scheme of visual sensory input in humans1.

Biological Vision
The retina in the human eye consists of several layers (see Figure 1.1) that can be grouped
into four main categories2:

• Photoreceptor cell
The lens of the eye focuses incident light on the retina and directs it to the light-sensitive
photoreceptor cells (commonly known as rod and cone cells), whose action potential
depends on the amount of incoming light.

• Retina bipolar cell
The photoreceptors are connected by horizontal and bipolar cells. These cells collect and
weigh the information from the photoreceptors and transmit it to the ganglion cells.

• Retinal ganglion cell
The retinal ganglion cells generate the output of the retina. The firing rate of these cells
correlates with changes in light intensity.

• Optic nerve
The optic nerve transmits the information to the visual cortex, where visual perception
and understanding begin.

1.3 Dynamic Vision Sensor
This biological structure is reflected in the design of each individual pixel of a Dynamic Vision
Sensor.
The basic working principle is described in [Steffen et al., 2019, p. 10] as follows (see Figure 1.2):

“[The] light information is obtained by a photodiode which thus generates the
current intensity 𝐼 . Photoreceptors (cones) convert 𝐼 into a logarithmic voltage

1The left part of the figure, the “Rods and Cones” (https://commons.wikimedia.org/wiki/File:
1414_Rods_and_Cones_-_ru.svg) visualization of the retinal cells, is adapted from a figure created by
users CFCF and Kaidor found on Wikimedia Commons, licensed under CC BY-SA 4.0. The “human
eye” (https://commons.wikimedia.org/wiki/File:Schematic_diagram_of_the_human_eye_horizontal_pt.
svg) visualization is adapted from a figure created by user Rhcastilhos found on Wikimedia Commons, licensed un-
der CC0. The visualization of the “human brain” (https://commons.wikimedia.org/wiki/File:Gray728.svg)
is adapted from a figure created by user Mysid found on Wikimedia Commons, which is in the public domain.

2This description does not claim to be complete and is a simplified abstraction. The intention is to present
the basic components considered in the design of the Dynamic Vision Sensor and its paradigm.
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Figure 1.2: General scheme of a DVS pixel related to biology (from [Steffen et al., 2019]).

𝑉𝑝. This voltage is inversely amplified by the factor 𝐴 = 𝐶1/𝐶2. Also a positive or
negative event 𝑉diff is generated by the differential circuit (bipolar cell), depending
on the polarity of the photocurrent. Subsequently, the pulses are collected, divided
into ON- and OFF-events and forwarded by the comparator (ganglion cell).”

The pixels of a Dynamic Vision Sensor operate independently and asynchronously. Each pixel’s
output is based on the relative changes in light intensity it detects. An output is triggered
when

∣log (𝐼𝑡𝑖(𝑥, 𝑦)) − log (𝐼𝑡𝑖−1
(𝑥, 𝑦))∣ > 𝜃 (1.1)

a change in brightness (intensities 𝐼) is detected between two consecutive points in time
(timestamps 𝑡𝑖, and 𝑡𝑖−1) at the pixel position (𝑥, 𝑦) above a specified threshold value 𝜃. This
output is called an “event”. The term event-based vision is derived from this.

1.3.1 Address-Event-Representation
The human retina contains approximately 0.7 to 1.5 million retinal ganglion cells [Watson,
2014]. Currently, implementing in-chip wiring with a large number of separate output paths
is not technically feasible. Therefore, an event-based multiplexed data protocol called Address
Event Representation (AER) [Mahowald, 1992; Lichtsteiner et al., 2008] is used to bundle
traffic on output circuits.

In contrast to classical image acquisition, and with further reference to the transmission of
information in biology via the optic nerve, the DVS output does not result in the transmission
of a full image, but in an output stream of individual, activated pixels. This data stream has
a variable data rate that depends on the changes detected and can vary greatly over time.

The output is asynchronously multiplexed using the Address Event Representation commu-
nication protocol. Each individual asynchronous output event 𝑒𝑖 = {(𝑥𝑖, 𝑦𝑖), 𝑡𝑖, 𝑝𝑖}, identified
by the occurrence index 𝑖, is thus described by:
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(a) Stimulus (b) Triggered DVS event stream

Figure 1.3: Visualization of the DVS output caused by a fast-moving stimulus. The DVS
event polarity is color-coded with green for “on” and red for “off” (from [Bolten et al.,

2023c]).

(a) “Moderate” motion (b) No motion

(c) “Fast” motion

Figure 1.4: Comparison of DVS and standard camera output using a rotating stimulus
(adapated from [Mueggler et al., 2014]).

• Position (𝑥𝑖, 𝑦𝑖): Coordinates on the image plane of the DVS.

• Timestamp 𝑡𝑖: Time when the event was triggered (within the resolution of up to a
few microseconds accuracy).

• Polarity 𝑝𝑖: Direction of the detected brightness change (ON: change from dark →
bright; OFF: change from bright → dark)

The resulting output stream is spatially sparse but has very high temporal resolution. The
ability to capture fast object motion is demonstrated in an example shown in Figure 1.3. In
this example, the stimulus is assumed to be a rotating disk with a dot on it.

As shown in the Figure 1.4, no DVS output is generated if there is no movement and
therefore no change in the scene. Compared to frame-based cameras, which are prone to
motion blur during fast movements, the DVS stream output is much more robust in this
regard.
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(a) Classic RGB frame that exposes a high level of
personal information

(b) AER output from a stationary DVS converted
to an image in which people are abstracted by

edges caused by their movements

Figure 1.5: Benefits of the Dynamic Vision Sensor from a privacy perspective.

1.3.2 Technical Advantages
Compared to their frame-based counterparts, Dynamic Vision Sensors offer several technical
advantages:

High Temporal Resolution:
Dynamic Vision Sensors are able to record very fast movements. This is because the
detection of changes in brightness is performed directly in analog circuits. With fast
readout logic, events can be time-stamped at microsecond resolution. This makes event
cameras less prone to effects such as motion blur than frame-based cameras.

Low Latency:
The pixels of a Dynamic Vision Sensor operate independently of each other. As soon as
a change in the brightness is detected at a pixel, the output of that pixel is requested.
As a result, there is no need to wait for an exposure time and synchronous readout for
output, as is the case for frame-based cameras.

Low Data Redundancy and Power Consumption
Dynamic Vision Sensors ideally provide no sensor output in static scenes or static sub-
areas. Compared to frame-based cameras (see Figure 1.4b), this can significantly reduce
the amount of data that needs to be transmitted and subsequently processed.
Accordingly, in a Dynamic Vision Sensor, power is only consumed for processing the
changing pixels. This usually results in a low power consumption of the sensor.

High Dynamic Range (HDR):
In traditional frame-based cameras, the image sensor is exposed for a pre-selected period
of time known as the exposure time. Under certain lighting conditions, where very dark
and very bright areas are present at the same time, it is often impossible to avoid over-
or underexposure in a single shot.
The dynamic range of a sensor is the ratio of the highest to the lowest level of illumina-
tion at which the sensor is able to operate. Dynamic Vision Sensors have a much higher
dynamic range, typically more than 120 dB compared to approximately 60 dB for profes-
sional frame-based systems. While the human eye has a maximum intrascene dynamic
range of about 40 dB, the biological dark-adaptation process allows humans to achieve a
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Event-based vision Frame-based vision
asynchronous synchronous
spatial sparse spatial dense
unordered ordered

Table 1.1: Output modality of event-based versus frame-based vision.

total dynamic range across multiple scenes of about 120 dB (compare to [Darmont, 2013,
p. 37]).
The high dynamic range of DVS is due to the fact that the pixels respond independently
to changes in logarithmic intensity. As a result, these sensors can be used in a wide
range of scenarios, from dark to bright environments. The high dynamic range is also
particularly advantageous for outdoor applications.

Privacy Aspects:
In its purest form, the output of a Dynamic Vision Sensor does not contain any intensity
information for the triggered events. This means that although a DVS is an optical
sensor, no gray or color values need to be considered in software components for further
processing. The DVS thus directly addresses potential privacy issues by being limited
to the components of the AER data stream.
The sensor’s output stream contains an accurate representation of changes within the
scene while minimizing the amount of personal information captured (compare to Fig-
ure 1.5, where each image pixel encodes the polarity of the last event that occurred
within a 60ms time window. An increase in brightness is shown in green and a decrease
in red.).
There are approaches to reconstruct conventional intensity images from a DVS data
stream (e.g., [Bardow et al., 2016; Reinbacher et al., 2016; Rebecq et al., 2019; Scheerlinck
et al., 2019; Rebecq et al., 2021; Paredes-Valles and de Croon, 2021; Liu and Dragotti,
2023]) that may threaten this privacy advantage. However, direct preprocessing of the
data prior to storage can significantly complicate this reconstruction task. A restrictive
spatio-temporal filtering of the events, the subsampling or the aggregation of the events
into other representations are possible processing steps that are suitable for this purpose.
There are also approaches to encrypt the event stream to defeat such reconstructions.
For example, in [Du et al., 2021] a chaotic mapping is proposed to scramble the positions
of events and to flip their polarities. While in [Zhang et al., 2024], carefully generated
noise is introduced into the event stream to obfuscate the given data.
Thus, potential privacy concerns can be avoided.

1.4 Signal Processing
The paradigm shift in the operating logic of Dynamic Vision Sensors requires a rethinking of
how their signals are processed. This concerns both the general challenges of dealing with this
sensor technology and the various data representations introduced for it.

1.4.1 Challenges
When using Dynamic Vision Sensors, the way in which they operate presents a number of
challenges that need to be considered during processing. These include (compare also to [Zhu,
2019, Section 1.5]):
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Output Paradigm:
Because of the operating paradigm described above, the output of a Dynamic Vision
Sensor is fundamentally different from that of a standard camera (see Table 1.1). A
standard camera takes synchronous measurements based on a defined exposure and ac-
quisition speed (fps, frames per second). This results in an ordered, synchronous, and
spatially dense sampling: the classical image or frame.
The output of a Dynamic Vision Sensor is asynchronous, unordered, and spatially sparse.
This, means that classical image processing methods cannot be applied natively.

Photometry:
Frame-based cameras provide absolute intensity information, such as grayscale values,
for each pixel. The basic DVS event stream contains only information about the presence
of brightness changes. In addition, only the polarity of the brightness change is known.
Since these changes also depend on past and present motion in the scene, or on sensor
motion, and not just on the brightness within the scene, there is no such thing as classic
photographic consistency. Photo consistency is the assumption that a point, under
constant illumination and Lambertian reflection, will produce an equivalent result for
all cameras that can see it.

Spatial and Temporal Separability:
For frame-based standard cameras, the interpretation of spatial and temporal aspects
can be separated. For example, the determination of edges in an image as a spatial
analysis can be separated from the search for temporal movements of an object.
For an event in the output stream of a DVS, the spatial and temporal information are
joined. Without prior information, it is not possible to determine whether a single event
has a new origin or belongs to an older point that has already generated events and
moved to another position.

Noise and Sensor Resolution:
As stated in [Gallego et al., 2022], “[a]ll vision sensors are noisy because of the inherent
shot noise in photons and from transistor circuit noise, and they also have nonidealities.
This situation is especially true for event cameras, where the process of quantizing tem-
poral contrast is complex and has not been completely characterized.” The processing
of DVS data is therefore challenging due to the presence of sensor noise.
In addition, the spatial resolutions of available DVS models are significantly lower than
those of available standard cameras, resulting in significantly smaller object image scales.

Availability of Training Data:
Another obstacle to the development of event-based algorithms is the lack of publicly
available and appropriately annotated datasets. This is due to the fact that Dynamic
Vision Sensors have only recently become commercially available.

1.4.2 Event-Stream Representations
In the context of classical image processing, the output stream of a Dynamic Vision Sensor
can be considered “unconventional”. In order to process this type of output, different event
representations have been developed. The boundary between pure event representation and
basic feature extraction for a given application is often ambiguous.

Basic categories and widely used event representations are summarized here in order to cate-
gorize the following work:
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Event-by-Event:
The native representation of events as 𝑒𝑖 = {(𝑥𝑖, 𝑦𝑖), 𝑡𝑖, 𝑝𝑖}, as provided in the AER
stream, is preserved. Events are processed one at a time and in the order they are trans-
mitted. Since a single event contains only limited information, knowledge of previous
events must be included in the processing.

Pro:
• Very low latency processing is possible.
• Event sparsity and high time resolution properties are preserved and exploited.

Con:
• Application-specific development of custom computer vision algorithms is required

to use this form of representation, as it is currently considered to be an ”unconven-
tional” signal without a broad base of existing solutions.

3D Space-Time Event Cloud:
The Dynamic Vision Sensor output is interpreted as a point cloud, which is formed from
the unsorted set of events {𝑥𝑖, 𝑦𝑖, 𝑡𝑖} ∈ ℝ3. The combined spatial information (𝑥𝑖, 𝑦𝑖)
and temporal information 𝑡𝑖 is transformed into a geometric description.

Pro:
• Event sparsity property is preserved.
• Event timestamp resolution is fully preserved.

Con:
• A “Bag-of-Events” is required. For the creation of the point cloud, it is necessary to

divide the event stream into time windows. This leads to a latency in processing.
• Depending on the amount of triggered events, subsampling of the input data may

be required for processing.

Event-Graph:
The spatio-temporal relationships between events are transformed into a neighborhood
graph. The events 𝑒𝑖 = {𝑥𝑖, 𝑦𝑖, 𝑡𝑖} are interpreted as vertices of the graph. The vertices
are interconnected by edges based on their distance in 𝑥, 𝑦, and 𝑡.

Pro:
• Event sparsity property is preserved.
• Event timestamp resolution is fully preserved.

Con:
• Graph generation requires high computational resources, i.e. for the neighborhood

calculations involved in defining edges between events.
• High memory consumption for data structure management.
• Depending on the amount of triggered events, subsampling of the input data may

be required for processing.

Event-Voxelization:
The three-dimensional event stream is divided into a set of discretized regions. For
example, at each spatial position (𝑥, 𝑦) of the sensor array, voxels are sampled at short
time intervals. The number of events contained in these voxels is counted. This results
in a 3D voxel event histogram.
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Pro:
• Classical computer vision methods, such as convolutional neural networks, are di-

rectly applicable. This allows reuse of methods and insights.
• Depending on the selected voxel size, compromises are possible in preserving the

spatial and temporal properties between the aforementioned 3D representations and
2D frame conversions.

Con:
• Loss of event sparsity, as many voxels may not contain events.
• Voxel size is a freely configurable parameter that quantifies the DVS resolution. It

must be fine-tuned for individual applications.
• High memory requirements for fine resolution of dense 3D voxel grids.

Frame-Conversion:
A set of events, typically based on (a) the selection of a fixed length time segment of
the DVS stream, or (b) the selection of a fixed set of sequentially transmitted events, is
converted into a 2D frame representation [Liu and Delbruck, 2018]. For this purpose, the
selected events are typically projected onto the xy-plane. Since the events are triggered
by changes, the resulting images are similar to edge images from standard cameras
(compare to Figure 1.5). In classical image processing, edges are considered to have a
high information content.
For the actual calculation of the pixel values, several encoding rules have been proposed.
These include:

– Simple binary pixel encodings, which only consider the presence or absence of an
event.

– Color-based encodings, which use color to represent certain characteristics, such as
event polarization, as shown in Figure 1.5b.

– Time-surfaces, which encode event timestamps in an image.

Pro:
• It is an intuitive, long-established, and well-known form of representation.
• Classical computer vision methods, such as convolutional neural networks, are di-

rectly applicable. This allows reuse of methods and insights.
Con:
• The event-based processing paradigm is largely abandoned.
• The property of sparsity and the high temporal resolution are (mostly) lost.
• The selected frame encoding rule strongly affects later processing/results.
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Chapter 2

Research and Development
Context

The development goals for a proof-of-concept DVS-based monitoring system are summarized,
including the monitoring metrics to be derived. The main aspects of the research are presented.
Based on the developed processing pipeline, own contributions are described, and the work is
outlined.

2.1 Scope and Research Topics
The main objective of this work is the development of an overall system based on Dynamic
Vision Sensors for public space monitoring. The goal is to provide a technical foundation
of a monitoring system that allows the integration of observed usage into urban planning
processes. The observations of the public space should be carried out in the long-term and
not on a day-to-day basis, as this is much more representative.

This raises the question of what kind of processing is appropriate and can be used for this
purpose. The monitoring system must cover the entire process from the acquisition of the DVS
signal to the automatic processing and visualization of the obtained and summarized results.

In addition to the signal processing challenges posed by the new sensor paradigm, real-
world aspects must also be considered. Outdoor recordings are influenced by the environment
and contain interferences that must be taken into account.

The main parameters to be derived in the monitoring are

(a) the number of users in the observation area and
(b) their spatial distribution across the measured field.

Main Research Topics
The creation of this monitoring system required the consideration of several key tasks and
aspects, including:

Contributed Datasets:
For the development of event-based public space monitoring, it is crucial to select an
appropriate dataset that contains classes of interest for the application scenario. It is
also crucial that these labels are sufficiently detailed.
In real-world outdoor scenarios, signals from Dynamic Vision Sensors also contain envi-
ronmental influences such as airborne particles, insects, or rain. In order to develop a
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system capable of processing data captured in such an outdoor scenario, it is important
to account for these included environmental events as well as for sensor noise in the used
datasets.
In the domain of event-based vision, no datasets meeting these requirements were avail-
able (see introduction of Part II).
As a consequence, own datasets had to be recorded and processed. To develop the
system, it was necessary to implement a process for creating and automatically labeling
recordings with annotations on a per-event basis.

Evaluation of Event Stream Representations for Segmentation Purposes:
The previous Section 1.4.2 introduced different categories of event representations that
are used to process the “uncommon” signal of the DVS.
In the literature, events are often represented by converting the event stream into a
classical 2D frame structure. This data representation format is widely used and has been
used in computer vision for many years, making it a reasonable approach. In addition,
many algorithms and insights from classical computer vision are directly applicable in
this way.
However, this frame conversion only preserves the inherent sensor properties of the DVS
to a very limited extent. The loss of the inherent sparsity of the DVS data is the result of
this conversion. Additionally, depending on the encoding, the high temporal resolution
of the event stream may be lost or represented in a limited way.
In selecting a data representation, it is important to consider not only the preservation
of sensor properties but also the complexity of creation and storage requirements. For
example, an event graph representation is usually associated with high requirements,
whereas a 3D space-time event cloud is practically given natively, while fully preserving
the sensor properties in terms of sparsity and time resolution.
Main Research Question:
The main research question is whether and to what extent native 3D processing is ad-
vantageous for segmentation purposes of the given sensor signal. Therefore, the first
systematic evaluation of 3D space-time event cloud representations and their process-
ing with 3D deep learning approaches has been performed in comparison to other event
representations.

Real-World Application:
The objective of developing a monitoring system capable of generating an evidence-based
observation database to support the urban public planning process is being evaluated in
a practical application scenario. Several challenges arise in this process.
In the long-term monitoring performed, a selection of scenes to be stored for further
analysis must be made. This is necessary because simple, unrestricted, and uninterrupted
monitoring is not practical. With respect to the intended processing, this selection must
consider and exclude unwanted signal components caused by environmental effects.
An evaluation of the final quality of the developed processing methods had to be per-
formed in the context of the conducted real-world long-term monitoring. In order to
achieve this objective, representative scenes were selected for evaluation. It was nec-
essary to confirm the feasibility of deriving the desired monitoring parameters and to
develop suitable aggregations of the derived usage parameters in order to summarize the
collected usage insights for the planning processes.
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Figure 2.1: Basic concept of the implemented DVS processing chain for urban space
monitoring.

2.2 Outline and Contributions
This dissertation consists of several previously published papers. I contributed most of the
work, including design, implementation, evaluation, writing, and presentation, in all of the
publications listed below. Parts contributed mainly by co-authors are mentioned. To ac-
knowledge all co-authors, the first-person plural pronouns “we” or “our” are used throughout
this dissertation.

Figure 2.1 shows the processing pipeline developed for the measurement system. Based on this
pipeline, which covers the entire processing from signal acquisition, segmentation, application
related evaluation in a real-world context, up to the appropriate result visualization, the
structure and contributions of this dissertation are summarized and outlined below.

Part I: Background and Context
Chapter 3 introduces the outdoor measurement site and the Dynamic Vision Sensor used.
This site was used to record the necessary long-term monitoring data for the development
and evaluation. The main components of the system used on-site, as well as the monitored
area, are described. Section 3.3 summarizes sensor noise reduction experiments that led to the
selection of a spatio-temporal filtering procedure used throughout the work.

Part II: Contributed Datasets
First, a general overview of the state-of-the-art on event-based vision datasets is given.

We published the first DVS-based dataset in the context of real-world long-term outdoor
monitoring. This dataset and the process of its creation are described in Chapter 4. The
main contribution is the inclusion of environmental effects not previously accounted for and a
per-event labeling for semantic segmentation purposes.

→ Published in: Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2021). DVS-OUTLAB:
A Neuromorphic Event-Based Long Time Monitoring Dataset for Real-World Outdoor
Scenarios. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 1348 – 1357. IEEE
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The lack of suitable and sufficiently discriminative and continuous label annotations for seg-
mentation purposes is still a major limitation in event-based vision research. Chapter 5 ad-
dresses this issue by introducing a hardware setup and automated processing that enables such
annotations. As a main contribution, besides providing a ready-to-use dataset, we provide a
detailed description of a setup that allows the extraction of high-quality, continuous instance
labels based on the fusion of an RGB color sensor and the incorporation of color features into
the recording.

→ Published in: Bolten, T., Neumann, C., Pohle-Fröhlich, R., and Tönnies, K. (2023a). N-
MuPeTS: Event Camera Dataset for Multi-Person Tracking and Instance Segmentation.
In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications - Volume 4 (VISAPP), pages 290 – 300.
INSTICC, SciTePress
I would especially like to thank Christian Neumann for his work on the physical sensor
mount and for his contribution of the hue-based segmentation performed in this paper.

Part III: Segmentation
First, we introduce different levels of segmentation and review the state-of-the-art of segmen-
tation in event-based vision. Next, we discuss the current situation where there is a lack of a
priori knowledge about which event representation is best suited to solve a given processing
task.

Chapter 6 lays the foundation for processing in terms of semantic segmentation in the form
of 3D space-time event clouds. The optimization of different input data and network configu-
rations for this processing based on a quantitative evaluation is the main contribution of this
chapter. The developed processing pipeline, including different variants of temporal input data
scaling in preprocessing, is presented and key aspects of network processing are systematically
investigated and optimized.
→ Published in: Bolten, T., Lentzen, F., Pohle-Fröhlich, R., and Tönnies, K. (2022a).

Evaluation of Deep Learning based 3D-Point-Cloud Processing Techniques for Semantic
Segmentation of Neuromorphic Vision Sensor Event-streams. In Proceedings of the 17th
International Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 4 (VISAPP), pages 168 – 179. INSTICC, SciTePress
Thanks to Felix Lentzen for performing different training runs to evaluate the considered
3D deep learning network variants.

In the following Chapter 7, the evaluation is extended to include further 2D frame represen-
tations and 3D voxel grids, while a UNet-based processing is considered in the comparison.

→ Published in: Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2023c). Semantic Seg-
mentation on Neuromorphic Vision Sensor Event-Streams Using PointNet++ and UNet
Based Processing Approaches. In Proceedings of the 18th International Joint Confer-
ence on Computer Vision, Imaging and Computer Graphics Theory and Applications -
Volume 4 (VISAPP), pages 168 – 178. INSTICC, SciTePress

Chapter 8 focuses on the extension of segmentation to the derivation of object instances. The
main contribution here is the comprehensive comparison of 2D, 3D voxel and space-time event
cloud representations in this processing. Adaptive preprocessing for the selection of regions
of interest is introduced into the processing, and in addition to a baseline method based on
the semantic segmentation approaches of the previous chapters, state-of-the-art methods for
segmentation in 2D and 3D are considered.
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→ Published in: Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2024). Instance Seg-
mentation of Event Camera Streams in Outdoor Monitoring Scenarios. In Proceedings
of the 19th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications - Volume 3 (VISAPP), pages 452 – 463. INSTICC,
SciTePress

Part IV: Evaluation of Real-World Application

A children’s playground served as a Living-Lab for a real-world, long-term monitoring. First,
the database collected at this site is summarized.

The system development and monitoring was carried out over multiple years. Performing
such long-term monitoring with multiple sensors results in a large amount of data. Chapter 9
describes the processing used to extract and store scenes of interest on-site. The knowledge
gained from the evaluation of the semantic segmentation is used to implement a processing
system that can handle real monitoring data from the actual system while taking into account
limited computing resources. The evaluation demonstrates that scenes are accurately detected
and stored.

→ Published in: Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2023b). Semantic Scene
Filtering for Event Cameras in Long-Term Outdoor Monitoring Scenarios. In Bebis, G.
et al., editors, 18th International Symposium on Visual Computing (ISVC), Advances in
Visual Computing, volume 14362 of Lecture Notes in Computer Science, pages 79 – 92,
Cham. Springer Nature Switzerland
Thanks to Noel Dominik Hanraths Pereira for his contribution to the creation of the
human reference annotations used to evaluate the developed scene selection.

Chapter 10 evaluates the overall quality of the detection and segmentation based on these
stored scenes. Representative scenes are selected from the long-term monitoring performed
to cover all typical on-site usage scenarios. A processing is developed based on the evaluated
segmentation techniques to derive the desired monitoring parameters, and the system quality
is compared to annotations provided by several human participants.

→ I would like to thank all the participating human annotators who took the time to
provide their annotations, thus enabling the evaluation and comparison of the developed
components.

Visualizations to aggregate and summarize results for stakeholders are created in Chapter 11.
For this purpose, the obtained segmentations are used to determine the spatial distribution of
the activity and are then summarized using bird’s eye view heat maps.

→ Published in: Bolten, T., Pohle-Fröhlich, R., Volker, D., Brück, C., Beucker, N., and
Hirsch, H. (2022b). Visualization of Activity Data from a Sensor-based Long-term Mon-
itoring Study at a Playground. In Proceedings of the 17th International Joint Confer-
ence on Computer Vision, Imaging and Computer Graphics Theory and Applications
(IVAPP), pages 146 – 155. INSTICC, SciTePress
I would like to thank my colleagues from the Faculty of Design, Dorothee Volker and
Clemens Brück for their contribution to the selection of the visualization variants created
and evaluated. They also conducted and evaluated the user study.
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Part V: Conclusion and Outlook
Part V concludes with a summary of the final results of the data analysis and research findings.
It also critically reflects on the limitations of the work. By discussing these limitations and
providing ideas for future work, the way is paved for further research.

Part VI: Appendices
To enhance the main text’s readability, some elements have been moved to the appendix.
This appendix provides supplementary and more detailed results for some of the evaluations
discussed in the main text. It also includes a more technical description of the sensor system
developed.

A method for thermal stabilization of the Dynamic Vision Sensors, which proved to be neces-
sary in the course of the work, as well as a retrospective evaluation of the achieved stabilization
is discussed in Appendix A. The technical hardware setup of the developed monitoring system,
including the system components, is described in the following Appendix B.

→ For his work on the thermal stabilization system and its retrospective analysis, I would
like to thank Christian Neumann. I would also like to thank Dorothee Volker and
Clemens Brück from the Faculty of Design for their joint work on the design and man-
ufacture of the used sensor enclosure and its mast mount.

Appendix C provides a basic overview of the developed software, its basic features and struc-
ture. Finally, Appendix D provides additional information and event statistics on the con-
tributed datasets, while Appendix E provides more information on the network configurations
used and extended evaluation results.
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Chapter 3

Application Scenario and
Sensor System

The measurement system and site are introduced. They are used in this dissertation as an
example for the development of the public space monitoring system. Furthermore, the selected
Dynamic Vision Sensor model is presented. Finally, an analysis of the sensor noise contained
in the recordings is performed and countermeasures taken are presented.

3.1 Living-Lab: Main Characteristics
A children’s outdoor playground in Mönchengladbach-Rheydt, Germany, was chosen as an
example for the development of the Dynamic Vision Sensor-based monitoring system. This
area served as a “Living-Lab” for the development of this system.

A Living-Lab is a concept that refers to real or simulated environments in which new tech-
nologies or products can be tested in a practical and efficient manner [Hossain et al., 2019].
To enable fast, efficient and realistic prototyping, it takes an open innovation approach that
involves users and stakeholders in the development process. In the specific case, this concerns
the development of the sensor system and the stakeholders involved from research, urban
planning, city administration and real users.

The monitored area of this playground is approximately 2800 square meters and is covered by
three fixed and elevated mounted Dynamic Vision Sensors. A schematic plan of the area is
shown in Figure 3.1a.

The measurement area was redesigned as part of a construction project. As part of this
redesign, underground cabling for the sensor system was incorporated. In addition to the
sensor power supply, this cabling also includes a data connection between the sensor locations,
which was realized with fiber optic cables due to the distances to be bridged. The central
data acquisition component is located in a container on-site to protect it from weather and
vandalism (see Figure 3.1b). The entire measurement and test setup is located in an urban
forest area and is designed for autonomous operation using photovoltaic technology and a
battery for intermediate energy storage.

Each of the three Dynamic Vision Sensors is equipped with an 8mm wide-angle lens3 and
mounted in a weatherproof enclosure on a mast at a height of approximately 6 meters. The
sensors are tilted approximately 25 degrees toward the ground (see Figure 3.1c). The positions
of the sensors were chosen to minimize blind spots caused by terrain features of the playground

3Computar MEGAPIXEL V0814-MP, f=8mm, f/1.4 – f/16, 1 inch, C-Mount
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(a) System concept of the sensor system realized in Mönchengladbach-Rheydt

(b) Central data acquisition and processing point (c) Sensor mount and enclosure

Figure 3.1: Living-Lab: Sensor and measurement setup (adapted from [Bolten et al., 2021]).

(a) DVS1 (b) DVS2 (c) DVS3

Figure 3.2: Grayscale images of the fields of view of the Dynamic Vision Sensors in the
Living-Lab.
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Company Name Reference Year Spatial res.

iniVation
DVS128 [Lichtsteiner et al., 2008] 2008 128 px× 128 px
DAVIS240 [Brandli et al., 2014] 2014 240 px× 180 px
DAVIS346 -4 2017 346 px× 260 px
DVXplorer -5 2020 640 px× 480 px

Samsung
DVS Gen1 -6 2014 640 px× 480 px
DVS Gen2 [Son et al., 2017] 2017 640 px× 480 px
DVS Gen3 -6 2018 640 px× 480 px
DVS Gen4 [Suh et al., 2020] 2020 1280 px× 960 px

Prophesee

ATIS [Posch et al., 2011] 2011 304 px× 240 px
Gen3 CD -7 2017 640 px× 480 px
Gen3 ATIS 2017 480 px× 360 px
Gen4 CD [Finateu et al., 2020] 2020 1280 px× 720 px
GenX 320 -8 2023 320 px× 320 px

CelePixel

CeleX-I [Chen et al., 2012] 2012 64 px× 64 px
CeleX-II [Guo et al., 2016] 2016 192 px× 160 px
CeleX-III [Huang et al., 2017] 2017 384 px× 320 px
CeleX-IV [Guo et al., 2017] 2017 768 px× 640 px
CeleX-V [Chen and Guo, 2019] 2019 1280 px× 800 px

Table 3.1: Major DVS manufacturers and model overview (adapted and extended from
[Gallego et al., 2022, Table 1, p. 6] and [Gehrig and Scaramuzza, 2022, Table 1, p. 4]).

(trees, bushes, or hills). Figure 3.2 shows the resulting field of view (FoV) of each sensor as a
reference grayscale image for better understanding.

For a more detailed description of the hardware setup, see Appendix B.

3.2 Sensor Model Selection
For many years, Dynamic Vision Sensor technology was only available in prototype form. It
was only used by a few researchers. This changed at the turn of the millennium. Since then,
several new sensors have been introduced. These are now being sold commercially by various
companies for productive use. Table 3.1 provides an overview of the most common models of
Dynamic Vision Sensors currently used in research and commercial applications. Currently,
purchase prices of several thousand EUR per unit can be expected.

At the time of starting this work, the CeleX-IV Dynamic Vision Sensor manufactured by
CelePixel offered the best compromise between availability, spatial resolution, and retail price.
Therefore, this specific sensor model was selected and is used throughout this work. In the
following, this sensor model is briefly introduced.

CeleX-IV Dynamic Vision Sensor
The CeleX-IV sensor is the fourth generation in a series of Dynamic Vision Sensors [Guo et al.,
2017]. It was developed and marketed by CelePixel Technology Co., Ltd.

In the course of this work, Will Semiconductor Co., Ltd. acquired this company. As
part of its subsidiary OmniVision Technologies, they continue to develop event-based cameras

4https://inivation.com/wp-content/uploads/2019/08/DAVIS346.pdf
5https://inivation.com/wp-content/uploads/2023/03/DVXplorer.pdf
6https://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_Eric_Ryu_Samsung.pdf
7https://docs.prophesee.ai/stable/hw/sensors/gen31.html
8https://www.prophesee.ai/event-based-sensor-genx320/
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Figure 3.3: CeleX-IV logical sensor block diagram (adapted from [CelePixel, 2018]).

[Guo et al., 2023]. In this way, the rich experience of CelePixel will be part of the further
development in the field of event-based vision.

The CeleX-IV is a high resolution sensor, with 768 × 640 pixels and a maximum output
of 200Meps (Mega events per second). Using TSMC’s 0.18 µm 1P6M CMOS image sensor
manufacturing process, each pixel occupies 18 × 18 µm with 9% fill factor [CelePixel, 2018].
The sensor consists of the pixel array, a row/column handshaking processor, a column parallel
ADC data path, and a configuration interface (see Figure 3.3).

The basic sensor operation is summarized in [CelePixel, 2018] as follows (adjusted for gram-
mar):

“The pixels are organized into rows and columns that share the same request
and acknowledgement buses. Each pixel monitors the relative voltage change on
a logarithmic photodetector and triggers an event when a certain threshold is
reached. When one or more pixels within a row are triggered, a request signal is sent
to the row arbitration processor. The row arbitrator can receive multiple requests
simultaneously. After arbitration, only one row is [randomly] acknowledged. The
row address is encoded and sent out of the chip. The triggered pixels within the
selected row send another request to the column processor. The column processor,
which is divided into two in-parallel channels, each responsible for 384 pixels, will
process the column requests one by one.”

The combined row and column outputs, with timestamps added by an interface FPGA module,
form the sensor’s event output stream.

In addition to dividing the sensor array into two column blocks for readout, the rows are also
divided into semantic blocks. The available 640 pixel rows of the sensor array are divided into
five separate blocks of 128 rows each. However, initial experiments with the sensor revealed
that these blocks are not internally processed in the same way. A simple experiment to
illustrate this is shown in Figure 3.4. Assuming a homogeneous stroboscopic flash with uniform
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over 1.8 seconds (note the transition between rows

127 and 128)

Figure 3.4: CeleX-IV sensor readout issue. The sensor block in the top row has a higher
reading frequency than the other blocks.

and random on-chip row acknowledgement, the triggered event rate should be nearly identical
for the entire sensor array. However, this is not the case.

The top block has a significantly higher event rate. It turns out that this block has a four
times higher readout frequency in comparison, as stated after consulting with the manufac-
turer. As shown, this results in different event rates. In addition, the off-chip timestamps,
which are added by the interface FPGA, also show differences in their accuracy between the
blocks.

According to the manufacturer, the only way to avoid this is to fully disable the upper
sensor row block. Therefore, unless explicitly stated otherwise, the available sensor resolution
is limited to 768 × 512 pixels for all recordings in the course of this work.

3.3 Sensor Noise
As with all image sensors, Dynamic Vision Sensors are also subject to noise. This refers to all
effects that result in unwanted signals that degrade the system and imaging performance of a
sensor. In particular, this includes the effects of dark currents, thermal noise, shot noise, 1/f
noise and readout noise (for a more detailed and general introduction to digital sensor noise
see [Nakamura, 2005, Chapter 3.3, pp. 66 ff.]).

One of the major consequences of noise effects in Dynamic Vision Sensors are so-called “Back-
ground Activity” (BA) events. These are DVS events that are triggered by pixels without
a change in the scene. These events are therefore not meaningful. The level of background
activity depends heavily on the actual lighting of the scene, but also on the DVS bias settings
[Guo and Delbruck, 2023; Graça and Delbruck, 2021].

These bias values can be used to optimize the sensors for different application requirements
and conditions. They include settings for selected contrast sensitivity thresholds, pixel band-
width, and pixel refractory period. The refractory period defines a time span during which a
pixel cannot generate another event. This setting can be used to limit the maximum trigger
rate of pixels so that they do not consume the entire capacity of the output bus.

Since signal events are also often suppressed when noise rates are reduced, the choice
of these settings is a compromise. The optimal choice of these parameters for a particular
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(a) Polarity encoded 2D projection; all events

(b) (𝑥, 𝑦, 𝑡) view; all events (c) Signal events;
manually selected

(d) Noise events, mainly BA

Figure 3.5: CeleX-IV sensor background noise example. Recorded with a stationary sensor
under natural daylight. A 25ms event stream window is displayed.
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Figure 3.6: Measured internal temperatures of the DVS mast head enclosure (see
Figure 3.1c) on a summer day.

application is therefore a difficult task, even for experts in the field. Recently, papers have
been published that provide at least some guidance to the user [McReynolds et al., 2022; Graça
et al., 2023a,b].

The CeleX-IV sensor has a high level of background activity compared to other sensors, even
in well illuminated scenes. This is clearly shown in Figure 3.5.

Unfortunately, the design of the CeleX-IV DVS pixel is not fully disclosed to the public.
In addition, the communication interface between the sensor and the acquisition computer
system is implemented using an FPGA whose configuration is also largely undocumented.
The SDK for the sensor only allows the setting of a single contrast threshold. All other bias
configurations are not accessible to the user and are handled internally by the FPGA and the
on-chip bias configuration. This limits the ability to fine-tune the CeleX-IV sensor for desired
applications and noise levels.

As a consequence, from an application point of view, the sensor configuration and the associ-
ated sensor (noise) behavior had to be considered as “given” in the context of this work.

Nevertheless, the prevailing sensor noise can be controlled to some extent, as it is strongly
temperature dependent. This aspect will be discussed in more detail in the following section
and is used to improve the signal quality. Remaining noise components can be further reduced
by signal processing in the form of (spatio-temporal) event filtering. An evaluation of different
filters for the selection of a suitable signal preprocessing follows in Section 3.3.3.

3.3.1 Background Activity Temperature Correlation
The measurement setup in the described outdoor Living-Lab (see Section 3.1) means that
the sensors have to be operated at very different ambient temperatures. This includes also
high temperatures caused by direct solar radiation on the sensor housings. The measured
internal temperature curves of the actively ventilated sensor enclosures on a typical summer
day are shown in Figure 3.6. High sensor temperatures are known to have a significant effect
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(a) Grayscale reference of the FoV of the sensor. A servo-driven moving rotor provided a constant,
high-contrast motion/signal in the scene.

(b) Manually selected
segmentation mask of the
homogeneous part of the

scene. Serves as an area for
measuring BA events.

(c) Example of an
automatically generated
segmentation mask of the

moving rotor. Events under
this mask are counted as

signal events.

(d) Cropped and enlarged
rotor area from Subfigure c.
The segmentation mask is

highlighted on the
polarity-encoded event stream

projection.

Figure 3.7: Setup for temperature-dependent CeleX-IV noise experiments.
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Figure 3.8: Measured signal and background activity event counts over different sensor
temperatures. The experimental setup is shown in Figure 3.7.

on the noise level of Dynamic Vision Sensors [Nozaki and Delbruck, 2017; Xu et al., 2018a;
Berthelon et al., 2018]. The following experiment was performed to get an insight into these
temperature-related effects on the CeleX-IV sensor.

The sensor was placed in a controlled and static indoor environment illuminated by an incan-
descent halogen bulb, i.e. a light source that does not tend to flicker. A homogeneous white
and planar surface was placed in front of the sensor. In the center of this surface, a servo-driven
rotor provided a rotary motion with constant angular velocity that served as a high-contrast
active stimulus. A grayscale image of the sensor’s field of view is shown in Figure 3.7a for
reference.

The static, white and homogeneous area excluding the rotor region was manually segmented
(see Figure 3.7b). This area is used to measure the triggered background activity level as it
is well-lit and does not change. Conversely, the moving rotor is automatically segmented over
the duration of the recording (Figure 3.7c,d) and the matching events are considered as “real”
signal events.

In this experiment, the sensor temperature was controlled to follow a triangular temper-
ature curve. The resulting event counts for this setup are summarized in Figure 3.8. The
sensor heating performed, as shown by the displayed sensor’s IMU temperature, corresponds
to the expected sensor temperatures on-site without any external temperature stabilization.
As shown here, the background activity behavior of the sensor is highly dependent on tem-
perature, while the signal output triggered by the moving rotor is only slightly affected by
temperature.

For this reason, we have equipped the measurement system with an active temperature stabi-
lization based on Peltier elements in order to homogenize the noise behavior to a lower level
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for all recordings. For details on the temperature sensors used, their location, and further
implementation details of this external temperature stabilization, see Appendix A.

3.3.2 Spatio-Temporal Filtering

Parts of the following filter descriptions have been previously published in:

Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2021). DVS-OUTLAB: A Neuromor-
phic Event-Based Long Time Monitoring Dataset for Real-World Outdoor Scenarios. In
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 1348 – 1357. IEEE

In addition to the influence of sensor temperature on the overall noise level, background activity
can be counteracted by filtering. Event filters do this by assuming that signal events are more
dense and correlated than noise events, both spatially and temporally.

The “Background Activity Filter” [Delbruck, 2008] or variants of it [Czech and Orchard, 2016]
are widely used in applications. Here, a filtering decision is made for each event directly based
on the number of events in its spatio-temporal neighborhood.

Filters with minimized computational requirements can also be considered. For instance,
for each event, only a limited number of previous events are checked [Guo et al., 2020b], or
the spatio-temporal neighborhood is computed using hash functions [Guo et al., 2020a]. These
approaches are therefore very memory efficient. This can be important if a hardware-related
implementation is desired [Khodamoradi and Kastner, 2018].

It is also possible to learn the structure in the spatio-temporal neighborhood and use it for
filter decisions by using deep learning-based approaches [Baldwin et al., 2020, “EDnCNN”] or
[Guo and Delbruck, 2023, “Multilayer Perceptron Denoising Filter”].

Filter-Logic

In the described long-term monitoring scenario, a fast and computationally efficient approach
for noise filtering is required. Based on the aforementioned assumption that signal events are
more correlated in space and time, the following spatio-temporal filters were further examined:

Neighborhood-Filter:
The event stream is divided into non-overlapping time windows of several milliseconds.
For each event 𝑒, spatially adjacent events in its time window 𝑡𝑤𝑖 and its preceding win-
dow 𝑡𝑤𝑖−1 are evaluated, and the number of populated spatial neighbor cells containing
at least one other event is counted.
An 8-neighborhood is used for 𝑡𝑤𝑖 and a 4-neighborhood in the preceding 𝑡𝑤𝑖−1. The
event 𝑒 is discarded if there are less than 𝛼 populated neighboring cells for 𝑡𝑤𝑖 or less
than 𝛽 neighboring cells for 𝑡𝑤𝑖−1.
In the following experiments, we set 𝛼 = 4 and 𝛽 = 2, using a time window length of
60ms.

Time-Filter:
For each event 𝑒 it is checked if there was another event at the same spatial position in
the previous 𝑥 milliseconds. If there was no other event in that time span, the event 𝑒
is considered to be noise.
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In the following experiments, we calculated different results for the time thresholds
𝑥=3ms, 𝑥=6.5ms, and 𝑥=10ms.

