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Abstract

Subsampling is a central problem in big data analysis when classical statistical methods are

not applicable due to computational limitations. The goal of subsampling is to select an

informative subset of the full data that allows the regression parameter to be estimated as

precisely as possible.

In this thesis, we study subsampling from the perspective of optimal design of experiments.

The focus is on massive data with an extraordinarily large number of observations but few

covariates. First, we introduce the statistical models we investigate throughout the thesis

and give an overview of the relevant optimal design theory.

After the introductory chapter, we construct D-optimal subsampling designs in the

setting of polynomial regression and Poisson regression in one covariate, as well as multiple

linear regression in several covariates. Specific to the given setup, we present equivalence

theorems based on convex optimization that establish a representation of the support of

the D-optimal subsampling design. We make use of fundamental concepts from optimal

design theory and an equivalence theorem from constrained convex optimization. We study

theoretical properties of the constructed D-optimal subsampling design. For the given

models, location-scale transformations of the covariate and the simultaneous transformation

of the D-optimal subsampling design are investigated in order to extend the results for

standardized covariates to general covariates.

The obtained D-optimal subsampling designs provide simple rules for whether to accept

or reject a data point. Throughout the thesis we propose methods of implementation. We

study these methods theoretically through efficiency considerations. For multiple linear

regression, we present a simulation study comparing our method to others.
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Zusammenfassung

Subsampling ist ein zentrales Problem der Big-Data-Analyse, wenn klassische statistische

Methoden aufgrund technischer Einschränkungen nicht anwendbar sind. Das Ziel von

Subsampling ist es, eine informative Teilmenge der Gesamtdaten auszuwählen, die eine

möglichst präzise Schätzung des Regressionsparameters erlaubt.

In dieser Dissertation wird Subsampling aus der Perspektive der optimalen Versuchs-

planung betrachtet. Der Schwerpunkt liegt dabei auf
”
massive data“ mit außergewöhnlich

vielen Beobachtungen, aber nur wenigen Kovariablen. Zunächst werden die statistischen

Modelle, die im Verlauf der Dissertation untersucht werden, vorgestellt sowie ein Überblick

über die relevante Theorie der optimalen Versuchsplanung gegeben.

Nach dem einleitenden Kapitel werden D-optimale Subsampling Designs für polynomiale

und Poisson Regression in einer Kovariablen sowie für multiple lineare Regression in mehreren

Kovariablen konstruiert. Für das jeweilige Modell werden auf konvexer Optimierung

basierende Äquivalenzsätze präsentiert, die eine Darstellung des Trägers des D-optimalen

Subsampling Designs liefern. Dabei werden grundlegenden Konzepten aus der optimalen

Versuchsplanung und ein Äquivalenztheorem aus der konvexen Optimierung unter Neben-

bedingungen verwendet. Theoretische Eigenschaften der D-optimalen Subsampling Designs

wwerden untersucht. Für die gegebenen Modelle werden Lokations-Skalen-Transformationen

der Kovariable und die gleichzeitige Transformation des D-optimalen Subsampling Designs

betrachtet, um die Ergebnisse für standardisierte Kovariablen auf allgemeine Kovariablen zu

übertragen.

D-optimalen Subsampling Designs bieten einfache Regeln zur Annahme oder Ablehnung

eines Datenpunktes. Methoden zur Implementierung von D-optimalen Subsampling Designs

werden vorgeschlagen und theoretisch durch Effizienzbetrachtungen untersucht. Für die

multiple lineare Regression wird eine, zu anderen Methoden vergleichende, Simulationsstudie

präsentiert.
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Chapter 1

Introduction and General

Considerations

In this introduction, we first establish the relevant concepts of optimal design of experiments,

also known as ‘design of experiments’ or ‘experimental design’ in the literature. We then

provide an overview of the field of subsampling. The core idea of optimal design is that

a practitioner must establish a method of data collection when conducting an experiment.

Specifically, an experimenter chooses which experimental settings to use and how many

observations to take at each of these experimental settings. This allocation of observations

to experimental settings is called a design. Typical applications range from the choice of

dosages in pharmacology to the selection of test items in educational testing or the choice

of experimental conditions in engineering (see e. g. Dean et al. (2015) or Berger and Wong

(2005) for an overview on applications). The natural goal when deciding between designs

is to gain as much information as possible about the unknown parameters. Ronald Fisher

first formalized this information through the so called Fisher information matrix. The

information matrix innately quantifies the quality of the design as its inverse corresponds to

the covariance matrix of the estimator of the unknown parameter. Finding a design that

maximizes suitable functions of the information matrix, called optimality criteria, is the

main focus of the optimal design theory (Silvey, 1980, Section 2.2) and the following sections

in this introduction. The field of optimal design has by many accounts seen its first work

explicitly on an experimental design in a paper by Smith (1918). The book by Fisher (1935)

and the article by Kiefer (1959) are predominantly named as the foundational works of the

field.
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Subsampling as a branch of optimal design arose from finite population sampling (see

e. g. Wynn, 1977). The field has gained popularity in recent years with the rapid growth of

very large data sets. Performing statistical analysis on the full data may no longer be viable

because of computational limitations. Consequently, data reduction is a key factor in big

data analysis. The size of a data set is usually determined by the number of observations,

covariates, and response variables. In the present thesis we consider only the case of a

single response variable. We speak of massive data when the number of observations is

extraordinarily large, while the number of covariates is relatively small. This is the focus of

this thesis. The goal of subsampling is to extract a subset of observations from the full data

that contains as much information as possible for estimating the unknown parameter. The

key concept of optimal design, maximizing some suitable function of the information matrix,

may be adopted to identify the most informative subset of the full data. Earlier studies focus

mostly on probabilistic subsampling schemes, where observations are sampled according to

some sampling distribution (see e. g. Ma et al., 2014). In the work of Wang et al. (2019)

the information-based optimal subdata selection (IBOSS) method is introduced. There,

the subset of the full data is formed based on deterministic rules to insure only the most

informative observations are selected. Since then many works have used similar deterministic

subsampling strategies (e. g. Cheng et al. (2020), Deldossi and Tommasi (2021), Wang et al.

(2021)). This is also the main focus of the present thesis. Application of subsampling to

flight data can be found in Wang et al. (2019). He et al. (2024) apply subsampling to

financial data. Liu et al. (2026, forthcoming) use structural protein data to study their

method. Recent reviews on subsampling are Yao and Wang (2021) and Yu et al. (2024). We

provide more literature in the introductory Sections 2.1, 3.1, and 4.1 of the corresponding

chapters.

In Section 1.1 we present the relevant theory on optimal design in the classical setup

when there are no constraints on the choice of the experimental settings. There, we consider

the linear model with normality assumption. These concepts are extended to the generalized

linear model in Section 1.2. Then, we point out the distinct assumptions we make for

subsampling design in Section 1.3. More specific introductions to the following chapters are

also given in Section 1.3. In Section 1.4 we make general and concluding remarks about the

whole thesis. The Chapters 2, 3 and 4 constitute the main part of this thesis. They have

been published as Reuter and Schwabe (2023a), Reuter and Schwabe (2023b) and Reuter

and Schwabe (2024), respectively. While the layout and formatting have been revised for

coherence within this thesis, the content remains unchanged otherwise, except for minor

editorial changes. However, the respective abstracts have been removed and these chapters
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now share a common bibliography with the remainder of the thesis.

1.1 Theory of Optimal Design under a Linear Model

This section gives a brief overview of the concepts from optimal design theory that we make

use of in Chapters 2 and 3. We refer to the textbooks by Silvey (1980) and, primarily,

Pukelsheim (1993).

We consider the situation of data (xi, yi), where i = 1, . . . , n. The component yi is the

value of the response variable Yi. The covariate value xi, or experimental setting, may

be chosen by the experimenter from the design region X , i. e. xi ∈ X . Suppose that the

dependence of the response variable Yi on the covariate xi is given by the linear model

Yi = f(xi)
⊤β + εi, (1.1)

where f is a p-dimensional vector of regression functions and β ∈ Rp is an unknown parameter

to be estimated. We assume the random errors εi to be independent and normally distributed

with mean 0 and equal variance σ2ε > 0. In particular, we focus on the two models that

correspond to Chapters 2 and 3. We present them in the following two examples.

Example 1.1 (Polynomial regression in one covariate). We consider the linear model with

normality assumption (1.1) for a covariate x ∈ X ⊂ R, when f(x) = (1, x, x2, . . . , xq)⊤. We

speak of polynomial regression of degree q if q is the largest power of the monomials in x

contained in the regression function f . Hence, we assume

Yi = β0 + β1xi + β2x
2
i + · · · + βqx

q
i + εi,

where the error terms εi ∼ N (0, σ2ε) are independent and homoscedastic. The p = (q + 1)-

dimensional parameter vector β = (β0, . . . , βq)
⊤ is to be estimated.

Example 1.2 (Multiple linear regression). We assume the linear model (1.1) for x =

(x1, . . . , xd) ∈ X ⊂ Rd, when f(x) = (1, x1, . . . , xd)⊤. More specifically, we assume that the

response variable Yi depends on the covariate xi = (xi1, . . . , xid)⊤ through

Yi = β0 + β1xi1 + · · · + βdxid + εi,

where, again, εi ∼ N (0, σ2ε) are independent, homoscedastic random errors. The p = (d+ 1)-

dimensional parameter vector β = (β0, . . . , βd)⊤ is to be estimated.
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Usually the experimenter is able to control the frequency ξ(x) how often specific values of

x are applied in the experiment. This distribution ξ over the possible experimental settings

is called a design. The set X of possible experimental settings is called the design region.

We relax the practically essential requirement that nξ(x) is a nonnegative integer to

allow for continuous analytical tools. This was suggested by Kiefer (1959) and is usually

referred to as an approximate design in the literature. Since we only use approximate designs

in this thesis they are simply referred to as designs.

Definition 1.3 (Design). A probability distribution ξ which assigns all of its mass on a

finite number of points on the design region X is called a design.

For data (xi, yi), i = 1, . . . , n consider the least squares estimator β̂ = (F⊤F )−1F⊤y,

where F = (f(x1), . . . , f(xn))⊤ and y = (y1, . . . , yn)⊤. The existence of β̂ is guaranteed

if F has full column rank. Then,
√
n(β̂ − β) is normally distributed with mean zero and

covariance matrix proportional to (F⊤F )−1. Naturally, the goal of an experimenter is to

maximize the information matrix F⊤F =
∑n

i=1 f(xi)f(xi)
⊤ related to the data. For a design

ξ this is formalized by the information matrix.

Definition 1.4 (Information matrix). The information matrix of a design ξ is the p × p

matrix defined by

M(ξ) =

∫
f(x)f(x)⊤ξ(dx),

where we assume all elements of M(ξ) to be finite.

Note that M(ξ) ∈ NND(p) for any design ξ, where NND(p) denotes the closed cone

of nonnegative definite p × p matrices. The goal of experimental design is to maximize

the information matrix. However, it is not possible, outside of degenerate cases, to find a

design ξ∗ which is best in the strong sense that M(ξ∗) −M(ξ) is nonnegative for all ξ (see

Silvey, 1980, Section 1.3). Instead, we look at functions that measure the “largeness” of the

information matrix, called optimality criteria.

Definition 1.5 (Optimality criterion and optimal design). Let Φ be a function from the

closed cone of nonnegative definite p× p matrices into the union of the real line and {−∞},

Φ : NND(p) → R ∪ {−∞}, such that Φ is isotonic with respect to the Loewner ordering,

i. e. Φ(M2) ≥ Φ(M1) if M2 −M1 ∈ NND(p). Then, Φ is an optimality criterion.

A design ξ∗ that maximizes Φ(M(ξ)) is said to be Φ-optimal.

The support of a Φ-optimal design ξ∗ is denoted by X ∗. The optimality criterion

most used in practice is the D-criterion (determinant criterion). We pay special attention
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to D-optimality, as it is the main focus of all following chapters. We present it here

in its homogeneous form. An optimality criterion Φ is said to be homogeneous when

Φ(λM) = λΦ(M) for every M ∈ NND(p) and λ > 0.

Definition 1.6 (D-optimality). The design ξ∗ that maximizes the D-optimality criterion

ΦD(M(ξ)) = det(M(ξ))1/p

is called D-optimal.

The D-optimality criterion may appear in equivalent forms such as log(det(M(ξ))) or

det(M(ξ)) when convenient. The confidence ellipsoid of β, given the least squares estimator

β̂, has volume inversely proportional to det(M(ξ))1/2. Hence a large value of det(M(ξ))

secures a small volume of the confidence ellipsoid (see Pukelsheim, 1993, Chapter 6.2).

We assume that β0 is the intercept parameter related to the constant term of the model

and denote β1 = (β1, . . . , βp−1)⊤. In practice, the main interest often lies on the parameters

β1 only, rather than the full parameter vector β = (β0, β1, . . . , βp−1)⊤. We assume M(ξ) to

be nonsingular. Then, the covariance matrix M(ξ)−1 of β̂ can be written as a block matrix

as

M(ξ)−1 =

(
c0(ξ) c1(ξ)

⊤

c1(ξ) C1(ξ)

)
.

Then, an experimenter may only be interested in the (p− 1) × (p− 1) covariance matrix

C1(ξ) of β̂1.

Definition 1.7 (D1-optimality). The design ξ∗ that maximizes the D1-optimality criterion

ΦD1(M(ξ)) =

det(C1(ξ))−1/(p−1) if M(ξ) is nonsingular,

0 if M(ξ) is singular

is called D1-optimal.

Remark 1.8. A well-known result establishes the equivalence of the two criteria. In a model

containing a constant term, e. g. Example 1.2, a design ξ∗ is D1-optimal if and only if ξ∗ is

D-optimal. For a proof see the lecture notes by Schwabe (1996, Theorem 3.3).

Another criterion that is referred to in this thesis is the A-criterion (average-variance

criterion). It aims to minimize the average variance p−1
∑p−1

j=0 Var(β̂j) of β̂.
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Definition 1.9 (A-optimality). The design ξ∗ that maximizes the A-optimality criterion

ΦA(M(ξ)) =

trace(M(ξ)−1)−1 if M(ξ) is nonsingular,

0 if M(ξ) is singular

is called A-optimal.

Definition 1.10 (A1-optimality). The design ξ∗ that maximizes the A1-optimality criterion

ΦA1(M(ξ)) =

trace(C1(ξ))−1 if M(ξ) is nonsingular,

0 if M(ξ) is singular

is called A1-optimal.

The D-, D1-, A- and A1-criteria share some desirable properties, including being isotonic

with respect to the Loewner ordering as required by Definition 1.5.

Lemma 1.11. Let Φ be the D-, D1-, A- or A1-criterion. Then Φ satisfies the following.

(i) Φ is strictly concave and strictly isotonic relative to the Loewner ordering on NND(p).

(ii) If there exists a design with nonsingular information matrix, then the matrix M(ξ∗) is

nonsingular and unique.

For a proof of (i) see Pukelsheim (1993, Chapter 6.13). Statement (ii) follows immediately

from the fact that Φ is strictly concave at M(ξ∗) (see Pronzato, 2013). Note that while

the optimal matrix M(ξ∗) is unique, the Φ-optimal design might not be. To evaluate the

quality of design ξ, it is common to study its efficiency. The efficiency is a number between

zero and one that measures the performance of ξ in the sense of some optimality criterion Φ,

relative to the Φ-optimal design ξ∗.

Definition 1.12 (Φ-efficiency). Let ξ∗ be the Φ-optimal design for a homogeneous optimality

criterion Φ. Then, the Φ-efficiency of a design ξ is defined as

effΦ(ξ) =
Φ(M(ξ))

Φ(M(ξ∗))
.

Next, we introduce the main tool we use for convex optimization of the design criterion

Φ. The directional derivative of Φ at a design ξ with non-singular information matrix M(ξ)

in the direction of a design η is defined by

FΦ(ξ, η) = lim
ϵ→0+

1

ϵ
(Φ(M((1 − ϵ)ξ + ϵη)) − Φ(M(ξ))) .

6



Here, we use the equivalent concave form log(det(M(ξ))) of the D-criterion to ensure

a simpler directional derivative. For the D-criterion log(det(M(ξ))) we find FD(ξ, η) =

trace(M(ξ)−1M(η))−p (compare Silvey, 1980, Example 3.8). Equivalently, one may consider

only the essential part of the directional derivative trace(M(ξ)−1M(η)). As will become

clear in Theorem 1.14, we are particularly interested in the directional derivative in the

direction of a one-point design ξx that puts all its mass on one point x.

Definition 1.13 (Sensitivity function). The sensitivity function ψ w.r.t. the D-criterion is

defined by

ψ(x, ξ) = trace(M(ξ)−1M(ξx)) = f(x)⊤M(ξ)−1f(x).

One of the most central results in the theory of optimal design of experiments is an

equivalence theorem by Kiefer and Wolfowitz (1960). They establish the equivalence between

maximization of the D-criterion and minimization of the maximum of the sensitivity function.

Theorem 1.14 (Kiefer-Wolfowitz equivalence theorem). A design ξ∗ is D-optimal if and

only if

ψ(x, ξ∗) ≤ p for all x ∈ X .

In particular, equality is achieved for the support points of ξ∗.

For a proof see Pukelsheim (1993, chapter 9.4). Similar equivalence theorems exist for

other optimality criteria as well, e. g. for A-optimality see Pukelsheim (1993, chapter 9.7).

We illustrate the above concepts using the two examples presented earlier. The D-optimal

designs presented here directly relate to Chapters 2 and 3, as they typically represent the

limit of the D-optimal subsampling designs when the subsampling proportion tends to zero.

Example 1.15 (Polynomial regression, continuation of Example 1.1). We return to the

example of polynomial regression of degree q in one covariate. Let the design region be

X = [−1, 1]. Recall that the regression function is f(x) = (1, x, x2, . . . , xq)⊤. We assume that

the information matrix M(ξ), and thus M(ξ)−1, is positive definite. Then, the sensitivity

function ψ(x, ξ) is a polynomial of even degree 2q with positive leading term. In particular,

ψ(x, ξ) is symmetric around zero, when the design ξ is invariant w.r.t. the sign change,

ξ(x) = ξ(−x). These invariant designs form an essentially complete class (see Pukelsheim,

1993, chapter 13.1) for any concave optimality criteria invariant w.r.t. the sign change,

e. g. A- and D-optimality. This allows us to construct D-optimal designs with the help of

the optimality condition in Theorem 1.14. The support X ∗ of the D-optimal design ξ∗ only

contains the minimally required p points. This is because ψ(x, ξ∗) has at most p− 2 local

maxima in the interior of X and ψ(x, ξ∗) = p for any x ∈ X ∗. The support points are the
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p− 2 points where the local maxima of ψ(x, ξ∗) are attained and the boundary points ±1.

The p support points of ξ∗ have equal weight 1/p.

Here, we give examples for D-optimal designs for polynomial regression of degree 2 and

5, as presented by Pukelsheim (1993, chapter 9.5). When q = 2, the D-optimal design ξ∗ is

equally supported with weight 1/3 on the points ±1, 0. When q = 5, the D-optimal design

ξ∗ is equally supported with weight 1/6 on the points ±1,±0.765,±0.285. In Figure 1.1 we

show the support points of the D-optimal designs alongside the corresponding sensitivity

functions. The horizontal dotted line represents the dimension p of the parameter β, which is

simultaneously the upper bound of the sensitivity function in the condition in Theorem 1.14.

The large points depict the support points of ξ∗ together with their value of the sensitivity

function, which is equal to p for all support points. Note that in general other optimality
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(b) polynomial regression of degree q = 5

Figure 1.1: Sensitivity function for the D-optimal design for polynomial regression of degree
two (left) and degree five (right)

criteria give different optimal designs. The A-optimal design is equal to the D-optimal

design for simple linear regression, i. e. q = 1. For q = 2 the A-optimal design shares the

same support points −1, 0, 1 with the D-optimal design, but assigns weights 0.25, 0.5, 0.25

to them. For q ≥ 3 the support points of the A-optimal design differ from those of the

D-optimal design (for q ≤ 10, see Pukelsheim, 1993, chapters 9.5 and 9.9).

Example 1.16. (Multiple linear regression, continuation of Example 1.2) We examine

the case of multiple linear regression, with d covariates in [−1, 1], i. e. the design region

is X = [−1, 1]d. A D-optimal design ξ∗ places equal weight 2−d on all the vertices of

the hypercube (compare Kiefer, 1960). Thus X ∗ = {−1, 1}d is the support of ξ∗. The

information matrix of ξ∗ is equal to the p× p identity matrix Ip. The sensitivity function is

then given by ψ(x, ξ∗) = 1 + x⊤x. We see that the optimality condition in Theorem 1.14
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is indeed satisfied. Note that for d ≥ 3 the D-optimal design is not unique and can be

reduced to a fractional factorial design with fewer support points (see Pukelsheim, 1993,

chapter 15.11). Here, we present the D-optimal design when the entire parameter β is to be

estimated. By Remark 1.8, ξ∗ is still optimal when only the slope parameters β1 are to be

estimated. The design ξ∗ is also A- and A1-optimal.

1.2 Theory of Optimal Design under a Generalized Linear

Model

We now consider the generalized linear model (GLM) and point out the relevant optimal

design theory we use in Chapter 4. In line with before, we consider data (xi, yi), where

i = 1, . . . , n. The value of the response variable Yi is denoted by yi, and the covariate by

xi. We denote the variance Var(Yi) of the response variable by σ2(xi,β). We assume the

response variable Yi to follow a distribution from the natural exponential family and the

mean µ(xi,β) of Yi to depend on the linear predictor f(xi)
⊤β through the inverse of a

bijective link function g. The p-dimensional vector of regression functions is denoted by f

and β ∈ Rp is an unknown parameter to be estimated. Specifically, we assume that the

mean of Yi depends on xi through

E(Yi) = µ(xi,β) = g−1(f(xi)
⊤β). (1.2)

The information matrix is again defined with the goal to quantify the information of a

given design ξ. In the GLM setting, a design ξ∗ is only locally Φ-optimal at parameter β,

rather than Φ-optimal over the entire parameter space. This results from the dependence of

the information matrix on β. We assume the inverse link function g−1 to be differentiable.

Definition 1.17 (Information matrix (GLM)). The intensity function λ is defined as

λ(x,β) = (g−1)′(f(x)⊤β)2/σ2(x,β). Then, the information matrix of a design ξ is the p× p

matrix defined by

M(ξ,β) =

∫
λ(x,β)f(x)f(x)⊤ξ(dx),

where we assume all elements of M(ξ,β) to be finite.

Again, the information matrix is nonnegative definite for any design ξ and parameter β.

Remark 1.18. In the previous section the information matrix for the linear model is defined

by M(ξ) =
∫
f(x)f(x)⊤ξ(dx). Definition 1.17 produces the same information matrix for the

special case of a linear model, up the variance σ2(x,β) of Yi. For the linear model we have
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λ(x,β) = 1/σ2ε , because we are in the special case that the link function g(µ) = µ is the

identity. However, σ2ε is negligible for optimization here, as it is constant in the linear model.

We consider Poisson regression as an example, as it is the subject of Chapter 4.

Example 1.19 (Poisson regression in one covariate). We assume that the response variable

Yi follows a Poisson distribution with rate E(Yi) dependent on the covariate xi ∈ X ⊂ R via

a log-link and a linear component β0 + β1xi. For the model (1.2) we have g−1(µ) = exp(µ)

and f(x) = (1, x)⊤ such that E(Yi) = exp(β0+β1x). The parameter vector β to be estimated

is of dimension p = 2. Unlike in the previous examples, the variance of the response variable

Yi depends on xi. Specifically, σ2(x,β) = exp(β0 + β1x). We find for the intensity function

λ(x,β) = exp(β0 + β1x). Subsequently, the information matrix of a design ξ is given by

M(ξ,β) =
∫

exp(β0 + β1x)f(x)f(x)⊤ξ(dx).

Let β̂ be the maximum likelihood estimator of β. Under regularity conditions,
√
n(β̂−β)

is asymptotically normally distributed with mean zero and covariance matrix M(ξ,β)−1.

This again gives motivation to maximize M(ξ,β) in the sense of an optimality criterion.

Definition 1.3 of a design as well as the definitions on the optimality criteria and efficiency

(Definitions 1.5, 1.6, 1.7, 1.9, 1.10 and 1.12) stay as they are, except that a design ξ∗ is

now called locally Φ-optimal at β, when ξ∗ maximizes Φ(M(ξ,β)). Lemma 1.11 still holds.

