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Abstract

This cumulative habilitation treatise is a moderated collection of previously published scientific work

in the domain of media forensics. The newly written chapters 1 to 4 provide a framework to project

the content of the individual original papers onto the common perspective of this habilitation project.

Media forensics is a young sub-discipline of digital forensics and focuses on the examination of me-

dia and multimedia objects in different contexts, ranging from general digital evidence to analyses of

specific media types (e.g., video or image) to specific semantic analyses, such as facial identification

or speaker recognition. Since this field is so wide, and media forensics in general is still considered by

many as rather immature, there is a need to expand domain-specific forensic process models. The

intention behind this modelling work is to create and maintain the trustworthy and validated foren-

sic procedures required in up-to-date investigations that face various technical challenges in terms of

significantly growing amounts of devices and data to be analysed, new file types and data formats,

and an ever increasing number of potential data sources. In addition to these technical challenges,

the forensic practitioners also face organisational issues that influence the evolution of forensic process

models. Such issues include, among other things, new requirements for the reproducibility, auditability

and contestability of forensic results that have been obtained using any form of investigation method

based on machine learning.

In this treatise, twelve previously published papers on media forensics methods are aggregated into a

wider perspective on the creation and expansion of domain-specific forensic process models. With face

morphing attack detection, DeepFake detection and forensic steganalysis, these papers cover three

application domains in media forensics selected as illustrative examples. For these application

domains, the previously published work used in this treatise is re-iterated and put into perspective using

five requirements that focus on the following considerations:

• Describing necessary conditions for using a media forensics method

• Standards for the evaluation of new methods

• Standardisation of investigation processes

• Causes and standards for the re-evaluation of methods

• Publication of methods and processes

The results presented and discussed on the basis of these requirements provide a common perspec-

tive on the conceptual and operational modelling work of the author and his co-authors in the three

application domains mentioned above. This modelling work is based on established best practices (in

the case of this treatise, the code of practice for IT forensics provided by the German Federal Office for

Information Security (BSI) as well as selected European Network of Forensic Science Institutes (ENFSI)

Best Practice Manuals) and expands these at various points by adding important aspects, such as a

domain-adapted data model for media forensics as well as a proposal for the fine-grained operational

modelling of media forensics (sub-)processes.

The descriptive summary of the modelling aspects is then followed by a structured set of conclusions and

considerations on potential future work. The latter address aspects of future research and development

as well as recommendations for improved operations.

In order to manage expectations, it must be clearly stated here that this work does not pretend to

present a complete overview of the current state of the art in IT forensics, its sub-discipline of media

forensics or the selected application domains of face morphing attack detection, DeepFake detection

and forensic steganalysis. This treatise does not provide a guideline for the development of media foren-

sics methods from academic research into industry-strength forensic tools. Furthermore, an academic

publication such as this habilitation treatise cannot propose guidelines or even standard operational

procedures for a forensics sub-domain. This is not the author’s intention and would require standards

published by the corresponding authority, e.g. the German BSI. What a publication like this treatise

might achieve is to provide stakeholders like ENFSI (representing forensic practitioners) or policy makers

in executive systems with arguments and recommendations for updating established best practices or

policy documents.
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Deutschsprachige Version des Abstracts

Diese kumulative Habilitationsschrift ist eine moderierte Sammlung von bereits veröffentlichten wis-

senschaftlichen Arbeiten im Kontext der Medienforensik. Die neu verfassten Kapitel 1 bis 4 bieten einen

Rahmen, um die Inhalte der einzelnen Originalarbeiten auf die gemeinsame Perspektive dieses Habili-

tationsprojekts zu projizieren.

Die Medienforensik ist eine relativ junge Teildisziplin der digitalen Forensik und befasst sich mit der

Untersuchung von Medien- und Multimediaobjekten in verschiedenen Zusammenhängen, die von allge-

meinen digitalen Beweisen über Analysen spezifischer Medientypen (z. B. Video oder Bild) bis hin zu

spezifischen semantischen Analysen wie Gesichtserkennung oder Sprechererkennung reichen. Da dieser

Bereich so breit gefächert ist und die Medienforensik als Wissenschaftsdisziplin im Allgemeinen von

vielen noch als recht unausgereift angesehen wird, besteht die Notwendigkeit, domänenspezifische

forensische Prozessmodelle zu erarbeiten. Die Absicht hinter diesen Modellierungsarbeiten ist es,

die vertrauenswürdigen und validierten forensischen Verfahren zu schaffen und zu erhalten, die in fo-

rensischen Untersuchungen benötigt werden. Diese müssen sich dabei verschiedenen technischen Her-

ausforderungen in Bezug auf die wachsenden Mengen an zu analysierenden Geräten und Daten, neue

Dateitypen und Datenformate und eine immer größer werdende Anzahl von potenziellen Datenquellen

stellen. Neben diesen technischen Herausforderungen sehen sich Forensiker auch mit organisatorischen

Fragen konfrontiert, welche die Entwicklung forensischer Prozessmodelle beeinflussen. Zu diesen Fragen

gehören unter anderem neue Anforderungen an die Reproduzierbarkeit, Überprüfbarkeit und Anfechtbar-

keit forensischer Ergebnisse, die mit einer auf maschinellem Lernen basierenden Untersuchungsmethode

erzielt wurden.

In dieser kumulativen Habilitationsschrift werden zwölf bereits veröffentlichte wissenschaftliche Arbeiten

zusammengeführt, um darauf aufbauend eine umfassendere Sichtweise auf die Erstellung bzw. Erwei-

terung von domänenspezifischen forensischen Prozessmodellen zu ermöglichen. Die wissenschaftlichen

Arbeiten behandeln mit der Erkennung von Face-Morphing-Angriffen, der DeepFake-Erkennung und

der forensischen Steganalyse drei ausgewählte Anwendungsbereiche der Medienforensik, die hier

der Veranschaulichung dienen sollen. Für diese Anwendungsbereiche werden ausgewählte Inhalte der

verwendeten Arbeiten auszugsweise zusammengefasst und anhand der folgenden fünf Anforderungen

neu in Zusammenhang gesetzt:

• Beschreibung notwendiger Bedingungen für die Anwendung einer medienforensischen Methode

• Standards für die Bewertung neuer Methoden

• Standardisierung von Untersuchungsprozessen

• Auslöser und Standards für die Neubewertung von Methoden

• Veröffentlichung von Methoden und Verfahren

Die auf Grundlage dieser Anforderungen zusammengefassten und diskutierten Ergebnisse bieten ei-

ne gemeinsame Perspektive auf die konzeptionellen und operativen Modellierungsarbeiten des Autors

und seiner Mitautoren in den drei oben genannten Anwendungsbereichen. Diese Modellierungsarbeiten

basieren auf etablierten Best Practices (im Falle dieser kumulativen Habilitationsschrift der ‘Leitfaden

IT-Forensik’ des Bundesamtes für Sicherheit in der Informationstechnik (BSI) sowie ausgewählte Best

Practice Manuals des European Network of Forensic Science Institutes (ENFSI)) und erweitern diese

an verschiedenen Stellen um wichtige Aspekte wie ein domänenangepasstes Datenmodell für die Me-

dienforensik sowie einen Vorschlag zur feingranularen operativen Modellierung von medienforensischen

(Teil-)Prozessen.

Auf die Zusammenfassung der Modellierungsaspekte folgt in der vorliegenden Arbeit eine strukturierte

Reihe von Schlussfolgerungen sowie Überlegungen zu möglichen künftigen Arbeiten. Letztere umfassen

potenzielle Aspekte für die künftige Forschung und Entwicklung sowie Empfehlungen für eine verbes-

serte Umsetzung im Rahmen der Entwicklung und der Ausführung von forensischen Prozessen.

Um die Erwartungen an die Inhalte dieser Arbeit zu steuern, muss an dieser Stelle erwähnt werden, dass

diese nicht den Anspruch erhebt, einen vollständigen Überblick über den aktuellen Stand der Technik in

der IT-Forensik, in der Teildisziplin der Medienforensik oder in den ausgewählten Anwendungsbereichen
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der Erkennung von Face-Morphing-Angriffen, der DeepFake-Erkennung und der forensischen Steganalyse

zu geben. Diese Habilitationsschrift bietet keinen Leitfaden für die komplette (Software-)Entwicklung

der Ergebnisse akademischer Forschung zu medienforensischen Methoden hin zu industrietauglichen

forensischen Werkzeugen. Auch kann eine akademische Publikation wie diese Habilitationsschrift kei-

ne Leitlinien oder gar verbindliche Standards für einen forensischen Teilbereich vorschlagen. Dies ist

nicht die Absicht des Autors und würde normative Verfahren erfordern, die von einer entsprechenden

Behörde, wie z. B. dem deutschen BSI, durchgeführt werden müssten. Eine Publikation wie diese Ha-

bilitationsschrift könnte höchstens Gremien wie dem ENFSI oder Entscheidungsträgern Argumente und

Empfehlungen für die Aktualisierung von Best Practices oder Vorgaben liefern.
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1
Introduction

This cumulative habilitation treatise1 aggregates research conducted on process modelling in media

forensics between 2013 and 2024. In Chapters 5 and following, the original papers (‘feeder paper(s)’2)

by the author used in this moderated collection are presented as they have originally been published

with co-authors. The only alterations made are the addition of continuous page numbering as well as

the insertion of copyright notices (where required).

Chapters 1 to 4 provide a framework to project the content of the individual original papers onto the

common perspective of this habilitation project.

1.1 Motivation

Digital forensics (DF) is the sub-discipline of the forensic3 sciences that focuses on the investigation of

digital assets. In contrast to many other sub-disciplines of forensics, like forensic pathology, it is rather

young, having gained relevance only with the growing use of information technology (IT) at the end

of the 20th century. A very illustrative statement on the increasing relevance of digital forensics (DF)

science and techniques is given in [Vaughan20]:

“digital forensics (DF) science - examining digital evidence to support investigations and

prosecutions - was once niche but is now very much mainstream. Over 90% of all crime is

recognised as having a digital element, and society’s accelerating use of technology means

the critical role DF science plays will only grow.”

In its ‘Digital Forensic Science Strategy’ [Vaughan20] of 2020, the National Police Chiefs’ Council

(NPCC) of the United Kingdom of Great Britain and Northern Ireland (UK) also emphasises why it so

important to invest into research and development activities in this field:

“Digital Forensic Science sits at the heart of delivering justice in the 21st century, spanning

the entire criminal justice system, from crime scene to courtroom. It shapes policy, offers

a range of capabilities that better enable us to counter new and emerging threats, and

is central to achieving our shared outcomes around reducing crime and increasing public

safety.”

Within digital forensics, the field of media forensics, which is the focus of this habilitation project, is

an even younger research domain and has to be clearly distinguished from other DF sub-categories like

computer forensics (a.k.a. IT forensics). In [Böhme09], the authors argue that the difference between

media and IT forensics lies in particular in “the reliability of the extracted probative facts: it is harder

to forge media data undetectably than to manipulate other digital evidence”.

1A cumulative habilitation treatise does not present research findings as a monograph, but in the form of a moderated
collection of previously published scientific work (usually journal, conference and workshop papers).

2Papers from the moderated collection of already published scientific work that constitute this cumulative habilitation
treatise are here referred to as feeder paper.

3The Merriam-Webster dictionary defines the adjective ‘forensic’ as “belonging to, used in, or suitable to courts of
judicature or to public discussion and debate”, and the noun ‘forensics’ as: “the application of scientific knowledge to
legal problems.” [Pollitt19] expands the latter definition by adding: “This includes investigative activities performed in
support of legal problems, as well as development of testimony for use in courts of law.”
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Chapter 1. Introduction

At the core of media forensics lies the examination of media and multimedia objects in different contexts,

ranging from general digital evidence to analyses of specific media types (e.g., video or image) to specific

semantic analyses, such as facial identification or speaker recognition. The document ‘A Framework

for Harmonizing Forensic Science Practices and Digital/Multimedia Evidence’ [Pollitt19], published by

the Organization of Scientific Area Committees for Forensic Science (OSAC) in 2019, summarises the

focus of media forensics as follows:

“In practice, digital/multimedia evidence serves investigative, procedural, and scientific

functions, and the outcomes of these multiple modalities are synthesized into expert opinions

and conclusions.”

The interesting part here is that the OSAC experts point out that such forensic science is “not limited

to legal problems in civil and criminal justice systems (courtroom contexts)” [Pollitt19]. This reflects

very well the fact that media forensics results are not only relevant in court cases but also in many

other contexts of public debate. An example for this would be a reliable media forensics ‘fake news’

detector which would not only help police investigators and prosecutors in their work but also every

media outlet or, in an even wider context, everyone relying on news feeds.

As a result of these discussions, three different application contexts are usually discussed for media

forensic methods: intended courtroom use, intelligence for police investigations and public use.

The first of these three is the typical forensics application context and also the most prominent one,

usually demanding the highest degree of maturity from methods and procedures. For this, one ENFSI

BPM [ENFSI15] summarises the requirements for the practitioner and the application of forensic tech-

niques as follows:

“Good practice requires an understanding of both the processes4 selected to perform a

forensic examination of digital technology, and an understanding of the expected knowledge

of the intended recipient of any report generated.”

The second application context, addressing especially the investigative activities of law enforcement

agencies (LEA), will also require a high degree of maturity, because the result might be used to scale

up an investigation, e.g., to obtain an additional warrant from a judge. The third application context

requires the lowest degree of maturity, but methods used in this category still need to be trusted by the

user, who might use them to confirm a suspicion (e.g., that an image was manipulated) and then use

this outcome to file a complaint with the police.

To achieve the necessary maturity for the first (and to some extent also the second) application context,

there is a strong need to standardise and formalise the forensic processes involved in all DF sub-disciplines

to enable them to withstand the scrutiny of the other stakeholders in legal proceedings, first and

foremost the judges (who have to act as ‘gatekeepers’ for their trials and decide upon the admissibility

or inadmissibility of evidence), but also the prosecutors and the defence counsel. Section 2.3.1 provides

a short overview of quality criteria and corresponding assurance methods. In summary, these state that

creating and maintaining trustworthy and validated forensic procedures requires (among other things)

detailed forensic process modelling and documenting. The need for process modelling increases even

further if more than one forensic laboratory is involved in an investigation and the results have to be

exchanged in a way that also enables reproducibility, auditability and contestability.

It is widely assumed that the necessary process models exist in most countries, at least on a national

level. However, the following very open statement, made in 2020 by the NPCC of the UK, presents a

different picture:

“Digital forensic services across UK policing are fragmented and disjointed. At present there

are 40 [Digital Forensic Units5] serving the 43 territorial forces. Collaboration between

4[ENFSI15]:“A forensic process requires that analysts understand and report the known limitations of their processes
and specific tools selected using proven scientific methods and practice. In other words, they should not use; or incorrectly
assert, assumptions if they do not understand the operation and/or limitations of the system used.”

5A Digital Forensic Unit (DFU) is defined in [Vaughan20] as “a department within a police force dedicated to digital
forensic analysis of devices and/or data, staffed by practitioners or specialists. In some forces, may be known as a digital
forensic laboratory.”
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forces, either formal or informal, is limited, and a ‘typical force’ DFU does not do work

for others, nor does it have the capacity to do so. Individual units develop their own

methods, procure and deploy their own hardware and software and manage their individual

quality accreditations in line with the [Forensic Science Regulators6] requirements. All of

this involves substantial duplication of effort and inevitable waste of resources. Despite

this, the core functions of force DFUs have striking commonalities, and there is clear scope

to standardise methods and share support services between units. To improve operational

efficiency, we need to ‘industrialise’ and streamline this fragmented landscape, redesigning

DF from the ground up.” [Vaughan20]

This statement, coming from the highest levels of authority in a large national police force in Europe,

does not represent an outlier but is (in the author’s opinion) to some extend symptomatic for many

countries world-wide. In Chapter 2, the corresponding situations in the United States of America and in

Germany are briefly reflected, confirming similar problems as in the UK and thus showing a significant

need for work on the modelling of (media) forensic processes.

In this context, this cumulative habilitation treatise addresses selected issues of such modelling work

by aggregating published work by the author on deriving domain-specific forensic process models for

media forensics in three example application domains.

1.2 Research Project Contexts Represented in this Habilitation

Treatise

In the papers contributing to this cumulative habilitation treatise, the three application domains of

face morphing attack (FMA) detection (for digital images), DeepFake detection (for digital videos) and

forensic steganalysis (for digital images) are used as examples.

The face morphing attacks (FMAs) under consideration are summarised in feeder paper [Neubert19]

as follows:

“In 2014 Ferrara et al. present an identity theft scheme for those scenarios in [Ferrara14].

They describe an approach allowing two or more persons to pass a face image based authen-

tification scenario with only one artificially weakened Photo-ID template. For the presented

attack, a so called face morphing is created, which melts two or more face images of differ-

ent persons. This morphed face image is used for the document creation performed by a

corresponding authority. This Photo-ID document is able to successfully pass all subjective

and biometric checks in a border control scenario.”

Figure 1 in feeder paper [Neubert19] (see page 99 in Chapter 7) illustrates the FMA.

The application scenario of FMA detection represents the author’s involvement in the German nationally-

funded project ANANAS (‘Anomaly detection to prevent attacks on facial image-based authenti-

cation systems’, German title: ‘Anomalieerkennung zur Verhinderung von Angriffen auf gesichts-

bildbasierte Authentifikationssysteme’; funded in part by the German Federal Ministry of Education

and Research (BMBF) under the contract no. FKZ: 16KIS0509K; https://www.forschung-it-

sicherheit-kommunikationssysteme.de/projekte/ananas).

The focus of the author’s involvement in this project, which ran from 2016 until 2019, lay in conceptual

modelling, supporting the empirical work of the research group leader, another post-doc colleague and

a PhD student of the same research group as well as academic and industry partners at four different

partner institutions and companies within the project consortium. The corresponding results on con-

ceptual modelling are aggregated in this cumulative habilitation treatise.