SeqX-Filter:
For each event 𝑒, the spatial distances to a few immediately preceding events in the sensor
stream are calculated. If the smallest spatial distance is below a defined threshold 𝜎, the
event is kept. This filter thus uses the row-column-ordered readout logic of the events
used by the DVS to select the events to be considered in the neighborhood formation.
See [Guo et al., 2020b] for more details.
In the following experiments, we set the number of previous events considered to 10 and
the threshold 𝜎 = 0.01.

EDnCNN:
The EDnCNN filter is based on deep learning. This approach was included to allow com-
parison with potential improvements that more complex and computationally intensive
approaches might allow.
It consists of three 3 × 3 convolutional layers (using ReLU, batch normalization, and
dropout) and two fully connected layers [Baldwin et al., 2020]. For each event, the
network makes a binary classification based on a feature vector generated from the spatio-
temporal neighborhood. An Adam optimizer with a decay rate of 0.1 and a learning rate
of 2 ⋅ 10−4 was used for training.

3.3.3 Filter Evaluation Results

Comparison for Different Sensor Temperatures

The experimental setup shown in Figure 3.7 and 3.8, which focuses on the different levels of
transistor circuit noise that occur at different sensor temperatures, is continued here. The
effects of varying sensor temperatures and spatio-temporal filtering are evaluated by classical
signal-to-noise (SNR) measurements:

SNR = 𝑃signal
𝑃noise

(3.1)

The counts of triggered and segmented events, normalized by the number of pixels in the corre-
sponding segmentation masks, are considered as powers 𝑃 of the signal or noise, respectively.
The resulting SNR values, with and without applying the presented spatio-temporal filtering
as postprocessing, are shown in Figure 3.9a.

As expected, the resulting SNR is temperature dependent and can be improved by filtering.
At the cost of removing signal components, it is possible to improve the SNR. Therefore, the
remaining percentage of signal events must also be considered and is shown in Figure 3.9b.

For this experiment, it must be noted that the Neighborhood-Filter is often able to remove
all triggered background activity events, which results in an undefined SNR and an incomplete
curve in the figures. On the other hand, this filter also eliminates ≈ 20% of the rotor-triggered
signal events. The used Time-Filter preserves most of the signal events depending on the
threshold. Even with a threshold value of 𝑥=10ms, an improvement in SNR of about 8.5 dB
is achieved, while preserving about ≈ 97% of the signal events. Since the EDnCNN filter
is computationally expensive and requires a learning phase, this filter was omitted for these
temperature-correlated evaluations and is only considered in the next section.
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Figure 3.9: Effects of spatio-temporal filtering at different sensor temperatures.
The underlying experimental setup is shown in Figure 3.7.
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Comparison in Real-World Application Scenario

The results of this section have previously been published in:

Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2021). DVS-OUTLAB: A Neuromor-
phic Event-Based Long Time Monitoring Dataset for Real-World Outdoor Scenarios. In
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 1348 – 1357. IEEE

In addition to the experiments with an artificially induced signal at different sensor temper-
atures, further experiments were performed. These were performed in the real application
context at the measurement site. They focused on the investigation of different signal events
triggered by different classes of objects at approximately constant sensor temperature.

Based on these data, we also compare the performance that can be achieved with the
presented spatio-temporal filters. For a fair comparison, the EDnCNN approach was trained
on the corresponding data. Similar to [Padala et al., 2018], here we report the Percentage
of Remaining Events (PRE) after filtering. However, we additionally consider the effect of
filtering on individual object classes:

PREf
c =

Ef
c

Ec
⋅ 100 (3.2)

where 𝑐 denotes the considered object class, 𝑓 denotes to the applied filter method, and 𝐸
denotes the number of events corresponding to the selection.

Figure 3.11 summarizes the resulting distribution of PRE filter scores for different object
classes. In general, these spatio-temporal filters can significantly reduce background activity
within this application setup. However, the proposed filters differ in their results with respect
to individual object classes.

The EDnCNN achieves good denoising results on both background activity and induced
global effects such as shadows and ego motion. This approach also preserves a relatively high
proportion of events caused by classes related to the outdoor measurement, such as rain or
included tree crowns. The Neighborhood Filter, on the other hand, achieves a higher level of
reduction on these classes such as RAIN, but also removes a higher proportion of events caused
by other object classes.

After the EDnCNN filter, the Time-Filter retains most of the events caused by objects
of interest such as PERSON, DOG, BICYCLE or SPORTSBALL, depending on its threshold. At the
same time, about half or more of the other events caused by background activity or other
“unwanted” classes are removed. The SeqX-Filter performs worst in comparison on almost all
of these object classes of interest.

The average PRE results per filter remain comparable to the overall view when different
object sizes resulting from different perspective distances are considered separately. Only the
variation within the results decreases with increasing object size. Example results for the class
PERSON are given in Figure 3.10, where the sensor rows shown correspond to Figure 3.3.

Summary
Background activity was stabilized to a constant level, while SNR was improved with an
external active sensor temperature control system to support subsequent high-level process-
ing approaches (see Appendix A). Different spatio-temporal filters were evaluated to further
improve the signal-to-noise ratio.
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Figure 3.10: PRE scores for object class PERSON. Results are split by sensor row blocks (see
Figure 3.3) to distinguish different object sizes created by perspective (adapted from [Bolten

et al., 2021]).

In the measurement scenario of this work, due to the off-grid system setup and the central
processing of three DVS streams on a single computer system, event streams must be filtered
as simply and efficiently as possible for noise reduction and downstream system optimization.
Therefore, a trade-off between filter performance and runtime requirements must be made. In
general, a filter should be able to

• remove as many background activity events as possible, and
• preserve as many events caused by moving objects as possible.

The Neighborhood-Filter removes a high percentage of desired events through a restrictive
filtering. The runtime requirements of EDnCNN are high. Because it is too computationally
expensive, it is not suitable for the desired application.

Therefore, the Time-Filter was selected for further preprocessing in this work, as it pre-
serves a high proportion of desired object events while achieving a significant reduction in
background activity. The remaining noise components are further addressed in subsequent
processing steps.

34



0
2
0

4
0

6
0

8
0

1
0
0

P
R
E
sco

re

TREE CROWN0
2
0

4
0

6
0

8
0

1
0
0

TREE SHADOW0
2
0

4
0

6
0

8
0

1
0
0

RAIN0
2
0

4
0

6
0

8
0

1
0
0

GLOBAL SHADOW0
2
0

4
0

6
0

8
0

1
0
0

EGO MOTION0
2
0

4
0

6
0

8
0

1
0
0

EVERYTHING

0
2
0

4
0

6
0

8
0

1
0
0

P
R
E
sco

re
BACKGROUND0

2
0

4
0

6
0

8
0

1
0
0

PERSON0
2
0

4
0

6
0

8
0

1
0
0

DOG0
2
0

4
0

6
0

8
0

1
0
0

BICYCLE0
2
0

4
0

6
0

8
0

1
0
0

SPORTSBALL0
2
0

4
0

6
0

8
0

1
0
0

BIRD0
2
0

4
0

6
0

8
0

1
0
0

INSECT

E
D
n
C
N
N
-Filte

r
N
e
ig
h
b
o
rh
o
o
d
-Filte

r
S
e
q
X
-Filte

r
Tim

e
3
m
s
Filte

r
Tim

e
6
.5
m
s
Filte

r
Tim

e
1
0
m
s
Filte

r

Figure 3.11: PRE scores for different object classes (adapted from [Bolten et al., 2021]).
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Datasets: State-of-the-Art

The state-of-the-art description in this dissertation chapter is an extended version of
the previously published summary of related work given in the following papers:

Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2021). DVS-OUTLAB: A Neuromor-
phic Event-Based Long Time Monitoring Dataset for Real-World Outdoor Scenarios. In
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 1348 – 1357. IEEE

Bolten, T., Neumann, C., Pohle-Fröhlich, R., and Tönnies, K. (2023a). N-MuPeTS:
Event Camera Dataset for Multi-Person Tracking and Instance Segmentation. In Pro-
ceedings of the 18th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications - Volume 4 (VISAPP), pages 290 – 300.
INSTICC, SciTePress

Datasets
Compared to frame-based image processing, the amount of freely available DVS-based datasets
is considerably smaller. One reason for this is that this type of technology is relatively new
compared to traditional image sensors. However, a steady development and publication of
various datasets is taking place due to ongoing work and research in the field of neuromorphic
computer vision.

Conversion and Simulation
Several earlier developments are based on the straightforward adaptation of image-based
datasets to the event domain.

In [Orchard et al., 2015], the event-based pendants N-MNIST and N-Caltech101 of the
well-known frame-based datasets ([Lecun et al., 1998; Fei-Fei et al., 2004]) were generated by
simulating small eye movements called saccades. For this simulation, individual images of the
original datasets were displayed on an LCD monitor and a DVS pointed at the monitor was
moved accordingly. In [Serrano-Gotarredona and Linares-Barranco, 2015], a similar approach
was taken. The only difference is that the displayed image was moved instead of the DVS. In
order to easily take advantage of the large frame-based datasets available, such as ImageNet
[Russakovsky et al., 2015], even more recent developments [Kim et al., 2021] are still based on
such recording setups. Video sequences have also been converted to event datasets in similar
setups [Hu et al., 2016].

The output of these conversion techniques is technically limited by the source material. For
example, the high dynamic range of a Dynamic Vision Sensor cannot be fully exploited because
it is not included in the input frame data. The frame rate of the source material is another
limiting factor when considering video conversion in this setup. The temporal resolution of a
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Dynamic Vision Sensor is significantly higher than the sampling frequency of commonly used
conventional camera systems. As a result, DVS recordings converted in this way are limited
in their properties.

An algorithmic conversion of frame-based data into DVS events is one way to address the
limitations. Several methods and software frameworks have been developed for this purpose
[García et al., 2016; Bi and Andreopoulos, 2017]. In [Hu et al., 2021], a framework called “v2e”
(video to event) was presented, which incorporates a DVS pixel model including temporal noise,
leak events, finite bandwidth as well as a Gaussian threshold distribution into the conversion.
This approach uses a deep learning-based synthetic super-slow motion frame interpolation
technique on the input video material to address the aforementioned time resolution limitation.

Another basic approach to the creation of DVS datasets is the full simulation of the scene
[Rebecq et al., 2018]. A simulated DVS event stream with high spatial and temporal resolution
can be derived based on a 3D modeled scene and defined object/camera motions in combination
with an ideally photorealistic image rendering pipeline.

However, sensor-specific properties must be taken into account during both the conversion
and the full simulation. These include the background activity behavior or the pixel refrac-
tory period. For some sensor models, such as the CeleX-IV sensor, this information is not
publicly disclosed by the sensor manufacturer. Therefore, these parameters would have to be
determined experimentally.

Native DVS-Recordings
Numerous neuromorphic datasets that are available to the public are composed of only short
sequences of specific actions or patterns. In addition, these recordings were often made with
well-aligned sensors in well-constrained and controlled laboratory environments.

The following examples are provided to illustrate these characteristics:

POKER-DVS:
This dataset [Pérez-Carrasco et al., 2013] consists of recordings of a card deck that is
fully browsed in front of the sensor. The deck contains ten numbered pip cards and
could be fully scanned in less than 1 second. This recording setup is illustrated by the
Figure II.1a.

DVS128 Gesture:
This dataset [Amir et al., 2017] contains recordings of eleven different hand gestures
performed by different people. Each gesture lasts about 6 seconds. An example is given
in Figure II.1b.

Sign Language:
The “ASL-DVS” dataset [Bi et al., 2019] contains 24 letters from the American Sign
Language alphabet and was recorded in an environment with low environmental noise
and constant illumination. Each included sample has a duration of approximately 100ms.
The “SL-ANIMALS-DVS” dataset [Vasudevan et al., 2020] includes recordings of 19
different sign language gestures in isolation, recorded from a distance of 2 to 2.5 meters,
so that the entire upper body is included. Each sign has an average duration between 3
and 6 seconds. An example is shown in Figure II.1c.

ATIS-Plane:
This dataset [Afshar et al., 2019] contains recordings of four different airplane models
that were dropped in front of the sensor and crossed its field of view. In this scenario,
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(a) POKER-DVS (from
[Pérez-Carrasco et al., 2013])

(b) DVS-Gesture
(from [Amir et al.,

2017])

(c) SL-ANIMALS-DVS
(from [Vasudevan et al.,

2020])

(d) ATIS-Plane (from [Afshar et al., 2019])

Figure II.1: Examples taken from well-constrained native DVS datasets.

Figure II.2: Example of a DVS dataset recorded in an outdoor driving scenario
(from [Binas et al., 2017]).

the duration of each sample is approximately 250ms in length. Figure II.1d illustrates
this dataset.

As mentioned above, these datasets are characterized by well-constrained scenarios. In
addition, there are a number of datasets available that were created under more complex
recording conditions.

Application Scenario: Monitoring of Public Outdoor Spaces
Existing datasets created under these more complex recording conditions often originate from
the application areas of robotics (e.g., [Delmerico et al., 2019]) or autonomous driving. The
datasets from the field of autonomous driving are the most relevant, considering the monitoring
scenario of this work. This is because they consist of longer recordings taken under complex
and real-world outdoor conditions, often in urban environments.

One example is the “N-CARS” dataset [Sironi et al., 2018]. This is a large, real-world, event-
based dataset for vehicle classification. It consists of about 12,000 vehicle samples and almost
as many background samples. The “GEN1” dataset [De Tournemire et al., 2020] also con-
tains recordings from this context, but additionally provides annotations for the object classes
PERSON and CAR. While the “DET” dataset [Cheng et al., 2019] only provides annotations
for lane markings, “DDD17” and its successor “DDD20” [Binas et al., 2017; Hu et al., 2020]
do not provide annotations at the level of objects, but only at the level of parameters of the

43



corresponding vehicle. The “DSEC” dataset [Gehrig et al., 2021], another large automotive
dataset, provides synchronized stereo event camera recordings and includes ground truth depth
information.

Although these datasets provide several hours of real-world outdoor footage, they are not
readily applicable due to annotations that are unusable in our application context. However,
due to the nature of recording from a moving vehicle, there is also a fundamental difference
in the sensor signal due to the included ego motion compared to the static setup of the
measurement system in this work (see Figure II.2). This makes it difficult to use these datasets
in the desired application context.

In addition, there are some prior works and datasets that are directly related to parts of this
dissertation. These works deal with the tasks of person detection and tracking.

In [Jiang et al., 2019], an approach for person detection in traffic monitoring applications
was presented. For this purpose, a custom dataset was used which has a total length of only
≈ 14 seconds. In a very similar application context, a person detection was also implemented
in [Chen et al., 2019a]. This was followed by the publication of a dataset in [Miao et al., 2019].
The detection part of this dataset consists of only twelve short sequences, with an average
length of about 30 seconds, and provides only bounding box labels for the two classes of
BACKGROUND and PERSON. Unfortunately, such small datasets are not suitable for current deep
learning-based approaches. In [Ojeda et al., 2020] and [Bisulco et al., 2020] two approaches
for filtering the event stream were presented with the goal of implementing person detection
close to hardware. For this, a DVS dataset consisting of several hundred sequences was used.
However, this dataset is not publicly available.

The task of multi-person tracking was addressed in [Piątkowska et al., 2012]. Due to the
lack of available datasets with appropriate ground truth annotations, their approach was only
tested on a very limited set of manually annotated data. With the work of [Hu et al., 2016],
DVS benchmark datasets have been published. These benchmark datasets include parts that
address both object detection and tracking. Person detection was also addressed [Boretti et al.,
2023]. However, these cases only consider single object or single class scenarios, which is not
sufficient for monitoring public areas.

In summary, there is currently only a very limited set of event-based datasets available that
are suitable for the desired application scenario. Furthermore, the label annotations provided
by these datasets are not sufficiently discriminative. Object labels are often given only as
bounding boxes. This applies even to large datasets like the GEN1 automobile dataset. In
the following parts of this dissertation, the tasks of semantic and instance segmentation are
considered. Therefore, databases containing these annotations are required. Unfortunately,
providing annotations at this level of detail is not very common at the moment.

An exception is the work of [Alonso and Murillo, 2019], which provides an extension for
parts of the DDD17 dataset in the form of automatically derived semantic labels. Due to
processing limitations, the provided labels are of variable quality (compare with Section E.3
in the Appendix). An extension of the DSEC dataset in the form of semantic labels is given in
[Sun et al., 2022], while [Chaney et al., 2023] provides a multi-sensor based dataset including
semantic labels. However, these recordings were made with a moving sensor, resulting in the
limitations described above.

A dataset with manually annotated instance-level masks is given in [Huang et al., 2024].
This dataset was recorded in a cluttered indoor environment, while the sensor was mounted on
a moving robotic arm. Currently, there are no publicly available datasets with instance-level
annotation for monitoring applications.

One way to address this problem is to convert frame-based datasets to the event domain, as
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mentioned above. In conventional frame-based computer vision, datasets exist that provide
annotations beyond bounding boxes for tracking and segmentation [Voigtlaender et al., 2019].
In the context of CCTV video surveillance, frame-based datasets typically consist of recordings
taken at low frame rates ([Pranav et al., 2020] at 3 fps, [Jin et al., 2018] at 15 fps, or [Oh
et al., 2011] at 30 fps). This low temporal resolution in the footage presents a hurdle in terms
of the temporal resolution of a DVS during a conversion, even when slow motion interpolation
is applied.

In addition, current DVS databases fail to consider the environmental influences embedded
in the real sensor signal of outdoor recordings. Due to the high sensitivity in detecting bright-
ness changes per sensor pixel and the temporal resolution of the event stream, the Dynamic
Vision Sensor is able to detect fine details. This includes small airborne particles or objects
such as raindrops or insects. In addition, global brightness changes, e.g. due to clouds are also
detected. Figure II.3 shows an example of these included artifacts. These artifacts can also
only be considered to a limited extent in a conversion or simulation.

Therefore, in the course of this work, two own datasets were created and made available to
the scientific community. These datasets, called DVS-OUTLAB and N-MuPeTS, address the
use case of outdoor monitoring. They provide annotations on semantic or instance level for
each DVS event. These datasets are introduced in detail in the following chapters.
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(a) Global brightness changes induced by cloud drift

(b) DVS events caused by raindrops falling in front of the sensor

(c) DVS events caused by flying insects in front of the sensor

Figure II.3: Visualization of environmental influences captured in outdoor Dynamic Vision
Sensor recordings (filtered for display).
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Chapter 4

DVS-OUTLAB: Long-Term
Monitoring in Outdoor Scenarios

The descriptions of the approach, methods used, and results of this chapter have previ-
ously been published in:

Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2021). DVS-OUTLAB: A Neuromor-
phic Event-Based Long Time Monitoring Dataset for Real-World Outdoor Scenarios. In
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 1348 – 1357. IEEE

The lack of available labeled datasets is one of the main obstacles for the development of
DVS-based applications. For outdoor applications, the operating scheme of a Dynamic Vision
Sensor offers particularly advantageous characteristics. While there are a number of annotated
datasets for tasks such as action or anomaly detection (e.g., [Jin et al., 2018; Oh et al., 2011;
Pranav et al., 2020]) or traffic flow analysis (e.g., [Luo et al., 2018; Snyder and Do, 2019]) in
frame-based video surveillance, there is currently a lack of event-based datasets for outdoor
surveillance.

The DVS-OUTLAB dataset addresses this shortcoming. It is a dataset processed directly
from real-world DVS-based recordings of a public open space. In this way, the behavior of real
sensors as well as environmental influences are directly taken into account. For the generation
of semantic segmentation annotations, a semi-automated annotation toolchain was developed.
The resulting selection of nearly 50,000 labeled regions of interest from nearly seven hours of
real-world event data is described in the following.
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(a) Rain (b) Shadows caused by
tree crowns

(c) Movement of tall
grass due to wind

(d) Ego-Motion caused
by mast head movements

(e) Global illumination changes caused by clouds shown at four different timestamps

Figure 4.1: Visualization of environmental influences caused by the outdoor scenario. Each
pixel encodes the polarity of the last occurred event within a time window of 60ms. An
increase in brightness is displayed in green and a decrease in red (adapted from [Bolten

et al., 2021]).

4.1 Dataset Composition
In the context of a long-term stationary monitoring scenario, a dataset is required

(a) that was recorded with a fixed-mounted sensor,

(b) includes challenging illuminations, sensor noise, and environmental influences (compare
to Figure II.3 or Figure 4.1) as they occur in real-world outdoor recordings, and

(c) provides object labels for classes of interest in the monitoring scenario at a level of detail
sufficient for semantic segmentation.

In addition, large datasets are often required in machine learning, especially when using deep
learning techniques. Only these datasets allow the development of reliable and comparable
algorithms or complete processing pipelines. Therefore, an additional requirement for the
dataset is

(d) that it is large enough to support the training of deep learning approaches.

4.1.1 Recording Setup
The dataset consists of selected and further processed recordings from multiple Dynamic Vision
Sensors mounted at a public children’s playground as part of the Living-Lab introduced in
Section 3.1. A schematic plan of the monitored playground and the system components used
to create the dataset is shown in Figure 3.1 on page 22. An illustration of the scene and typical
projected object sizes caused by different object distances to the sensor due to perspective are
shown in Figure 4.2.

It was not possible to use additional sensors in the setup due to very strict privacy laws
regarding the surveillance of public spaces and the high expectation of privacy of potential
users. This is especially true for the use case of a children’s playground. Therefore, the
measurement system used to create this dataset was not extended with classic RGB frame-
based CCTV components.
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row 1
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Figure 4.2: Grayscale image of the field of view of DVS1. Typical projected object heights
for an adult person are indicated. Sensor row blocks are shown and later processed regions

are marked in red (adapted from [Bolten et al., 2021]).

4.1.2 Included Scenes
The dataset contains data from two semantically different recording sessions of the same area.
The first session contains only staged scenes. The second session is composed of environmental
influences captured in the real long-term monitoring.

Staged Scenes
In order to generate a large and annotated dataset, typical application scenarios were staged
at the site. Several actors, including children, actively participated in this process. Their
explicit consent allowed the activation of a special sensor operation mode.

Unlike many other event cameras, the CeleX-IV is able to output the absolute brightness
value for each triggered DVS event in the output stream, depending on the selected sensor
operation mode. This allows the accumulation of classic 2D grayscale images. Due to the
aforementioned privacy concerns, the use of this sensor mode and the acquisition of these
grayscale values was only possible while the area was closed to the public and with the explicit
consent of the actors involved. It was ensured that this specific sensor operation mode was
not used during the long-term monitoring.

In this way, several hours of material with activity were recorded. This material was then
semi-automatically annotated with object labels based on the captured grayscale information.
This will be described in more detail later.

Environmental Influences
In addition, environmental artifacts are also included in the dataset. This was done by manu-
ally extracting parts of real long-term recordings from the same location. In this way, different
lighting and weather conditions are incorporated in the data.

4.1.3 Included Challenges
Although this is a stationary sensor application, the real-world scenario and outdoor environ-
ment introduce data characteristics that can challenge the development of computer vision
solutions. The following included challenges can be highlighted:

Background Noise:
The output of currently available Dynamic Vision Sensors contains noise (see also Sec-
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tion 3.3). The CeleX-IV sensor used has a relatively high noise level, which makes
processing a challenge.

Object Sizes and Classes:
The low spatial resolution of the CeleX-IV DVS sensor compared to state-of-the-art
frame-based systems, in combination with the wide-angle lens used and the size of the
monitored area, results in small object sizes. Figure 4.2 illustrates this using the example
of an adult person. The size of the object varies greatly depending on the distance from
the sensor.
The dataset also covers a multi-class labeling scenario. This multi-class scenario, com-
bined with the small projected object sizes and the embedded noise, poses a serious
challenge for automated processing.

Environmental Influences:
Especially in outdoor scenarios, Dynamic Vision Sensors tend to capture various types
of environmental influences due to their high sensitivity and temporal resolution (see
Figure 4.1). These influences occur both locally (e.g., shadows cast by tree canopies)
and globally in the scene (e.g., rain). Subsequent processing is challenging due to these
artifacts.

4.2 Provided Dataset
As stated before, the published dataset contains data from two semantically different recording
scenarios of the same area. The labeling process for both parts, the composition performed,
and the resulting statistics for the published data are described below.

4.2.1 Label Generation
In the context of the specially staged scenes, it was possible to calculate grayscale images
from the brightness values of the CeleX-IV sensor data. Using these images, generated at
60ms time intervals, well-known frame-based convolutional neural network (CNN) methods
were used to generate semantic object label proposals. For this purpose, an implementation
[Abdulla, 2017] of the Mask R-CNN object detector [He et al., 2017] was used. This detector
was pre-trained on the COCO database [Lin et al., 2014], which is a large-scale RGB dataset
for object detection and segmentation. The classes PERSON, DOG, BICYCLE, and SPORTSBALL
were selected from the set of predefined COCO classes as objects of interest in the context of
the application scenario.

To acquire the object labels, a deep learning super-resolution network [Lim et al., 2017]
was first applied to scale the input images by a factor of four. This was done to mitigate the
effects of the sensor’s low spatial resolution while increasing the scale of the objects in the
captured grayscale images. The scaled images were divided into 13 blocks so that the width of
each block corresponded to the expected input size of 1024 pixels of the Mask R-CNN network
used. This procedure is shown in Figure 4.3a. The middle blocks, highlighted in yellow in
this figure, are used to improve the detection of objects split into multiple parts by processing
overlapping input regions in the center of the image. For each block, the result of the Mask
R-CNN inference was calculated. The detections were combined into a single mask image of
the size of the original DVS image. Different labels at the same position were resolved based
on a priority list.

Based on these object masks, the generated labels were propagated back to the events of
the corresponding 60ms time segment of the original event stream. In this step, objects that
did not move in the corresponding time windows were filtered out, since they are visible in the
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Figure 4.3: Visualization of label generation and propagation on
staged dataset scenes (adapted from [Bolten et al., 2021]).
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Sensor Number of time
windows recorded

Number of
time windows

containing label

Percentage of
time windows

containing label
DVS1 131,492 98,853 75.18
DVS2 131,488 52,520 39.94
DVS3 131,488 76,337 58.06
Total 394,468

≈ 6 h 30min
227,710

≈ 3 h 45min 57.73

Table 4.1: Number of time windows and segments with automatic label suggestions for
staged scenes (TimeWindow =̂ 60ms).

(a) PERSON (b) DOG (c) BICYCLE

(d) SPORTSBALL (e) BIRD (f) INSECT

(g) TREE_CROWN (h) TREE_SHADOW (i) RAIN

(j) GLOBAL_SHADOW (k) EGO_MOTION
BACKGROUND PERSON DOG BICYCLE SPORTSBALL
BIRD INSECT TREE CROWN TREE SHADOW RAIN

Figure 4.4: Sample snippets of the labeled 192 × 128 pixel regions of interest in
DVS-OUTLAB (adapted from [Bolten et al., 2021]).

accumulated grayscale images but do not have a significant number of events associated with
them in the DVS stream.

In addition, segments containing environmental effects were manually selected, annotated,
and included from the performed real-world and long-term recordings. As a result, the dataset
contains realistic effects of different environmental influences and weather conditions.

4.2.2 Dataset Statistics
The total length and number of temporal segments containing automatically generated label
proposals from the Mask R-CNN pipeline are summarized in Table 4.1. Since in almost all
staged scenes the actors entered the measurement field near DVS1, there is a bias in the ratio
of detections between the different sensors. Also, as almost all staged scenes involve a person,
there is a very large imbalance in the frequency of class occurrences.

For this reason, only a subset of the available data was used. In the process of this subselection,
the following two aspects were taken into account.
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row 1 row 2 row 3 row 4

Objects
of

interest

PERSON 7399 2833 2678 1255 633
DOG 709 351 259 54 45
BICYCLE 4378 2023 1834 478 43
SPORTSBALL 500 147 244 74 35

Environmental
interferences

BIRD 3807 825 1353 1173 456
INSECT 5939 842 1329 1532 2236
TREE_CROWN 6375 1731 2511 1576 557
TREE_SHADOW 6901 50 1660 2387 2804
RAIN 7052 1776 1776 1750 1750
GLOBAL_SHADOW 4800 1200 1200 1200 1200
EGO_MOTION 4800 1200 1200 1200 1200

Table 4.2: Performed subselection from all labeled event data. Each row represents a 128
pixel sensor block on the Y-axis, starting to count at the top (see Figure 4.2).

(TimeWindow =̂ 60ms).

Object Sizes:
In order to equalize the distribution of object sizes resulting from different object-to-
sensor distances, a sensor row-block guided subselection was performed. These row blocks
are illustrated in Figure 4.2 and correspond directly to the logical CeleX-IV sensor row
blocks used for data readout (see Figure 3.3 on page 24). An equal number of examples
per class and sensor row block were randomly selected if available in the original data.

Label Quality:
In addition, the label quality of the Mask R-CNN predictions for the selected data was
taken into account. The labeling was manually reviewed to ensure that only acceptable
predictions were included in the final selection.

The number of resulting and labeled event time windows is shown in Table 4.2. As men-
tioned above, a subselection based on CeleX-IV row blocks was performed to harmonize the
distribution of the included object sizes. Therefore, the annotated data is also divided into
regions with a height of 128 pixels. This is due to the fact that the available sensor resolution
of 512 pixels is divided into four rows.

During the manual quality check of the Mask R-CNN labels, individual regions were
checked. These regions are each 192 pixels wide with respect to the labels propagated to
the DVS. This results in final annotations that are patched into regions of 192 × 128 pixels
each. The spatial boundaries of these patches are highlighted by the red boxes in Figure 4.2.
Fully processed and selected regions are shown in Figure 4.4.

A 70/15/15% split is also provided with the dataset, which can be used for training, validation,
and testing of further applications. This split also takes into account the distribution across
the sensor row blocks and thus different object sizes.
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BACKGROUND PERSON DOG BICYCLE SPORTSBALL
Figure 4.5: DVS-iOUTLAB dataset example scene

(a 60ms time window with 95,726 events is displayed; from [Bolten et al., 2024]).

4.3 Instance Augmentation: DVS-iOUTLAB
In order to derive a further semantic segmentation, the entire raw recordings of the staged
scenes were also processed using a point-based segmentation method, which is described in
more detail in Chapter 6.

Instances were then manually selected, checked, and extracted from the semantic segmen-
tations. Both the newly obtained segmentation results and the already labeled sections of
DVS-OUTLAB were used. In this manual process, a total of 52,293 instances of PERSON,
3,649 instances of DOG, 7,024 instances of BICYCLE, and 3,134 instances of SPORTSBALL were
extracted, covering all sensor row blocks. Instances of objects that were split at the input data
patch boundaries were excluded.

From this pool, randomly selected instances were used to artificially populate new challenging
scenes, while directly containing instance annotations. The selected objects were spatially
moved during the scene creation process to perform data augmentation. The selected objects
were randomly moved along the x-axis of the sensor’s field of view. The y-coordinates of the
events were not changed in order to preserve the projected object sizes, which would otherwise
have had to be changed due to perspective. In this way, new scenes were created with objects
in close proximity to each other, while avoiding real object occlusions based on the convex
hulls of the objects.

In this augmentation process, 10,000 scenes were created, divided into 8,000 for training
and 1,000 each for test and validation. Real background noise from the CeleX-IV sensor,
recorded from an empty scene, served as the basis for the empty scenes to be filled. Each of
the created scenes includes between three and 32 objects, with a range of 3–24 persons (with
an average of 8.76), as well as a maximum of 2 dogs, 4 bicycles, and 2 sportsballs. Instead
of smaller patches, as used in DVS-OUTLAB itself, the scenes created here cover the entire
spatial sensor resolution of 768 × 512 pixels.

A sample scene of the newly created instance dataset named DVS-iOUTLAB is shown in
Figure 4.5. In summary, this augmented version of the previous dataset contains challenges
from a multi-class, multi-instance segmentation scenario combined with real sensor noise.

54



Chapter 5

N-MuPeTS: Instance Segmentation
and Tracking

The descriptions of the approach, methods used, and results of this chapter have previ-
ously been published in:

Bolten, T., Neumann, C., Pohle-Fröhlich, R., and Tönnies, K. (2023a). N-MuPeTS:
Event Camera Dataset for Multi-Person Tracking and Instance Segmentation. In Pro-
ceedings of the 18th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications - Volume 4 (VISAPP), pages 290 – 300.
INSTICC, SciTePress

In order to take full advantage of event-based sensors, it is essential to have access to datasets
with high quality and discriminative labels for research and development purposes. The N-
MuPeTS dataset addresses this need by providing high-quality instance segmentation labels
for each individual DVS event. The dataset has a total duration of over 85 minutes and covers
several movement scenarios with one to four people, addressing the challenges of multi-person
segmentation and tracking scenarios.

A detailed description of the hardware setup and the corresponding software processing pipeline
used to create the dataset is presented. This setup allowed the acquisition of multi-person DVS
recordings with high-quality per-event instance labels. Statistics on the created ready-to-use
multi-person DVS dataset N-MuPeTS are also provided.
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Figure 5.1: Concept visualization for segmentation-based DVS tracking.
The high time resolution supports continuous tracking approaches by using high-quality

segmentations (from [Bolten et al., 2023a]).

Dataset Requirements
In the context of multi-object tracking (MOT), a dataset should include the following common
challenges [Islam et al., 2015; Xu et al., 2019; Luo et al., 2021]:

1. object occlusions (through infrastructure as well as by other persons in the scene)

2. similar appearance and body shape of recorded persons

3. changes in pose and movement patterns (e.g., kneeling, standing, walking, and running)

4. interactions among multiple persons (including abrupt changes in movement direction
and speed)

5. objects in different sizes

5.1 Label Extraction
A meaningful dataset requires accurate labels. In the case of instance labeling of event data,
manual annotation is not efficient. This problem was solved by introducing additional infor-
mation in a way that minimally affects the original data.

Dynamic Vision Sensors with color filter matrices must usually be considered as prototypes
(e.g., [Berner and Delbruck, 2011, “cDVS”], [Li et al., 2015, “C-DAVIS”], [Moeys et al., 2018,
“SDAVIS192”]). They are not commercially available and do not offer the higher spatial
resolutions of newer DVS models. Commercially available is the “DAVIS346C” sensor9, which
only offers a spatial resolution of 346 × 260 pixels [Taverni et al., 2018].

Thus, for practical purposes Dynamic Vision Sensors are not capable of recording color
information. This circumstance was exploited to encode the information of which event belongs
to a particular person in the color of the person’s clothing itself. In order to record the color
information, a second frame-based color camera, referred to as an active pixel sensor (APS)
camera, is required.

Assuming proper recordings, label data with high accuracy can be extracted from the color
frames. A detailed description of the used hardware setup is given in Section 5.2.

9https://shop.inivation.com/collections/davis346
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5.1.1 Color Features
The color features were generated by single-colored full-body skin-tight garments. The follow-
ing specifications are important for this:

1. A single homogeneous color per suit and different suit colors per actor are required
because person instances are separated by color hue.

2. The suit must cover the entire body. This ensures that color information is available for
all event data triggered by a person.

3. The suit should be skin-tight so that the silhouette of a person is not larger than normal.
Dynamic Vision Sensors are commonly based on CMOS technology. CMOS image sensors are
also usually sensitive to near-infrared light (NIR).

Synthetic fabrics tend to be strongly NIR-reflective. The spectral response of the garment
is dominated by the reflected NIR light, regardless of its visible color. As a result, DVS events
can be triggered for any color selected. The single-color garments also provide enough contrast
under natural lighting to trigger events normally.

Initial experiments showed that fabrics can be distinguished by color hue even when the sep-
aration in hue is small (see Figure 5.5 and the description in Section 5.3.2). This enables the
use of many colors and therefore many person instances can be distinguished simultaneously.

However, there are multiples sources of color artifacts that must be considered:
1. The lens introduces chromatic aberrations, i.e. phantom colors towards the edges of the

image area, that can only be partially corrected.

2. The camera records color information through a color filter matrix. Only the three
colors, red, green, and blue, are recorded. The real source color is a mixture of these.
The colors must be reconstructed during demosaicing. During this process errors are
introduced near borders because neighboring color signals could be combined while the
sources were separated in reality. This also introduces new colors that are not part of
the real scene. Since the proposed approach is based on the separation of people by color
hue, erroneous color information hinders the processing.

3. A third source of errors is the on-chip binning process of the camera sensor itself. The
effect that binning has on resulting colors is similar to the previous point. By aggregating
2 × 2 pixels it is possible to get phantom colors not included in the real scene.

It is also important to avoid overexposure in each color channel. Single-colored suits can quickly
lead to overexposure in a single channel. It is recommended to deliberately underexpose the
scene so that no required information is lost.

5.1.2 Environmental Influences
Data acquisition in an outdoor environment is naturally influenced by the environment itself.
One important aspect is the lighting of the scene. Direct sunlight is not preferred because
the color of the direct sunlight itself is different from the color of diffusely reflected light. In
consequence, the parts in direct sunlight will need a different white balance than parts in the
shadows. The information about which parts are exposed to direct sunlight is not known
precisely, so the necessary distinction cannot be made. Overcast is therefore preferred for its
diffuse scene lightning effect.

Airborne particles are another practical issue. Acquisition during precipitation is not useful
because the sensitivity in detecting changes in brightness and the temporal resolution of a DVS
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are high enough to image the raindrops themselves. Wet scenes should be avoided due to the
possibility of unwanted reflections and apparent color shift of wet surfaces of some materials.
Therefore, dry weather without large airborne particles is preferred. This includes also insects
and pollen, as these environmental influences would also be included in the DVS signal.

5.2 Hardware Setup
There are several aspects and requirements for hardware setup to accurately process event and
color information. This includes the selection of the sensors used, as well as their mounting in
a stereoscopic setup to optimize the perspective mapping. Furthermore, the colored garments
used to incorporate the color features must also be taken into account.

5.2.1 Sensors
Like [Marcireau et al., 2018], the proposed approach is also based on exploiting color features
within the scene. Compared to their hardware setup, which consists of three Dynamic Vision
Sensors and an optical beam splitter, a simpler setup was used here, which does not impose
any constraints on the recorded spectrum.

A single CeleX-IV DVS was directly connected to a notebook via USB 3, which acquired the
plain event stream and stored it on an external solid-state drive. Experiments have shown
that event noise is strongly dependent on sensor temperature (see also Section 3.3). To reduce
the included noise, the sensor operating temperature was stabilized at a low level using a
cooling system based on Peltier elements. The cooling is based on the system discussed in
Appendix A, although the measurement setup used here omits the enclosure, as it was used
only temporarily.

In common video codecs, such as H.264 [Richardson, 2010], color information is compressed.
Initial experiments have shown that these values are insufficient for the intended hue segmen-
tation. Therefore, we aim to collect the APS color data in a lossless manner. The processing
requirements are minimal frame loss, maximum image resolution, full color information, and
maximum frame rate.

The Sony IMX477 CMOS image sensor [Sony, 2018] formed the basis of the APS camera
used in the hardware setup. It is possible to capture a lossless raw video stream from the
IMX477 sensor. The video stream features a resolution of 4056 × 3040 pixels with 12-bit per
pixel. The resulting data rates are a challenge for data acquisition applications.

There were several limitations here:
• The camera interface on the APS sensor board is not capable of transmitting the full

resolution in uncompressed form at the desired frame rate. Thus, binning was enabled,
which in turn halves the image dimensions to 2028 × 1520 pixels.

• The USB bus capacity of a single computer is exceeded by the combined data rates of
the APS, DVS, and storage on external USB media. Therefore, a dedicated Raspberry
Pi 4 was used to acquire the APS frames and store them on another external solid-state
drive.

The lens selection was made to match the field of view of the sensors as closely as possible.
The IMX477 was combined with a 4mm wide-angle lens from Edmund Optics10

Both sensors together form a stereoscopic camera. The cameras were stacked vertically
as parallax is less apparent along the vertical axis with cameras looking at the scene from

10Edmund Optics TECHSPEC® UC Series #33-300, f=4mm, f/1.8 – f/11, 1/2 inch, C-Mount.
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(a) CeleX-IV with cooler (bottom) and
IMX477 with Raspberry Pi (top)

(b) Full-body garment
and cotton shoe cover

Figure 5.2: Sensor and color garment setup (from [Bolten et al., 2023a]).

Figure 5.3: Overview of software pipeline used for N-MuPeTS dataset generation (from
[Bolten et al., 2023a]).

an elevated position. Also, the lenses were mounted as close to each other as possible. The
physical mount was milled from aluminum alloy and placed on a solid surface so that the
likelihood of tripod shake triggering unwanted events was minimized. The optical axes were
adjusted towards the same point in the center of the scene so that lateral overlap of the
resulting views is maximal. The resulting sensor hardware setup is shown in Figure 5.2a.

5.2.2 Color Garments

The full-body garment was made up of two parts. The entire body, including the head, hands,
and feet, was covered by a “Morphsuit” – a commercially available Spandex-based suit. In
order to guarantee a natural walking pattern, all persons were allowed to wear everyday shoes.
The shoes were covered using separate covers sewed from colored cotton fabric. An example
of a complete garment is depicted in Figure 5.2b.

5.3 Software Pipeline

The software processing pipeline for generating the label masks and propagating them to the
DVS data consists of several steps, which are explained in the following. An overview of the
process is shown in Figure 5.3.
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(a) red (b) orange (c) cyan (d) blue

Figure 5.4: Example of one-time manually annotated colored regions for clustering (from
[Bolten et al., 2023a]).

5.3.1 Raw Image Development
The frame-based APS recordings from the IMX477 sensor were captured as lossless as possible
to minimize color artifacts and inaccuracies, especially in hue. This means that a full digital
photo development process had to be applied to obtain proper color images from the raw data.

In order to minimize the required data bandwidth of the sensor, the acquisition was per-
formed in a packed data format. For every two pixels, their 12-bit intensities were combined
into three bytes. After unpacking the individual pixels from this structure, a black level cor-
rection was performed and a color image was generated by using an edge-aware demosaicing
algorithm on the Bayer-filtered data. After clipping and normalizing the data, a color cor-
rection matrix was applied to transform the sensor-specific color values into a standardized,
device-independent color space. Finally, a gamma correction was applied. The resulting image
was cropped to a resolution of 2000 × 1500 pixels to remove non-informative stride pixels and
color artifacts from the edges of the image.

In a second step, chromatic aberrations were corrected. Finally, the tone curve and white
balance were optimized. This was done by adjusting the image using an open source photo
editor11.

5.3.2 Label Mask Generation
The label masks were automatically generated on the basis of the developed APS frames by
means of color hue segmentation. Each recorded image was processed independently.

First, regions of interest were marked by hand (see Figure 5.4). Areas of different illumination
should be included. This is a countermeasure against the influences described in Section 5.1.2.
Conversion to HSV color space results in multiple hues per garment color selection. These
clusters can be visualized in a polar pixel histogram with 360 bins (see Figure 5.5). These
clusters were further processed to give a single centroid in hue for each garment color.

For this purpose, an agglomerative clustering was computed on the hue values. Clusters
with differences in hue below a given threshold were merged. This threshold was increased as
long as the number of resulting clusters was lower than the number of garment colors used
during recording. It is assumed that a normal distribution is suited to model potential color
variations, e.g. due to lighting. A normal distribution was fit to each cluster. The calculated
mean hue of each cluster was used for the hue segmentation in the next step. The hue range

11https://www.darktable.org/
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Figure 5.5: Polar histogram of garment colors extracted from annotations on developed APS
frames shown in Figure 5.4 (adapted from [Bolten et al., 2023a]).
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Figure 5.6: HSV-dependent decision region for segmentation.

in HSV color space is circular. Care must be taken to use circular mean for all computations
involving hue.