The sensitivity function ψ w.r.t. the D-criterion is defined similarly as in Definition 1.13

by ψ(x, ξ,β) = trace(M(ξ,β)−1M(ξx,β)), only with the additional notation to express the

dependence on the parameter β. Here the sensitivity function reduces to

ψ(x, ξ,β) = λ(x,β)f(x)⊤M(ξ,β)−1f(x)⊤.

The Kiefer-Wolfowitz equivalence theorem can be extended to local D-optimality in

GLMs. Even though Theorem 1.14 does not change except for the additional dependence

on β of the sensitivity function ψ, we present it once more for the sake of completeness. A

proof can be found in the textbook by Fedorov (1972, Theorem 2.2.1).

Theorem 1.20 (Equivalence theorem). A design ξ∗ is locally D-optimal if and only if

ψ(x, ξ∗,β) ≤ p for all x ∈ X .

In particular, equality is achieved for the support points of ξ∗.

Example 1.21. (Poisson regression, continuation of Example 1.19) We consider Poisson

regression as defined above. In applications the rate E[Yi] more commonly decreases for
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increasing xi, thus we assume β1 < 0. Let X = [xmin, xmax], where xmin < xmax. Recall that

M(ξ,β) =
∫

exp(β0 + β1x)f(x)f(x)⊤ξ(dx). Subsequently, the sensitivity function is given

by ψ(x, ξ,β) = exp(β0 + β1x)f(x)⊤M(ξ,β)−1f(x), the product of an exponential function

and a quadratic polynomial in x. Russell et al. (2009) show that the D-optimal design

is equally supported on xmin and min(xmin − 2/β1, xmax). In Figure 1.2 we present the

support points of the D-optimal design on X = [0,∞) for two different values of the slope

parameter β1. Here, as xmax = ∞, ξ∗ is equally supported on xmin and xmin − 2/β1 for any

β1 < 0. Alongside the support points of ξ∗, depicted by the large points, the corresponding

sensitivity function is shown. The horizontal dotted line represents the upper bound p = 2

of the sensitivity function in the condition in Theorem 1.20. Note that the graphics on the
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Figure 1.2: Sensitivity function for the locally D-optimal design for Poisson regression on
X = [0,∞) for β1 = −1 (left) and β1 = −0.5 (right)

left and right hand side of Figure 1.2 only differ by scaling of the x-axis. Such equivariance

considerations will be studied in detail in the following chapters. For equivariance in the

case of Poisson regression specifically, see Theorem 4.6.

1.3 Subsampling Design

We now shift our attention to the main subject of this thesis: subsampling. The first

key deviation from the above sections concerns the model. We consider the full data

(xi, yi), i = 1, . . . , n, where yi is the value of the response variable Yi as before. Additionally,

we now assume that the covariate value xi is generated by a d-dimensional continuous

random variable Xi to model the distribution of the full data. The density of Xi is denoted

by fX . The dependence of the response variable Yi on the linear predictor f(Xi)
⊤β is
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modeled through the conditional mean that is described by a bijective link function g such,

that analogous to Section 1.2,

E[Yi|Xi] = µ(Xi,β) = g−1(f(Xi)
⊤β). (1.3)

We aim to select a fixed percentage α ∈ (0, 1), called subsampling proportion, of the full data

(xi, yi), i = 1, . . . , n. The goal is to find the subsample that yields the most precise estimation

of the parameter β ∈ Rp. In the linear model, the link function g and its inverse g−1 are the

identity function g(µ) = µ. Then E[Yi|Xi] = f(Xi)
⊤β.

A key assumption in the following chapters is that the density fX of the covariate is

known. This is made to obtain analytical results for the (locally) D-optimal subsampling

design. However, subsampling methods that do not require the density of the covariate

to be known are studied as well. A continuous design that describes subsampling from

the covariate Xi should be bounded from above by the distribution of Xi. To ensure the

boundedness as well as the subsampling proportion α, we define a subsampling design as

follows.

Definition 1.22 (Subsampling design). Given a subsampling proportion α ∈ (0, 1), a

continuous distribution ξ with density fξ on the design region X is called subsampling design

with respect to the distribution of Xi if and only if it satisfies

(i)
∫
X ξ(dx) = α,

(ii) fξ(x) ≤ fX(x) for all x ∈ X .

Other relevant definitions of the information matrix, optimality criteria, and sensitivity

function are inherited from Sections 1.1 and 1.2 by replacing the discrete measure ξ by a

continuous one with density fξ.

Early studies on such constrained designs include Wynn (1977), Fedorov (1989) and

Pronzato (2004). Miller (2002, Chapter 4.4) gives examples for D- and c-optimal constrained

designs for polynomial regression in one covariate for up to degree four, where the density

is bounded from above and below, though the lower bound may be zero, thus including

subsampling designs as defined above.

Theorem 1.14 was used to verify the D-optimality of a given design in the classical theory

of Section 1.1. Similarly we use an equivalence theorem to help us construct subsampling

designs and verify their D-optimality. The following Theorem 1.23 is adapted to our setting

from Sahm and Schwabe (2001, Corollary 1).
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Theorem 1.23 (General equivalence theorem for constrained designs).

Let P(ψ(Xi, ξ,β) = s) = 0 for any ξ and s be satisfied. Then, the subsampling design ξ∗ is

locally D-optimal at β if and only if there exist a set X ∗ and a threshold s∗ such that

(i) ξ∗ has density fξ∗(x) = fX(x)1X ∗(x)

(ii) ψ(x, ξ∗,β) ≥ s∗ for x ∈ X ∗, and

(iii) ψ(x, ξ∗,β) < s∗ for x ̸∈ X ∗.

In principle a subsample can be generated according to a continuous design ξ by accepting

units i into the subsample with probability fξ(xi)/fX(xi). However, by Theorem 1.23 (i)

the probability fξ∗(xi)/fX(xi) is equal to one for all xi ∈ X ∗ and equal to zero otherwise

for the locally D-optimal subsampling design ξ∗. Therefore, the D-optimal subsample can

be selected deterministically.

Theorems similar to Theorem 1.23 appear extensively throughout the following chapters,

specific to the given situation, see e. g. Theorems 2.1 and 3.1, and is restated as Theorem 4.11

in the setting of Chapter 4. The condition P(ψ(Xi, ξ,β) = s) = 0 for any ξ and s is discussed

thoroughly in the corresponding proofs. Next, we make introductory remarks to the three

following chapters.

1.3.1 Introduction to Chapter 2 on Optimal Subsampling Design for

Polynomial Regression in one Covariate

In Chapter 2 we present the work published as Reuter and Schwabe (2023a). We construct

D-optimal subsampling designs for polynomial regression of degree q in one covariate.

Specifically, this corresponds to the model (1.1) with f(x) = (1, x, . . . , xq)⊤, except that we

now assume that the covariate Xi is a random variable. The model is described in detail in

Section 2.2.

In Section 2.3 we adapt Theorem 1.23 to the present setup to establish the equivalence

Theorem 2.1. It is shown that the density of theD-optimal subsampling design is concentrated

on, at most, p = q + 1 intervals. This is consistent with Example 1.15, where the D-optimal

design has p support points. Corollary 2.3 additionally assumes that the covariate follows

a symmetric distribution. As a result, we find that the support of ξ∗ is also symmetric,

similar to how the support points in Example 1.15 are symmetrically placed around zero.

We also consider the location-scale transformation Zi = σZXi + µZ for σZ ̸= 0, µZ ∈ R of

the covariate. Theorem 2.2 shows how the D-optimal subsampling design for covariate Xi

can be transformed to be D-optimal for the covariate Zi.
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Then, in Section 2.4 we give examples for linear regression (q = 1). This case is also

discussed in Section 3.3.1, when there is only one covariate in the setup of multiple linear

regression in Chapter 3. For a symmetric distribution of the covariate, the D-optimal

subsampling design is the theoretical counterpart of the IBOSS method proposed in Wang

et al. (2019). The IBOSS method is a subsampling method that selects k < n data points.

For a single covariate, the IBOSS method selects the farthest k/2 data points from each tail,

i. e. the k/2 data points with the smallest value of the covariate and the k/2 data points

with the largest value of the covariate, respectively.

In Section 2.5 we give examples for several distributions of the covariate for quadratic

regression (q = 2). Through the examples we observe properties of the D-optimal design

such as the following. Assume a uniform distribution on [−1, 1] of the covariate Xi. Then,

the weight ξ∗(Ir)/α on the three intervals Ir, r = 0, 1, 2 of the D-optimal subsampling

design ξ∗ converges to 1/3 as the subsampling proportion α tends to zero, see Theorem 2.9.

Thus when α→ 0 the rescaled D-optimal subsampling design ξ∗/α converges in distribution

to the D-optimal design from Example 1.15. All D-optimal subsampling designs discussed in

Sections 2.4 and 2.5 for a covariate following the normal, exponential, or uniform distribution

are supported on exactly p intervals, given q ≤ 2. However, for q = 2 and a heavy-tailed

distribution like the t-distributed covariate with ν degrees of freedom, there exists a threshold

α∗ such that for α ≥ α∗ the D-optimal design is supported only on (−∞,−tν,1−α/2] ∪
[tν,1−α/2,∞). Here, tν,1−α/2 denotes the 1−α/2-quantile of the t-distribution with ν degrees

of freedom. We state this specifically for ν = 5 in Theorem 2.11.

In Section 2.6 we first study the efficiency of uniform subsampling to illustrate the

advantage of using a D-optimal subsampling design. Then, we propose an IBOSS-like design

for quadratic regression and study its efficiency. The IBOSS-like method takes proportions

α/3 from each of the two tails of the data as well as from the center of the data. This

procedure can be used without any prior knowledge of the distribution of the covariate. We

find that this IBOSS-like design is highly efficient over the whole range of the subsampling

proportion α. He et al. (2024) developed their method for extending the IBOSS method

to quadratic regression and applied it to financial data. Their method extends the IBOSS

method to quadratic regression in the case of a d-dimensional covariate. As in the IBOSS

method, the d covariates are considered successively. For each covariate the subsample is

selected similarly to the method we propose here.
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1.3.2 Introduction to Chapter 3 on D-optimal Subsampling Design for

Massive Data Linear Regression

Chapter 3 contains the work published as Reuter and Schwabe (2023b). Here, we consider

a multiple linear regression, i. e. model (1.1) with f(x) = (1, x1, . . . , xd)⊤ and β ∈ Rd+1.

However, we now assume that the covariate Xi is a d-dimensional random variable. In

Section 3.2 we present the model.

While the focus of this chapter is on a d-dimensional covariate, we briefly discuss the

construction of D-optimal subsampling designs for linear regression in one covariate in

Section 3.3.1. This connects Chapter 3 to the preceding Chapter 2.

In Section 3.3.2 we extend the results to d-dimensional covariates. Initially, we assume

that the covariate Xi follows a centered, spherical distribution, i. e. a distribution that is

invariant with respect to the special orthogonal group SO(d). This assumption is later

relaxed to non-centered elliptical distributions of the covariate. One of the key results of

Section 3.3.2 is Theorem 3.6. It shows that any subsampling design ξ can be symmetrized

such that the symmetrized subsampling design ξ is superior to ξ in the sense of D-optimality.

This allows us to restrict the search for a D-optimal subsampling design to such symmetrized

subsampling designs that are invariant with respect to SO(d). Theorem 3.7 then gives a

representation of the density of the D-optimal subsampling design ξ∗ for centered spherical

distributions. We find that fξ∗ is equal to zero in the interior of a sphere of radius q1−α and

equal to the bounding density fX outside that sphere. Here, q1−α denotes the (1−α)-quantile

of the distribution of ∥Xi∥22. Similarly, the D-optimal design in Example 1.16 has support

points in the corners of the design region. To allow the relaxation to elliptical distributions

of the covariate we consider the transformation Xi = AZi +µ of the covariate in Lemma 3.9,

where A is a nonsingular d×d matrix and µ ∈ Rd. The density of the D-optimal subsampling

design for non-centered elliptical distributions of Xi is given in Theorem 3.10. We propose

subsampling methods that implements the D-optimal subsampling design in Algorithms 1

and 2. The algorithms differ only slightly. The subsample size Kn of Algorithm 1 is random,

while the subsample size kn of Algorithm 2 is deterministic. Both methods require knowledge

of the covariance matrix ΣX and the mean µX of the covariate.

In Section 3.4 we treat the scenario of a fixed subsample size k for a growing full sample

size n, rather than a fixed subsampling proportion α. We discuss the covariance matrix and

mean squared error of the least squares estimator of the d-dimensional slope parameter vector

β̂1. We also study the efficiency of uniform random subsampling to illustrate the advantage

of using the D-optimal subsampling design. Here, we also propose a simplified subsampling

method that requires less knowledge of the covariate Xi and has lower computational
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complexity O(nd). Specifically, only the variances of the covariates are needed, i. e. the

diagonal entries of ΣX .

In Section 3.5 we present a simulation study that compares our proposed subsampling

methods with the IBOSS method (Wang et al., 2019). The IBOSS method is a subsampling

method for multiple linear regression with d covariates that selects k < n data points.

The method considers the d covariates successively. For each covariate the IBOSS method

selects the farthest k/(2d) remaining data points with the smallest and largest values in

the currently considered covariate. Unsurprisingly, the method that requires full knowledge

of the covariance matrix ΣX and mean µX of Xi outperforms the IBOSS method, which

requires no such prior knowledge. Outside of cases where there is knowledge of ΣX and

µX the method can serve as a benchmark for other methods. We find that the proposed

simplified subsampling method can outperform the IBOSS method in some scenarios of low

correlation between the covariates.

1.3.3 Introduction to Chapter 4 on Poisson Regression in one Covariate

on Massive Data

In Chapter 4 we present the work published as Reuter and Schwabe (2024). We assume

that conditional on the covariate Xi, the response Yi follows a Poisson distribution. The

conditional mean of Yi given by model 1.3, with inverse link function g−1 equal to the natural

exponential function, and f(x) = (1, x)⊤. The model is discussed in detail in Section 4.2.

In Section 4.3 we first work under the assumption that β1 < 0, analogous to Example 1.21.

We establish a representation of the support of the D-optimal subsampling design for β1 < 0

in Theorem 4.2. There are two possible cases. Firstly, the D-optimal subsampling design

ξ∗ may be supported on two intervals, similar to the D-optimal design having two support

points in Example 1.21. Alternatively, ξ∗ may be supported only on the interval (−∞, qα],

where qα denotes the α-quantile of Xi. Theorem 4.6 then treats transformations of the

covariate and simultaneous transformation of the D-optimal subsampling design, as we have

also seen in Chapters 2 and 3. Here, however, the transformation requires a simultaneous

transformation of the parameter β1. We use this transformation of the parameter β1 to derive

Corollary 4.7, which gives a representation of the support of ξ∗ for positive β1 > 0. The case

β1 = 0 is equivalent to linear regression in one covariate, which is treated in Sections 2.4 and

3.3.1, as mentioned previously. We give examples of the D-optimal subsampling design ξ∗

for exponential and uniform distributions of the covariate Xi throughout Section 4.3. Here,

we place special emphasis on the transition between the cases of one and two intervals that

make up the support of ξ∗. The transition occurs at a crossover point that depends on both
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the subsampling proportion α and the parameter β1.

As in Chapters 2 and 3 we study the efficiency of uniform random subsampling in

Section 4.4. Further, we consider both a one-sided and a two-sided IBOSS-like design. The

one-sided design has support (−∞, qα]. The two-sided design is the theoretical counterpart of

the IBOSS method and is supported on (−∞, qα/2] ∪ [q1−α/2,∞). While we found that such

heuristic designs can perform very well in the polynomial regression setting in Chapter 2, the

one- and two-sided IBOSS-like designs are not efficient over the entire range of subsampling

proportions α. In particular, for small α, these heuristic designs do not perform well.

In Chapter 4 we consider only the linear predictor β0+β1Xi. The results can be extended

to polynomial Poisson regression. There, the linear predictor is given by f(Xi)
⊤β with

f(x) = (1, x, . . . , xq)⊤ and β ∈ Rq+1. Then, the sensitivity function is the product of an

exponential function and a polynomial of degree q in x. Thus, the support of ξ∗ is the union

of q + 1 intervals, similar to how the number of intervals that make up the support of ξ∗

grows with the degree q in Chapter 2.

1.4 Concluding Remarks

Throughout this thesis we construct and analyze D-optimal subsampling designs for various

regression models under different distributional assumptions. The main contribution of this

thesis is the theoretical derivation of the D-optimal subsampling designs. We find that D-

optimal subsampling designs strongly outperform uniform random subsampling, particularly

for small subsample proportions with unbounded covariate distributions. Additionally,

we propose a generalized IBOSS method for quadratic regression that does not require

prior knowledge of the distribution and showed competitive performance. For multiple

linear regression, we construct optimal designs for centered spherical distributions and

their location-scale transformations, providing two implementation methods with varying

assumptions and computational complexity. Comparative simulations show the superiority

of our methods over the IBOSS method in specific scenarios. We showed that IBOSS-like

subsampling can be reasonably efficient for some settings of Poisson regression, but perform

poorly for small subsampling proportion. We investigate misspecification of the regression

parameter in the case of Poisson regression.

The emphasis in this work is on D-optimal subsampling designs. We note that many

of the results may be extended to other optimality criteria like A-optimality and other

criteria from the Kiefer’s Φq-class of optimality criteria (Kiefer, 1974). Alternatively, the

IMSE-optimality may be considered when predicting the mean response. The theoretical
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results that establish a representation of the support of D-optimal subsampling designs

require strong assumptions. In practice, it is not reasonable to assume that the distribution

of the covariate is known, or even that it is invariant with respect to rotations about the

origin after transformation, as we did in Chapter 3. In this thesis we solely focused on

massive data with few covariates, and just a single covariate in Chapters 2 and 4. While we

propose subsampling methods that do not require prior knowledge of the distribution of the

covariate throughout this thesis, future work should focus on reducing the assumptions on

the covariate, e. g. in the style of the work by Pronzato and Wang (2021). Extensions of the

subsampling methods presented here to d covariates are relatively straight-forward for some

settings such as quadratic regression (see He et al., 2024). Extending the theoretical results

to higher dimensionality requires extensive work, as we have seen in Chapter 3. However,

as high-dimensional data is a key aspect of big data analysis, more investigation is needed.

A recent work by Singh and Stufken (2023) tackles this issue by combining LASSO with

subsampling. Further, the D-optimal subsampling design heavily depends on the chosen

regression model. The subsampling methods we propose may have a consequential loss in

efficiency, when the model is misspecified. Finding subsampling methods that are robust to

model misspecification is valuable, as prior knowledge of the regression model is difficult

to justify in big data settings. Current work on this includes Joseph and Mak (2021) for

regression problems and Singh (2024) for classification.
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Chapter 2

Optimal Subsampling Design for

Polynomial Regression in one

Covariate

In this chapter we present the work titled “Optimal Subsampling Design for Polynomial

Regression in one Covariate” (Reuter and Schwabe, 2023a) published in the journal Statistical

Papers.

2.1 Introduction

Data Reduction is a major challenge as technological advances have led to a massive increase

in data collection to a point where traditional statistical methods fail or computing power

can not keep up. In this case we speak of big data. We typically differentiate between the

case where the number of covariates is much larger than the number of observations and

the case where the massive amount of observations is the problem. The first case is well

studied, most notably by Tibshirani (1996) introducing LASSO, which utilizes ℓ1 penalization

to find sparse parameter vectors, thus fusing subset selection and ridge regression. The

second case, often referred to as massive data, can be tackled in two ways. Firstly in a

probabilistic fashion, creating random subsamples in a non-uniform manner. Prominent

studies include Drineas et al. (2006), Mahoney (2011) and Ma et al. (2014). They present

subsampling methods for linear regression models called algorithmic leveraging that sample

according to probabilities based on the normalized statistical leverage scores of the covariate

matrix. More recently Dereziński and Warmuth (2018) study volume sampling, where
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subdata is chosen proportional to the squared volume of the parallelepiped spanned by its

observations. Conversely to these probabilistic methods one can select subdata by applying

deterministic rules. Shi and Tang (2021) present such a method, that maximizes the minimal

distance between two observations in the subdata. Wang et al. (2021) propose orthogonal

subsampling inspired by orthogonal arrays. Most prominently, Wang et al. (2019) introduce

the information-based optimal subdata selection (IBOSS) to tackle big data linear regression

in a deterministic fashion based on D-optimality.

In this paper we study D-optimal subsampling designs for polynomial regression in one

covariate, where the goal is to select a percentage α of the full data that maximizes the

determinant of the information matrix. For the conventional study of approximate designs in

this setting we refer to Gaffke and Heiligers (1996). Heiligers and Schneider (1992) consider

specifically cubic regression on a ball. We consider D-optimal designs with measure α that

are bounded from above by the distribution of the known covariate. Such directly bounded

designs were first studied by Wynn (1977) and Fedorov (1989). Pronzato (2004) considers

this setting using a form of the subsampling design standardized to one and bounded by α−1

times the distribution of the covariates. More recently, Pronzato and Wang (2021) studies

the same in the context of sequential subsampling. For the characterization of the optimal

subsampling designs we make use of an equivalence theorem by Sahm and Schwabe (2001).

This equivalence theorem enables us to construct such subsampling designs for various settings

of the distributional assumptions on the covariate. Here we will only look at distributions of

the covariate that are invariant to a sign change, i.e. symmetric about the vertical axis. We

discuss the shape of D-optimal subsampling subsampling designs for polynomial regression of

degree q first. We then study quadratic regression under several distributional assumptions

more closely, after showing two examples for simple linear regression. In particular we

take a look at the percentage of mass of the optimal subsampling design on the outer

intervals compared to the inner one, which changes drastically given the distribution of the

covariate, particularly for heavy-tailed distributions. In addition we examine the efficiency of

uniform random subsampling to illustrate the advantage of the optimal subsampling designs.

All numerical results are obtained by the Newton method implemented in the R package

nleqslv by Hasselman (2018). All relevant R scripts are available on a GitHub repository

https://github.com/TorstenReuter/polynomial_regression_in_one_covariate.

The rest of this paper is organized as follows. In Section 2.2 we specify the polynomial

model. In Section 2.3 we introduce the concept of continuous subsampling designs and give

characterizations for optimization. In Sections 2.4 and 2.5 we present optimal subsampling

designs in the case of linear and quadratic regression, respectively, for various classes of
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distributions of the covariate. Section 2.6 contains some efficiency considerations showing the

strength of improvement of the performance of the optimal subsampling design compared

to random subsampling. The paper concludes with a discussion in Section 2.7. Proofs are

deferred to an Appendix.

2.2 Model Specification

We consider the situation of pairs (xi, yi) of data, where yi is the value of the response

variable Yi and xi is the value of a single covariate Xi for unit i = 1, . . . , n, for very large

numbers of units n. We assume that the dependence of the response on the covariate is

given by a polynomial regression model

Yi = β0 + β1Xi + β2X
2
i + · · · + βqX

q
i + εi

with independent, homoscedastic random errors εi having zero mean (E(εi) = 0, Var(εi) =

σ2ε > 0). The largest exponent q ≥ 1 denotes the degree of the polynomial regression, and

p = q + 1 is the number of regression parameters β0, . . . , βq to be estimated, where, for each

k = 1, . . . , q, the parameter βk is the coefficient for the kth monomial xk, and β0 denotes the

intercept. For example, for q = 1, we have ordinary linear regression, Yi = β0 + β1Xi + εi,

with p = 2 parameters β0 (intercept) and β1 (slope) and, for q = 2, we have quadratic

regression, Yi = β0 + β1Xi + β2X
2
i + εi, with p = 3 and an additional curvature parameter

β2. Further, we assume that the units of the covariate Xi are identically distributed and

that all Xi and random errors εi′ are independent.

For notational convenience, we write the polynomial regression as a general linear model

Yi = f(Xi)
⊤β + εi ,

where f(x) = (1, x, . . . , xq)⊤ is the p-dimensional vector of regression functions and β =

(β0, β1, . . . , βq)
⊤ is the p-dimensional vector of regression parameters.

2.3 Subsampling Design

We are faced with the problem that the responses Yi are expensive or difficult to observe

while the values xi of all units Xi of the covariate are available. To overcome this problem,

we consider the situation that the responses Yi will be observed only for a certain percentage

α of the units (0 < α < 1) and that these units will be selected on the basis of the knowledge
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of the values xi of the covariate for all units. As an alternative motivation, we can consider

a situation where all pairs (xi, yi) are available but parameter estimation is computationally

feasible only on a percentage α of the data. In either case we want to find the subsample of

pairs (xi, yi) that yields the most precise estimation of the parameter vector β.