6A Forensic Science Regulator (FSR) is defined in [Vaughan20] as: “A government appointee responsible for ensuring
that the provision of forensic science services across the criminal justice system is subject to an appropriate regime of
scientific quality standards.”
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In the context of the application scenario of DeepFake detection, the term ‘DeepFake’ is defined

in [Siegel21] as follows:

“DeepFakes (a neologism combining the terms ‘deep learning’ and ‘fake’) are synthetic

videos (or images) in which a person’s face (and optionally also voice) is replaced with

someone else’s likeness using deep learning technologies.”

An more recent, comprehensive description is presented in [Tahraoui23]:

“The term deepfake commonly refers to visual content that is artificially generated, ma-

nipulated, or distorted by using artificial intelligence tools to alter or replace a person or

selected attributes of that person in the content. That content can be not only visual (i.e.,

pictures and videos) but also aural (i.e., sounds and noises).”

This novel threat emerged with the widespread availability of neural network-driven technologies from

around 2017. It first received news coverage due to its use in pornographic contexts using face-swaps,

where primarily women became victims of targeted defamation. Later, it was associated with manipu-

lated video footage of politicians (e.g., former US president Barack H. Obama, and Nancy Pelosi during

her time as Speaker of the United States House of Representatives) used to spread misinformation and

potentially influence political opinion. In this context, DeepFakes are discussed in [Tahraoui23] as a

potential threat to digital sovereignty that has been recognised as such, with the paper providing a

summary of the European Union’s regulatory reactions to this threat.

It is important to point out that DeepFakes can have such malicious as well as non-malicious applica-

tion scenarios.7 These are discussed in the feeder paper [Kraetzer22], included as Chapter 12 of this

cumulative habilitation treatise (see page 191).

The application scenario of DeepFake detection represents the author’s involvement in the German

nationally-funded project FAKE-ID (‘Video analysis using artificial intelligence to detect false and ma-

nipulated identities’, German title: ‘Videoanalyse mit Hilfe künstlicher Intelligenz zur Detektion von

falschen und manipulierten Identitäten’; funded in part by the German Federal Ministry of Educa-

tion and Research (BMBF) under the contract no. FKZ: 13N15736; https://www.sifo.de/sifo/

shareddocs/Downloads/files/projektumriss_fake_id.html?nn=248456).

The focus of the author’s involvement in FAKE-ID (duration: 2020-2024) lies in operational modelling,

supporting the empirical work of the research group leader, two PhD students from the same research

group as well as academic and industry partners at five different partner institutions and companies

within the project consortium. In the context of this ongoing research effort, various abstractions

of forensic processes were presented in published work, refining an approach for operational modelling

based on the German BSI ‘Leitfaden IT-Forensik’ [BSI11] and other sources extending these German na-

tional guidelines for IT-forensic investigations, such as the Data Centric Examination Approach (DCEA)

presented in [Kiltz20].

7Both, black- and white-hat application scenarios, and one recent trend how to counter the issue of manipulations are
well summarised in [Rathgeb22] by the following statement:

“Face manipulation brings an array of complex legal issues. There is no comprehensive legislation on
the use of manipulated images, yet several aspects are already regulated in various countries. It should
hence not surprise that the development of new manipulation technology and the detection thereof also
leads to new issues and questions from a legal perspective which deserve further research. If it is used
to mislead, manipulated images can cause significant harm [...] In some countries, altered (body) images
used for commercial purposes (such as the fashion industry) need to be labelled. More generally, legislative
proposals in several countries try to tackle the transparency issue by imposing an obligation to inform users
that they interact with AI-generated content (such as DeepFakes).”

But this holds true only for white-hat application of methods like DeepFakes. No (criminal or other) threat actor will
adhere to such an obligation when spreading fake news or other media-related manipulations. As a consequence, entities
such as news agencies strongly relying on media objects submitted from external sources would also require mature
manipulation detection mechanisms that would have to be integrated into their already established source (material)
verification routines. The exact extend and scope of such analysis methods and ‘filters’, their transparency and fairness,
as well as their potential impact to public and politic debates are currently a hot debate topic, especially in Europe (see for
example [Øe21] for the discussion of free speech implications of Article 17 (regulating upload filters) of the EU ‘Directive
on copyright and related rights in the Digital Single Market’ as adopted in 2020).
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In the context of this cumulative habilitation treatise, selected other application scenarios were consid-

ered in addition to the two main application scenarios of face morphing attack detection and DeepFake

detection. From these additional scenarios, results for the media forensics sub-domain of forensic

steganalysis for media objects are included here. The results in this sub-domain are published in the

context of the EU-funded project UNCOVER (‘Development of an efficient steganalysis framework for

uncovering hidden data in digital media’; funded by the European Union’s Horizon 2020 research and

innovation program under grant agreement no. 101021687; https://cordis.europa.eu/project/

id/101021687).

The focus of the author’s involvement in UNCOVER (duration: 2021-2024) lies in conceptual mod-

elling, supporting the work of the research group leader and other colleagues from the same research

group as well as 22 external partner institutions (including several European forensic institutions and

LEA) on the topic of forensic steganalysis.

Since parts of the project have been classified by the EU as RESTREINT UE/EU RESTRICTED

(R-UE/EU-R), publication activity on the results of this project is significantly reduced in compari-

son to other research projects with a similar number of academic partners.

1.3 Problem Outline for this Cumulative Habilitation Treatise

The problem outline for this habilitation treatise is presented in the feeder paper [Kraetzer15a]. This

paper is included as Chapter 5 on page 75 of this document. Briefly summarised, it derives quality

aspects for media forensics approaches from the Federal Rules of Evidence (FRE) and the so-called

Daubert criteria. These rules and criteria provide a set of guidelines defined for federal-level judicial

matters in the US. They were codified in the 1990s by the United States of America Supreme Court

based on the decisions in the ‘Daubert v. Merrell Dow Pharmaceuticals’ (or short ‘Daubert’) court cases

from 1993 on. The Daubert standard is widely regarded as a good (or even the best established) set of

recommendations for judges on how to evaluate the usefulness of scientific (as well as non-scientific)

expert testimony. Some details of these recommendations are presented in Section 2.3.1.

From the synopsis presented in [Kraetzer15a] (see Chapter 5, pages 80 and 81), the following rel-

evant requirements are derived here for the problem outline of this treatise (the wording is adapted

from [Kraetzer15a] to the terminology used in this treatise, the items are reordered, and two of the

original requirements are combined in REQ2):

1. REQ1 ‘Describing necessary conditions for using a method’: For every media forensics

approach, it is important to clearly specify to which type of media and which type of content it

can be applied in which context. These specifications have to be communicated clearly by the

researchers and developers of the method to the corresponding forensic practitioners intending to

use the method.

2. REQ2 ‘Evaluation of new methods’: Very high standards have to be set for the evaluation of

new (media) forensic principles and methods as well as for the documentation of the evaluation

methodology and the evaluation results of the corresponding proficiency tests. Evaluation setups

with a statistically significant number of samples and relevant domain coverage should be used,

wherever possible, to establish the exact error rates of a forensic technique as precisely as they

can be measured or estimated.

3. REQ3 ‘Standardisation of investigation processes’: The successful application of forensic

techniques in most contexts requires an effort to standardise the investigation process into which

the method is to be integrated.

4. REQ4 ‘Re-evaluation of methods’: The suitability of an established media forensics method

has to re-evaluated regularly, as well as on specific occasions. Media forensics approaches will face

changes in investigation contexts and investigated content (e.g., by new file formats or encoding

methods gaining relevance) as well as the emergence of targeted countermeasures (i.e., anti-

forensics). In case of changes in the evaluation outcomes, the affected investigation processes

have to undergo a renewed standardisation.
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5. REQ5 ‘Publication of methods and processes’: Scientific results for media forensics techniques

must be published and openly discussed with the corresponding community. They should also be

communicated to a wider audience – preferably the general public – to counter the ‘CSI effect’

in courts.

These requirements are in the following used to structure and project the relevant contributions from

the feeder papers onto the common perspective of this habilitation treatise.

1.4 Feeder Papers for this Cumulative Habilitation Treatise

The following twelve papers are included in this cumulative habilitation treatise as feeder papers. For

each of these publications, a table describing the projection onto the requirements REQ1 to REQ5 in-

troduced in Section 1.3 is included, and the main contribution towards domain-specific forensic process

models for media forensics is briefly summarised. As is common practice for a cumulative habilitation,

the feeder papers are included exactly as they were originally published (i.e., with the original, unedited

layout and content).

A complete list of all publications by the author published during the habilitation project (i.e., since the

defence of the PhD thesis) is given in Appendix A (page 253 ff.).

[Kraetzer15a] Christian Kraetzer, Jana Dittmann: Considerations on the benchmarking of media

forensics. Proceedings of the 23rd European Signal Processing Conference (EUSIPCO 2015), Nice,

France, August 31 - September 4, 2015, IEEE, pp. 61-65, 2015.

https://doi.org/10.1109/EUSIPCO.2015.7362345

REQ1: ‘Necessary conditions for us-

ing a method’ The assessment of the benchmarking of media forensics methods

performed in [Kraetzer15a] is the basis for REQ1 to REQ5 as used

in this habilitation project.

REQ2: ‘Evaluation of new methods’

REQ3: ‘Standardisation of investi-

gation processes’

REQ4: ‘Re-evaluation of methods’

REQ5: ‘Publication of methods and

processes’

Main contribution of [Kraetzer15a] to domain-specific forensic process models for media foren-

sics: Deduction of the problem outline for this habilitation treatise from FRE and Daubert criteria as

well as a use case report on a media forensics procedure in court proceedings provided as an example.

[Kraetzer17] Christian Kraetzer, Andrey Makrushin, Tom Neubert, Mario Hildebrandt, Jana Dittmann:

Modeling Attacks on Photo-ID Documents and Applying Media Forensics for the Detection of Facial

Morphing. Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security,

IH&MMSec 2017, Philadelphia, PA, USA, June 20-22, 2017, pp. 21-32, 2017.

https://dl.acm.org/doi/10.1145/3082031.3083244

REQ1: ‘Necessary conditions for us-

ing a method’

[Kraetzer17] models the investigation contexts for FMA detection in

photo-ID documents. In addition, a descriptive image editing history

model is proposed as a method of the attack modelling.

REQ2: ‘Evaluation of new methods’ The systematic application of the descriptive image editing history

model to an FMA detection pipeline is illustrated. Testing with mali-

cious and non-malicious image modifications is performed to provide

more meaningful error rate estimates.

REQ3: ‘Standardisation of investi-

gation processes’

Context and attacker model components are defined as building blocks

for standardisation work.

REQ4: ‘Re-evaluation of methods’ Not addressed in this paper

REQ5: ‘Publication of methods and

processes’

Systematic descriptions of image-editing histories and a description of

the feature space used for detection are provided.

Main contribution of [Kraetzer17] to domain-specific forensic process models for media foren-

sics: First steps for conceptual modelling of media generation processes and corresponding source and

attack models for the application example of FMA detection.
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[Neubert19] Tom Neubert, Christian Kraetzer, Jana Dittmann: A Face Morphing Detection Concept

with a Frequency and a Spatial Domain Feature Space for Images on eMRTD. Proceedings of the ACM

Workshop on Information Hiding and Multimedia Security (IH&MMSec’19), July 2019, pp. 95–100.

2019.

https://doi.org/10.1145/3335203.3335721

REQ1: ‘Necessary conditions for us-

ing a method’

[Neubert19] discusses the pre-processing methods required to increase

the robustness of an FMA detection approach adapted to an applica-

tion scenario.

REQ2: ‘Evaluation of new methods’ In addition to the empirical estimation of detection performances, the

paper evaluates several potential influencing factors for the obtained

error rates (here: three different morph generation pipelines, neutral

and smiling face expressions, and impact of the file format used).

REQ3: ‘Standardisation of investi-

gation processes’

The paper uses (among other data sets) the reference data from the

IHMMSEC’19 special session ‘fake or real’ to provide empirical results

comparable to other work.

REQ4: ‘Re-evaluation of methods’ Methods from [Kraetzer17] are re-evaluated for a different application

context (here: passport-scaled images for eMRTD).

REQ5: ‘Publication of methods and

processes’

A description of the feature space extensions performed and the cor-

responding feature sub-space performance evaluations are provided.

Main contribution of [Neubert19] to domain-specific forensic process models for media foren-

sics: As part of the conceptual modelling for FMA detection, an attack model extension is discussed

and combined with work to increase the robustness of an FMA detection approach adapted to the

application scenario of Electronic Machine Readable Travel Documents (eMRTD) verification. The dif-

ferentiated attacks and the corresponding modelling of attack detection are used, among other research

goals, to determine the impact of different morph generation pipelines on the detection performance

using two different feature (sub-)spaces.

[Neubert18a] Tom Neubert, Christian Kraetzer and Jana Dittmann: Reducing the False Alarm Rate

for Face Morph Detection by a Morph Pipeline Footprint Detector. Proceedings of the 26th European

Signal Processing Conference (EUSIPCO), Rome, Italy, 2018, pp. 1002-1006, 2018.

https://doi.org/10.23919/EUSIPCO.2018.8553067

REQ1: ‘Necessary conditions for us-

ing a method’

[Neubert18a] provides a detailed image processing and feature ex-

traction pipeline description.

REQ2: ‘Evaluation of new methods’ A three-stage detection and verification sequence is introduced to

reduce the false alarm rate (FAR) of the complete FMA detection

process. The impact of this conceptual extension to FMA detection

pipelines on the false missing rate (FMR) is discussed.

REQ3: ‘Standardisation of investi-

gation processes’

Not addressed in this paper

REQ4: ‘Re-evaluation of methods’ A set of three binary FMA detectors from previous publications is

complemented by a morph pipeline footprint detector and a validation

step to provide a concept for context adaptation in this approach.

This makes it possible to transfer the addressed multi-class problem

to a sequence of media forensics analysis methods ending in context-

adapted 2-class decisions with a lowered FAR.

REQ5: ‘Publication of methods and

processes’

A systematic description of the three-stage detection and verification

sequence is provided.

Main contribution of [Neubert18a] to domain-specific forensic process models for media foren-

sics: The conceptual pipeline extension makes it possible to gradually generate and use knowledge about

the media object under investigation and can improve the overall performance of a media forensics in-

vestigation (in this example by lowering the overall FAR).
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[Kraetzer21] Christian Kraetzer, Andrey Makrushin, Jana Dittmann, Mario Hildebrandt: Potential

advantages and limitations of using information fusion in media forensics—a discussion on the example

of detecting face morphing attacks. EURASIP Journal on Information Security 2021, 9 (2021).

https://doi.org/10.1186/s13635-021-00123-4

REQ1: ‘Necessary conditions for us-

ing a method’

[Kraetzer21] presents an in-depth discussion of the necessary condi-

tions for as well as potential advantages and disadvantages of using

the concept of information fusion in the context of media forensics.

The discussion is illustrated using the application scenario of digital

image authenticity and integrity analysis for FMA detection in two

evaluated application contexts.

REQ2: ‘Evaluation of new methods’ The paper presents empirical evaluations with a set of FMA detectors

applying different fusion methods and fusion ensemble composition

strategies. These evaluations illustrate why forensic practitioners are

usually reluctant to rely on information fusion approaches. The results

of the experiments performed show a decrease in the overall detection

performance and at the same time an increased problem of explain-

ability.

REQ3: ‘Standardisation of investi-

gation processes’

The need for benchmarking and proficiency testing for media forensics

methods, especially in fusion setups (incl. the interrelation of methods

and their results), are discussed.

REQ4: ‘Re-evaluation of methods’ The additional issues of the diversity required of the detectors used for

fusion as well as the need for deriving suitable fusion weights (in case

a weighted fusion approach is intended to be used) enforce additional

measures in the evaluation and re-evaluation of methods for a media

forensics setup based on information fusion.

REQ5: ‘Publication of methods and

processes’

A systematic description of the used fusion methods and fusion ensem-

ble composition strategies and a discussion of the different detection

and fusion trends for the two evaluated application contexts is pro-

vided.

Main contribution of [Kraetzer21] to domain-specific forensic process models for media foren-

sics: As a general contribution, [Kraetzer21] illustrates why the naive assumption that including fusion

in the conceptual detection model will automatically make the detection more reliable can fail in prac-

tice, i.e., why fusion sometimes behaves differently in field application than in the lab. In addition,

the conceptual constraints and limitations of the application of fusion are discussed, and its impact on

(media) forensics is reflected upon.

[Siegel21] Dennis Siegel, Christian Kraetzer, Stefan Seidlitz, Jana Dittmann: Media Forensics Con-

siderations on DeepFake Detection with Hand-Crafted Features. Journal of Imaging, vol. 7(7), Special

Issue Image and Video Forensics, ISSN 2313-433X, 2021.

https://doi.org/10.3390/jimaging7070108

REQ1: ‘Necessary conditions for us-

ing a method’

[Siegel21] models the investigation contexts for (video) DeepFake

detection.

REQ2: ‘Evaluation of new methods’ The work focuses on three sets of hand-crafted features and three dif-

ferent fusion strategies to implement DeepFake detection. The results

obtained with third-party reference databases show performances sim-

ilar (peak area under curve (AUC) > 0.95) to those of methods using

features learned by neural networks.

REQ3: ‘Standardisation of investi-

gation processes’

First steps are taken towards a projection onto a pre-existing, data-

centric examination approach for conceptual and operational forensics

process modelling. In addition, the evaluation relies on third-party

reference databases to obtain comparable detection results.

REQ4: ‘Re-evaluation of methods’ Not addressed in this paper
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REQ5: ‘Publication of methods and

processes’

Detailed descriptions of the modelling background (esp. the data-

centric examination approach) and the implementation of the indi-

vidual detectors and the fusion operators used are provided.