The hue segmentation was computed by calculating the differences to the centroids in hue of
each cluster and then applying a threshold 𝛼. At this point, a circular sector is selected for
each color in the HSV color space. We can further narrow the decision regions by incorporating
saturation and value. The idea is to exclude all colors that cannot origin from the color garment
in the given setup. We removed all pixels with a saturation ≤ 𝜎 and a value ≤ 𝜑. The resulting
decision region is exemplarily shown in Figure 5.6. The thresholds must be selected so that as
little as possible from the regions of interest is cut away. At last, small holes were closed by
a morphological operation. This process resulted in a separate binary mask for each garment
color.

Additional care was taken to prevent multiple labels per pixel and to remove false positives.
When the resulting label mask was set for multiple colors at one position only one color
was kept. Centroids’ hue values were used in ascending order to define priorities. Most
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2000 × 1500 px

(a) Generated label mask
with lens distortion

2300 × 1725 px

(b) Label mask with lens
correction applied

883 × 736 px

(c)
Undistorted
label mask
mapped to

DVS

768 × 640 px

(d)
Redistorted

label to match
plain DVS

data

(e) Propagated
DVS event

labels

Figure 5.7: Processing steps to map and propagate label masks to DVS event stream (from
[Bolten et al., 2023a]).

false positives were removed by applying a connected component analysis and suppressing all
connected components with a size of less than 𝜏 .

5.3.3 Synchronization, Mapping, and Propagation
Several steps are necessary to project the obtained hue-based label masks onto the DVS event
stream. A priori, intrinsic camera parameters must be estimated for both sensors of the setup.
By using a slowly moving chessboard and applying corner detection, the points needed for
calibration were extracted.

It is important to temporally synchronize the views so that the label masks derived from
the APS camera match the DVS view. The recording of raw data from the APS color sensor is
technically limited to 40 fps due to the hardware setup that was used12. For further processing,
the continuous data stream of the DVS was therefore also divided into sections of the length
of 25ms. The resulting APS frames and the time windows of the DVS were then synchronized
based on system clock timestamps corresponding to their acquisition time. The clocks of the
used systems were adjusted via NTP13. This limits the error over time to a small value. In
addition, an initial synchronization was performed manually at the beginning of each recording
using a visual cue. This visual cue was used to compensate for most of the absolute error
between the system timestamps.

For mapping, the generated label mask was first undistorted with the determined camera
parameters of the APS. This process step is illustrated exemplarily in Figure 5.7a and b. The
mask was then projected onto the DVS, changing the field of view and image resolution (see
Figure 5.7c). For this purpose, a homography was determined based on manually selected
points on the ground plane of the scene (compare to Figure 5.8). This homography was then
used to warp the mask in perspective.

Finally, the redistorted instance labels (see Figure 5.7d) were propagated to the plain DVS
event stream. All events within a synchronized time window were assigned the label provided
by the mask at each corresponding spatial position. The end result is a per-event instance
label annotation on the DVS output stream (see Figure 5.7e).

12Using the 12-bit packed data format at a sampling rate of 40 fps results in an approximate data rate of
178MB/s which must be continuously transferred and stored.

13https://tools.ietf.org/html/rfc5905
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(a) DVS field of view (b) APS field of view

(c) Selection of corresponding ground key points between the DVS (left) and APS (right) fields of
view by means of a large visual cue

(d) Perspective warp (blended)

Figure 5.8: Mapping of sensor outputs.

63



Limitations
There is one notable limitation. Label mask generation based on the APS frames works for
both, moving and standing persons. In contrast, a DVS ideally generates event data only for
regions with movement. In consequence, noise of the DVS is labeled as belonging to a person
when the person is not moving.

The label is wrong when looking at the event data itself, because the events were not
triggered by the persons themselves. But from the point of view of a tracking algorithm, the
label is correct because a person cannot disappear in a scene. Therefore, we decided not to
postprocess the label masks in this dataset, but to annotate whether a person is standing still.

5.4 Provided Dataset: N-MuPeTS
Neuromorphic-Multi-Person Tracking and Segmentation Dataset

First, an overview of what is included in the published dataset is given, and each annotation
used is briefly explained. Then, several statistics derived from the dataset are discussed.

During recording in an unconstrained outdoor environment, interference can not be completely
avoided. Any deviation from a perfect sequence of actions must be edited during postprocess-
ing. We decided to mark the sequences with lower quality and split the recording at the point
where the quality changes. This process was done manually to ensure high accuracy. We
observed a number of issues, including both, recording artifacts and postprocessing errors.
Based on the expected impact of these issues on the usability of segmentation and tracking
applications, three classes of quality are distinguished. From worst to best, the quality classes
are:
Quality 3 corresponds to these major issues:

• uninvolved persons in scene
• cars moving in scene
• wildlife in scene, i.e. birds

Quality 2 corresponds to these minor issues:
• unintended occlusion, i.e. tree trunks
• one or more persons are outside the static mask
• incomplete masks, i.e. intersection with static mask (see Section 5.4.3)

Quality 1 includes all remaining sequences, i.e. sequences without any of the aforementioned
issues.

Quality 2 and 3 can be used to obtain longer sequences. In the following, quality 1 is presented
exclusively. A sample scene of the dataset is shown in Figure 5.9.

5.4.1 Scenarios
We defined a series of scenarios as a protocol for recording and as a guide for the actors.
Where possible, we repeated the scenario for each person and all possible numbers of persons.
The scenarios are listed in Table 5.1. The order is mostly chronological and corresponding
to sequence indices. For the majority of the scenarios, we introduced annotations with a
corresponding name. The annotations are not exclusive for certain sequences, e.g. crossing
will occur frequently during “crossing paths” but also anytime else. Thus, the scenarios increase
the frequency of their corresponding annotations for their duration.

For the generation of label masks 𝛼 = 10°, 𝜎 = 50%, 𝜑 = 10%, and 𝜏 = 10 px were used.
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red actor orange actor cyan actor blue actor
Figure 5.9: Example scene from N-MuPeTS dataset (55,072 events; adapated from [Bolten

et al., 2024]).

Scenario Primary parameter
background (empty scene) –
single person speed
crossing paths angles of paths, speed
parallel paths (same directions) speed, distance
parallel paths (opposing directions) speed, distance
occlusions speed, pose
meeting & parting direction
random path speed
helical path –

Table 5.1: Considered scenarios used as guide to actors in dataset creation.
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(a) Masked scene
(static mask blended in black, possible occlusion areas due to infrastructure

are blended in green)

(b) All four actors (c) Generated label mask (d) Propagated DVS
labels

Figure 5.10: Setup during N-MuPeTS dataset recording and corresponding labels (adapted
from [Bolten et al., 2023a]).

5.4.2 Persons and Garment Colors
The recorded persons are pseudonymized in the data provided by using the color of the suit
they were wearing (see Table 5.2 and Figure 5.10b). Some colors are less practical than others
in a given environment. In our case, vegetation tended to be green-yellowish. Red and blue are
well separated. The choice of orange and cyan, which are close in hue (see Figure 5.5), is due
to the unavailability of different colored suits at the time the dataset was created. Figure 5.10c
shows an automatically generated label mask in the used setup, while Figure 5.10d shows the
result of corresponding mapping and propagation to the DVS view.

5.4.3 Static Mask
We used a binary mask to prevent vegetation as well as uninvolved persons and objects from
causing false positives during label mask generation, as described under “Quality 3”. Some
sequences had to be split and labeled as quality 2 instead of quality 1, because one or more
person were obscured by the static mask.

This static mask was applied only to the color frames from the APS camera. In the labeled
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event dataset, all event data is unmasked. Figure 5.10a shows the scene used to create the
dataset. The areas outside the applied static mask are blended in black.

5.4.4 Annotations
Annotations were made manually and are available per color.

The scenario description, used to brief the actors, and the annotations, describing all
the included activities, are directly related to the main challenges of MOT as defined in the
introduction of this chapter. The mapping and annotations are discussed below.

Background:
One annotation not resembling a problem in itself is background, i.e. an empty scene.
This provides separate recordings only including sensor noise. In quality 2, some foreign
activity can occur.
Annotation key:

background no person with colored garment is in the scene.

Object Occlusion:
Object occlusion can be further divided into occlusion with infrastructure and occlusion
between persons. In addition to occlusion with static infrastructure, such as tree trunks
in the scene, occlusion is also possible with portable infrastructure that was temporarily
placed in the scene during parts of the dataset creation. Example areas of possible
occlusion due to infrastructure are highlighted in green in Figure 5.10a.
Occlusion between persons can happen whenever two or more persons are in the scene.
It is very frequent during crossing and sidebyside.
Annotation key:

occlusion one or more persons are behind an obstacle.

Similar Shape:
All actors are comparable in size and weight. The person representing cyan naturally
has a different silhouette while the remaining persons have a very similar figure. This
makes distinction by size impracticable and provides a greater challenge for tracking
algorithms.
Annotation keys:

red, orange, cyan, blue person with specified garment color is in scene.

Pose and Movement:
Most of the time the actors were upright and walking. For short durations they were in
differing poses. excercising is a collection of movement patterns found in sports. This
includes push-ups and burpees (including jumping). These represent movements that
are rarely observed in pedestrian monitoring scenes with high rates of change in motion
speed, and thus can be challenging for tracking algorithms.
standing, walking, and running correspond to three intervals of speed during bipedal-
ism.
random is a special case where an actor tries to move as unpredictably as possible, while
including changes in speed and course. This aims at stressing physical motion models
included in many tracking algorithms.
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Annotation keys:
exercising one or more persons are doing exercise like activity.
kneeling, stooped, waving one or more persons are in the specified

pose.
standing, walking, running one or more persons are moving the spec-

ified manner.
random one or more persons are abruptly changing direction and speed,

including backwards movement.

Interaction:
Crossing paths require two persons, but the number of possible variations is limited. The
following patterns are considered relevant:

1. person A and person B walk past each other (crossing)
2. person A and person B walk in the same direction (sidebyside)
3. person A or person B change their direction at the point of intersection (meet)

The parameters are the angle to the sensor, the angle between the paths, and the speed.
With three persons, the number of possible variations increases drastically. For this
dataset we managed to include four people.
Annotation keys:

crossing the paths of two or more persons are crossing in temporal prox-
imity.

meet two or more persons are meeting and parting again, paths are converg-
ing then diverging.

sidebyside two or more persons are moving side by side at the same speed.
helix two persons try to circle around each other so that in a (𝑥, 𝑦, 𝑡)-

diagram, i.e. a 3D plot of the resulting event point cloud, their paths
resemble a helical path.

Different Sizes:
As mentioned before, the actors are of similar size. Still, the projected size varies greatly
with distance from the camera due to perspective. While a person in the center of the
scene has a projected size of approximately 52 pixels in the DVS event stream, a person
at the far end of the scene has a projected size of only 29 pixels. Sequences with persons
at the far end of the scene are marked with far.
In conclusion, persons are included in the dataset in a variety of sizes. Of course, the
variation in size corresponds directly to the position along the vertical axis in the stream.
Annotation key:

far one or more persons are near the distant footway in the scene (compare
with Figure 5.10a).

5.4.5 Statistics
The dataset subset that constitutes quality class 1 is summarized in Tables 5.3, 5.4, and 5.5.
In these tables, all durations are given in seconds and rounded to the nearest integer. The
Appendix (Section D.2) contains detailed information for all quality classes and annotations.
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Garment
color Size Sex Weight

red 1.84m male 70 kg
orange 1.82m male 82 kg
cyan 1.74m female 80 kg
blue 1.80m male 65 kg

Table 5.2: Technical specifications of participating persons.
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Table 5.3: Cumulative durations per color
combination in quality class 1.
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red 137 12.5 1713
orange 123 13.6 1671
cyan 101 14.0 1416
blue 77 12.3 946

background 46 6.5 300

standing 96 3.3 312
walking 441 5.1 2259
running 107 4.7 504
random 18 8.9 160
helix 9 7.2 64

far 35 4.5 157
Table 5.4: Duration statistics per annotation

in quality class 1.

Annotation Number of
occurences

occlusion 136

exercising 9
kneeling 13
stooped 18
waving 9

crossing 212
meet 48
side by side 94

Table 5.5: Occurrence statistics per annotation in quality class 1.
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(a) Object occlusion
occlusion 57.40 31.54 11.06

(b) Pose & movement
exercising 61.96 30.05 7.99
waving 33.97 22.54 43.49
walking 67.57 18.87 13.55
running 69.41 17.14 13.45
random 85.13 9.62 5.25

(c) Object interaction
crossing 64.37 22.48 13.15
meet 66.40 23.26 10.34
sidebyside 64.66 18.83 16.50
helix 62.15 10.80 27.05

(d) Object size
far 60.87 20.72 18.41

(e) Over-all
mean 63.08 20.53 16.39

Table 5.6: Percentage of dataset annotation labels in N-MuPeTS split (based on labels per
actor given in 25ms dataset time windows).

Overall, the cumulative duration of sequences in quality 1 is about 56% of the total dataset,
which equates to a duration of appropriately 2920 seconds. Table 5.3 summarizes the recorded
durations for each color combination. It can be noted that all possible color combinations are
included. The last column contains the cumulated durations for 0, 1, 2, 3, and 4 simultaneously
active actors. Recordings with up to two or three persons each contribute 24% to the total
duration of the dataset. Scenes with one person (≈ 30%) and with all four persons (≈ 12%),
along with empty background scenes, form the remaining components.

Table 5.4 gives an overview of the number of sequences and their duration in relation
to the assigned annotations. The cumulative duration is included in a separate column for
convenience. Due to the aforementioned rounding, small discrepancies can occur. Annotations
that describe short events in time are counted instead, see Table 5.5.

Considering the cumulative duration each actor is present, red, orange and cyan are
included in equal shares. Actor blue is slightly less frequent. According to the natural
movement pattern of humans, the annotation walking is included significantly more often
than others.

5.4.6 Dataset Split
To develop segmentation-related applications, the following dataset splitting logic has been
proposed.

For training and evaluation of segmentation purposes, all recordings with the best quality
should be used, except for time windows in which at least one person is standing (dataset
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annotations kneeling, stooped or standing). This leads to the exclusion of ≈ 7.6 minutes of
recording and is therefore negligible. This exclusion is necessary for segmentation applications,
as standing persons are indistinguishable from background noise in the DVS signal.

The following procedure was used to generate a dataset split. The remaining recordings
were divided into consecutive ten second segments. Based on these segments, the data was
divided into training, validation, and test sets. This windowing of the data was done in order
to achieve a higher variability between the splits compared to randomly sampling and selecting
time windows of only a few milliseconds.

In selecting a 60/20/20% split for training, validation and test, care was taken to ensure
that the selected activity annotations of the dataset are approximately equally represented in
the generated splits. The detailed distribution of annotations for each generated set is given
in Table 5.6.
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Summary of Part II

An overview of existing DVS datasets in the literature was given. This included native DVS
datasets recorded with real sensors as well as datasets based on conversion or full simulation.
The available datasets often have limitations

• in terms of their duration,
• regarding the orientation and distance of the included objects with respect to the sensor

used,
• or do not address outdoor applications and thus do not consider environmental influences

in the sensor signal.
Furthermore, they are often accompanied by label annotations that are inappropriate (or

insufficiently discriminative) for outdoor monitoring applications. Therefore, two own datasets
were recorded, processed and published.

The DVS-OUTLAB dataset provides several hours of raw event data from an actual long-term
monitoring setup that was performed in a real-world outdoor scenario. The labels created for
this dataset address various classical object classes, such as persons, as well as environmental
influences (such as rain or shadows). The dataset consists of specially staged scenes and an
automated process to derive labels on the basis of these recordings was described. It also
includes manually selected recordings from long-term observations that contain environmental
artifacts. In this way, about 47,000 regions of interest were processed, containing semantic
segmentation labels for each individual DVS event.

The dataset includes challenges such as real sensor background noise, very different object
sizes (including very small objects), and the aforementioned environmental effects that occur
under different light and weather conditions.

The N-MuPeTS dataset provides longer, continuous and native DVS-based recordings covering
multiple scenarios within a multi-person tracking and segmentation use case. The recordings
for this dataset were also performed in an outdoor environment. For the actors recorded
within these scenarios, high-quality instance labels were derived. In addition, the actors’
poses, movements, and interactions within the sequences were also annotated. The scenarios
played by the actors are directly derived from common challenges encountered in the context
of multi-person tracking applications.

By exploiting color features within the scene and combining a Dynamic Vision Sensor
with a classical RGB imager, highly accurate instance labels were generated. This is even
the case in error-prone scenarios including intersecting movements and occlusions. The sensor
hardware setup used and the complete software processing pipeline for automated derivation
and propagation of multi-person instance labels on DVS recordings based on hue segmentation
were described.

These datasets provide segmentation labels at the level of each individual DVS output event.
Therefore, there are no event representation and encoding constraints to consider when us-
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ing these datasets. This opens the possibility to compare any event encoding strategy for
subsequent computer vision tasks. This includes approaches that operate directly on the
three-dimensional (𝑥, 𝑦, 𝑡) data of the DVS stream. The datasets were made freely available
to support and accelerate the development and deployment of fully DVS-based processing
pipelines in real-world usage scenarios.
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Part III

Segmentation:
It’s About Event Representation

77





Contents

Segmentation: State-of-the-Art 81

Event-Stream Representations 89

6 Semantic Segmentation: Sparse 3D Space-Time Event Clouds 97
6.1 Proposed 3D Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.1.2 Processing Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Proposed 2D Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2.2 Processing Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.1 Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.3 PointNet++ Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.4 Results and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Semantic Segmentation: Frame and Voxel Representations 113
7.1 Proposed Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.1.2 Processing Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2.1 Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2.3 Results and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 Instance Segmentation: Comparison of Representations 119
8.1 Proposed Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.1.1 Point Cloud-based Processing . . . . . . . . . . . . . . . . . . . . . . . . 120
8.1.2 Voxel-based Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.1.3 Frame-based Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.2 Preprocessing and Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2.1 Adaptive Region-of-Interest Extraction . . . . . . . . . . . . . . . . . . 122
8.2.2 Baseline: Semantic Segmentation and Clustering . . . . . . . . . . . . . 123

8.3 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.3.1 Network Configurations and Input . . . . . . . . . . . . . . . . . . . . . 124
8.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.3.3 Application Results and Comparison . . . . . . . . . . . . . . . . . . . . 125

Summary of Part III 129

79



List of Figures
III.1 Different levels of segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . 82
III.2 Event representation, comparison focus and processing challenges. . . . . . . 90
III.3 Overview of event-stream representations under study. . . . . . . . . . . . . . 90
III.4 Graphical rendering of the basic ideas for event representation. . . . . . . . . 93
III.5 Snippets of frame-encoded events. . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1 PointNet++ structure for segmentation. . . . . . . . . . . . . . . . . . . . . . 99
6.2 Summary of PointNet++ processing concept. . . . . . . . . . . . . . . . . . . 99
6.3 PoI divide-and-conquer data selection method. . . . . . . . . . . . . . . . . . 101
6.4 Overview of 3D-based processing steps per PoI. . . . . . . . . . . . . . . . . . 101
6.5 3D space-time event cloud visualization. . . . . . . . . . . . . . . . . . . . . . 103
6.6 Overview of 2D-based processing steps per PoI. . . . . . . . . . . . . . . . . . 104
6.7 Dense label description compared to sparse event stream. . . . . . . . . . . . 105
6.8 Temporal weighting in distance calculations. . . . . . . . . . . . . . . . . . . . 107
6.9 False color examples for PointNet++ semantic segmentation results. . . . . . 108
6.10 Two-dimensional t-SNE visualization of the PointNet++’s feature space. . . . 109
7.1 2D UNet configuration for DVS-OUTLAB dataset. . . . . . . . . . . . . . . . 114
7.2 Event representations considered in UNet experiments. . . . . . . . . . . . . . 115
8.1 Instance segmentation processing approaches in comparison. . . . . . . . . . . 120
8.2 Adaptive RoI generation steps. . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.3 Baseline segmentation clustering approach. . . . . . . . . . . . . . . . . . . . 123
8.4 Typical prediction error cases on N-MuPeTS. . . . . . . . . . . . . . . . . . . 128

List of Tables
6.1 Optimized PointNet++ configuration. . . . . . . . . . . . . . . . . . . . . . . 108
6.2 PointNet++ optimization results. . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3 Weighted F1 score results of 3D and 2D networks. . . . . . . . . . . . . . . . 110
6.4 Trainable network parameter comparison. . . . . . . . . . . . . . . . . . . . . 111
6.5 Network runtime comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.1 Weighted F1 score results on DVS-OUTLAB dataset. . . . . . . . . . . . . . . 117
8.1 Object instance statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.2 Segmentation results on DVS-iOUTLAB test set. . . . . . . . . . . . . . . . . 126
8.3 Segmentation results on challenging sequences of N-MuPeTS test subset. . . . 126
8.4 Number of trainable network parameters. . . . . . . . . . . . . . . . . . . . . 128

80



Segmentation: State-of-the-Art

The state-of-the-art description in this dissertation chapter is an extended version of
the previously published summary of related work given in the following papers:

Bolten, T., Lentzen, F., Pohle-Fröhlich, R., and Tönnies, K. (2022a). Evaluation of
Deep Learning based 3D-Point-Cloud Processing Techniques for Semantic Segmentation
of Neuromorphic Vision Sensor Event-streams. In Proceedings of the 17th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications - Volume 4 (VISAPP), pages 168 – 179. INSTICC, SciTePress

Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2023c). Semantic Segmentation on
Neuromorphic Vision Sensor Event-Streams Using PointNet++ and UNet Based Pro-
cessing Approaches. In Proceedings of the 18th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications - Volume 4
(VISAPP), pages 168 – 178. INSTICC, SciTePress

Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2024). Instance Segmentation of
Event Camera Streams in Outdoor Monitoring Scenarios. In Proceedings of the 19th
International Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 3 (VISAPP), pages 452 – 463. INSTICC, SciTePress

Levels of Detail in Segmentation
Segmentation is an important part of computer vision and is needed for a variety of scene un-
derstanding tasks. Different levels of detail can be distinguished for this task (see Figure III.1):

Object Detection:
The object detection task deals with the localization of objects and the assignment of
class labels. Each detected object is usually represented by a bounding box.

Motion Segmentation:
Motion segmentation is the process of identifying and grouping regions of coherent mo-
tion. The main objective is to distinguish and separate areas or objects that are moving
independently from the rest of the scene or from each other. Grouping in complex scenes
may involve camera ego-motion, and therefore, separating foreground and background
motion.

Semantic Segmentation:
In semantic segmentation, in addition to object detection, each input point or pixel is
assigned a class label, making it a per-pixel classification task. By assigning labels, the
entire input is divided into segments.
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(a) Input image

(b) Detection (per-object bounding box and class label)

(c) Motion Segmentation (d) Semantic Segmentation
(per-pixel class label)

(e) Instance Segmentation
(per-object mask and class label)

(f) Panoptic Segmentation
(per-pixel class and instance labels)

Figure III.1: Different levels of segmentation. The input image is taken from the
“Cityscapes” dataset [Cordts et al., 2016] and has been cropped.
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Instance Segmentation:
Instance segmentation combines semantic segmentation with object detection, with the
goal to detect all objects and assign per-pixel class labels to them. In addition, a unique
identifier is assigned to each of the input points of the detected objects. In contrast to
semantic segmentation, this makes it possible to distinguish between different objects of
the same class.

Panoptic Segmentation:
Panoptic segmentation, as defined by [Kirillov et al., 2019], combines semantic and in-
stance segmentation and distinguishes between two categories: stuff and things. Stuff
refers to amorphous regions such as the sky that cannot be counted, while things are
countable objects such as people and cars.
Each input point is given a class label, while things are also given a unique identifier
to make them distinguishable. Since stuff is amorphous and uncountable, the identifier
is omitted. The result for stuff is therefore analogous to semantic segmentation, while
things are instance-segmented.

Event-Stream Segmentation: Related Work
Research on event-based segmentation is not as extensive as its frame-based counterpart. This
is due to the novelty of the sensor technology itself. However, it is an active area of research
with steady progress. The following sections summarize related work that addresses these
segmentation tasks within the event-based vision domain.

Event Clustering and Object Detection
The clustering of events captured by Dynamic Vision Sensors can be used as a method for
object detection. The high temporal resolution of the output also facilitates tracking the
identified clusters.

In [Litzenberger et al., 2006], an embedded system for cluster building and tracking was im-
plemented, inspired by the mean-shift clustering approach. Circular event regions are formed
by assigning each new event to a cluster based on a distance criterion. This updates the
cluster weight and center position. [Schraml and Belbachir, 2010] utilized a head-mounted
stereo setup of Dynamic Vision Sensors to capture and represent moving objects in real-time
from a top-down view. The clustering process employed density and distance metrics. The
method was able to assign events to individual objects in a real-world scenario test setup. A
stereo DVS setup was also used in [Piątkowska et al., 2012] to address the problems associated
with high object occlusion. Extending the clustering task by using Gaussian Mixture Models
and stochastic prediction of object states in particular time steps, people were detected and
tracked.

In [Linares-Barranco et al., 2015], a low-power FPGA-based solution for noise reduction
and object tracking has been proposed. Their clustering approach operates with predefined
positions, where each module expects an object at a specific initial position in the visual
field. This architecture assumes a fixed maximum number of objects, which are processed in
parallel on the FPGA. [Lagorce et al., 2015] utilized the event-driven properties by integrating
spatial and temporal correlations of events in an asynchronous iterative framework. They
combined multiple kernels to extract and compute different features and grouped them for
object tracking. The process involved the use of various kernels, including Gaussian, Gabor,
and arbitrary user-defined kernels.
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In [Barranco et al., 2018] a real-time mean-shift clustering algorithm has been proposed.
Their approach avoids any preselection or a priori knowledge about the number of clusters or
their shape. Tests have been performed on a dataset with simple shapes [Mueggler et al., 2017],
as well as in a robotic setup. [Rodríguez-Gomez et al., 2020] integrated feature tracking and
clustering into an event-by-event processing approach. Corners are detected and objects are
clustered, while background regions and object regions with higher event rates are distinguished
by building an attention priority map.

Another common approach to object detection, in addition to direct clustering at the event
level, is based on converting data into classical frames and processing them using well-known
deep learning methods.

In [Chen et al., 2019a], three different frame encodings have been proposed. Each is de-
signed to focus on a different feature of the data stream, such as event frequency, timestamp
information, or temporal aspects. These frames, as well as composite multichannel combina-
tions of them, are then processed. In [Wan et al., 2021], a frame encoding called neighborhood
suppression time-surface was introduced to address issues related to areas with highly varying
event densities. While [Jiang et al., 2019] exploited the specificity of the used event camera to
capture and incorporate classical intensity images. These approaches are subsequently based
on the application of variants of the well-known 2D object detector framework family YOLO
[Redmon et al., 2016]. Similarly, in [Damien et al., 2019], three frames were generated by
accumulating the events in three different time windows to account for objects of different
speeds. These frames are then processed using a single-shot detector (SSD) [Liu et al., 2016]
and Faster R-CNN approach [Ren et al., 2017].

Motion Segmentation
Clustering typically relies on spatial distance or density metrics. As a result, objects that are
spatially close to each other and similar are difficult to distinguish using clustering approaches.
Identifying and separating objects that have independent motion is therefore an alternative
method.

[Barranco et al., 2015] used motion estimation in a segmentation scenario. Their approach
learns the location of contours and their boundary ownership, i.e., which side of the boundary
belongs to the foreground and which to the background. Using different extracted features
and a structured random forest, they demonstrated a layer segmentation of the given scenes.
In [Vasco et al., 2017] the processing was performed in a robotic setup. This means that the
sensors are typically non-stationary as they are mounted on a moving robot. They used the
knowledge of the robot’s own joint kinematics to detect and track corners in the event stream
and learned their statistics. Independently moving objects in the scene are then identified
by large discrepancies between the predicted corner velocities induced by ego-motion and the
measured corner statistics. In [Mishra et al., 2017], events can be distinguished as static
background or dynamic foreground based on microsaccades, which are minimal movements
of the sensor. They assigned the events to “spike groups”, which are clusters of events in
space-time, and extracted robust temporal statistics that are a consequence of the introduced
micro-movements. [Mitrokhin et al., 2020] worked with time-surfaces in (𝑥, 𝑦, 𝑡) to perform a
foreground-background segmentation of moving objects. They converted the event stream into
a 3D graph and learned motion segmentation using a graph convolutional network. Due to
the high memory requirements, the large number of events, and the resulting edge connections
between graph nodes, the processing is limited in input time length.

Another group of motion segmentation algorithms were inspired by and are closely related
to [Gallego and Scaramuzza, 2017; Gallego et al., 2018]. These works introduced the con-

84



cept of motion warping to event-based data in order to maximize the contrast of an image
through motion compensation. Additionally, inspired by 3D point cloud processing techniques,
[Mitrokhin et al., 2018] globally estimate the ego motion from the event stream and iteratively
detect (multiple) objects that do not conform to the estimated model. They formulated a
time-image representation on which this stabilization is performed. By estimating image plane
velocities instead of sensor angular velocities, [Stoffregen and Kleeman, 2018] calculated the
optical flow and simultaneously segmented the data into objects moving at the same velocity.
[Stoffregen et al., 2019] proposed a per-event segmentation method for independently moving
objects. Their method jointly estimates the segmentation and object motion parameters by
maximizing an objective function, exploiting the idea of motion-compensated event images.
The probability that an event belongs to a cluster is determined by maximizing the sharpness
of warped event clusters in these images. Similarly, [Zhou et al., 2021] solved the problem of
identifying moving objects as an energy minimization problem involving the fitting of multiple
motion models. They used Markov random fields and an unstructured spatio-temporal graph
representation, which allowed them to solve the problem by graph cuts.

[Wang et al., 2022] introduced a cross-domain motion segmentation method that fuses
classical frames and events to improve segmentation performance. By fusing the visual cues
from both events and frames, the complementary domain attributes were exploited, such as
addressing slow object motion and highly textured scenes.

Semantic Segmentation
Motion segmentation approaches do not distinguish or identify semantic classes. Therefore,
the found objects have no class assignment. Semantic segmentation fills this shortcoming.

In [Sekikawa et al., 2019], the so-called EventNet was introduced, which is designed for real-
time processing of asynchronous event streams in a recursive and event-based manner. Its
processing approach is inspired by PointNet [Qi et al., 2017a], but the sparse input signal is
directly processed recursively rather than in a cloud-based manner. Two separate processing
modules allowed immediate per-event updating of global features as well as for a final out-
put that is computed only on demand. In combination with multi-layer perceptrons, which
were replaced by a lookup tables for inference, real-time processing was achieved. By design,
however, it is not capable of extracting hierarchical features from the data.

[Alonso and Murillo, 2019] proposed a semantic segmentation processing based on a clas-
sical encoder-decoder convolutional neural network architecture combined with a novel repre-
sentation for DVS data. They introduced a dense 6-channel image representation that encodes
both the histogram and the temporal distribution of events. In their test scenario, the com-
parison showed that it outperformed other previously used event representations. The method
proposed in [Gehrig et al., 2020] used existing video datasets, exploiting their given labeling,
to convert them into labeled synthetic event data. These events and copied labels were used
to train a network architecture according to [Alonso and Murillo, 2019], while real event data
was used at test time.

In [Wang et al., 2021a], a knowledge distillation approach called EvDistill was proposed.
It was designed to train a smaller neural network (“student”) with unlabeled and unpaired
event data by distilling knowledge from a larger network (“teacher”) trained with labeled
image data. This was mainly achieved by introducing a bidirectional modality reconstruction
module to bridge the modalities. While their method is effective, it should be noted that
the use case and type of event data should be similar to the type of labeled source data for
optimal performance. A similar idea was pursued in [Sun et al., 2022]. They proposed a method
called ESS, which aims to transfer a semantic segmentation task from labeled image datasets
to unlabeled events through unsupervised domain adaptation. ESS creates motion-invariant
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event embeddings that are aligned with image embeddings without the need for video data
or hallucinated motion by using pre-trained encoders. The process involves encoding events
into motion-invariant embeddings, reconstructing them into still images, aligning these images
with events to form pseudo pairs in the source and target domains, and predicting the final
output from the image and event embeddings.

The combination of event-based and frame-based vision modalities is also used for seman-
tic segmentation. In [Biswas et al., 2024], a hybrid approach was proposed that includes a
simple and efficient cross-domain learning scheme to extract complementary spatio-temporal
embeddings from both frames and events. It uses a spiking neural network for temporal feature
extraction from events and a classical artificial neural network for spatial feature extraction.
In a subsequent step, the temporal and spatial embeddings are mixed for robust prediction. As
part of the ablation study, event-only processing was considered. [Ghasemzadeh and Shouraki,
2023] proposed an event-frame based semantic segmentation network that also uses both,
frames and events. Their main goal is to combine the complementary advantages of both
modalities by using an encoder-decoder architecture with two parallel encoders and a fusion
of the resulting feature maps. They introduced a blurring module for data augmentation and
evaluated their method in terms of robustness. In contrast to these modality-specific methods,
a unified fusion framework, called CMX, has been proposed in [Zhang et al., 2023]. CMX also
incorporates event-based data.

Instance and Panoptic Segmentation
Using semantic segmentation approaches, it is impossible to distinguish between spatially
close or even occluded objects of the same class. This is especially important in the context
of surveillance applications, such as monitoring a group of people.

In this case, instance or panoptic segmentation is an appropriate approach, but the resulting
challenges are largely unaddressed for event-based data.

A method based on Spiking Convolutional Neural Networks called HULK-SMASH has been
published in [Kirkland et al., 2022]. It emphasizes a departure from traditional deep learning
models by employing a time- and feature-based similarity metric. The latent spiking neurons
in the layers are resolved back to pixel space.

A processing approach called Bimodal SegNet has been proposed in [Kachole et al., 2024],
which fuses event-based data and RGB frame data for instance segmentation. It includes
two separate encoders that capture and combine information at different resolutions using
a Cross-Domain Contextual Attention layer. Leveraging elements of UNet and transformer
architectures, the segmentation process is enhanced. An event-based panoptic segmentation
approach based on a Graph Mixer Neural Network has been proposed in [Kachole et al., 2023].
It operates on 3D event graphs and progressively reduces the number of nodes by downsampling
in the encoder while upsampling in the decoder. Unlike conventional graph network processing,
where graphs are constructed prior to network operations and predictions, a novel subgraph
construction strategy and parallel processing scheme were introduced.
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Event Representations and Processing
Dynamic Vision Sensors are a relatively new type of sensor technology. However, they are
already being used in a variety of research areas. These include, for example, industrial vibra-
tion measurement and control applications [Dorn et al., 2017], autonomous driving scenarios
[Chen et al., 2020a], and even space surveillance applications [McMahon-Crabtree and Monet,
2021].

However, as stated by

“there is not yet a clearly adopted way of representing the stream of events to feed
a CNN”, (Alonso and Murillo, 2019)

and

“[e]fficient low-level encoding of event data is still an open research problem”.
(Biswas et al., 2024)

There are significant differences in the way in which events are represented for processing. In
many cases, they are transformed into alternative representations in order to solve a given
task. The boundary between pure representation and feature extraction is often blurred in the
context of the intended application.

The main categories of event representations currently in use are outlined in Section 1.4.2 on
page 12. However, their use in the proposed approaches is not always completely distinct.

Processing based on individual events is often used in filtering, where decisions are made
for each event based on the previous events in the spatio-temporal neighborhood. Moreover, it
is also used in clustering approaches, where the events serve natively as a basis [Litzenberger
et al., 2006; Schraml and Belbachir, 2010; Piątkowska et al., 2012; Linares-Barranco et al.,
2015; Barranco et al., 2018; Rodríguez-Gomez et al., 2020].

In most of the high-level approaches mentioned in the related work above, the event stream
is converted into dense 2D grid frame representations for processing [Mitrokhin et al., 2018;
Alonso and Murillo, 2019; Chen et al., 2019a; Jiang et al., 2019; Gehrig et al., 2020; Wan
et al., 2021; Wang et al., 2021a, 2022; Ghasemzadeh and Shouraki, 2023; Kachole et al., 2024].
However, this results in a loss of signal sparsity and, in general, a loss of information in the
representation (e.g., the dense time resolution).

Alternative representations that address these concerns have been less widely used. Event-
Graph-based approaches can preserve both sparsity and dense temporal resolution [Zhou et al.,
2021; Kachole et al., 2023]. However, their initialization can be complex and comes with high
memory requirements.

Compared to frame-based representations, event voxelization aims at a better represen-
tation of the spatio-temporal relationships involved, as in [Biswas et al., 2024; Zhang et al.,
2023].

Space-time event clouds are rarely used, although they can be created natively and directly
from the event stream of the Dynamic Vision Sensors. For segmentation, point clouds are used
only for training in [Sekikawa et al., 2019] and as a basis for comparison in [Mitrokhin et al.,
2020]. While [Wang et al., 2019] leveraged point clouds to classify hand gestures in event-based
data.
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Event-Stream Representations

As mentioned earlier, segmentation is an important part of computer vision. Event-based
research in this area is not as extensive as its frame-based counterpart, or to quote Sun et al.:

“[...] semantic segmentation with event cameras is still in its infancy”.
(Sun et al., 2022)

Therefore, this work addresses the research question of which type of representation (see
Figure III.2a), combined with which processing approaches, yields the best results.

For this purpose, 3D space-time event clouds, voxel- and frame-based representations were
intensively compared. Several existing deep learning-based segmentation approaches were
evaluated in order to examine their existing potential in the field of event-based vision. In
the specific case of this work, the challenges arising from the large-area measurement scenario
under real-world outdoor conditions were addressed (see Figure III.2b).

Studied Representations and Encodings
The event stream generated by Dynamic Vision Sensors is often converted into alternative
representations for processing. In this work, the following representations were considered for
segmentation purposes:

Space-Time Event Cloud Representation
Temporal windows of the continuous event stream are directly represented as a point cloud.
Each DVS event 𝑒𝑖 defines a 3D point formed by its (𝑥𝑖, 𝑦𝑖, 𝑡𝑖) coordinates, resulting in a
representation as unordered set of {𝑥𝑖, 𝑦𝑖, 𝑡𝑖} ∈ ℝ3. This preserves the sparsity and high
temporal resolution of the DVS signal and transforms it into a geometric description. This
concept is illustrated in Figure III.4a.

Spatio-temporal scaling is important for cloud creation and processing. In the following chap-
ter, several variations will be introduced and tested.

Event-Voxelization Representation
As a point cloud structure, space-time event clouds are irregular, unstructured, and unordered.
This means that the event points are not scattered homogeneously and with the same density
in different regions, are not placed in a regular grid, and since they are represented as a set,
the ordering of the points does not alter the represented scene.

These characteristics are changed by means of a voxelization. This process maps and aggre-
gates the data into a regular 3D grid. The sparsity of the signal is lost in this transformation.
This concept is illustrated in Figure III.4b.

89



Event 
by Event

Point Cloud
Graph

Voxelization

Frame-Conversion

Graph

Voxelization

Frame-Conversion

Point Cloud

Event

Maintaining sensor properties Creation complexity
be

tte
r better

C
om

parison

w
ith focus on

3D
 space-tim

e event clouds
(a) Event representations and comparison focus

Challenges:
• Low spatial resolution
• High noise rates
• Environmental influences
• Multi-class situation

Semantic Segmentation

(b) Segmentation challenges

Figure III.2: Event representation, comparison focus and processing challenges.

(x,y,t) Event-Stream

xy-plane projectionsparse "bag of events" discretized grid

Space-Time Event Cloud Voxelization 2D Frame

Figure III.3: Overview of event-stream representations under study (from [Bolten et al.,
2024]).

90



In this work, unless otherwise stated, voxels were formed per DVS pixel to account for fine
spatial structures, while the time dimension was discretized into 𝑡bin bins. This discretization
results in a data representation of the shape (x × y × 𝑡bin). By counting the triggered events
per voxel, a 3D voxel histogram is constructed that represents the distribution of events in the
spatial-temporal domain.

Frame Representation
Classic 2D frames are created by projecting events onto the xy-plane. This results in a dense
2D grid of fixed size defined by the pixel resolution of the sensor. It allows direct processing
using classical computer vision approaches. Since events are triggered by changes, the resulting
images visually resemble edge images.

In this work, the following event projection variants were considered.

Single-Channel Encodings:
Simple single-channel frames can be created within this projection. This concept is
illustrated in Figure III.4c. They are included in this work as a baseline for comparison
with more complex encodings.

Binary encoding:
The frame pixel at (𝑥, 𝑦) is set to white if a corresponding event with the same
spatial coordinate exists in the DVS data.

Frequency encoding:
The frame pixel at (𝑥, 𝑦) encodes the normalized count of event occurrences at that
spatial position as proposed in [Chen et al., 2019a]:

𝜎(𝑛) = 255 ⋅ 2 ⋅ ( 1
1 + 𝑒−𝑛 − 0.5) (III.1)

where 𝑛 denotes the number of occurred events within the considered time window
at the evaluated pixel coordinate.
The frequency of occurrence of events within a time interval represents an indication
of whether the event is noise or a valid event. Assuming that moving objects trigger
a larger number of events, this encoding leads to a higher weighting of the edges
whereas noise is reduced assuming advantages for subsequent signal-processing.

Three-Channel Encodings:
Classical three-channel RGB images could also be generated within the projection of the
DVS stream. This concept is illustrated in Figure III.4d.

Polarity encoding:
The frame pixel at (𝑥, 𝑦) encodes the polarity of the latest event that occurred at
that spatial position. The direction of brightness change is encoded by the following
colors: (a) decrease in red, (b) no change in blue and (c) increase in green14.

Merged-Three-Channel (MTC) encoding:
This encoding was proposed in [Chen et al., 2019a]. It incorporates three different
single-channel encodings, each addressing different features of the underlying event
stream, to create an RGB false color image.

14The utilized CeleX-IV sensor determines the polarity of an event based on its gray value, this can also lead
to events with “no brightness” changes.
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Red Channel: The Leaky-Integrate-and-Fire neuron model includes information
about temporal continuity.
Each pixel is interpreted as a neuron with its own membrane potential with a
fixed decay rate to realize a kind of memory. The triggered events will increase
the corresponding membrane potential and will cause a firing of the neuron if
a threshold is exceeded. The firing rate determines the pixel value in the frame
encoding.

Green Channel: The Surface-Of-Active-Events includes time-surface information
about the direction and speed of object motion through its gradient.
An advantage of the DVS technology is the high time resolution of the event
stream. The goal of this channel is to incorporate this resolution into the
frame representation. Here, the pixel values are directly dependent on the
corresponding timestamp of the events.

Blue Channel: The Triggering Frequency contributes to distinguishing between
noise and valid events.
This is the inclusion of the previously described single-channel frequency en-
coding as one channel of the merged representation.

Multichannel Encodings:
A highly multichannel frame representation was also considered. The occurrence of an
event is encoded per time channel, resulting in a representation of the form (x × y ×
𝑡channel). This way the temporal context can be better preserved and exploited when
converting the DVS stream.
In this case, the time component of the signal is separated and stored in many channels
during the projection process. This concept is illustrated in Figure III.4e.

Example frame encodings are shown in Figure III.5.

These encodings were selected because they attempt to represent and preserve different levels
of information (e.g., the sparsity and time resolution of the sensor).

Alternative Representations and Encodings
A variety of other encoding rules have also been described in the literature.