To obtain analytical results, the covariate Xi is supposed to have a continuous distribution

with density fX(x), and we assume that the distribution of the covariate is known. The aim

is to find a subsample of this distribution that covers a percentage α of the distribution

and that contains the most information. For this, we will consider continuous designs ξ as

measures of mass α on R with density fξ(x) bounded by the density fX(x) of the covariate

Xi such that
∫
fξ(x) dx = α and fξ(x) ≤ fX(x) for all x ∈ R. A subsample with mean

subsample size αn can then be generated according to such a continuous design by accepting

units i with probability fξ(xi)/fX(xi).

For a continuous design ξ, the information matrix M(ξ) is defined as M(ξ) =∫
f(x)f(x)⊤fξ(x) dx. In the present polynomial setup, M(ξ) =

(
mj+j′(ξ)

)j′=0,...,q

j=0,...,q
, where

mk =
∫
xkfξ(x) dx is the kth moment associated with the design ξ. Thus, it has to be

required that the distribution of Xi has a finite moment E(X2q
i ) of order 2q in order to

guarantee that all entries in the information matrix M(ξ) exist for all continuous designs ξ

for which the density fξ(x) is bounded by fX(x).

The information matrix M(ξ) measures the performance of the design ξ in the sense

that the covariance matrix of the least squares estimator β̂ based on a subsample according

to the design ξ is proportional to the inverse M(ξ)−1 of the information matrix M(ξ) or,

more precisely,
√
αn(β̂ − β) is normally distributed with mean zero and covariance matrix

σ2εM(ξ)−1, at least asymptotically. Note that for continuous designs ξ the information matrix

M(ξ) is always of full rank and, hence, the inverse M(ξ)−1 exists. Based on the relation to

the covariance matrix, it is desirable to maximize the information matrix M(ξ). However,

as well-known in design optimization, maximization of the information matrix cannot be

achieved uniformly with respect to the Loewner ordering of positive-definiteness. Thus,

commonly, a design criterion which is a real valued functional of the information matrix

M(ξ) will be maximized, instead. We will focus here on the most popular design criterion

in applications, the D-criterion, in its common form log(det(M(ξ))) to be maximized.

Maximization of the D-criterion can be interpreted in terms of the covariance matrix to

be the same as minimizing the volume of the confidence ellipsoid for the whole parameter

vector β based on the least squares estimator or, equivalently, minimizing the volume of

the acceptance region for a Wald test on the whole model. The subsampling design ξ∗

that maximizes the D-criterion log(det(M(ξ))) will be called D-optimal, and its density is
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denoted by fξ∗(x).

To obtain D-optimal subsampling designs, we will make use of standard techniques

coming from constrained convex optimization and symmetrization. For convex optimization

we employ the directional derivative

FD(ξ, η) = lim
ϵ→0+

1

ϵ
(log(det(M((1 − ϵ)ξ + ϵη))) − log(det(M(ξ))))

of the D-criterion at a design ξ with non-singular information matrix M(ξ) in the direction

of a design η, where we allow here η to be a general design of mass α that has not necessarily

a density bounded by fX(x). In particular, η = ξx may be a one-point design which

assigns all mass α to a single setting x in R. Evaluation of the directional derivative yields

FD(ξ, η) = trace(M(ξ)−1M(η)) − p (compare Silvey, 1980, Example 3.8) which reduces to

FD(ξ, ξx) = αf(x)⊤M(ξ)−1f(x)−p for a one-point design η = ξx. Equivalently, for one-point

designs η = ξx, we may consider the sensitivity function ψ(x, ξ) = αf(x)⊤M(ξ)−1f(x) which

incorporates the essential part of the directional derivative (ψ(x, ξ) = p+FD(ξ, ξx)). For the

characterization of the D-optimal continuous subsampling design, the constrained equivalence

theorem under Kuhn-Tucker conditions (see Sahm and Schwabe, 2001, Corollary 1 (c)) can

be reformulated in terms of the sensitivity function and applied to our case of polynomial

regression.

Theorem 2.1. In polynomial regression of degree q with density fX(x) of the covariate Xi,

the subsampling design ξ∗ with support X ∗ is D-optimal if and only if there exist a threshold

s∗ and settings a1 > · · · > a2r for some r (1 ≤ r ≤ q) such that

(i) the D-optimal subsampling design ξ∗ is given by

fξ∗(x) =

{
fX(x) if x ∈ X ∗

0 otherwise

(ii) ψ(x, ξ∗) ≥ s∗ for x ∈ X ∗, and

(iii) ψ(x, ξ∗) < s∗ for x ̸∈ X ∗,

where X ∗ =
⋃r

k=0 Ik and I0 = [a1,∞), Ir = (−∞, a2r], and Ik = [a2k+1, a2k], for k =

1, . . . , r − 1, are mutually disjoint intervals.

The density fξ∗(x) = fX(x)1X ∗(x) =
∑r

k=0 fX(x)1Ik(x) of the D-optimal subsampling

design ξ∗ is concentrated on, at most, q + 1 intervals Ik, where 1A(x) denotes the indicator

function on the set A, i. e. 1A(x) = 1 for x ∈ A, and 1A(x) = 0 otherwise. The density fξ∗(x)
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has a 0-1-property such that it is either equal to the density fX(x) of the covariate (on X ∗)

or equal to 0 (on the complement of X ∗). Thus, the generation of a subsample according

to the optimal continuous subsampling design ξ∗ can be implemented easily by accepting

all units i for which the value xi of the covariate is in X ∗ and rejecting all other units with

xi ̸∈ X ∗. The threshold s∗ can be interpreted as the (1 − α)-quantile of the distribution of

the sensitivity function ψ(Xi, ξ
∗) as a function of the random variable Xi (see Pronzato and

Wang, 2021).

A further general concept to be used is equivariance. This can be employed to transform

the D-optimal subsampling design simultaneously with a transformation of the distribution

of the covariate. More precisely, the location-scale transformation Zi = σXi + µ of the

covariate and its distribution is conformable with the regression function f(x) in polynomial

regression, and the D-criterion is equivariant with respect to such transformations.

Theorem 2.2. Let fξ∗(x) be the density for a D-optimal subsampling design ξ∗ for covariate

Xi with density fX(x). Then fζ∗(z) = 1
σfξ∗( z−µ

σ ) is the density for a D-optimal subsampling

design ζ∗ for covariate Zi = σXi + µ with density fZ(z) = 1
σfX( z−µ

σ ).

As a consequence, also the optimal subsampling design ζ∗ is concentrated on, at most,

p = q+ 1 intervals, and its density fζ∗(z) is either equal to the density fZ(z) of the covariate

Zi (on Z∗ = σX ∗ + µ) or it is equal to 0 (elsewhere) such that, also here, the optimal

subsampling can be implemented quite easily.

A further reduction of the optimization problem can be achieved by utilizing symmetry

properties. Therefore, we consider the transformation of sign change, g(x) = −x, and

assume that the distribution of the covariate is symmetric, fX(−x) = fX(x) for all x. For a

continuous design ξ, the design ξg transformed by sign change has density fξg(x) = fξ(−x)

and, thus, satisfies the boundedness condition fξg(x) ≤ fX(x), when the distribution of

Xi is symmetric, and has the same value for the D-criterion as ξ, log(det(M(ξg))) =

log(det(M(ξ))). By the concavity of the D-criterion, standard invariance arguments can be

used as in Pukelsheim (1993, Chapter 13) and Heiligers and Schneider (1992). In particular,

any continuous design ξ is dominated by its symmetrization ξ̄ = (ξ + ξg)/2 with density

fξ̄(x) = (fξ(x)+fξ(−x))/2 ≤ fX(x) such that log(det(M(ξ̄))) ≥ log(det(M(ξ))) (Pukelsheim,

1993, Chapter 13.4). Hence, we can restrict the search for a D-optimal subsampling design

to symmetric designs ξ̄ with density fξ̄(−x) = fξ̄(x) which are invariant with respect to

sign change (ξ̄g = ξ̄). For these symmetric subsampling designs ξ̄, the moments mk(ξ̄) are

zero for odd k and positive when k is even. Hence, the information matrix M(ξ̄) is an even

checkerboard matrix (see Jones and Willms, 2018) with positive entries mj+j′(ξ̄) for even

index sums and entries equal to zero when the index sum is odd. The inverse M(ξ̄)−1 of the
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information matrix M(ξ̄) shares the structure of an even checkerboard matrix. Thus, the

sensitivity function ψ(x, ξ̄) is a polynomial with only terms of even order and is, hence, a

symmetric function of x. This leads to a simplification of the representation of the optimal

subsampling design in Theorem 2.1 because the support X ∗ of the optimal subsampling

design ξ∗ will be symmetric, too.

Corollary 2.3. In polynomial regression of degree q with a symmetrically distributed

covariate Xi with density fX(x), the D-optimal subsampling design ξ∗ with density fξ∗(x) =∑r
k=0 fX(x)1Ik(x) has symmetric boundaries a1, . . . , a2r of the intervals I0 = [a1,∞)],

Ik = [a2k+1, a2k], and Ir = (−∞, a2r], i. e. a2r+1−k = −ak and, accordingly, Ir−k = −Ik.

This characterization of the optimal subsampling design ξ∗ will be illustrated in the next

two sections for ordinary linear regression (q = 1) and for quadratic regression (q = 2).

2.4 Optimal Subsampling for Linear Regression

In the case of ordinary linear regression Yi = β0 + β1Xi + εi, we have

M(ξ) =

(
α m1(ξ)

m1(ξ) m2(ξ)

)
,

for the information matrix of any subsampling design ξ. The inverse M(ξ)−1 of the

information matrix is given by

M(ξ)−1 =
1

αm2(ξ) −m1(ξ)2

(
m2(ξ) −m1(ξ)

−m1(ξ) α

)
,

and the sensitivity function

ψ(x, ξ) =
1

αm2(ξ) −m1(ξ)2
(m2(ξ) − 2m1(ξ)x+ αx2) (2.1)

is a polynomial of degree two in x. The D-optimal continuous subsampling design ξ∗ has

density fξ(x) = fX(x) for x ≤ a2 and for x ≥ a1 while fξ(x) = 0 for a2 < x < a1. The

corresponding subsampling design then accepts those units i for which xi ≤ a2 or xi ≥ a1,

and rejects all units i for which a2 < xi < a1.

To obtain the D-optimal continuous subsampling design ξ∗ by Theorem 2.1, the boundary
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points a1 and a2 have to be determined to solve the two non-linear equations

P(Xi ≤ a2) + P(Xi ≥ a1) = α (2.2)

and

ψ(a2, ξ
∗) = ψ(a1, ξ

∗) .

By equation (2.1), the latter condition can be written as

αa22 − 2m1(ξ
∗)a2 = αa21 − 2m1(ξ

∗)a1 ,

which can be reformulated as

α(a1 + a2) = 2m1(ξ
∗) . (2.3)

When the distribution of Xi is symmetric, Corollary 2.3 provides symmetry a2 = −a1 of

the boundary points. This is in agreement with condition (2.3) because m1(ξ∗) = 0 in the case

of symmetry. Further, by the symmetry of the distribution, P(Xi ≤ a2) = P(Xi ≥ a1) = α/2,

and a1 has to be chosen as the (1 − α/2)-quantile of the distribution of Xi to obtain the

D-optimal continuous subsampling design.

Example 2.4 (normal distribution). If the covariate Xi comes from a standard normal

distribution, then the optimal boundaries are the (α/2)- and the (1−α/2)-quantile ±z1−α/2,

and unit i is accepted when |xi| ≥ z1−α/2.

For Xi having a general normal distribution with mean µ and variance σ2, the optimal

boundaries remain to be the (α/2)- and (1 − α/2)-quantile a2 = µ − σz1−α/2 and a1 =

µ+ σz1−α/2, respectively, by Theorem 2.2.

This approach applies accordingly to all distributions which are obtained by a location

or scale transformation of a symmetric distribution: units will be accepted if their values of

the covariate lie in the lower or upper (α/2)-tail of the distribution. This procedure can be

interpreted as a theoretical counterpart in one dimension of the IBOSS method proposed by

Wang et al. (2019).

However, for an asymmetric distribution of the covariate Xi, the optimal proportions

for sampling from the upper and lower tail may differ. By condition (2.7), there will be a

proportion α1, 0 ≤ α1 ≤ α, for the upper tail and α2 = α− α1 for the lower tail such that

a1 is the (1 − α1)-quantile and a2 is the α2-quantile of the distribution of the covariate Xi,

respectively. In view of condition (2.3), neither α1 nor α2 can be zero. Hence, the optimal

subsampling design will have positive, but not necessarily equal mass at both tails. This

will be illustrated in the next example.
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Example 2.5 (exponential distribution). If the covariate Xi comes from a standard

exponential distribution with density fX(x) = e−x, x ≥ 0, we conclude from Theorem 2.1

that fξ∗(x) = fX(x)1[0,b]∪[a,∞)(x) with a = a1 and b = a2 when a2 ≥ 0. Otherwise, when

a2 < 0, the density fX(x) of the covariate Xi vanishes on the left interval I1 = (−∞, a2]

because the support of the distribution of Xi does not cover the whole range of R. In that

case, we may formally let b = 0. Then, we can calculate the entries of M(ξ∗) as functions of

a and b as

m1(ξ
∗) = 1 + (a+ 1)e−a − (b+ 1)e−b

m2(ξ
∗) = 2 + (a2 + 2a+ 2)e−a − (b2 + 2b+ 2)e−b .

To obtain the optimal solutions for a and b in the case a2 ≥ 0, the two non-linear equations

(2.2) and (2.3) have to be satisfied which become here e−b − e−a = 1 − α and α(a + b) =

2m1(ξ
∗).

If a2 < 0 would hold, the first condition reveals a = − log(α) and, hence, m1(ξ
∗) =

α(a+ 1). There, similar to the proof of Theorem 2.7 below, the second condition has to be

relaxed to ψ(a, ξ∗) ≥ ψ(0, ξ∗) which can be reformulated to αa ≥ 2m1(ξ
∗) = 2α(a+ 1) and

yields a contradiction. Thus, this case can be excluded, and a2 has to be larger than 0 for

all α.

For selected values of α, numerical results are presented in Table 2.1. Additionally to

the optimal values for a and b, also the proportions P(Xi ≤ b) and P(Xi ≥ a) are presented

in Table 2.1 together with the percentage of mass allocated to the left interval [0, b]. In

Figure 2.1, the density fξ∗ of the optimal subsampling design ξ∗ and the corresponding

sensitivity function ψ(x, ξ∗) are exhibited for α = 0.5 and α = 0.3. Vertical lines indicate

the positions of the boundary points a and b, and the dotted horizontal line displays the

threshold s∗. As could have been expected, less mass is assigned to the right tail of the

Table 2.1: Numeric values for the boundary points a and b for selected values of the
subsampling proportion α in the case of standard exponential Xi

α b P(Xi ≤ b) a P(Xi ≥ a) % of mass on [0, b]

0.5 0.39572 0.32681 1.75335 0.17319 65.36
0.3 0.21398 0.19264 2.23153 0.10736 64.21
0.1 0.06343 0.06146 3.25596 0.03854 61.46
0.01 0.00579 0.00577 5.46588 0.00423 57.71
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(b) α = 0.3.

Figure 2.1: Density of the optimal subsampling design (solid line) and the standard
exponential distribution (dashed line, upper panels), and sensitivity functions (lower panels)
for subsampling proportions α = 0.5 (left) and α = 0.3 (right)

right-skewed distribution because observations from the right tail are more influential and,

thus, more observations seem to be required on the lighter left tail for compensation.

For Xi having an exponential distribution with general intensity λ > 0 (scale 1/λ), the

optimal boundary points remain to be the same quantiles as in the standard exponential

case, a1 = a/λ and a2 = b/λ associated with the proportion α, by Theorem 2.2.

2.5 Optimal Subsampling for Quadratic Regression

In the case of quadratic regression Yi = β0 + β1Xi + β2X
2
i + εi we have

M(ξ̄) =

 α 0 m2(ξ̄)

0 m2(ξ̄) 0

m2(ξ̄) 0 m4(ξ̄)

 , (2.4)

for the information matrix of a symmetric subsampling design ξ̄. The inverse M(ξ̄)−1 of the

information matrix is given by

M(ξ̄)−1 =
1

αm4(ξ̄) −m2(ξ̄)2


m4(ξ̄) 0 −m2(ξ̄)

0 αm4(ξ̄)

m2(ξ̄)
−m2(ξ̄) 0

−m2(ξ̄) 0 α

 ,
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and the sensitivity function

ψ(x, ξ̄) =
1

αm4(ξ̄) −m2(ξ̄)2
(m4(ξ̄) − 3m2(ξ̄)x

2 + α
m4(ξ̄)

m2(ξ̄)
x2 + αx4) (2.5)

is a polynomial of degree four and is symmetric in x.

According to Corollary 2.3, the density fξ∗(x) of the D-optimal continuous subsampling

design ξ∗ has, at most, three intervals that are symmetrically placed around zero, where the

density is equal to the bounding density fX(x), and fξ∗(x) is equal to zero elsewhere. Thus

the density fξ∗(x) of the D-optimal subsampling design has the shape

fξ∗(x) = fX(x)1(−∞,−a]∪[−b,b]∪[a,∞)(x) , (2.6)

where a > b ≥ 0. We formally allow b = 0 which means that ψ(0, ξ∗) ≤ s∗ = ψ(a, ξ∗) and that

the density fξ∗(x) is concentrated on only two intervals, fξ∗(x) = fX(x)1(−∞,−a]∪[a,∞)(x).

Although the information matrix will be non-singular even in the case of two intervals (b = 0),

the optimal subsampling design will include a non-degenerate interior interval [−b, b] in

many cases, b > 0, as illustrated below in Examples 2.6 and 2.8. However, for a heavy-tailed

distribution of the covariate Xi, the interior interval may vanish in the optimal subsampling

design as shown in Example 2.10.

To obtain the D-optimal continuous subsampling design ξ∗ by Corollary 2.3, the boundary

points a = a1 and b = a2 ≥ 0 have to be determined to solve the two non-linear equations

P(|Xi| ≤ b) + P(|Xi| ≥ a) = α (2.7)

and

ψ(b, ξ∗) = ψ(a, ξ∗) . (2.8)

By equation (2.5), the latter condition can be written as

αm2(ξ
∗)b4 +

(
αm4(ξ

∗) − 3m2(ξ
∗)2
)
b2 = αm2(ξ

∗)a4 +
(
αm4(ξ

∗) − 3m2(ξ
∗)2
)
a2 ,

which can be reformulated as

αm2(ξ
∗)(a2 + b2) = 3m2(ξ

∗)2 − αm4(ξ
∗) . (2.9)

For finding the optimal solution, we use the Newton method implemented in the R

package nleqslv by Hasselman (2018) to calculate numeric values for a and b based on
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equations (2.7) and (2.8) for various symmetric distributions.

The case b = 0 relates to the situation of only two intervals (r = 1 < q). There,

condition (2.7) simplifies to a = q1−α/2, where q1−α/2 is the (1 − α/2)-quantile of the

distribution of the covariate Xi, and equation (2.8) has to be relaxed to ψ(0, ξ∗) ≤ ψ(a, ξ∗),

similar to the case b = 0 in Example 2.5.

Example 2.6 (normal distribution). For the case that the covariateXi comes from a standard

normal distribution, results are given in Table 2.2 for selected values of α. Additionally to

Table 2.2: Numeric values for the boundary points a and b for selected values of the
subsampling proportion α in the case of standard normal Xi

α a 1 − Φ(a) b 2Φ(b) − 1 % of mass on [−b, b]

0.5 1.02800 0.15198 0.24824 0.19605 39.21
0.3 1.34789 0.08885 0.15389 0.12231 40.77
0.1 1.88422 0.02977 0.05073 0.04046 40.46
0.01 2.73996 0.00307 0.00483 0.00386 38.55

the optimal values for a and b, also the proportions P(Xi ≥ a) = P(Xi ≤ −a) = 1 − Φ(a)

and P(−b ≤ Xi ≤ b) = 2Φ(b) − 1 are presented in Table 2.2 together with the percentage

of mass (2Φ(b) − 1)/α allocated to the interior interval [−b, b]. In Figure 2.2, the density

fξ∗ of the optimal subsampling design ξ∗ and the corresponding sensitivity function ψ(x, ξ∗)

are exhibited for α = 0.5 and α = 0.1. Vertical lines indicate the positions of the boundary
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(b) α = 0.1

Figure 2.2: Density of the optimal subsampling design (solid line) and the standard
normal distribution (dashed line, upper panels), and sensitivity functions (lower panels) for
subsampling proportions α = 0.5 (left) and α = 0.1 (right)
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points −a, −b, b, and a, respectively. In the subplots of the sensitivity function, the dotted

horizontal line displays the threshold s∗. For other values of α, the plots are looking similar.

The numerical results in Table 2.2 suggest that the interior interval [−b, b] does not

vanish for any α (0 < α < 1). This will be established in the following theorem.

Theorem 2.7. In quadratic regression with standard normal covariate Xi, for any subsampling

proportion α ∈ (0, 1), the D-optimal subsampling design ξ∗ has density

fξ∗(x) = fX(x)1(−∞,−a]∪[−b,b]∪[a,∞)(x) with a > b > 0.

For Xi having a general normal distribution with mean µ and variance σ2, the optimal

boundary points remain to be the same quantiles as in the standard normal case, a1, a4 =

µ± σa and a2, a3 = µ± σb, by Theorem 2.2.

Example 2.8 (uniform distribution). If the covariate Xi is uniformly distributed on [−1, 1]

with density fX(x) = 1
21[−1,1](x), we can obtain analytical results for the dependence of the

subsampling design on the proportion α to be selected.

The distribution of Xi is symmetric. By Corollary 2.3, the density of the D-optimal

continuous subsampling design ξ∗ has the shape

fξ∗(x) =
1

2
1[−1,−a]∪[−b,b]∪[a,1](x) , (2.10)

where we formally allow a = 1 or b = 0 resulting in only one or two intervals of support.

The relevant entries in the information matrix M(ξ∗) are m2(ξ
∗) = 1

3(1 − a3 + b3) and

m4(ξ
∗) = 1

5(1 − a5 + b5). If, in Corollary 2.3, the boundary points a1 and a2 satisfy a1 ≤ 1

and a2 ≥ 0, then a = a1 and b = a2 are the solution of the two equations a − b = 1 − α

and αm2(ξ∗)(a2 + b2) = αm4(ξ∗)− 3m2(ξ∗)2 arising from conditions (2.7) and (2.9). On the

other hand, if there exist solutions a and b of these equations such that 0 < b < a < 1, then

these are the boundary points in the representation (2.10), and the density of the optimal

subsampling design is supported by three proper intervals. Solving the two equations results

in

a(α) =
1

2
(1 − α) +

(
1

180(1 − α)

(
45 − 15α+ 15α2 − 45α3 + 20α4

− 4α
√

5
√

45 − 90α+ 90α2 − 75α3 + 57α4 − 27α5 + 5α6
))1/2

(2.11)

and

b(α) = a(α) − (1 − α) (2.12)
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for the dependence of a and b on α. The values of a and b are plotted in Figure 2.3. There
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Figure 2.3: Boundary points a (dashed) and b (solid) of the D-optimal subsampling design
in the case of uniform Xi on [−1, 1] as functions of α

it can be seen that 0 < a < b < 1 for all α and that a and b both tend to 1/
√

5 as α tends

to 1. Similar to the case of the normal distribution, the resulting values and illustrations are

given in Table 2.3 and Figure 2.4. Note that the mass of the interior interval P(−b ≤ Xi ≤ b)

is equal to b itself as Xi is uniformly distributed on [−1, 1]. Also here, in Figure 2.4,

Table 2.3: Values for the boundary points a and b for selected values of the subsampling
proportion α in the case of uniform Xi on [−1, 1]

α a P(Xi ≥ a) b = P(−b ≤ Xi ≤ b) % of mass on [−b, b]

0.5 0.70983 0.14508 0.20983 41.97
0.3 0.81737 0.09132 0.11737 39.12
0.1 0.93546 0.03227 0.03546 35.46
0.01 0.99336 0.00332 0.00336 33.55

vertical lines indicate the positions of the boundary points −a, −b, b, and a, and the dotted

horizontal line displays the threshold s∗. Moreover, the percentage of mass at the different

intervals is displayed in Figure 2.5.

The results in Table 2.3 and Figure 2.5 suggest that the percentage of mass on all three

intervals [−1,−a], [−b, b], and [a, 1] tend to 1/3 as α tends to 0. We establish this in the

following theorem.