Main contribution of [Siegel21] to domain-specific forensic process models for media foren-

sics: The Data Centric Examination Approach (DCEA) from [Kiltz20] (derived from the forensic process

model for IT forensics published in 2011 by the German Federal Office for Information Security (BSI))

is used as a starting point for conceptual and operational modelling. It is shown that while it does

not fit the needs of media forensics analyses perfectly, this starting point provides a good basis for a

domain-specific adaptation for media forensics.

[Siegel22] Dennis Siegel, Christian Krätzer, Stefan Seidlitz, Jana Dittmann: Forensic data model for

artificial intelligence based media forensics - Illustrated on the example of DeepFake detection. Proc.

Electronic Imaging. Springfield, VA: Society for Imaging Sciences and Technology, Vol. 34 (2022),

2022.

https://doi.org/10.2352/EI.2022.34.4.MWSF-324

REQ1: ‘Necessary conditions for us-

ing a method’

[Siegel22] identifies typical data streams within a media forensics pro-

cess, followed by a differentiation of the data streams into data types.

This process follows the established best practices of the DCEA for

domain adaptation of forensic process models.

REQ2: ‘Evaluation of new methods’ The new operational modelling components introduced are applied to

the design and description of the empirical experiments in the paper

to illustrate their suitability.

REQ3: ‘Standardisation of investi-

gation processes’

In addition to the domain-adapted data model, three additional com-

ponents of operational modelling are introduced: the operator (an

atomar processing or analysis operation of a forensic process with

well-defined input and output connectors), an operational concept

for modelling a forensic (sub-)process as connected operators, and

operational modelling of interconnection aspects of media forensics

(sub-)processes. The considerations are separated into (sub-)process

preparation (templating) in the DCEA phase of Strategic Prepara-

tion (SP) and usage (instantiation) in the phase of Operational Prepa-

ration (OP).

REQ4: ‘Re-evaluation of methods’ The conceptual model presented in [Siegel21] for a fusion-based Deep-

Fake detection approach is re-structured and expanded using the newly

introduced operational modelling components.

REQ5: ‘Publication of methods and

processes’

An in-depth discussion on the new operational modelling components,

esp. the derivation of the new media forensics data model from a

pre-existing DCEA data model, is provided.

Main contribution of [Siegel22] to domain-specific forensic process models for media forensics:

The conceptional model for a fusion-based DeepFake detection pipeline and the initial steps for opera-

tional modelling from [Siegel21] are used to derive a domain-adapted data model for media forensics.

In addition, three essential operational modelling components are introduced with the operator, struc-

tured operator-based descriptions of media forensics (sub-)processes, and the connection of templating

and instantiating of forensic processes.
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Chapter 1. Introduction

[Kraetzer22] Christian Kraetzer, Dennis Siegel, Stefan Seidlitz, Jana Dittmann: Process-Driven

Modelling of Media Forensic Investigations-Considerations on the Example of DeepFake Detection.

MDPI Sensors 2022 (Special Issue Detecting and Preventing Deepfake Attacks), 22(9), 3137; 2022.

https://doi.org/10.3390/s22093137

REQ1: ‘Necessary conditions for us-

ing a method’

[Kraetzer22] expands the conceptual modelling from [Siegel22] with

two new feature spaces and semantically analyses the blinking be-

haviour in a video. In addition, the integration of these new features

into a fusion-based DeepFake detection framework is discussed, eval-

uating weighted and unweighted fusion strategies.

REQ2: ‘Evaluation of new methods’ The new components of operational modelling discussed in this paper

are used for describing the empirical experiments in the paper. Based

on this, the two new feature spaces are integrated into the framework

and then evaluated. Benchmarking metrics (here, Cohens Kappa) are

discussed for this evaluation.

REQ3: ‘Standardisation of investi-

gation processes’

The components of operational modelling from [Siegel22] are re-

considered and expanded. One of these expansions is the inclusion

of an optional feedback loop from the Documentation phase (DO) to

the SP phase of the phase-driven model derived from the DCEA. The

other relevant expansion is a benchmarking-driven approach for fusion

weight determination.

REQ4: ‘Re-evaluation of methods’ The set of detectors and the components of operational modelling

from [Siegel22] are revisited, expanded and re-evaluated.

REQ5: ‘Publication of methods and

processes’

Detailed description of the newly included feature spaces and the

benchmarking-driven approach for fusion weight determination as well

as an expanded description of the components of operational mod-

elling are provided.

Main contribution of [Kraetzer22] to domain-specific forensic process models for media foren-

sics: This special-issue journal paper significantly expands the descriptions of the components of op-

erational modelling for DeepFake detection originally introduced in [Siegel22]. In addition, it provides

new aspects of operational modelling (esp. the feedback loop from the DO to the SP phase) as well

as conceptual modelling (here, esp. the benchmarking-driven approach for fusion weight determination

for the DeepFake detection framework).

[Siegel23b] Dennis Siegel, Christian Kraetzer, Stefan Seidlitz, Jana Dittmann: Forensic data model

for artificial intelligence based media forensics - Illustrated on the example of DeepFake detection. Elec-

tronic Imaging, Vol. 34(4), 2022. doi:10.2352/EI.2022.34.4.MWSF-324.

https://library.imaging.org/ei/articles/34/4/MWSF-324

REQ1: ‘Necessary conditions for us-

ing a method’

Motivated by the EU GDPR, [Siegel23b] empirically evaluates the

trade-off between detection performance and data minimisation for

DeepFake detection.

REQ2: ‘Evaluation of new methods’ The conceptual approach of reduction or minimisation of biometric

data (as motivated by the EU GDPR) has an impact on DeepFake

detection accuracy.

REQ3: ‘Standardisation of investi-

gation processes’

The relevance here lies in the identification of potentially relevant

GDPR aspects as part of the conceptual model.

REQ4: ‘Re-evaluation of methods’ In this paper, a detector from [Siegel21] is re-evaluated after data

minimisation. It is shown that the accuracy achieved is not signifi-

cantly impaired.

REQ5: ‘Publication of methods and

processes’

A description of the method used to estimate the impact of the video

duration on the DeepFake detection accuracy achieved is provided.

Main contribution of [Siegel23b] to domain-specific forensic process models for media foren-

sics: With the EU General Data Protection Regulation (EU GDPR) and the (upcoming) AIA, data

10

https://doi.org/10.3390/s22093137
https://library.imaging.org/ei/articles/34/4/MWSF-324


1.4. Feeder Papers for this Cumulative Habilitation Treatise

minimisation and decision transparency are of concern also for media forensics methods. Using the ex-

ample of one DeepFake detection approach, the paper shows that data minimisation can be successfully

applied in this context, without significant loss of detection accuracy.

[Kraetzer23] Christian Kraetzer, Dennis Siegel, Stefan Seidlitz, Jana Dittmann. Human-in-control

and quality assurance aspects for a benchmarking framework for DeepFake detection models. Electronic

Imaging, vol. 35(4):pp. 379–1–379–1, 2023. doi:10.2352/EI.2023.35.4.MWSF-379.

https://library.imaging.org/ei/articles/35/4/MWSF-379

REQ1: ‘Necessary conditions for us-

ing a method’

[Kraetzer23] expands DeepFake detection from a 2-class problem to

an n-class decision problem, presenting results for the potential attri-

bution/identification of the DeepFake generation method used.

REQ2: ‘Evaluation of new methods’ An empirical estimation of the generalization power (or lack thereof) of

existing DeepFake detectors in intra- and inter-data set benchmarking,

using different data selection strategies and classifiers, is presented. In

addition, the classification accuracies in 2-class and n-class DeepFake

detection modes are compared.

REQ3: ‘Standardisation of investi-

gation processes’

The work on operational modelling from [Kraetzer22] is expanded to

include human-in-the-loop and human-in-control aspects made nec-

essary by changing requirements/legislation world-wide, esp. the up-

coming EU AIA.

REQ4: ‘Re-evaluation of methods’ The results presented in the context of the n-class DeepFake classifi-

cation experiments imply significant problems of overfitting DeepFake

detection models to specific DeepFake generation methods.

REQ5: ‘Publication of methods and

processes’

Details of the model generation and the benchmarking strategies for

robustness estimations are provided.

Main contribution of [Kraetzer23] to domain-specific forensic process models for media foren-

sics: The main novel aspect presented here is the discussion of human-in-the-loop and human-in-control

aspects for the operators used in operational modelling.

[Siegel23a] Dennis Siegel, Christian Kraetzer, Jana Dittmann: Joining of Data-driven Forensics and

Multimedia Forensics for Deepfake Detection on the Example of Image and Video Data. Proc. The

Seventeenth International Conference on Emerging Security Information, Systems and Technologies

(SECURWARE 2023), Porto, Portugal, September, 2023, IARIA, ISBN: 978-1-68558-092-6, pp. 43-51,

2023.

https://www.thinkmind.org/index.php?view=article&articleid=securware_2023_1_80_30054

REQ1: ‘Necessary conditions for us-

ing a method’

Not addressed in this paper

REQ2: ‘Evaluation of new methods’ Not addressed in this paper

REQ3: ‘Standardisation of investi-

gation processes’

The modelling work presented in this paper is compared to an es-

tablished best practice promoted by forensic practitioners (the ENFSI

BPM for Digital Image Authentication [ENFSI21]) to validate aspects

of the conceptual and operational modelling of the approach.

REQ4: ‘Re-evaluation of methods’ The media forensics data types (model) from [Siegel22] in particular

is validated against modelling from [ENFSI21].

REQ5: ‘Publication of methods and

processes’

An in-depth discussion of the common aspects of and differences be-

tween the approach to media forensics process modelling presented in

the paper and the one from [ENFSI21] is provided.

Main contribution of [Siegel23a] to domain-specific forensic process models for media foren-

sics: The aspects of conceptual modelling from [Kraetzer22] and [Kraetzer23] are projected onto

the conceptual model of the ENFSI BPM for Digital Image Authentication [ENFSI21] to discuss the

similarities and differences between both models.
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Chapter 1. Introduction

[Kraetzer24] Christian Kraetzer, Mario Hildebrandt: Explainability and Interpretability for Media

Forensic Methods: Illustrated on the Example of the Steganalysis Tool Stegdetect. In P. Radeva, A.

Furnari, K. Bouatouch, and A. A. de Sousa (eds.), Proceedings of the 19th International Joint Con-

ference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP

2024, Volume 4: VISAPP, Rome, Italy, February 27-29, 2024, pp. 585–592. SCITEPRESS, 2024.

REQ1: ‘Necessary conditions for us-

ing a method’

The need to re-train media forensics methods based on machine learn-

ing to counter model ageing effects is discussed. In addition, exper-

iments are described that aim at understanding which patterns are

learned in the feature space used and why these are not training a ste-

ganalysis model but rather a model for distinguishing different JPEG

encoders.

REQ2: ‘Evaluation of new methods’ Not addressed in this paper

REQ3: ‘Standardisation of investi-

gation processes’

The conceptual model for forensic steganalysis based on [Provos02]

and [Fridrich09] is summarised.

REQ4: ‘Re-evaluation of methods’ The existing steganalysis detector Stegdetect is re-trained with more

recent image databases and other classifiers to determine ageing effects

of the model and allow for explainability and interpretability consider-

ations.

REQ5: ‘Publication of methods and

processes’

Details of the re-evaluation of Stegdetect and the corresponding steps

taken to shift from black-box to gray-box evaluations are provided.

Main contribution of [Kraetzer24] to domain-specific forensic process models for media foren-

sics: Aspects of conceptual modelling for forensic steganalysis from [Provos02] and [Fridrich09] are

summarised, and aspects of the re-training of media forensics methods based on machine learning

to counter ageing effects, the necessity of a shift away from black-box testing towards grey-box or

white-box testing as well as explainability and interpretability issues regarding the models trained by

Stegdetect are addressed.

1.5 Outline of this Cumulative Habilitation Treatise

Chapters 1 to 4 provide a framework with a common perspective for the content of the individual original

feeder papers. They are structured as follows: Chapter 2 presents selected background material that is

considered relevant for this treatise. In Chapter 3, the relevant contributions of the feeder papers in the

context of deriving domain-specific forensic process models for media forensics are discussed in detail.

Chapter 4 concludes the treatise and provides a comprehensive summary, conclusions and considerations

for possible future work.

In Chapters 5 and following, the original feeder papers by the author used in this cumulative habilitation

treatise are presented as they were originally published as joint work together with the corresponding

co-authors.
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2
Background

This chapter contains a summary of selected background material that is considered relevant by the

author for placing the content of Chapters 3 and 4 into the necessary context. It includes a very brief

overview of conceptual and operational modelling in Section 2.1. In Section 2.2, relevant types of

stakeholders in the field under consideration are identified and briefly characterised. The main part

of this Chapter is dedicated to summaries of regulations that are relevant for the task of deriv-

ing domain-specific forensic process models for media forensics. These summaries include: the

situation in the United States of America (in Section 2.3.1), the situation in Germany (Sections 2.3.2

and 2.3.3), and selected aspects of the European context (Sections 2.3.4 to 2.3.6).

For a researcher working at a German university, the modelling context for the domain-specific process

models for media forensics is of course defined by the regulatory situation in Germany. In contrast to

the situation in other European countries, like e.g., the United Kingdom of Great Britain and Northern

Ireland (UK), where a central authority (in the UK: the United Kingdom Accreditation Service (UKAS))

is tasked with providing centralised technical advisory service as well as an accreditation service to the

forensic sector8, the situation in Germany is more complex due to the federalistic administrative struc-

ture of the country and the rights of the sixteen German states to govern entire areas by themselves,

including the education sector as well as (internal) security. As a result, the national institutions ex-

isting to provide technical advisory service (in particular the German Federal Office for Information

Security (BSI), but also the Central Office for Information Technology in the Security Sector (ZITiS))

are mostly limited to an advisory role in matters of (IT) forensics and do not have strong regulatory

power in most domains.

For guidelines and best practice documents for the field of information technology (IT) forensics (and

all its sub-domains, including media forensics), the most relevant national stakeholder in Germany is

the Federal Office for Information Security (BSI; German: Bundesamt für Sicherheit in der Informa-

tionstechnik ; https://www.bsi.bund.de; the German national cybersecurity authority). Regarding

advice on IT forensics, the BSI currently offers two documents: the ‘IT-Grundschutz-Baustein DER.2.2

Vorsorge für die IT-Forensik ’9, and the best practice document ‘Leitfaden IT-Forensik ’ [BSI11]. These

two documents are briefly reflected upon in Sections 2.3.2 and 2.3.3.

Regarding forensic practice, the most relevant actors on the European level were identified10 as the Eu-

ropean Network of Forensic Science Institutes (ENFSI https://enfsi.eu/; see Section 2.3.4) with its

Expert Working Groups, and the European Union itself (e.g., with the Artificial Intelligence Act (AIA),

see Section 2.3.5). The German Federal Criminal Police Office (German: Bundeskriminalamt; (BKA))

as well as multiple of the 16 German state-level forensic institutions are active members of European

Network of Forensic Science Institutes (ENFSI)11, so the perspectives reflected in Section 2.3.4 also

represent the positions of the German practitioners.

This chapter does not intend to present a complete picture of the forensics landscape nor does it intend

to provide an overview of the research field of media forensics or selected sub-domains thereof.

8See https://www.ukas.com/about-us/technical-advisory-committees/forensic-science/
9Unfortunately most BSI documents, including this one, are only available in German; at the time of writing of this

habilitation document the most recent version is Edition 2023 [BSI23b].
10In expert interviews conducted by the author with forensic practitioners working at various laboratories in different

European countries.
11In fact, the German Bundeskriminalamt (BKA) hosts the ENFSI secretariat.
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Chapter 2. Background

2.1 Conceptual and Operational Modelling in the Context of this

Document

Modelling work usually serves multiple purposes. Among other purposes, scientific modelling aims at

making a particular (real-world or digital-domain) phenomenon or procedure easier to understand and

to reproduce. It usually consists of steps to define, quantify, represent and visualise this phenomenon

or procedure with the goal of simulating or describing it on the basis of existing knowledge or data.

These steps include identifying and selecting relevant aspects and then using different types of models

for different aims, such as conceptual models to improve understanding, operational models to oper-

ationalise, mathematical, statistical, computational or decision models to use in recognition tasks or

simulations, and graphical models to visualise the phenomenon. The focus of this habilitation project

lies primarily on conceptual and operational models.

In a wider sense, a conceptual model refers to any model formed after a conceptualisation or generali-

sation process. In practice, such models are usually abstractions of entities or events in the real world,

whether physical or social [Apostel60].

In IT-security research, conceptual modelling performed by practitioners or scientists in the field is the

basis of any security modelling. Like any other form of scientific model, it provides a simplified abstract

view of a complex reality. The challenge for any relevant conceptual modelling is to find a suitable

balance between level of detail and degree of abstraction of the modelled entity or event. A too complex

model might be as unsuitable as a model that over-simplifies too much.

On the basis of conceptual models, operational models are then usually used to translate strategic

planing into operating requirements and decisions.

Textbooks on media forensics such as [Rathgeb22] (esp. the chapter [Cozzolino22]) or [Ho15] agree

on the fact that at the core of modern media forensics pipelines looking into questions of authenticity

or integrity, one or more pattern recognition or anomaly detection mechanisms are to be found. After

data collection and pre-processing operations, either sequences or parallel networks of such operators

(in the latter case followed by fusion operators) are used to implement a set of analysis tasks. The

output of the analyses will then have to be interpreted by a human expert, e.g., in the form of an expert

testimony in court.

While the community agrees on the fundamental outline of analysis pipelines, the existing state of the

art lacks domain-specific conceptual and operational models.

As briefly summarised in Section 1.2, the three different media forensics application scenarios of face

morphing attack (FMA) detection (for digital images), DeepFake detection (for digital videos)

and forensic steganalysis are addressed in the feeder papers contributing to this cumulative habilitation

treatise. These three application scenarios define the modelling contexts for this treatise.