Frame Representation
For the event projection step into 2D grids, some of the most common other encodings are:

Event Frames Encodings:
A widely used visualization method in various SDKs15 encodes events in a similar way as
described by Kogler in [Kogler, 2016, Section 5.2.1 “Event to Event-Image Converter”].
Assuming an 8-bit grayscale image, the background is initialized with the mean gray
value of 128. Each event updates only the gray value at its own spatial position.
Kogler described different update rules, including the “Event event-image”, where posi-
tive event polarities update the corresponding image value to 0 and negative ones to 255.
The “Binary event-image” sets 255 for both polarities. This results in grayscale images

15such as “jAER” [Delbruck, 2008], “DV Software” by iniVation, and “Metavision SDK” by Prophesee
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(a) Plain 3D (𝑥, 𝑦, 𝑡) space-time
event cloud

(b) (𝑥 × 𝑦 × 𝑡bin) 3D voxelization
(half shown, for better clarity)

(c) (𝑥 × 𝑦 × 1) single-channel 2D
frame representation

(d) (𝑥 × 𝑦 × 3) RGB 2D frame
representation

(e) (𝑥 × 𝑦 × 𝑡channel) highly
multichannel 2D frame build by

time-splitting

Figure III.4: Graphical rendering of the basic ideas for event representation (extended from
[Bolten et al., 2023c]).

(a) Binary encoding (b) Frequency encoding

(c) Polarity encoding (d) MTC encoding

Figure III.5: Snippets of frame-encoded events (extended from [Bolten et al., 2024]).
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composed of a total of three or two different grayscales, respectively. He also introduced
the “Grayscale event-image”, where each updated pixel is incremented or decremented
by one, depending on the polarity of the event. In this way, events at the same spatial
position can cancel each other out.
In general, shades of color can also be used instead of grayscales in these conversions.
For example, Prophesee uses shades of blue by default in its SDK.
Since the basic ideas of these conversion approaches are covered within the considered
binary and polarity frame representations, further conversion variants were not included
in the following experiments.

Histogram Encodings:
A 2D event histogram encodes the spatial distribution of triggered events. Events are
accumulated over time into histogram bins, where each bin represents a certain spatial
region. The histogram values therefore correspond to the frequency of events occurring
in these regions.
There are different ways to construct these histograms, such as ignoring the event polarity
[Liu and Delbruck, 2018] or constructing separate histograms for positive and negative
event polarities [Maqueda et al., 2018].
Since the event frequencies are already considered in the frequency representation, event
histograms were not considered separately.

Time-Surface Encodings:
Time-surfaces can be used to minimize the loss of time resolution associated with the
above representations. In this representation, the pixel values are used to store the
timestamp of the last received event that occurred at that location. This represents
the most recent temporal activity history within a local spatial neighborhood [Delbruck,
2008; Lagorce et al., 2017].
In addition to the simplest case, where only positions where events have been triggered
are taken into account, different timestamp update mechanisms are possible. In the
case of linear time-surfaces, the time-surface is reset for each new time window. An
exponential decay can also be used to decay all stored timestamps.
As one type of time-surfaces is included in the considered MTC representation as the
Surface-Of-Active-Events channel, event time-surfaces were not considered separately.

Event-Cube Encoding:
Event cubes were developed to combine the frequency information from histograms with
the time information contained in time-surfaces. In event cubes, each time window is
further divided into three micro time windows. Events, separated by polarity, are counted
weighted by their temporal distance from the center of the neighboring micro-time bins16.
Event cubes were not included in the further experiments, as they were not yet widely
used at the time of the work and are only now gaining attention in the community.

Event-Graph Representation
When constructing event graphs, the graph nodes are formed from the triggered DVS events.
The edges between these nodes are often created based on the k-nearest neighbors in the
spatio-temporal event neighborhood.

16For further details, see https://docs.prophesee.ai/stable/tutorials/ml/data_processing/event_
preprocessing.html#event-cube
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The selection of this number of 𝑘 neighbors must be done carefully [Mondal et al., 2021]. In
addition, as for example in [Kachole et al., 2023], the graph is often limited to an arbitrary
number of events, to account for the high computational demands and memory constraints.

In [Bi et al., 2019] and [Bi et al., 2020], a non-uniform grid subsampling procedure is used
to reduce the number of events to be considered in the graph. In [Wang et al., 2021b], an
octree grid filtering algorithm is applied, while [Chen et al., 2020b] performs random sampling.
For saving computation time, the complete event stream is often divided into short temporal
sections so that only few events are considered for the respective graph construction.

In the long-term monitoring considered in this work, the recorded object sizes vary greatly
due to the perspective. Thus, the number of events per object varies significantly. In addition,
both local and global environmental effects are included. Overall, this makes it difficult to
select appropriate parameters for the construction of such graphs. Therefore, graphs were not
included in the evaluations performed.

Learned End-to-End Encoding
Instead of handcrafting encoding rules, a fundamentally different approach can be applied
by integrating the encoding and creation of data representations end-to-end into the learning
process of the subsequent application.

By designing the derivation of raw sensor data into a representation in a fully differentiable
manner, it is possible to unify specific application tasks, such as segmentation, with the creation
of the representation used for processing. This can be achieved by applying gradient-based
learning to the entire system.

Gehrig et al. presented the “Event Spike Tensor” as the first end-to-end learnable event
representation [Gehrig et al., 2019]. This representation has also been adopted in other works
[Kong et al., 2022; Acin et al., 2023].

The further inclusion of end-to-end learned event representations was not considered in this
work, as their inclusion in the learning process may complicate the convergence of the training
process. Furthermore, it increases the complexity and computational cost. This work focuses
on comparing the general suitability of the proposed representations. Further refinement,
including the integration of end-to-end approaches, is an interesting extension for future work
based on the knowledge gained.

95





Chapter 6

Semantic Segmentation:
Sparse 3D Space-Time Event
Clouds

The descriptions of the approach, methods used, and results of this chapter have previ-
ously been published in:

Bolten, T., Lentzen, F., Pohle-Fröhlich, R., and Tönnies, K. (2022a). Evaluation of
Deep Learning based 3D-Point-Cloud Processing Techniques for Semantic Segmentation
of Neuromorphic Vision Sensor Event-streams. In Proceedings of the 17th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications - Volume 4 (VISAPP), pages 168 – 179. INSTICC, SciTePress

The challenges of generating event-wise semantic segmentation for DVS sensor data in an
outdoor scenario with objects of different scales and artifacts due to sensor noise and envi-
ronmental influences are addressed. Many event-based processing applications transform the
event stream into alternative representations. To avoid the conversion of these streams into
conventional 2D frames, the feasibility of using 3D point cloud approaches was evaluated,
analogous to [Wang et al., 2019]. These 3D processing approaches were selected based on
the assumption that frame representations do not sufficiently preserve the inherent sensor
properties.

Extending previous work, the main contributions presented in this chapter are as follows:
• The evaluation of PointNet++, the pioneering model and foundation for three-dimen-

sional point-based deep learning processing. The first analytical comparison, optimiza-
tion, and quantitative evaluation of various input and network configuration parameters
in the application domain was conducted. This resulted in an optimized and recom-
mended configuration for processing.

• Extension of the performed evaluation to three enhanced point cloud-based network
structures, which aim to improve the vanilla PointNet++.

• Comparison of the results obtained using these 3D point cloud deep neural network
structures with an event-based 2D CNN processing baseline in terms of quality and
runtime.
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6.1 Proposed 3D Processing
The basic characteristics of the 3D processing performed for semantic segmentation are out-
lined below.

6.1.1 Methods
PointNet++ was selected for its pioneering role in the direct application of neural networks to
point clouds, serving as the foundation for many subsequent methods (see [Guo et al., 2021]
for a comprehensive review of methods).

PointNet++ [Qi et al., 2017b]: Hierarchical Feature Learning
PointNet++ is based on the basic PointNet [Qi et al., 2017a] from the same authors,
which was the first neural network to be widely and successfully applied directly to point
clouds. It uses max-pooling as a symmetric function to make the network invariant to
the order of the input points. Multilayer Perceptrons (MLPs) used for feature extraction
are shared, resulting in a relatively small network. After extracting geometric features
from the input cloud, an MLP is trained for segmentation.
PointNet++ learns a spatial encoding of point cloud data. For this purpose, the input
data is hierarchically divided and summarized. By repeatedly applying a simple PointNet
as a feature extractor, local and global features are built and combined. The result is a
representation of the entire point cloud that captures not only global geometric features,
but also local neighborhood information. This general process is illustrated in the Figure
Figure 6.1.
The hierarchical processing is realized by the so-called Set Abstraction (SA) layers of the
network. First, representative centroids of local regions are selected by Farthest Point
Sampling (FPS; see Figure 6.2a). Then, local neighboring points are selected around
these centroids. By default, this is done using a ball query with a defined radius (see
Figure 6.2b). A maximum number of points is then selected within this ball.
The extracted feature vectors of these local regions are geometrically represented by the
centroid coordinates for the following step. This is illustrated in Figure 6.2c and d for the
first and subsequent second layer. This process of creating common structural partitions
allows the weights of the feature extractors to be shared per network layer.
However, due to the hierarchical processing, interpolation is required to create point-
wise features. Therefore, for semantic segmentation, the resulting features are finally
interpolated by a Feature Propagation (FP) layer.

The following methods were additionally selected because (a) they all aim at an improvement
over vanilla PointNet++ (e.g., by making better use of relations, distances and directions) and
(b) their reference implementations are also freely available.

A-CNN [Komarichev et al., 2019]: Annularly Convolutional Neural Network
The main concept of A-CNN is to apply convolution to the point clouds, leveraging
their relationships. Therefore, a method for ordering the points is needed. The authors
project every point inside a local neighborhood into an approximated tangential plane
at the representative point. In the plane, angles can be computed and used for ordering.
Following this, an annular convolution can be applied.

LSANet [Chen et al., 2019b]: Feature Learning by Local Spatial Aware Layers
In LSANet, the process of abstraction and local feature learning is accompanied by a
parallel branch that learns so-called spatial distribution weights from the coordinates of
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Figure 6.1: PointNet++ structure for segmentation (adapted from [Qi et al., 2017b]).
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from Figure III.4a)
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...
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set layer 2

Figure 6.2: Summary of PointNet++ processing concept (from [Bolten et al., 2023c]).
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all points in a local neighborhood. These weights implement the concept of attention in
neural networks, which means that some parts of the input are considered more impor-
tant than others. The attention mask is multiplied element-wise with the features. In
LSANet, the attention weights are based on the coordinates, i.e., the geometric prop-
erties of a local region, which should allow the network to better learn details of the
structures.

SpiderCNN [Xu et al., 2018b]: Parameterized Convolutional Filters
The authors of SpiderCNN do not attempt to order the point cloud as in A-CNN. Instead,
they adapt the convolutional filters to support unordered input.
In classical discrete convolution, only discrete weights for each position, defined by the
kernel size, are needed. In point clouds, the positions of neighboring points are not
known, so instead of defining discrete weights, a function is used that calculates a weight
based on the coordinates of a point. During the learning phase, parameters of the
function that generates the weights are learned instead of the weights themselves. The
structure differs from PointNet++ in that the point cloud is not sampled and therefore
no interpolation is required.

6.1.2 Processing Pipeline
Previous work applying 3D point cloud processing techniques to DVS event data, such as
[Wang et al., 2019], process temporal windows of the stream that include the full spatial
resolution of the sensor.

Event Count Requirements
The DVS128 sensor [Lichtsteiner et al., 2008] used by Wang et al. has a spatial resolution
of 128 × 128 pixels. In contrast, the CeleX-IV sensor used in this work has a usable spatial
resolution of 768 × 512 pixels (see Section 3.2). This considerably higher resolution results in
a significantly higher number of events that can be triggered in a given time window of the
same length.

Considering the entire underlying dataset [Amir et al., 2017], the average number of events
per 60ms time window in the work of Wang et al. is about 3,175 events. In comparison, the
average number of events per 60ms time window for the DVS-OUTLAB data (see Chapter 4)
is about 30 times higher with about 97,000 events. Section D.1 in the Appendix provides
additional statistics on the number of events for this data.

Therefore, we decided to use spatial patching in addition to temporal windowing. As
shown in Figure 6.3, the provided data is divided into 16 equally sized patches of 192px ×
128px×60ms, referred to as Patch-of-Interest (PoI). This patching reduces the average number
of raw events per patch to approximately 7,500 events. The divide-and-conquer approach
allows smaller objects and finer structures to be preserved for subsequent processing. This is
important because further filtering and sampling steps are required for the generation of the
final point clouds.

Preprocessing Steps
To generate the input point cloud for processing, the following preprocessing steps are per-
formed per patch (compare with Figure 6.4 for clarification):

1. Spatio-temporal Filtering: The CeleX-IV sensor data contains a high amount of
sensor noise as described in Section 3.3. As described there, the event stream is spatio-
temporally filtered at this point.
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The event stream is filtered by removing any event that is not supported by at least one
other event at the same spatial (𝑥, 𝑦) coordinate within the preceding 10ms (referred to
as Time-Filter). The selection of this filter is based on the performed filter analysis. It
reduced the background activity by about 50% while preserving the highest proportion
of other class events.

2. Subsampling: A prerequisite for the use of PointNet++ and the other 3D network
variants is that the number of events used for training must be constant. Therefore, a
uniform random subsampling of the time-filtered events is performed in such a way that
each event has the same probability of occurrence.
The average event count per patch is approximately 4,800 events after applying the
previous time-filtering step. See Appendix Section D.1 for details on the number of
patched events before and after filtering. A subsampling target of 𝑛 = 4096 events was
chosen as appropriate based on this evaluation of the number of events.
For patches with fewer events, copies of randomly selected events are inserted until the
required number is reached. The impact of these duplicates is negligible due to the use
of max-pooling in the point cloud network processing logic.

3. Spatio-Temporal Scaling: After filtering, the entire patch of 192px× 128 px× 60ms
is moved so that its origin is at 𝑥 = 0, 𝑦 = 0, 𝑡 = 0. This results in the following 3D
space-time point cloud definition:

𝑆𝑇
native = {𝑒𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑡𝑖) ∣ (6.1)

𝑡𝑖 ∈ 𝑇 , 𝑖 = 1,… , 4096,
𝑥𝑖 ∈ ℕ ∶ 0 ≤ 𝑥𝑖 < 192,
𝑦𝑖 ∈ ℕ ∶ 0 ≤ 𝑦𝑖 < 128,
𝑡𝑖 ∈ ℝ ∶ 0 ≤ 𝑡𝑖 < 60.0}

where 𝑇 is the current 60ms time window.
In addition, two other variants were considered in the following experiments. The 3D
event coordinates were scaled along the time axis:

𝑆𝑇
tScaled = {𝑒𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑡𝑖) ∣ (6.2)

𝑡𝑖 ∈ 𝑇 , 𝑖 = 1,… , 4096,
𝑥𝑖 ∈ ℕ ∶ 0 ≤ 𝑥𝑖 < 192,
𝑦𝑖 ∈ ℕ ∶ 0 ≤ 𝑦𝑖 < 128,
𝑡𝑖 ∈ ℝ ∶ 0 ≤ 𝑡𝑖 < 1.0}

Or along all three axes:

𝑆𝑇
cube = {𝑒𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑡𝑖) ∣ (6.3)

𝑡𝑖 ∈ 𝑇 , 𝑖 = 1,… , 4096,
𝑥𝑖, 𝑦𝑖, 𝑡𝑖 ∈ ℝ ∶ −1 ≤ 𝑥𝑖, 𝑦𝑖, 𝑡𝑖 ≤ 1}

A semantic segmentation was then generated from these point clouds using the network struc-
tures, resulting in an event-wise labeling as shown in Figure 6.5.

6.2 Proposed 2D Processing
The basic characteristics of the 2D processing performed for comparison are outlined below.
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6.2.1 Methods
As a baseline comparison to the above 3D point cloud processing networks, traditional 2D
convolutional neural network approaches were also evaluated. Pixel-accurate segmentation
and labeling is required for further processing and accurate comparison.

Established state-of-the-art CNN structures such as UNet [Ronneberger et al., 2015] or
Mask R-CNN [He et al., 2017] are well suited to generate these segmentations. Mask R-CNN is
known to be able to learn good and robust predictions. Therefore, we used this network model
for the following comparisons. For this purpose, the predicted object masks are subsequently
considered at the level of a semantic segmentation. In the following Chapter 7, the processing
is extended by including a UNet-based processing.

Mask R-CNN [He et al., 2017]:
Mask R-CNN is a neural network architecture focused on object recognition and seg-
mentation. It simultaneously detects objects in an image and accurately extracts their
pixel-level boundaries. The main components are summarized in the following.
The first element is a backbone network, such as ResNet [He et al., 2016], responsible for
feature extraction. Following this, a Region Proposal Network generates object proposals
at different scales and aspect ratios. A fixed size feature map is extracted from the feature
pyramid generated by the backbone network, using an RoIAlign layer that ensures precise
spatial alignment for Region of Interest (RoI) processing. The RoI-head consists of two
sub-networks, one for classification and bounding box regression and another for instance
mask prediction.
This integrated architecture facilitates object detection, accurate bounding box refine-
ment, and detailed instance mask predictions, allowing for simultaneous recognition and
segmentation of objects in an image at pixel-level boundaries.

6.2.2 Processing Pipeline
The 2D comparison was performed by converting the event stream into 2D frame represen-
tations. To ensure comparability with the 3D point cloud methods, the frame-based Mask
R-CNN analysis was based on input data that has been preprocessed in the same way. This
means that the generated input frame representations originate from the same temporal DVS
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Figure 6.6: Overview of 2D-based processing steps per PoI (from [Bolten et al., 2022a]).

event stream patches of 192px×128px×60ms, which were also spatio-temporally pre-filtered
with the same time-filtering parameter of 10ms.

These patches were encoded in the Binary, Frequency, Polarity and MTC frame repre-
sentations (see Figure III.5 on page 93). These frame encodings were selected for comparison
because they include different aspects of the event stream modality and provide different levels
of abstraction, allowing for a proper comparison with the 3D methods. For each of these frame
encodings, different Mask R-CNNs were trained from scratch using the implementation from
[Abdulla, 2017].

The predicted object masks were then considered at the level of semantic segmentation. To
compare the obtained results with the point cloud approaches, the 2D label masks generated
by Mask R-CNN were propagated back to the original event stream. Each event received the
label from its spatial position in the corresponding predicted object mask. This resulted in
event-wise labeling (see Figure 6.6).

6.3 Experiments and Evaluation
The quantitative analysis of the proposed approaches was divided into the following parts:

(a) optimization of the basic PointNet++ network in terms of input and network parameters,

(b) the evaluation of PointNet++ successor network variants, and

(c) the comparison of the obtained results including the 2D frame-based baseline.

For all experiments, the proposed training, validation and test splits of the DVS-OUTLAB
dataset were used (see Chapter 4).

6.3.1 Network Training
The hyperparameters of the networks have been left at their default values whenever possible.

3D Processing Networks:
For the 3D point cloud networks, this includes the Adam optimizer with a learning rate
of 0.001 and a learning rate decay of 0.7 every 200,000 samples. The batch size was set
to 16 point clouds.
The input points were randomly shuffled before training the network. No further data
augmentations were applied.
PoinNet++’s local neighborhood creation process selects sample points within ball quires
formed around the centroids selected by Farthest Point Sampling. In the reference im-
plementation provided by the PointNet++ authors, only the first matching points in the
ball are considered and directly selected. This FIFO order of selection, combined with
the event ordering used in the underlying DVS readout logic, would result in insufficiently
captured local neighborhoods. Therefore, the applied random shuffling is important for
the correct functioning of the local neighborhood building in the processing.
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(a) Reference scene in RGB (b) Dense 2D label (c) Corresponding events

Figure 6.7: Dense label description compared to sparse event stream.

2D Processing Network:
In the case of the Mask R-CNN training, the default learning rate was reduced by a
factor of 2 to 0.0005. This was done to avoid gradient explosion, which tends to occur
with smaller batch sizes. As in our case, only three images were used per batch due to
memory requirements. The Keras stochastic gradient descent (SGD) optimizer was used
for training with a momentum of 0.9 and no data augmentation was applied.

6.3.2 Evaluation Metrics
Evaluation of segmentation tasks is often based on dense 2D label images, even for event
cameras, see e.g. [Alonso and Murillo, 2019]. For each 2D pixel in the annotation, the cor-
responding pixel value of the network prediction is evaluated and compared. However, this
kind of evaluation ignores the fundamental property of a Dynamic Vision Sensor that the
generated event stream is spatially sparse. The issue with this approach is clearly illustrated
in Figure 6.7, which shows a dense 2D segmentation label with areas without corresponding
triggered events.

Networks operating on a sparse representation, such as PointNet++, are unable to pre-
dict results at positions where no events have been triggered. Furthermore, this type of 2D
comparison ignores the fact that multiple events may have been triggered at a single spatial
position within the selected time window. It is therefore challenging to make a comparison for
semantic segmentation on this dense 2D basis.

For this reason, the obtained 2D labels were propagated back to the underlying event
stream. By evaluation on the basis of individual events, the number of triggered events for
each predicted label is also directly taken into account.

In the evaluation process, a confusion matrix was created and standard metrics for segmenta-
tion were derived. These were precision, recall, and F1 score, each calculated per class. The
F1 score is defined as the harmonic mean of precision and recall:

F1 score = 2 ⋅ TP
2 ⋅ TP+ FP+ FN (6.4)

with TP, FP, FN for the number of true positives, false positives and false negatives. The
weighted F1 score was used to account for class imbalances. Here, metrics are calculated for
each label, and their average is weighted by support.

In order to effectively compare the different networks considering the total number of 10
classes, the classes were further grouped as follows:

• Background: BACKGROUND (sensor noise)

• Objects: PERSON, DOG, BICYCLE and SPORTSBALL

• Environmental influences: RAIN, INSECT, BIRD, TREE_CROWN, and TREE_SHADOW
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6.3.3 PointNet++ Optimization
Key architectural aspects with high impact on the performance of the PointNet++ model were
identified and ranked as follows:

1. Number of layers
2. Number of points sampled in the first Set Abstraction layer
3. Variation of spatio-temporal scaling
4. Forcing local neighborhoods to have more or less temporal context

Optimization Strategy
Each aspect was tested individually while keeping the other aspects constant. A greedy ap-
proach was used in which parameters were tested sequentially and then held constant for
subsequent testing.

Number of layers:
The number of layers describes the number of SA layers and FP layers, respectively. It
was chosen from {3, 4, 5, 6}. Starting point was the default model for semantic segmen-
tation provided by the authors of PointNet++, which was adapted to a different number
of layers.
The first tests utilized the 𝑆𝑇

cube scaling method, which was also mentioned by Qi et al.
in [Qi et al., 2017a,b]. The conducted test showed that varying the number of layers
had a negligible effect. Therefore, the following experiments employed the smallest and
fastest configuration with three layers.

Number of points sampled in the first SA layer:
Next, the number of points selected by Farthest Point Sampling for the initial SA layer
was modified. In addition to the default of 1024 points, 512, 2048 and 3072 points were
tested. The number of points in the subsequent layers were not changed.
While increasing the number of points from 512 to 1024 to 2048 had a significant impact,
the improvement from sampling 3072 points was negligible and took almost 50% more
time for inference. Therefore, 2048 points were chosen for further testing.

Variation of spatio-temporal scaling:
Next, the defined spatio-temporal scaling variations were tested (see Equation 6.1 – 6.3
in Section 6.1.2).
For this, the radii of the SA layers were adjusted to the axis with the largest range of
values. Due to the shorter time axis, the full time interval was allowed for neighborhood
building. Both alternative spatio-temporal scalings, utilizing either the 𝑆𝑇

tScaled or the
𝑆𝑇
native scaling, achieved substantially better results than the previous configuration.

Forcing local neighborhoods:
The idea of distinguishing between the spatial and temporal axes when selecting a radius
based on varying resolutions was also discussed in [Bi et al., 2019]. For the considered
data, the temporal axis is always much shorter than the spatial axes, but has a much
higher resolution.
For the next tests, the time component was given a higher weight (𝛾) in the Euclidean
distance measure:

𝑑𝑖,𝑗 = √𝛼 ⋅ (𝑥𝑖 − 𝑥𝑗)2 + 𝛽 ⋅ (𝑦𝑖 − 𝑦𝑗)2 + 𝛾 ⋅ (𝑡𝑖 − 𝑡𝑗)2 (6.5)
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Figure 6.8: Consideration of neighborhoods through the use of higher 𝛾 in distance
calculations (from [Bolten et al., 2022a]).

The effect is shown in Figure 6.8 for three levels. First, all axes have the same weight
(𝛼 = 𝛽 = 𝛾 = 1.0), which results in a sphere covering the entire time axis. Second and
third, the sphere is compressed with respect to the time axis.
Tests have shown that decreasing the time interval has minimal initial impact, e.g. when
the time axis weight 𝛾 is 3.2, resulting in equivalent distributions for the space and time
axes. However, when the time interval is reduced significantly, as in the case of a 𝛾
weight of 20, performance decreases.

The final network configuration is shown in Table 6.1. The configuration for each individual
optimization step can be found in Section E.1.1 in the Appendix.

6.3.4 Results and Comparison
The results of the PointNet++ optimization process are summarized in Table 6.2, while the
results of the 3D vs. 2D processing comparison are summarized in Table 6.3.

PointNet++ Optimization and Segmentation Quality (see Section 6.3.3)
Table 6.2 shows the F1 scores from the optimization experiments, summarized for the
categorized object classes. With an overall F1 score of about 0.936, the optimized net-
work achieves satisfactory results. For a qualitative evaluation of the results, examples
segmentations are shown in Figure 6.9. Here, the processed patches are projected to 2D
frames and the resulting labeling is represented by false colors. Detailed F1 score results
for each class can be found in Section E.1.2 of the Appendix.
To further evaluate the ability of PointNet++ to segment, the learned features were taken
into account. The basic requirement is that good features should be discriminative. This
means that features of the same object category should be close together, while features
of different object categories should be far apart. For this purpose, the feature vectors
generated by PointNet++ before the last fully connected layer, which generates the final
probability distribution vector, were considered. For the selected network configuration,
this is a 128-dimensional feature vector per input point.
The feature vectors were computed for five thousand randomly sampled input points per
class and projected onto a 2D plane using t-SNE [Van der Maaten and Hinton, 2008].
Figure 6.10 shows the visualization of this latent feature space. It indicates that the
desired classes can be well distinguished by the trained model.

The results obtained from the optimized PointNet++ configuration were compared with the
proposed 3D point cloud network variants and the 2D baseline.
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Configuration Parameter details
Number of input events 4096 events
Number of layers 3 layers
Number of points in first SA layer 2048 points
Spatio-temporal scaling 𝑆𝑇

native variant
Local neighborhood weighting 𝑡weight = 1

Detailed configuration
PointNet++(4096, 3L)

SA(2048, 9.6, [32, 32, 64]) →
SA(256, 28.8, [64, 64, 128]) →
SA(16, 76.8, [128,128,256]) → FP([256, 256]) →
FP([256, 128]) → FP([128, 128, 128, 128, 10])

Table 6.1: Optimized PointNet++ configuration summary (compare to network description
syntax used in [Qi et al., 2017b]).

(a) Segmented Patches-of-Interest projected into 2D frames (adapted from [Bolten et al., 2022a])

(b) Magnified results (top row: 3D space-time event clouds; bottom row: 2D false color frame
projections; from [Bolten et al., 2023b])

BACKGROUND PERSON DOG BICYCLE SPORTSBALL
BIRD INSECT TREE CROWN TREE SHADOW RAIN

Figure 6.9: False color examples for PointNet++ semantic segmentation results.

108



-150

-100

-50

0

50

100

150

-150 -100 -50 0 50 100 150

BACKGROUND
PERSON

DOG
BICYCLE

SPORTSBALL
BIRD

INSECT
TREE_CROWN

TREE_SHADOW
RAIN

objects
of

interest

environmental
artifacts

BACKGROUND PERSON DOG BICYCLE SPORTSBALL
BIRD INSECT TREE CROWN TREE SHADOW RAIN

Figure 6.10: Two-dimensional t-SNE visualization of the PointNet++’s feature space used
for segmentation (adapted from [Bolten et al., 2023b]).

3D Processing Variants: (see Section 6.1.1)
The A-CNN and LSANet network variants were able to slightly outperform PointNet++
in the important non-background categories, while the inference time remained almost
unchanged. In contrast, SpiderCNN produced significantly worse results, suggesting the
effectiveness of the set-abstraction framework used by the other methods. This is due to
SpiderCNN’s approach of avoiding sampling and interpolation.
Table 6.3a summarizes the F1 scores achieved for these network variants in comparison
to vanilla PointNet++.

2D Processing Baseline: (see Section 6.2.1)
The Binary frame encoding yielded the worst results in the 2D Mask R-CNN compari-
son, regardless of whether a ResNet50 or ResNet101 was used as the feature extraction
backbone. Since this encoding preserves the least amount of information, this result is
not unexpected.
The three-channel color frame encodings Polarity and MTC showed significantly better
results for non-background classes compared to the Frequency encoding. The results
obtained from the Polarity and MTC encodings were comparable to each other, but
they were generally inferior to the vanilla PointNet++ results.
The summary of achieved F1 scores is shown in Table 6.3b,c.

Comparing PointNet++ and Mask R-CNN, the selected PointNet++ configuration contains
about 101 or 145 times less trainable weights, depending on the 2D backbone used (see Ta-
ble 6.4). This results in a faster inference speed of up to a factor of ≈ 2.95 (see Table 6.5).
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Configuration Background Objects Environmental
influences Overall

(a) PointNet++ layer experiments
3 layers 0.952 0.741 0.755 0.900
4 layers 0.953 0.721 0.763 0.900
5 layers 0.954 0.737 0.775 0.904
6 layers 0.955 0.723 0.781 0.905

(b) PointNet++ point count experiments
n = 512 0.948 0.704 0.732 0.890
n = 1024 0.952 0.741 0.755 0.900
n = 2048 0.958 0.746 0.806 0.914
n = 3072 0.959 0.750 0.805 0.915

(c) PointNet++ input scaling experiments
𝑆𝑇
cube 0.958 0.746 0.806 0.914

𝑆𝑇
tScaled 0.966 0.817 0.849 0.933

𝑆𝑇
native 0.968 0.806 0.863 0.936

(d) PointNet++ spatio-temporal scaling experiments
weight 𝛾 = 1 0.968 0.806 0.863 0.936
weight 𝛾 = 3.2 0.966 0.807 0.858 0.934
weight 𝛾 = 20 0.960 0.788 0.814 0.920

Table 6.2: PointNet++ optimization on DVS-OUTLAB dataset shown as weighted F1 scores.

Configuration Background Objects Environmental
influences Overall

(a) 3D network variants
PointNet++ 0.968 0.806 0.863 0.936
A-CNN 0.968 0.823 0.862 0.938
LSANet 0.968 0.826 0.857 0.936
SpiderCNN 0.952 0.724 0.735 0.895

(b) Mask R-CNN with ResNet50 backbone
Binary 0.949 0.821 0.843 0.911
Polarity 0.953 0.844 0.873 0.922
Frequency 0.952 0.828 0.863 0.918
MTC 0.953 0.848 0.870 0.923

(c) Mask R-CNN with ResNet101 backbone
Binary 0.947 0.816 0.835 0.907
Polarity 0.953 0.842 0.875 0.923
Frequency 0.952 0.833 0.861 0.918
MTC 0.950 0.844 0.862 0.918

Table 6.3: Weighted F1 score results of 3D network variants and 2D Mask R-CNN baseline
on DVS-OUTLAB dataset.
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Configuration
Number of
trainable

parameters
(a) PointNet++

PointNet++(*, 3L) 437,930
PointNet++(*, 4L) 967,594
PointNet++(*, 5L) 2,418,602
PointNet++(*, 6L) 7,285,162

(b) 3D network variants
LSANet(*, 3L) 556,810
SpiderCNN(*, 3L) 1,080,798
A-CNN(*, 3L) 2,113,706

(c) Mask R-CNN
Mask R-CNN(ResNet50) 44,646,734
Mask R-CNN(ResNet101) 63,664,974
Table 6.4: Trainable network parameter comparison.

Configuration
Average
inference
time in ms

(a) PointNet++
PointNet++(512, 3L) 13.3 ±0.5
PointNet++(1024, 3L) 23.1 ±0.4
PointNet++(2048, 3L) 43.0 ±0.7
PointNet++(3072, 3L) 62.7 ±1.2

(b) 3D network variants
LSANet(2048, 3L) 43.5 ±1.0
SpiderCNN(*, 3L) 37.6 ±0.9
A-CNN(2048, 3L) 41.3 ±0.9

(c) Mask R-CNN
Mask R-CNN(ResNet50) 114.9 ± 4.2
Mask R-CNN(ResNet101) 127.1 ± 4.1

Table 6.5: Network runtime comparison with batch size of one (Intel Xeon Gold 6226R CPU,
NVIDIA Quadro RTX6000).
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Chapter 7

Semantic Segmentation:
Frame and Voxel Representations

The descriptions of the approach, methods used, and results of this chapter have previ-
ously been published in:

Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2023c). Semantic Segmentation on
Neuromorphic Vision Sensor Event-Streams Using PointNet++ and UNet Based Pro-
cessing Approaches. In Proceedings of the 18th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications - Volume 4
(VISAPP), pages 168 – 178. INSTICC, SciTePress

The challenges of generating event-wise semantic segmentation for Dynamic Vision Sensor
data in an outdoor environment are further explored. In addition to traditional 2D frames and
3D space-time event clouds, additional event representations were evaluated. These include
dense highly multichannel frames and 3D voxel grids. By applying UNet-based processing to
these alternative representations, the feasibility comparison of 3D point cloud approaches for
semantic segmentation was extended.

The main contributions presented in this chapter are as follows:

• Systematic comparison of single-channel and high-multichannel 2D event representation
as well as 3D event stream voxelization.

• Extension of the previous analysis and evaluation by including a UNet network structure
to generate a semantic segmentation based on these representations.
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Figure 7.1: 2D UNet configuration for DVS-OUTLAB dataset (from [Bolten et al., 2023c]).

7.1 Proposed Processing
The work of Chapter 6 was extended with respect to further event representations and network
structures for processing.

7.1.1 Methods
The 3D point cloud-based processing with PointNet++ (see Section 6.1.1) was further com-
pared to the results of an UNet-based processing.

UNet [Ronneberger et al., 2015]: Convolutional Networks for Biomedical Image Segmenta-
tion
The UNet architecture has its origin in the segmentation of medical images, but it has
been successfully applied to a wide range of applications (e.g., [Pohle-Fröhlich et al.,
2019; McGlinchy et al., 2019; Liu and Qian, 2021]). It is a convolutional neural network
with a U-shaped architecture that enables precise pixel-level semantic segmentation.
The architecture is divided into an encoder and a decoder part. Within the encoder,
the spatial resolution is reduced by convolution and max-pooling, while the number of
feature channels is increased. This extracts high resolution and deep contextual features.
In the second part, the decoder, the original resolution is restored by upsampling. By
increasing the resolution of the output in this way, the decoder learns to produce an
output with precise localization.
The UNet architecture combines the feature channels from before downsampling and
after upsampling through skip connections, allowing the network to propagate and re-
combine context information and reconstruct localization information.
A visualization of an example configuration is given in Figure 7.1.

7.1.2 Processing Pipeline
While the 3D representation of the (𝑥, 𝑦, 𝑡) space-time event cloud is generated directly from
the event stream, converted representations were used for comparison. For the following UNet-
based experiments, 2D frame variants and 3D voxelization representations were considered.

Event Representations
As a baseline for further comparison, the binary projection of the event stream was included
purely as a single-channel 2D frame. A highly multichannel frame representation was also
included to better represent and exploit the temporal context of the DVS stream. Finally,
the approach of interpreting the DVS event stream as a 3D spatio-temporal volume using
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Figure 7.2: Event representations considered in UNet experiments.

voxelization was also evaluated. Further details for these representation variants are given in
Figure III.4 and in Figure 7.2.

Preprocessing Steps
To ensure fair comparison, the representations were based on input data that has been pre-
processed in the same way as the 3D reference point cloud. These generated representations
were derived from the same temporal DVS event stream patches of 192px× 128 px× 60ms.

A 3D voxel histogram was created per pixel position, dividing the time-axis into 64 components
(𝑡bin, as referred to in Figure 7.2), in order to construct the representations. The labels were
converted to an equivalent voxel format.

The partitioning into 64-time components was chosen to ensure that the input dimension,
being a power of two, always produces integer results throughout the downsampling and up-
sampling processes in the subsequent UNet processing logic. Furthermore, for UNet processing,
the spatial resolution was extended by zero-padding to quadratic inputs. This resulted in a
resolution of 192 × 192 pixels for the DVS-OUTLAB data.

Furthermore, two versions of the data were generated and tested. One version included all
events, while the other was spatio-temporally pre-filtered to reduce sensor noise and estimate
the effect of noise reduction on semantic processing. For this purpose, a time-filter was applied
to remove all events that were not supported by another event at the same spatial (𝑥, 𝑦)-
coordinates within the previous 10ms.

7.2 Experiments and Evaluation
In the following, the quantitative evaluation of the proposed approaches is presented based on
the DVS-OUTLAB dataset (see Chapter 4). A further comparison of the methods proposed
in this chapter on a dataset from the autonomous driving application domain can be found in
Section E.3 of the Appendix.

7.2.1 Network Training
The network layer configurations and training hyperparameters utilized in the experiments
were as follows:
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PointNet++ Processing Network:
The PointNet++ architecture was configured according to the parameters given in Ta-
ble 6.1 on page 108. The network was trained with the same hyperparameters as defined
in Section 6.3.1.

UNet Processing Network:
The UNet trainings were conducted using an Adam optimizer with a learning rate of
0.001 and exponential decay rate of 0.99 after each epoch. The batch size was set
to six. A sparse categorical cross-entropy, weighted by the inverse frequency of class
occurrence, was selected as the loss function to account for the class imbalances present
in the datasets.
In all UNet experiments performed, the model was built with a depth of four blocks and a
number of 16 filters in the first block, multiplied by two in each subsequent block. The 2D
and 3D convolutions were configured with a kernel size of 3×3 and 3×3×3, respectively.
An illustration of the implemented 2D UNet configuration is given in Figure 7.1.

7.2.2 Evaluation Metrics
Unlike PointNet++, UNet-based processing methods may lead to predictions of a class for a
spatial position with no DVS event triggered (referred to as the “void” background). In addi-
tion to the logic described in Section 6.3.2, the following simple postprocessing was performed
before evaluation:

If a non-void class prediction is made, but there is no event present, the prediction is
interpreted as void and ignored. If a void class prediction is made, but an event is present,
this prediction is reinterpreted and considered as the dominant class for evaluation (class
BACKGROUND for DVS-OUTLAB).

For a fair comparison of the considered 3D point cloud and voxel variants with the predictions
resulting from the pure 2D variants, the results were further equalized for evaluation. This
was necessary due to the higher number of possible errors in the predictions with a higher
output dimension. The 3D predictions were projected along the 𝑡-axis by considering the most
frequent prediction at each spatial position for comparison with the 2D results. Compared to
the metrics given in Section 6.3.4, this postprocessing results in minor changes in the metrics
for PointNet++.

7.2.3 Results and Comparison
The evaluation results of the PointNet++ processing and the proposed event representations
combined with the 2D and 3D UNet processing are summarized in Table 7.1.

The PointNet++ approach achieved higher segmentation results compared to the 2D and 3D
UNet approaches on the monitoring data considered in this work. In general, this is consistent
with the comparison to Mask R-CNN presented in Chapter 6.

However, the further comparison of PointNet++ showed that it is sensitive to increased
numbers of input events, as they occur for example in the field of autonomous driving (see Sec-
tion E.3 in the Appendix). The success of PointNet++ is based on the processing of sufficiently
representative events selected by Farthest Point Sampling and corresponding neighborhood
formation. Since the capture of fine details is important for the processing, these capabilities
decrease as the number of events to be processed increases. Adjusting the PointNet++ config-
uration with respect to the number of input and sampled events in the Set Abstraction layers
process is limited by its computational complexity.
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Configuration Background Objects
Environ-
mental

influences
Overall

(a) PointNet++ reference results
PointNet++(4096, 3L) 0.968 0.816 0.853 0.936

(b) UNet results on unfiltered data
UNet 2D 1-channel frame input 0.951 0.842 0.764 0.902
UNet 2D 64-channel frame input 0.958 0.847 0.780 0.912
UNet 3D voxel grid input 0.941 0.843 0.775 0.895

(c) UNet results on spatio-temporal time-filtered (10ms) data
UNet 2D 1-channel frame input 0.925 0.838 0.757 0.868
UNet 2D 64-channel frame input 0.938 0.850 0.826 0.897
UNet 3D voxel grid input 0.928 0.843 0.809 0.883

Table 7.1: Weighted F1 score results on DVS-OUTLAB dataset.

In both application domains, UNet-based processing performed slightly better on unprocessed
raw data than on spatio-temporal pre-filtered data. An improvement of the UNet-based results
was observed with an increase in the number of 2D frame channels used, i.e. the adaptation
from a single-channel projection to the 64-multichannel frame. In comparison, there were only
minor differences when using the 3D voxel grids.

The Dynamic Vision Sensor generates an output stream that is sparse. Considering the
data provided by the DVS-OUTLAB dataset and the voxel representation being evaluated,
less than 1% of the voxels were populated with events. The use of 3D convolutions rapidly
increases and “blurs” the set of non-zero features in the processing. Therefore, incorporating
processing based on submanifold sparse convolutions [Graham and van der Maaten, 2017] and
adapting the UNet network to a sparse voxel network for semantic segmentation [Graham
et al., 2018; Najibi et al., 2020] is an interesting task for further work.
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Chapter 8

Instance Segmentation:
Comparison of Representations

The descriptions of the approach, methods used, and results of this chapter have previ-
ously been published in:

Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2024). Instance Segmentation of
Event Camera Streams in Outdoor Monitoring Scenarios. In Proceedings of the 19th
International Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 3 (VISAPP), pages 452 – 463. INSTICC, SciTePress

The processing is extended to segment instances in order to be able to distinguish between
objects of the same class that are close to or occluded by each other. In the spirit of the
previous chapters, further consideration was given to space-time event clouds, voxel and frame-
based representations. A systematic evaluation of different state-of-the-art deep learning-based
instance segmentation approaches was performed, addressing challenges in the context of event-
based outdoor monitoring.

The main contributions presented in this chapter are as follows:

• Introduction of a new density-based event preprocessing to extract spatially adapted
regions of interest for processing.

• Inclusion of a baseline comparison method based on semantic segmentation and cluster-
ing.

• The first systematic evaluation of various state-of-the-art deep learning-based instance
segmentation approaches in the context of event-based monitoring was conducted.
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Figure 8.1: Overview of the included instance segmentation processing approaches in
comparison (from [Bolten et al., 2024]).

Introduction
The sparse, unordered, and asynchronous output of Dynamic Vision Sensors poses challenges
for processing in terms of classical computer vision approaches (see also Section 1.4.1 on
page 11). In the considered use case scenario, unconstrained real-world factors, small object
sizes, and occlusion pose additional processing challenges. To gain deeper insight into the use
of the monitored area, instance segmentation approaches were compared.

As mentioned, research on event-based segmentation is not as extensive, but it is possible
to apply methods from other domains. For example, the development of methods for tradi-
tional 2D frame-based processing is more advanced. Libraries such as Detectron2 [Wu et al.,
2019b] are available, providing state-of-the-art recognition and segmentation algorithms as
well as pre-trained models. Basically, two different approaches can be distinguished here. In
proposal-based approaches, objects are first detected using bounding box techniques and then
segmented. A well-known example of this is Mask R-CNN [He et al., 2017].

On the other hand, the notable YOLO family [Redmon et al., 2016; Jocher et al., 2023]
directly predicts bounding boxes and class probabilities for objects in a single pass. Along
with the use of pixel-level grouping or clustering techniques to form instances, such as [Xie
et al., 2020, 2022; Wang et al., 2020], this provides proposal-free methods.