Theorem 2.9. In quadratic regression with covariate Xi uniformly distributed on [−1, 1],

let ξ∗α be the optimal subsampling design for subsampling proportion α, 0 < α < 1, defined in

equations (2.11) and (2.12). Then limα→0 ξ
∗
α([−b, b])/α = 1/3.
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(a) α = 0.5
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(b) α = 0.1

Figure 2.4: Density of the optimal subsampling design (solid line) and the uniform distribution
on [−1, 1] (dashed line, upper panels), and sensitivity functions (lower panels) for subsampling
proportions α = 0.5 (left) and α = 0.1 (right)
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Figure 2.5: Percentage of mass on the support intervals [a, 1] (left) and [−b, b] (right) of the
D-optimal subsampling design in the case of uniform Xi on [−1, 1] as a function of α

It is worth-while mentioning that the percentages of mass displayed in Figure 2.5 are

not monotonic over the whole range of α ∈ (0, 1), as, for example the percentage of mass at

the interior interval [−b, b] is increasing from 0.419666 at b = 0.50 to 0.448549 at b = 0.92

and then slightly decreasing back again to 0.447553 at b = 0.99.

Finally, it can be checked that, for all α, the solutions satisfy 0 < b < a < 1 such that

the optimal subsampling designs are supported on three proper intervals.

In the two preceding examples it could be noticed that the mass of observations is of

comparable size for the three supporting intervals in the case of a normal and of a uniform

distribution with light tails. This may be different in the case of a heavy-tailed distribution

for the covariate Xi as the t-distribution.
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Example 2.10 (t-distribution). For the case that the covariateXi comes from a t-distribution

with ν degrees of freedom, we observe a behavior which differs substantially from the normal

case of Example 2.6. The interior interval typically has less mass than the outer intervals

and may vanish for some values of α. We show this in the case of the least possible number

ν = 5 of degrees of freedom to maintain an existing fourth moment, which appears in the

information matrix of the D-optimal continuous subsampling design ξ∗ while maximizing

the dispersion.

Theorem 2.11. In quadratic regression with t-distributed covariate Xi ∼ t5 with five degrees

of freedom, there is a critical value α∗ ≈ 0.082065 of the subsampling proportion α such that

the D-optimal subsampling design ξ∗ has

(i) density fξ∗(x) = fX(x)1(−∞,−a]∪[−b,b]∪[a,∞)(x) with a > b > 0 for α < α∗.

(ii) density fξ∗(x) = fX(x)1(−∞,−t5,1−α/2]∪[t5,1−α/2,∞)(x), where t5,1−α/2 is the (1 − α/2)-

quantile of the t5-distribution, for α ≥ α∗.

For illustration, numerical results are given in Table 2.4. The percentage of mass on the

interior interval [−b, b] is equal to zero for all larger values of α as stated in Theorem 2.11.

The percentage of mass on [−b, b] decreases with increasing subsampling proportion α before

vanishing entirely.

Table 2.4: Values for the boundary points a and b for selected values of the subsampling
proportion α in the case of t5-distributed Xi

α a P(Xi ≥ a) b P(−b ≤ Xi ≤ b) % of mass on [−b, b]

0.10 2.01505 0.05000 0 0 0
0.07 2.31512 0.03423 0.00202 0.00153 2.03
0.03 3.09141 0.01356 0.00380 0.00288 4.74
0.01 4.18942 0.00429 0.00187 0.00142 14.23

Further calculations provide that the critical value α∗, where the D-optimal subsampling

design switches from a three-interval support to a two-interval support, increases with the

number of degrees ν of freedom of the t-distribution and converges to one when ν tends to

infinity. This is in accordance with the results for the normal distribution in Example 2.6 as

the t-distribution converges in distribution to a standard normal distribution for ν → ∞.

We have given numeric values for the crossover points for selected degrees of freedom in

Table 2.5, where ν = ∞ relates to the normal distribution. The corresponding value α∗ = 1
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indicates that the D-optimal subsampling design is supported by three intervals for all α in

this case.

Table 2.5: Values of the critical value α∗ for selected degrees of freedom ν of the t-distribution

ν 5 6 7 8 9 30 ∞

α∗ 0.08207 0.34670 0.50374 0.60125 0.66670 0.92583 1

2.6 Efficiency

To exhibit the gain in using aD-optimal subsampling design compared to random subsampling,

we consider the performance of the uniform random subsampling design ξα of size α, which

has density fξα(x) = αfX(x), compared to the D-optimal subsampling design ξ∗α with mass

α.

More precisely, the D-efficiency of any subsampling design ξ with mass α is defined as

effD,α(ξ) =

(
det(M(ξ))

det(M(ξ∗α))

)1/p

,

where p is the dimension of the parameter vector β. For this definition the homogeneous

version (det(M(ξ)))1/p of the D-criterion is used which satisfies the homogeneity condition

(det(λM(ξ)))1/p = λ(det(M(ξ)))1/p for all λ > 0 (see Pukelsheim, 1993, Chapter 6.2).

For uniform random subsampling, the information matrix is given by M(ξα) = αM(ξ1),

where M(ξ1) is the information matrix for the full sample with raw moments mk(ξ1) = E(Xk
i )

as entries in the (j, j′)th position, j+ j′−2 = k. Thus, the D-efficiency effD,α(ξα) of uniform

random subsampling can be nicely interpreted: the sample size (mass) required to obtain

the same precision (in terms of the D-criterion), as when the D-optimal subsampling design

ξ∗α of mass α is used, is equal to the inverse of the efficiency effD,α(ξα)−1 times α. For

example, if the efficiency effD,α(ξα) is equal to 0.5, then twice as many observations would

be needed under uniform random sampling than for a D-optimal subsampling design of size

α. Of course, the full sample has higher information than any proper subsample such that,

obviously, for uniform random subsampling, effD,α(ξα) ≥ α holds for all α.

For the examples of Sections 2.4 and 2.5, the efficiency of uniform random subsampling is

given in Table 2.6 for selected values of α and exhibited in Figure 2.6 for the full range of α

between 0 and 1 (solid lines). Here the determinant of the information matrix is determined
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Table 2.6: Efficiency of uniform subsampling w.r.t. D-optimality for selected values of the
subsampling proportion α

α
0.5 0.3 0.1 0.01

linear regression normal 0.73376 0.61886 0.47712 0.34403
exponential 0.73552 0.61907 0.46559 0.30690

quadratic regression normal 0.73047 0.59839 0.41991 0.24837
uniform 0.78803 0.70475 0.62411 0.58871
t5 0.66400 0.50656 0.29886 0.10941
t9 0.70390 0.56087 0.36344 0.17097

as in the examples of Sections 2.4 and 2.5 for the optimal subsampling designs ξ∗α either

numerically or by explicit formulas where available.

Both Table 2.6 and Figure 2.6 indicate that the efficiency of uniform random subsampling

is decreasing in all cases when the proportion α of subsampling gets smaller. In the case of

quadratic regression with uniformly distributed covariate, the decrease is more or less linear

with a minimum value of approximately 0.58 when α is small. In the other cases, where the

distribution of the covariate is unbounded, the efficiency apparently decreases faster, when

the proportion α is smaller than 10%, and tends to 0 for α→ 0.

The latter property can be easily seen for linear regression and symmetric distributions:

there, the efficiency effD,α(ξα) of uniform random sampling is bounded from above by

c/q1−α/2, where c = E(X2
i )1/2 is a constant and q1−α/2 is the (1 − α/2)-quantile of the

distribution of the covariate. When the distribution is unbounded like the normal distribution,

then these quantiles tend to infinity for α→ 0 and, hence, the efficiency tends to 0. Similar

results hold for quadratic regression and asymmetric distributions.

In any case, as can be seen from Table 2.6, the efficiency of uniform random subsampling

is quite low for reasonable proportions α ≤ 0.1 and, hence, the gain in using the D-optimal

subsampling design is substantial.

By equivariance arguments as indicated above in the examples of Sections 2.4 and 2.5,

the present efficiency considerations carry over directly to a covariate having a general

normal, exponential, or uniform distribution, respectively.

In the IBOSS approach by Wang et al. (2019), half of the proportion α is taken from

both tails of the data. The corresponding continuous subsampling design ξ′α would be to

have two intervals (−∞, b] and [a,∞) and to choose the boundary points a and b to be the
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(c) Quadratic regression, uniform covariate
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(d) Quadratic regression, t5 covariate

Figure 2.6: Efficiency of uniform random subsampling (solid line) and of an IBOSS-type
subsampling design (dashed line) w.r.t. D-optimality

(1 − α/2)- and (α/2)-quantile of the distribution of the covariate, respectively. For linear

regression, it can been seen from Corollary 2.3 that the subsampling design ξ′α is D-optimal

when the distribution of the covariate is symmetric. As the IBOSS procedure does not use

prior knowledge of the distribution, it would be tempting to investigate the efficiency of

the corresponding continuous subsampling design ξ′α under asymmetric distributions. For

the exponential distribution, this efficiency effD,α(ξ′α) is added to the upper left panel in

Figure 2.6 by a dashed line. There the subsampling design ξ′α shows a remarkably high

efficiency over the whole range of α with a minimum value 0.976 at α = 0.332.

As an extension of IBOSS for quadratic regression, we may propose a procedure which

takes proportions α/3 from both tails of the data as well as from the center of the data.

This procedure can be performed without any prior knowledge of the distribution of the

covariate. The choice of the proportions α/3 is motivated by the standard case D-optimal
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design on an interval where one third of the weight is allocated to each of the endpoints and

to the midpoint of the interval, respectively. For a symmetric distribution, the corresponding

continuous subsampling design ξ′′α can be defined by the boundary points a and b to be the

(1 − α/3)- and (1/2 + α/6)-quantile of the distribution of the covariate, respectively. In

the case of the uniform distribution, the subsampling design ξ′′α is the limiting D-optimal

subsampling design for α → 0 by Theorem 2.9. In Figure 2.6, the efficiency effD,α(ξ′′α) is

shown by dashed lines for the whole range of α for the uniform distribution as well as

for the normal and for the t- distribution in the case of quadratic regression. In all three

cases, the subsampling design ξ′′α is highly efficient over the whole range of α with minimum

values 0.994 at α = 0.079 for the normal distribution, 0.989 at α = 0.565 for the uniform

distribution, and 0.978 at α = 0.245 for the t5-distribution, respectively. This is of particular

interest for the t5-distribution, where the interior interval of the D-optimal subsampling

design ξ∗α is considerably smaller than of the IBOSS-like subsampling design ξ′′α and even

vanishes entirely for α > α∗ ≈ 0.08. However, we only tested this extension of IBOSS for

quadratic regression for symmetric distributions of the covariate. Further investigations for

non-symmetric distributions is necessary.

2.7 Concluding Remarks

In this paper we have considered a theoretical approach to evaluate subsampling designs

under distributional assumptions on the covariate in the case of polynomial regression on

a single explanatory variable. We first reformulated the constrained equivalence theorem

under Kuhn-Tucker conditions in Sahm and Schwabe (2001) to characterize the D-optimal

continuous subsampling design for general distributions of the covariate. For symmetric

distributions of the covariate we concluded the following. The D-optimal subsampling

design is equal to the bounding distribution in its support and the support of the optimal

subsampling design will be the union of at most q+ 1 intervals that are symmetrically placed

around zero. Further we have found that in the case of quadratic regression the D-optimal

subsampling design has three support intervals with positive mass for all α ∈ (0, 1), whereas

the interior interval vanishes for some α for a t-distributed covariate. In contrast to that,

for linear regression, always two intervals are required at the tails of the distribution.

The main emphasis in this work was on D-optimal subsampling designs. But many of

the results may be extended to other optimality criteria like A- and E-optimality from the

Kiefer’s Φq-class of optimality criteria, IMSE-optimality for predicting the mean response,

or optimality criteria based on subsets or linear functionals of parameters.
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The D-optimal subsampling designs show a high performance compared to uniform

random subsampling. In particular, for small proportions, the efficiency of uniform random

subsampling tends to zero when the distribution of the covariate is unbounded. This property

is in accordance with the observation that estimation based on subsampling according to

IBOSS is “consistent” in the sense that the mean squared error goes to zero with increasing

population size even when the size of the subsample is fixed.

We propose a generalization of the IBOSS method to quadratic regression which does not

require prior knowledge of the distribution of the covariate and which performs remarkably

well compared to the optimal subsampling design. However, an extension to higher order

polynomials does not seem to be obvious.

2.A Proofs

Before proving Theorem 2.1, we establish two preparatory lemmas on properties of the

sensitivity function ψ(x, ξ) for a continuous subsampling design ξ with density fξ(x) and

reformulate an equivalence theorem on constraint design optimality by Sahm and Schwabe

(2001) for the present setting. The first lemma deals with the shape of the sensitivity

function.

Lemma 2.12. The sensitivity function ψ(x, ξ) is a polynomial of degree 2q with positive

leading term.

Proof of Lemma 2.12. For a continuous subsampling design ξ with density fξ(x), the

information matrix M(ξ) and, hence, its inverse M(ξ)−1 is positive definite. Thus the last

diagonal element m(pp) of M(ξ)−1 is positive and, as f(x) = (1, x, . . . , xq)⊤, the sensitivity

function ψ(x, ξ) = f(x)⊤M(ξ)−1f(x) is a polynomial of degree 2q with coefficient m(pp) > 0

of the leading term.

The second lemma reveals a distributional property of the sensitivity function considered

as a function in the covariate Xi.

Lemma 2.13. The random variable ψ(Xi, ξ) has a continuous cumulative distribution

function.

Proof of Lemma 2.13. As the sensitivity function ψ(x, ξ) is a non-constant polynomial by

Lemma 2.12, the equation ψ(x, ξ) = s has only finitely many roots x1, . . . , xℓ, ℓ ≤ 2q, say,

by the fundamental theorem of algebra. Hence, P(ψ(Xi, ξ) = s) =
∑ℓ

k=1 P(Xi = xk) = 0

by the continuity of the distribution of Xi which proves the continuity of the cumulative

distribution function of ψ(Xi, ξ). □
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With the continuity of the distribution of ψ(Xi, ξ
∗) the following equivalence theorem

can be obtained from Corollary 1(c) in Sahm and Schwabe (2001) for the present setting by

transition from the directional derivative to the sensitivity function and considering R as

the design region.

Theorem 2.14 (Equivalence Theorem). The subsampling design ξ∗ is D-optimal if and

only if there exist a threshold s∗ and a subset X ∗ of R such that

(i) the D-optimal subsampling design ξ∗ is given by

fξ∗(x) = fX(x)1X ∗(x)

(ii) ψ(x, ξ∗) ≥ s∗ for x ∈ X ∗, and

(iii) ψ(x, ξ∗) < s∗ for x ̸∈ X ∗.

As P(ψ(Xi, ξ
∗) ≥ s∗) = P(Xi ∈ X ∗) =

∫
fξ∗(x) dx = α, the threshold s∗ is the (1 − α)-

quantile of the distribution of ψ(Xi, ξ
∗).

Proof of Theorem 2.1. By Lemma 2.12 the sensitivity function ψ(x, ξ) is a polynomial in

x of degree 2q with positive leading term. Using the same argument as in the proof of

Lemma 2.13 we obtain that there are at most 2q roots of the equation ψ(x, ξ∗) = s∗ and,

hence, there are at most 2q sign changes in ψ(x, ξ∗) − s∗. As ψ(x, ξ∗) is a polynomial of

even degree, also the number of (proper) sign changes has to be even, and they occur at

a1 > · · · > a2r, say, r ≤ q. Moreover, for 0 < α < 1, X ∗ is a proper subset of R and, thus,

there must be at least one sign change, r ≥ 1. Finally, as the leading coefficient of ψ(x, ξ∗) is

positive, ψ(x, ξ∗) gets larger than s∗ for x→ ±∞ and, hence, the outmost intervals [a1,∞)

and (−∞, a2r] are included in the support X ∗ of ξ∗. By the interlacing property of intervals

with positive and negative sign for ψ(x, ξ∗) − s∗, the result follows from the conditions on

the D-optimal subsampling design ξ∗ in Theorem 2.14.

Proof of Theorem 2.2. First note that for any µ and σ > 0, the location-scale transformation

z = σx+ µ is conformable with the regression function f(x), i. e. there exists a non-singular

matrix Q such that f(σx+ µ) = Qf(x) for all x. Then, for any design ξ bounded by fX(x),

the design ζ has density fζ(z) = 1
σfξ(

z−µ
σ ) bounded by fZ(z) = 1

σfX( z−µ
σ ). Hence, by the
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transformation theorem for measure integrals, it holds that

M(ζ) =

∫
f(z)f(z)⊤ζ(dz)

=

∫
f(σx+ µ)f(σx+ µ)⊤ξ(dx)

=

∫
Qf(x)f(x)⊤Q⊤ξ(dx)

= QM(ξ)Q⊤.

Therefore det(M(ζ)) = det(Q)2 det(M(ξ)). Thus ξ∗ maximizes the D-criterion over the set

of subsampling designs bounded by fX(x) if and only if ζ∗ maximizes the D-criterion over

the set of subsampling designs bounded by fZ(z).

Proof of Corollary 2.3. The checkerboard structure of the information matrix M(ξ∗) carries

over to its inverse M(ξ∗)−1. Hence, the sensitivity function ψ(x, ξ∗) is an even polynomial,

which has only non-zero coefficients for even powers of x, and is thus symmetric with respect

to 0, i. e. ψ(−x, ξ∗) = ψ(x, ξ∗). Accordingly, also the roots of ψ(x, ξ∗) = s∗ are symmetric

with respect to 0.

Proof of Theorem 2.7. In view of the shape (2.6) of the density and by Corollary 2.3, the

tails are included in the optimal subsampling design such that a <∞.

Next, we consider the symmetric design ξ′ which is supported only on the tails and

which will be the optimal subsampling design when b = 0. This design has density fξ′(x) =

1(−∞,−a]∪[a,∞)(x)fX(x) with a = z1−α/2 for given α. The information matrix M(ξ′) is of

the form (2.4) with relevant entries

m2(ξ
′) = α+

√
2/πa exp(−a2/2),

m4(ξ
′) = 3m2(ξ

′) +
√

2/πa3 exp(−a2/2) .

For the sensitivity function (2.5), we have

ψ(0, ξ′) =
αm4(ξ

′)

αm4(ξ′) −m2(ξ′)2

41



and

ψ(a, ξ′) =
αm4(ξ

′)

αm4(ξ′) −m2(ξ′)2
− α2m2(ξ

′)a2

αm4(ξ′) −m2(ξ′)2

+
αa2

m2(ξ′)
+

α2a4

αm4(ξ′) −m2(ξ′)2
.

Let c(α) = ψ(0, ξ′) − ψ(a, ξ′) be the difference between the values of the sensitivity function

at x = 0 and x = a, then

c(α) = αa2
(

2m2(ξ
′)

αm4(ξ′) −m2(ξ′)2
− a2α

αm4(ξ′) −m2(ξ′)2
− 1

m2(ξ′)

)
. (2.13)

c(α) is continuous in α and does not have any roots in (0, 1). Further, it can be checked

that c(0.1) > 0, say. Thus c(α) > 0 which means that ψ(0, ξ′) > ψ(a, ξ′) for all α. Hence,

by Theorem 2.14, the subsampling design ξ′ cannot be optimal and, as a consequence, the

optimal subsampling design ξ∗ has support on three proper intervals with b > 0 for all α.

Proof of Theorem 2.9. Let

u(α) = 45 − 15α+ 15α2 − 45α3 + 20α4

− 4
√

5
√

45α2 − 90α3 + 90α4 − 75α5 + 57α6 − 27α7 + 5α8

and

v(α) = 180(1 − α) .

Then

b(α) =

(
u(α)

v(α)

)1/2

− 1

2
(1 − α) .

We have u(0) = 45, v(0) = 180, and b(α) can be continuously extended to b(0) = 0 at α = 0.

The derivative of b is given by

b′(α) =
1

2
+

1

2

u′(α)v(α) − u(α)v′(α)

v(α)2

√
v(α)

u(α)
, (2.14)
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where

u′(α) = −15 + 30α− 135α2 + 80α3 − w(α), (2.15)

v′(α) = −180, (2.16)

and

w(α) = 2
√

5
90 − 270α+ 360α2 − 375α3 + 342α4 − 189α5 + 40α6

√
45 − 90α+ 90α2 − 75α3 + 57α4 − 27α5 + 5α6

.

We have v′(0) = −180. To determine u′(0) we note that w(0) = 60 and thus u′(0) = −75.

Hence, also the derivative b′(α) can be continuously extended at α = 0 and the value for b′(0)

can be obtained by plugging in the values of u(0), v(0), u′(0), and v′(0) into formula (2.14),

b′(0) =
1

2
+

1

2

−75 · 180 + 45 · 180

1802

√
180

45
=

1

3
.

Finally, we note that b(α)/α is the percentage of mass on the interior interval [−b(α), b(α)]

and that limα→0 b(α)/α is the derivative b′(0) of b(α) at α = 0. Hence, the percentage of

mass on the interior interval tends to b′(0) = 1/3 when the subsampling proportion α goes

to 0.

Proof of Theorem 2.11. The proof will follow the idea of the proof of Theorem 2.7. For

α ∈ (0, 1), we consider the symmetric design ξ′ which is supported only on the tails

and which will be the optimal subsampling design when b = 0. This design has density

fξ′(x) = 1(−∞,−a]∪[a,∞)(x)fX(x) with a = t5,1−α/2. The relevant entries of the information

matrix M(ξ′) are

m2(ξ
′) =

5

3π

(
π − 2

√
5a(a2 − 5)

(a2 + 5)2
− 2 arctan(a/

√
5)

)
,

m4(ξ
′) =

25

3π

(
3π +

10
√

5a(a2 + 3)

(a2 + 5)2
− 6 arctan(a/

√
5)

)
.

The sensitivity function ψ(x, ξ′) and the difference c(α) = ψ(0, ξ′) − ψ(a, ξ′) between the

values of the sensitivity function at x = 0 and x = a are defined as for the normal

distribution with the above moments m2(ξ′) and m4(ξ′) related to the t-distribution inserted.

The function c(α) defined by (2.13) then looks as shown in Figure 2.7. The vertical dotted

line indicates the position of the critical value α∗ ≈ 0.082065, where the curve of the function
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Figure 2.7: Difference c(α) = ψ(0, ξ′)−ψ(a, ξ′) (solid) for the case of a t-distributed covariate
with 5 degrees of freedom

c(α) intersects the horizontal dotted line indicating c = 0.

Thus for α < α∗ ≈ 0.082065 we have ψ(0, ξ′) > ψ(a, ξ′) and the design ξ′ cannot be

optimal by Theorem 2.14. In this situation, an inner interval has to be included in the

optimal subsampling design ξ∗ with b > 0.

Conversely, for α ≥ α∗ ≈ 0.082065 we have that ψ(0, ξ′) ≤ ψ(a, ξ′). Hence, the design ξ′

is optimal by Theorem 2.14, and no inner interval has to be added to the optimal subsampling

design ξ∗ = ξ′ (b = 0).
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Chapter 3

D-optimal Subsampling Design for

Massive Data Linear Regression

In this chapter we present the work titled “D-optimal Subsampling Design for Massive Data

Linear Regression” (Reuter and Schwabe, 2023b) published as an electronic preprint.

3.1 Introduction

Data reduction is a fundamental challenge of modern technology, which allows us to collect

huge amounts of data. Often, technological advances in computing power do not keep pace

with the amount of data, creating a need for data reduction. We speak of big data whenever

the full data size is too large to be handled by traditional statistical methods. We usually

distinguish between the case where the number of covariates is large and the case where

there are very many observations. The first case is referred to as high-dimensional data

and numerous methods have been studied to deal with such data, most notably LASSO

by Tibshirani (1996), which utilizes ℓ1 penalization to find sparse parameter vectors, thus

fusing subset selection and ridge regression. We consider the second case, referred to as

massive data. To deal with huge amounts of observations typically one of two methods

is applied: One strategy is to divide the data into several smaller datasets and compute

them separately, known as divide-and-conquer, see Lin and Xi (2011). Alternatively one can

find an informative subsample of the full data. This can be done in a probabilistic fashion,

creating random subsamples in a nonuniform manner. Among the prominent studies are

Drineas et al. (2006), Mahoney (2011) and Ma et al. (2014). They present subsampling

methods for linear regression models called algorithmic leveraging, which draw samples

45



according to probabilities based on the normalized statistical leverage scores of the covariate

matrix. More recently, Dereziński and Warmuth (2018) studied volume sampling, where

subsamples are chosen proportional to the squared volume of the parallelepiped spanned by

its observations. Conversely, subdata can be selected in a deterministic way. Shi and Tang

(2021) present such a method, that maximizes the minimal distance between two observations

in the subdata. Most prominently, Wang et al. (2019) have introduced the information-based

optimal subdata selection (IBOSS) to tackle big data linear regression in a deterministic

fashion based on D-optimality. The IBOSS approach selects the outer-most data points

of each covariate successively. Other subsampling methods for linear regression include

the works by Wang et al. (2021), who have introduced orthogonal subsampling inspired

by orthogonal arrays, which selects observations in the corners of the design space and the

optimal design based subsampling scheme by Deldossi and Tommasi (2021). Subsampling

becomes increasingly popular, leading to more work outside linear models. Cheng et al.