2.1.1 Conceptual Modelling

According to Kung and Sölvberg [Kung86], a conceptual model, when implemented properly, will

satisfy the following four fundamental objectives:

• Enhance an individual’s understanding of the represented system

• Facilitate efficient conveyance of system details between stakeholders

• Provide a point of reference for system designers to extract system specifications

• Document the system for future reference and provide a means for collaboration

A good and widely used example of a conceptual model is the ISO OSI reference model [ISO94], used to

describe and compare complex communication protocols. More relevant in the context of this treatise

are the context models presented for audio authenticity analysis in the Best Practice Manual (BPM)

for Digital Audio Authenticity Analysis (FSA) [ENFSI22a], with its source modelling and a correspond-

ing specification of potential traces of (malicious) post-processing operations, and the categorisation
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2.1. Conceptual and Operational Modelling in the Context of this Document

of digital image authentication methods provided in the ENFSI BPM for Digital Image Authentica-

tion (DIA) [ENFSI21].

[Mylopoulos92] defines conceptual modelling12 as “the activity of formally describing some aspects of

the physical and social world [...] for purposes of understanding and communication.” The form of

expression of such a description is a ‘conceptual schema’ and requires “the adoption of a formal nota-

tion”, a ‘conceptual model’ in the terminology of [Mylopoulos92]. Conceptual schemata are supposed to

capture relevant aspects of some domain and serve as points of agreement among members of a group

working in that specific domain, who need to have a common understanding. In [Mylopoulos92], My-

lopoulos summarises the characteristics of conceptual schemata and modelling in the following points:

• “Conceptual schemata can [...] be used to communicate that common [domain] view

to newcomers.”

• “Conceptual modelling has an advantage over natural language or diagrammatic no-

tations in that it is based on a formal notation.”

• “It also has an advantage over mathematical or other formal notations developed in

computer science because unlike them, conceptual modelling supports structuring and

inferencial facilities that are psychologically grounded. After all, the descriptions that

arise from conceptual modelling activities are intended to be used by humans, not

machines.”

Synopsis: In the context of this treatise, conceptual modelling is used to improve the descriptions of

media forensics investigations in regard to the requirements REQ1 to REQ5, as specified in 1.3. The

focus of this work lies on REQ1, ‘Describing necessary conditions for using a method’, and REQ2,

‘Evaluation of new methods’.

2.1.2 Operational Modelling

Operational models usually translate strategic planning into operating requirements and decisions,

i.e., they specify how to execute a particular strategy. An operational model that has to be mentioned

in the context of this treatise is the work on modelling examination protocols provided in the ENFSI

BPM on the Forensic Examination of Digital Technology (FIT) [ENFSI15]. This work provides mod-

elling primitives to irreducibly describe investigation procedures as a basis for their validation in function

verification and proficiency testing.

As specified above, operational models are considered in this treatise as the means for translating

strategic planning into operating requirements and decisions. This specification of how to execute a

defined strategy is of high significance in IT security modelling in many fields, especially those that have

to include risk management13. The process of identifying and managing operational risks is known as

operational risk management and is a very important factor to be addressed in any forensic process,

see e.g., the sections on ‘risk analysis’ in all ENFSI BPMs, for example in [ENFSI15].

Synopsis: In the context of this treatise, operational modelling is used to improve the descriptions of

media forensics investigations in regard to the requirements REQ1 to REQ5 as specified in 1.3. The

focus here lies on REQ3, ‘Standardisation of investigation processes’, and REQ4, ‘Re-evaluation of

methods’.
12Mylopoulos points out in [Mylopoulos92] that conceptual modelling, knowledge representation and semantic data

modelling are three similar but distinct research areas:

“All three activities involve capturing knowledge about a given subject matter. Knowledge representation,
however, has traditionally focused on interesting reasoning patterns and how they can be accounted for
semantically and computationally. [...] semantic data modelling introduces assumptions about the way
conceptual schemata will be realized on a physical machine (the ”data modelling” dimension). Thus
semantic data modelling can be seen as a more constrained activity than conceptual modelling, leading to
simpler notations, but also ones that are closer to implementation.”

13Here, operational risks are understood as the risk of losses or errors caused by flawed or failed processes and systems
or unforeseen events that disrupt the planned operations. Such risks include natural disasters, technical defects, human
errors, malicious intent and other threats.
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Chapter 2. Background

2.2 Relevant Stakeholders in the Field of (Media) Forensics

The most relevant stakeholders in the field of media forensics are without doubt the forensic practition-

ers and their ‘customers’ (in most European countries, usually police officers, prosecutors and judges).

However, there is no universally accepted definition of what exactly a forensic practitioner is and how

exactly this person is integrated into investigative procedures. Different countries have different so-

lutions for this, usually with the forensics departments as part of the (national, regional or local) law

enforcement organisations or as independent laboratories.14 Furthermore, different (functional) hierar-

chies of forensic practitioners can be found depending on the size of the laboratory under consideration

as well as corresponding national regulations (cf. e.g., the discussions of the different roles of the case

leader and examiners in [ENFSI21]).

These two kinds of stakeholders, the forensic practitioners and the ‘customers’, do not act indepen-

dently but in a complex set of relationships with other stakeholders. There are additional entities in

the executive and judicatory systems which are less involved with the daily business of investigations

and court cases. These entities, in the following called ‘policy makers in executive systems’ focus on

adapting the overall structure of the law enforcement system to keep it in a shape to cope with the

development of crimes and criminal structures. Additional relevant stakeholders are found in legislative

bodies, adapting the interpretations of what is appropriate, proportionate and ethical in law enforcement

and investigations to the ever-evolving societal consensus. Another group of stakeholders relevant in

this context is the large number of (academic) researchers in the forensic sciences and their own mi-

crocosm of research programmes, funding bodies, networks of excellence and scientific communities,

together with the associated policies and politics.

The following list presents an overview of the stakeholders considered by the author to be relevant in

the context of this treatise:

• Forensic practitioners (usually case leader and examiners): Work cases and present them to the

’customers’, e.g., in the form of an expert testimony in court. Main focus: [ENFSI15] summarises

the purpose of the work of this group as “deliver reliable results, maximize the quality of the

information obtained and produce robust evidence.” Because of the high significance of this group

of stakeholders, additional discussions of their perspectives are presented in Sections 2.3.1, 2.3.3

and 2.3.4.

• The ’customers’: Usually police officers, prosecutors or judges initiating the investigation and

using its outcomes. Main focus: Efficient and timely legal proceedings (including a need to keep

‘junk science’ and unproven methods out of the courts).

• Policy makers in executive systems: Evolving the law enforcement system to keep it operational

and capable of coping with the ever-evolving challenges encountered. More details on this group

of stakeholders are provided in Section 2.2.1.

• Legislative bodies: Adapting the interpretations of what is proportionate and ethical in law

enforcement and investigations to the ever-evolving societal consensus. One recent and prominent

example, the European Union (EU) AIA, is discussed in detail in Section 2.3.5.

• The academic communities in multiple research domains: Focus on success in academic

research. This group of stakeholders is discussed in more detail in Section 2.2.2.

• Industry providing forensic solutions or tools: Main focus: Commercial success. This group

is mostly outside the scope of this treatise. Nevertheless some considerations about this group

are summarised in Section 2.2.1.

Synopsis: Forensic practitioners are not self-sufficient but only one group of actors in a multi-stakeholder

setup. While some of the relationships in this setup (e.g., between the forensic practitioners and their

’customers’) are well defined and have had a long time to evolve, the material presented in this treatise

shows that others, especially the one between the academic community and forensic practitioners, still

14Exact details about the different forms of integrating forensic practitioners into law enforcement or legal structures
in individual countries are outside the scope of this treatise.
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show significant potential for improvement. This issue is related to all requirements from REQ1 to REQ5

because the publication of and communication about forensic methods, their constraints, respectively

necessary conditions, their evaluation and re-evaluation as well as their standardisation should be done

in an interaction between these groups.

2.2.1 Policy Makers in Executive Systems

A very recent and detailed example of a policy document regarding a national digital forensic science

strategy is the UK document [Vaughan20]. In this 60-page policy document, a group of policy makers

(the National Police Chiefs’ Council (NPCC)) within the UK police forces outlines a national devel-

opment strategy for digital forensics (DF) for the time-frame from 2020 to 2025. This group reflects

the current (2020) situation as follows: “While crime and criminals have become ever more digitally

sophisticated, our response, at every level of law enforcement, has been slow, fractured and piecemeal.”

Even though the NPCC focuses its work strictly on the UK, this statement can be considered as true

for most, if not all countries world-wide.

The authors of [Vaughan20] attribute technical aspects to the problem:

“The data from victims, witnesses and suspects – the data for digital forensics – is from

non-police sources and is about 20 times the volume of all other police data combined,

and demands additional consideration around how it is captured, used and stored. But it

is vital that our plans for digital forensics are no longer siloed away from the wider policing

digital/ [Information and communications technology] landscape as has too often been the

case in the past.”

In their opinion, non-technical aspects also have to be addressed, e.g., the changing societal consen-

sus on what are proportionate and ethical means in the context of law enforcement and forensics:

“[We] need to rebuild and maintain public trust through better compliance with data protection legisla-

tion.” [Vaughan20] Recruiting and retaining a skilled workforce, which is becoming increasingly difficult,

is also addressed as a goal to be achieved, e.g., by using automated (i.e., based on machine learning)

analysis methods:

“Key to the strategy is the industrialised, consistent and standardised approach to the use

of technology. For example, in harnessing automation to make sure that we not only deliver

better results quicker, but do so in a way that reduces the emotional distress for our teams

caused by investigating disturbing images.”

In [Vaughan20], many different challenges and issues are highlighted. These include (among others)

the increasing volume and complexity of investigations, their legitimacy and issues of public trust

and confidence, an apparent lack of support services as well as issues of recruitment and retention. In

addition to these issues, which are of limited relevance for this habilitation project, the fragile commercial

marketplace for forensic solutions is addressed as follows:

“[F]orensic science funding reductions have led to a substantial decrease in the size of

the supplier market [...] DF services in policing rely on external suppliers for additional

capacity and expertise. Action to put this market on a sustainable footing is essential

because policing has insufficient internal capacity to cover the gap and this risks growing

backlogs and failure to harvest critical intelligence, data and evidence.”

In addition to identifying these challenges, [Vaughan20] also discusses selected potential solution strate-

gies. The solution suggested by the NPCC for the issue of the fragile commercial marketplace for forensic

solutions lies in ‘Improved commercial practices’ in combination with ‘Centralising science and Research

and Development’. For the first item, [Vaughan20] states:

“Bringing how policing engages with the commercial sector onto a sure and strategic footing

is key to transforming DF science service. Coordinating this engagement nationally and

agreeing joint requirements, will enable policing to leverage its collective buying power and

17



Chapter 2. Background

act as an ‘intelligent customer’. This will allow us greater influence to ensure the market

develops the capabilities we will need and ensure the supplier market is sustainable and

resilient.”

For the aspect of ‘Centralising science and Research and Development’, central national police bodies

should

“coordinate and influence an R&D programme drawing in R&D effort nationally, combin-

ing casework-driven capabilities that practitioners develop with industry research by tool

vendors, and multi-disciplinary academic research.”

In a different part of the document, the NPCC requests that this research and development (R&D)

programme be “sufficiently well-funded” and calls for an “[a]cademic advisory group providing inde-

pendent advice and guidance, to ensure policing can access full potential of ongoing R&D.”

Synopsis: Several items relevant for this treatise are discussed in the 60-page policy document published

in 2020 by the NPCC. The first item is the question of what proportionate and ethical means in changing

societal contexts (in Western societies) and why public trust is important for forensic investigations.

This motivates the inclusion of recent and ongoing public debates (like the current discussion on the EU

AIA and the Interpol initiative ‘Responsible Artificial Intelligence (AI) Innovation in Law Enforcement’)

in this treatise (see Section 2.3.5).

The second item is the emphasis on a consistent and standardised approach to the use of technology,

quality standards and a modern forensic data model15 for DF. This is reflected in the modelling work

summarised in Chapter 3.2.

The third item to be highlighted here is the call for a forensics marketplace that is able to respond to the

fast-changing requirements and needs. Here, the NPCC shows a strong orientation towards commercial

solutions [Vaughan20]:

“Private sector providers are essential to delivering DF service and key to a nationally net-

worked approach. So too are other organisations – including higher education institutions,

specialist research organisations, start-ups and existing DF tool vendors - which can support

innovation in the future.”

With this, the UK takes a different route than many other countries in the world. The alternative

trend seen in many countries, like the Netherlands or Canada, is to heavily invest in technical solutions

developed by security forces or forensic institutions themselves. Prominent examples for this trend

15In their request for a (national) forensic data model, as enabler for the interoperability between tools and infrastructure
throughout the DF workflow, the best summary on data and its evidential value in forensic investigations sencountered
by the author is found in [Vaughan20]:

“To understand how we can best optimise how we use this data, we need to distinguish digital forensic
source data – the data directly extracted from devices – from data resulting from a digital forensic analysis.
Both are digital forensic data and require a quality assured process to be followed during extraction and
review, but it is important to make the distinction and be clear about the extent to which investigators
can rely upon data if it received no critical technical scrutiny. In some cases, the evidential value of the
data comes from its content: for example, an investigation of threatening text messages sent to an ex-
partner may only require the extracted data to prove the case. In this case, a level 1 examination may
be appropriate (and this will be subject to quality standards, with a trained operator following a validated
process). However, if a defendant alleges that the messages in question are fake, it is the provenance which
is relevant – how the messages came to be there - rather than the content. This requires further digital
forensic analysis, with a DF practitioner using their skills to reconstruct the chain of events.
The practitioner might check corroborating details, such as metadata on when messages were received and
viewed, against their own knowledge of tool capabilities and device characteristics. They might consider
alternative scenarios, such as an online service being used to send the message with a faked sender number,
based on their knowledge of additional possibilities to explain what they observe. They might analyse the
raw source data to verify how the tool has interpreted dates and contact identity. They could conduct
tests to verify the feasibility of these scenarios and establish which alternative explanation is most likely.
The output of this, expressed in a digital forensic report, will be of greater evidential value than the digital
forensic source data to address that specific point, because it has received scrutiny from a DF practitioner
with relevant knowledge and expertise. Understanding the requirements in each case determines the level of
service which is needed, and understanding the evidential value of the data in context is vital to managing
DF data in future.”
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include Hansken for the Netherlands (a case management and data warehouse system developed by

the Netherlands Forensic Institute (NFI) as an open digital forensic platform / a Digital-Forensics-as-a-

Service (DFaaS) solution with a public Software Development Kit (SDK) for developing new plug-ins and

components) and Assemblyline for Canada (a scalable Open Source file triage and malware analysis

solution developed by the Canadian Centre for Cyber Security, an agency of the Communications

Security Establishment, accountable to the Minister of National Defence).

The fourth item is the lack of strategic relationships between police forces (and their forensics units),

academia and the industry.

These items mostly relate to the solution standardisation and publication issues addressed in REQ3 and

REQ5.

2.2.2 The Academic Community

Any generalisation about the academic community and the motivations of individuals and organisations

doing research is ultimately bound to fail due to many factors, including the (cultural) differences in

the established science disciplines as well as the immense number of people involved world-wide.

If such a generalisation were to be attempted for the author’s research domain, which is computer science

(as part of the mathematics, computer science, natural sciences and technology branch of research),

then the capability of acquiring research funding might be considered one of the main performance

indicators in this field, and well-established expertise (in terms of publications and a history of funded

research) would in many cases be a requirement for successful project acquisition. This leads, especially

for early-stage researchers (ESRs), to a situation called ‘publish or perish’ [Grancay17], forcing them

to publish at very high output rates to be able to establish enough expertise to acquire funding. As

soon as a research grant has been obtained (in computer science, such grants for ESRs usually have

a duration of 1 to 4 years), it has to be turned into publications to assure a good starting position

for the race to the next research grant in this highly competitive field. As a result, academic research

sees as its output a large number of scientific papers, based on low-TRL16 research demonstrators,

usually evaluated under ‘lab conditions’. There is hardly any time (or obtainable funding) for further

development work on these low-TRL (usually TRL4 to 6) research demonstrators, i.e., they are doomed

to slide into the so-called ‘Valley of Death’ of demonstrators which are never developed further into

prototypes or tools.

In the paper ‘Moving Steganography and Steganalysis from the Laboratory into the Real World’ [Ker13],

a group of internationally acclaimed academic experts in one forensics-specific sub-domains (steganal-

ysis17) summarise this situation for their own field of expertise with the following words:

“There has been an explosion of academic literature on steganography and steganalysis

in the past two decades. With a few exceptions, such papers address abstractions of the

hiding and detection problems, which arguably have become disconnected from the real

world. Most published results, including by the authors of this paper, apply ‘in laboratory

conditions’ and some are heavily hedged by assumptions and caveats; significant challenges

remain unsolved in order to implement good steganography and steganalysis in practice.”

Ker et al. [Ker13] reflect on the huge discrepancy between academic work on steganography and ste-

ganalysis and the specimens encountered ‘in the wild’ as follows:

“However, where details of real-world use of steganography are known, it is apparent that

they bear little resemblance to techniques described in modern literature. Indeed, they often

suffer from flaws known to researchers for more than a decade. How has practice become

so disconnected from research?”

In the opinion of the author, this statement made in 2013 is still true today for the field of steganalysis

and could (to some extent) also be generalised for many other sub-domains, especially in media forensics,

16Technology Readiness Level (TRL); an estimate of the degree of maturity of the implementation of a method, see
Section 2.3.4.8

17Here, steganalysis can be understood as the counter-science to steganography, which is considered to be the art and
science of hidden communication. As a result, steganalysis focuses on the efficient detection of the use of steganography.
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which is without doubt one of the youngest sub-disciplines of IT forensics.

In recent years, there has been a shift in perception by researchers. In a recent textbook on media

forensics targeting digital face manipulations ([Rathgeb22]), the authors reflect the current academic

perspective on media forensics as follows:

“In case manipulation detection methods are used by public authorities competent for

preventing, investigating, detecting, or prosecuting criminal offences this shall be done in a

lawful and fair manner. While these are broad concepts, case law further explains how to

apply these concepts.”