Since the event stream can be interpreted as a point cloud, 3D processing methods are also in-
teresting for inferring instances. Basically, 3D methods can also be distinguished into proposal-
based and proposal-free approaches. The former decompose the segmentation problem into two
sub-challenges: detecting objects in 3D and refining the object masks [Yang et al., 2019; Engel-
mann et al., 2020]. The latter typically omit the detection part and try to obtain instances by
clustering after semantic segmentation (e.g., following the assumption that instances should
have similar features) [Zhao and Tao, 2020; Jiang et al., 2020; Chen et al., 2021].

8.1 Proposed Processing
As before, the event data stream from Dynamic Vision Sensors is converted into alternative
representations for processing. The construction of space-time event clouds, their voxelization
and conversion into classical 2D frames for further processing were considered (see Figure III.3
on page 90).

In the following, the considered deep learning frameworks used for instance segmentation
on top of these representations are briefly outlined and introduced.

8.1.1 Point Cloud-based Processing Methods (see Figure 8.1b)
JSNet [Zhao and Tao, 2020]: Clustering-based Processing

JSNet consists of four main components: a shared feature encoder, two parallel branch
decoders, feature fusion modules for each decoder, and a joint instance and semantic
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segmentation (JISS) module. High-level semantic features are learned by PointNet++
[Qi et al., 2017b] and PointConv [Wu et al., 2019a] architectures and are further combined
with low-level features for more discriminative values. The JISS module transforms the
semantic features into an instance embedding space, where instances are formed by
applying a mean-shift clustering.

3D-BoNet [Yang et al., 2019]: Proposal-based Processing
3D-BoNet is designed for a single-stage, anchor-free instance segmentation in 3D point
clouds. It uses a PointNet++ [Qi et al., 2017b] backbone to extract local and global
features, followed by two branches: one for instance-level bounding box prediction and
another for point-level mask prediction. The bounding box prediction branch is a key
component, generating unique, unoriented rectangular bounding boxes without prede-
fined spatial anchors or region proposals. The subsequent point-mask prediction branch
uses these boxes and features to generate point-level binary masks for valid instances,
distinguishing them from the background.

8.1.2 Voxel-based Processing Method (see Figure 8.1c)
SoftGroup [Vu et al., 2022]: Clustering and Proposal-based

SoftGroup attempts to combine the strengths of proposal-based and grouping-based
methods while addressing their limitations. First, a bottom-up stage uses a point-wise
prediction network to generate high-quality object proposals by grouping on the basis
of soft semantic scores. This stage involves processing point clouds to generate semantic
labels and offset vectors, which are then refined into preliminary instance proposals using
a soft grouping module. Second, the top-down refinement stage improves the generated
proposals by extracting corresponding features from the backbone. These features are
used to predict the final results, including classes, instance masks, and mask scores.

8.1.3 Frame-based Processing Methods (see Figure 8.1d)
Mask R-CNN [He et al., 2017]: Proposal-based Processing

Proposal-based processing is considered to be the baseline technique for frame-based
instance segmentation [Sharma et al., 2022]. Therefore, Mask R-CNN was also included
in this evaluation.
For a summary of the components of Mask R-CNN, see Section 6.2.1 on page 103.

YOLO v8 [Jocher et al., 2023]: Proposal-free Processing
At the time of evaluation, YOLO v8 was the latest version of the popular single-shot
detection method and aims to improve accuracy and efficiency over previous versions.
A major change is that YOLO v8 is an anchor-free model, meaning that object centers
are predicted directly instead of the offset from an anchor box. This typically results in
fewer predictions and better, faster non-maximum suppression.

8.2 Preprocessing and Baseline
Following the spatio-temporal filter analysis performed in Section 3.3, a time-filter was applied
prior to any further processing steps in order to account for the high level of background activity
of the CeleX-IV sensor used. Each event that is not supported by another event at the same
(𝑥, 𝑦)-position within the preceding Δ𝑡 was removed.
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(a) Time-filtered, Δ𝑡=10ms
(32,414 events)

(b) Neighborhood-filtered
(3,237 events)

(c) Performed clustering
(resulting in 2 clusters)

(d) Extracted aRoIs
(765+3,820 = 4,585 events)

red actor orange actor cyan actor blue actor
Figure 8.2: Adaptive RoI generation steps. Provided false color corresponds to ground truth
label of included dataset instances. Adaptive RoIs are represented by bounding boxes. Event
counts shown refer to full, uncropped scene as shown in Figure 5.9 on page 65 (adapted from

[Bolten et al., 2024]).

8.2.1 Adaptive Region-of-Interest Extraction (aRoI)
According to the functional paradigm of event cameras, the scene is already separated into
foreground and background at sensor level for moving objects when using a static sensor.
However, a straightforward selection of events triggered by object motion is often not possible
due to the remaining high noise level. Therefore, to separate and select dense regions of events
for further processing, the following size-adaptive Region-of-Interest algorithm is proposed:

1. Extended spatio-temporal filtering
First, an additional spatio-temporal filtering stage based on the Neighborhood-Filter (see
Section 3.3.2) is applied. As shown before, this filter achieves an almost complete removal
of background activity events at the cost of events from instances (see Section 3.3.3).
This processing step is shown in Figure 8.2a → b.

2. Hierarchical single-linkage clustering [Müllner, 2013]
The remaining events are hierarchically clustered into regions based on the Euclidean
distance. Clustering is controlled by a predefined cutoff distance 𝑑cut that prevents
spatially distant clusters from merging. Resulting clusters with a number of events less
than min#events are discarded in this step. An example for this step is displayed in
Figure 8.2c.

3. Bounding box expansion and filter reset
In order to account for the events of objects that may have been filtered (cf. the feet of
the red actor in Figure 8.2), the bounding box of each cluster is expanded by bboxoffset
pixels. Within each expanded bounding box, the event stream is reset to the original
time-filtered event stream, reactivating the events removed by the second restrictive
filtering step. Each resulting bounding box forms an aRoI. This is shown in Figure 8.2d.
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Figure 8.3: Processing visualization of the baseline segmentation clustering approach.

This processing results in Regions-of-Interest of variable spatial size, where spatially separated
objects are in their own aRoI and groups of objects share an aRoI without being sliced into
separate parts.

8.2.2 Baseline: Semantic Segmentation and Clustering
As a basic approach, the use of hierarchical event clustering, extended by the application
of prior semantic segmentation, was included in the comparison. This process is shown in
Figure 8.1a and Figure 8.3.

For this semantic segmentation step, vanilla PointNets++ [Qi et al., 2017b] were trained
as described in Chapter 6, using the generated aRoIs as input. Clustering is subsequently
applied separately to the events of each semantic class based on the predicted labels to group
the predictions into individual instances.

The clustering cutoff distance 𝑑cut in this step was individually selected per semantic class
based on the maximum Euclidean distance between nearest neighbor pixels within the ground
truth instances (see dist(NNinst) in Table 8.1). This selection ensures that all events of a single
instance are grouped together by this baseline approach.

8.3 Experiments and Evaluation
Next, the methodology and results of the comparative evaluation of the methods presented in
Section 8.1 are described. All event representations were based on 60ms sliding time windows
of the data. The configuration for the performed preprocessing was as follows:

• Spatio-temporal time-based pre-filtering with threshold Δ𝑡=10ms
• Region-of-Interest generation with

– 𝑑cut = 29.0 px
– min#events = 50 events
– bboxoffset = 10 px

For the experiments, the proposed training, validation and tests splits of the DVS-iOUTLAB
(see Section 4.3) and N-MuPeTS (Section 5.4) were used.
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Annotation max(dist(NNinst)) avg(#Pixelinst)
(a) DVS-iOUTLAB

PERSON ≈ 23.09 px 332.28 px
DOG ≈ 16.49 px 360.31 px
BICYCLE ≈ 21.59 px 450.28 px
SPORTSBALL ≈ 5.39 px 116.05 px

(b) N-MuPeTS
PERSON ≈ 22.14 px 511.80 px

Table 8.1: Object instance statistics.

The DVS-iOUTLAB data composes challenges from a multi-class, multi-instance scenario
combined with real sensor noise. While the N-MuPeTS dataset contains only the single object
class PERSON, it also provides processing challenges due to included object occlusions (with
infrastructure and other people), similar body shapes, different body poses, and different
motion/interaction patterns. Scenes with objects in close proximity (especially intersections)
are particularly challenging to segment. In addition to this, there is also sensor noise in the
data.

8.3.1 Network Configurations and Input
Network configurations and hyperparameters have been left at their default values where
possible.

As already mentioned, for point and voxel-based methods, the temporal scaling of the
input data is of particular interest, as it has a significant impact on the computation of spatio-
temporal distances and neighborhoods. In the experiments performed, the time information
was scaled and represented in milliseconds.

Event Representations

Space-time event clouds are naturally formed from the (𝑥, 𝑦, 𝑡)-coordinates of the events them-
selves. However, while the spatial shape of the input event cloud can vary, and therefore the
generated aRoI can be used directly as a basis, the deep learning processing techniques require
a fixed number of events as input for training (see also Section 6.1.2). Therefore, the event
clouds were sampled to a fixed number of events by random choice. The sizes of 1024 and
2048 events per aRoI served as sampling targets, since these powers of two are closest to the
mean event counts of the generated aRoIs (more detailed event count statistics are given in
Section E.2 in the Appendix). For aRoIs with fewer events, doublets were generated to achieve
the desired number, following the original logic of PointNet++ processing that forms the basis
of the point-based methods under study. The selected grouping radii and the configuration of
the set abstraction layers of the networks were adapted from the results of the optimization
process performed for PointNet++ in Section 6.3.3.

For voxel grids, the shape of the data is defined by the size of the voxels themselves, not by
the number of events. Therefore, event subsampling per aRoI was not performed. Instead,
the time-filtered aRoIs were used directly as input.

For frame-based processing, the 2D encodings were created using the full usable spatial
resolution of the sensor, since the frame-based processing also requires a fixed input resolution.
Examples and further details of the performed event representations are given on page 90 and
the following.

124



8.3.2 Evaluation Metrics
Prior semantic segmentation is used by some of the processing approaches under evaluation.
Therefore, semantic segmentation quality metrics are also reported. For this the F1 scores,
defined as the harmonic mean of precision and recall, are reported as a weighted average using
the given support per class on a per-event basis (see also Section 6.3.2).

Regarding the instance segmentation quality, the standard COCO dataset [Lin et al., 2014]
and challenge metrics17 are reported, including mean average precision mAP0.5

0.95, which is the
precision averaged over the intersection over union (IoU) threshold range from 0.5 to 0.95 with
a step size of 0.05, as well as the mAP0.5 and mAP0.75 at fixed IoU values. For reproducibility,
the metric implementations from [Detlefsen et al., 2022] were used for all reported results.

IoUs were calculated based on segmentation masks rather than bounding boxes. For compa-
rability between the different methods, these masks were formed and evaluated in 2D.

The evaluation is based on the events included in the constructed aRoIs. Since the spatial
shape can vary between the different encoding variations (aRoI size vs. fixed and full frame
resolution), only the areas covered by the aRoIs were considered and included for frames in
the metric calculation.

8.3.3 Application Results and Comparison
The evaluation was performed on datasets derived from a DVS-based monitoring application
scenario as introduced previously. Therefore, typical application-oriented challenges such as
occlusions and spatially close objects are included in the considered scenes. The presented
results focus on these challenges.

For the N-MuPeTS dataset, an additional and intentionally challenging subset of the test data
was constructed. This test subset restricts the scenes to a selection in which at least one
actor is occluded or actors are spatially very close to each other. In terms of annotations, this
means a subset of test time windows from the N-MuPeTS dataset in which at least one actor
is labeled with one of the following dataset annotations (see Section 5.4):

• occlusion
• crossing
• meet

• sidebyside
• helix
• far

Results
Table 8.2 shows the metric results for the DVS-iOUTLAB dataset. For the N-MuPeTS dataset,
Table 8.3 reports the results on this intentionally challenging subset. The metrics for the
complete N-MuPeTS test set, as well as individual results per class for DVS-iOUTLAB, are
reported in Section E.2.2 in the Appendix.

Segmentation baseline:
The segmentation baseline approach depends on the quality of the semantic segmentation
performed. In this aspect, it achieved very good F1 scores on both datasets.
As expected, in terms of instance segmentation and the corresponding mAP results, it
often failed with merge errors, because instances of same classes that are very close to
each other were clustered together. This is especially true for the selected challenging

17https://cocodataset.org/#detection-eval
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Semantic Instance qualityquality
Network Configu-

ration
weighted
F1 score mIoU mAP0.5

0.95 mAP0.5 mAP0.75

(a) Baseline method: PointNet++ with spatial clustering
PointNet++ in 2048 events 0.94 0.80 0.57 0.71 0.62
Clustering in 1024 events 0.93 0.82 0.58 0.71 0.61

(b) Space-time event cloud-based methods

JSNet
4 layers

in 2048 events 0.95 0.89 0.81 0.87 0.86
4 layers

in 1024 events 0.92 0.85 0.70 0.77 0.75

3D-BoNet
4 layers

in 2048 events 0.94 0.84 0.71 0.81 0.78
4 layers

in 1024 events 0.93 0.83 0.70 0.80 0.76
(c) Voxel-based method

SoftGroup voxel grid 0.97 0.86 0.88 0.98 0.96
(d) Frame-based methods

Mask R-CNN
polarity 0.92 0.78 0.62 0.96 0.72
MTC 0.92 0.78 0.61 0.96 0.71

YOLO v8
polarity 0.92 0.79 0.60 0.93 0.66
MTC 0.91 0.80 0.58 0.89 0.65

Table 8.2: Segmentation results on DVS-iOUTLAB test set (60ms event time window).

Semantic quality Instance quality
weighted F1 score PERSON

Network Configu-
ration NOISE PERSON mIoU AP0.5

0.95 AP0.5 AP0.75

(a) Baseline method: PointNet++ with spatial clustering
PointNet++ in 2048 events 0.91 0.95 0.74 0.25 0.42 0.25
Clustering in 1024 events 0.91 0.95 0.74 0.25 0.41 0.24

(b) Space-time event cloud-based methods

JSNet
4 layers

in 2048 events 0.92 0.95 0.82 0.54 0.79 0.57
4 layers

in 1024 events 0.91 0.94 0.80 0.46 0.70 0.48

3D-BoNet
4 layers

in 2048 events 0.91 0.95 0.80 0.56 0.77 0.59
4 layers

in 1024 events 0.89 0.93 0.75 0.42 0.62 0.44
(c) Voxel-based method

SoftGroup voxel grid 0.84 0.92 0.83 0.55 0.70 0.57
(d) Frame-based methods

Mask R-CNN
polarity 0.80 0.89 0.72 0.41 0.80 0.41
MTC 0.80 0.89 0.72 0.42 0.80 0.43

YOLO v8
polarity 0.83 0.92 0.70 0.55 0.87 0.61
MTC 0.83 0.92 0.70 0.54 0.86 0.60

Table 8.3: Segmentation results on challenging sequences of N-MuPeTS test subset (60ms
event time window).
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test subset of the N-MuPeTS dataset. This can be clearly seen in the metric difference
of this approach between the two datasets.

Point-based processing:
Segmentation tended to fail when an aRoI was significantly larger than average. These
regions occur when many objects are spatially very close to each other, so that they were
clustered into a single input aRoI during preprocessing. The unsampled event count in
these regions deviates strongly from the overall mean, so that the applied random event
selection changes the spatio-temporal object densities and event neighborhoods substan-
tially. For these error-prone aRoIs, JSNet-based processing mostly led to interpretation
as BA event noise, while 3D-BoNet predicted better semantic values, but often proposed
very large and merged object instance boundaries.
A simple postprocessing of the obtained results seems useful, since small errors in se-
mantic segmentation often propagate in the form of small instances. Therefore, we
recommend that instances consisting of only a few events be removed and ignored for
further processing.

Voxel-based processing:
SoftGroup achieved very good results on the DVS-iOUTLAB dataset which includes
spatially close but not intersecting objects. Considering scenes containing occlusions
of objects of the same semantic class (as in N-MuPeTS, which are considered to be
particularly difficult), it was observed that instances often merge in these cases.
Looking at the mAP0.5 value, the best overall result was obtained for DVS-iOUTLAB,
while the value for N-MuPeTS was worse than all other high-level approaches.

Frame-based processing:
The IoU thresholding performed for mAP calculation is more punitive for frame-based
mask prediction.
As described in Section 3.2, the sensor used provides 768 × 512 actively acquired pixels.
This low spatial resolution of the DVS sensor results in small object sizes. This is also
shown in Table 8.1. The avg(#Pixelinst) value indicates the average projected object
pixel size per instance in each dataset. Even a few mismatching pixels in the predicted
masks will significantly lower the IoU score. Comparing the mAP0.5

0.95 and mAP0.5 (im-
provements up to ≈40%) showed that the segmentation worked well, but was limited by
the predicted accuracy of the pixel mask.
When detecting and separating occluded objects of the same semantic class, the selected
Mask R-CNN tended to predict a mask containing only one object. YOLO v8 predicted
better partial masks at the expense of multiple false predictions.

Figure 8.4 shows example segmentations in the form of false color images for the N-MuPeTS
dataset. This illustrates the typical worst-case errors described above.

An instance segmentation could be effectively derived from the considered event representa-
tions and corresponding off-the-shelf processing approaches. From a practical point of view,
the proposal-based point and voxel-based approaches require temporal normalization in ad-
dition to temporal scaling for training convergence. We recommend shifting the continuous
event timestamps for each input aRoI between zero and the chosen sliding time window length.
In Section 6.1.2 this is referred to as 𝑆𝑇

native.
The point-based approaches are inspired by and built on PointNet++ as a backbone. By

sharing the MLPs per point, relatively small network structures are built (see Table 8.4). This
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Network Number of total
parameters

Baseline PointNet++ 437,285
JSNet 8,083,045
3D-BoNet 1,824,582
SoftGroup 30,836,090
Mask R-CNN 44,619,824
YOLO v8 3,264,396

Table 8.4: Number of trainable network parameters for DVS-iOUTLAB network
configuration.

(a) Baseline
(merge: spatial close)

(b) JSNet
(merge: spatial expansion)

(c) 3D-BoNet
(merge: spatial expansion)

(d) SoftGroup
(merge: spatial close)

(e) Mask R-CNN
(miss at occlusions)

(f) YOLO v8
(split: object parts)

BACKGROUND PERSON
Figure 8.4: Typical prediction error cases on N-MuPeTS displayed as false color
aRoI-montage images (best viewed digitally zoomed; from [Bolten et al., 2024]).

feature is important when aiming for a sensor-near implementation where hardware resources
are limited.

By using a submanifold sparse convolution [Graham et al., 2018], the voxel-based process-
ing provided good results and can offer a good trade-off in terms of processing complexity.
For applications where small compromises in pixel accuracy of segmentation are acceptable,
classical frame-based processing provides a good starting point, while offering a wide range of
well-established frameworks for processing.
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Summary of Part III

A literature overview of event-based segmentation approaches was presented. The current
state-of-the-art in event-based segmentation is not as advanced as in frame-based computer
vision, although methods and approaches are continuously being developed. It is important
to note that there is currently no ideal and universally accepted way to represent Dynamic
Vision Sensor event stream data for processing. This is because no well-established format
and processing has emerged.

Therefore, different event representations were tested for segmentation tasks suitable for
the outdoor monitoring application use case of this work. These representations include types
of different dimensionality, such as simple 2D frame projections, spatio-temporal voxel grids,
and space-time event clouds.

For space-time event cloud processing, the number of events must be limited for practical rea-
sons. A processing pipeline has been introduced that addresses this problem through a patching
procedure. The complete pipeline combines the steps of filtering, subsampling, and spatio-
temporal scaling for further application of deep learning-based 3D processing approaches.
Using PointNet++, the pioneering work and foundation for point-based deep learning, the 3D
processing network hyperparameters were optimized and the influence of spatio-temporal event
cloud scaling on semantic segmentation results was investigated. This led to the proposal of
a 3D data scaling variant and network parameters to be used.

The learned features of PointNet++ were analyzed and the obtained processing results
were compared with results obtained using frame-based representations, including different
frame encoding variants. Subsequently, the processing was compared with the results of well-
known state-of-the-art CNN architectures. The obtained semantic segmentations using the 3D
space-time event clouds achieved better results in terms of quality and runtime compared to
the CNN-baseline approach.

In the following step, we extended the processing and comparison to include a voxel grid
representation of the data. In addition, a high multichannel frame representation generated
from the voxel grid and simple binary frame projections were included in the comparison.
In the context of the application, UNet and PointNet++ were compared for their processing
capabilities. The results show that PointNet++ achieved better results. Among the alternative
representations, the highly multichannel frame representation proved to be the preferred option
in these experiments.

The output stream generated by a Dynamic Vision Sensor is spatially sparse. As a conse-
quence, a significant number of the voxels generated do not contain any data. The UNet-based
processing was still able to achieve good results on this sparsely populated voxel representa-
tion. However, applying simple 3D convolutions quickly increases and blurs the set of non-zero
features, making processing difficult. Furthermore, the utilization of 3D convolutions and their
corresponding kernels leads to a larger and more complex UNet network architecture. This
results in increased difficulty and time consumption during network training, as well as slower
inference.
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Finally, we extended the processing and comparison to segment object instances. The ex-
periments included multiple state-of-the-art deep learning-based approaches that cover space-
time event cloud, voxel-, and frame-based event input representations.

A novel preprocessing algorithm was proposed that addresses a previous limitation of the
space-time event cloud processing methodology. The spatial patching procedure used, which
was designed to meet the event count requirements, was modified to form patches of varying
sizes. This prevents objects from being cut into multiple pieces prior to processing.

The segmentation was performed on two different datasets, including an intentionally chal-
lenging subset of the data to address the core challenges involved. The comparison performed
shows differences in the results obtained by approaches using different representations. The
space-time event cloud processing achieves good results. It is mostly limited in cases where
the formed spatial patches deviate strongly from the mean in terms of event counts due to the
inclusion of many objects. These cases occur when many objects are spatially close to each
other. Voxel grid processing, on the other hand, performed worst when it comes to separating
objects that are very close to each other. Frame-based methods have largely been hampered
by the low spatial resolution of sensors, as even small errors in the result lead to significant
metric penalties.

Overall, very good segmentation results can be achieved using standard processing approaches.
These adaptations of existing algorithms for the event-based image processing domain by com-
paring and exploiting different representations is a promising approach to drive developments
forward, since real-world outdoor applications of Dynamic Vision Sensors are still rare. The
use of standard processing approaches is a suitable way to change this.
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Part IV

Evaluation of
Real-World Application

Living-Lab: Playground
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Data Source Prolog

For the development and evaluation of the DVS-based long-term monitoring system, the
Living-Lab presented in Section 3.1 was used as the measurement site. Due to the open
nature of this measurement site, the general public served as test participants.

The measurement system’s technical commissioning was made possible by the cooperation
of several departments. The urban green space planning office of the City of Mönchenglad-
bach and the Niederrhein University of Applied Sciences collaborated under the EFRE-funded
research project “plsm”18. This collaboration consolidated the necessary administrative and
technical actors to operate the measurement system.

In addition to staged recordings, as contained, for example, in parts of the DVS-OUTLAB
dataset (see Section 4.1.2 on page 49), real-world data was recorded during a long-term ob-
servation between 2019 and 2021. The following evaluation of the system focuses primarily on
the 2021 recordings due to the impact and restrictions on public life caused by the COVID-19
pandemic, which peaked in 2020. For the summer of 2021 measurement period, recordings
from the three Dynamic Vision Sensors used in the Living-Lab are available for a total of 140
days, from May to October.

These types of scenario-based recordings provide more representative samples than day-
to-day experiments. However, long-term, multi-sensor recordings result in a large amount of
data that must be stored and processed. It is a challenge to select and store only those scenes
that are of further interest in an unconstrained “real-world” setup. The final evaluation of the
application is based on the data from the recordings summarized in Table IV.1, which were
obtained by applying the scene selection methodology described in the next Chapter 9 directly
on-site during the 2021 measurement period.

Month DVS1 DVS2 DVS3 Cumulative
May 17 h 12min 26 h 49min 23 h 16min 67 h 18min
June 18 h 02min 42 h 43min 35 h 40min 96 h 25min
July 27 h 06min 59 h 57min 47 h 46min 134 h 49min
August 27 h 19min 66 h 29min 53 h 04min 146 h 52min
September 19 h 51min 44 h 23min 38 h 39min 102 h 54min
October 18 h 32min 30 h 46min 30 h 07min 79 h 25min
Sum 128 h 03min 271 h 08min 228 h 34min 627 h 46min

Table IV.1: Recorded durations of scenes selected on-site in the 2021 measurement period.

18https://plsm-project.com/ European Regional Development Fund grant number: EFRE-0801082
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Chapter 9

Extraction of Scenes of Interest

The descriptions of the approach, methods used, and results of this chapter have previ-
ously been published in:

Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2023b). Semantic Scene Filtering
for Event Cameras in Long-Term Outdoor Monitoring Scenarios. In Bebis, G. et al.,
editors, 18th International Symposium on Visual Computing (ISVC), Advances in Visual
Computing, volume 14362 of Lecture Notes in Computer Science, pages 79 – 92, Cham.
Springer Nature Switzerland

Identifying temporal segments of interest is a significant challenge in most long-term monitor-
ing. For example, as in the application use case scenario, the observed children’s playground
is not constantly used.

Therefore, the goal of on-site processing was to identify and store only those segments that
contain events triggered by a specific set of objects of interest. The processing must address
several challenges including the impact of sensor noise, detection of small objects, environmen-
tal influences, and the limited computational capacity of the on-site computing hardware.

The main contributions presented in this chapter are as follows:

• Development of a multi-stage processing chain that addresses the aforementioned pro-
cessing challenges,

• while taking into account the limited on-site computational and power capabilities of the
measurement system hardware within the Living-Lab.

• An evaluation of the proposed approach on manually labeled real-world data.
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Figure 9.1: Structure of proposed conditional writing pipeline (from [Bolten et al., 2023b]).

9.1 Scenario and Goal

The goal of the on-site scene extraction was to identify temporal segments containing DVS
events triggered by a predefined set of object classes.

The proposed processing pipeline preprocesses the data stream through multiple filters to
identify Patches-of-Interest, which are then semantically segmented. This process is designed
to filter out and ignore sensor noise and environmental effects. The temporal segments that
were identified are stored for further and more detailed offline analysis, e.g. to extract spatial
positions and movements of objects within the monitored area.

Ideally, a Dynamic Vision Sensor output event should only be triggered when an actual bright-
ness change is observed in the scene. However, the output of available sensors contains a signifi-
cant amount of noise. A substantial DVS noise effect that can be addressed by spatio-temporal
filtering are background activity events.

However, outdoor measurements are likely to include environmental artifacts in the sensor
signal in addition to background noise. These artifacts include rain, flying insects, clouds,
shadows, and object motion from wind. Therefore, they must be considered in the process-
ing pipeline. While spatio-temporal filters can substantially reduce background noise, larger
amounts of environmental noise remain in the signal (see Section 3.3).

As a result, relying only on event filtering and selecting scenes based solely on the number
of events will result in false positives in an outdoor environment. A higher-level semantic
analysis of the event stream is necessary.

9.2 Processing Pipeline

A multi-stage semantic filtering pipeline was developed, where the object recognition part is
triggered only by a defined set of classes by applying semantic segmentation based on the
3D processing described in Chapter 6. To reduce the subsequent computational load, the
event stream is spatio-temporally pre-filtered to identify important Patches-of-Interest within
the sliding time window. A decision is made whether to save the current data based on the
semantic segmentation of these selected patches. The entire process, as outlined in Figure 9.1,
is described in detail below.

All processing steps have in common that they process the continuous event stream in
non-overlapping 60ms sliding time windows.
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(a) Grayscale image of empty scene with blended mask of public sidewalk
(provided as reference)

(b) Plain DVS input, projected as 2D frame
(shown with cropped and enlarged region)

(c) Masked and Neighborhood-Filtered
(shown with cropped and enlarged region)

(d) PoI extraction by thresholding, shown based on Figure 9.2c. Discarded patches are grayed out.
Active PoIs are selected by applying an event threshold depending on the row of the patch to account

for different perspective distances. The text shows
number of triggered events / threshold

Figure 9.2: Step-by-step visualization of Patch-of-Interest generation (adapted from [Bolten
et al., 2023b]).
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9.2.1 Block I: Patches-of-Interest
The basic idea of this step is a classical divide-and-conquer approach. The goal is to preprocess
the input stream with simple and fast operators. Thus, only Patches-of-Interest need to be
processed by subsequent steps with significantly higher computational requirements. It is
expected and intended that time windows with high levels of environmental noise and artifacts
will pass these steps, but will be rejected later.

In contrast to the patching performed in [Sabater et al., 2022], where small 6×6 pixel patches
are constructed and processed, the sensor array was divided into patches that contain enough
spatial resolution to be processed independently and meaningfully using only the (𝑥, 𝑦, 𝑡)-
information of each patch itself. This formation of Patches-of-Interest is based on the prepro-
cessing described in Section 6.1.2, where the (𝑥, 𝑦)-sensor plane was divided into 16 equally
sized patches (see Figure 6.3 on page 101). As previously mentioned, the selection of this
patch size of 192 × 128 pixels depends directly on the event count requirements of 3D se-
mantic processing. To mark a patch as either active or inactive for subsequent processing,
spatio-temporal filtering and thresholding are used.

The process of generating Patches-of-Interest starts with removing all events outside the mon-
itored area (mask filtering of fixed areas, such as public sidewalks). This is followed by re-
strictive filtering of sensor noise. According to the analysis of the spatio-temporal event filters
performed in Section 3.3.2 and 3.3.3 as well as the runtime requirements for real-time filtering
of three sensor signals, the Neighborhood-Filter logic is applied to reduce the background noise
artifacts contained. This filter was selected because this analysis showed that it achieves a
very restrictive filtering result while still retaining enough true object events for subsequent
active area identification. These steps are illustrated in Figures 9.2b and c.

A Dynamic Vision Sensor separates the static background from the moving parts at the
sensor level based on its fundamental operating principle. Therefore, the accumulated num-
ber of filtered events within these patches can be used as a simple measure of change within
the scene (while ignoring their semantic origin). Finally, to flag a patch as an active Patch-
of-Interest, a threshold is applied to the number of filtered events. To account for different
perspective distances and the corresponding differences in the number of triggered events,
different thresholds are used for each row of patches. These thresholds were empirically opti-
mized and selected during long-term monitoring. This thresholding procedure is illustrated in
Figure 9.2d.

Only active flagged patches are further processed. In some cases, the event counts in many
or all patches may surpass the threshold for an extended period (e.g., during heavy rain) and
become marked as active. This would lead to very high computational resource requirements
in the later processing. Therefore, it is possible to bypass downstream processing for a limited
number of sliding windows (shown as a modulo filter in Figure 9.1). Skipped time intervals
are stored directly in the write buffer, and their final processing depends on the outcome of
adjacent, fully processed segments.

9.2.2 Block II: Semantic Analysis utilizing PointNet++
A semantic segmentation for the active Patches-of-Interest into a specific set of object classes
is the main component of the proposed pipeline.

The processing of 3D space-time event clouds was found to be faster and of at least equal or
higher quality for the task of semantic segmentation than a UNet or a Mask R-CNN coun-
terpart based on frame conversion. Therefore, a PointNet++ was selected as the processing
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Figure 9.3: Event count comparison on real-world data tested in Section 9.3
(adapted from [Bolten et al., 2023b]).

method within this pipeline. However, the number of input events forming the space-time
event clouds must be limited for this processing, as described in Section 6.1.2.

Therefore, the previously created Patches-of-Interest are further processed individually.
For each active Patch-of-Interest, the filtering is reset. The raw event stream is restored
within these patches. This is necessary because the previous neighborhood filtering is rather
restrictive and may remove events that belong to the desired object structures. Then the
DVS preprocessing method for PointNet++ based processing is applied, as described in Sec-
tion 6.1.2. This includes a less restrictive spatio-temporal time filter, subsampling, and scaling.

The previously selected sampling target of 4096 events for this preprocessing, which is
based on the analysis of the DVS-OUTLAB dataset, was retained because the recorded event
numbers were comparable to the real long-term monitoring recordings. For more details,
compare Figure 9.3 with the results reported in Section D.1 in the Appendix.

After applying PointNet++ to the preprocessed (𝑥, 𝑦, 𝑡) event clouds, each event is assigned
a class label. The final write decision is made in the next processing block based on the number
of events that belong to a specific set of object classes of interest.

9.2.3 Block III: Conditional Write
The sliding time windows incoming may or may not have labels within their patches, as they
can skip semantic segmentation.

They are stored in a temporal first-in first-out buffer that can hold a fixed number of time
windows. The size of this buffer is defined by the number of chunks. Each chunk contains at
least one time window in which a PointNet++ based semantic segmentation must have taken
place, regardless of any skipping.

Events predicted to be background or belonging to environmental noise classes are dis-
carded. The decision to save a sliding time window of DVS data onto disk depends on the
count of events predicted to belong to objects of interest classes within the fully processed and
semantically segmented PoIs of each chunk. A minimum threshold is applied to these events.
This step is identical to the thresholding technique described above that is used to identify
active PoIs earlier in the pipeline, but the thresholding is applied only to the events that are
labeled as objects of further interest.

To ensure continuity in the saved sliding window chunks, not only the chunk containing
the positive object count threshold is saved, but also the chunk immediately before and after
it. This process is shown in Figure 9.4.

143



active PoI and
fully processed

positive object of 
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triggers a save

Figure 9.4: Visualization of conditional buffer write logic (sliding time windows marked in
green indicate a positive filtering decision that results in writing the gray chunks; from

[Bolten et al., 2023b]).

9.3 Practical Application and Results
The segmentation network within the pipeline is based on the optimized, trained and evaluated
model of PointNet++ as described in Section 6.3.3. This model is based on the underlying
training dataset of DVS-OUTLAB (see Chapter 4).

Therefore, the classes PERSON, DOG, BICYCLE, and SPORTSBALL were defined as objects of
interest in this context. The classes BACKGROUND, RAIN, TREE, INSECT, BIRD and TREE_SHADOW
were considered as noise and unwanted environmental artifacts.

The following evaluation of the described pipeline is based on ten days of unprocessed, complete
raw data collected during the 2020 measurement period, as the 2021 recordings have already
been processed and stored on-site by the use of this pipeline.

The reduced use of the playground during the 2020 period makes the processing even more
challenging with respect to false negatives. Since the main goal of the processing is to filter out
environmental artifacts and save only temporal segments containing a defined set of objects,
this is acceptable since the selected recordings still include both positive cases and different
levels of environmental influence.

9.3.1 Runtimes
The semantic segmentation of the events within the selected Patches-of-Interest by the Point-
Net++ network has the highest computational requirements in the entire processing chain.
An advantage of this network architecture is that each point is processed by shared Multi-
Layer Perceptrons. This results in relatively small networks, allowing an NVIDIA Jetson TX2
module to be used on-site as an energy-efficient edge AI computing device instead of a power-
hungry full-scale GPU. This is very beneficial in the application scenario, as the entire on-site
system is solar-powered (see Section 3.1).

Using this resource-limited module resulted in an average runtime of 159ms (±7.14ms,
based on a measurement of 10,000 individual executions, each with a batch size of one for
live processing) for PointNet++ inference. In the worst case, with all 16 Patches-of-Interest
continuously active, it is possible to achieve a complete processing every ≈ 2.54 seconds. How-
ever, a real-world analysis of activated Patches-of-Interest on data containing various factors
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Date Rain
in l/𝑚2

Fraction of
time windows

w/o any active
PoI per day

Mean number of
active PoIs per

time window
Thu, July 02 6.4 71.34% 1.95
Fri, July 03 0.0 38.30% 5.97
Sat, July 04 0.9 42.63% 2.12
Sun, July 05 0.1 43.34% 4.09
Mon, July 06 1.7 44.31% 4.49
Tue, July 07 1.2 44.23% 4.66
Wed, July 08 7.3 92.63% 0.61
Thu, July 09 0.0 47.13% 3.16
Fri, July 10 1.0 40.15% 5.85
Sat, July 11 0.0 9.53% 6.83

All 46.93% 4.57

Table 9.1: Patch-of-Interest generation statistics on real-world data.

(see Table 9.1) showed that this scenario is very unlikely to occur. During the ten-day period
analyzed, approximately 47% of the sliding time windows contained no activated PoI at all.
In the remaining time, on average, less than a third of the PoIs were active. This shows that
PointNet++ processing can generally be achieved at a higher frequency.

Different days of the week, usage scenarios, and weather conditions with widely varying
rates of PoI activation were included in the evaluated test period. As an example, compare
Wednesday, July 8 with Saturday, July 11. On that Wednesday, there was no significant
activity except for some very short and heavy rain showers. This resulted in a high percentage
of data being discarded in the first processing step. On the other hand, on the aforementioned
Saturday, a high level of activity combined with environmental influences such as moving
shadows resulted in many PoIs that had to be processed later.

Apart from semantic segmentation, most of the runtime is consumed by filtering the event
stream. These operations, each with a complexity of 𝒪(eventCount), are performed by indi-
vidual threads. Therefore, to meet the real-time requirement, each step must be completed
within the length of the sliding time window. Table 9.2 shows the average runtimes per filter
for the typical total number of input events that occur. These tests demonstrate that each
filter has the capability to process the event stream in real-time as the continuous event stream
is processed in sliding windows of 60ms.

9.3.2 Scene Filtering Quality
In order to evaluate the quality of the filtering achieved, the following two types of errors are
crucial:

(a) false negatives (wanted but not recorded) and
(b) false positives (recorded but not wanted).

The error rates were determined using the complete, unprocessed recordings of a single DVS,
as presented in Table 9.3. This resulted in a total of 88.95 hours of recorded time. The results
were compared to manual annotations made by a human observer. This comparison was made
as follows to keep the cost of annotation in an acceptable range.
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Processing step
Mean runtime for

one 60ms time window
50 kE 170 kE 420 kE

Mask-Filter 1.026ms 1.415ms 3.230ms
±0.25 ±0.45 ±1.00

Neighborhood- 6.494ms 13.638ms 42.946ms
Filter ± 1.54 ±1.96 ±5.31
Time-Filter 0.379ms 21.740ms 46.167ms

±0.11 ±4.42 ±7.46

Table 9.2: Filter runtimes at different input event counts in kilo events (kE)
(averaged over 150 sliding time windows of 60ms, computed on an Intel Core i7-8700 CPU).

Date
Activity

annotated FP-rate FN-rate
by human “false alarm” “missed” F1 score

Thu, July 02 11.27% 0.007 0.006 0.969
Fri, July 03 18.20% 0.012 0.038 0.954
Sat, July 04 32.16% 0.015 0.029 0.970
Sun, July 05 23.30% 0.019 0.048 0.944
Mon, July 06 10.21% 0.026 0.023 0.886
Tue, July 07 10.37% 0.014 0.054 0.916
Wed, July 08 1.50% 0.006 0.152 0.761
Thu, July 09 13.37% 0.015 0.021 0.945
Fri, July 10 4.63% 0.010 0.063 0.873
Sat, July 11 28.55% 0.024 0.043 0.948

All 15.13% 0.015 0.038 0.941

Table 9.3: Scene extraction quality
(FP =̂ false positive, FN =̂ false negative).
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A two-dimensional frame was exported from the DVS stream for every 32nd sliding time
window of the unprocessed event stream by projecting the events onto the xy-plane. This
leads to one frame every 32 ⋅ 60ms, which is equivalent to 1.92 seconds. Considering the size
of the observed area, this form of temporal subsampling is appropriate because the desired
objects, such as pedestrians, would remain visible in a selected frame while crossing the area
at their expected speeds. This sampling procedure results in a total of ≈ 166.700 exported
frames which were manually checked for objects of interest.

False Negatives:
In this process, 969 detections were marked by the human observers that were not saved
by the proposed processing pipeline. This results in a false negative rate of ≈ 4%.
However, around 75% (724 out of 969) of the missed detections were found in the top
row of recorded patches, where the recorded content was far away from the sensor. The
resulting small object sizes, one of the primary challenges in processing, make it difficult
even for a human observer to distinguish between objects and noise. Therefore, these
cases are also likely to be very difficult for other automated processing approaches.

False Positives:
The proposed processing chain applied to the raw recordings resulted in the storage of
about ≈ 14.06 hours of the total input data. These saved time windows were compared to
the manually annotated frames from the previous step. The export step used for these
manually labeled images corresponds to the modulo 32 skipping used for automatic
processing. In this way, the resulting chunks were compared to each other. This resulted
in 2090 chunks stored by the automated processing that were not marked as active by
the human reference, resulting in a false positive rate of ≈ 1.45%.

Due to the good results of the applied semantic segmentation, the presented pipeline overcomes
the aforementioned artifacts caused by environmental influences. In the presented numerical
results, this is shown by the inclusion of rain.

However, on rainy days fewer people use the outdoor area (e.g., Wednesday, July 08 with
only 1.5% annotated activity time) and the processing becomes more complicated. On par-
ticularly rainy days, the false negative rate increased and objects were missed. But the false
alarm rate and specificity stayed at acceptable levels. This shows that a good robustness
against rain has been achieved. However, desired objects may be (partially) occluded by rain
in the sensor’s field of view, resulting in lower detection sensitivity.

In general, the evaluation showed that the developed processing pipeline is able to identify
relevant time segments in the context of a long-term observation and to store them for later,
more detailed evaluation.
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Chapter 10

Derivation of the User Volume:
Evaluation on Long-Term Data

The trained segmentation approaches need to be evaluated in the context of the Living-Lab
monitoring to demonstrate the capabilities of the developed application-oriented system. A
multi-stage processing to estimate the user volume is evaluated to validate the feasibility of
the developed proof-of-concept system.

Based on the comparison of manually and automatically extracted instance counts, as well as
on the obtained qualitative segmentation results, the reliability of the system is assessed.

The main contributions presented in this chapter are as follows:

• Selection of representative scenes from the long-term monitoring and manual annotation
to evaluate the developed processing.

• Application and evaluation of the trained segmentation approaches on real-world Living-
Lab data recorded during the long-term monitoring to estimate the number of included
users.

• Based on typical error cases, limitations, and optimizations are presented, which should
be considered when reproducing such monitoring systems.
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Figure 10.1: Overview of the evaluation process performed (color-highlighted blocks are
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Figure 10.2: Histogram of the number of YOLO-based PERSON detections.

10.1 Processing Overview and Objective
One of the two primary parameters to be derived by the developed monitoring system is the
user volume within the observation area. The focus here is on the counting of the object
instances observed. As part of the long-term monitoring, a large amount of data containing
potentially interesting objects (see Chapter 9) was stored on-site.

The segmentation methods presented in Part III were used to implement a people counting
toolchain. The evaluation procedure for this processing is shown in Figure 10.1.

A manual annotation of the recorded data serves as a reference for the obtained processing
results. A complete processing and subsequent manual evaluation of the processing results is
not expedient due to the recorded data volume of approximately 630 hours. In order to keep
the processing and especially the manual annotation effort within reasonable limits, it was
necessary to select representative scenes from the long-term data to evaluate the processing.

These representative scenes were then processed, with the first step being the removal of
unwanted environmental effects, followed by the prediction of object instance masks to be
used for counting. Based on these automatically determined object counts, a comparison with
the manual annotations was performed.

10.2 Selection of Representative Scenes
The data basis for this selection was formed by all recordings from the measurement period
2021 of the three Dynamic Vision Sensors used in the Living-Lab, which were recorded on-
site by the extraction of scenes of interest processing approach introduced and evaluated in
Chapter 9. A quantitative overview of these recordings is given in Table IV.1 on page 137.