(2020) extent the idea of the IBOSS method from the linear model to logistic regression

and other work on generalized linear regression include the papers by Zhang et al. (2021)

and Ul Hassan and Miller (2019). Su et al. (2022) have recently considered subsampling

for missing data, whereas Joseph and Mak (2021) focused on non-parametric models and

make use of the information in the dependent variables. Various works consider subsampling

when the full data is distributed over several data sources, among them Yu et al. (2022) and

Zhang and Wang (2021) For a more thorough recent review on design inspired subsampling

methods see the work by Yu et al. (2024).

In this paper we assume that both the model and the shape of the joint distribution

of the covariates are known. We search for D-optimal continuous subsampling designs of

total measure α that are bounded from above by the distribution of the covariates. Wynn

(1977) and Fedorov (1989) were the first to study such directly bounded designs. Pronzato

(2004) considered this setting using subsampling designs standardized to one and bounded

by 1/α times the distribution of the covariates. More recently, the same has been studied by

Pronzato and Wang (2021) in the context of sequential subsampling. In Reuter and Schwabe

(2023a) we have studied bounded D-optimal subsampling designs for polynomial regression

in one covariate, using many similar ideas as we use here. We stay with the unstandardized

version emphasizing the subsampling character of the design. For the characterization of

the optimal subsampling design, we will make use of an equivalence theorem from Sahm

and Schwabe (2001). This equivalence theorem allows us to construct such subsampling

designs for different settings of the distributional assumptions on the covariates. Based

on this, we propose a simple subsampling scheme for selecting observations. This method
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includes all data points in the support of the optimal subsampling design and rejects all

other observations. Although this approach is basically probabilistic, as it allows selection

probabilities, the resulting optimal subsampling design is purely deterministic, since it

depends only on the acceptance region defined by the optimal subsampling design. We make

comments on the asymptotic behavior of the ordinary least squares estimator based on the

D-optimal subsampling design that selects the data points with the largest Mahalanobis

distance from the mean of the data.

Since the proposed algorithm requires computational complexity of the same magnitude

as calculating the least squares estimator on the full data, we also propose a simplified

version with lower computational complexity, that takes the variances of the covariates into

account while disregarding the covariances between them.

The rest of this paper is organized as follows. After introducing the model in Section 3.2 we

present the setup and establish necessary concepts and notation in Section 3.3. Section 3.3.1

illustrates our methodology for linear regression in one explanatory variable. We construct

optimal subsampling designs for multiple linear regression in Section 3.3.2. In Section 3.4

we consider the case of a fixed subsample size, then examine the performance of our method

in simulation studies in Section 3.5. We make concluding remarks in Section 3.6. Technical

details and proofs are deferred to an Appendix.

3.2 Model Specification

We treat the situation of data (xi, yi), where yi is the value of the response variable Yi and

the xi are realizations of the d-dimensional i.i.d. random vectors Xi of covariates with

probability density function fX for unit i = 1, . . . , n. We assume the covariates Xi have

an elliptical distribution. We suppose that the dependence of the response variable on the

covariates Xi = (Xi1, . . . , Xid)⊤ is given by the multiple linear regression model

Yi = β0 + β1Xi1 + β2Xi2 + · · · + βdXid + εi

with independent, homoscedastic errors εi with zero mean and Var[εi] = σ2ε <∞ which we

assume to be independent of all Xi′ .

We assume that the number of observations n is very large. The aim is to estimate

the regression parameter β = (β0, . . . , βd)⊤, where β0 is the intercept and βj is the slope

parameter in the j-th component xj of x = (x1, . . . , xd)⊤ for j = 1, . . . , d. For notational

47



convenience we write the multiple linear regression model as a general linear model

Yi = f(Xi)
⊤β + εi, i = 1, . . . , n ,

where f(x) = (1,x⊤)⊤.

3.3 Subsampling Design

We consider a scenario where the yi are expensive to observe and therefore only a percentage

α (0 < α < 1) of the yi are observed, given all xi. Another possible setting is that all yi and

xi are available, but parameter estimation is only computationally feasible on a percentage

α of the data. Either setup leads to the question which subsample of the data (xi, yi) yields

the best estimation of the parameter β or essential parts of it.

Throughout this section we assume, that the distribution of Xi and its density fX are

known. We consider continuous designs ξ with total measure α on Rd with density functions

fξ that are bounded from above by the density of the covariates fX such that
∫
fξ(x) dx = α

and fξ(x) ≤ fX(x) for all x ∈ Rd. The resulting set of all such designs ξ is denoted by ΞfX .

A subsample can then be generated according to such a continuous design by accepting

units i with probability fξ(xi)/fX(xi).

Let M(ξ) =
∫
f(x)f(x)⊤ξ(dx) be the information matrix of ξ. We require E[∥Xi∥22] <∞

as some entries of the information matrix can be infinite otherwise. M(ξ) measures the

quality of the least squares estimator β̂ based on a subsample according to ξ in the sense

that
√
n(β̂−β) asymptotically follows a normal distribution with mean zero and covariance

matrix σ2εM(ξ)−1 when n tends to infinity. To find an appropriate subsampling design

ξ ∈ ΞfX , we aim to minimize the design criterion for D-optimality Ψ(ξ) = − ln(det(M(ξ))).

Then, the D-optimal design minimizes the determinant of the asymptotic covariance matrix

of the parameter least squares estimator and can be interpreted as minimizing the volume

of the respective confidence ellipsoid of β. The optimal subsampling design that minimizes

Ψ(ξ) in ΞfX is denoted by ξ∗ with density fξ∗ . We make use of the sensitivity function

ψ(x, ξ) = αf(x)⊤M(ξ)−1f(x) (see Lemma 3.16). For the characterization of the D-optimal

continuous subsampling design, we apply the constrained equivalence theorem under Kuhn-

Tucker conditions (see Sahm and Schwabe, 2001, Corollary 1 (c)) to the present case of

multiple linear regression in the following theorem.

Theorem 3.1. In multiple linear regression with d ≥ 2 covariates with density fX(x) of

the covariates Xi, the subsampling design ξ∗ is D-optimal if and only if there exist a subset
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X ∗ ⊂ Rd and a threshold s∗ such that

(i) ξ∗ has density fξ∗(x) = fX(x)1X ∗(x)

(ii) ψ(x, ξ∗) ≥ s∗ for x ∈ X ∗, and

(iii) ψ(x, ξ∗) < s∗ for x ̸∈ X ∗.

Here, 1A(x) denotes the indicator function, i. e. 1A(x) = 1, if x ∈ A and 1A(x) = 0

otherwise. Before treating the general case of subsampling design in multiple linear regression,

we briefly present some results from Reuter and Schwabe (2023a) for the case of ordinary

linear regression in one covariate for illustrative purposes.

3.3.1 Subsampling Design in a single Covariate

In the case of linear regression in one covariate Xi, we have d = 1, f(x) = (1, x)⊤ and

β = (β0, β1)
⊤. We assume the known distribution of the covariate Xi to be symmetric

(fX(−x) = fX(x)) and to have a finite second moment (E[X2
i ] < ∞). We use the linear

equivariance of the regression function, f(h(x)) = diag(1,−1)f(x), where diag(·) denotes a

diagonal matrix, and the invariance of the D-criterion w.r.t. the sign change h(x) = −x
to show that any design ξ is dominated by its symmetrization ξ̄ = (ξ + ξh)/2 such that

Ψ(ξ̄) ≤ Ψ(ξ) (see Pukelsheim, 1993, Chapter 13.11.). Thus we can restrict our search for a D-

optimal subsampling design ξ∗ to designs in ΞfX that are invariant to the sign change. For an

invariant ξ∗ we find for the off-diagonal entries of the information matrix
∫
xfξ∗(x) dx = 0.

M(ξ∗) = diag(α,m) is thus a 2 × 2 diagonal matrix, where m =
∫
x2fξ∗(x) dx. As a

consequence the sensitivity function ψ(x, ξ∗) = 1 + αx2/m is a polynomial of degree two

as a function in x which is symmetric in x, ψ(−x, ξ∗) = ψ(x, ξ∗). Obviously, the coefficient

of the leading term of ψ(x, ξ∗) is positive. We use from Theorem 3.1 that there exists a

threshold s∗ such that fξ∗(x) = fX(x) if ψ(x, ξ∗) ≥ s∗ and fξ∗(x) = 0 elsewhere. Paired

with the symmetry of ψ(x, ξ∗), we find X ∗ = (−∞,−a] ∪ [a,∞), where a ≥ 0 and conclude

that the density fξ∗ of the D-optimal subsampling design is of the form

fξ∗(x) = fX(x)1(−∞,−a]∪[a,∞)(x).

Since we require ξ∗(R) = α, we can easily see that a is equal to the (1 − α/2)-quantile of

the distribution of Xi. To select a subsample we accept all units where the absolute value of

the covariate is equal or greater than a.

This approach is not limited to centered symmetric distributions, but applies accordingly

to all symmetric distributions: units will be accepted if their values of the covariate lie in
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the lower or upper (α/2)-tail of the distribution. This procedure can be interpreted as a

theoretical counterpart in one dimension to the IBOSS method proposed by Wang et al.

(2019).

Example 3.2 (normal distribution). If the covariate Xi comes from a standard normal

distribution, then the optimal boundaries are the (α/2)- and the (1−α/2)-quantile ±z1−α/2,

and unit i is accepted when |xi| ≥ z1−α/2. We find M(ξ∗) = diag(α,m), where m =

α+
√

2/πz1−α/2 exp(−z21−α/2/2).

For Xi having a general univariate normal distribution with mean µX and variance σ2X ,

the optimal boundaries remain to be the (α/2)- and (1 − α/2)-quantile µX ± σXz1−α/2 (see

Reuter and Schwabe, 2023a, Theorem 3.2).

3.3.2 Multiple Linear Regression Subsampling Design

We now examine the case of multiple linear regression Yi = f(Xi)
⊤β + εi , i = 1, . . . , n ,

where Xi is a d-dimensional random vector with d ≥ 2 and f(x) = (1,x⊤)⊤. In this work,

we assume the Xi have an elliptical distribution with density fX . In this section we start

with the special case that the Xi follow a centered spherical distribution, i. e. a distribution

invariant w.r.t. the special orthogonal group SO(d) (rotations about the origin in Rd),

but relax this to the case of non-centered and elliptical distributions later. For Xi to be

centered and spherical implies, in particular, that E[Xi] = 0, Xi has covariance matrix

σ2XId, where Id denotes the identity matrix of dimension d, and all d covariates follow the

same symmetric distribution. For instance, the multivariate standard normal distribution

satisfies this condition with σ2X = 1.

To make use of the rotational invariance, we characterize subsampling designs in their

hyperspherical coordinate representation, where a point in Rd is represented by a radial

coordinate or radius r and a (d− 1)-dimensional vector of angular coordinates θ, indicating

the direction in the space. Details are deferred to the appendix. The design in hyperspherical

coordinates ξR,Θ can be decomposed into the product ξR ⊗ ξΘ|R of the marginal design ξR

on the radius, and the conditional design ξΘ|R on the vector of angles given R = r as a

Markov kernel. In particular for B = [0, π]d−2 × [0, 2π) we have ξΘ|R=r(B) = 1 for any r ≥ 0.

Subsequently, for ξΘ,R ∈ ΞfX it must hold that ξR([0,∞)) = α and the density of ξR is

bounded from above by the marginal density fR(X) of Xi on the radius. In the case d = 2,

the transformation is a mapping to the standard polar coordinates and we can decompose

the subsampling design into a measure on the radius R and a conditional one on the single

angle θ.
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To start, we want to show that there exists a continuous D-optimal subsampling design

that is invariant w.r.t. SO(d). This requires to employ a left Haar measure µ on SO(d).

For the representation in hyperspherical coordinates this is, up to a constant, a product of

Lebesgue measures λ on the components of the angle vector θ (see Cohn, 2013, Example

9.2.1.(c) for the case d = 2). We set µ =
⊗d−2

i=1 λ/π ⊗ λ/(2π) such that µ(B) = 1, where ⊗
denotes the common product of measures.

Now, we prove the equivalence between invariance w.r.t. the special orthogonal group

SO(d) of a subsampling design ξ and decomposing ξ in a measure on the radius and a

uniform measure on the angle.

Lemma 3.3. In multiple linear regression with d ≥ 2 covariates, a design ξ is invariant

with respect to SO(d) if and only if ξ can be decomposed into the marginal measure ξR on

the radius and the Haar measure µ on the angle, i. e. ξ = ξR ⊗ µ.

For a subsampling design ξ ∈ ΞfX with marginal design ξR on the radius, we denote the

symmetrized measure ξR ⊗ µ of ξ by ξ.

Lemma 3.4. In multiple linear regression with d ≥ 2 covariates, let ξ = ξR ⊗ ξΘ|R ∈ ΞfX .

Then its symmetrization ξ = ξR ⊗ µ is also in ΞfX .

Note that ξ is invariant w.r.t. SO(d) by Lemma 3.3. Next, we establish an equality

between the arithmetic mean of information matrices of rotated subsampling designs and

the information matrix of ξ.

Lemma 3.5. In multiple linear regression with d ≥ 2 covariates, let G be the finite group of

rotations about the d axes that map the d-dimensional cross-polytope onto itself. Then

1

|G|
∑
g∈G

M(ξg) = M(ξ).

We make use of this to prove that any subsampling design can be improved by its

symmetrized subsampling design ξ, which allows us to restrict the search for an optimal

subsampling design from ΞfX to the essentially complete class of rotation invariant subsampling

designs in ΞfX .

Theorem 3.6. In multiple linear regression with d ≥ 2 covariates, let Φ be a convex

optimality criterion that is invariant w.r.t. SO(d), i. e. Φ(ξh) = Φ(ξ) for any h ∈ SO(d), ξ ∈
ΞfX . Then for any ξ = ξR ⊗ ξΘ|R ∈ ΞfX it holds that Φ(ξ) ≤ Φ(ξ), with ξ = ξR ⊗ µ.
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The regression model is linearly equivariant w.r.t. SO(d) as

f(h(x)) = Qhf(x) =

(
1 0

0 H

)
f(x) ,

for h ∈ SO(d) and H its respective orthogonal matrix with determinant one, i. e. h(x) =

Hx. Further note that Ψ(ξ) = Ψ(ξh) for any ξ ∈ ΞfX ,h ∈ SO(d), since det(M(ξh)) =

det(Qh)2 det(M(ξ)) and det(Qh) = 1 for all h ∈ SO(d). The D-optimality criterion

Ψ(ξ) = det(M(ξ)−1) is indeed convex and invariant w.r.t. SO(d). Theorem 3.6 applies

to other optimality criteria as well such as Kiefer’s Φq-criteria including the A-criterion

or the integrated mean squared error (IMSE) criterion. Before we construct the optimal

subsampling design in the subsequent theorem we make some preliminary remarks.

By Theorem 3.6 we can restrict our search for a D-optimal subsampling design to invariant

designs. We study the shape of the sensitivity function ψ(x, ξ∗) of an invariant D-optimal

subsampling design ξ∗ ∈ ΞfX . Since ξ∗ is composed of the Haar measure on the vector of

angles, one can easily verify that all off-diagonal entries
∫
xjξ

∗(dx) and
∫
xjxj′ξ

∗(dx) of the

information matrix of ξ∗ are equal to zero, j, j′ = 1, . . . , d, j ̸= j′. The (d + 1) × (d + 1)

information matrix is thus M(ξ∗) = diag(α,m, . . . ,m), where m =
∫
x21ξ

∗(dx). As a

consequence, the sensitivity function simplifies to

ψ(x, ξ∗) = α
(

1,x⊤
)

diag(1/α, 1/m, . . . , 1/m)

(
1

x

)
= 1 +

α

m
∥x∥22 . (3.1)

The sensitivity function is thus invariant to SO(d) in the sense that ψ(h(x), ξ∗) = ψ(x, ξ∗)

for all h ∈ SO(d) because ∥h(x)∥22 = ∥x∥22. Theorem 3.1 states that for a subsampling

design to be optimal, it must hold that infx∈X ∗ ψ(x, ξ∗) ≥ supx/∈X ∗ ψ(x, ξ∗), where X ∗ is

the support of ξ∗. Given that ψ(x, ξ∗) is constant on the d-sphere for all radii r > 0, this

suggests that the optimal subsampling design is equal to zero in the interior of a d-sphere

around the origin with radius r∗ and equal to the bounding distribution on X ∗, outside of

this sphere. Since the total measure of ξ∗ is α, r∗ is the (1 − α)-quantile of the radius R.

Theorem 3.7. For multiple linear regression with d ≥ 2 covariates and any SO(d) invariant

distribution of the covariates Xi, the density of the continuous D-optimal subsampling design

ξ∗ is

fξ∗(x) = fX(x)1[q1−α,∞)(∥x∥22) ,

where q1−α is the (1 − α)-quantile of the distribution of ∥Xi∥22.
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Note that this corresponds to the optimal subsampling design derived in Section 3.3.1

for d = 1.

Example 3.8 (multivariate standard normal distribution). We apply Theorem 3.7 to the

case of Xi ∼ Nd (0, Id). Then q1−α = χ2
d,1−α is the (1 − α)-quantile of the χ2-distribution

with d degrees of freedom and the (d+ 1) × (d+ 1) information matrix M(ξ∗) is of the form

diag(α,m, . . . ,m) with

m = α+
2χ2

d,1−α

d
fχ2

d
(χ2

d,1−α), (3.2)

where fχ2
d

is the density of the χ2-distribution with d degrees of freedom. Note that m > α

for all α ∈ (0, 1), because χ2
d,1−α > 0 for α ∈ (0, 1) and fχ2

d
(w) > 0 for all w > 0. In view of

Example 3.2, we see that equation (3.2) also holds for d = 1. We will use this example to

examine the performance of the subsampling design in Section 3.4. In Figure 3.1 we consider

a 2-dimensional standard normal covariate Xi and α = 0.1 and we depict the marginal

optimal subsampling design ξ∗R and the corresponding sensitivity function ψR(r, ξ∗R) as a

function of the radius r = ∥x∥2. We find from equation 3.1 that ψR(r, ξ∗R) = 1 + r2α/m.

The dotted vertical line describes the (1 − α)-quantile
√
χ2
d,1−α of the marginal distribution

on the radius R. The horizontal dotted line indicates the threshold s∗.
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Figure 3.1: Density of the marginal optimal subsampling design ξ∗R on the radius (red solid)
and of the marginal distribution on the radius (blue dashed) of a 2-dimensional standard
normal distribution (upper panel), and sensitivity function (lower panel) for subsampling
proportion α = 0.1

So far we have assumed that the covariates are centered and spherical. Let Zi be such

covariates that are invariant w.r.t. SO(d). Now we consider covariates Xi = AZi +µ which
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are location-scale transformations of Zi with non-singular transformation matrix A. The

covariates Xi have elliptical distribution with mean µ and non-singular covariance matrix

ΣX = AA⊤. Because of equivariance of the D-criterion w.r.t. to such transformations, we

find D-optimal subsampling designs in this case by transforming the observations back to

the former situation by subtracting the mean µ and multiplying with A−1. We show that

this indeed constitutes a D-optimal subsampling design in the following lemma and derive

the respective density in the subsequent theorem.

Lemma 3.9. In multiple linear regression with d ≥ 2 covariates, let the distribution of

covariates Zi ∈ Rd be invariant w.r.t. SO(d) and let ζ∗ ∈ ΞfZ be the corresponding D-

optimal subsampling design. Let A be a non-singular d× d matrix and µ a constant in Rd.

Then the D-optimal subsampling design ξ∗ ∈ ΞfX for the covariates Xi = AZi + µ is given

by ξ∗(B) = ζ∗(A−1(B − µ)) for any measurable set B ⊂ Rd.

Note that ξ∗ is the measure theoretic image of ζ∗ under the transformation z 7→ x =

Az + µ.

Theorem 3.10. In multiple linear regression with d ≥ 2 covariates, let the distribution of

the covariates Zi ∈ Rd be invariant w.r.t. SO(d). Let A be a non-singular d× d matrix and

µ a constant in Rd. Then the density of the D-optimal subsampling design ξ∗ for covariates

Xi = AZi + µ is

fξ∗(x) = fX(x)1[q1−α,∞)

(
(x− µ)⊤Σ−1(x− µ)

)
,

where Σ = AA⊤ and q1−α is the (1 − α)-quantile of ∥Zi∥22.

To implement the continuous D-optimal subsampling design ξ∗ from Theorem 3.10 we

suggest Algorithm 1, a simple acceptance-rejection method, where all data points that lie in

the support of ξ∗ are accepted into the subdata and all others are rejected.

Algorithm 1: Subsample selection according to D-optimal subsampling design ξ∗

Data: Covariates xi, i = 1, . . . , n, mean µX , covariance matrix ΣX .
Step 1: Calculate ci = (xi − µX)⊤Σ−1

X (xi − µX);
Step 2: Select xi when ci ≥ q1−α;

The resulting subsample is denoted by (x′
1, . . . ,x

′
kn

) as realization of (X ′
1, . . . ,X

′
Kn

),

where the X ′
i are i.i.d. random variables. For Algorithm 1, the subsample size Kn is random

as it depends on the Xi, but Kn is independent of the X ′
i. In view of limit theorems on
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stopped random walks (see e. g. Gut, 2009, Theorem 1.1.) one can reasonably presume

that the least squares estimator β̂ based on (X ′
1, . . . ,X

′
Kn

) asymptotically follows a normal

distribution with covariance matrix σ2εM(ξ∗)−1.

Example 3.11 (multivariate normal distribution). Here we extend our findings from

Example 3.8 to the case of a general multivariate normal distribution of the covariates

with mean µX and covariance matrix ΣX , i. e. Xi = AZi + µX , where A is a root of

ΣX , i. e. ΣX = AA⊤, and Zi follows a multivariate standard normal distribution. By

Theorem 3.10 we know that the D-optimal subsampling design is equal to the distribution of

the Xi outside of an ellipsoid given by (x−µX)⊤Σ−1
X (x−µX) < q1−α, where q1−α = χ2

d,1−α

is equal to the (1 − α)-quantile of the χ2-distribution with d degrees of freedom.

To guarantee the subsampling proportion α as well as to avoid reliance on the (1 − α)-

quantile of ∥Zi∥22 in Algorithm 1 we suggest Algorithm 2. Here, the subsample size kn is

deterministic and this algorithm only depends on the first two moments of the distribution

and the distribution to be elliptical.

Algorithm 2: Subsample selection according to design (x1:n, . . . ,xkn:n)

Let kn = [αn] be the integer part of αn;
Data: Covariates xi, i = 1, . . . , n, mean µX , covariance matrix ΣX .
Step 1: Calculate ci = (xi − µX)⊤Σ−1

X (xi − µX);
Step 2: Select x1:n, . . . ,xkn:n corresponding to the kn largest ci;

The notation xi:n is chosen to indicate a generalized (reverse) order statistics based on

the standardized distance ci such that (x1:n, ...,xn:n) is a permutation of (x1, ...,xn) and

(xi:n −µX)⊤Σ−1
X (xi:n −µX) ≥ (xi+1:n −µX)⊤Σ−1

X (xi+1:n −µX). Because the distribution

of the covariates is continuous, these inequalities are strict almost surely. The selection in

Step 2 of Algorithm 2 can e. g. be done using partial quicksort (see Mart́ınez, 2004).

Remark 3.12. For multiple linear regression the selection criterion ci = (xi −µX)⊤Σ−1
X (xi −

µX) for a D-optimal subsample is equivalent to the theoretical leverage scores hi =

f(xi)
⊤M−1

X f(xi), where MX = E(f(Xi)f(Xi)
⊤), as hi = ci + c0, where c0 = µ⊤

XΣ−1
X µX ≥ 0

is a constant. Subsampling via algorithmic leveraging as described in e. g. Ma et al. (2014)

uses a sampling distribution proportional to the leverage scores hi, rather than selecting a

subsample deterministically as we do here.