The mentioned characteristics are further specified in [Rathgeb22] as:

• Lawfulness: “the need [...] to adopt adequate, accessible, and foreseeable laws with sufficient

precision and sufficient safeguards whenever the use of the detection technology [...] could

interfere with fundamental rights and freedoms”

• Fairness: “the need for being transparent about the use of the technology. Furthermore, it is

obvious that the use of the detection methods should be restricted to well-defined legitimate

purposes [...].”

Regarding fairness, Rathgeb et al. point out in [Rathgeb22] that when intended for court use, explain-

ability of the forensic algorithms used is a strong requirement. In addition, they state that

“[f]rom an organizational point, one should also know that decisions purely and solely based

on automated processing, producing adverse legal effects or significantly effecting subjects,

are prohibited, unless authorized by law, and subject to appropriate safeguards, including

at least human oversight and intervention.”

In accordance with other well-established work originating in academic media forensics research

(like [Ho15]), the synopsis presented in [Rathgeb22] is that

“[t]he absence of a unified approach, common regulatory framework, and commonly ac-

cepted practices has resulted in a situation where different initiatives emerge across coun-

tries which share some common elements but also numerous differences that can lead to

challenges related to interoperability.”

An important step towards more mature forensics would be more mature forensic process models. They

guide investigations and are intended to make them comparable, reproducible as well as certifiable.

Usually, the adherence to strict guidelines (i.e., process models) is regulated within any legal system,

e.g., in the US by the fourth of the Daubert criteria (“the existence and maintenance of standards and

controls” [Champod11]).

Due to the fact that IT forensics is a rather young discipline in this field (with media forensics being an

even younger sub-discipline), it is hardly surprising that the forensic process models (if they exist at all)

have not yet achieved the same degree of maturity here as in other fields. Nevertheless, they would be

required to achieve universal court acceptability of methods.

Another important step here is overcoming the ‘Valley of Death’ that swallows most academic demon-

strators at low TRLs (and also many higher-TRL prototypes or tools from technology start-ups). This

would require a significant demand or technology pull from potential end-user stakeholders (e.g., foren-

sic practitioners) and, more importantly, the support from policy makers in executive and judicatory

systems, including the well-funded, specialised R&D programmes called for by the NPCC (see Sec-

tion 2.2.1).

One success story that began in academia in 2004 and already achieved considerable success in 2011

with a method accepted in the Daubert hearings (see Section 2.3.1) in a US court case shall be pre-

sented here: The method, which is now widely advertised, e.g., in the ENFSI BPM for Digital Image

Authentication (DIA) [ENFSI21], is the usage of the so-called Photo Response Non-Uniformity (PRNU)
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for image source verification. It was originally introduced in [Lukas06] and is now accepted as one of

the most reliable methods for digital-camera authentication based on intrinsic characteristics of the

image acquisition sensor. Its development (which is discussed in depth in feeder paper [Kraetzer15a],

included as Chapter 5 of this cumulative habilitation treatise) can be briefly summarised as follows:

In 2005, [Lukas06] described the approach at a very low TRL (3-4). The method and implementa-

tions were refined to a mid-range TRL (5-6) and underwent large-scale in-house testing until 2009

(see [Goljan09]). At that point, an interested end-user (the Forensic Audio, Video, and Image Analysis

Unit of the FBI (FAVIAU)) declared its interest, and a sponsor (the US Air Force Research Laboratory,

Air Force Material Command) was willing to fund further development for an end-user-ready application

(a tool called ‘FindCamera’ used by the FBI but never publicly released). In 2011, the tool reached

TRL 9 and was accepted for court room use by the presiding judge in United States of America v.

Nathan Allen Railey (United States District Court for the Southern District of Alabama, August 2nd,

2011). In the corresponding Daubert hearing, the FBI FAVIAU expert investigating in the case was

able to convince the presiding judge that the method fulfils all the requirements (see the discussion

of Daubert criteria in Section 2.3.1) and gives results that are consistent with another media forensics

approach (Exchangeable Image File Format (EXIF) metadata analysis and matching) applied to the

same images by an independent expert. For an in-depth discussion, see feeder paper [Kraetzer15a],

included as Chapter 5 of this cumulative habilitation treatise.

The successful court room use was at that time considered a huge success for the whole media forensics

research community, with one of the new digital investigation methods reaching not only TRL 9 but

even court room acceptance in such a short time. Unfortunately, only very few other media forensics

methods have been able to achieve the same success since then.

Synopsis: The academic world excels at research, but it is trapped in its own mechanics, including

the race for funding summarised above, with all its positive and negative side-effects. To make the

outcome of academic research (especially the methods of low-TRL research demonstrators) available

to forensic practitioners (or other stakeholders in this field), it usually requires a significant demand or

technology pull from potential end-users. It should not be assumed that commercial providers (e.g., DF

tool vendors) would be willing to step up to provide such help because (as discussed in Section 2.2.1)

the market for forensic solutions is extremely limited.

The second strong point that should be attributed to academic researchers is their knowledge of the field

and the fact that they can provide insights about the gap between what can be seen as phenomena

‘in the wild’ (e.g., which steganographic methods are used in current steganography tools or stego-

malware18) and the current state of the art in the field in academic research. With this knowledge, they

would be able to efficiently fill the role of the independent advisory groups requested by the NPCC (see

Section 2.2.1).

Therefore, the trend currently seen in academia to shift away from results that apply only ‘under

laboratory conditions’ towards publicly evaluated methods for which the error rate estimates provided

are good enough to being taken up by the industry will have to be strengthened further.

The necessity for academia to interact with all other stakeholders in forensics relates to all requirements

(REQ1 to REQ5) specified in Section 1.3.

2.3 (Some) Relevant Regulations in this Field

In this section, some international and national regulations as well as related best practices are discussed

to illustrate the similarities and differences between selected regional contexts. Since the author is a

German citizen working in Germany, one of the selected contexts is the German perspective, which

cannot be discussed in depth without reflecting also on a wider set of European influences and regula-

tions. These German and European contexts are then compared with the situation in the United States

of America, which has an extremely active judicial system and as a consequence very active forensic

18Stego-malware is malicious software (malware) that uses steganographic channels for unsuspicious infiltration, data
exfiltration or hidden command and control communication. Examples for stego-malware families can be found at:
https://attack.mitre.org/techniques/T1001/002/.
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communities (in terms of practitioners, policy makers, industry as well as academia).

Three opening remarks have to be made for this section of the treatise:

1. Some parts of the presented context summarise legal regulations. Since the author has absolutely

no legal training, all legal considerations made within this document are therefore a layman’s

interpretation of freely available material, which are made to the best of the author’s knowledge.

If the content of this habilitation treatise is intended to be used in any legal proceedings, the

reader must consult appropriate legal counsel for the corresponding jurisdiction.

2. The excerpts presented on the governing principles for forensics in the regional contexts discussed

do not present a complete, in-depth picture of the current state of regulations and practices in

the US, Germany or Europe. They are high-level summaries compiled on the basis of the author’s

own experience in academia and are intended to highlight some of the similarities and differences

in the situation in the US in contrast to the situation in Germany/Europe. This serves to pave

the road to reasoning why solutions that might work in the US might not be suitable in the other

considered contexts and vice versa.

3. The presentation might give the impression that entirely separate contexts are compared. This is

obviously not true. Nearly all legal systems world-wide are connected in some form, and interna-

tional actors like the (now dissolved) International Organisation on Computer Evidence (IOCE),

INTERPOL or the United Nations Interregional Crime and Justice Research Institute (UNICRI)

work hard on a consensus about internationally accepted principles as well as on the harmonisation

of methods and practices among nations to guarantee the usability of digital evidence collected

by one nation in the courts of another nation. The following (incomplete) list gives an impression

of how many international bodies are active in this field: the International Organisation for Ac-

creditation Bodies (ILAC; with its standard ILAC-G19:06/2022 – Modules in a Forensic Science

Process), the INTERPOL action on digital forensics, the ASTM International (formerly known

as American Society for Testing and Materials (ASTM), with its standard E1492-11(2017) Stan-

dard Practice for Receiving, Documenting, Storing, and Retrieving Evidence in a Forensic Science

Laboratory), and the International Standards Organization (ISO) / International Electrotechnical

Commission (IEC) with a large number of different standards19.

2.3.1 The US Situation

In 2013, the author summarised the relevance of the situation in the US regarding the handling of forensic

procedures in the wider context of national and international legal procedures as follows [Krätzer13]:

“The U.S. legal system is one of the most active in the world with large numbers of trials

involving all kinds of forensic investigations being held every day. As a result, within this

legal system strict rules for the integration of the results of forensic investigations have been

established.”

On the basis of this statement (which still holds true today), a layman’s interpretation of the framework

for court admission of forensic evidence is presented in [Krätzer13]. This framework is based on the

assumption that, in general, forensic results have to be interpreted by experts for the court. The reason

for this is that any judge (or jury) will presumably lack the expert knowledge necessary to interpret the

findings of a forensic investigation completely on their own and that therefore expert testimony is strictly

required in court proceedings. Thus, if the expert testimony helps the fact finder in understanding the

significance of factual data, then the expert witness is essential for the case and their opinion evidence

is admissible.

In some of the feeder papers (esp. [Kraetzer15a], which is included as Chapter 5 of this cumulative

habilitation treatise, and [Kraetzer22], Chapter 12), the rules governing the admission of forensic

19These include, among others, ISO/IEC 27037 (which concerns the initial capturing of digital evidence), ISO/IEC
27041 (which offers guidance on the quality assurance aspects of digital forensics, e.g., ensuring that the appropriate
methods and tools are used properly), ISO/IEC 27042:2015 (with guidelines for the analysis and interpretation of digital
evidence), ISO/IEC 27043 (which covers the broader incident investigation activities, within which forensics usually occur)
and ISO/IEC 27050 (electronic discovery).
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methods in US federal-level courts have been summarised and discussed from a layman’s perspective.

With the Federal Rules of Evidence (FRE) (esp. Federal Rules of Evidence - rule 702 (FRE702)) and

the Daubert criteria, judges in US federal-level courts have a well-established set of instruments to have

prosecution and defence carry the burden of arguing in favour of or against the inclusion of (forensic)

methods and investigations in a specific trial during the Daubert hearings (before the actual trial).

This allows them to effectively act as the ‘gatekeeper’ without having to acquire the specific knowledge

required to establish the degree of maturity of a novel method by themselves. This is considered inter-

nationally to be an efficient and fair approach. [Champod11]

While the requirements are clear, generalizable and standardised forensic process models and standard

operational procedures (SOPs) are currently sought for to bridge the gap between these strict legal

requirements and the current degree of (or rather lack of) maturity of many media forensics approaches

originating form academic research (see Section 2.2.2).

One important attempt to homogenise forensic procedures in the fragmented US legal system is the

document ‘Forensic Examination of Digital Evidence: A Guide for Law Enforcement’ [Ashcroft04] by the

U.S. Department of Justice, National Institute of Justice (NIJ), published in 2004 (prepared under an

inter-agency agreement with the National Institute of Standards and Technology (NIST)). It describes

a forensic process model and corresponding best practices. Unfortunately, it has not received any

update since the initial release in 2004, and the responsibilities in this field have shifted, with the NIJ

taking a more passive role, focusing on roadmapping and research funding, while standardisation tasks

went to the NIST. Currently, the NIST is one of the most important drivers of the ongoing work

in forensics in the US. A good example of current NIST initiatives in this field is the current draft

of the document ‘Digital Investigation Techniques: A NIST Scientific Foundation Review’ [Lyle22],

which, on the one hand, gives an overview of forensic procedures (including an updated version of the

widely accepted forensic process model from [Kent06]), established techniques (heavily relying on the

best practices documents of the corresponding Scientific Working Group (SWG) of experts), vendor-

independent training as well as proficiency testing initiatives (spearheaded by NIST), and, on the other

hand, provides a rough overview of the current landscape of forensic practitioners in the US. The

NIST work on forensic process modelling, established techniques, training and proficiency testing is

very similar to the work discussed below in Section 2.3.4 for the role of the ENFSI in Europe. Relevant

here, because differing significantly from the European situation, are the insights presented on the

landscape of forensic practitioners and crime labs. After a lengthy discussion on an appropriate way to

estimate their number, [Lyle22] presents the following summarizing statement:

“This value of 11,000 US digital forensics organizations contrasts with the 409 publicly

funded crime labs reported by the Bureau of Justice Statistics [...]. The decentralization

of the digital forensics community in the United States is apparent in where digital foren-

sics labs are found; they are not only in federal, state, and local crime labs, but also in

prosecutor’s offices, private consulting firms, and corporate cybersecurity operations.”

As a result of this extreme fragmentation of the landscape, much or the relevant work on best prac-

tices and standardisation (including certification work) is done by the so-called Scientific Working

Groups (SWGs). These are usually non-profit organisations focusing on the development of guidelines

and standards. For the organisation of the SWGs, (financial and administrative) support is granted

by the NIST. The SWG most relevant for this treatise is the Scientific Working Group on Digital

Evidence (SWGDE). It provides best practice documents on the investigation of IT forensics (includ-

ing audio, imaging, photography and video) that are very similar in nature and content to the ENFSI

best practice manuals discussed in Section 2.3.4, as the US SWGs and the EU ENFSI Expert Working

Groups (EWGs) work in close cooperation. When analysing the lists of members / member organisa-

tions contributing to the working groups and the corresponding best practice documents, it is apparent

that only about half of the contributors are public bodies, while the other half are companies, law firms

or other entities of the private sector.

Synopsis: Regarding legislation, the procedures for admitting forensic methods into US court cases are

considered to be state-of-the-art in publications like [Champod11]. Regarding the situation of experts, a
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relatively small number of publicly funded crime labs (approximately 409) in the US are facing more than

11,000 competitors in the private sector. The National Institute of Standards and Technology (NIST)

plays an important role in organising the nationwide efforts on developing the forensic sciences, e.g., by

their own work in process modelling or proficiency testing, but most importantly by hosting the SWGs as

bodies of experts. These SWGs publish best practice manuals and standards intended to guide forensic

investigations throughout the United States of America. These standards are also recognised and used

outside of the US and the SWGs work in close cooperation with other entities world-wide, e.g., their

counterparts in Europe (i.e., the corresponding ENFSI EWGs). In contrast to Europe, the private sector

has a significant influence on the entire forensic market in the US, on the casework as well as on the

SWG documents and standards.

It remains to be seen how such a highly fragmented field with a strong private sector (i.e. commercial)

influence will be able to cope with the challenges currently faced in forensics: the increasing volume of

investigations as well as the amount of data per case, but also the questions arising from recent debates

on ethics, trust, data protection issues and the regulation of AI.

These standardisation issues all relate to REQ3, as specified in Section 1.3.

2.3.2 The German BSI Guidelines for (IT) Forensics Established in the ‘IT-
Grundschutz-Baustein DER.2.2’

The German Federal Office for Information Security (BSI) guidelines document ‘IT-Grundschutz-

Baustein DER.2.2’ is part of the recommendations family ‘IT-Grundschutz ’ (roughly translated by

the author as ‘baseline protection (modules) for IT systems’) and intends to provide the necessary

guidelines to enable forensic readiness in companies or administrative bodies.

The self-proclaimed aim of the BSI is to provide, with the ‘IT-Grundschutz ’ module catalogue, a

“systematic basis for information security” [BSI23a]. It aims to provide a “sound and sustainable

methodology for information security management systems (ISMS)” and cover “technical, organisa-

tional, infrastructural and personnel aspects in [...] a systematic approach to information security that

is compatible to ISO/IEC 27001.” The audience addressed is identified as “[the] information security

officer of a public authority, the Chief Information Security Officer (CISO) of a large company or the

managing director of a small or medium-sized enterprise.” As a result of the target audience chosen,

the module focusing on IT forensics and the preparation of IT systems with respect to a potential

forensic investigation, ‘IT-Grundschutz-Baustein DER.2.2’, is only six pages long and only provides a

management-level overview of the topic. The document contains:

• A phase-driven conceptual model for a forensic investigation, splitting it into two parts: a prepa-

ration phase called Strategic Preparation (SP) (Geman: ‘Strategische Vorbereitung ’) and the

actual investigation

• A very brief consideration of legal aspects

• A list of the most relevant actors involved (information security officer, data protection officer,

etc.)

• A list of requirements that must be fulfilled for the successful preparation of IT systems with

respect to a potential forensic investigation

• A list of optional requirements that should be fulfilled for the successful preparation of IT systems

with respect to a potential forensic investigation

• A list of additional resources (including a reference to the BSI best practice document ‘Leitfaden

IT-Forensik’ discussed below in Section 2.3.3)

The most important points with regard to this habilitation treatise are:

1. The emphasis on the need for the dedicated SP phase (in which processes are planned and

established to ensure that an institution can forensically analyse IT security incidents, which is

considered by the BSI necessary even if the institution itself does not possess forensic expertise);

relates to REQ1, REQ2 and REQ3, as specified in Section 1.3
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2. The requirements focusing on the operational planning of forensic processes (including tools

selection and verification); relates to REQ1, REQ2, REQ3 and REQ4

3. The requirements for training of personnel to implement the aforementioned forensic processes;

relates to REQ1, REQ3 and REQ4

4. The requirements for the documentation of forensic processes (including justification of the meth-

ods chosen); relates to REQ1 and REQ3

5. The recommendation to perform proficiency testing with the above-mentioned personnel; relates

to REQ3 and REQ4

The references provided in the ‘IT-Grundschutz-Baustein DER.2.2’ primarily contain a pointer towards

the BSI best practice document ‘Leitfaden IT-Forensik ’ as well as four selected additional sources (stan-

dards ISO/IEC 27042:2015 ‘Information technology — Security techniques — Guidelines for the analysis

and interpretation of digital evidence’ and ISO/IEC 27043:2015 ‘Information technology — Security

techniques — Incident investigation principles and processes’, the ‘Standard of Good Practice for Infor-

mation Security’ published by the Information Security Forum and the Request for Comments (RFC)

3227 ‘Guidelines for Evidence Collection and Archiving’).