To select the scenes, a 2D polarity frame-based representation was exported for each 60ms
event time window contained in these recordings. These polarity frames were then processed
by YOLO v8 to obtain an estimate of the number of PERSON instances included in each frame.

At this point, YOLO v8 was selected as the instance segmentation approach because the
previous analysis showed that it achieved the best mAP0.5 score on the challenging subset (see
Table 8.3) as well as on the full dataset of N-MuPeTS (see Table E.5). The lower penalization
of pixel inaccuracies in the generated object masks within the selected mAP0.5 metric is inten-
tional, since only the number of objects found and not the pixel accuracies are of interest for
the further selection of representative scenes. In addition, the preprocessing required for the
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YOLO v8 inference and its runtime are low, which was of particular interest considering the
number of inferences required for the entire database.

For further processing, the recordings and the corresponding inference results were divided
into one-minute blocks. This division was based on the “wall” clock time, i.e. the real-world
local time of the recordings. These wall clock aligned time blocks may also be shorter than
one minute, as the on-site processing allows the recordings to start and end at arbitrary 60ms
time windows.

For each of these time blocks, the frame-averaged number of detected PERSON instances was
determined. This means that the actual number of frames in that block was used to normalize
the sum of the detections. These normalized instance counts were then grouped into histogram
bins as shown in Figure 10.2. These histograms approximate the distribution of the number
of people who used the area covered by each sensor within the analyzed measurement period.

From these histograms it is already possible to deduce differences in area usage, e.g. the
area covered by DVS1 is used less by larger groups. However, it can also be seen that there
is a strong imbalance between the number of time blocks recorded and the average number
of people detected in these blocks. Scenes with fewer included people strongly dominate the
real-life scenario in the field.

In order to obtain a subset of recordings that are representative of the real-world usage scenario,
subsampling was performed according to the determined distribution. For each sensor, 90
one-minute time blocks were randomly selected. Only complete blocks, i.e. blocks covering an
entire minute of wall clock-aligned data, were considered to keep the subsequent evaluation
comparable.

The random selection of the one-minute blocks was based on the frequency of occurrence
in the determined usage histogram. However, in order to include all usage scenarios in the
evaluation, at least two one-minute blocks were forced to be selected from each usage bin in the
histogram. This ensured that also scenes with a high number of users, which are challenging
in terms of processing, were also included in the subselection.

10.3 Manual Annotation
As mentioned above, 90 one-minute time blocks of representative data were subsampled for
each of the three Dynamic Vision Sensors used. This results in a total of 270 minutes of
sampled data for evaluation. Since the implemented processing handles individual 60ms time
windows of event data, this results in a total of 270,000 exported event time windows.

Manual annotation of this amount of data, either at the level of semantic segmentation
or the creation of instance masks, is not economically feasible given the time required. In
order to keep the requirements for manual annotation within reasonable limits, the evaluation
performed takes into account, per one-minute block, the maximum number of PERSON instances
simultaneously present in the scene.

To facilitate manual annotation, the selected data was exported as polarity-frame encoded
video files so that they could be played back with standard software. The video files were
randomly sorted and renamed to hide the previously determined level of usage within the
selection step. This was done to prevent any a priori assumptions from influencing the manual
annotation process.

Each of the video files was viewed and annotated by the same set of ten human viewers. For
this purpose, each participant was provided with an “Annotation Guide” that introduced the
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Figure 10.3: Highlighting of processed spatial patches in UNet-based semantic segmentation
to remove environmental influences (grayscale background of the scene is provided for

reference only).

technology of the Dynamic Vision Sensor, its output, and the data representation and encoding
used for the evaluation. In addition, an example scene was shown, and the annotation scheme
used was explained. The special characteristics of the recording and the annotation to be
created were briefly presented by means of examples. This included an explanation of the
environmental influences recorded and rules for counting people entering, leaving, or standing
still.

The desired counting method per scene and thus the abstraction to a single metric value
per video file was explicitly explained and illustrated.

10.4 Processing and Evaluation
The human-generated annotations serve as the basis for benchmarking the automated pro-
cessing. In the application context of the real monitoring data, both 2D frame-based and 3D
space-time event cloud-based instance segmentation were considered.

10.4.1 Preprocessing: Removal of Environmental Influences
As shown in Figure 10.1, the processing of the sampled evaluation data is done in two steps.
In order to reduce the number of events, which is required to support the 3D point cloud
processing methods (see Section 6.1.2), and to account for the less included and less con-
sidered environmental influences within the dataset used to train the instance segmentation
approaches, a semantic segmentation is performed prior to the instance extraction.

The DVS-iOUTLAB dataset and the N-MuPeTS dataset used for instance segmentation are
either based on augmented object of interest classes (i.e., PERSON, DOG, BICYCLE, and SPORTS-
BALL) or contain only PERSON instances. Despite the inclusion of sensor background noise,
these instance segmentation datasets do not specifically target the influence of environmental
effects.

For this reason, a divide-and-conquer approach was performed by first applying and filtering
based on a semantic segmentation. The underlying dataset for the semantic segmentation,
DVS-OUTLAB, covers different environmental influences, and therefore the trained processing
approaches are able to remove these aspects.
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Polarity encoded frame Filtered for PERSON events
(a) Crawling insects

Polarity encoded frame Filtered for PERSON events
(b) Flying insects

Polarity encoded frame Filtered for PERSON events
(c) Tree shadows

Polarity encoded frame Filtered for PERSON events
(d) Rain

Polarity encoded frame Filtered for PERSON events
(e) Global illumination changes

Figure 10.4: Results of the applied UNet-based environmental influence removal.
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As semantic segmentation method for this step, a UNet-based processing (see Chapter 7) was
selected, since the data preprocessing effort, the export of frame representations, is low and
was already performed as a step in the selection of representative scenes.

The previous experiments, and thus the trained models, are based on the processing of
spatially patched data. Therefore, this was also carried out at this point. In order to support
the segmentation and to reduce the errors at the boundaries of the patches, an overlapping
of these patches was performed, as shown in Figure 10.3. The overlapping segmentations
were combined into a single result of the size of the original DVS input data. Different label
predictions at the same position were resolved based on a priority list, with PERSON class
predictions being prioritized.

Figure 10.4 shows example results of this processing.

10.4.2 Results and Comparison
The selection of instance segmentation methods considered is based on the analysis conducted
in Chapter 8.

YOLO v8 was selected as a representative of the 2D frame-based processing. The YOLO
v8 model outperformed the Mask R-CNN reference on the N-MuPeTS dataset, especially
on the challenging sequences that contain spatially close instances, representing an expected
scenario on the playground. Both JSNet and 3D-BoNet were selected as 3D point cloud-
based processing approaches and included in the comparison, as their performance on the
N-MuPeTS dataset was found to be highly comparable. The voxel-based processing using
SoftGroup was not evaluated on the long-term monitoring data, as it performed worse in the
previous experiments on the N-MuPeTS data.

This led to a comparison between 3D space-time event cloud and frame-based processing
techniques, as also stated as the main research question. A polarity frame encoding was selected
for the generation of the 2D images, as this encoding scheme allowed for highly satisfactory
results in the semantic and instance segmentation experiments performed. The preprocessing
of the space-time event clouds is based on the generation of adaptive input regions, as described
in Section 8.2.1.

The sampled representative sequences very rarely contain instances of non-PERSON classes, such
as DOG or BICYCLE. Due to the very small number of captured instances of these classes, the
evaluation, as well as the manual annotation, was limited to the evaluation of the maximum
number of PERSON instances simultaneously present in the scene.

Metric
The obtained results of human and automatic PERSON counting for the selected scenes are
shown in Figure 10.7a, Figure 10.9a and Figure 10.11a for each DVS used in the Living-Lab.

A quantitative comparison of the automated processing results with the human annotations
was conducted in order to summarize the results. However, it was not possible to calculate,
for example, a classical z-score to measure how close the obtained PERSON count prediction
𝑝alg𝑖 is to the distribution of human annotations. As the z-score is defined as

z-score𝑖 =
𝑝alg𝑖 − 𝜇human

𝑖
𝜎human
𝑖

(10.1)

with 𝑖 as an index for the considered scene, while the mean 𝜇human
𝑖 and standard deviation

𝜎human
𝑖 are estimated from the human annotations. In some cases, all ten human annotators
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human annotations predicted
value

considered correct

Figure 10.5: Description of evaluation metric.

Sensor
Average standard

deviation in
human annotations

mean(|Δ𝑝|) of predictions
YOLO v8 3D-BoNet JSNet

DVS1 0.847 1.145 0.972 1.188
DVS2 0.926 0.324 0.349 0.510
DVS3 1.033 0.881 0.571 1.022

Table 10.1: Comparison of PERSON counting results.

counted exactly the same number of people, resulting in an 𝜎human
𝑖 = 0, making the z-score

undefined.

As an alternative, and to account for the varying spread in the human annotations, we consider
the range of [𝜇human

𝑖 − 𝜎human
𝑖 , 𝜇human

𝑖 + 𝜎human
𝑖 ] as correct values for the prediction, resulting

in a zero error if the prediction falls within this interval. For larger deviations, the difference
between the prediction and this interval limit is counted as an error. This measurement scheme
is illustrated in Figure 10.5. To further summarize the results, the absolute value of this error
score is averaged over all scenes per sensor.

Quantitative Results

The results based on this metric are shown in Table 10.1. The processing performed by 3D-
BoNet predicted the best PERSON counts on average across all sensors. Results were obtained
that differed on average less than 0.35, 0.58, and 0.98 counted PERSONs outside the interval
formed by the human annotations.

Qualitative Results

The metric results show an advantage for 3D-BoNet over JSNet. Therefore, the examples
showing qualitative results in Figure 10.6 do not include results from JSNet.

In general, all three methods, namely YOLO v8, JSNet, and 3D-BoNet, are capable of
achieving visually good segmentation results in the context of the application, and thus are
able to estimate the number of people with reasonable accuracy. This is especially the case
for DVS2, as the comparison between human and automated results in Figure 10.7a shows.
However, there are also systematic differences.
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Polarity encoding

Enlarged region:

YOLO v8
10 PERSON instances

Enlarged region:

3D-BoNet
10 PERSON instances

(a) Scene CMH123_0002

Polarity encoding

Enlarged region:

YOLO v8
10 PERSON instances

Enlarged region:

3D-BoNet
9 PERSON instances

(b) Scene CMH123_0009

Polarity encoding

Enlarged region:

YOLO v8
13 PERSON instances

Enlarged region:

3D-BoNet
12 PERSON instances

(c) Scene CMH123_0020

Polarity encoding

Enlarged region:

YOLO v8
7 PERSON instances

Enlarged region:

3D-BoNet
7 PERSON instances

(d) Scene CMH123_0026

Figure 10.6: Examples of qualitative segmentation results.
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Sensor Number of input
2D frames 3D aRoIs

DVS1 90,000 92,502
DVS2 90,000 220,845
DVS3 90,000 124,419
Sum 270,000 437,766

Table 10.2: Number of inputs to be processed based on the sampled 90 one-minute scenes.

By design, YOLO v8 is limited to predict closed polygon masks for segmentation. This leads
to inaccuracies at the event level. However, these inaccuracies are irrelevant for pure instance
counting.

The predictions of JSNet and 3D-BoNet tend to correctly separate instances, but incor-
rectly assign single or very few outlier events across instance boundaries. In terms of the total
number of events in the instances, these errors are not substantial, but these outliers lead to
greater inaccuracies when considered at an instance bounding box level. Postprocessing to re-
assign events that are far from the center of mass of the instance would be one way to address
this problem. However, these inaccuracies are also irrelevant for counting the instances.

Inference Count

Given that the selected representative scenes have a uniform length of one minute, the number
of input images is identical for frame-based processing for all sensors. The integration time of
60ms employed for image generation, coupled with a total of 90 selected scenes, results in a
total number of 90,000 frames to be processed per sensor.

However, this is not the case for the 3D space-time event cloud-based processing. As a con-
sequence of the preprocessing applied and the decomposition into aRoIs, the number of input
clouds is dependent upon the number of included PERSONs and their spatial distribution within
the individual sequences. Table 10.2 provides an overview of the number of inferences which
were required for processing the evaluated scenes. For the scenes selected for evaluation, this
results in an approximately 1.62-fold increase in the number of inferences required.

10.4.3 Typical Error Sources
Comparing the results for the individual scenes, three main categories of error sources in the
people counting, and thus in the underlying segmentation, can be identified. In the following,
each of these typical sources of error is illustrated, explained, and justified using one of the
three sensors as an example.

Very Crowded Scenes: Illustrated by the example of DVS2, as shown in Figure 10.7c.
For very crowded scenes, such as when the area is used by entire kindergarten groups,
3D space-time event cloud processing is limited in its results due to the preprocessing
applied. In the case of many, spatially very close objects, the generated aRoIs, which
serve as input for the neural networks, become very large in relation to the number of
events they contain.
Figure 10.7d shows the generated aRoIs for the time window corresponding to Fig-
ure 10.7c. As indicated, the largest aRoI in this time window contains 37,496 individual
events. For processing, each aRoI is subsampled to 2,048 events. Figure 10.8b shows
a visualization of the subsampled data, clearly showing the loss of detail that prevents
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Figure 10.7: Results summary for DVS2 with typical example of a challenging scene.
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(a) YOLO v8 prediction
(based on input of Figure 10.7c)

(b) Subsampled aRoI from Figure 10.7d, each with
𝑛 = 2048 events

(c) 3D-BoNet prediction
(based on subsampled aRoI input from

Figure 10.8b)

(d) Alternative aRoI from same crowded scene (e) 3D-BoNet prediction
(based on subsampled aRoI input from

Figure 10.8d)

Figure 10.8: Segmentation results based on crowded input scene given in Figure 10.7.
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meaningful processing. Another aRoI from the same one-minute sequence is shown in
Figure 10.8d and suffers from the same problem.
Therefore, the processing result of e.g. 3D-BoNet, as shown in Figure 10.8c and e, is
very limited in these scenes. Frame-based processing is not limited by the number of
events that need to be considered in the projection to generate the frame encoding. This
gives the YOLO v8 processing an advantage in the processing very crowded scenes. The
YOLO v8 segmentation result of the used example scene is shown in Figure 10.8a for
reference.

Environmental Influences: Illustrated by the example of DVS3, as shown in Figure 10.9c.
The processing is performed in a multi-stage manner, i.e., environmental influences are
removed prior to instance segmentation. This is necessary because these influences are
not, or only to a very limited extent, taken into account in the dataset used for instance
segmentation training.
Due to the nature of such multi-stage processing, errors in earlier stages are propagated
through the pipeline. In some cases, where there is a strong presence of environmental
influences, the UNet-based processing was not able to completely remove all environ-
mental influences. This leads to an overestimation of the number of people in such cases
for all tested approaches, both 2D and 3D, due to misclassifications in the subsequent
instance segmentation.
Figure 10.9c illustrates two examples of environmental influences that were not com-
pletely removed by the applied filtering, as shown in Figure 10.9d.
The dataset on which the filtering is based, DVS-OUTLAB, was recorded in 2020, shortly
after the playground was completely remodeled. At that time, the planted and seeded
vegetation was not yet fully developed. Figure 10.10 shows the difference in the vegeta-
tion on the playground using orthophotos from 2021 and 2023 as an example, as no public
satellite image is available for the time of the dataset acquisition in 2020. Nevertheless,
the difference between 2021 and 2023 demonstrates a clear change in the vegetation on
the site.
An important environmental influence that was not filtered satisfactorily was an in-
creased amount of events triggered by grown grass moving in the wind. The influence
of this type of vegetation is not satisfactorily included in DVS-OUTLAB. In retrospect,
a regular update of the dataset would have been advisable, at least for the inclusion of
changed vegetation.

Objects Far Away: Illustrated by the example of DVS1, as shown in Figure 10.11c.
The positions in each sensor’s field of view where the most activity occurred vary greatly,
as shown in Figure 10.7b, Figure 10.9b, and Figure 10.11b.
For DVS2, activity was detected over almost the entire field of view of the sensor. For
DVS3, almost all of the activity occurred in the top half of the sensor’s field of view.
While for DVS1, the peak of detections occurred in the upper sensor row block. Due to
perspective, this has a significant impact on the projected sizes of the objects.
Figure 10.11c shows examples of people in the sampled recordings that were far away
from the sensor. Regarding object sizes in pixels, compare with Figure 4.2 on page 49.
The processing of these small objects presents two challenges:

1. They tend to be removed by the applied filtering of environmental influences (cf.
the missing instances in Figure 10.11d), since even for humans, their difference from
sensor noise is only visible by including a larger temporal context of several seconds.

161



2. The remaining small instances after filtering are often misclassified as noise by the
instance segmentation.

In summary, the human annotators were clearly superior to the automatic approaches
in their “processing” of these small objects.
The superior results achieved for the DVS2 can be attributed to the fact that this sensor
was mounted with a slightly larger inclination to the ground compared to the other
sensors. This results in a significantly smaller maximum distance in the field of view, as
a smaller measurement area was covered, which improves the given image scale of the
objects. Figure 10.12 compares these distances and areas per sensor. The area covered
by DVS2 was approximately half that of the other sensors.
The sensor positions and orientations were originally chosen to achieve almost complete
sensor coverage of the playground (see Section B.3 in the Appendix). In retrospect,
due to the limited sensor resolution of only 768 × 512 active pixels, the area covered by
each sensor should have been considered more when selecting the sensor positions. This
means that the measuring field and thus the measuring ranges per sensor should have
been reduced.
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Figure 10.9: Results summary for DVS3 with typical example of a challenging scene.
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(a) Year: 2021

(b) Year: 2023

Figure 10.10: Comparison of historical orthophotos of the Living-Lab playground19.

19Orthophotos from Figure 10.10 are provided by GEObasis NRW as part of https://www.tim-online.nrw.
de/. Data is freely available under the https://www.govdata.de/dl-de/zero-2-0 license.
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Figure 10.11: Results summary for DVS1 with typical example of a challenging scene.
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DVS1 DVS2 DVS3
(a) Grayscale scene references with highlighted mask borders

~ 80.3 m

~ 2023 m2

(b) DVS1

~ 5
6.
5 m

~ 1056 m2

(c) DVS2

~ 7
7.3

m

~ 2062 m2

(d) DVS3

Figure 10.12: Coverage area and maximum detection distance per sensor.
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Chapter 11

Spatial Distribution of Activity:
Heat Map Visualization

The descriptions of the approach, methods used, and results of this chapter have previ-
ously been published in:

Bolten, T., Pohle-Fröhlich, R., Volker, D., Brück, C., Beucker, N., and Hirsch, H.
(2022b). Visualization of Activity Data from a Sensor-based Long-term Monitoring
Study at a Playground. In Proceedings of the 17th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications (IVAPP),
pages 146 – 155. INSTICC, SciTePress

In order to incorporate a user-oriented perspective into the planning and design of public
spaces, urban planners need detailed knowledge of the use of an urban space. As mentioned
earlier, this requires long-term monitoring of public spaces. This long-term aspect of moni-
toring and the use of multiple sensors generates a large amount of data. The results need to
be aggregated and visualized appropriately. The key is to present it in a way that decision
makers can easily understand and interpret the collected information.

Therefore, a visualization of the spatial distribution of users over the measured field was
implemented. A procedure for fusing object detections into a joint map-like bird’s eye view is
presented.

The main contributions presented in this chapter are as follows:

• Introduction of a 3D model and simulation-based sensor view mapping to incorporate
terrain modeling characteristics into the processing.

• Presentation of a processing for fusing detections from different sensors, spatial and
temporal binning, and data normalization for visualization.

• Development and evaluation of different visualization variants based on a user study and
presentation of a prototypical interface.
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Introduction
There are several approaches to the visualization of space-time data in the literature. For
example, measured parameters can be used to color individual objects of the observed infras-
tructure. However, the observed playground in this work is designed as a nature experience
space and therefore does not contain classical playground equipment. Instead, there are dif-
ferent areas where children can playfully interact with natural materials. Therefore, in this
practical case, representations of playground equipment cannot be used for visualization.

Scatterplots are typically used to visualize fewer recorded events at a location, such as
manual observations of people on a street segment over a limited period of time. These
visualizations were described and used, for example, by Whyte, who was a pioneer of systematic
user analysis in urban planning [Whyte, 1979]. His study protocols [Whyte, 1980] are still
leading information graphics in the field of urban studies. The use of bubble plots allows
the aggregation of larger datasets by including the size and color of the shape used for the
visualization. A top view of the observed area is typically used when creating visualizations.

Usage maps in the form of choropleth maps or heat maps, are often created to visualize
the results of automated data collection and the resulting large amounts of data. This is a
visualization technique in which the measured variable (e.g., the number of users) is displayed
in different colors taken from a defined colormap. Choropleth maps display information di-
vided into spatial political or geographic units, while heat maps are typically not limited to
geographic or social boundaries.

In [Moussouri and Roussos, 2014] and [Rashed et al., 2016], heat maps were used to analyze
which regions of a museum were used more by visitors. Bolleter also used heat maps to
present the results of Wi-Fi tracking in public spaces to count people and map their stays and
movements [Bolleter, 2017]. The activity in different areas of a student dormitory depending
on the day of the week is visualized in [Rajasekaran et al., 2020] using the same technique.

In general, these heat maps can be created in both 2D and 3D form. In most cases, abstract
2D representations are preferred over 3D representations. This is certainly due to the fact that
2D representations do not require any additional interaction to interpret the data. In some
projects, both options are used together, as in [Rezaei and Azarmi, 2020] to visualize tracking
and distance maps.

11.1 Proposed Processing
For the creation of visualizations, the sensor setup of the considered Living-Lab scenario has
to be taken into account, since the processing results of the individual sensors have to be
combined. The measurement setup on the Living-Lab site was designed and built in such a
way that the mounted sensors could cover the entire measurement area.

Figure 10.12 shows the total area covered by each sensor. However, detections in the
top pixel rows of the sensor have proven to be very error-prone due to the projected small
object sizes. Figure 11.1 shows the overlap in the covered areas when the top 64 pixel rows
of the actively used sensor array are ignored. As a result, there are very limited areas of
overlap between the fields of view of the individual sensors, where a high and reliable level of
detection quality is provided. For this reason, the integration of this multi-sensor setup into
the preceding semantic processing (e.g., with respect to fusion and/or depth estimation) is
very limited.

Therefore, transferring the obtained individual results into a shared representation is an
alternative form of processing. For this purpose, we developed a projection of the individual
detection results into a map-like bird’s eye view. In the following, the developed processing to
derive coordinates for a joint visualization from multiple sensors is presented.
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DVS1 DVS2 DVS3
(a) Grayscale scene references with highlighted detection areas. The top 64 pixel rows are ignored in

addition to the applied masking.

(b) Overlap

Figure 11.1: Adapted sensor coverage areas and overlap.
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BACKGROUND PERSON
Figure 11.2: Object segmentation example with derived object detection coordinate 𝑆𝐷(𝑥, 𝑦)

(from [Bolten et al., 2022b]).

(a) 3D Rendering (b) Wireframe

Figure 11.3: Calculated SFM 3D model of the playground (from [Bolten et al., 2022b]).

11.1.1 Data Preprocessing
One of the processing modules introduced in Part III is used to process the DVS event stream
and derive object instance segmentation. This is achieved by semantic segmentation and
further clustering or by direct instance segmentation. A single object class is selected and
filtered for further processing.

For each selected object instance of the sensor 𝑆 a detection coordinate 𝑆𝐷(𝑥, 𝑦) relative
to the field of view of the sensor is determined. This coordinate is centered on the x-axis of
the object and is located on the ground plane where the object moves. Figure 11.2 illustrates
a detected person and the derived 𝑆𝐷(𝑥, 𝑦) coordinate.

11.1.2 Bird’s Eye View Mapping
The next step is to map the derived object detection coordinates 𝑆𝐷(𝑥, 𝑦), which are relative
to the sensor field of view, into a global representation of the playground, such as a top view
or a blueprint view, as shown in Figure 3.1a on page 22.

Mapping these object detection coordinates is a challenging task due to the complex terrain
modeling of the monitored playground area, including hills and valleys. A simple geometric
transformation between the sensor field of view and the map representation would result in
significant inaccuracies due to the lack of a flat surface plane. To obtain a more precise
estimation, we generated a 3D model of the playground area and conducted the mapping
using this model. In this way, the terrain modeling is included in the applied transformation.

The 3D model was created from 285 images captured during a drone overflight. The camera
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world_to_camera_view()

Figure 11.4: 3D model based coordinate lookup table generation (from [Bolten et al.,
2022b]).

positions in these overlapping images were estimated using the structure from motion (SFM)
technique, based on automatically detected corresponding points. The points of a 3D model
were calculated based on these camera positions. Agisoft Metashape20, a commercial software,
was used for the estimation. Figure 11.3a shows a 3D rendering of the model created, while
Figure 11.3b highlights its terrain characteristics.

This playground model was then used for a 3D simulation based on Blender, a free and
open source 3D modeling and animation software21. In this simulation, camera objects were
positioned and aligned with the real Dynamic Vision Sensor positions in the Living-Lab. In
addition, a bird’s eye camera 𝐵 was positioned.

The simulation also utilized the DVS parameters, including sensor chip size, pixel resolu-
tion, and focal length of the attached lens. The purpose of this simulation was to determine
the relationship between the mesh vertices of the 3D model and the corresponding pixel co-
ordinates of each Dynamic Vision Sensor and the bird’s eye camera. Based on the bird’s
eye camera 𝐵, a lookup table was created for each DVS, which allows a pixel mapping from
𝑆𝐷(𝑥, 𝑦) ↦ 𝐵𝐷(𝑥′, 𝑦′) within a rendered top view. This processing is shown in Figure 11.4.

11.1.3 Multi-Sensor Detection Fusion
In general, this processing results in a high-quality mapping between the (𝑥, 𝑦)-coordinates of
the sensor view and the corresponding points in the bird’s eye view. However, due to terrain
modeling, there are still leaps in this bird’s eye mapping. This is illustrated in Figure 11.5 for
one of the sensors.

For each point 𝑆𝐷(𝑥, 𝑦) of the sensor view, the resulting maximum distance in meters
within the bird’s eye projection is shown, which results from projecting the coordinates within
the 8-connected neighborhood 𝑆𝐷(𝑥±1, 𝑦±1) around this point. Shifting the sensor detection
coordinates by only one pixel can result in projection distances of several meters on the ridges
of the terrain model. These projection distances are taken into account as an “uncertainty
factor” when merging the detections from all sensors into a joint representation.

The object detections of different sensors are first synchronized based on the underlying DVS
event timestamps. For synchronous detections from different sensors, it is tested whether

20https://www.agisoft.com/
21https://www.blender.org/
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Figure 11.5: Visualization of the uncertainty in the 𝑆𝐷(𝑥, 𝑦) ↦ 𝐵𝐷(𝑥′, 𝑦′) pixel mapping
(shown exemplarily for DVS3 within the Living-Lab setup, compare with Figure 3.2c on

page 22; from [Bolten et al., 2022b]).

Detection 
DVS3

Detection
DVS1

Uncertainty-based 
merge

Figure 11.6: Cropped and zoomed example of uncertainty-based merging of projected bird’s
eye detections (from [Bolten et al., 2022b]).
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there are overlaps with other detections within these uncertainty distances. This procedure is
illustrated in Figure 11.6.

The filled circles represent synchronous detections of the sensors, while the outer circles
indicate the corresponding uncertainty distances within the bird’s eye mapping process. The
radii of the DVS1 and DVS3 detections overlap, resulting in a merged detection for visualiza-
tion purposes.

11.1.4 Spatial and Temporal Binning
The playground’s bird’s eye view is divided into several sub-areas using spatial binning to
visualize activity levels. Activity is then determined and plotted for each sub-area. The grid
used for spatial binning is approximately 0.5 to 1 square meter per bin. This selection was
made in order to be able to identify small local differences in usage frequency despite the
overall size of the monitored area.

The long-term observations include periods of varying lengths during which activity occurred
at the site. Since both short-term and long-term aspects are of interest in the evaluation, the
ability to visualize time intervals of different lengths is essential. This poses the challenge that
the displayed activity levels (low to high) must be comparable to each other when visualizing
periods of different lengths, e.g. using the same colormap. For this reason, we apply the
following normalization technique.

In addition to the described spatial binning of the monitored area, a further temporal
binning is performed. For each spatial bin, the fused detections are sorted temporally. The
entire temporal interval for visualization is divided into smaller sections. The number of these
smaller temporal sections containing at least one object detection is then determined. In this
way, a percentage normalization between [0, 1] is realized as a function of the total duration
considered.

For example, an observation time for visualization of one hour and a division into temporal
bins of one minute length results in a scaling of 𝑥/60, where 𝑥 is the number of populated one-
minute detection time blocks. The division into these short time segments (e.g., one minute) is
possible because the semantic analysis of the DVS event stream is performed in much shorter
time windows of only 60ms.

11.2 Created Visualizations
Heat maps were selected as the visualization technique to provide decision makers with an
intuitive and quick overview of the activity levels detected. All generated plots were created
using the library matplotlib [Hunter, 2007].

11.2.1 Heat Map Variations
Several variations were considered and then evaluated in a user study to generate these heat
maps.

Level of Detail in Bird’s Eye View (LoD)

To visualize the spatial location of activity detections, it is crucial to have an image or map
representation of the monitored playground area. However, the background image used to
represent the playground can be created at different levels of detail.
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(a) RGB rendering (b) Grayscale rendering (c) RGB sketch

(d) Grayscale sketch (e) Simplified sketch

Figure 11.7: Level of detail used in the bird’s eye view (from [Bolten et al., 2022b]).

In our work, we created photorealistic renderings based on the performed 3D Blender model
simulation, as well as abstracted sketches of the monitored area. Figure 11.7 shows examples
of these background images, including different levels of detail and color or grayscale variants.

3D vs. 2D Display Dimensionality
Display variants were created with a two-dimensional and a three-dimensional rendering of the
plot.

In the case of the 3D display, the activity is represented by the height of a three-dimensional
surface in addition to the color used. An example is shown in Figure 11.8a. To interpret these
3D views, it is necessary to change the viewport. Therefore, animations have been created
that include a 360-degree rotation of the plot.

A two-dimensional image, on the other hand, allows data interpretation without this type
of animation or interaction. An example of this visualization is shown in Figure 11.8b.

Spatial Binning Variants
Besides the straightforward variant of spatial (𝑥, 𝑦)-binning into rectangular tiles, we also
applied a tessellation of regular hexagons, as shown in Figure 11.9a and b. In addition, a
contour-based representation has been implemented to group areas with similar usage (see
Figure 11.9c).

These variants share a discontinuity in the generated representation. As an alternative, a
variant based on Kernel Density Estimation (KDE) has also been implemented, which allows
a gradual smoothing of the activity level. An example of this is shown in Figure 11.9d.

Colormap Variants
For heat maps, selecting an appropriate colormap is critical to interpreting the data [Eghteabs
et al., 2017]. This selection should also take into account the needs of people who are colorblind
or elderly and who may otherwise have difficulty interpreting the data [Silva et al., 2011].
Different types of colormap generation are described in the literature [Zhou and Hansen, 2015].

Colormaps can be generated procedurally, with the goal of being able to interact with as
many different datasets as possible. In addition, there are perception-based rules for specific
applications that have been learned over time. The display of measured temperatures on a
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(a) 3D with animated viewport (b) 2D projection

Figure 11.8: Spatial display variants in 3D and 2D (from [Bolten et al., 2022b]).

(a) Rectangles (b) Hexagons (c) Contour (d) Continuous density,
resulting from KDE

Figure 11.9: Applied spatial binning and display variants. Shown is the highlighted region
extracted from Figure 11.8b (from [Bolten et al., 2022b]).

(a) Bone (b) BuGn (c) RdPu (d) YlOrBr

Figure 11.10: Applied sequential colormaps (from [Bolten et al., 2022b]).

(a) Viridis (b) Jet (c) Gnuplot2 (d) Bwr

Figure 11.11: Applied diverging colormaps (from [Bolten et al., 2022b]).
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color scale from blue to red is a prominent example of this. For our monitoring application,
data-driven generation is relevant to ensure that both short-term and long-term data are
interpreted in a similar way. To visualize ordinal data, sequential perceptually uniform maps
should be considered that accurately reflect numerically equal distances between values for
equally perceived color differences [Moreland, 2009].

For some tasks, there are user studies that have been used to develop and select appropriate
colormaps. Compared to the colormaps that have long been learned and used daily by the
general public (e.g., in weather forecasting), it is an open question which colormap is best
suited for decision makers in terms of being easily interpretable and intuitively linked to the
activity level of the area as determined by the performed monitoring.

Therefore, several simple sequential colormaps (see Figure 11.10) as well as diverging col-
ormaps (see Figure 11.11) were considered and evaluated. For the diverging colormaps, the
usual use of a center point within the double-ended gradient was omitted. This results in a
continuous color fade for the detected and normalized activity level from low to high through
this center point.

Perceptually uniform perceived colormaps were also taken into account in this colormap
consideration. In addition, the direction of the colormap used to encode the activity level,
i.e. from dark to bright or vice versa, was also considered.

A linear alpha blending with higher transparency factors for lower activity levels was used
within the colormap to overlay the generated activity visualizations on the selected background
plot image.

11.3 User Study

The previously described activity heat map representations and variants were evaluated in
an online survey. This online survey was conducted as part of the underlying EFRE-funded
research project. It was led by the participating Faculty of Design at Niederrhein University
of Applied Sciences.

The carefully selected participants came from professional backgrounds in urban planning and
interaction design, but also interested citizens were involved in order to reflect the layman’s
perspective. The survey was designed to test the comprehensibility of the generated activity
representations by means of heat maps, which were created based on design assumptions re-
garding readability and experience-based knowledge. It was also intended to identify adequate
default settings for future visualizations and applications.

Sixteen participants participated in the online survey. They had the opportunity to rate
the different visualizations and were asked to comment on their decisions. The results reveal
trends and confirm previously stated assumptions.

Level of Detail and Dimensionality

The RGB rendering of the bird’s eye view image (see Figure 11.7a) was selected as the preferred
variant for the level of detail of the background image. However, comments indicated that the
displayed user activity could not be mapped accurately and precisely because the heat maps
overlaid the image too strongly.

For the 3D view, it was found that a high level of user activity was displayed to far away
from the map, making it difficult to classify.
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(a) 3 color
blocks

(b) 5 color
blocks

(c) 7 color
blocks

(d) 256 color
blocks

Figure 11.12: Used level of detail in activity colormap through further binning it into 𝑛
blocks (from [Bolten et al., 2022b]).

Colormaps and Binning

Regarding color, it can be summarized that colormaps with diverging colors were preferentially
associated with user activity. One assumption as to why these diverging colormaps were
preferred over the sequential ones is that they offer a higher contrast and thus are more easily
distinguishable, even for older users. This contrast discrepancy is further enhanced by the
increased alpha blend factor used at lower activity levels.

However, contrary to the common assumption in the literature [Moreland, 2009], no per-
ceptually uniform colormap was preferred. The colormap jet (see Figure 11.11b) was preferred
by the participants. We assume that this colormap preference is indirectly based on experien-
tial knowledge (compare with commonly used colormaps in weather forecasting, ranging from
blue to red), leading to a corresponding association and increased intelligibility.

With respect to the colormaps used, a further simplification has been evaluated within the
user survey. This simplification involves quantizing the continuous activity scale into coarser
sections, as shown in Figure 11.12. The idea was to clearly divide the activity into blocks that
can be referenced from “low” to “high”. However, the study participants clearly preferred the
full 8-bit color gradient as shown in Figure 11.12d. Therefore, subdividing the color scale was
not considered further, as it also leads to a loss of information and makes it more difficult to
identify hotspots on the plot.

For the spatial binnings, most respondents chose to display user activity in rectangular sub-
areas (see Figure 11.9a). This preference is consistent with established representations. Similar
rectangular grids were used by the pioneer of spatial observation, William H. Whyte.

Plausibility Check

Finally, a plausibility check was performed in the online survey. Users were shown a map with
three marked areas. They were asked to select the marked area where the highest user activity
was measured. The correct answer was chosen by 15 out of 16 respondents. This confirms the
comprehensibility of the presentation.
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11.4 Interface Prototype
The studied visualizations provide a basis for the design of an integrated interface to eval-
uate the spatial distribution of users in the measured area. The large amount of collected
and complex data can thus be made available interactively to urban planners and interested
citizens.

In addition to the monitoring data collected by the installed Dynamic Vision Sensors,
weather data should also be recorded. This data can contribute to a better estimation of the
usage of the playground at a given time, as fewer users can be expected during cool rainy
weather than during warm sunny weather.

A prototyped interface mockup is shown in Figure 11.13. This interface provides the user with
the ability to select individual time frames and to focus on spatial sub-areas of the playground.
In addition, details of the prevailing weather conditions are directly integrated to easily provide
insight into the circumstances during the considered time period of the visualized usage on
the site.

The heat map visualization was adapted based on the results of the user study. A sketch
drawing of the playground was superimposed on the rendering of the user activity to improve
the spatial attribution as shown in the interface mockup. This allows for a more accurate
spatial mapping of the user activity.
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Figure 11.13: Example for prototyped user-interface (from [Bolten et al., 2022b]).
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Summary of Part IV

Large amounts of data are generated during long-term monitoring, especially with multi-sensor
measurement setups. Therefore, efficient preprocessing is required.

A processing pipeline was presented that is able to extract scenes of further interest within the
performed monitoring. The objects contained in the scenes are used for decision-making. Only
a subset of the included object classes, so-called objects of interest, lead to the persistence of
the ongoing recording. This reduces the memory footprint of the monitoring process.

The results of the segmentation analysis performed in Part III were used to realize an
implementation that takes into account the limited computing and power capacities on-site.
During processing, spatial areas of interest are identified by filtering and thresholding. These
areas are then processed in a downstream semantic segmentation. Based on an evaluation
of unprocessed recordings, the presented pipeline was shown to be able to filter scenes with
a high level of quality. On a large test dataset, an overall F1 score of approximately 0.94
was achieved for the separation of long-term recordings at the scene level. Therefore, the
pipeline was directly integrated and used in the recording environment of the on-site long-
term recordings.

One of the two primary parameters to be derived by the developed monitoring system is the
number of users within the observation area. In order to estimate the performance of the system
in this task, all recordings from the entire measurement period in 2021 were processed. The
selection of a subset of scenes was necessary to keep the processing and subsequent evaluation
within reasonable limits. Representative scenes were selected, including the full range of on-
site and typical usage scenarios. The scenes were then annotated by ten human reviewers to
provide a human-based reference of the included user volume.

A multi-stage processing approach was developed, consisting of two stages. The first stage
involved the filtering of environmental influences through the application of a UNet-based
approach. The second stage involved the application of 2D frame and 3D space-time event
cloud-based instance segmentation, to automatically determine the included user volume. The
results obtained were then compared with the aforementioned human reference. Both 2D and
3D based processing yielded satisfactory results. Typical error cases were reviewed and used to
illustrate aspects that should be considered in the development of future monitoring systems,
scenarios, and their designs.

The obtained qualitative segmentation results also indicated the applicability of the developed
processing to extract the spatial distribution of the detected and counted objects. However, an
intuitive aggregation of the derived spatial distribution of users across the measured playground
is necessary to present the obtained results to urban planning and design stakeholders.

We introduced a 3D SFM model extracted from drone footage to integrate the existing
terrain modeling into the processing. Based on this model, a cartographic bird’s eye view of the
playground was created. In addition, this model allows a precise mapping between the DVS
pixel coordinates and the generated top-view image. A procedure for fusing and normalizing
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temporally and spatially close objects was presented.
Different heat map visualizations were created. A user study was conducted to evaluate

their comprehensibility. Finally, a prototype of an interface was presented. This interface aims
at an interactive exploration of the obtained monitoring data.
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Part V

Conclusion
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Chapter 12

Summary and Conclusion

A proof-of-concept monitoring system based on Dynamic Vision Sensors has been developed
that, by analyzing long-term observations, can create an evidence-based database on the long-
term use of public space. This can serve as a basis for downstream decision-making in an
urban planning process.

The development of this system had to take into account real-world aspects, as the practical
application of the measurement setup in the Living-Lab setup outside of controllable laboratory
conditions leads to influences that have to be dealt with.

A summary of the progress made in the development of this monitoring system is provided,
along with a critical review of the limitations of the system. Additionally, suggestions for
improvements and further work are presented.

12.1 Summary
Due to their technical advantages over conventional image sensors, Dynamic Vision Sensors are
well-suited for outdoor applications such as the monitoring scenario considered in this work.

In particular, they provide data acquisition with minimal redundancy and low power consump-
tion. In addition, due to their very high dynamic range, they are able to operate effectively
directly under a wide range of lighting conditions without the need to adjust characteristics
such as exposure time, lens aperture, or light sensitivity gain during ADC conversion, as is the
case with conventional sensors. This also applies to the intrascene dynamic range, allowing
very bright and very dark areas of the same scene to be captured simultaneously. This is
particularly useful and interesting when monitoring outdoor areas.

12.1.1 Contributed Datasets
Despite these technical advantages, Dynamic Vision Sensors have not been widely used in such
monitoring applications. One obstacle has been the lack of publicly available datasets required
to train and evaluate processing approaches. To address this issue, we have contributed two
entirely new datasets.

The DVS-OUTLAB dataset can be used for semantic segmentation in outdoor monitoring
applications, as it incorporates the environmental influences that must be taken into account
in real outdoor monitoring. This dataset provides over 47,000 semantically labeled DVS data
patches.

We also contributed N-MuPeTS, a DVS-based dataset containing continuous recordings
of up to four actors performing scenarios that arise from common tracking and segmentation
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Figure 12.1: Summary of analyzed processing approaches and representations.

challenges, while providing object instance labels and activity annotations. This allowed us to
leverage and evaluate deep learning-based instance segmentation approaches in the context of
event-based vision.

12.1.2 Segmentation
The output of Dynamic Vision Sensors is fundamentally different from that of standard image
sensors because it is asynchronous, unordered, and spatially sparse. For processing, it can be
represented in different forms, including space-time event clouds, event graphs, voxel grids, or
it can be projected onto an image plane to create a classical frame.

Currently, there is no de facto standard representation in the literature. For this rea-
son, different representations, with a focus on three-dimensional space-time event clouds, and
their processing with different deep learning approaches were evaluated with respect to their
segmentation results in the considered monitoring context. A summary and overview of the
considered processing approaches and corresponding representations is shown in Figure 12.1.

For semantic segmentation, the processing of space-time event clouds by PointNet++, the
pioneering and groundbreaking approach for deep learning-based point cloud processing, was
optimized in terms of network hyperparameters and input data preprocessing. This resulted in
a set of recommended parameter values. The 3D point-based processing achieved weighted F1
score results of > 0.93, while outperforming a 2D frame-based Mask R-CNN reference method
in both quality and runtime.

The experiments were extended to include voxel-based representations for processing. How-
ever, the selection of the voxel size to be used is a difficult and often ambiguous task. Due to
the sparsity of the DVS event stream, many voxels remain empty when trying to preserve fine
details in the voxelization step. The use of classical 3D convolutions on this data has not led
to improvements.

Considering the task of instance segmentation, point-, voxel-, and frame-based representations
and processing were also compared. The experiments, performed on two separate datasets,
showed differences to be considered depending on the main objective for processing. Space-
time event cloud-based processing demonstrated superior per-event accuracy for predicted
instances, while frame-based processing was limited by the achieved pixel accuracies in the
predicted object masks.