55



3.4 Fixed Sample Size

Unlike in the previous section, where we selected a certain percentage of the full data, we now

want to select a fixed, sufficiently large, number of k instances out of the total n data points.

This implies that we want to select a decreasing percentage αn = k/n of the full data when

n increases. The subsampling design ξn with total measure αn has non-standardized (per

subsample) information matrix Mn(ξn) = n
∫
f(x)f(x)⊤ξn(dx), such that n

∫
ξn(dx) = k.

Here we use the non-standardized information matrix to to allow for comparison of the

performance for varying n.

If k is large, the asymptotic properties in the previous section may give rise to consider

the inverse information matrix Mn(ξn)−1 as an approximation to the covariance matrix of

β̂ based on k out of n observations. Hence, it seems to be reasonable to make use of the

optimal continuous subsampling design ξ∗n for subsampling a proportion αn = k/n according

to Theorem 3.10. Here we adapt Algorithm 2 to select the fixed number kn = k data points

xi that correspond to the k largest ci. This design will be denoted by (x1:n, ...,xk:n) with

non-standardized information matrix M((x1:n, ...,xk:n)) =
∑k

i=1 f(xi:n)f(xi:n)⊤.

The computational complexity for the selection of x1:n, ...,xk:n is O(nd2). Note that

finding the inverse root of the covariance matrix is negligible, as computation of the inverse

only depends on the number of covariates d and we work under the assumption that d≪ n.

Computing the least squares estimator based on k observations uses computational complexity

O(kd2). When n ≫ d it is reasonable to assume that k ≤ n/d. Then the computational

complexity for the entire procedure is O(nd2), the same magnitude as computing the least

squares estimator β̂ on the full data, making it only viable in a scenario where the focus is

on the expense of observing the response variable Yi.

For scenarios where computational complexity is the main issue, we propose a second

simplified method. Here we merely standardize each covariate Xij by its standard deviation

σj . We use the matrix Σ̃X , containing only the diagonal entries of ΣX , for transformation

of the data. To implement this we adapt Algorithm 2 by replacing the ci with c̃i =

(xi−µX)⊤Σ̃−1
X (xi−µX) and select a fixed number k of points. This design will be denoted

by (x̃1:n, . . . , x̃k:n). Here, the entire procedure has computational complexity O(nd), as the

matrix multiplication Σ̃−1
X (xi−µX) only requires computational complexity O(nd), because

Σ̃−1
X is a diagonal matrix. The simplified method has one more advantage. It is easier to

implement in practice when there is no prior knowledge of the covariance matrix of the

covariates as estimating only the variances of the covariates on a small uniform random

subsample (prior to the actual subsampling procedure) is much easier than estimating the

entire covariance matrix. We will see in the simulation study in Section 3.5 that this second
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method is indeed viable.

For now, however, we first want to study the performance of the initial method, where

the full covariance matrix of the covariates is used for the transformation of the data.

As a measure of quality of the method with a fixed sample size k we use the covariance

matrix Cov[β̂; (x1:n, ...,xk:n)] of the least squares estimator β̂ given a subsample according

to (x1:n, ...,xk:n). For large k the subsample size k is expected to be close to the random

subsample size generated by Algorithm 1 according to ξ∗n, and the covariance matrix may

be approximated by the inverse of the information matrix of the corresponding optimal

continuous design ξ∗n,

Cov[β̂; (x1:n, ...,xk:n)] ≈ σ2εMn(ξ∗n)−1. (3.3)

In the literature, the main interest is often only in the slope parameter βslope = (β1, . . . , βd)

and the covariance matrix of the vector β̂slope = (β̂1, . . . , β̂d)⊤ of slope parameter estimators.

Therefore, we will adopt this approach here. Note that the D-optimal subsampling design for

βslope is the same as for the full parameter vector β because det(M−1) and the determinant

of the lower right d × d submatrix of M−1 differ only by the constant factor 1/k. Then,

under the D-optimal subsampling design ξ∗n from Theorem 3.10, we find for Xi with mean

µX and covariance matrix ΣX

Cov[β̂slope; (x1:n, ...,xk:n)] ≈ σ2ε(nmn)−1Σ−1
X , (3.4)

where mn is the design specific term in Mn(ζ∗n) = n diag(k/n,mn, . . . ,mn) with ξ∗n(B) =

ζ∗n(A−1(B − µX)).

Example 3.13 (multivariate standard normal distribution). We consider the design

(x1:n, ...,xk:n). In the case of normally distributed covariates Xi ∼ Nd(0, Id), we find

the following approximation of the covariance matrix Cov[β̂slope; ξ
∗
k,n] from equations (3.2)

and (3.4)

Cov[β̂slope; (x1:n, ...,xk:n)] ≈ σ2ε

(
k +

2nχ2
d,1−(k/n)

d
fχ2

d
(χ2

d,1−(k/n))

)−1

Id. (3.5)

With this we can approximate the trace of the covariance matrix of β̂slope, which is equal

to the mean squared error MSE(β̂slope) = E[∥β̂slope − βslope∥22], since the least squares

estimator is unbiased. In order to compare the behavior between different dimensions d

we find MSE(β̂slope) divided by d is equal to any of the diagonal entries of the covariance

matrix, e.g. the variance Var[β̂1; (x1:n, ...,xk:n)] of the slope parameter estimator of the
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first covariate. In Figure 3.2 the lines depict the approximation from equation (3.5) of

MSE(β̂slope)/d, indicated on the left vertical axis of Figure 3.2, for standard normal covariates

in dependence of the size of the full data n given a fixed mean subsample size k = 1000 of the

subsample. The symbols depict the respective simulated values. The simulation procedure

is given in section 3.5, with the only difference that the number of simulation runs S for

each combination of number of covariates d and full sample size n here is only S = 1000,

since the computations for n = 107 take infeasibly long. We see that MSE(β̂slope)/d tends

to zero as n→ ∞, but substantially slower for higher dimensions d as more parameters need

to be estimated. Moreover, the approximation in equations (3.4) and (3.5) turn out to be

useful because they are very close to the values obtained by simulation, at least, for small to

moderate dimensions d.
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Figure 3.2: Approximated (lines) and simulated (symbols) MSE/d of the slope parameter
estimator and approximated efficiencies of uniform random subsampling (lines) in the case
of standard normal covariates in dependence of the size of the full data n given a fixed mean
subsample size k = 1000 and σ2ε = 1 for various numbers of covariates d = 2, 5, 10, 25 and 50

To demonstrate the advantage of the design (x1:n, ...,xk:n), we consider uniform random

subsampling as a natural choice to compare with. The uniform random subsampling design

ξun has density fξun(x) = (k/n)fX(x). As a measure of quality, we study the D-efficiency of

ξun w.r.t. the D-optimal subsampling design (x1:n, ...,xk:n). For estimating the slopes, the

D-efficiency of a subsampling design ξn with subsampling proportion αn = k/n is defined as

effDslope
(ξn) =

(
det(Cov[β̂slope; (x1:n, ...,xk:n)])

det(Cov[β̂slope; ξn])

)1/d
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and can be approximated by replacing the covariances by the inverse information matrices

for the slopes. For this definition the homogeneous version (det(Cov[β̂slope; ξn]))1/d of

the D-criterion is used, satisfying the homogeneity condition (det(λCov[β̂slope; ξn]))1/d =

λ(det(Cov[β̂slope; ξn]))1/d for all λ > 0 (see Pukelsheim, 1993, Chapter 6.2).

As mentioned in Reuter and Schwabe (2023a), the D-efficiency effDslope
(ξun) of uniform

random subsampling can be nicely interpreted: the sample size required to obtain the same

precision (in terms of the Dslope-criterion), as when the Dslope-optimal subsampling design

ξ∗n with subsample size k is used, is equal to the inverse of the efficiency effDslope
(ξun) times k.

For example, if the efficiency effDslope
(ξun) is equal to 0.5, then twice as many observations

would be needed under uniform random sampling than for a Dslope-optimal subsampling

design. The information matrix for uniform random subsampling is given by

Mn(ξun) = k

∫
f(x)f(x)⊤fX(x) dx = k

(
1 µ⊤

X

µX ΣX + µXµ⊤
X

)

such that Cov[β̂slope; ξ
u
n] = k−1Σ−1

X .

Corollary 3.14. The Dslope-efficiency of the design (x1:n, ...,xk:n) can be approximated

by effDslope
(ξun) ≈ k/(nmn), where mn are the diagonal entries of the information matrix

Mn(ζ∗n) = n diag(k/n,mn, . . . ,mn).

Example 3.15 (normal distribution). Consider Xi ∼ Nd(µX ,ΣX). By Corollary 3.14 we

have effDslope
(ξun) ≈ k/(nmn), where

mn =
k

n
+

2χ2
d,1−(k/n)

d
fχ2

d
(χ2

d,1−(k/n)),

from equation (3.2).

The approximated efficiency effDslope
(ξun) is thus equal to the approximated MSE(β̂slope)/d

given the design (x1:n, ...,xk:n) as depicted in Figure 3.2, multiplied by k/σ2ε . The efficiency

ranges between zero and one and is indicated by the vertical axis on the right of Figure 3.2.

3.5 Simulation Study

We divide our simulation study into two parts. First, we study the performance of the optimal

subsampling designs (x1:n, . . . ,xk:n) derived from Theorem 3.10 in the case of multivariate

normally distributed and multivariate t-distributed covariates with three degrees of freedom,

respectively, both with and without correlation between the covariates. For the t-distribution,
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we choose three degrees of freedom to maximize dispersion, while maintaining existence of

the variance. Second, we use the simplified design (x̃1:n, . . . , x̃k:n) discussed in Section 3.4

that only takes the variance of the covariates into account while ignoring the correlation. The

latter has lower computational complexity, O(nd). For better comparability, the simulation

is structured similar to those in the work by Wang et al. (2019). The data is generated

from the linear model Yi = β0 + X⊤
i βslope + εi, i = 1, . . . , n, with d = 50. The parameter

vector β was generated from a multivariate normal distribution in each iteration. Note,

however, that the value of β does not have any influence on the results. For the errors we

choose independent εi ∼ N (0, 1). The subdata is of fixed size k = 1000, whereas the size

of the full data takes the values n = 5000, 10000, 100000, and one million. For each value

of n, we apply our subsampling methods and calculate the least squares estimator β̂ for

each method. We repeat this S = 10000 times. We select subdata based on our approach

(D-OPT) and the IBOSS method (IBOSS) by Wang et al. (2019). Further we select subdata

by uniform sampling (UNIF) and give a comparison to estimates based on the full data

(FULL) to give context to our approach and the IBOSS method. In each iteration s, we

form the subsample in the k× d matrix X(s) (based on the respective method) and calculate

its inverse information matrix C(s) = ((1k,X(s))
⊤(1k,X(s)))

−1, where 1k is a k-dimensional

vector with all entries equal to one. We then take the average of these (d + 1) × (d + 1)

covariance matrices C = 1/S
∑S

s=1 C(s) and partition this matrix the following way.

C =

(
c0 c⊤1
c1 C1

)
,

where c0 ≥ 1/k with equality if c1 = 0. The submatrix C1 is of dimension d× d. Note that

C and C1 are the simulated covariance matrices of β and βslope, respectively. The mean of

the covariance matrices is taken instead of the mean of the information matrices, which

has been the target quantity for asymptotic behavior. Note that the inverse of the mean

information matrix is a lower bound for the mean covariance matrix by Jensen’s inequality.

Then, we calculate the determinant of C1 and scale it to homogeneity, i. e. det(C1)(1/d).
Alternatively to using det(C1)(1/d) to compare the different methods, we have also used the

MSE of β̂slope, i. e. MSEβ̂slope
= S−1

∑S
s=1 ∥β̂

(s)
slope − βslope∥22, where β̂

(s)
slope is the estimator

of the s-th iteration. Results were very similar in all cases and, importantly, the comparison

between them does not change. In particular note that the trace of C1 is equal to MSEβ̂slope
.

Consider the special case of homoscedastic covariates. Then all diagonal elements of

the theoretical counterpart of Cov(β̂slope) are equal and all off-diagonal entries are equal

to zero. Thus in theory we have the MSE divided by d is equal to the term of interest
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det(Cov(β̂slope))
1/d in our simulations. In this situation, the D-optimal subsampling design

is equal to the A-optimal subsampling design for the slope parameters, which minimizes

trace(Cov(β̂slope)) and thus the MSE. As A- and D-optimal subsampling designs are not

equal in other cases we recommend using an A-optimal subsampling design as a benchmark

for other methods when the MSE is used as the measure of comparison, but we will not

follow this line further here. All simulations are performed using R Statistical Software (R

Core Team, 2023, v4.2.2).

3.5.1 Optimal Subsampling Design (x1:n, . . . ,xk:n)

Here we use the subsampling design (x1:n, . . . ,xk:n) from Algorithm 2 with fixed k.

Let ΣX = I50 or Σ0.5, where Σ0.5 = (I50 + 1501
⊤
50)/2 represents compound symmetry

with correlation ρ = 0.5. Figure 3.3 shows the results for normally distributed covariates

Xi with I50 and Σ0.5 as the covariance matrix respectively. Figure 3.4 shows the results

for the t-distribution with three degrees of freedom where I50 and Σ0.5 are the respective

scale matrices, so again we have compound symmetry with correlation ρ = 0.5 in the

latter case. Here, we omit the uniformly selected subsample for better visibility because

uniform subsampling performs substantially worse. For uniform random subsampling, the

determinant is close to constant at around 4.6 × 10−4 for all four values of n in the case of

no correlation and similarly around 8.5 × 10−4 in the case with correlation.
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(b) Xi ∼ N (0,Σ0.5).

Figure 3.3: Standardized determinant of the inverse information matrix for normally
distributed covariates given different covariance matrices.

As expected, regardless of the distribution of the covariates, for uniform random

subsampling the full sample size n has no impact on det(C1)(1/d), which is equal to n/k

times that value of the full data.
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Figure 3.4: Standardized determinant of the inverse information matrix for t-distributed
covariates with three degrees of freedom given different scale matrices

With the prior knowledge of the distribution of the covariates, our method is able to

outperform the IBOSS method. As is to be expected, our approach can increase its advantage

over the IBOSS method when there is correlation between the covariates. The advantage is

however minor for the heavy-tailed t-distribution, where both methods perform much closer

to the full data. In particular, for large n both perform basically as good as the full data.

For reference, in the case of positive correlations the relative efficiency of the IBOSS method

with respect to the D-OPT method, i.e. the ratio of the corresponding values of D-OPT

divided by IBOSS, ranges from approximately 0.951 to 0.928 for the different values in full

sample size n.

3.5.2 Simplified Method (x̃1:n, . . . , x̃k:n)

Finally, we want to study the simplified design (x̃1:n, . . . , x̃k:n) of the D-OPT method that

only scales by standard deviations and can be performed in O(nd). In this method, we ignore

the correlations between the covariates. We use the diagonal matrix Σ̃ = diag(σ21, . . . , σ
2
d)

containing only the diagonal entries of ΣX for transformation of the data, such that the

entire procedure has computational complexity O(nd). We examine this method in the case

of normally distributed covariates and refer to the simplified D-OPT method as “D-OPT-s”

in the figures.

Note that in the case of no correlation between the covariates the simplified method is

equal to the D-OPT method of the previous section. Thus results for this scenario can be

inherited from Figure 3.3(A). Further, we consider compound symmetry with ρ = 0.05 and

ρ = 0.5. The 50× 50 covariance matrices of the Xi are ΣX = Σ0.05 or Σ0.5, with σ0.05,ii = 1
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and σ0.05,ij = 0.05 for i ̸= j and Σ0.5 as before. Figure 3.5 shows the results for normally

distributed covariates Xi with Σ0.05 and Σ0.5 as the covariance matrix, respectively. While

the advantage of the D-optimal subsampling design over the IBOSS method is reduced, there

are still scenarios where it can outperform the IBOSS method such as the one of covariance

matrix Σ0.05 with small correlations. However, if correlations are particularly large as in

the case of covariance matrix Σ0.5, the simplified method D-OPT-s seems to perform much

worse and only slightly outperforms uniform subsampling.
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(a) Xi ∼ N (0,Σ0.05).
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Figure 3.5: Standardized determinant of the inverse information matrix for normally
distributed covariates given different covariance matrices for the simplified D-OPT-s method

3.6 Concluding Remarks

We have constructed optimal subsampling designs ξ∗ for multiple linear regression, first for

centered spherical distributions, then for distributions that can be generated from such a

distribution via location-scale transformation. We have given two methods of implementation

and discussed that the computational complexity of the D-optimal method, that selects

the k data points with the largest Mahalanobis distance from the mean of the data, is

O(nd2), whereas the simplified version can be performed in O(nd). We have compared these

implementations to the IBOSS method of Wang et al. (2019) in simulation studies with the

expected result that the full method outperforms IBOSS as well as the simplified method

outperforms the IBOSS method in certain settings with small correlations between the

covariates. Besides applications where the covariance matrix of the covariates is known, our

method can be used as a benchmark for other methods that do not require prior knowledge of

the distribution of the covariates. Note, that the proposed subsampling designs depend both
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on the distribution of the covariates and the model. If either is incorrect, the subsampling

designs will no longer be optimal. Recent work on subsampling for model discrimination is

done by Yu and Wang (2022).

3.A Technical Details

Lemma 3.16. The essential part of the directional derivative

FΨ(ξ, ξx) = lim
ϵ→0+

1

ϵ
(− log(det(M((1 − ϵ)ξ + ϵξx))) + log(det(M(ξ))))

at a design ξ in the direction of a one-point measure ξx with total measure α is the sensitivity

function ψ(x, ξ) = (d+ 1) − FΨ(ξ, ξx) = αf(x)⊤M(ξ)−1f(x).

Proof of Lemma 3.16. The directional derivative FΨ(ξ, ξx) can be calculated as FΨ(ξ, ξx) =

(d+ 1) − Tr(M(ξ)−1M(ξx)) (see Silvey, 1980, Example 3.8) which reduces to FΨ(ξ, ξx) =

(d + 1) − αf(x)⊤M(ξ)−1f(x) for a one-point measure ξx. Equivalently, we consider the

sensitivity function ψ(x, ξ) = αf(x)⊤M(ξ)−1f(x), which incorporates the essential part of

the directional derivative (ψ(x, ξ) = (d+ 1) − FΨ(ξ, ξx)).

Remark 3.17. For the representation of a design ξ in hyperspherical coordinates we make

use of the transformation T : [0,∞) × [0, π]d−2 × [0, 2π) → Rd, T (r,θ) = x, where θ =

(θ1, . . . , θd−1)⊤, xk = r cos(θk)
∏k−1

j=1 sin(θj) for k = 1, . . . , d−1, and xd = r
∏d−1

j=1 sin(θj). We

identify all points with radius zero with the origin and denote the inverse of the transformation

T by S = T−1. Then, for a subsampling design ξ ∈ ΞfX on Rd, the induced subsampling

design ξS is the same subsampling design in hyperspherical coordinates, i. e. on [0,∞) × B,

where B = [0, π]d−2 × [0, 2π).

Proof of Theorem 3.1. The result follows immediately from Corollary 1 (c) in Sahm and

Schwabe (2001) as in Theorem 3.1. in Reuter and Schwabe (2023a).

Proof of Lemma 3.3. We define h as a mapping from R>0 × B to itself. Let h = (h0,h
⊤
1 )⊤,

where h0(r) = r is the identity on the radius and h1 ∈ SO(d) acts on the angle θ. First

note that for any B = BR × BΘ with BR ∈ B(R>0) and BΘ ∈ B(B) and any h1 ∈ SO(d)

the mapping h only affects the set BΘ on the angle. Since µ is a left Haar measure w.r.t

SO(d), it holds that µ(h−1
1 (BΘ)) = µ(BΘ) for any h1 ∈ SO(d) and any BΘ ∈ B(B). We

first prove that the composition ξ = ξR ⊗ µ of a measure ξR on the radius and the Haar
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measure µ implies invariance. For any B = BR ×BΘ and any h1 ∈ SO(d), we have

ξh(B) = (ξR ⊗ µ)(h−1(BR ×BΘ))

= ξR(BR)µ(h−1
1 (BΘ))

= ξR(BR)µ(BΘ)

= ξ(B).

Because the σ-algebra B(R>0) ⊗B(B) is generated by B(R>0) ×B(B), we conclude that ξ is

invariant w.r.t. SO(d).

Conversely, let us assume ξ = ξR ⊗ ξΘ|R (this decomposition exists by the Radon-

Nikodym Theorem) is invariant w.r.t. SO(d) and there exist sets BR ∈ B(R>0) with

ξR(BR) > 0 and BΘ ∈ B(B) such that ξΘ|R∈BR
(BΘ) ̸= µ(BΘ) > 0. Then there exists a

rotation h1 ∈ SO(d) such that ξΘ|R∈BR
(BΘ) ̸= ξΘ|R∈BR

(h−1
1 (BΘ)), and subsequently we

have ξh(BR×BΘ) ̸= ξ(BR×BΘ). This contradicts the invariance assumption and we derive

that invariance of ξ w.r.t. SO(d) implies that ξΘ|R(BΘ) = µ(BΘ) almost everywhere w.r.t.

ξR. This concludes the proof.

Proof of Lemma 3.4. The Xi are invariant w.r.t. SO(d) and thus we can write the density

of the Xi as fX(x) = fR(X)(r)fµ(θ) by Lemma 3.3. We can decompose the density of ξ

into fξ(x) = fR(ξ)(r)fΘ|R(θ). We have fR(ξ)(r) ≤ fR(X)(r) because ξ ∈ ΞfX . As a result

fξ(x) = fR(ξ)(r)fµ(θ) ≤ fR(X)(r)fµ(θ) and thus ξ ∈ ΞfX .

Proof of Lemma 3.5. Consider the information matrix of a subsampling design ξ in hyperspherical

coordinates, i. e. with the transformation T and its inverse S. The Jacobi matrix of T is

denoted by JT (r,θ). Then

M(ξ) =

∫
Rd

f(x)f(x)⊤ξ(dx)

=

∫
S(Rd)

f(T (r,θ))f(T (r,θ))⊤ξS(d(r,θ))

=

∫
[0,∞)

∫
B
f(T (r,θ))f(T (r,θ))⊤|det(JT (r,θ))|ξΘ|R=r(dθ)ξR(dr).
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Now we study the sum of information matrices of rotated subsampling designs.

1

|G|
∑
g∈G

M(ξg)

=
1

|G|
∑
g∈G

∫
[0,∞)

∫
B
f(T (r,θ))f(T (r,θ))⊤|det(JT (r,θ))|ξgΘ|R=r(dθ)ξR(dr)

=
1

|G|
∑
g∈G

∫
[0,∞)

∫
B
f(g−1(T (r,θ)))f(g−1(T (r,θ)))⊤| det(JT (r,θ))|ξΘ|R=r(dθ)ξR(dr)

=

∫
[0,∞)

∫
B

∑
g∈G

1

|G|
f(g−1(T (r,θ)))f(g−1(T (r,θ)))⊤| det(JT (r,θ))|ξΘ|R=r(dθ)ξR(dr).

The inner sum can be regarded as the information matrix of a design putting equal weight

on the vertices of a rotated d-dimensional cross-polytope. This is equal to the information

matrix of the uniform distribution on the d-sphere, see Pukelsheim (1993, Chapter 15.18.)

or Gaffke and Heiligers (1996, Lemma 4.9.). Then

1

|G|
∑
g∈G

M(ξg)

=

∫
[0,∞)

∫
B

∫
B
f(T (r,γ))f(T (r,γ))⊤| det(JT (r,γ))|µ(dγ)ξΘ|R=r(dθ)ξR(dr)

=

∫
[0,∞)

∫
B
f(T (r,γ))f(T (r,γ))⊤| det(JT (r,γ))|µ(dγ)

∫
B
ξΘ|R=r(dθ)ξR(dr)

=

∫
[0,∞)

∫
B
f(T (r,γ))f(T (r,γ))⊤| det(JT (r,γ))|µ(dγ)ξR(dr)

= M(ξR ⊗ µ).

In the third equality we used
∫
B ξΘ|R=r(dθ) = 1.