Synopsis: Even though this document is important for German companies and administrative bodies

aiming for a BSI certificate for their services, the technical depth and the relevance are limited to the

items summarised above. For more detailed considerations, which are necessary in many contexts,

including in this habilitation treatise for REQ3, it points towards the much more detailed BSI ‘Leitfaden

IT-Forensik ’.

2.3.3 The German BSI Guidelines for (IT) Forensics Established in the ‘Leitfa-
den IT-Forensik’ and the Follow-up Work of the DCEA

With its 353 pages of content, the ‘Leitfaden IT-Forensik’ [BSI11] of the BSI provides the technical

details as code of practice for IT forensics that the aforementioned ‘IT-Grundschutz-Baustein DER.2.2’

lacks. Its target audience also includes security management (information security officers, CISOs, etc.),

but its actual focus lies on system operators with a background in incident response (e.g., members of

a Computer Emergency Response Team (CERT)) and forensic practitioners.

Since the publication of the ‘Leitfaden IT-Forensik’ in 2011, it has been used as basis for a number

of publications extending the original concepts. A selection of these (scientific) publications is briefly

discussed in Section 2.3.3.2 below.

2.3.3.1 BSI ‘Leitfaden IT-Forensik’

One of the many purposes of the BSI ‘Leitfaden’ is to try to somehow homogenise forensic procedures

in the highly fragmented system of more than 35 different German police agencies on federal and state

level. In this regard, it is very similar in its intention to the document ‘Forensic Examination of Digital

Evidence: A Guide for Law Enforcement’ [Ashcroft04] of the U.S. Department of Justice, National

Institute of Justice (NIJ) published in 2004. It is slightly outdated, with the last updated version of the

‘Leitfaden’ (German for “guideline”) published in 2011. Nevertheless, it is still an important starting

point for conceptual as well as operational modelling and has been used as such during the entire course

of research for this cumulative habilitation treatise.

The forensic process model, as the core element of this guideline document, consists of three

main components20: a phase-driven investigation process model (Strategic Preparation (SP),

Operational Preparation (OP), Data Gathering (DG), Data Investigation (DI), Data Analysis (DA)

and Documentation phase (DO)), a modelling of forensically relevant data types and the definition

of a set of forensic method classes (sets of methods for the forensic process in digital forensics, pro-

vided as: Methods of the operating system (OS), Methods of the file system (FS), IT application (ITA),

20The ‘Leitfaden’ is written in German. The English translations of its modelling components provided in [Kiltz15]
and [Kiltz20] are used here.
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Explicit means of intrusion detection (EMID), Scaling of methods for evidence gathering (SMG), Data

processing and evaluation (DPE)). These components are presented in detail in the feeder paper

[Siegel21], included as Chapter 10 of this document. The discussion of the corresponding content is

found on pp. 148 ff. of this cumulative hablitation treatise.

The feeder paper [Kraetzer22], included as Chapter 12 of this cumulative habilitation treatise, provides

the following comparison with other models:

“It has to be acknowledged here that these BSI guidelines on outlining a forensic process,

while acknowledging established best practices in this field, significantly differ from other

national guidelines, even in other EU states. This can be illustrated by comparing it for

example with the model described in [Flaglien17], which very well reflects the Norwegian

approach. It also builds upon a phase-driven model but with a different established phases

layout: (1) Identification Phase, (2) Collection Phase, (3) Examination Phase, (4) Analysis

Phase and (5) Presentation Phase. This is much closer to long-time established best

practices in traditional (analogue world) forensic sciences and requires then explicit activities

to achieve and maintain “Digital Forensic Readiness” [Flaglien17] (an equivalent to the

Strategic Preparation phase in the BSI guidelines) to successfully cope with modern day

digital- and digitised forensics tasks.”

Synopsis: Due to the national relevance for Germany, the methodology presented in the BSI ‘Leitfaden

IT-Forensik ’ has been used (and expanded) in the author’s own research work since the document was

published in 2011. In the context of this treatise, this document relates to REQ1, REQ2, REQ3 and

REQ4, as specified in Section 1.3

Some sources, for example [FHNW21], identify the BSI ‘Leitfaden IT-Forensik’ as one of the three

most relevant forensic process models.21 The author finds it difficult to support such generalizations,

since the original BSI document is only available in German, which limits its use significantly. Never-

theless, derivative work is also available in English. Examples for such derivative work are discussed in

Section 2.3.3.2.

2.3.3.2 Work Extending the Methodology Presented in the BSI ‘Leitfaden IT-Forensik’

Similar to the author’s own work (including his PhD thesis [Krätzer13] (2013)), other researchers in Ger-

many have also based their research on the foundations provided by the ‘Leitfaden IT-Forensik’. Worth

mentioning here are the PhD theses of Tobias Hoppe (2014), Stefan Kiltz (2020), Robert Altschaffel

(2020) and Mario Hildbrandt (2020) (all received their degrees from the Department of Computer Sci-

ence of Otto-von-Guericke University in Magdeburg, Germany).

In his thesis, Tobias Hoppe [Hoppe14] uses the model of the ‘Leitfaden’ for forensic investigations

of automotive malware. The thesis of Stefan Kiltz [Kiltz20] and papers related to that PhD project,

like [Kiltz15], provide a comprehensive and expanded English version of the forensic process model of

the BSI ‘Leitfaden IT-Forensik’ called Data Centric Examination Approach (DCEA) and focus (among

other things) on a formal modelling of error, loss and uncertainty in forensic investigations. In the

thesis of Robert Altschaffel [Altschaffel20], a domain adaptation to the forensic investigation of ICS

is performed, while Mario Hildebrandt in his thesis [Hildebrandt20] expands the coverage to include

applications in digitised forensics (of fingerprint traces).

As mentioned above, publications by the author also have been based on this established model. The

corresponding proposals for extensions are discussed in Chapter 3.2 of this document.

21The German text [FHNW21] states:

“In der IT Forensik haben sich drei Vorgehensmodelle primär etabliert: das Modell des Bundesamts für
Sicherheit in der Informationstechnik (BSI), das Modell des National Institute of Standards and Technology
(NIST) und das Secure, Analyse, Present Modell, kurz S-A-P.”

This can be translated into English as follows:

“Three process models have become most relevant in IT forensics: the model of the [German] Federal
Office for Information Security (BSI), the model of the National Institute of Standards and Technology
(NIST) and the Secure, Analyse, Present model, or S-A-P for short.”
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Synopsis: Even though the methodology presented in the BSI ‘Leitfaden IT-Forensik’ is slightly out-

dated (having been released in 2011) and only available in German, it has been established (e.g., by

multiple successful PhD thesis projects) that it was (and still is) a suitable foundation for forensic mod-

elling work. As such, it not only relates to REQ1, REQ2, REQ3 and REQ4, as specified in Section 1.3,

but also to REQ5.

2.3.4 Guidelines from (Selected) ENFSI Best Practice Manuals

The European Network of Forensic Science Institutes (ENFSI) is a non-profit initiative of (national)

forensic laboratories in the EU with financial support from the European Commission, organised into

Expert Working Groups, each curating and publishing so-called Best Practice Manuals (BPMs22) or

Forensic Guidelines documents. The scope of the BPMs can be very wide, covering an entire application

field (e.g., the BPMs on Forensic Examination of Digital Technology (FIT) [ENFSI15] and on Digital

Image Authentication (DI) [ENFSI21]), or very narrow, covering exactly one specific analysis method

(e.g., the BPM for ENF Analysis in Forensic Authentication of Digital Evidence [ENFSI09]).

Because of the relevance of the members of this organisation23, ENFSI naturally plays an important

role in the world-wide discussions on forensic sciences, similar to that of the US NIST and the US SWGs

(see Section 2.3.3.1). There are strong ties between the European and US institutions: In the ENFSI

BPM for the Forensic Examination of Digital Technology [ENFSI15], for example, the authors point

out that the terminology used has been homogenised with the corresponding North American Special

Working Group (SWGDE in that case) to aim for consistency between these organisations.

Of the more than 20 existing BPMs, the two that are of the highest significance for this treatise are

the ENFSI Best Practice Manuals for the Forensic Examination of Digital Technology (FIT) [ENFSI15]

and on Digital Image Authentication (DIA) [ENFSI21]. In [ENFSI15], the purpose of this BPM is

summarised as follows:

“This Best Practice Manual (BPM) aims to provide a framework for procedures, quality

principles, training processes and approaches to the forensic examination. This BPM can be

used by Member laboratories of ENFSI, and other forensic science laboratories to establish

and maintain working practices in the field of forensic IT examination that will deliver reliable

results, maximize the quality of the information obtained and produce robust evidence. The

use of consistent methodology and the production of more comparable results will facilitate

interchange of data between laboratories.”

Like any other BPMs, it does not intend to be a standard or other kind of regulatory document, but

intends instead to be a knowledge base document written by a group of expert practitioners in the

field, providing “technical guidance to aid the design of local standard operating procedures (SOPs24)

in compliance with local regulatory requirements, and international standards.”

Regarding the general setup, the BPMs stress the strong dependence of forensic practitioners on others:

The forensic process usually has a ‘customer’ (described in [ENFSI21] as “usually a judge, prosecutor, or

police officer, and also private persons, where the jurisdiction allows it”, i.e., the beneficiary of a forensic

report) and a forensic lab tasked with performing a forensic investigation. As argued in [ENFSI21], the

BPMs are in this setup supposed to describe the following:

• “The formulation of useful propositions25 based on the claims and the questions sup-

plied by the Customer [...]”

22[ENFSI21] notes for the terminology used: “The term BPM is used to reflect the scientifically accepted practices at
the time of writing [of the corresponding BPM document].”

23Members originate from 39 European countries (with all of the large countries present) and include usually the
national forensic laboratory as well as the national forensic science institute.

24In fact, all ENFSI BPMs (but also the published ENFSI Forensic Guidelines documents) stress that they are “not a stan-
dard operational procedures (SOP) and address the requirements of the judicial systems in general terms only” [ENFSI21].

25The term ‘proposition’ is defined in [ENFSI15] as “[s]tatements that are either true or false, and that can be affirmed
or denied. Propositions should be formulated in pairs (e.g., views put forward by the parties to the case) and against a
background of information and assumptions.”
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• “The wide selection of methods which one may use to evaluate each proposition, the

principles of how to choose between them, and the sequence in which they should be

applied.”

• “The conflation of the results of each of these methods to evaluate the level of either

support or rejection of the formulated propositions.”

Even though the current version ([ENFSI15]) of the BPM actually is essentially a 65-page knowledge

base document, it also acknowledges its political purpose to “provide a helpful bridge between the

requirements of international and local regulatory standards, and the actual implementation within each

member’s laboratory environment”. In synopsis, it states that the efficient handling of international

crime requires compliant forensic investigations that can assist efficient prosecution of these crimes.

Since the landscape of national forensic laboratories in Europe is very inhomogeneous due to the wide

variance in judicial systems (including common-law countries like the UK and the Republic of Ireland

as well as civil-law countries, i.e., most of the rest of Europe), the BPM [ENFSI15] limits its ambitions

in discussing SOPs as follows:

“In order to ensure the maximum compatibility with the requirements of all member lab-

oratories, the document does not describe in a step-by-step fashion how specific forensic

processes should be completed, instead it details the abstract processes, the associated

possible risks, and the potential size of errors that may exist.”

In a summary of the primary goals of [ENFSI15], the document provides the following list:

• “Promote the use of consistent methodologies;

• Encourage the development of new and novel methods;

• Facilitate information interchange;

• Acknowledge the existence of errors in all forensic methods; and

• Promote methods for use in risk analysis and risk mitigation.”

Of these five items, especially the first, second and fifth are of high significance for this habilitation

project.

All recent ENFSI BPMs share a common structure, governed by a common template (most re-

cently [ENFSI22b]): the scope of the BPM, definitions and terms, resources (including personnel),

methods, validation and estimation of uncertainty of measurement, quality assurance, handling of

items, initial assessment, prioritisation and sequence of examinations, evaluation and interpretation as

well as presentation of results.

In the following sections, selected content from some of these categories directly relevant for this habili-

tation treatise is summarised from the ENFSI BPMs FIT [ENFSI15] and DIA [ENFSI21] as well as (to a

much lesser extend) the BPM on ENF analysis [ENFSI09] and the BPM for Digital Audio Authenticity

Analysis (FSA) [ENFSI22a].

These categories are then also used to structure the conclusions drawn in this cumulative habilitation

treatise in Section 4.2.

2.3.4.1 Personnel

Following the common structure of the BPMs, the first item of relevance for this part of the habilitation

treatise is the aspect of personnel (covered as part of the resources). Here, [ENFSI21] summarises the

requirements for personnel as follows:

“All personnel participating in [the] examination should be proven to be qualified to perform

the examination. At each organisation, the local quality management system should clearly

describe how such proof can or should be provided and documented. The periodicity with

which this proof and documentation should be re-evaluated should also be described.”
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To summarise the typical structure of a team performing a forensic examination, three potential roles

are identified in [ENFSI21]: the ‘case leader’, who “should select and prioritize the tasks, assign each

task to one or more appropriate Examiners, and finally collect and interpret results before presenting

them in a report and/or in court.”, the ‘examiners’, and ‘third parties’26. [ENFSI22a] states that all

personnel should “have received specific forensic training [...]. Examples of appropriate training include:

Laboratory in-house training; Training from a university or equivalent; Training from an external certified

organization.” Two aspects of this statement are directly relevant for this treatise: firstly, the inclusion

of universities (and therefore research-oriented education) in this list, and secondly, the fact that there

is no particular emphasis on certification in relation to the other options, which is a noticeable difference

when compared to the situation in the US (as discussed above in Section 2.3.1).

Regarding the proximity to research, ENFSI BPM FIT [ENFSI15] calls for even stronger ties between

forensic practitioners and the corresponding research community: It distinguishes between “technical

(with administrative responsibilities)” and “administrative only” personnel. For all technical personnel,

it is stated that they “have a direct responsibility to ensure they:

• Comply with national regulatory requirements;

• Are up to date with current technical developments and procedures;

• Understand the requirements of the criminal justice system;

• Maintain a portfolio of evidence demonstrating a participation in cases involving digital

technology/digital evidence;

• Read journals, books and other literature containing pertinent information relating to

forensic digital evidence examinations;

• Provide formal feedback to colleagues on problems encountered during analysis and

the method that was employed to overcome it;

• Aid in the development of local procedures and standards and improve the technical

advancement of examinations”

Furthermore, “[t]hey should also aid the quality management through development and critical peer

review of proposed changes to local procedures and standards to improve the technical advancement

of examinations within the forensic environment.”

Up to this point, the statement is consistent with the other three ENFSI BPMs summarised in

the context of this habilitation treatise. With the following requirement, however, the ENFSI BPM

FIT [ENFSI15] significantly expands the expectations regarding the practitioners (case leaders as well

as examiners):

“They should also take part in appropriate workshops, seminars, conferences, meetings and

research and development projects. [...] Technical Experts should actively participate in

casework examinations, and also participate annually in at least one of the following:

• Publication of a technical paper in a recognised peer reviewed forensic journal related

to digital technology/evidence;

• Presentation of a paper or specific casework experience at a professional meeting/sem-

inar;

• Technical training events as a presenter/instructor;

• Routinely communicate the relevance of selected forensic topics within the digital

technology/evidence forensic community and the laboratory.”

This direct request for close interaction with the (academic) research community is of significance for

this habilitation treatise, because it shows that a significant expert group in this field is not only strongly

motivated to interact with academics but also willing to involve themselves in the relevant activities of

academic researchers (i.e., publication of papers and acquisition and execution of research projects).

26The role of third parties in the examination process is described differently in different ENFSI BPMs. In [ENFSI21],
the third party is mostly involved in the initial assessment and in the handling of items, while in [ENFSI09], third-party
subcontracting is provided for:

“In the event that no personnel within the laboratory are competent to be the Technical Specialist on a
specific case or specific technical aspects relating to ENF, arrangements should be made for a qualified and
competent consultant/contractor to be utilised from outside the laboratory to perform these duties.”
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2.3.4.2 Classes of Methods

The second item relevant here is the specification of classes of methods, whose modelling in the ENFSI

BPMs differs from the BSI ‘Leitfaden IT-Forensik’ discussed in Section 2.3.3 above. Here, each BPM

provides its own, context-dependent classification scheme, without a generalising common scheme. The

closest thing to an operational model, as discussed in this habilitation project, is found in ENFSI BPM

FIT [ENFSI15] with the high-level abstract analysis sub-process shown in Figure 3.3 of this BPM, sub-

figure (a) and its split into ‘human-based functions’ and ‘instrument-based functions’.

In relation to (academic) research on novel methods in the forensic sciences, the BPM FIT [ENFSI15]

positions itself as follows:

“Research plays a fundamental role in both the development of new and novel techniques,

and ensuring that existing techniques remain fit-for-purpose.

Whilst it is true that in the area of forensic IT the technology and applications are constantly

evolving and expanding, the foundations on which the discipline and its derivatives are based

– computer science, physics (electronics) – are relatively fixed, and ultimately supported

by mathematical theory. [...] Therefore, before going to the expense of developing and

attempting to prove a new technique, time should be employed to research if the technique

(or near equivalent) has already been suggested and perhaps even deployed by another

laboratory.

It is also important to critically cross-reference any source before attempting to use a

reference as an axiom on which the laboratory bases its validated processes. [...] Best

practice should always be to seek methods supported by axioms which have been rigorously

tested [...], or even better rigorously proved.”

While most of this statement obviously applies to IT forensics, especially the wariness regarding insuf-

ficiently tested approaches and ‘junk science’, it cannot be generalised for the much more recent and

less mature sub-domain of media forensics, where proving the validity of an analysis method is much

harder. The reasoning for this is provided by ENFSI BPM DIA [ENFSI21], with a statement about

the (potential) uncertainty of measurements in media forensics analyses, and is cited in this document

below on page 34.