For example, the experiments with the DVS-iOUTLAB dataset showed a difference of 19%
in favor of point-based processing by JSNet for the mAP0.5

0.95 score, which takes greater account
of details than the mAP0.5 score due to the inclusion of higher IoU thresholds. For the mAP0.5

score, on the other hand, there was a 9% improvement in favor of frame-based Mask R-CNN
processing.
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12.1.3 Real-World Application Context
A Living-Lab-based long-term monitoring was conducted in the real-world outdoor context of
a children’s playground. The study resulted in a comprehensive collection of DVS monitoring
data recorded between 2019 and 2021.

Since this public space is not in constant use, it was necessary to identify time segments
containing events triggered by a predefined set of object classes and to store them for later,
more in-depth analysis. This selection had to take into account the environmental influences
included in the sensor signal, as well as the limited computing capabilities on-site. To achieve
this, a processing based on 3D point-based semantic segmentation was implemented.

An evaluation on real-world data of almost 90 hours, recorded over several days under
varying weather conditions, demonstrated a false positive and false negative rate of 1.5% and
3.8%, respectively. This proved the reliability of the on-site scene selection and provided an
appropriate storage solution.

The system primarily aims to derive two main parameters in order to create an evidence-based
database on the long-term use of the area to support the decision-making process in urban
planning. These are the number of users and their spatial distribution within the monitoring
area.

The goal of counting the number of users in the area was evaluated based on sampled repre-
sentative scenes from the monitoring conducted in 2021. From the pool of approximately 630
hours of recorded DVS data, 270 minutes were sampled covering the full spectrum of occurred
usage, including scenes with only one or a few people to very crowded scenes. Subsequently,
2D frame-based and 3D space-time event cloud-based instance segmentation were used to de-
termine the number of included PERSON instances, which were compared to the distribution
of manual counts provided by ten different human annotators. On average over all recordings
evaluated, the three-dimensional processing by 3D-BoNet achieved the best results on this
task. Counting based on 2D and 3D segmentation of recordings from the sensor that covered
the most activity resulted in an average deviation of less than 0.33 and 0.35 counted PERSON
instances outside the interval formed by the human reference, respectively.

Long-term monitoring systems generate a substantial quantity of data. In order to provide a
meaningful and usable insight about the spatial distribution of observed space usage, an aggre-
gation is necessary. The results of this aggregation must be easily and intuitively understood
by the stakeholders who want to benefit from the monitoring.

For this purpose, a visualization was implemented based on the obtained instance seg-
mentations. This visualization combines the detections into a joint bird’s eye view of the
playground and shows the different spatial distributions of usage as a heat map false color
representation. The elevation modeling of the playground was integrated into the mapping
between the sensor coordinates and the bird’s eye view based on a 3D terrain model. The suit-
ability of this visualization approach was evaluated in a user study and an interface prototype
was created for a possible future end-user application.

12.2 Conclusion: 3D vs. 2D Event Representation
The processing of 3D space-time event clouds by deep learning-based approaches currently
requires data subsampling to meet practical event count limitations. This has been achieved
by introducing spatial patching in addition to temporal windowing of the data.
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For this purpose, the scenes were initially divided into fixed-sized subareas, so-called
Patches-of-Interest. However, this can lead to objects being cut off at the boundaries of
these patches. In the course of this work, this patching procedure was modified to be adaptive
in size. Based on an event-clustering step, input regions were formed in which objects are not
cut into separate parts. However, this preprocessing, either in fixed-size or adaptively formed
input regions, results in a higher number of inferences needed for 3D-based processing com-
pared to a 2D-based processing counterpart. This is due to the fact that 2D-based processing
is capable of processing the entire data of a temporal window without spatial patching in a
single run.

In order to aggregate the spatial distribution of usage within the final projection step into
a joint bird’s eye view, the obtained instance segmentation quality must be considered. It
was observed that the 3D-based processing of JSNet and 3D-BoNet tends to predict errors
in the form of a few misclassified events across object instance boundaries. Without further
postprocessing of the segmentation results, these misclassified events, even if only a few, must
be weighted more heavily as errors for the bird’s eye view generation than pixel inaccuracies
obtained in the dense pixel masks generated by frame-based instance segmentation. This means
that for the desired public space monitoring application, a higher mAP0.5 is more useful than
a higher mAP0.5

0.95.
Especially for DVS2, which covered the most activity, only small differences in object count-

ing based on 3D and 2D processing were observed. Therefore, considering that the implemen-
tation of standard 2D convolutions are better optimized compared to custom-implemented 3D
point-based processing, from an application-oriented point of view, classical 2D frame-based
processing is preferable for a commercial adaptation of the developed system.

In the course of this work, it became clear that the DVS is capable and predestined to clearly
capture components triggered by environmental influences when the sensor is used in outdoor
scenarios. What in the context of this dissertation is considered an “unwanted” influence to
be filtered, has already led to immediate follow-up work with the goal of DVS-based insect
monitoring [Pohle-Fröhlich and Bolten, 2023; Pohle-Fröhlich et al., 2024].

The movement of insects contains a significantly higher proportion of fast motion compo-
nents compared to the objects studied on the playground. From an academic point of view,
it seems promising to further investigate 3D space-time event cloud-based processing on such
data, as the results obtained in this work have shown its general applicability and comparabil-
ity with results from 2D frame-based processing. It can be expected that, for faster motions,
the advantage of 3D methods will become more apparent.

12.3 Limitations
The use of Dynamic Vision Sensors in real-world outdoor applications is still very rare. This
work can serve as a valuable reference for other researchers who intend to develop similar
systems.

12.3.1 Real-World Application Context
The CeleX-IV sensor used in the developed system has a high level of background activity.
This prevailing noise level must be taken into account during the system design process to
ensure that the system’s performance is not unduly constrained.

A strong temperature dependency of the noise level was found for the sensor used. Through
a combination of spatio-temporal filtering and active temperature stabilization of the sensor,
this noise level could be significantly reduced, which is very advantageous for subsequent
processing. However, the electrical energy required for this active temperature stabilization
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counteracts the technical advantage of a low electrical power consumption of a Dynamic Vision
Sensor.

For the development of future systems, it is recommended that the sensors used and their
bias settings be tested in advance at different temperatures. Promising next-generation Dy-
namic Vision Sensor models with improved sensor noise characteristics are already available
for research and development.

The evaluation of the quality of the quantitative derivation of the user volume from the
recorded real-world observation data revealed two main issues with the system used in the
practical application context.

In a long-term monitoring conducted over years, especially in a context like the monitored
nature-experience-oriented playground, the given infrastructure may change over time. In
our case, the local vegetation changed significantly over time, which should have been taken
into account in updated datasets and retrained models in order to better incorporate these
changes into the processing. Therefore, we recommend a critical review and regular inspection
of the measurement site to detect these changes in already considered object classes or the
introduction of entirely new object classes. Furthermore, an extension of the processing to a
panoptic segmentation should be considered by including the environmental influences in the
datasets used for instance segmentation. In this way, the multi-stage processing of filtering
environmental influences followed by instance segmentation could be replaced by a single
segmentation step.

The CeleX-IV Dynamic Vision Sensors provide a usable spatial resolution of 768 × 512
pixels. The number of sensors used to cover the playground area was chosen as a compromise
between cost, coverage, and the a priori expected distribution of users on the measurement
area. The sensors were positioned to achieve an almost complete coverage of the playground
area, while expecting a considerable user volume across the entire playground area. However,
the actual usage behavior was heavily skewed towards the coverage area of a single sensor.
This resulted in a lot of activity occurring only in the peripheral coverage areas of the other
sensors, where processing is very challenging due to the very small size of the projected objects
resulting from the large distances involved. In retrospect, and therefore as a recommendation,
more attention should have been paid to ensuring that the detection areas per sensor cover a
similarly large area, which should have been selected in a better ratio to the available pixel
resolution.

12.3.2 Segmentation
The applied fixed-size partitioning of the provided sensor data into Patches-of-Interest proved
to be error-prone for objects that are truncated at the boundaries of the formed patches.

However, due to the logic applied in the creation of the DVS-OUTLAB dataset, and with a
processing based on such patches in mind, the provided labels were also exported in a spatially
patched manner. As a result, the use of this dataset in an unpatched form is a challenge.
Based on the trained segmentation networks, a complete processing of the given database
would be possible. After a manual check and possible corrections of the resulting automatic
segmentations, this shortcoming of the dataset can be overcome and complete, unpatched data
would be available.

Increased spatial pixel resolutions of modern and upcoming Dynamic Vision Sensor models
will further increase the challenges related to event subsampling required for 3D space-time
event cloud-based processing.

Adaptive selection of regions for further processing can counteract the increasing total
number of events due to higher spatial resolutions. However, very crowded scenes have proven
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to be a challenge in this context, as the proposed decomposition fails in such scenes due to
the spatial proximity of the given events. In general, a balance between the spatial resolution
required for the processing objectives and the resulting number of triggered events has to be
found (see also [Gehrig and Scaramuzza, 2022]).

12.4 Further Work
The evaluated long-term monitoring scenes contain only a few instances of non-PERSON object
classes. Therefore, the performed evaluation was limited to this class.

Especially for the aggregated representation in the form of projected bird’s eye heat maps,
an open aspect for further work is the evaluation of methods for the consolidated visualization
of activities caused by a set of multiple classes. The goal would be to allow further differentia-
tion of the underlying activity levels per class. This could be achieved by the interactive use of
different visualization layers or by the integration of class icons into the activity visualization.

The 3D space-time event clouds constructed for processing in this work, with 𝑒𝑖 = {𝑥𝑖, 𝑦𝑖, 𝑡𝑖},
are based solely on the spatio-temporal components of the event stream. Consequently, one
aspect for further research may be to consider incorporating additional features, such as event
polarity 𝑝𝑖, into this representation. Furthermore, the incorporation of fully end-to-end learned
event representations is another promising area of research.

Currently, each formed input of the event stream is processed independently, as the ap-
plication requirements do not strongly depend on strict continuous predictions for each of
the processed 60ms time windows. In general, processing is likely to benefit from continuity
improvements when recurrent components are integrated. This is also likely to be the case for
3D-based processing with approaches such as [Min et al., 2020]. The processing of point cloud
sequences by transformer architectures, e.g. [Wei et al., 2022], is another interesting approach
to achieve improvements.

12.4.1 Moving Towards Object Tracking
Object tracking is an interesting extension of processing in real-world long-term monitoring
setups. The high temporal resolution of Dynamic Vision Sensors results in a nearly continuous
signal for moving objects in the 3D space-time output, while ideally not including static scene
components.

Preliminary work has been done in [Bolten et al., 2019] that implements an object track-
ing based on event clustering. However, this approach has limitations with respect to the
discrimination of different object classes and the spatial proximity of instances.

Improvements to this approach can be made based on the work performed on instance seg-
mentation. As shown using the N-MuPeTS dataset (see Figure 5.1 on page 56), the continuity
of events in the event stream almost automatically leads to object tracking if the instance
segmentation is of appropriate quality.

In this case, the intersections in the resulting object trajectories pose the greatest challenge.
An approach based on derived motion and velocity parameters for tracking instances across
these intersections is an interesting point for further work. The N-MuPeTS dataset provides
suitable scenes with corresponding motion patterns and associated annotations to directly
support and enable these investigations.

192







Part VI

Appendices

195





Contents

A Thermal Stabilization 199
A.1 Thermo-Mechanical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
A.2 Control Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
A.3 Retrospection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

B Hardware Setup 209
B.1 Living-Lab: System Components . . . . . . . . . . . . . . . . . . . . . . . . . . 210
B.2 Sensor Enclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
B.3 Sensor Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

C Software Implementation 219
C.1 CeleX-IV SDK: Structure and Basic Processing . . . . . . . . . . . . . . . . . . 219
C.2 Processing Pipeline and Stage Concept . . . . . . . . . . . . . . . . . . . . . . . 220
C.3 Custom Data Export and Reader Concept . . . . . . . . . . . . . . . . . . . . . 222
C.4 Living-Lab: PointNet++ Inference . . . . . . . . . . . . . . . . . . . . . . . . . 224

D Datasets 225
D.1 DVS-OUTLAB: Event Count Statistics . . . . . . . . . . . . . . . . . . . . . . 225
D.2 N-MuPeTS: Masks, Statistics and Sequences Annotations . . . . . . . . . . . . 227

E Segmentation 233
E.1 PointNet++ Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 233
E.2 Instance Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
E.3 Consideration of a Further Application Context . . . . . . . . . . . . . . . . . . 242

197



List of Figures
A.1 FPGA heat sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
A.2 Heat pump stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
A.3 LWIR-images of the system in operation. . . . . . . . . . . . . . . . . . . . . . 202
A.4 Temperature sensor positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
A.5 Circuit diagram of Peltier element. . . . . . . . . . . . . . . . . . . . . . . . . 203
A.6 Measured temperature during a sequence of different setpoints. . . . . . . . . 204
A.7 Histogram of backplate temperatures. . . . . . . . . . . . . . . . . . . . . . . 204
A.8 Plot of logged controller metrics during the first five minutes of 18.06.2021. . 207
B.1 System components at the central point of data acquisition and processing. . 211
B.2 Battery state of charge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
B.3 System components inside the sensor enclosure. . . . . . . . . . . . . . . . . . 214
B.4 Sensor mount and system components. . . . . . . . . . . . . . . . . . . . . . . 215
B.5 CAD model of the sensor enclosure. . . . . . . . . . . . . . . . . . . . . . . . . 216
B.6 Blender-based 3D sensor position modeling and optimization. . . . . . . . . . 218
C.1 Main structure and processing components of CeleX-IV SDK. . . . . . . . . . 221
C.2 Structure of the developed and implemented generalized processing pipeline. . 223
C.3 Diamond inheritance design pattern for custom data reader. . . . . . . . . . . 224
D.1 DVS-OUTLAB event counts: complete sensor view. . . . . . . . . . . . . . . . 225
D.2 DVS-OUTLAB event counts: spatial patches. . . . . . . . . . . . . . . . . . . 226
D.3 N-MuPeTS: possible dataset sequence merge. . . . . . . . . . . . . . . . . . . 227
D.4 N-MuPeTS: APS color segmentation examples. . . . . . . . . . . . . . . . . . 228
E.1 Event counts for time Δ=10ms filtered aRoIs. . . . . . . . . . . . . . . . . . . 239
E.2 Visualization of GT labeling quality of DDD17 subset. . . . . . . . . . . . . . 245

List of Tables
A.1 Excerpt of meteorological observations made in Düsseldorf on 18.06.2021. . . 205
A.2 Temperature extrema in 10-minute intervals in Düsseldorf on 18.06.2021. . . . 205
D.1 Cumulative durations per color combination in quality class 2. . . . . . . . . 229
D.2 Duration statistics per annotation in quality class 2. . . . . . . . . . . . . . . 229
D.3 Occurrence statistics per annotation in quality class 2. . . . . . . . . . . . . . 229
D.4 Cumulative durations per color combination in quality class 3. . . . . . . . . . 230
D.5 Duration statistics per annotation in quality class 3. . . . . . . . . . . . . . . 230
D.6 Occurrence statistics per annotation in quality class 3. . . . . . . . . . . . . 230
E.1 PointNet++ network configurations. . . . . . . . . . . . . . . . . . . . . . . . 234
E.2 3D Network variant configurations. . . . . . . . . . . . . . . . . . . . . . . . . 235
E.3 PointNet++: detailed per-class F1 scores. . . . . . . . . . . . . . . . . . . . . 236
E.4 Network variants: detailed per-class F1 scores. . . . . . . . . . . . . . . . . . 237
E.5 Segmentation results on complete N-MuPeTS test set. . . . . . . . . . . . . . 239
E.6 Semantic segmentation results per class on DVS-iOUTLAB dataset. . . . . . 240
E.7 Instance segmentation results per class on DVS-iOUTLAB dataset. . . . . . . 241
E.8 PointNet++ configuration summary. . . . . . . . . . . . . . . . . . . . . . . . 243
E.9 Results on subset of DDD17 dataset. . . . . . . . . . . . . . . . . . . . . . . . 244

198



Appendix A

Thermal Stabilization

As described in Section 3.3.1, the background noise behavior of the CeleX-IV Dynamic Vision
Sensor is highly temperature dependent. This behavior is also highlighted in Figure 3.8 on
page 29.

Therefore, the sensor system features an active temperature stabilization. A Peltier element,
relays, and multiple temperature sensors are used to create a closed-loop controller. The central
processing unit is an Arduino-based microcontroller board. The system can log temperatures,
humidity, voltages, and currents over the complete duration of operation.

In the following, the design intentions and resulting hardware setup of the thermal concept
are described. The control loop configuration and results from the real-world outdoor operation
are presented afterwards.

A.1 Thermo-Mechanical Setup
The CeleX-IV Dynamic Vision Sensor comes with an OpalKelly XEM6310 FPGA development
board22. This board features a Xilinx Spartan 6 FPGA and an USB 3.0 interface.

A.1.1 Heat Sources
The imaging sensor is heat-sensitive as noise increases drastically with temperature. Every
component behind that operates digitally and cooling is not critical (within the operating
limits).

One source of heat is of course the environment. The ambient temperature can be high
during summer days. It would be possible to enclose the complete system airtight, insulate
it, and cool the interiors, but this approach would entail considerable effort, increased weight,
and cost. Here, we opted for an open, “breathing” system with forced air exchange.

Besides external sources, multiple electrical components on the FPGA board can be iden-
tified as heat sources23 (i.e. “self-heating”):

• Spartan-6 FPGA
• SDRAM
• USB host interface
• multiple switching regulators

The dominating heat source is the FPGA itself. This was validated using a Teledyne FLIR
Lepton 3.5 longwave infrared (LWIR) camera as shown in Figure A.1. The FPGA is located

22https://opalkelly.com/products/xem6310/
23https://docs.opalkelly.com/xem6310/powering-the-xem6310/
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(a) Mechanical drawing of the XEM631024 (b) LWIR-image of the FPGA’s backside

(c) LWIR-image of the CeleX-IV sensor board’s
backside

(d) bottom right: LWIR-image of the FPGA’s
front side

Figure A.1: FPGA heat sources. All LWIR-images were taken in rapid succession at room
temperature after one hour of operation.

behind the perimeter of the sensor board. This means the heat-sensitive image sensor is located
in close proximity, albeit with an insulating air gap, of the system’s major heat source.

The lens is mounted via a CS-mount to C-mount adapter made out of EN AW-5083 alu-
minum. The walls, which the adapter sits on, are only 2mm in thickness so that the area of
contact with the sensor board is minimized while ensuring no light leakage. The sensor board
is made from FR-4 or a similar material. FR-4 has a low thermal conductivity [Mohan, 2019,
p. 7] and the mounting holes are electrically isolated, i.e. no contact to the copper plane is
possible. Therefore, despite its close proximity, the lens itself is mostly thermally decoupled
from the rest of the system and is not considered further. Later experiments (see Figure A.3)
verify that the lens is only slightly cooled under ambient temperature hinting at a low thermal
conductivity connection to the Peltier element. Heating from direct sunlight is no concern due
to protection from the enclosure itself.

A.1.2 Heat Pump Stack
It is not easy to extract the generated heat directly from the sensor PCB because the distance
to the FPGA board, dictated by the PCB connectors, is only a few millimeters. Recall that
the greater heat source is the FPGA board itself. Extracting heat from the backside of the
FPGA board is therefore preferred.

The chosen interface is a plate, milled from EN AW-7075 aluminum, custom fit to the

24adapted from https://docs.opalkelly.com/xem6310/specifications/
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(a) Stack without a fan and thermal pads (b) Masked thermal pad

Figure A.2: Heat pump stack.

backside of the FPGA board – in the following referred to as backplate. On this metal plate,
both, the FPGA board and the sensor board, are mechanically fixed.

A 40 × 40mm Peltier element is mounted on the other side of the backplate. The Peltier
element is driven using a H-bridge made up of two single-pole double throw relays. This
enables reversal of the supply voltage which leads to reversal of the heat current and thus
cooling as well as heating.

The other side of the Peltier element features an oversized heat sink with a fan. It is
available for consumer market CPUs with up to 120W TDP and offers a cheap, fitting solution
to heat dissipation.

The FGPA’s chip is the most protruding component and thus can be thermally connected
to the backplate by heat-conducting paste alone (see Figure A.2, right image, on the left half
the imprint can be seen). The air gaps between the PCBs and the backplate are filled with
thermally conductive pads. Between sensor and FPGA board two layers were stacked. When
necessary, cut-outs were made for protruding electrical elements like resistors and integrated
circuits (see Figure A.2).

A.1.3 Forced Air Cooling
Camera lens and cooled sensor are located at the front of the case, switching converters and
heat sink are located towards the rear. Two 60mm fans create an airstream from the front
to the back. The required holes are cut out from the base of the enclosure. A coarse grid
prevents insects or larger particles from being sucked into the enclosure.

At the back of the enclosure a slit across the breadth of the case is left open. The cross-
section area is matched to that of the inlets in order to not create a constriction.

This creates a temperature gradient from the front to the back and a constant exchange
of air that prevents built-up of moisture.

A.2 Control Engineering
A.2.1 Instrumentation
A BME280 temperature sensor is mounted on the backplate near the “cold end” of the stack
and close the FPGA chip. Using this temperature sensor a closed-loop control loop is formed.
The temperature is read out via I2C by an Arduino microcontroller.
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(a) LWIR-image of the mast head assembly (b) Close-up LWIR-image of the stack

Figure A.3: LWIR-images of the system in operation.

BME280

DS3231

Ardu
ino

(a) Sensor enclosure (b) CeleX-IV IMU position

Figure A.4: Temperature sensor positions.

Current flowing through the Peltier element is measured using a INA219 current sensor.
The current sensor was modified to a 22mΩ shunt resistor to increase the maximum measurable
current.

For monitoring of the ambient temperature, the temperature sensor within the DS3231
real-time clock is used. This module is located at the rear and opposite of the switching
regulators. The readings should therefore give an estimate of the temperature inside the
enclosure, independent of influence by other components inside.

The internal temperature sensor of the Arduino microcontroller was used for verification
of tendencies. As the microcontroller as a real-time system has a constant computing load,
the heating up should be constant as well. All temperature sensors were calibrated across all
systems to a single point, i.e. offsets relative to one of the DS3231 modules.

See Figure A.4 for an overview of the temperature sensors installed inside each enclosure.

A.2.2 PID-Controller
Two-point, three-point, and PID controllers were considered.

A two-point controller where the Peltier element is used for cooling is a simple and sufficient
solution. A necessary improvement is the use of an H-bridge in order to use the Peltier element
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Figure A.5: Circuit diagram of a Peltier element connected to a H-bridge made up of two
relays for cooling and heating. Arduino0 and Arduino1 are the PWM outputs of the
controller board. CurrentSense is the shunt resistor of the INA219 current monitoring

module.

for heating, too. Our circuit is shown in Figure A.5. This requires a three-point controller
which is a trivial extension of the prior.

Heat conduction is an inert process but the process of cooling vs. heating is highly asym-
metrical, i.e. cooling takes longer than heating. In the final setup at 𝑇amb = 22∘C cooling
from 20∘C to 15∘C takes three times longer than heating. During development, different set-
points were required for additional experiments and control loop performance degrades with
increased setpoint temperature. Thus, we opted for a PID controller for more flexibility and
better performance.

The PID control algorithm is based on the parallel form (see [Lipták, 2006, pp. 126–127]):

𝑚 = 𝐾𝑝 𝑒 + 𝐾𝑖∫𝑒𝑑𝑡 +𝐾𝑑
𝑑𝑒
𝑑𝑡 (A.1)

where 𝑚 is the controller output, 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 are the control parameters, 𝑡 is the time,
and

𝑒 = 𝑐 − 𝑟 (A.2)
where 𝑒 is the error, 𝑐 is the control variable, i.e. the measured temperature, and 𝑟 is the
setpoint, i.e. the temperature target.

The PID controller is implemented in 8-bit integer arithmetic. The temperature reading
from the BME280 on the backplate is our process variable. The setpoint was persisted in the
EEPROM for outdoor operation else it can be set via USB. The final control value is a 8-bit
unsigned integer that is used for pulse-width modulation (PWM) of the two relay control pins.
It is derived from the calculated control value 𝑚 using

𝑚8-bit =
⎧{
⎨{⎩

0 if 𝑚 < −128,
255 if 𝑚 > 127,
⌊𝑚 + 128⌋ else.

(A.3)

0 means 100% heating power, 128 means off, and 255 means 100% cooling power. The PWM
period was set to 10 s. A dead-time of 157ms was enforced because of the inertia of the relays.
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Figure A.6: Measured temperature during a sequence of different setpoints (20∘C, 15∘C,
50∘C, and 20∘C for two minutes each).
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Figure A.7: Histogram of backplate temperatures within measurement period. Bins with less
than 10 seconds of data are considered invalid and excluded.

Control values less or equal to 2 and greater or equal to 253 lead to the relais being switched
on constantly. Tuning of the control parameters 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 was done manually. We
used rectangular control signals and a sequence of different setpoint targets (see Figure A.6)
to evaluate the system’s behavior. The final values are 𝐾𝑝 = 25, 𝐾𝑖 = 0.25, and 𝐾𝑑 = 0.0. In
practice, the controller therefore simplifies to an PI controller.

A.3 Retrospection
The outdoor measurement period covers 140 days of active data recording. As can be seen from
Figure A.7, the temperature was well controlled within a 1∘K interval. The mean recorded
temperature is 21.999∘C with a standard deviation of 0.256∘K.

Finally, we want to discuss the systems behavior and performance using an example from our
real-world measurements. Figure A.8 shows the first five minutes after powering the system
on at the beginning of a day. The x-axes of all plots are synchronized. Every tic on the x-axes
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Date
Precipitation

height
Sunshine
duration

Minimum
temperature

Mean of
temperature

Maximum
temperature

June 17th, 2021 0mm 13.717h 21.8∘C 28.1∘C 34.5∘C
June 18th, 2021 0mm 12.183h 21.1∘C 27.5∘C 34.2∘C
June 19th, 2021 18mm 12.933h 18.5∘C 24.1∘C 29.4∘C

Table A.1: Excerpt of meteorological observations made in Düsseldorf on June 18th, 2021.
Taken from “Historical daily station observations (temperature, pressure, precipitation,

sunshine duration, etc.) for Germany, Version v23.3”25.

Local time
Minimal

temperature
Maximal

temperature
09:00 26.4∘C 26.9∘C
09:10 26.9∘C 28.0∘C
09:20 28.0∘C 28.9∘C
09:30 28.1∘C 28.8∘C
09:40 28.7∘C 29.1∘C
09:50 28.8∘C 29.7∘C
10:00 28.8∘C 29.7∘C
10:10 28.8∘C 29.4∘C
10:20 29.2∘C 29.6∘C
10:30 29.6∘C 30.1∘C

Table A.2: Temperature extrema within 10-minute intervals in Düsseldorf on June 18th,
2021. Taken from “10-minute station observations of extreme temperatures for Germany,

Version v23.3”26.

represents 10 seconds, i.e. one control period in which the controller output is updated. For
reference, the setpoint temperature is marked with a green line in the first plot.

June 18th, 2021, was the last in a series of hot days with tropical nights. Within the fol-
lowing days, severe weather conditions occurred and it cooled down. For reference, Table A.1
shows the daily reports from June 17th until and inclusive June 19th. Table A.2 lists the
temperature extremes from 60 minutes before to 30 minutes after the start of operation. All
observations were made in Düsseldorf which is 10 km off of the playground in Mönchenglad-
bach.

The system was powered on at 10:00 local time. The initial temperature was measured
to be 23.044∘C. The temperature is 1.044∘K above the setpoint. With 𝑒 = 1.044, we get an
controller output of

𝑚(0) = 25 ⋅ 1.044 + 0.25 ⋅ 1.044 ⋅ 10 = 28.71. (A.4)
This value is in a 7-bit range. In order to convert it to a duty cycle, we have to divide by
27 = 127 and get 22.6%. The Peltier element started cooling with a duty cycle of 22.6%.

In the second period (𝑡 = 10 seconds), the temperature rose to 25.104∘C despite our
cooling effort. From past meteorological observations, it can be seen that the air temperature
was between 28.8∘C and 29.7∘C. On powering on, the two enclosure fans were turned on
and started sucking in warm air. The integral term had then accumulated the previous error
multiplied by 𝑑𝑡. The temperature was then 3.104∘K too high. Updating the controller gives

𝑚(1) = 25 ⋅ 3.104 + 0.25 ⋅ (1.044 ⋅ 10 + 3.104 ⋅ 10) = 87.97. (A.5)
25see https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/

historical/
26see https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/10_

minutes/extreme_temperature/historical/
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This cycle, the duty cycle was increased to 87.97
127 = 69.2% resulting in a peak in power con-

sumption of 22.4W.
In the fourth period (𝑡 = 30 seconds), a small undershoot to 21.665∘C was measured. The

controller reduced the duty cycle to 30.8%. The temperature overshoots slightly to 22.677∘C
within the next 20 seconds.

At 100 seconds after start, the system has reached a stationary state at ≈ 20 ± 0.5%
duty cycle, drawing ≈ 5.2 – 6.7W of electrical power. From this point on, the temperature
differences are negligible for the remaining duration of operation.
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Figure A.8: Plot of logged controller metrics during the first five minutes of June 18th, 2021,
after power on. On this tropical summer day, the ambient temperature was 24.15∘C. P-, I-,

and D-term refer to 𝑒, ∫𝑒 𝑑𝑡, and 𝑑𝑒
𝑑𝑡 respectively, i.e. before scaling by 𝐾𝑝, 𝐾𝑖, 𝐾𝑑.
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Appendix B

Hardware Setup

At the start of the development work, different sensor modalities were considered for the
realization of the measurement system to be set up. In particular, in addition to CCTV and
Dynamic Vision Sensor-based systems, the following measurement techniques were considered:

Radar: Radio Detection And Ranging
A radar operates by transmitting radio waves, usually in the super high or extremely
high frequency range (i.e. 3–30GHz or 30–300GHz), towards a target object. The waves
reflect off the target and return to the radar system, where they are detected. The
radar system can determine various parameters by analyzing the time it takes for the
waves to return and their Doppler shift (change in frequency caused by motion). A
radar system can typically provide at least the distance, velocity, and azimuth angle of
detected targets.
The radar cross-section signatures are affected by the size, shape, and material charac-
teristics of the objects being measured. By analyzing radar micro-Doppler effects, which
refer to the small frequency shifts in the radar return signal caused by the micro-motion
of target components, it is also possible to distinguish between different classes of targets.

Pro:
• Weather independence: Radar operates effectively in all weather conditions, includ-

ing rain, fog, and darkness.
• Long range: Radar is able to detect objects over long distances, depending on factors

such as the radar’s power, frequency, and antenna design.
Con:
• Complexity and cost: Radar systems can be complex and expensive to design, deploy,

and maintain.
• Object classification: Radar systems may currently have limitations in distinguishing

between different types of objects, as this is an active and ongoing research topic.

Lidar: Light Detection And Ranging
A lidar measurement relies on emitting pulses of laser light in the near-infrared spectrum,
typically between 800 and 1550 nanometers, towards a target object. The lidar sensor
detects the pulses that reflect off the target. By timing the duration it takes for the
light pulses to return and analyzing their properties, such as intensity, lidar systems can
accurately calculate distances.
Lidar can produce detailed 3D maps of the environment and objects within it by scanning
an area with a sweeping laser beam and recording the return signals.
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Pro:
• High precision: Provides highly accurate 3D representations of the environment and

the objects within it.
• Object classification: Object classification based on shape or size is possible.

Con:
• Cost: High resolution systems are expensive.
• Time resolution: Low frame rates are typically achieved depending on the number

of scan lines configured.
• Range: Limited range compared to radar.

Infrared Thermography: Thermal Imaging
Infrared thermography is a method of detecting infrared radiation emitted by objects.
This is based on the principle that all objects with a temperature above absolute zero
emit infrared radiation, and the amount of radiation emitted is directly related to the
object’s temperature. A long-wave infrared camera can capture infrared radiation with
wavelengths typically ranging from 8 to 15 micrometers and convert it into a visual
representation.
Infrared thermography enables the identification of temperature variations. In the con-
text of a monitoring application, this means, for example, that a person typically appears
as a silhouette in the generated image, depending on the person’s body temperature and
the surrounding environment.

Pro:
• Independent of visible light: Works in low light and at night.

Con:
• Cost: High resolution systems are expensive.
• Environmental factors: Ambient temperature, humidity and air movement can affect

the accuracy and reliability of measurements.
• Sensor resolution: Limited spatial resolution compared to RGB cameras.

As already described, the use of classic RGB-based CCTV camera systems is limited by reg-
ulatory and legal restrictions. Radar- and lidar-based systems were excluded from the imple-
mented monitoring system, mainly due to the currently very high acquisition costs. For IR
cameras, in addition to the low spatial resolution of affordable models, limitations in analysis
must be expected, especially in midsummer, due to small temperature differences between
background and objects.

In addition to the aforementioned privacy benefits, the technical characteristics of the Dynamic
Vision Sensor make it a promising solution for the development of a monitoring system (see
Chapter 1). For this reason, the DVS was selected as the sensor technology used in this work.

B.1 Living-Lab: System Components
A more detailed overview of the measurement setup components used in the Living-Lab is
given in this section, extending the descriptions given in Section 3.1.

Basically, the system components can be semantically divided into two groups. On the one
hand, there are the components for the power supply and the central data acquisition and
processing. On the other hand, there are the components at the three sensor locations on the
measurement area.

210



MPPT Solar 
Controller

LiFePo4 Battery
48V, 4.8 kWh

DC/DC Power
Supply

Solar 
Modules

Jetson TX2
“Edge AI“

Raspberry Pi
“Power Control“

DVS Interface
PC

4G / LTE
Modem

Office

V
P
N

Ethernet

R1
R2
R3
R4
R5
R6
R7
R8

5V

48V

12V

19V

5V

5V

48V

48V

Relays

5V

5V

5V

48V

48V

48V

U
n
d
e
r
g
r
o
u
n
d
 
W
i
r
i
n
g
 
t
o
 
S
e
n
s
o
r
s

12V

19V

5V GPIO

P
o
w
e
r
 
S
u
p
p
l
y

Container

USB to Fiber Optic

USB to Fiber Optic

USB to Fiber Optic

USB3

WAN

USB SSD
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B.1.1 Central Components
The power supply and data processing components were housed in an approximately 2 × 2 × 2
meter quick-build container27 located about 16.5 meters northwest of the first DVS sensor
position. The container served primarily as protection from vandalism and weather, but also
provided a temporary workspace for on-site development work.

Figure B.1 provides an overview of the main system components contained in this container.

Power Supply
As the Living-Lab is located in an urban forest area, a self-sufficient energy supply was realized.
A system consisting of photovoltaic modules and an energy storage battery was designed and
implemented.

Two solar modules, each measuring 1×1.6 meters and providing a maximum output of 275Wp,
were installed on the roof of the container. These solar modules charged a battery using a
commercially available MPPT solar charge controller28. To reduce the risk of vandalism or
theft of these modules, a fence was installed on the roof of the container to prevent climbing
onto it (see Figure 3.1b on page 22).

The battery consisted of two PylonTech “US2000 Plus” modules29. These modules have
a fully integrated battery management system. The lithium iron phosphate (LiFePO4) based
battery modules each provide 2.4 kWh of energy resulting in a total of 4.8 kWh. The system
operates in the extra-low voltage range. The typical discharge voltage is 48VDC, with the
range of 45 to 54VDC. This ensures that the system carries a low risk of dangerous electric
shock, making it a safe option for use in proximity of children.

The sensor masts were powered directly from the available 48VDC battery output, while
DC/DC conversion to 5, 12 or 19VDC was used to power the other system components inside
the container.

In order to save power during off-hours and to be able to reset the system components in
the case of problems, the power supply to the most important system components was designed
to be switchable as part of an implemented power management system. For this purpose, a
relay card was developed and integrated into the system, which, controlled by a connected
Raspberry Pi, allowed the individual components to be switched on and off via software.

Figure B.2 shows the state of charge of the battery system for one month during an active
measurement period. It can be seen that the system was able to operate autonomously and
compensate for fluctuations in solar yield as well as larger energy withdrawals on-site.

Underground Cabling
The EFRE-funded research project included a redesign of the measurement area. As part of
this redesign and construction work, an underground cabling system was installed to connect
the components.

This underground cabling system connects the container with the sensor locations on the
playground in a star shape. Each sensor location was equipped with its own power and data
connection.

27https://www.container-bestofsteel.de/schnellbaucontainer/schnellbaucontainer/
schnellbaucontainer

28https://www.victronenergy.de/solar-charge-controllers/bluesolar-mppt-150-35
29https://en.pylontech.com.cn/download.aspx?id=199
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The electrical connection of the sensor masts is made at 48VDC, which is the output
voltage of the battery. This is a good compromise between safety and the required wire gauge,
which must take into account the voltage drop caused by the length of the wires.

The CeleX-IV sensor system provides only an USB 3.0 interface. The distances to be bridged
are too large for a direct USB connection, e.g. the distance between the container and one of the
sensor locations is about 100 meters. For this reason, a fiber optic connection was used for data
communication. The USB connection was converted from copper to fiber in the container by
a converter30 and from fiber to copper in the sensor node by a corresponding counterpart. For
the connected components, i.e. the USB host PC and the sensor, this conversion is transparent
and does not need to be taken into account in any software.

Computing
As mentioned above, a Raspberry Pi was used as a central command and control component,
switching the power supplies via relays and logging the battery state of charge. No other
functions were performed by the Raspberry Pi.

Two NVIDIA Jetson TX2 modules were used on-site to accelerate the computations involved
in selecting the scenes to be saved (see Chapter 9). These modules are energy-efficient edge
AI computing devices that use NVIDIA graphics processors to accelerate computations. In
the application scenario, which essentially consisted of PointNet++ inferences, the developer
modules used were measured to consume less than 20W each.

The main processing component, in terms of DVS acquisition and preprocessing, was per-
formed using a Dell Optiplex 7060 Micro PC. This PC, equipped with an Intel Core i7-8700
CPU, acted as the interface PC for all three CeleX-IV sensors and is rated with a maximum
power consumption of 130W. The measurements were stored on a 2TB USB SSD connected
to this interface PC. This allowed the data storage volume to be changed quickly and easily
during the measurement periods.

The computing components were connected via Gigabit Ethernet. In addition, the use of a 4G
mobile router enabled a VPN-based remote connection to the components in the Living-Lab.
This connection was not used to transmit the recorded monitoring data, but to supervise the
system itself.

B.1.2 Sensor Nodes
Figure B.3 provides an overview of the main components at each of the sensor locations.

The incoming 48VDC supply voltage was converted to 5VDC or 12VDC to power the individ-
ual components. The sensor and communication components were supplied with 5VDC, while
the 12VDC was used for active ventilation by fans and the thermal stabilization described
above using a Peltier element.

The power management implemented in the container allowed to switch on or off the entire
power supply for each sensor position. However, practical tests have shown that in combination
with the used fiber optic USB converters and the CeleX-IV FPGA carrier board, which provides
the USB connection, the power-on sequence of these components is important. For this reason,
a power supply delay for the fiber optic converter was implemented in hardware. This ensured
the correct sequence, sensor before converter, when switching on the sensor mast.

30https://www.lindy.de/200m-Fibre-Optic-USB-3-0-Extender.htm?websale8=ld0101.ld011101&pi=
42707
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Figure B.3: Living-Lab: System components inside the sensor enclosure.

B.2 Sensor Enclosure
A custom enclosure was designed and 3D printed to protect the sensor components from the
elements. The design and fabrication of this enclosure was a collaborative effort with colleagues
in the Faculty of Design as part of the EFRE-funded research project.

The sensors were mounted on the top of street lamp posts, which were erected on the site
for our purposes, at a height of approximately 6 meters (see Figure B.4a). In addition to
simply housing and protecting the sensor components, there were other requirements for this
enclosure.

The sensor components had to be mounted securely and robustly. On the one hand to
protect people in the measurement field from falling parts and on the other hand to support
the processing. The field of view of the sensors should remain constant during a measurement
period due to the calibration performed for mapping (see Section 11.1.2).

Reflections in the sensor’s field of view had to be avoided. Therefore, a light barrier was
installed directly behind the transparent protective glass of the enclosure.

For easy installation and fine adjustment in the field, the pitch axis of the sensor setup had
to be easily adjustable. For this reason, a pitch-adjustable mounting head (see Figure B.4b)
was developed to hold the actual sensor enclosure.

A 3D-printed mounting bed was mounted on top of this head, to which the individual compo-
nents discussed in the previous section were attached (see Figure B.4c). The 3D printing was
mainly carried out with ASA material in order to achieve high UV and temperature stability
of the manufactured components.

The designed enclosure is shown in Figure B.5. Note the overhang of the housing cover over
the protective glass of the sensor. This increases protection against environmental influences,
including raindrops falling on the protective glass and affecting the sensor signal.

A forced airflow is generated by the fans in the front of the enclosure and an open slot in
the bottom of the rear enclosure cover. This serves to cool the components and also prevents
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Figure B.4: Sensor mount and system components.
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(a) Rendering at different assembly levels

(b) Top view (c) Side (cutaway) view

Figure B.5: CAD model of the sensor enclosure.

the protective glass from fogging up and impairing visibility. All areas left open for ventilation
were equipped with insect meshes to prevent insects from entering.

The case was manufactured and painted in a light gray color to minimize heat absorption
from the sun in the summer. Rounded shapes were used to reduce the wind load on the
enclosure, thereby helping to reduce the induced ego-motion component in windy conditions.

B.3 Sensor Positioning
The sensor locations had to be determined for planning the underground cabling before the
measurement area was remodeled, i.e. before a 3D SFM model of the real and final area could
be created (see Section 11.1.2).

The layout of the sensor positions required a compromise between

(a) the number of Dynamic Vision Sensors to be installed,
(b) the exact position on the measurement area, and
(c) the mounting height of the sensors
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in order to achieve the best possible sensor coverage. It was also necessary to take into account
the expected occlusions in the field of view of the sensors due to the planned terrain modeling
of the playground.

For this purpose, a highly abstracted 3D model of the planned area was created, since the
planning of the measurement area was only carried out in the form of a 2D map (see Figure 3.1a
on page 22). The resulting model is shown in Figure B.6a.

This model was used in a 3D simulation created using the software Blender to generate
occlusion maps of the area for planning. The simulation took into account the basic sensor
characteristics of the CeleX-IV Dynamic Vision Sensor and the lens used. An example of such
an occlusion map is shown in Figure B.6b. Here, a higher degree of occlusion is represented
by a higher saturation of the included reds.

Within this simulation, different sensor locations and mounting heights were simulated (see
Figure B.6c–e).

As a result of this process, the final configuration shown in Figure 3.1a was selected.
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(a) Simplified 3D playground model

(b) Simulated occlusion map

(c) 5m mounting height (d) 10m mounting height (e) 15m mounting height

Figure B.6: Blender-based 3D sensor position modeling and optimization prior to playground
redesign.
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Appendix C

Software Implementation

For the development of event-driven applications, no standard software library has yet been
established. Typically, user programs are based mainly on the SDKs provided by the sensor
manufacturers.

For the CeleX-IV Dynamic Vision Sensor, the manufacturer provides a C++ based SDK31.
Based on this SDK, a comprehensive DVS processing application has been developed. In the
following sections, we will briefly introduce the basic components of the SDK and the structure
of implemented extensions.

The C++ application was developed using several software libraries, including Boost32 for
threading, file system abstractions, I/O operations, and argument parsing. Additionally, the
Point Cloud Library33 was used for event processing and to render the event stream in 3D.
OpenCV34 was used to generate frame-based event representations and 2D visualizations.

The third-party components were selected with respect to their license terms. Both free
and commercial use of the developed components is possible.

The developed and customized application was used for basic event processing, while stand-
alone Python applications were utilized for deep learning-based processing such as training,
inference, and segmentation evaluations. Data exchange formats and protocols were used for
communication between the applications.