Proof of Theorem 3.6. By the result M(ξ) = 1
|G|
∑

g∈GM(ξg) of Lemma 3.5 we have

Φ(M(ξ)) ≤ 1

|G|
∑
g∈G

Φ(M(ξg))

by the convexity of Φ. Note that g ∈ G ⊂ SO(d). We then utilize that Φ is invariant w.r.t.

SO(d), i. e. Φ(M(ξg)) = Φ(M(ξ)), and obtain

Φ(M(ξ)) ≤ Φ(M(ξ)).
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Proof of Theorem 3.7. We apply Theorem 3.1. ξ∗ is defined such that it is equal to the

bounding distribution on X ∗ = {x ∈ X : ∥x∥22 ≥ q1−α} and equal to zero on {x ∈ X :

∥x∥22 < q1−α}. The sensitivity function from equation (3.1) is

ψ(x, ξ∗) = 1 +
α

m
∥x∥22.

Then we can immediately see that s∗ = infx∈X ∗ ψ(x, ξ∗) = supx/∈X ∗ ψ(x, ξ∗) = α
mq1−α. and

thus conditions (i)-(iii) are satisfied, which concludes the proof.

Proof of Lemma 3.9. Note that for any d× d matrix A and any vector µ ∈ Rd, there exists

a bijection ΞfZ → ΞfX , where every subsampling design ζ ∈ ΞfZ is mapped to ξ ∈ ΞfX ,

which is defined as ξ(B) = ζ(A−1(B − µ)) for any measurable set B ⊂ Rd. Let ζ ∈ ΞfZ .

Consider the information matrix of the subsampling design ξ,

M(ξ) =

∫
f(x)f(x)⊤ξ(dx)

=

∫
f(Az + µ)f(Az + µ)⊤ζ(dz)

=

∫ (
1 0⊤

µ A

)
f(z)f(z)⊤

(
1 µ⊤

0 A⊤

)
ζ(dz)

=

(
1 0⊤

µ A

)
M(ζ)

(
1 µ⊤

0 A⊤

)
.

The determinant of the information matrix can be calculated as follows.

det (M(ξ)) = det(AA⊤) det (M(ζ)) .

Thus ξ∗ minimizes Ψ(ξ) in ΞfX , if ζ∗ minimizes Ψ(ζ) in ΞfZ .

Proof of Theorem 3.10. From Lemma 3.9 we have that ξ∗(B) = ζ∗(A−1(B − µ)) for any

measurable set B ⊂ Rd, where ζ∗ is the optimal subsampling design for covariates Zi in the

setting of Theorem 3.7. We inherit the desired result by applying Theorem 3.7.

Proof of equation (3.2). Let Xi = (Xi,1, . . . , Xi,d)⊤ ∼ Nd (0, Id) with density fX . From

Theorem 3.7, we know that the support of ξ∗ is X ∗ = {x ∈ Rd : ∥x∥22 ≥ χ2
d,1−α} on which it

is equal to the d-dimensional standard normal distribution. By definition, the information

matrix of ξ∗ is M(ξ∗) =
∫
f(x)f(x)⊤ξ∗(dx). Any off-diagonal entries

∫
xjξ

∗(dx) and
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∫
xjxj′ξ

∗(dx), j, j′ = 1, . . . , d, j ̸= j′ are equal to zero. The upper left element of the matrix

is ξ∗(Rd) = α by the definition of a subsampling design. The other elements on the main

diagonal are equal because ξ∗ is invariant w.r.t. SO(d) and thus
∫
x2jξ

∗(dx) =
∫
x2j′ξ

∗(dx)

for any j, j′ = 1, . . . , d. Note that W = ∥Xi∥22 follows a χ2-distribution with d degrees of

freedom. We start to calculate m by formulating it as the expected value of W .

m =

∫
X ∗
x21fX(x) dx

= E
[
X2

i,11{∥Xi∥22≥χ2
d,1−α}

]
=

1

d
E
[
∥Xi∥221{∥Xi∥22≥χ2

d,1−α}

]
=

1

d
E
[
W1{W≥χ2

d,1−α}

]
.

We write the expected value in its integral form and insert the density fχ2
d

of the χ2-

distribution with d degrees of freedom. Then

m =
1

d

∫ ∞

χ2
d,1−α

wfχ2
d
(w) dw

=
1

d2d/2Γ(d/2)

∫ ∞

χ2
d,1−α

wd/2e−w/2 dw.

Integration by parts yields

m =
1

d2d/2Γ(d/2)

(
2(χ2

d,1−α)d/2e−χ2
d,1−α/2 + d

∫ ∞

χ2
d,1−α

w(d/2)−1e−w/2 dw

)

=
(χ2

d,1−α)d/2e−χ2
d,1−α/2

d2(d/2)−1Γ(d/2)
+

∫ ∞

χ2
d,1−α

w(d/2)−1e−w/2

2d/2Γ(d/2)
dw.

The latter term simplifies to α because the integrand is the density of the χ2 distribution

with d degrees of freedom. Then

m =
2χ2

d,1−α

d
fχ2

d
(χ2

d,1−α) + α.
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Proof of equation (3.4). We get from equation (3.3) that the covariance matrix of β̂ is

Cov[β̂; (x1:n, ...,xk:n)] ≈ σ2ε(Mn(ξ∗n))−1.

As in the proof of Lemma 3.9,

Mn(ξ∗n) =

(
1 0⊤

µX A

)
Mn(ζ∗n)

(
1 µ⊤

X

0 A⊤

)
.

Recall that Mn(ζ∗n) = n diag(k/n,mn, . . . ,mn), where mn =
∫
x21ζ

∗
n(dx). We get for the

covariance matrix of the asymptotic distribution of the parameter estimator

Cov[β̂; (x1:n, ...,xk:n)]

≈ σ2ε

(
1 −(A−1µX)⊤

0 (A−1)⊤

)
n−1 diag((k/n),mn, . . . ,mn)−1

(
1 0⊤

−A−1µX A−1

)
.

The approximation of the covariance matrix of the slope parameters estimators β̂slope is

given by the lower right block of the matrix above.

Cov[β̂slope; (x1:n, ...,xk:n)] ≈ σ2ε(A−1)⊤(nmn)−1IdA−1

= σ2ε(nmn)−1Σ−1
X .

Proof of Corollary (3.14). For the covariance matrix of β̂slope under the uniform random

subsampling design ξun we find

det(Cov[β̂slope; ξ
u
n]) ≈ σ2dε k

−d det(ΣX)−1.

For the covariance matrix of β̂slope given (x1:n, ...,xk:n) we have with the approximation

in equation (3.4)

det(Cov[β̂slope; (x1:n, ...,xk:n)]) ≈ σ2dε (nmn)−d det(ΣX)−1,

where mn are the diagonal entries of Mn(ζ∗n) = n diag(k/n,mn, . . . ,mn). Thus

effDslope
(ξun) ≈ k/(nmn).
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Chapter 4

Poisson Regression in one Covariate

on Massive Data

In this chapter we present the work titled “Poisson Regression in one Covariate on Massive

Data” (Reuter and Schwabe, 2024) published as an electronic preprint.

4.1 Introduction

Progress in technology has lead to the collection of increasingly large data sets. The

field of subsampling or subdata selection has gained popularity in recent years, where

the aim is to decrease the number of observations in the data set while maintaining as

much information as possible. To illuminate fundamental features of the concept, we solely

focus on the reduction of observations in massive data for a single covariate, rather than

reduction in covariates of high-dimensional data. Subdata selection for massive data can be

done via a probabilistic subsampling scheme or through deterministic rules. Earlier works

on subsampling for generalized linear models (GLMs) focus on probabilistic methods, in

particular on subsampling for logistic regression, see e.g. Wang et al. (2018). More recently

there are more works on GLMs, including Poisson regression: For probabilistic subsampling

under the A and L-optimality criteria see Ai et al. (2021) and Yu et al. (2022). After

Wang et al. (2019) introduced information-based optimal subdata selection (IBOSS) for

linear regression, Cheng et al. (2020) proposed IBOSS for logistic regression, a deterministic

subsampling technique with a probabilistic initial subsample to estimate the unknown

parameter. This is necessary because, as is well known, the optimal design depends on the

unknown parameter for GLMs.
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In the present paper on Poisson regression we derive locally D-optimal continuous

subsampling designs directly bounded by the density of the covariate. Such directly bounded

designs were first studied by Wynn (1977) and Fedorov (1989). Recently, Ul Hassan and

Miller (2019) derived such bounded optimal subsampling designs for logistic regression in the

context of optimal item calibration similarly to our approach. Such subsampling designs can

then easily be used for subdata selection by including all observations that lie in the support

of the optimal subsampling design and exclude all others. Though an initial step to estimate

the parameter is necessary when it is unknown. When there are no constraints on the design,

literature on Poisson regression includes Rodŕıguez-Torreblanca and Rodŕıguez-Dı́az (2007)

and Russell et al. (2009).

In Section 4.2 we introduce the Poisson regression model to be used in this paper. Then,

we present a theorem on the support of a locally D-optimal continuous subsampling design

as well as a theorem concerning scale-location shifts of the covariate in Section 4.3. Further,

we give examples when the covariate has an exponential or a uniform distribution. In

Section 4.4 we study the efficiency of uniform random subsampling and some heuristic

designs in comparison to the optimal subsampling designs. In addition, we consider the

loss in efficiency when the regression parameter is misspecified. We add closing remarks in

Section 4.5. Proofs are deferred to an appendix.

4.2 Model Specification

We consider pairs (xi, yi), i = 1, . . . , n, of data, where yi is the value of the response variable

Yi. xi is a realization of the random variable Xi. The covariate Xi has probability density

function fX . We suppose that the dependence of the response variable on the covariate Xi

is given by a Poisson regression model.

(A1) Conditionally on the covariateXi, the response Yi is Poisson distributed with conditional

mean E(Yi|Xi) = exp(β0 + β1Xi).

Model (A1) constitutes a generalized linear model with random covariate and log link. The

aim is to estimate the regression parameter β = (β0, β1)
⊤. f(x) = (1, x)⊤ denotes the

regression function in the linear component f(Xi)
⊤β such that E(Yi|Xi) = exp(f(Xi)

⊤β).

We will further assume that the covariate Xi has a continuous distribution satisfying

some moment conditions.

(A2) The covariate Xi has density fX and E(X2
i exp(β1Xi)) <∞.
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4.3 Subsampling Design

We assume that the number of observations n is very large. However, we encounter the

challenge of dealing with responses, denoted by Yi, which are either costly or difficult to

observe. Meanwhile, the values xi of all units Xi of the covariate are readily available. To

tackle this problem, we consider a scenario in which the responses Yi will only be observed

for a specific subsampling proportion α of the units, 0 < α < 1. The selection of these

units is based on the knowledge of the covariate values xi for all units. Our objective is

to identify a subsample of pairs (xi, yi) that provides the most accurate estimation of the

parameter vector β by means of the maximum likelihood estimator β̂. As the covariate Xi

has a continuous distribution, we are going to identify a subsample from this distribution

that maximizes information, but only covers a percentage α of the distribution. Therefore,

we consider continuous designs ξ as measures of mass α on R with density fξ bounded by

the density fX of Xi ensuring
∫
fξ(x) dx = α and fξ(x) ≤ fX(x) for all x ∈ R. A subsample

can then be generated according to such a bounded continuous design ξ by accepting units i

with probability fξ(xi)/fX(xi). To obtain analytical results, we assume that the distribution

of the covariate Xi and, hence, its density fX is known.

The information arising for a single observation at covariate value x is defined by the

elemental information M(x,β) = exp(β0 + β1x)f(x)f(x)⊤ (see Russell et al., 2009). For a

continuous design ξ, the information matrix M(ξ,β) is defined by

M(ξ,β) =

∫
M(x,β)ξ(dx) = exp(β0)

(
m0(ξ, β1) m1(ξ, β1)

m1(ξ, β1) m2(ξ, β1)

)
,

where mk(ξ, β1) =
∫
xk exp(β1x)fξ(x) dx. The moment condition E(X2

i exp(β1Xi)) < ∞
stated in assumption (A2) for the distribution of the covariates Xi ensures that the entries

mk(ξ, β1) in the information matrix are finite for any bounded continuous design ξ. Otherwise

no meaningful optimization would be possible. The moment condition is obviously satisfied

when the distribution of Xi has a finite support. It also holds for other not heavy-tailed

distributions like the normal distribution. In the case of an exponentially distributed

covariate Xi considered below, the additional condition β1 < λ on the slope parameter β1 is

required where λ is the rate parameter of the exponential distribution.

The information matrix M(ξ,β) serves as a measure for evaluating the performance of

the design ξ. Note that M(ξ,β) has full rank for any continuous design ξ. This ensures the
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existence of the inverse

M(ξ,β)−1 =
1

exp(β0)d(ξ, β1)

(
m2(ξ, β1) −m1(ξ, β1)

−m1(ξ, β1) m0(ξ, β1)

)
.

where d(ξ, β1) = m0(ξ, β1)m2(ξ, β1)−m1(ξ, β1)2 is the standardized determinant of M(ξ,β),

d(ξ, β1) = exp(−2β0) det(M(ξ,β)). Then,
√
n(β̂ − β) is asymptotically normal with mean

zero and covariance matrix M(ξ,β)−1 for the maximum likelihood estimator β̂.

Maximization of the information matrix in the Loewner sense of nonnegative definiteness

will not be possible, in general. Therefore, we have to consider some one-dimensional

information functional. We will focus here on the most popular design criterion, the D-

criterion, in its widely used form, log(det(M(ξ,β))), to be maximized. A subsampling design

ξ∗ with density fξ∗ that maximizes the D-criterion for a given parameter value β will be

called locally D-optimal at β. Maximization of the D-criterion can be interpreted in terms

of the covariance matrix as minimization of the volume of the asymptotic confidence ellipsoid

for the parameter vector β.

Remark 4.1. Note that β0 appears in the information matrix only by the multiplicative

factor exp(β0). Thus, a locally D-optimal subsampling design ξ∗ only depends on the slope

β1.

For the characterization of a locally D-optimal design, we will make use of an equivalence

theorem based on constrained convex optimization (see e. g. Sahm and Schwabe, 2001). For

this, we have to distinguish between cases related to the sign of the slope β1. In applications,

the slope will often be negative (β1 < 0). We will focus on that case and establish a

representation of the locally D-optimal subsampling designs for β1 < 0 first.

Denote by FX and qα the cumulative distribution function and the α-quantile of Xi. Let

1A the indicator function of a set A, i. e. 1A(x) = 1, if x ∈ A and 1A(x) = 0 otherwise.

Further, denote by

ψ(x, ξ, β1) =
1

d(ξ, β1)
exp(β1x)(m0(ξ, β1)x

2 − 2m1(ξ, β1)x+m2(ξ, β1))

the sensitivity function of a design ξ (see Theorem 4.11). Note that the sensitivity function

ψ(x, ξ, β1) does not depend on β0.
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Theorem 4.2. Let assumptions (A1) and (A2) be satisfied and let β1 < 0. Then the

subsampling design ξ∗ is locally D-optimal at β if and only if ξ∗ has density fξ∗(x) =

fX(x)1X ∗(x) and either

(i) there exist a1 < a2 < a3 such that

X ∗ = (−∞, a1] ∪ [a2, a3],

FX(a1) + FX(a3) − FX(a2) = α, and (4.2a)

ψ(a1, ξ
∗, β1) = ψ(a2, ξ

∗, β1) = ψ(a3, ξ
∗, β1), (4.2b)

or

(ii) X ∗ = (−∞, qα], (4.2a’)

ψ(x, ξ∗, β1) > ψ(qα, ξ
∗, β1) for x < qα, and

ψ(x, ξ∗, β1) < ψ(qα, ξ
∗, β1) for x > qα. (4.2b’)

Conditions (4.2a) and (4.2a’) correspond to the subsampling percentage α while (4.2b)

and (4.2b’) are related to the conditions on the sensitivity function in the general equivalence

theorem for bounded designs (Theorem 4.11) reproduced in the Appendix.

In view of the shape fξ∗(x) = fX(x)1X ∗(x) of the density of the continuous optimal

subsampling designs ξ∗ in Theorem 4.2, the subsampling mechanism becomes deterministic

for the optimal design: The subsample can be generated by accepting all units i for which

xi ∈ X ∗ and by rejecting all others.

According to Theorem 4.2, there are two different scenarios for the locally D-optimal

design ξ∗. Either the supporting set X ∗ consists of two separate intervals (−∞, a1] and

[a2, a3] (scenario (i)) or these intervals will be merged into a single one (scenario (ii)).

Remark 4.3. The optimal subsampling design ξ∗ is unique because of the strict concavity of

the D-criterion and the shape of the sensitivity function.

For the construction of a locally D-optimal subsampling design by Theorem 4.2, first

the conditions of scenario (ii) for an optimal design supported on a single interval can

be checked. If scenario (ii) does not apply, the boundary points a1 < a2 < a3 for the

support X ∗ have to be calculated by solving the system of (nonlinear) equations (4.2a)

and (4.2b). In the latter case, the rightmost boundary point a3 of X ∗ may lie outside

the support of Xi, i. e. a3 > xmax, when the support of the covariate Xi is bounded from

above, i. e. xmax = ess sup(Xi) <∞, where ess sup denotes the essential supremum (see, e. g.,

Example 4.9 for the uniform distribution below). Then, in scenario (ii), explicit calculation

of the rightmost boundary point c is not necessary. Instead, it is sufficient for (4.2b) to

verify that ψ(xmax, ξ
∗, β1) ≥ ψ(a1, ξ

∗, β1) = ψ(a2, ξ
∗, β1).
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Remark 4.4. The leftmost boundary point a1 of a D-optimal subsampling design ξ∗ cannot

lie outside the range of Xi, i. e. a1 > xmin, where xmin = ess inf(Xi) the essential infimum of

the distribution of Xi.

Remark 4.5. When β1 = 0, the information matrix M(ξ,β) is, up to the multiplicative

constant exp(β0), equal to the information matrix M(ξ) =
∫
f(x)f(x)⊤ξ(dx) in the linear

model (treated in Reuter and Schwabe, 2023a). Therefore, the D-optimal subsampling

design for ordinary linear regression is also locally D-optimal in the Poisson regression model.

Hence, according to (Reuter and Schwabe, 2023a, Section 4), the subsampling design ξ∗ is

locally D-optimal for β1 = 0 if and only if there exist a1 < a2 such that

fξ∗(x) = fX(x)1(−∞,a1]∪[a2,∞)(x),

FX(a2) − FX(a1) = 1 − α, and

ψ(a1, ξ
∗, β1) = ψ(a2, ξ

∗, β1).

By means of equivariance considerations, we may transfer a locallyD-optimal subsampling

design ξ∗ for a covariate Xi to a location-scale transformed covariate Zi = aXi + b,

a ̸= 0. However, the transformation of a locally D-optimal subsampling design is not

as straightforward as in polynomial regression (see Reuter and Schwabe, 2023a), but requires

a simultaneous transformation of the slope parameter β1. This kind of simultaneous

transformation typically has to be used in generalized linear models where the elemental

information depends on β1 by the linear component f(x)⊤β1, see e. g. Radloff and Schwabe

(2016).

Theorem 4.6. Let ξ∗ be a locally D-optimal subsampling design at β1 for a covariate Xi

with density fX . Then, for a covariate Zi with density fZ(z) = 1
|a|fX( z−b

a ), the design ζ∗

with density fζ∗(z) = 1
|a|fξ∗( z−b

a ) is locally D-optimal at the transformed parameter β1/a.

For a = −1, Theorem 4.6 covers sign change. Then we can transfer the characterization

of a locally D-optimal subsampling design in the equivalence theorem (Theorem 4.2) to

positive values for the slope β1.

Corollary 4.7. Let β1 > 0. Then the subsampling design ξ∗ is locally D-optimal at β if

and only if fξ∗ = fX1X ∗ and either

(i) there exist a1 < a2 < a3 such that

X ∗ = [a1, a2] ∪ [a3,∞),

FX(a1) + FX(a3) − FX(a2) = 1 − α, and

ψ(a1, ξ
∗, β1) = ψ(a2, ξ

∗, β1) = ψ(a3, ξ
∗, β1),

or
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(ii) X ∗ = [q1−α,∞),

ψ(x, ξ∗, β1) < ψ(q1−α, ξ
∗, β1) for x < qα, and ψ(x, ξ∗, β1) > ψ(qα, ξ

∗, β1) for x > qα.

To illustrate how the equivalence theorem (Theorem 4.2) can be used to construct locally

D-optimal subsampling designs, we consider β1 < 0 in the situation of an exponentially and

of a uniformly distributed covariate in the following two examples.

Example 4.8 (exponential distribution). We assume the covariateXi to follow an exponential

distribution with rate λ, i. e. Xi has density fX(x) = λ exp(−λx) for x ≥ 0. The condition

of finite moments mk(ξ, β1) is satisfied for β1 < λ and hence, in particular, for β1 ≤ 0. For

β1 < 0, let

g0(t) =
λ

λ− β1
exp(−(λ−β1)t), g1(t) =

(
t+

1

λ− β1

)
g0(t) and g2(t) = t2g0(t)+

2

λ− β1
g1(t)

such that gk(t) =
∫∞
t xk exp(β1x)fX(x) dx, t ≥ 0. Then, in scenario (i), the entries in

M(ξ∗,β) are

mk(ξ∗, β1) = gk(0) − gk(a1) + gk(a2) − gk(a3) , k = 0, 1, 2,

while they reduce to mk(ξ∗, β1) = gk(0) − gk(qα) in scenario (ii) when there is only one

interval, where qα = − log(1 − α)/λ.

In scenario (i), we obtain numerical results for the boundary points a1 to a3 solving

the system of equations (4.2a) and (4.2b) using the Newton method implemented in the

R package nleqslv by Hasselman (2018). Note that here a3 < xmax = ∞. For the case of a

standard exponential distribution (λ = 1), results are given in Table 4.1 for selected values

of β1 and α. In addition, we give the values for the amount FX(a1) as well as the percentage

of mass the design ξ∗ places on the left interval [0, a1]. We also add the result for β1 = 0 for

reference (see Reuter and Schwabe, 2023a).

For other values of the rate λ, results can be derived from the case of a standard

exponentially distributed covariate via equivariance (Theorem 4.6) by letting a = 1/λ and

b = 0: If we seek a locally D-optimal subsampling design at β1 < 0 when the rate is λ, we can

first construct a locally D-optimal design at β1/λ for a standard exponentially distributed

covariate and then divide the obtained boundary points by λ. For example, when λ = 2,

β1 = −1 and the subsampling proportion is α = 0.10, we get the boundary points 0.05181/2,

2.92225/2, and 5.44835/2 from the second line highlighted in the second block of Table 4.1

such that the locally D-optimal subsampling design wanted is supported on the two intervals

[0, 0.0259] and [1.4611, 2.7242].
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Table 4.1: Numerical values for the boundary points a1, a2, a3, and qα, respectively, for
selected values of the subsampling proportion α and slope parameter β1 in the case of a
standard exponentially distributed covariate (λ = 1)

α β1 a1 a2 a3, qα FX(a1) % of mass on [0, a1]

0.01

0.0 0.00579 5.46588 - 0.00577 57.71
-0.5 0.00501 3.86767 4.14130 0.00500 49.95
-1.0 0.00500 1.98399 2.02112 0.00499 49.88
-4.0 0.00496 0.49830 0.50665 0.00495 49.51

0.10

0.0 0.06343 3.25596 - 0.06146 61.46
-0.5 0.05181 2.92225 5.44835 0.05049 50.49
-1.0 0.05011 1.83717 2.22435 0.04887 48.87
-4.0 0.04680 0.47740 0.56896 0.04572 45.72

0.30

0.0 0.21398 2.23153 - 0.19264 64.21
-0.5 0.17225 1.95006 7.60885 0.15823 52.74
-1.0 0.15317 1.50902 2.76234 0.14202 47.34
-4.0 0.12876 0.40855 0.72273 0.12081 40.27

0.75

0.0 0.67278 1.34596 - 0.48971 65.29
-0.5 0.52804 1.07947 10.89214 0.41024 54.70
-1.0 0.43176 0.88401 4.28609 0.35063 46.75
-4.0 - - 1.38629 - -

When the subsampling proportion α goes to zero, the locally D-optimal subsampling

design apparently tends to its counterpart in classical optimal design theory which assigns

equal weight 1/2 to two support points x∗1 = 0 and x∗2 = −2/β1 (see e. g. Rodŕıguez-

Torreblanca and Rodŕıguez-Dı́az, 2007). In particular, we observe a2 < x∗2 < a3 for all

numerically obtained values of a2 and a3.