[ENFSI21] contains the most complex classification scheme for methods of the BPMs considered here.

It specifies four main categories of methods, each with a set of sub-categories. These four main cate-

gories are ‘auxiliary data analysis’ (described as “methods based on auxiliary data (all data except the

pixel data of an image)”), ‘image content analysis’, ‘strategy’ (“providing guidance on how to use these

methods to perform typical authentication tasks”), and ‘peer review’. In the context of this treatise,

it is relevant to mention that the listed set of methods in the sub-category ‘image content analysis’

contains many analysis methods based on pattern recognition.

The ENFSI BPM on ENF analysis [ENFSI09], which, in contrast to the other three ENFSI BPMs

discussed here, focuses on exactly one analysis approach instead of a whole set of methods, emphasises

that a clear distinction has to be made between a forensic method (e.g., ENF-based authenticity

verification for digital evidence) and corresponding implementations.

2.3.4.3 Validation and Estimation of Uncertainty of Measurement

One main goal of the validation considerations is defined in [ENFSI09] as achieving precisely described,

tool-driven and repeatable processes:

“For software tools that can be configured in a variety of ways and/or uses a number of

different parameters, it is particularly important to document the set-up and individual

parameter values in order to produce a process that can be repeated.”
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These reproducibility requirements are the same for ‘manual analysis software’ and for ‘automated’ (i.e.,

driven by pattern recognition) software solutions.

In FIT [ENFSI15], extensive considerations are made concerning the validation and estimation of un-

certainty. An important aspect of these discussions is the distinction between verified and non-verified

functions and tools, ‘validated processes’ and ‘trustworthy processes’. The terminology used is specified

as follows in [ENFSI15]:

• Validation: “Validation relates to the ability of a process to meet the formal requirements

agreed with the customer.” The ‘customer’ in the ENFSI BPMs usually encompasses the

judicial system and the investigating police officer, while [ENFSI15] explicitly points out that

“the requirements of the local judiciary shall ultimately take precedence”.

• Verified functions in tools (as implementation of forensic methods): “Verification of

functions within tools cannot, by themselves, be validated as the environment and ability

of the user must be acknowledged as part of a process.” Here, it is pointed out that this

verification task is a shared burden in which many forensic practitioners are stakeholders:

“International Standards and National Regulatory Codes of Practice promote flex-

ible effective methods based on scientific proofs. They deliberately utilise abstract

terminology in order that laboratories shall be able to create fit-for-purpose meth-

ods.”

Furthermore, it is not necessary to verify the entire tool/instrument, but only functions

relevant to the corresponding type of investigation:

“Due to the multiplicity of unused functionality that can exist within Forensic

IT (FIT) instruments, and the complex ways in which FIT instruments may be

combined to produce a result, validation shall be restricted to specific process

(task or method) being undertaken.”

• Non-verified functions: Regarding ‘non-verified functions’, the ENFSI BPM FIT recom-

mends:

“If no formally verified function is available to successfully complete an analy-

sis stage then a non-verified function may be used. It is however, important to

demonstrate that it provides results which exceed those capable from the verified

functions available.

In cases where no verified equivalent functions are available to help make the

comparison, then a far more detailed evaluation (with greater management over-

head) will be required. In effect the analyst will need to verify the functionality

used.”

To make sure that such use of non-verified functions does not turn the entire forensic

investigation (respectively its result) invalid, [ENFSI15] states that “[i]f a non-verified tool

function is routinely used then it is expected that it should undergo formal verification, and

be added to the laboratory approved list.” Such use of non-verified functions might be very

likely for the domain of media forensics, where so far no commercial and certified tools, but

only lower TRL prototypes exist for many potentially relevant investigation approaches.

• Validation techniques and procedures: When handling complex (software) systems, the

following guidance is provided:
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“The overarching guidance around the development of validation techniques

and procedures within this document is to sub-divide seemingly large (mono-

lithic) complex systems into smaller, and hopefully simpler, (atomic) components

through the use of black-box abstraction methodology.”

This concept of component-based modelling is used in Chapter 3.2.3 as one of the core

elements of the modelling approach discussed for media forensics processes.

• Validated process: A definition of the term ‘validated process’ is given as follows:

“A validated process is one which demonstrably conforms to its statement of re-

quirements. A technical process may be considered to be validated for a particular

purpose if, when tested, it meets the stated requirements for that purpose.”

To make the creation/composition of validated processes easier, they “can be constructed

using a combination of smaller sub-processes and functions.” For these, the “verification of

functions should be limited to those specific to the process, rather than attempting to verify

all the functions available within a tool.”

• Trustworthy processes: The following description is presented for ‘trustworthy processes’:

“In order to create trustworthy processes, verification [...] will be required to

validate the developed process, and also demonstrate that the user and instrument

functions used do actually operate within the bounds of known risks and their

errors.”

This verification should not be understood as a one-time effort. Re-verification has to be

provided for the operational procedures, either on a routine basis (e.g., once a year) or

event-based (e.g., when new technological advances occur that might have an impact on

the reliability of established methods). Acknowledging the potential complexity of investi-

gation processes, [ENFSI15] proposes to break down complex processes into sub-processes

for verification purposes:

“To help reduce the cost, and effort, of verifying large processes it is recom-

mended that processes are subdivided (atomised) into smaller encapsulated sub-

processes.”

A similar advice is given for the function verification of forensic tools:

“Function verification of forensic tools is concerned not with the verification of the

functionality of the entire tool, but instead the verification of only those functions

within forensic tools which are used within validated processes.”

Furthermore it is highlighted that every verification of trustworthy processes must be “con-

ducted in-situ” (i.e., in the lab environment in which the processes are supposed to be

used and with the corresponding users that are expected to be the examiners using these

processes in actual analyses) and that it “is the responsibility of each laboratory to verify

their specific methods and systems based on their formal local implementation.” This last

issue also includes the validation of requirements for the chain of custody as well as the

documentation of an investigation.

Not only automated processes are within the scope of the verification and re-verification work to be

performed. In [ENFSI15], human-based methods are also specifically included:
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“Human-based functions are the pivotal elements within technical forensic processes, all

forensic processes are likely to require user interaction, therefore an evaluation of user

capability must be made as part of validated process within the laboratory. Even if an

instrument-based function returns a valid result, it may still be reliant on the correct in-

terpretation by the user associating the result. [...] Verification of human-based (user)

functions are covered within proficiency testing [...]”

Even though the availability of the required forensic practitioners with sufficient training and valid

certification (if applicable) is such an important factor in every forensic investigation, addressing this

issue is outside the scope of this habilitation treatise. Here, it is simply assumed that a lab has

the required human resources available and that their competence is (re-)evaluated as required (e.g., in

proficiency testing) or that it has the possibility to outsource such investigations that cannot be covered

sufficiently well with its own personnel27.

The whole issue of the validation of tools and processes is a necessary part of the risk assessment

required for case handling. [ENFSI15] states on this issue:

“For the interpretation of evidential significance in the context of the case, a laboratory

should always consider the use of techniques and equipment whose risks have been formally

assessed; as part of the required functional verification, in preference to those which have

not. This does not mean that a method or process that has not been formally evaluated

cannot be used to aid the analysis; rather it means that if there is a wish to use such a

solution, a formal justification as to why it has been chosen in preference to one that is

part of a validated process must be made.

When designing a validation process, five key elements of a successful validation policy are:

1. An understanding of known errors and uncertainty

2. The Statement of Requirements;

3. Risk Analysis and Assessments;

4. Effective validation test sets; and

5. Routine verification.”

From this list, items 4 and 5 are more or less self-explanatory, while the discussion on items 1, 2 and

3 needs additional explanations, which are provided in the following for ‘An understanding of known

errors and uncertainty’, ‘Statement of Requirements’ as well as ‘Risk Analysis and Assessments’:

The ‘understanding of known errors and uncertainty’ requires an additional specification of the

term ‘uncertainty’, which in [ENFSI15] is given as “the unknown (random) difference (delta) between

the measurement taken and its true value. It can never be completely defined, or eliminated, and is

represented as a bounded region in which the true value exists within its given confidence level.” In

complex systems, uncertainty aggregates:

“Uncertainty within a system is additive in nature, and generally increases with the number

of functions deployed within a process. The decision as to whether the uncertainty should

be calculated at the function level or abstracted to the process level is at the discretion of

each laboratory. [...] Software solutions will also contain additional uncertainty on top of

the uncertainty associated with the physical systems, including the operating system, they

are running on. This is especially true for software which relies on functions with no formal

specification and/or calibrated standard. As a result, software uncertainty properties will

also need to be acknowledged and accounted for.”

Regarding the considerations on “uncertainty within image authentication”, BPM DIA [ENFSI21] iden-

tifies three domain-specific potential factors as “tool inaccuracies”, “operator inaccuracies” and “data

inconsistencies”. Acknowledging that these factors are interlinked, the BPM DIA elaborates: “Given

27In contrast to [ENFSI15], where it is implied that all investigations would have to be performed by internal person-
nel, [ENFSI09] also foresees the potential outsourcing of analyses to other laboratories, including non-governmental (i.e.,
commercial) contractors.

33



Chapter 2. Background

the intricate dependencies which could exist between uncertainties that arise at various points during

the image authentication analysis procedures, the uncertainty attached to a specific measurement can-

not always be quantified.”

The ‘Statement of Requirements’ is defined in [ENFSI15] as follows:

“The statement of requirements defines the problem to be solved by a technical process. It

should provide explanatory text to set the scene for a lay reader, summarising the problem,

noting the scope and acceptable risks or limits of any solution and acknowledging the

relevant stakeholders. It should be created independently of and without regard to any

particular implementation or solution.”

Furthermore, the statement of requirements “provides the interface (or formal bridge) between what the

customer believes is achievable (customer requirements), and so desires, and what the laboratory can

realistically achieve (laboratory capability) with the available staff, tools and the incurred time costs.”

Ideally, this statement of requirements is not only a list with a set of needs and corresponding associated

constraints and conditions but also includes a “list of well-formed, testable requirements.” [ENFSI15]

In the ENFSI BPM FIT, a list of types of such requirements is presented as an example, including

functional and performance requirements as well as requirements focusing on the interfaces for the

solution, its compliance with local laws and processes, etc. In addition, it is stated that, “[i]f the

risks are considered too great then either the statement of requirements will need to be amended,

or alternate solutions sought, to reduce the risks to acceptable levels.”. This negotiation takes place

between forensic practitioners (i.e., the laboratory represented by the case lead) and their ‘customers’.

It basically determines which methods are to be used in a forensic examination to be conducted, based

on customer requirements such as “agreed timeframe”, the type of methods to be used (only validated

vs. validated and un-validated) or “general risks associated with a case” [ENFSI15]. Summarising this

negotiation process, [ENFSI15] states that

“[t]he information described within the final ‘Statement of Requirements’ will form the

basis on which the process being validated will ultimately be judged as either a pass or fail.

Therefore, it is very important that the defined requirements are both accurate and realistic

with respect to standard scientific principles and current available methodologies.”

This generalising statement somewhat obscures the fact that this negotiation would have to take place

for each and every forensic investigation to be conducted. A set of user requirements that is valid for

one case might not apply at all in another investigation. As an example, the time frame allowed for

an (initial) forensic assessment of some pieces of evidence might, in case of an ongoing kidnapping

situation, be much shorter than usual.

For the ‘Risk Analysis and Assessments’, [ENFSI15] states that “risk analysis and verification

stages are paramount in creating a reliable validation method”, with the BPM providing a very general

description of how to perform such a risk analysis and how to record/document the risk in a formal

assessment process. Different examples of corresponding evaluation questions to be used within such an

assessment process are provided, including method-specific questions, implementation-specific questions

as well as questions regarding the lab’s organisational procedures the use of methods within a process.

An example for the first category would be: “Does it operate correctly for its intended purpose?” (This

is equivalent to one of the Daubert criteria; see Section 2.3.1.) A good example for the second category

would be: “Does it operate correctly in its working environment(s)?” (This is roughly equivalent to

one of the FRE702 criteria; see Section 2.3.1.) An example for the third category would be a question

such as: “Is routine re-verification conducted?”

Summarising the discussion on risk analysis, [ENFSI15] states:

“Risk analysis can not only be used to explain why a verified function has been used within

a validated process, but also why in certain circumstances a formally unverified function

has been chosen in preference.”
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Using the terminology of the BSI ‘Leitfaden IT-Forensik’ (see Section 2.3.3), the risk analysis would

have to be performed in Strategic Preparation as well as Operational Preparation for each case.

The ENFSI BPM FIT [ENFSI15] explicitly integrates the competence of the forensic practitioner(s)

available to handle a case in the risk analysis (“The lower the level of knowledge [of the analyst],

the greater will be the potential errors and risks.”). But experienced analysts might also encounter

challenges when interpreting the output of verified functions. In this case, the escalation procedure

recommended is the following:

“If a new, unknown, discrepancy is detected then the evaluation will need to be highlighted

for the peer review, and one or more of the verified tools may need to be reassessed, along

with the existing validated process.”

With regard to the use of non-verified functions, which is a very likely scenario for certain media forensics

investigation methods that still lack maturity and for which only lower TRL solutions exist so far, the

recommendation of [ENFSI15] for the corresponding risk assessment is the following:

“When using a non-verified function during analysis it is important that the analyst is

competent enough to research the characteristics of the returned results, and can qualify

them against standard validation methods employed within the laboratory [...]”

The BPM DIA [ENFSI21] closely follows the validation principles established in FIT and expands them

accordingly for the sub-domain of digital image authentication. A nice example-driven set of minimal

requirements for performing a method validation in that domain is given in [ENFSI21] as:

• “An outline of the applied methods and their use cases (e.g., for PRNU: a general

description of PRNU-based source camera identification and when it is applicable).

• A detailed description of the process, such as in which order, which tools and functions

are applied and with which settings (e.g., for PRNU: a description of how the camera’s

sensor pattern was extracted, how the correlation threshold was determined).

• A collection of rules to ensure that known restrictions, errors and flaws of the used

tools do not adversely affect the results, and that the quality of results is optimised

according to the given conditions (e.g., for PRNU: specifying the minimum number

of reference images required, how to handle saturated images, details of limitations on

the supported geometrical transformations, and potential issues related to multiple-

camera devices, etc)

• A dataset with known source, recording conditions or processing operation should be

used for (re)validation tests to check if the method gives the expected results (for

instance to check that different software gives comparable results).

• A validation report.”

2.3.4.4 Quality Assurance

Another item of relevance here is quality assurance, with considerations on proficiency testing and

quality controls, which is very closely related to REQ2 and REQ4 of this treatise. Regarding the

performance of individual examiners, BPM DIA [ENFSI21] recommends that quality controls including

regular proficiency tests are put in place “in order to mitigate against bias within the examination”. For

safeguards on the processes and methods used, BPM DI [ENFSI21] recommends the use of a quality

management system, defining its purpose as “[a]ssuring the use of valid methods”.

The high significance of the availability of qualified personnel is underscored in [ENFSI15] with the

following statement:

“Internal proficiency tests should be designed to provide useful feedback to the laboratory

to help continually verify that the existing laboratory process human-based risks remain

within acceptable bounds. If the user trend deteriorates, then either the risk assessment(s)

must be adjusted accordingly or the process re-validated. If a proficiency test highlights a

problem with a process, or a specific function within a process, then that may also indicate

that there is a problem with the associated current validation or verification process.”
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2.3.4.5 Case Assessment / Initial Assessment

In the terminology of the BSI ‘Leitfaden IT-Forensik’ [BSI11], this is the stage of an investigation when

the Operational Preparation (OP) is performed. It involves selecting the ‘case leader’ for the involved

forensic laboratory and pre-scene preparation as well as the (potential) assessment at the scene. In

FIT [ENFSI15], it is stated for the latter that the “assessment at scene in this context also extends to

the support and advice provided remotely to those that are at the scene so that submitted exhibits can

later be effective processed within the laboratory.” An important point raised by BPM DIA [ENFSI21]

is that a vital part of the case-related documentation (including the chain of custody) starts at this

point (i.e., the seizure of evidence by the authorities) and that it is of uttermost importance for the

evidential value to ensure that this documentation is complete.

2.3.4.6 Evaluation and Interpretation

In ENFSI BPM FIT [ENFSI15], it is pointed out that

“[a]n understanding of how both the original application and the forensic tool interpret the

data is necessary in order to scientifically evaluate and interpret the findings. The lower the

level of knowledge [of the examiner], the greater will be the potential errors and risks.”

Based on this statement and acknowledging aspects that impair performance, originating from different

domains, the ENFSI BPM FIT identifies potential error sources (which have to be reflected upon in the

result interpretation) as a “combination of :

• The combined errors of the processes and measurements used;

• The time constraints to analyse the data;

• The analyst assigned to the case;

• The depth of detail in the case requirements; and

• The type and quantity of evidence located.”

BPM DIA [ENFSI21] emphasises the impact of the analyst/examiner assigned to the case by pointing

out that every forensic method applied in analysis usually involves “[result] interpretation by the Ex-

aminer”, i.e., that in every case, the human examiner is in control of the method (even for approaches

based on machine learning). Therefore, an effort has to be made to prevent problems caused by lack

of training or personal bias introduced by the examiner to the case. Especially the latter is a non-

trivial task, which is addressed in BPM DIA for the overall interpretation of findings and formulation

of conclusions by relying on the organisational split between the case leader and the examiners on the

case:

“During the evaluation stage all findings from the different elementary methods are eval-

uated by the Case Leader, resulting in a conclusion that states the evidential weight as a

level of support for each one of the competing propositions. Some results of operations on

images can be assessed independently, but many results have to be compared with other

results to deliver evidential value. In this stage the Case Leader should also consider the

background information [...]”