C.1 CeleX-IV SDK: Structure and Basic Processing
During development, the provided CeleX-IV SDK underwent extensive changes, optimizations,
and bug fixes. These changes were made to increase the program’s efficiency and stability. As
a result, the descriptions that follow may differ slightly from the publicly available source code
of the manufacturer’s SDK. However, the basic structure, functionality and process remain
unaffected.

Figure C.1a shows the main classes of the CeleX-IV SDK, with the CeleX4 class as the cen-
tral component. This class communicates with the FPGA sensor carrier board through the
FrontPanel. It also instantiates and manages various threads.

It is important to note that in SDK terminology, the term “frame” (e.g., setEventFram-
eTime(...), onFrameDataUpdated(...) or FrameData) does not refer to classic 2D image

31https://github.com/CelePixel/CeleX4-OpalKelly
32https://github.com/boostorg/boost
33https://github.com/PointCloudLibrary/pcl
34https://github.com/opencv/opencv
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frames. Instead, it refers to the time “frames” of the event stream that are transmitted and
processed.

The FrontPanel from OpalKelly, which manufactures the FPGA board, provides an ap-
plication programming interface (API) to the FPGA board. The CeleX4 class utilizes the
FrontPanel to configure the sensor’s basic operating properties. The class implements several
methods to abstract these configurations in application programs. After initialization, the sen-
sor operates independently and writes its output continuously to the SDRAM of the FPGA
board. The sensor output can also be accessed through the FrontPanel API.

Figure C.1b displays the process interactions in the CeleX-IV SDK, which are executed until
an event data structure is passed to a user defined application logic.

The CeleX4 class instance must repeatedly call blockPipeOut(...) provided by the
FrontPanel API to read the FPGA’s SDRAM. If a binary save is requested within the SDK
logic, the acquired SDRAM content is passed to an instance of a DataRecorderThread, which
will dump the binary content to a file.

The acquired data is passed to an instance of a DataProcessThread, which processes it by
calling methods of a FPGADataProcessor member. This step converts the binary data format
provided by the sensor, or more precisely by the FPGA board, into C++ data structures,
namely EventData and FrameData.

The resulting data is then passed as CeleX4ProcessedData to a CeleX4DataManager,
which informs a SensorDataObserver instance about new, available event data via a previ-
ously registered callback. At this point, user-defined application logic takes over for further
processing.

C.2 Processing Pipeline and Stage Concept
To achieve flexible and reusable event data processing, we designed and implemented a software
architecture that allows event “frames” to be processed in stages.

Events are processed in sequential stages, such as filtering or enriching them with derived
attributes, and then passed to a subsequent stage for further processing. Other Dynamic
Vision SDKs now typically offer this type of processing architecture35, while the CeleX-IV
SDK does not. This architecture type provides flexibility, reusability, and a clear separation
of processing responsibilities. This results in improved maintainability and expandability of
the codebase.

The architecture, shown in Figure C.2a, was developed to enable a CeleX-based processing
using this concept. It essentially consists of two interfaces, the IStage and the IData, and the
classes derived from them.

The classes derived from IData represent a type of exchangeable and expandable data
container available for processing. The IStage class is a subclass of XThread, which is provided
by the CeleX-IV SDK. This design allows for parallel processing of individual processing steps
since each stage is executed by its own thread.

The Pipeline class, which is also derived from IStage, fulfills a special function. It
manages the structure and ensures a FIFO order for processing event data. Each processing
stage takes data from the front of an event deque, if available, and must implement its own

35such as “jAER” [Delbruck, 2008],
or https://dv-sdk.inivation.com/master/sdk/dv-modules/index.html
or https://docs.prophesee.ai/stable/guides/sdk_pipelines/index.html
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Figure C.1: Main structure and processing components of CeleX-IV SDK.
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method performStageLogic(IData*). The processed data is then appended to the end of
the deque of the subsequent stage.

A mechanism was implemented to configure the structure of pipeline stages at runtime based
on a JSON description, which further increases flexibility. This feature allows for the dynamic
configuration of the processing flow without requiring the C++ application to be recompiled.

Figure C.2b illustrates the described pipeline and stage logic based on the processing
sequences involved, using the following JSON declaration of a processing pipeline:

1 {
2 "SDK": { ... },
3 "ApplicationLogic": { ... },
4 "Pipeline": [
5 {
6 "name": "StageTimeFilter",
7 "config": {
8 "msThres": 10.0
9 }

10 },
11 {
12 "name": "StageCSVExport",
13 "config": {
14 "outPath": "/tmp/csv/"
15 }
16 }
17 ]
18 }

Listing C.1: Sample JSON description for dynamically initializing a processing pipeline.

The StageClear is automatically added to every configured pipeline, as shown in Fig-
ure C.2b. Its purpose is to release the event data that has been allocated to the memory heap
at the end of processing.

C.3 Custom Data Export and Reader Concept
As shown in Figure C.1 and described above, the CeleX-IV SDK allows direct writing of binary
dumps of event data. However, the data stored here consists of unprocessed, raw binary data
that was directly read from the SDRAM of the FPGA interface board. This means that this
data corresponds to the data that was exchanged over the USB connection. At this stage, no
processing has been done by the SDK, including the creation of data structures containing the
actual C++ event data structures. Thus, the SDK board tools do not support the storage of
event data that has already been (pre)processed in the processing pipeline.

Therefore, a custom data writer and binary data format were implemented to store pre-
processed data, e.g. time-filtered event data, or processing results like object labels obtained
by segmentation.

This custom writer is implemented as its own IStage and thus can be used directly in the
processing pipeline. A number of binary formats have been defined, containing events and
different attributes obtained during processing. An automatic selection of a suitable data
decoder is achieved by proving meta information for each stored file.

The stored data is directly written as a gzip36 compressed binary stream to reduce the
resulting file sizes and to allow for a longer recording period on-site at the Living-Lab, previ-
ously a manual exchange of the used external SSD was necessary. Additionally, a file rollover

36https://www.gnu.org/software/gzip/
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Figure C.3: Diamond inheritance design pattern for custom data reader.

mechanism based on a maximum file size was implemented to ensure that the files remain
manageable during the performed long-term monitoring process.

Reader Concept
In order to reuse the processing stages implemented in the main CeleX-IV acquisition appli-
cation, a reader application based on the same source tree was designed and implemented.

This design enables the abstraction of different ReaderStages in a Pipeline instance
by inheriting a BaseReaderStage from the described IStage interface. By inheriting specific
ReaderStage using C++’s multiple inheritance mechanism from the BaseReaderStage and the
corresponding “normal” stage implementation, it is possible to reuse all custom implemented
IStage processing stages in this reader context.

To prevent any ambiguity in this multiple inheritance from IStage, the diamond inheri-
tance design pattern, as shown in Figure C.3, was utilized.

This allows for one-to-one adoption of the performStageLogic(...) implementation from
the main stage, or to customize the behavior for custom written data by overwriting it in the
ReaderStage.

C.4 Living-Lab: PointNet++ Inference
Chapter 9 describes a procedure for selecting recordings in the measurement field that should
be saved for further analysis. This processing involves a PointNet++ inference to obtain a
semantic segmentation of the captured event data. As described in this chapter, this inference
is performed on an edge-AI computing device, the NVIDIA Jetson TX2, which allows for
low-power processing. Appendix B provides additional details that two of these TX2 modules
were used on-site.

The two modules had to process the event data from the three CeleX-IV Dynamic Vision
Sensors on the playground. In the worst case, 16 inferences per sensor had to be performed
simultaneously, resulting in a total of 48 inferences for all sensors.

A processing stage was implemented that encapsulates the event data into an HTTP request,
which is then sent to these modules for further processing. This HTTP communication incor-
porates an HTTP load balancer proxy, which allows for fair processing of inference requests
while ensuring high utilization of each TX2 module.
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Appendix D

Datasets

The following sections provide supplementary information on the DVS-OUTLAB (see Chap-
ter 4) and N-MuPeTS (see Chapter 5) datasets that extends the information provided in the
main text.

D.1 DVS-OUTLAB: Event Count Statistics
This section is based on the supplementary material provided with [Bolten et al., 2021].

In Section 6.1.2, event count requirements for the processing of space-time event clouds using
PointNet++ are described.

Figure D.1a illustrates the total number of events per 60ms time window in the entire
sensor field of view of 768 × 512 pixels, based on the staged scenes contained in the DVS-
OUTLAB dataset. Figure D.1b shows the number of events remaining after applying a 10ms
spatio-temporal time filter as preprocessing.

Due to the high number of events, it was necessary to introduce a spatial patching in
addition to temporal windowing in order to process this data. Therefore, patches of 192×128
pixels in size were formed. Based on the DVS-OUTLAB dataset, the event counts that occurred
in these patches and the effects of the applied spatio-temporal time filtering are shown in
Figure D.2.

This analysis, primarily the determined average count, formed the basis for the selection
of the event subsampling target count used in the point-based processing approaches.
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Figure D.1: Event counts in staged scenes of DVS-OUTLAB database
(complete 768 px× 512 px sensor view; time window of 60ms).
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Figure D.2: Event counts in DVS-OUTLAB database
(per spatial patch of 192px× 128 px; time window of 60ms).
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Figure D.3: Possible sequence merge from Seq. id00004 to Seq. id00011 when using
quality ≤ 2 (quality 1 in green, quality 2 in orange, quality 3 in red).

D.2 N-MuPeTS: Masks, Statistics and
Sequences Annotations

The following sections are based on the supplementary material provided with [Bolten et al.,
2023a].

D.2.1 Label Mask Generation
The main part of the dataset preparation is based on the automated generation of label masks
from APS color images using color features provided by the actors’ clothing (see Section 5.3).
The quality of this processing step cannot be determined quantitatively due to the lack of
references such as manual ground truth annotations. However, subjective and qualitative
evaluations are possible. Figure D.4 shows randomly sampled results of the label generation.
These examples demonstrate the high quality of the labels generated.

The left column shows a cropped APS input image, while the middle column shows the
automatically generated label mask. The mapping quality achieved between the APS and
DVS fields of view also plays an important role in the generation of the dataset. Examples are
shown in the right column of the figure. The corresponding time window of the DVS event
stream is shown as a projection along time. DVS events are shown in gray unless they are
under the assigned label mask. In these cases, the events are colored according to the label
mask.

D.2.2 Statistics
In Section 5.4, different quality classes are defined for the recorded dataset sequences. While
the main text only summarizes the quality level 1, which reflects scenes without any issues,
Tables D.1–D.6 show the duration and occurrence statistics including the imperfect quality
levels 2 and 3. The information here is cumulative with respect to higher quality classes. This
means, for example, that the information for quality class 2 also includes class 1.

D.2.3 Dataset Sequences
As stated, the dataset is divided into individual sequences by distinguishing different quality
classes. A new sequence is started each time the quality class is changed. Multiple annotations
can be assigned to a single sequence. For example, a single sequence can contain walking
and occlusion (compare to given annotation file in Listing D.1).

Due to the high-quality requirement, the scenes of quality class 1 are naturally rather short.
Especially for further processing, a longer sequence length may be of interest. By including
quality class 2, temporally longer sequences can be formed. Temporally consecutive sections of
quality 1 and 2 can be combined as long as they are not interrupted by quality 3. Figure D.3
shows this exemplarily, in which sequences Seq. id00004 to Seq. id00011 can be combined.
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Figure D.4: N-MuPeTS: APS color segmentation examples (best viewed digitally zoomed).
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Quality Class 2

Cumulative
duration

re
d

or
an

ge
cy

an
bl

ue

per
color

combination

sum per
person
count
378

385
1052182

259
227
222

782
46
156
260
85
14
589

831154
57
30
406 406

Table D.1: Cumulative durations per color
combination in quality class 2.

Annotation

Nu
m
be

ro
f

se
qu

en
ce
s

M
ea

n
du

ra
tio

n

Cu
m
ul
at
ive

du
ra
tio

n

red 230 8.8 2016
orange 212 9.1 1928
cyan 173 9.6 1661
blue 137 8.2 1127

background 71 5.3 378

standing 100 3.2 325
walking 658 4.1 2694
running 142 3.8 542
random 19 8.7 166
helix 14 5.2 72

far 79 3.9 305
Table D.2: Duration statistics per annotation

in quality class 2.

Annotation Number of
occurences

occlusion 239

exercising 9
kneeling 13
stooped 24
waving 10

crossing 228
meet 50
side by side 166

Table D.3: Occurrence statistics per annotation in quality class 2.
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Quality Class 3

Cumulative
duration

re
d

or
an

ge
cy

an
bl

ue

per
color

combination

sum per
person
count
1140

531
1479339

338
271
321

1004
73
186
279
122
23
765

1048177
73
34
473 473

Table D.4: Cumulative durations per color
combination in quality class 3.

Annotation

Nu
m
be

ro
f

se
qu

en
ce
s

M
ea

n
du

ra
tio

n

Cu
m
ul
at
ive

du
ra
tio

n

red 270 9.6 2599
orange 262 9.6 2510
cyan 200 10.3 2058
blue 163 8.3 1359

background 120 9.5 1140

standing 117 3.4 400
walking 786 4.4 3465
running 171 4.1 705
random 31 7.2 223
helix 21 4.6 98

far 87 4.3 377
Table D.5: Duration statistics per annotation

in quality class 3.

Annotation Number of
occurences

occlusion 300

exercising 12
kneeling 14
stooped 37
waving 11

crossing 282
meet 55
side by side 181

Table D.6: Occurrence statistics per annotation in quality class 3.
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D.2.4 Dataset Annotations
Annotations (see Section 5.4.4) have been created for each recorded sequence and are provided
in separate JSON files. The JSON description starts with a block that contains details about
the entire sequence.

In addition to the sequence ID as a counter, the quality class assignment, and the total length
of this sequence, the aggregated_annotation field provides a union of all annotations within
this sequence for convenience. An example is given in the following listing:

1 {
2 "id": 338,
3 "quality": 1,
4 "length": 81,
5 "aggregated_annotation": [
6 "occlusion",
7 "walking"
8 ],

This is followed by a detailed annotation description per person. For each person, a list of
start and end blocks describes the annotation performed in its temporal context. These start
and end information refer to a 25ms sliding time window (analogous to the “frame number”
of an APS camera) of the corresponding and plain DVS recording:

9 "colors": {
10 "CYAN": [
11 {
12 "start": 13440,
13 "end": 13520,
14 "annotation": [
15 "walking"
16 ]
17 }
18 ],
19 "BLUE": [],
20 "ORANGE": [],
21 "RED": [
22 {
23 "start": 13440,
24 "end": 13514,
25 "annotation": [
26 "walking"
27 ]
28 },
29 {
30 "start": 13515,
31 "end": 13520,
32 "annotation": [
33 "occlusion",
34 "walking"
35 ]
36 }
37 ]
38 }
39 }

Listing D.1: JSON annotation of a single sequence in N-MuPeTS.
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Appendix E

Segmentation

The following sections provide supplementary information, such as specific network configura-
tions or advanced evaluation results from the segmentation evaluations conducted in Part III.

E.1 PointNet++ Semantic Segmentation
The following sections are based on the supplementary material provided with [Bolten et al.,
2022a].

E.1.1 Network Configurations
In Section 6.3.3, key aspects with an estimated high impact on the results expected from a
PointNet++ architecture were identified and ranked as follows:

1. the configured layer depth,
2. the number of events in the first Set Abstraction layer,
3. the variation of spatio-temporal scaling and the selection of corresponding radii,
4. the modification of considered temporal neighborhoods.

Based on these key aspects an optimization of the 3D processing hyperparameters was per-
formed. The exact network configurations tested in this greedy optimization are summarized in
Table E.1. Table E.2 summarizes the configurations of the final evaluated 3D-based processing
approaches.

The intent of providing these details is to eliminate any ambiguity in comprehension and
to support potential reproducibility.

E.1.2 Extended Result: Detailed per-class F1 Scores
In order to present the results in a more readable and clear manner, the object classes in the
evaluations performed in the main body of this dissertation have been grouped. The three
categories formed are background, objects, and environmental influences. Metric scores were
given for these aggregated groups, and due to the very uneven distribution of events per class,
a weighted F1 score was used.

For completeness, the unweighted F1 scores for all ten classes are provided in Table E.3 and
Table E.4 for the experiments conducted in Chapter 6.
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(a)Layerexperim
ents

PointNet++(1024,3L):
SA(1024,0.1,[32,32,64])→

SA(256,0.3,[64,64,128])→
SA(16,0.8,[128,128,256])→

FP([256,256])→
FP([256,128])→

FP([128,128,128,128,10])
PointNet++(1024,4L):

SA(1024,0.1,[32,32,64])→
SA(256,0.2,[64,64,128])→

SA(64,0.4,[128,128,256])→
SA(16,0.8,[256,256,512])→

FP([256,256])→
FP([256,256])→

FP([256,128])→
FP([128,128,128,128,10])

PointNet++(1024,5L):
SA(1024,0.1,[32,32,64])→

SA(512,0.2
[64,64,128])→

SA(256,0.4,[128,128,256])→
SA(64,0.6,[256,256,512])→

SA(16,0.8,[512,512,1024])→
FP([256,256])→

FP([256,256])→
FP([256,256])→

FP([256,128])→
FP([128,128,128,128,10])

PointNet++(1024,6L):
SA(1024,0.1,[32,32,64])→

SA(512,0.2,[64,64,128])→
SA(256,0.3,[128,128,256])→

SA(128,0.4,[256,256,512])→
SA(64,0.6,[512,512,1024])→

SA(16,0.8,[1024,1024,2048])→
FP([256,256])→

FP([256,256])→
FP([256,256])→

FP([256,256])→
FP([256,128])→

FP([128,128,128,128,10])
(b)Pointcountexperim

ents
PointNet++(512,3L):

SA(512,0.1,[32,32,64])→
SA(256,0.3,[64,64,128])→

SA(16,0.8,[128,128,256])→
FP([256,256])→

FP([256,128])→
FP([128,128,128,128,10])

PointNet++(1024,3L):
SA(1024,0.1,[32,32,64])→

SA(256,0.3,[64,64,128])→
SA(16,0.8,[128,128,256])→

FP([256,256])→
FP([256,128])→

FP([128,128,128,128,10])
PointNet++(2048,3L):

SA(2048,0.1,[32,32,64])→
SA(256,0.3,[64,64,128])→

SA(16,0.8,[128,128,256])→
FP([256,256])→

FP([256,128])→
FP([128,128,128,128,10])

PointNet++(3072,3L):
SA(3072,0.1,[32,32,64])→

SA(256,0.3,[64,64,128])→
SA(16,0.8,[128,128,256])→

FP([256,256])→
FP([256,128])→

FP([128,128,128,128,10])
(c)Inputscaling

experim
ents

𝑆
𝑇cube

PointNet++(2048,3L):
SA(2048,0.1,[32,32,64])→

SA(256,0.3,[64,64,128])→
SA(16,0.8,[128,128,256])→

FP([256,256])→
FP([256,128])→

FP([128,128,128,128,10])
𝑆
𝑇tScaled

PointNet++(2048,3L):
SA(2048,9.6,[32,32,64])→

SA(256,28.8,[64,64,128])→
SA(16,76.8,[128,128,256])→

FP([256,256])→
FP([256,128])→

FP([128,128,128,128,10])
𝑆
𝑇native

PointNet++(2048,3L):
SA(2048,9.6,[32,32,64])→

SA(256,28.8,[64,64,128])→
SA(16,76.8,[128,128,256])→

FP([256,256])→
FP([256,128])→

FP([128,128,128,128,10])
(d)Spatio-tem

poralweighting
experim

ents
Tim

eweight𝛾
=

1
PointNet++(2048,3L):

SA(2048,9.6,[32,32,64])→
SA(256,28.8,[64,64,128])→

SA(16,76.8,[128,128,256])→
FP([256,256])→

FP([256,128])→
FP([128,128,128,128,10])

Tim
eweight𝛾

=
3.2

PointNet++(2048,3L):
W

eighted
spatio-tem

poraldistance:𝑑𝑖,𝑗 =
√
(𝑥

𝑖 −
𝑥
𝑗 ) 2+

(𝑦𝑖 −
𝑦𝑗 ) 2+

3.2⋅(𝑡𝑖 −
𝑡𝑗 ) 2

Tim
eweight𝛾

=
20

PointNet++(2048,3L):
W

eighted
spatio-tem

poraldistance:𝑑𝑖,𝑗 =
√
(𝑥

𝑖 −
𝑥
𝑗 ) 2+

(𝑦𝑖 −
𝑦𝑗 ) 2+

20⋅(𝑡𝑖 −
𝑡𝑗 ) 2

TableE.1:PointNet++
network

configurations(com
pareto

syntax
used

in
[Qietal.,2017b]).
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PointNet++(2048,3L):
SA(2048,9.6,[32,32,64])→

SA(256,28.8,[64,64,128])→
SA(16,76.8,[128,128,256])→

FP([256,256])→
FP([256,128])→

FP([128,128,128,128,10])
A-CNN(2048,3L):

M
R(2048,[[0.0,4.8],[4.8,9.6]],[[32,32,64],[64,64,128]])→

M
R(256,[[7.2,14.4],[21.6,28.8]],[[64,64,128],[128,128,256]])→

M
R(16,[[19.2,38.4],[57.6,76.8]],[[128,128,256],[256,256,512]])→

FP([256,256])→
FP([256,128])→

FP([128,128,128,128,10])
LSANet(2048,3L):

LSA(2048,9.6,[32,32,64],[32,32])→
LSA(256,28.8,[64,64,128],[32,32])→

LSA(16,76.8,[128,128,256],[32,32])→
FP([256,256])→

FP([256,128])→
FP([128,128,128,128,10])

SpiderCNN(*,3L):
BallQuery(9.6)→

SpiderConv(32)→
SpiderConv(64)→

SpiderConv(128)→
Top-2

→
FC([256,256,128,10])

TableE.2:3D
network

variantconfigurations(syntax
adapted

and
inspired

from
[Qietal.,2017b]).
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(a)Layerexperim
ents

Configuration
BACKGROUND

PERSON
DOG

RAIN
TREE

BICYCLE
SPORTSBALL

INSECT
BIRD

TREE_SHADOW
M
ean

3
layers

0.95
0.76

0.59
0.80

0.70
0.75

0.41
0.88

0.83
0.28

0.70
4
layers

0.95
0.74

0.53
0.80

0.73
0.73

0.49
0.89

0.83
0.22

0.69
5
layers

0.95
0.75

0.56
0.80

0.76
0.75

0.50
0.89

0.84
0.22

0.70
6
layers

0.96
0.75

0.52
0.80

0.77
0.72

0.36
0.89

0.81
0.31

0.69

(b)Pointcountexperim
ents

Configuration
BACKGROUND

PERSON
DOG

RAIN
TREE

BICYCLE
SPORTSBALL

INSECT
BIRD

TREE_SHADOW
M
ean

n
=

512
0.95

0.74
0.49

0.71
0.70

0.70
0.20

0.86
0.82

0.23
0.64

n
=

1024
0.95

0.76
0.59

0.80
0.70

0.75
0.41

0.88
0.83

0.28
0.70

n
=

2048
0.96

0.76
0.60

0.86
0.79

0.75
0.60

0.90
0.84

0.37
0.74

n
=

3072
0.96

0.76
0.64

0.86
0.80

0.75
0.60

0.89
0.84

0.35
0.75

(c)Inputscaling
experim

ents
Configuration

BACKGROUND
PERSON

DOG
RAIN

TREE
BICYCLE

SPORTSBALL
INSECT

BIRD
TREE_SHADOW

M
ean

𝑆
𝑇cube

0.96
0.76

0.60
0.86

0.79
0.75

0.60
0.90

0.84
0.37

0.74
𝑆
𝑇tScaled

0.97
0.83

0.78
0.80

0.86
0.82

0.65
0.92

0.88
0.52

0.80
𝑆
𝑇native

0.97
0.82

0.73
0.85

0.87
0.80

0.63
0.93

0.89
0.53

0.80

(d)Spatio-tem
poralweighting

experim
ents

Configuration
BACKGROUND

PERSON
DOG

RAIN
TREE

BICYCLE
SPORTSBALL

INSECT
BIRD

TREE_SHADOW
M
ean

Tim
eweight𝛾

=
1

0.97
0.82

0.73
0.85

0.87
0.80

0.63
0.93

0.89
0.53

0.80
Tim

eweight𝛾
=

3.2
0.97

0.82
0.69

0.86
0.86

0.81
0.63

0.93
0.90

0.49
0.79

Tim
eweight𝛾

=
20

0.96
0.80

0.70
0.86

0.81
0.79

0.60
0.91

0.86
0.31

0.76
TableE.3:Detailed

per-classF1
scoresin

PointNet++
param

eteroptim
ization

experim
ents.
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(a)3D
Network

variants
Configuration

BACKGROUND
PERSON

DOG
RAIN

TREE
BICYCLE

SPORTSBALL
INSECT

BIRD
TREE_SHADOW

M
ean

PointNet++
0.97

0.83
0.78

0.80
0.86

0.82
0.65

0.92
0.88

0.52
0.80

A-CNN
0.97

0.83
0.77

0.81
0.87

0.82
0.58

0.93
0.89

0.58
0.80

LSANet
0.97

0.83
0.82

0.81
0.87

0.82
0.57

0.92
0.89

0.54
0.80

SpiderCNN
0.95

0.74
0.51

0.53
0.80

0.73
0.41

0.83
0.76

0.32
0.66

(b)M
ask

R-CNN
with

ResNet50
backbone

Configuration
BACKGROUND

PERSON
DOG

RAIN
TREE

BICYCLE
SPORTSBALL

INSECT
BIRD

TREE_SHADOW
M
ean

Binary
0.95

0.82
0.73

0.60
0.85

0.85
0.38

0.90
0.87

0.58
0.75

Polarity
0.95

0.84
0.78

0.61
0.88

0.87
0.34

0.95
0.89

0.60
0.77

Frequency
0.95

0.82
0.70

0.59
0.88

0.85
0.45

0.93
0.88

0.62
0.77

M
TC

0.95
0.84

0.82
0.59

0.89
0.86

0.57
0.93

0.88
0.65

0.80
(c)M

ask
R-CNN

with
ResNet101

backbone
Configuration

BACKGROUND
PERSON

DOG
RAIN

TREE
BICYCLE

SPORTSBALL
INSECT

BIRD
TREE_SHADOW

M
ean

Binary
0.95

0.82
0.59

0.60
0.85

0.85
0.27

0.89
0.86

0.59
0.73

Polarity
0.95

0.84
0.76

0.60
0.88

0.86
0.42

0.95
0.89

0.62
0.78

Frequency
0.95

0.83
0.70

0.60
0.89

0.85
0.52

0.92
0.88

0.63
0.78

M
TC

0.95
0.84

0.70
0.61

0.88
0.86

0.59
0.93

0.86
0.64

0.79
TableE.4:Detailed

per-classF1
scoresfornetwork

variantsand
2D

M
ask

R-CNN
baseline.
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E.2 Instance Segmentation
The following sections are based on the supplementary material provided with [Bolten et al.,
2024].

E.2.1 Event Count Statistics: aRoI
In Section 8.2.1, a size-adaptive Region-of-Interest extraction algorithm is proposed. This
algorithm yields spatial patches of event data depending on the included objects. Instead of
extracting fixed-sized patches, this approach prevents objects from being sliced into separate
parts, while grouping spartially close objects into the same region.

In line with the other event statistics given in this appendix, the number of events occurring in
these aRoIs for the considered datasets is given in Figure E.1. Additional statistical parameters
for these aRoIs are listed below:

DVS-iOUTLAB dataset aRoIs:
Mean: 1830.6182
Std Dev: 1663.9163

Minimum: 126.0000
Maximum: 24700.0000
Quartile: 664.0000
Median: 1265.0000
Quartile: 2452.0000

N-MuPeTS dataset aRoIs:
Mean: 2341.1705
Std Dev: 2291.8931

Minimum: 1.0000
Maximum: 28219.0000
Quartile: 864.0000
Median: 1700.0000
Quartile: 2967.0000

E.2.2 Extended Result
In Section 8.3.3, an intentionally challenging data subset was created to evaluate the selected
instance segmentation methods on the N-MuPeTS dataset. This subset contains only se-
quences in which at least one of the actors is occluded or in which the actors are spatially
very close to each other. Table E.5 shows the resulting metrics for the complete test set of the
N-MuPeTS dataset.

The object classes contained and evaluated in the DVS-iOUTLAB dataset were also presented
in aggregated form in the evaluations presented in the main body. In order to provide complete,
unaggregated results, Table E.6 shows the semantic segmentation results and Table E.7 shows
the instance segmentation results in detail for all included object classes.
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(b) N-MuPeTS dataset

Figure E.1: Event counts for time Δ=10ms filtered aRoIs (60ms event time windows).

Semantic quality Instance quality
weighted F1 score PERSON

Network Configu-
ration NOISE PERSON mIoU AP0.5

0.95 AP0.5 AP0.75

(a) Baseline method: PointNet++ with spatial clustering
PointNet++ in 2048 events 0.93 0.96 0.84 0.52 0.66 0.55
Clustering in 1024 events 0.93 0.96 0.85 0.52 0.65 0.54

(b) Space-time event cloud-based methods

JSNet
4 layers

in 2048 events 0.93 0.96 0.86 0.70 0.87 0.75
4 layers

in 1024 events 0.92 0.95 0.84 0.64 0.82 0.70

3D-BoNet
4 layers

in 2048 events 0.93 0.96 0.86 0.72 0.86 0.76
4 layers

in 1024 events 0.91 0.95 0.83 0.62 0.78 0.66
(c) Voxel-based method

SoftGroup voxel grid 0.88 0.95 0.88 0.71 0.83 0.75
(d) Frame-based methods

Mask R-CNN
polarity 0.83 0.91 0.76 0.50 0.87 0.56
MTC 0.83 0.91 0.76 0.52 0.88 0.58

YOLO v8
polarity 0.84 0.93 0.75 0.64 0.91 0.75
MTC 0.84 0.93 0.76 0.64 0.91 0.64

Table E.5: Segmentation results on complete N-MuPeTS test set (60ms event time window).
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(a) Baseline method: PointNet++ with spatial clustering
PointNet++ in 2048 events 0.95 0.87 0.86 0.94 0.93
Clustering in 1024 events 0.95 0.85 0.85 0.94 0.93

(b) Space-time event cloud-based methods

JSNet
4 layers

in 2048 events 0.96 0.90 0.88 0.97 0.95
4 layers

in 1024 events 0.94 0.80 0.80 0.96 0.93

3D-BoNet
4 layers

in 2048 events 0.96 0.86 0.90 0.93 0.93
4 layers

in 1024 events 0.95 0.85 0.89 0.93 0.92
(c) Voxel-based method

SoftGroup voxel grid 0.98 0.98 0.97 0.98 0.94
(d) Frame-based methods

Mask R-CNN
polarity 0.94 0.94 0.94 0.94 0.87
MTC 0.94 0.94 0.93 0.95 0.87

YOLO v8
polarity 0.94 0.90 0.93 0.86 0.86
MTC 0.94 0.86 0.93 0.85 0.86

Table E.6: Semantic segmentation results per class on DVS-iOUTLAB dataset (60ms event
time window).
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(a) Baseline method: PointNet++ with spatial clustering
PointNet++ in 2048 events 0.82 0.70 0.73 0.85 0.47 0.52 0.53 0.77
Clustering in 1024 events 0.83 0.74 0.74 0.88 0.47 0.52 0.53 0.78

(b) Space-time event cloud-based methods

JSNet
4 layers

in 2048 events 0.91 0.91 0.72 0.93 0.84 0.71 0.79 0.91
4 layers

in 1024 events 0.89 0.92 0.57 0.94 0.77 0.55 0.69 0.81

3D-BoNet
4 layers

in 2048 events 0.85 0.77 0.78 0.87 0.75 0.63 0.67 0.78
4 layers

in 1024 events 0.84 0.80 0.76 0.88 0.72 0.63 0.66 0.77
(c) Voxel-based method

SoftGroup voxel grid 0.86 0.88 0.90 0.93 0.84 0.87 0.87 0.94
(d) Frame-based methods

Mask R-CNN
polarity 0.78 0.79 0.79 0.84 0.51 0.60 0.63 0.74
MTC 0.77 0.75 0.78 0.83 0.50 0.61 0.59 0.73

YOLO v8
polarity 0.80 0.73 0.82 0.66 0.64 0.65 0.66 0.45
MTC 0.81 0.83 0.80 0.67 0.65 0.57 0.69 0.42

Table E.7: Instance segmentation results per class on DVS-iOUTLAB dataset (60ms event
time window).
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E.3 Consideration of a Further Application Context:
Autonomous Driving Recordings

The descriptions of the approach, methods used, and results of this section have previ-
ously been published in:

Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2023c). Semantic Segmentation on
Neuromorphic Vision Sensor Event-Streams Using PointNet++ and UNet Based Pro-
cessing Approaches. In Proceedings of the 18th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications - Volume 4
(VISAPP), pages 168 – 178. INSTICC, SciTePress

In order to go beyond the sole application scenario of a stationary long-term monitoring of
public spaces, a small selection of the segmentation methods presented in Part III were also
tested in another application context. For this purpose, the processing of Dynamic Vision
sensor recordings from road traffic was chosen. Methods for semantic segmentation were
trained and evaluated based on the “DDD17” dataset [Binas et al., 2017].

E.3.1 DDD17 Dataset Subset
The authors of the Ev-SegNet segmentation approach [Alonso and Murillo, 2019] published
with their work a subset of the DDD17 dataset, which is extended by semantic labels. These
labels were used in our experiments.

The DDD17 dataset contains sequences of recordings obtained from a moving car in traffic
(see Figure E.2). These recordings were made with a DAVIS346B Dynamic Vision Sensor.
Therefore, they provide a spatial resolution of 346× 260 pixels. However, since the bottom 60
pixel rows included the dashboard of the used car, they were cropped to 346 × 200 pixels.

The DDD17 dataset subset processed by Alonso and Murillo contains 15,950 sequences
for training and 3,890 for testing, each corresponding to a 50ms section of the event stream.
For these sequences, the authors used a conventional 2D segmentation CNN to automatically
generate pixel-wise semantic labels based on the grayscale images provided by the DAVIS
sensor. In this way, they created ground truth labels for six different classes:

1. CONSTRUCTION/SKY,
2. OBJECTS (like street signs or light poles),
3. NATURE (like trees),
4. HUMANS,
5. VEHICLES and
6. STREET.

The DVS event data was published by Alonso and Murillo in a form that provides only a
2D frame representation of the event stream. Furthermore, the generated labels are also only
available in the form of 2D frames. Thus, they are not directly usable for the generation of
other event representations.

Therefore, utilizing the native DDD17 event stream recordings, we first propagated the
labels of the Ev-SegNet data subset back to the original event stream from DDD17. For each
50ms of the event stream the corresponding 2D label was transferred to all underlying events.
This results in annotations per-event in the form of (𝑥, 𝑦, 𝑡, 𝑝, label).
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PointNet++(4096, 5L) SA(2048, 17.3, [32, 32, 64]) →
PointNet++(8192, 5L) SA(4096, 17.3, [32, 32, 64]) →

followed by

SA(1024, 34.6, [64, 64, 128]) →
SA(256, 69.2, [128,128,256]) →
SA(64, 103.8, [256,256,512]) →
SA(16, 138.4, [512,512,1024]) → FP([256, 256]) →
FP([256, 128]) → FP([256, 256]) →
FP([256, 128]) → FP([128, 128, 128, 128, 6])

Table E.8: PointNet++ configuration summary (compare to syntax used in
[Qi et al., 2017b]).

E.3.2 Experiments and Evaluation
The methods discussed in Chapter 7 were selected for further evaluation in this application
context. This involves the semantic segmentation of the event stream using UNet-architectures
and PointNet++. Extending the work of Section 7.2, the following describes the experiments
performed on the DDD17 dataset.

Network Training
The network layer configurations and training hyperparameters utilized in the DDD17 exper-
iments were as follows:

PointNet++ Processing Network:
For the DDD17 data, due to the larger spatial input dimension (346×200 pixels vs. 192×
128 pixels per processed region in DVS-OUTLAB), we adjusted the network configura-
tion to account for the resulting higher event count. Additionally, we trained and tested
two PointNet++ configurations with previous subsampling to 8192 and 4096 events,
respectively.
The specific PointNet++ configurations used are summarized in Table E.8.

UNet Processing Network:
Apart from the number of classes and the spatial resolution, the parameter configuration
remained unchanged compared to the DVS-OUTLAB experiments.

Evaluation Metrics
In addition to the logic described in Section 6.3.2 and Section 7.2, the following simple post-
processing was performed before evaluation:

If a non-void class prediction is made, but there is no event present, the prediction is
interpreted as void and ignored. If a void class prediction is made, but an event is present,
this prediction is reinterpreted and considered as the dominant class for evaluation. This class
is CONSTRUCTION/SKY for the DDD17 data.

Results and Comparison
The summary of results for the subset of labeled DDD17 dataset sequences is given in Ta-
ble E.9. On this dataset, PointNet++ processing achieves weaker results in contrast to the
UNet variations and the dataset authors’ Ev-SegNet reference.
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(a) Ev-SegNet baseline [Alonso and Murillo, 2019], metric recalculated to match proposed evaluation
Ev-SegNet 0.916 0.229 0.712 0.670 0.850 0.727 0.696 0.876

(b) PointNet++ results
PNet(8192, 5L) 0.842 0.088 0.516 0.398 0.743 0.619 0.534 0.771
PNet(4092, 5L) 0.840 0.103 0.521 0.464 0.748 0.600 0.546 0.766

(c) Unfiltered UNet results
UNet 2D 0.886 0.266 0.686 0.577 0.835 0.703 0.659 0.829

UNet 2D 64ch 0.895 0.285 0.723 0.533 0.849 0.723 0.668 0.843
UNet 3D Voxel 0.898 0.301 0.729 0.572 0.847 0.719 0.678 0.843

(d) Spatio-temporal filtered (time 10ms) UNet results
UNet 2D 0.882 0.265 0.673 0.557 0.846 0.660 0.647 0.826

UNet 2D 64ch 0.896 0.289 0.713 0.590 0.862 0.681 0.672 0.846
UNet 3D Voxel 0.895 0.296 0.713 0.568 0.858 0.680 0.668 0.843

Table E.9: Results on subset of DDD17 dataset.

There is a noticeable difference in the results of the OBJECTS class for the PointNet++ pro-
cessing. This class of the dataset contains for example lampposts, street signs or traffic lights.

Although the PointNet++ configurations used here were adjusted in the number of points
to be considered in the input cloud and the first Set Abstraction layer, as well as in the number
of layers themselves, this suggests that such fine details were not fully captured. Due to the
high number of triggered events in the autonomous driving context of this dataset (compared
to the static sensor in DVS-OUTLAB monitoring) and the larger spatial input (346×200 pixels
vs. 192 × 128 pixels), the encoder/decoder approach of UNet-based processing is preferable.
The PointNet++ processing relies on considering sufficiently representative events selected by
Farthest Point Sampling and building a corresponding neighborhood, which is difficult in this
situation.

However, when considering the overall results on the DDD17 subset, the given quality of the
ground truth label must be taken into account. These labels were generated by Alonso and
Murillo through an automatic processing. Out of a total of nearly 12 hours of material from
the DDD17 dataset, about 15 minutes were labeled in this way, and the ground truth (GT)
labels obtained are not completely accurate and consistent over time.

Figure E.2 shows an example of included artifacts in the GT labels using two examples
that are separated by only a short period of time. The annotations of the included traffic sign
and the tree (marked by red arrows) are different.
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Ev-SegNet PNet(8192, 5L)GT PNet(4096, 5L)

UNet 2D UNet 2D 64ch UNet 3DAPS+Event

(a) Ground truth vs. prediction at 𝑡𝑖
Ev-SegNet PNet(8192, 5L)GT PNet(4096, 5L)

UNet 2D UNet 2D 64ch UNet 3DAPS+Event

(b) Ground truth vs. prediction at 𝑡𝑖 + 1.25 seconds
CONSTRUCTION or SKY OBJECTS NATURE HUMAN VEHICLE STREET

Figure E.2: Visualization of GT labeling quality of DDD17 subset from [Alonso and Murillo,
2019] and predictions of trained networks. Note the inconsistent GT labeling of the marked
traffic sign and trees between the timestamps shown (best viewed digitally zoomed; from

[Bolten et al., 2023c]).
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List of Acronyms

ADC Analog-to-Digital Converter.
AER Address Event Representation.
AI Artificial Intelligence.
API Application Programming Interface.
APS Active Pixel Sensor.
ASA Acrylnitril-Styrol-Acrylat 3D printing material.

BA Background Activity.

CAD Computer-Aided Design.
CCTV Closed Circuit Television.
CIS CMOS Image Sensor.
CMOS Complementary Metal-Oxide-Semiconductor.
CNN Convolutional Neural Network.
CPU Central Processing Unit.

DVS Dynamic Vision Sensor.

EEPROM Electrically Erasable Programmable Read-Only Memory.
EFRE Europäischer Fonds für regionale Entwicklung

(European Regional Development Fund).

FIFO First In, First Out.
FN False Negative.
FoV Field of View.
FP

FP False Positive.
FP Feature Propagation layer.

FPGA Field Programmable Gate Array.
FPS

FPS Farthest Point Sampling.
fps Frames per second.

GPU Graphics Processing Unit.
GT Ground Truth.

HDR High Dynamic Range.
HSV Hue Saturation Value.

IMU Inertial Measurement Unit.
IoU Intersection over Union.
IR Infrared.
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JSON JavaScript Object Notation.
KDE Kernel Density Estimation.
Lidar Light detection and ranging.
LoD Level of Detail.
LSTM Long Short-Term Memory.
LWIR Longwave Infrared.
mAP Mean Average Precision.
Meps Mega events per second.
MLP Multilayer Perceptron.
MOT Multi-Object Tracking.
MPPT Maximum Power Point Tracking.
ms Millisecond.
MTC Merged-Three-Channel event representation.
NIR Near Infrared.
NTP Network Time Protocol.
PCB Printed Circuit Board.
PID Proportional–Integral–Derivative controller.
PoI Patch-of-Interest.
PRE Percentage of Remaining Events.
PWM Pulse-Width Modulation.
Radar Radio detection and ranging.
ReLU Rectified Linear Unit.
RGB Red Green Blue.
RoI

aRoI Adaptive Region-of-Interest.
RoI Region-of-Interest.

RTC Real Time Clock.
SA Set Abstraction layer.
SDK Software Development Kit.
SDRAM Synchronous Dynamic Random Access Memory.
SFM Structure From Motion.
SGD Stochastic Gradient Descent.
SNN Spiking Neural Network.
SNR Signal-to-Noise Ratio.
SPDT Single Pole, Double Throw relay.
SSD

SSD Single-Shot Detector.
SSD Solid-State-Drive.

TDP Thermal Design Power.
TN True Negative.
TP True Positive.
USB Universal Serial Bus.
UV Ultraviolet light.
VDC Volts of Direct Current.
VLSI Very Large Scale Integrated Circuits.
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The following papers were published in the course of this work:
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• Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. (2021). DVS-OUTLAB: A Neuromor-

phic Event-Based Long Time Monitoring Dataset for Real-World Outdoor Scenarios. In
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 1348 – 1357. IEEE

• Bolten, T., Neumann, C., Pohle-Fröhlich, R., and Tönnies, K. (2023a). N-MuPeTS:
Event Camera Dataset for Multi-Person Tracking and Instance Segmentation. In Pro-
ceedings of the 18th International Joint Conference on Computer Vision, Imaging and
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INSTICC, SciTePress
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Application Scenario: Long-Term Monitoring
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