On the contrary, we find that scenario (ii) appears for large values of α. This happens

when the slope β1 is strongly negative. More precisely, given α, there is a crossover point

β∗1 such that the single interval design with density fξ∗ = fX1[0,qα] is locally D-optimal at

β1 for all β1 ≥ β∗1 This crossover point becomes stronger negative when α gets smaller and

apparently tends to −∞ as α → 0. On the other hand, when α gets larger, the crossover

point apparently tends to zero. In Table 4.2, we give numerical results for the crossover

point β∗1/λ for selected values of α together with the quantile qα, the setting x∗2 of the locally

D-optimal unbounded design and their ratio. This shows that, for scenario (ii) to apply,

the quantile qα has to be substantially larger than x∗2. Vice versa, for given slope β1 < 0,

77



there is a critical subsampling proportion α∗ such that the single interval design is locally

D-optimal for larger subsampling proportions α ≥ α∗. In particular, when β1 = 0, only

scenario (i) applies (see Reuter and Schwabe, 2023a) and, hence, α∗ = 1.

We further notice that the percentage of mass on the left interval [0, a1] is generally

larger than 50% for β1 closer to zero which coincides with what we have seen in Reuter

and Schwabe (2023a) for the case β1 = 0. There, observations from the right tail are

more informative and thus more observations are needed on the left tail. Conversely, the

percentage of mass on [0, a1] is smaller than 50% for strongly negative β1. Figure 4.1 depicts

the locally D-optimal subsampling designs for α = 0.75, 0.3 and β1 = −1 along with the

corresponding sensitivity functions. The horizontal dotted line represents the threshold s∗

from Theorem 4.11. The vertical dotted lines depict the boundary points. While smaller

subsampling proportions α ≤ 0.1 are typically of interest in the context of subsampling,

our selection of larger subsampling proportions α has been made for the sake of clarity and

visibility in the tables and figures.
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(a) β1 = −4, α = 0.75

0.0

0.5

1.0

0 1 2 3 4
x

de
ns

ity

1.5

s*
2.0

2.5

0 1 2 3 4
x

se
ns

iti
vi

ty
 fu

nc
tio

n

(b) β1 = −1, α = 0.3

Figure 4.1: Density of the locally optimal design (solid) at β1 and the standard exponential
distribution (dashed, upper panels), and corresponding sensitivity functions (lower panels)
for β1 = −4, α = 0.75 (left) and β1 = −1, α = 0.3 (right)

Example 4.9 (uniform distribution). We assume the covariate to be uniform random on an

interval [xmin, xmax] with density fX(x) = 1
xmax−xmin

1[xmin,xmax](x). The condition of finite

moments mk(ξ, β1) is satisfied for all β1.

For β1 < 0, let

g0(t) =
exp(β1t)

|β1|(xmax − xmin)
, g1(t) =

(
t+

1

|β1|

)
g0(t) and g2(t) = t2g0(t) +

2

|β1|
g1(t) .
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Table 4.2: Numerical values for the standardized crossover point β∗1/λ for an exponentially
distributed covariate

α β∗1/λ λqα λx∗2 qα/x
∗
2

0.01 -360.34840 0.01005 0.00556 1.81081
0.10 -34.60684 0.10536 0.05779 1.82310
0.30 -10.41165 0.35667 0.19209 1.85679
0.50 -5.49454 0.69314 0.36400 1.90426
0.75 -2.89534 1.38629 0.69077 2.00690
0.90 -1.86128 2.30259 1.07453 2.14288

In scenario (i), unlike in Example 4.8, the support of the covariate is bounded from above

and thus the rightmost boundary point a3 may be larger than xmax. We denote the essential

supremum of ξ∗ by ã3 = min(a3, xmax). Then, in scenario (i), the entries in M(ξ∗,β) are

mk(ξ∗, β1) = gk(xmin) − gk(a1) + gk(a2) − gk(ã3) , k = 0, 1, 2,

while in scenario (ii), when there is only one interval, they reduce to mk(ξ∗, β1) = gk(xmin)−
gk(qα) where qα = (1 − α)xmin + αxmax.

For the case of a uniform distribution on the unit interval (xmin = 0 and xmax = 1),

optimal boundary points are given in Table 4.3 for selected values of α and β1 < 0. In

addition, we give the values for the amount FX(a1) as well as the percentage of mass the

design ξ∗ places on the left interval [0, a1]. We also add formally the result for β1 = 0 for

reference (see Reuter and Schwabe, 2023a).

Apart from the situation that a3 > xmax indicated by a hyphen (−) in the table when

α = 0.5 and β1 = −2, the results are similar to those in Example 4.8: More weight is given

to the left interval [0, a] when β1 is closer to zero. When the subsampling proportion α

becomes small, the locally D-optimal subsampling design approaches the locally D-optimal

unbounded design equally supported on x∗1 = 0 and x∗2 = −2/β1. For large values of α,

the two intervals are merged into one (e. g. for α = 0.50 and β1 = −8). Figure 4.2 depicts

the locally D-optimal subsampling designs along the corresponding sensitivity functions in

scenario (ii) of a single supporting interval for ξ∗ in the left panel. The right panel exhibits

scenario (i) of ξ∗ supported on two proper intervals. The horizontal dotted line depicts the

threshold s∗. The vertical dotted lines represent the boundary points a1, a2, and a3. The

situation when a3 > xmax is displayed in Figure 4.3.

Because of the symmetry of the uniform distribution, locally D-optimal subsampling
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Table 4.3: Numerical values for the boundary points a1, a2, a3 and qα, respectively, for
selected values of the subsampling proportion α and slope parameter β1 in the case of a
uniformly distributed covariate on [0, 1]

α β1 a1 a2 a3, qα FX(a1) % of mass on [0, a1]

0.01

0 0.00500 0.99500 - 0.00500 50.00
-2 0.00498 0.99498 - 0.00498 49.75
-4 0.00495 0.49994 0.50499 0.00495 49.51
-8 0.00490 0.24989 0.25498 0.00490 49.04

0.10

0 0.05000 0.9500 - 0.05000 50.00
-2 0.04772 0.94772 - 0.04772 47.72
-4 0.04578 0.49506 0.54928 0.04578 45.78
-8 0.04269 0.24155 0.29887 0.04269 42.69

0.30

0 0.15000 0.8500 - 0.15000 50.00
-2 0.13271 0.83271 - 0.13271 44.24
-4 0.12102 0.46678 0.64577 0.12102 40.34
-8 0.10847 0.20165 0.39318 0.10847 36.16

0.50

0 0.25000 0.7500 - 0.25000 50.00
-2 0.20993 0.70993 - 0.20993 41.99
-4 0.18578 0.42624 0.74046 0.18578 37.16
-8 - - 0.50000 - -

designs can be derived for positive values of the slope β1 via equivariance with respect to

sign change by letting a = −1 and b = 1 in Theorem 4.6. For example, when β1 = 4 and

α = 0.10, the optimal boundary points can be obtained from the third line highlighted in the

second block of Table 4.3 as 1 − 0.04578, 1 − 0.49506, and 1 − 0.54928 such that the locally

D-optimal subsampling design is then supported on the two intervals [0.45072, 0.50494] and

[0.95422, 1].

Further, for other ranges [xmin, xmax] of the uniform covariate, optimal subsampling

designs can be obtained by equivariance (Theorem 4.6) as well by letting a = xmax − xmin

and b = xmin.

4.4 Efficiency

We want to study the performance of random subsampling as well as some heuristic

subsampling designs in the style of IBOSS (see Wang et al., 2019) to quantify the gain in

using a locally D-optimal subsampling design. Besides, we are interested in the quality of
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(a) β1 = −8, α = 0.5
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(b) β1 = −4, α = 0.1

Figure 4.2: Density of the locally optimal design (solid) at β1 for a uniformly distributed
covariate on [0, 1] (dashed, upper panels), and sensitivity functions (lower panels) for β1 = −8,
α = 0.5 (left) and β1 = −4, α = 0.1 (right)

the heuristic designs and how they compare to random subsampling. Further, we want to

investigate the performance of designs when the parameter is misspecified. Specifically, a

subsampling design ξ∗(β′) = arg max det(M(ξ,β′)) that is locally D-optimal at β′ is studied

when the true parameter is β. The performance of a design ξ may be compared to the locally

D-optimal subsampling design ξ∗(β) using D-efficiency. The D-efficiency of a subsampling

design ξ with mass α is defined as

effD,α(ξ,β) =

(
det(M(ξ,β))

det(M(ξ∗(β),β))

)1/2

.

For this definition the homogeneous version (det(M(ξ,β)))1/2 of the D-criterion is used

which satisfies the homogeneity condition (det(νM))1/2 = ν(det(M))1/2 for all ν > 0 (see

Pukelsheim, 1993, Chapter 6.2). Note that by Remark 4.1, the efficiency effD,α(ξ,β) does

not depend on β0.

As uniform random subsampling we define the design ξα of size α, which has density

fξα(x) = αfX(x). The information matrix of ξα is given by M(ξα,β) = αM(ξ1,β). Here, ξ1

represents the full sample with information matrix

M(ξ1,β) =

∫
exp(β0 + β1x)f(x)f(x)⊤fX(x) dx.

Thus, the D-efficiency effD,α(ξα,β) of uniform random subsampling can be nicely interpreted

as noted in Reuter and Schwabe (2023a): for a fixed full sample size n, the required subsample
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Figure 4.3: Density of the locally optimal design (solid) at β1 for a uniformly distributed
covariate on [0, 1] (dashed, upper panel), and sensitivity functions (lower panel) for β1 = −2,
α = 0.3

size (mass) α̃ needed to achieve the same precision (measured by the D-criterion), compared

to utilizing a locally D-optimal subsampling design ξ∗ with mass α, is given by the inverse of

the efficiency, effD,α(ξα,β)−1, multiplied by α, i. e. α̃ = α/ effD,α(ξα,β). For instance, if the

efficiency effD,α(ξα,β) equals 0.5, then twice the number of observations would be needed

under uniform random sampling compared to a locally D-optimal subsampling design of

mass α. Naturally, the full sample has higher information than any proper subsample such

that, for uniform random subsampling, effD,α(ξα,β) ≥ α holds for all α.

Further, we analyze the efficiency of two heuristic designs. Again we only consider the

case β1 < 1. Let the α-quantile of the covariate Xi be denoted by qα. First, we consider the

one-sided design ξos with density fξos(x) = fX(x)1(−∞,qα](x) that assigns all of its mass on

the left tail of the distribution of the covariate motivated by its optimality for large α. Second,

we study the two-sided design ξts with density fξts(x) = fX(x)1(−∞,qα/2]∪[q1−α/2,∞)(x) that

allocates equal mass α/2 on both tails of the distribution in the style of the IBOSS method

(see Wang et al., 2019).

Example 4.10 (exponential distribution). As in Example 4.8, we assume that the covariate

Xi is exponentially distributed with rate λ.

Because uniform random subsampling ξα as well as the one- and two-sided designs ξos

and ξts are equivariant under location-scale transformations, their efficiency depends only

on the slope and the rate by the ratio β1/λ. In Figure 4.4, we depict the efficiency of

these designs for β1/λ = −1 and −4 in dependence on the subsampling proportion α. The

efficiency of uniform random subsampling is quite low for reasonable proportions α ≤ 0.1

and, hence, the gain in using the D-optimal subsampling design is substantial. Similarly, the

82



efficiency of the one- and the two-sided design is small for α ≤ 0.1 and apparently tends to

zero for α→ 0 which may be explained by the fact that these designs miss observations close

to the location x∗2 of the locally D-optimal unbounded design. This feature does not apply

to uniform random subsampling such that, for very small subsampling proportions, both the

one- and the two-sided design is severely less efficient than uniform random subsampling.

As is to be expected, the two-sided IBOSS-like design ξts performs much better for β1

near zero. In particular, for β1 = 0, the two-sided design ξts only differs slightly from the

locally D-optimal subsampling design is ξ∗ and has a high efficiency throughout (see Reuter

and Schwabe, 2023a). Conversely, the one-sided design ξos performs better for strongly

negative β1. The vertical dotted line in Figure 4.4 displays the crossover point α∗. For all

α > α∗, the one-sided design is the D-optimal subsampling design.

We observe similar behavior in Figure 4.5. Predictably, the one-sided design performs

better for strongly negative β1 and the two-sided design is better for β1 closer to zero. Notably,

the two-sided design exhibits a nonmonotonic behavior: It performs worst for β1/λ ≈ −3.64

(effD,α(ξts,β) = 0.07974506) and attains a local maximum at β1/λ ≈ −0.40 (effD,α(ξts,β) =

0.9988009). Further, we again see that uniform subsampling generally performs better for

β1 closer to zero, though it performs best for β1/λ ≈ −1.05 (effD,α(ξts,β) = 0.6978610).

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 α*
α

ef
fic

ie
nc

y

(a) β1/λ = −1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 α* 0.75 1.00
α

ef
fic

ie
nc

y

(b) β1/λ = −4.

Figure 4.4: D-efficiency of uniform random subsampling (solid), one-sided (dashed), and
two-sided (dot-dashed) subsampling design in dependence on the subsampling proportion α
for slope-rate ratio β1/λ = −1 (left) and −4 (right) for an exponentially distributed covariate

For strongly negative β1, the behavior of the efficiency of the three designs in Figure 4.5

gives additional insight. As β1 → −∞, the efficiency of uniform random subsampling

converges to its lower bound α whereas the efficiency of both one- and two-sided design

converge to one. Most of the information is concentrated on the covariate values close to
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Figure 4.5: D-efficiency of uniform random subsampling (solid), one-sided (dashed), and
two-sided (dot-dashed) subsampling design in dependence on the slope-rate ratio β1/λ for
subsampling proportion α = 0.1 and an exponentially distributed covariate

zero. Thus, for strongly negative β1 the two heuristic designs as well as the D-optimal

subsampling design have almost all the information of the full sample. This limiting behavior

is not presented in Figure 4.5 in order to preserve intelligibility for β1 closer to zero.

Finally, we consider the efficiency of locally D-optimal subsampling designs ξ∗(β′), when

the nominal value β′1 is misspecified and differs from the true slope β1. The left panel of

Figure 4.6 illustrates the efficiency of ξ∗(β′) in dependence on the subsampling proportion

α for selected values of the true ratio β1/λ, when the nominal value is β′1/λ = −1. For

all values we find that the efficiency of the design ξ∗(β′) under misspecification declines

with decreasing α. When the deviation of the parameter is rather small, β1/λ = −0.8 and

β1/λ = −1.2, the designs under misspecification are still very efficient, with efficiency above

0.98 for α = 0.01. For larger deviations however, the efficiency can drop drastically. In

particular, when β1/λ is closer to 0, the efficiency is more strongly negatively affected than

when the deviation of β1/λ is away from zero. In the right panel of Figure 4.6, we exhibit

the efficiency for various values of the nominal slope-rate ratio in dependence on the true

value when the subsampling proportion is α = 0.1. The nominal values are indicated by

vertical dotted lines.

It can be seen that the efficiency decreases faster for β1/λ towards zero than for stronger

negative values. In particular, the efficiency increases again when β1/λ goes to −∞.

4.5 Concluding Remarks

Our investigation centers on a theoretical approach to evaluate subsampling designs under

distributional assumptions on the covariate in the case of Poisson regression on a single
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(a) True parameter β1/λ = −0.5 (dashed),
−0.8 (solid), −1.2 (dot-dashed), and −1.5 (long
dashed)
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(b) Locally D-optimal subsampling designs for
β′
1/λ = −1 (dashed), −2 (solid), and −4 (dot-

dashed)

Figure 4.6: Efficiency of the locally D-optimal subsampling design for β′1/λ = −1 and various
true slope-rate ratios β1/λ in dependence on α (left) and for α = 0.1 and various values of
the nominal slope-rate ratio β′1/λ in dependence on the true slope-rate ratio β1/λ (right) for
an exponentially distributed covariate

covariate. We adjust a standard equivalence theorem to Poisson regression, given a general

distribution of the covariate and negative slope parameter β1. This equivalence theorem

also characterizes the support of the locally D-optimal subsampling design and allows us to

derive such designs for a given covariate and slope parameter. Then, we establish a theorem

to identify locally D-optimal subsampling designs under a scale-location transformation of

the covariate and simultaneous rescaling of the slope parameter. We make use of this to

give a corollary to the equivalence theorem for β1 > 0. It is worthwhile noting that many

of the results can be extended from D-optimality to other criteria within Kiefer’s class of

Φp-optimality criteria, including, in particular, linear criteria. The derivation relies mostly

on the fact that the sensitivity function can be factorized into the exponential function and

a quadratic polynomial, rather than its specific form. Our efficiency analysis shows, among

other things, that heuristic one- or two-sided designs can be highly efficient under certain

circumstances, however, they display substantial loss in efficiency for the most relevant small

subsampling proportions. Addressing uncertainty about the parameter β1 and the covariate

distribution may involve an initial random subsampling step, before deploying the locally

D-optimal subsampling design. Lastly, note that the results presented here may be extended

to polynomial Poisson regression, where the linear predictor is a polynomial of degree q in

the covariate Xi. Then, the equation ψ(x, ξ,β) = s has at most 2q + 1 solutions and the

support of ξ∗ is the union of at most q + 1 intervals.
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4.A Proofs

Before we establish the equivalence theorem (Theorem 4.2), we introduce some technical

tools: The directional derivative of the D-criterion at design ξ in the direction of a design

η is Ψ(ξ, η,β) = trace(M(ξ,β)−1M(η,β)) − 2. Here, η may be any design of total mass α

which is not necessarily required to have a density bounded by fX . The sensitivity function

ψ(x, ξ,β) = trace(M(ξ,β)−1M(ξx,β)) is the essential part of the directional derivative at ξ

in the direction of a single point design ξx with all mass α at point x. Then

ψ(x, ξ,β) = α exp(β0 + β1x)f(x)⊤M(ξ,β)−1f(x)

=
α

d(ξ, β1)
exp(β1x)(m0(ξ, β1)x

2 − 2m1(ξ, β1)x+m2(ξ, β1))

does not depend on β0 and will be denoted by ψ(x, ξ, β1), for short. Note that, for any

continuous subsampling design ξ, the information matrix M(ξ,β) is positive definite and,

hence, ψ(x, ξ, β1) is well-defined.

For convenience, we reproduce an equivalence theorem for subsampling designs in a

general model context which follows from Corollary 1(c) in Sahm and Schwabe (2001).

Theorem 4.11. Let condition

(A) P(ψ(Xi, ξ, β1) = s) = 0 for any ξ and s

be satisfied. Then the subsampling design ξ∗ is locally D-optimal at β if and only if there

exist a set X ∗ and a threshold s∗ such that

(i) ξ∗ has density fξ∗(x) = fX(x)1X ∗(x)

(ii) ψ(x, ξ∗, β1) ≥ s∗ for x ∈ X ∗, and

(iii) ψ(x, ξ∗, β1) < s∗ for x ̸∈ X ∗.

Next we establish that condition (A) holds for the Poisson regression model.

Lemma 4.12. Given ξ and s, the equation ψ(x, ξ, β1) = s has, at most, three different

solutions in x.

Proof. For β1 = 0, the sensitivity function is a quadratic polynomial in x. Hence, there are,

at most, two solutions.

For β1 ̸= 0, the sensitivity function ψ(x, ξ,β) = exp(β1x)q(x) factorizes into the

exponential function (exp(β1x)) and a quadratic polynomial q with positive leading term.

Because ψ(x, ξ, β1) is positive, only s > 0 has to be considered. Let v(x) = q(x)−s exp(−β1x).
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The third derivative v(3)(x) = sβ31 exp(−β1x) has no roots. By iterative application of the

mean value theorem, we see that v has, at most, three roots. Because the solutions of

ψ(x, ξ, β1) = s are the roots of v, this completes the proof.

Condition (A) follows from the continuous distribution of the covariate Xi.

Proof of Theorem 4.2. If ξ∗ is locally D-optimal, then, by Theorem 4.11, its density has

the shape fξ = fX1X and X ∗ = {x; ψ(x, ξ∗, β1) ≥ s∗} for some s∗ > 0. Because β1 < 0,

the sensitivity function ψ(x, ξ∗, β1) ranges from ∞ for x → −∞ to 0 for x → ∞ with

ψ(x, ξ∗, β1) > 0 throughout. Thus, the number of sign changes in ψ(x, ξ∗, β1) − s∗ is odd

and, by Lemma 4.12, equal to one or three. Hence, X ∗ consists of one or two intervals

including a left open interval (−∞, a1], say, and potentially a second finite interval [a2, a3].

Conditions (4.2a) and (4.2a’), respectively, follow from the subsampling percentage α. If

there are two intervals, then ψ(ak, ξ
∗, β1) = s∗, k = 1, 2, 3, by continuity of the sensitivity

function and we get condition (4.2b) in scenario (i). If there is only one interval, then

condition (4.2b’) follows from (ii) and (iii) in Theorem 4.11 which completes the proof that

the locally D-optimal subsampling design satisfies the properties stated in Theorem 4.2.

Conversely, by the shape of the sensitivity function, the properties stated in Theorem 4.2

imply the equivalence conditions in Theorem 4.11 which proves the reverse statement.

Proof of Remark 4.4. Assume a1 ≤ xmin. Then

m1(ξ
∗, β1) =

∫ a3

a2

x exp(β1x)fX(x) dx > a2

∫ a3

a2

exp(β1x)fX(x) dx = a2m0(ξ
∗, β1)

and q attains its minimum at m1(ξ
∗, β1)/m0(ξ

∗, β1) > a2. Hence, the sensitivity function

ψ(x, ξ∗, β1) = exp(β1x)q(x) is strictly decreasing on (−∞, a2] such that ψ(a1, ξ
∗, β1) >

ψ(a2, ξ
∗, β1) which leads to a contradiction to the optimality condition (4.2b).

Proof of Theorem 4.6. The proof goes along the same lines as in Radloff and Schwabe (2016).

Denote by g the location-scale transformation g(x) = ax+ b. Let Zi = g(Xi). Note that only

the distribution of the covariate plays a role, but not the covariate itself. The transformation

g is conformable with the regression function f(x), i. e. there exists a nonsingular matrix

Q =

(
1 0

b a

)
such that f(ax + b) = Qf(x) for all x. For a design ξ bounded by fX , we

define the transformed design ζ = ξg which has density fζ(z) = 1
|a|fξ(

z−b
a ) and is bounded

by the density fZ(z) = 1
|a|fX( z−b

a ) of Zi. Further, let β̃ = (Q⊤)−1β = (β0 − β1b/a, β1/a)⊤.
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By the transformation theorem for measure integrals,

M(ζ, β̃) =

∫
exp(β0 + β1(z − b)/a)f(z)f(z)⊤ζ(dz)

=

∫
exp(β0 + β1x)Qf(x)f(x)⊤Q⊤ξ(dx)

= QM(ξ,β)Q⊤.

Therefore det(M(ζ, β̃)) = det(Q)2 det(M(ξ,β)). Thus ξ∗ maximizes the D-criterion over the

set of subsampling designs bounded by fX for β1 if and only if ζ∗ maximizes the D-criterion

over the set of subsampling designs bounded by fZ for β1/a.
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List of Symbols

1m m× 1 vector with all entries equal to one

1A(·) indicator function of a subset A

d dimension of the covariate

det(·) determinant of a matrix

diag(·) diagonal matrix

effΦ(ξ,β) Φ-efficiency of a (subsampling) design ξ for parameter β

f(·) regression function

fX(·) density of a random covariate Xi

fξ(·) density of a subsampling design ξ

FΦ(ξ, η,β) directional derivative of Φ at (subsampling) design ξ in the direction

of (subsampling) design η for parameter β

Im m×m identity matrix

k size of the subsample

M(ξ,β) information matrix of a (subsampling) design ξ for parameter β

n size of the full sample

NND(p) closed cone of nonnegative definite p× p matrices

p dimension of β

SO(d) special orthogonal group acting on Rd

trace(·) trace of a matrix

Xi random covariate

X design region

X ∗ support of the (locally) Φ-optimal (subsampling) design

Yi response variable

α subsampling proportion

β vector of unknown parameters

β1 vector of unknown parameters without intercept

µX mean vector of a random covariate Xi
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ξ (subsampling) design

ξx one-point design at x

ξ∗ (locally) Φ-optimal (subsampling) design

ξ symmetrized subsampling design

ΞfX set of subsampling designs bounded by fX

σ2ε variance of the random errors εi

ΣX covariance matrix of a random covariate Xi

ψ(x, ξ,β) sensitivity function at point x for a (subsampling) design ξ and parameter β
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