The fact that the examiners usually do not have access to this background information about the case

is intended to limit the bias they introduce during the analyses performed. To facilitate the conclusions

drawn by the case leader, the examiners have to provide their results as a level of support for one of

the competing propositions in a format that allows for a suitable combination. In BPM DIA [ENFSI21],

the current practice is summarised as follows:

“Support levels are typically reported using a graded scale. Currently, there is no universally

accepted scale for reporting [image analysis] conclusions and there is a wide range in scales

used by different agencies. The ENFSI member laboratories are expected to comply with

the ENFSI Guideline for Forensic Evaluative Reporting [...] which recommends both to
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use the likelihood ratio (LR) as an indication for the level of support (often referred to as

the strength of evidence), and a graded scale to associate verbal expressions to numerical

values, where required.”

The main problem associated with this procedure is the computation or estimation of likelihood ratios

and discriminating power. For the likelihood ratios, BPM DIA [ENFSI21] states: “The assignment of

a precise quantitative likelihood to any of the examination findings in [image analysis] is often impos-

sible”, with reasons given including the nature of some methods (which might only admit qualitative

evaluation), the lack of adequate reference data, and the fact that with some methods, the estimation

of probabilities might be subjective, based on the experience of the examiner. For the discriminating

power, ENFSI BPM DIA [ENFSI21] states:

“In image authentication, establishing the discriminating power of an elementary method is

often challenging. While the performance of each elementary method is often evaluated and

reported in the corresponding scientific paper, the testing conditions in such experimental

evaluations are typically very different than those encountered in casework. Therefore, it is

necessary for the Examiner to understand the discriminating power of an elementary method

in the circumstances of the particular case. In order to accomplish this, an Examiner could:

• Obtain or create reference items [...] which reflect [...] as close as possible the current

examination, and establish performance of the method on such material.

• Investigate the performance of the elementary method on available datasets and gather

information on its discriminating power. This investigation should reveal the influenc-

ing conditions (e.g., parameter settings of this method or properties of the image)

that may give rise to false negative and false positive results.

• Examine the behaviour of the elementary methods with respect to findings from other

similar features within the questioned image (e.g., for local analysis methods).”

The first two items in this list focus on the benchmarking of forensic methods (respectively their

implementation in tools integrated into forensic processes) and relate to REQ2 and REQ4. The third

item concerns fusion / the combination of expert systems (relating to REQ1, REQ2 and REQ4). Both

strategies are addressed in this habilitation treatise.

2.3.4.7 Presentation of Results

The forensic expert’s role in this context is summarised in [ENFSI15] as follows:

“The overriding duty of those providing expert testimony is to the court and to the admin-

istration of justice. As such, evidence should be provided with honesty, integrity, objectivity

and impartiality. Evidence can be presented to the court either orally or in writing. Only

information which is supported by the examinations carried out should be presented. Pre-

sentation of evidence should clearly state the results of any evaluation and interpretation

of the examination.”

Regarding the form, [ENFSI15] specifies: “The findings, and any expert opinion, are normally provided

in the first instance in written form, as a statement of evidence or a report, for use by the investigator

and/or the prosecutor/court.”

In addition to this primary perspective (and its forms of expression), statements in other forms might

also be requested from a forensic expert. Regarding actual casework, [ENFSI15] summarises such other

statements as follows:

“Investigative reports and opinion, within this context, relates to officer specific applications

where the information may not be designed to such stringent levels as those that are required

for court review / use. This may be due to the requirement that information is needed

urgently, such as in the case of a finding a missing person who is considered at risk, and

where the time constraint is the most critical factor.”
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The BPM DIA [ENFSI21] is rather short on this issue, pointing out that

“[t]he way of reporting may vary depending on national legal stipulations or requirements.

Nevertheless, the overall reporting process should still enable independent review or repro-

duction of the reported results.”

This request for reproducibility is a strong driver for the modelling work discussed in Chapter 3 and

relates to REQ3 of this habilitation treatise.

2.3.4.8 Tool Development

The ENFSI BPM FIT [ENFSI15] considers custom tool development for individual cases as well as the

need for industrial-strength implementations at high technology readiness levels28 (TRL) supplied by

commercial software developers. For the case of custom tool development, it states:

“The development of scripts and software routines for use within a specific case shall also

be classified as non-verified functions. In addition to including the software code within

the case archive, it is also essential that a copy is retained within the laboratory software

register [...]. If a non-verified tool function is routinely used then it is expected that it

should undergo formal verification, and be added to the laboratory approved list.”

For the topic of software development for forensic tools, the ENFSI BPM FIT [ENFSI15] has a separate

appendix (‘Appendix B – Custom (bespoke) development’) that focuses on the question of “whether to

purchase a 3rd party product or develop a custom solution”, where the third-party option also includes

the commissioning of an external developer with targeted tool development. Reasons and arguments are

provided concerning cost efficiency of development options, software development practices (including

software engineering, oversight and testing) as well as the required verification of such software.

2.3.4.9 Synopsis for the Discussion of Selected ENFSI BPMs as Background for this Treatise

The perspectives of the different ENFSI EWGs manifest in the corresponding Best Practice Manuals

(BPMs) are fairly diverse. They do, of course, share a common perspective on many aspects, such

as the relationship between the lab and the ‘customer’ and the basic understanding of the conduct of

forensic processes, but they also differ in many significant points. This is not surprising, considering the

varying scope, with some providing recommendations for a field as large as the forensic examination

of digital technology and others looking only at exactly one analysis method (e.g., electric network

frequency (ENF)). Furthermore, the maturity of the corresponding field is reflected in the document

perspectives: FIT [ENFSI15] includes methods that have been in use for 50 years, while the whole

field of digital images and methods for their authentication considered in DIA [ENFSI21] has emerged

much more recently. In summary, the following main points from the discussed BPMs form the relevant

background for this treatise (with the respective requirements REQ1 to REQ5, as defined in Section 1.3,

identified where possible):

28The EU HORIZON 2020 – WORK PROGRAMME General Annexes define the Technology Readiness Level (TRL)
as follows (see: https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-

wp1415-annex-g-trl_en.pdf):

• “TRL 1 – basic principles observed

• TRL 2 – technology concept formulated

• TRL 3 – experimental proof of concept

• TRL 4 – technology validated in lab

• TRL 5 – technology validated in relevant environment (industrially relevant environment in the case
of key enabling technologies)

• TRL 6 – technology demonstrated in relevant environment (industrially relevant environment in the
case of key enabling technologies)

• TRL 7 – system prototype demonstration in operational environment

• TRL 8 – system complete and qualified

• TRL 9 – actual system proven in operational environment”
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• The separation of roles as proposed in [ENFSI21]: The proposed split into task lead and examiners

should significantly reduce bias in the investigations and is also an established best practice in

many other fields of applied forensics, e.g., dactyloscopy. (REQ3)

• All BPMs emphasise the relevance of modelling - for conceptual models as basis for the discussion

of types methods (as used extensively in ENFSI BPM DIA [ENFSI21]), for source model gen-

eration for authenticity and integrity verification (as done in the ENFSI BPM for Digital Audio

Authenticity Analysis [ENFSI22a]) as well as for operational models (e.g., as basis of the clas-

sification of ‘non-verified functions’, ‘verified functions’, ‘validated processes’ and ‘trustworthy

processes’ in ENFSI BPM FIT [ENFSI15], see Section 2.3.4.3). (REQ3)

• The discussions about validation (again, with the distinction between ‘non-verified functions’,

‘verified functions’, etc.) and uncertainty as well as quality assurance. (REQ1, REQ3)

• The (requested) close relationship between forensic practitioners and the corresponding scientific

communities (see Section 2.3.4.1).

• Discussions about tool development (see Section 2.3.4.8). (REQ5)

• The issues concerning validation (benchmarking) of forensic methods (respectively their imple-

mentation in tools integrated into forensic processes) as well as the corresponding quality assur-

ance (including proficiency testing). (REQ1-REQ4)

• The role of human experts (i.e., the examiners and case lead) in the forensic procedures, especially

with regard to the evaluation, interpretation and presentation of results, with the corresponding

responsibilities as well as the requested accountability (see Sections 2.3.4.6 and 2.3.4.7).

• The request for reproducibility of evaluation results as an important aspect of the presentation of

investigation results (see Section 2.3.4.7). (REQ1, REQ2, REQ4)

2.3.5 The European Union (EU) Artificial Intelligence Act (AIA)

In addition to the efforts by practitioners in the field of law enforcement and forensics, there are other

noteworthy activities in the EU that are of relevance for this field. Not all of them can be reflected

upon in this habilitation treatise. One that has to be mentioned, however, is the regulatory push that

results from EU legislation, and especially the EU Artificial Intelligence Act (AIA), also known as AI

Act29) with its strong emphasis on the requirement of ‘human-in-control’ for critical AI applications

(e.g., in the context of law enforcement and forensics as considered within this treatise).

The discussions about the regulation of AI-based solutions in the EU are, of course, accompanied by

national discourses in the member states. On the national level in Germany, the BSI (as national

cybersecurity authority) advances the discussion in this field through a series of whitepapers, includ-

ing publications like ‘Towards Auditable AI Systems - From Principles to Practice’ [Berghoff21] and

‘Sicherer, robuster und nachvollziehbarer Einsatz von KI - Probleme, Maßnahmen und Handlungsbe-

darfe’ [BSI21] (title translated into English as ‘Secure, robust and traceable use of AI - problems,

procedures and actions required’). The latter presents an in-depth discussion of problems, policies and

procedures as well as open issues discussed by experts in this field. A brief summary of this discussion

(with its focus on the three aspects of: a) development of standards, technical guidelines, test criteria

and test methods, b) research on effective countermeasures against AI-specific attacks, and c) research

into methods of transparency and explainability) is presented in feeder paper [Kraetzer22], included

as Chapter 12 of this cumulative habilitation treatise.

Synopsis: Modern-day media forensics is strongly driven by pattern recognition (respectively Artificial

Intelligence (AI)), and with the (upcoming) AIA, new regulations will become effective in the EU and its

29Note: At the time of writing of this treatise, the final version of the AIA has not yet been published. The status
reflected here is the provisional agreement on the Artificial Intelligence Act reached by the EU Parliament and EU Coun-
cil negotiators on December 9th, 2023: https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/
artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai. The next steps would be the
formal adoption of the agreed text by both Parliament and Council to become EU law. As part of this ongoing process,
Parliament’s Internal Market and Civil Liberties committees will still have to vote on the agreement.
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member states that will significantly affect the design, implementation and use of AI-driven methods.

The foreseeable changes initiated by the AIA will have to address the definition of standards that

are suitable for assessing the security and reliability of AI systems, the design of security benchmarks

to ensure a secure and robust operation of AI systems, and the research into methods for ensuring

transparency and explainability of AI system decisions.

What holds true for every form of AI use is obviously also important when it comes to AI-driven

processes that are (by regulation) restricted to decision support systems, e.g., in the case of forensics,

where the internationally accepted standard is that investigation results have to be interpreted through

expert testimony (see Section 2.3.4.7). Here, the corresponding expert has to be able to explain the

investigation method as well as all aspects influencing the investigation outcome before a trier of fact

(in most cases a judge, a group of judges or a jury). Besides other reasons, this human presentation and

interpretation is considered necessary because the expert is also able to interpret contextual information

to reason about the intention of an action (e.g., why a DeepFake video was created), which is a challenge

where AI alone will fail. These issues relate to requirements REQ1, REQ2, REQ3, REQ4 and REQ5 as

specified in Section 1.3.

2.3.6 Other Relevant Aspects of the European and German Situation

The feeder paper [Kraetzer21], which is included as Chapter 9 of this cumulative habilitation treatise,

provides a short summary of the discussions on requirements for media forensics methods in terms of

scientific admissibility, briefly comparing the European and US perspectives. This short summary is to

a large extend based on the publication ‘Scientific Evidence in Europe - Admissibility, Evaluation and

Equality of Arms’ by C. Champod and J. Vuille. In their work, Champod and Vuille [Champod11] state

that

“[t]he scientific admissibility of evidence, while subject to fairly precise rules in United States

law, [...], is seldom addressed in European legal writings [...]. The question of scientific

reliability is seen as intrinsically linked with the assessment of the actual evidence, that is

with the determination of its probative value [...].”

This implies that researchers in the fields of (media) forensics and applied pattern recognition have to

rely on the verdict of the ‘customer’ (to use the ENFSI terminology), i.e., a judge or other legal expert

for each individual case (and jurisdiction), defining the hurdles media forensics approaches have to take

to achieve court admissibility. Summarising the discussions in [Champod11], it can be said that there

is no EU-wide regulation on scientific admissibility questions, but that there are common principles

that need to be considered. Some of them, expressing the perspective of one type of practitioner, are

summarised above in Section 2.3.4, reflecting the forensic practitioners’ point of view as aggregated in

the ENFSI BPMs.

In addition to the forensic experts, there is another prominent group of stakeholders involved in these

considerations: the European law enforcement agenciess (LEAs). Organisations that are relevant in

this context are Europol, INTERPOL, the national LEAs as well as integration actions between these,

like the European Anti-Cybercrime Technology Development Association (EACTDA). The following

selected examples from their work are relevant here:

• Europol (the European Union’s law enforcement agency with headquarters in The Hague, Nether-

lands): With its Innovation Lab hosting the Europol Tool Repository (ETR) as a LEA-exclusive

online platform to share non-commercial, cost-free software developed by LEAs, and research and

technology organisations as well as the Europol Platform for Experts (EPE) as an access-restricted

expert forum.

• INTERPOL (or more precisely, the Office of the Special Representative of INTERPOL to the

EU in Brussels): Focusing on the concerns of global law enforcement and the liaison with EU

initiatives and policy decisions. An Interpol initiative that is especially relevant in the context of

this habilitation treatise is the document series ‘Responsible AI Innovation in Law Enforcement’

(AI Toolkit). It defines in [INTERPOL23] “five core Principles for responsible AI innovation”
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to “provide the law enforcement community with a foundation for a principled approach to AI.”

These five core principles are identified as “lawfulness, minimization of harm, human autonomy,

fairness and good governance”. They are also relevant for the development and application of

all solutions for (media) forensic tasks based on machine learning and therefore complement the

recommendations given in the ENFSI BPMs on forensic tool development. What makes this

document remarkable in the context of this treatise is the fact that it is very up-to-date in terms

of AI-related issues, including multi-faceted considerations on technical aspects but also on legal,

privacy, ethical and environmental aspects.

• European Anti-Cybercrime Technology Development Association (EACTDA): A non-

profit association for the development of technological solutions (i.e., tools) for European law

enforcement agencies and forensic laboratories. It draws funding from the EU Security Re-

search ecosystem and the EU H2020 programme and funds development initiatives like the

Tools4LEAs project (https://www.eactda.eu/projects/Tools4LEAs/home.html) to take re-

search project outcomes at low TRL and develop them further into tools fit for use by LEAs and

forensic institutions. Members of the EACTDA collaboration framework are stakeholders such

as the European Commission’s department of Migration and Home Affairs (EC DG HOME), Eu-

ropol, the European Union Agency for Law Enforcement Training (previously CEPOL) as well as

national actors like ZITiS in Germany.

Synopsis: The situation in Europe might be significantly different from the situation in the US, but the

requests for novel forensic methods from practitioners (here, LEA and forensic institutions) are currently

meeting with a regulatory push for reliable and trustworthy AI methods (esp. in form of the EU AIA). A

recent initiative illustrating that both should go well hand in hand is the document series “Responsible

AI Innovation in Law Enforcement” (AI Toolkit; [INTERPOL23]) from UNICRI and INTERPOL.

As a consequence of these recent developments, trustworthy actors intending to take a leading role

in the development of tools for LEAs as well as for forensic institutes have emerged over the last few

years. One noticeable example on the EU level is EACTDA. On the national level, the Central Office

for Information Technology in the Security Sector (ZITiS), founded in 2017, and (on a much smaller

scale) Dataport, a state-owned institution under public law which develops, among other things, the

digital case management systems for multiple German police agencies on the state level, take on a

corresponding role in Germany.

This relates to REQ3, as specified in Section 1.3.
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3
Work on Deriving Domain-Specific Forensic Process

Models for Media Forensics

In this chapter, the approaches to conceptual and operational modelling for deriving domain-specific

media forensics process models for selected application domains applied in the corresponding feeder

papers by the author and his co-authors are summarised. These feeder papers are included in this

cumulative habilitation treatise as chapters 5 ff. at the and of the document.

The work summarised here covers three application domains selected as examples: The first is face

morphing attack (FMA) detection for digital images, which is covered in Section 3.1. For this

application domain, the focus of the published research lies on conceptual modelling work. The second

application domain is DeepFake detection for digital videos, covered in Section 3.2. For this domain,

the focus shifts towards operational modelling. The third is forensic steganalysis, covered in Sec-

tion 3.3, where the focus is again on conceptual modelling work.

The research presented here is heavily based on the Code of Practice for information technology (IT)

forensics published by the German Federal Office for Information Security (BSI) in its ‘Leitfaden IT-

Forensik’ [BSI11] (see Section 2.3.3.1) and the additions to its process model published by others (see

Section 2.3.3.2) as well as by the author himself. As established in Section 2.3.3.2, the BSI code of

practice (and especially its phase-driven process model) is a suitable foundation for forensic modelling

work and is (despite its age) still one of the most relevant documents in Germany to consider in this

context. Nevertheless, various publications, like [Altschaffel20] have shown that it needs to be adapted

in order to cover specific application contexts such as the media forensics context considered in this

treatise.

A second strong influence of the work presented here are the Best Practice Manuals (BPMs) of the

European Network of Forensic Science Institutes (ENFSI; see Section 2.3.4), especially the BPMs

on Forensic Examination of Digital Technology (FIT) [ENFSI15] and on Digital Image Authentica-

tion (DIA) [ENFSI21].

3.1 Work Published in the Application Domain of Face Morph

Attack Detection

In the context of this cumulative habilitation treatise, most of the conceptual modelling work by the

author has been carried out in the context of the ANANAS project (see Section 1.2). This work

supports the empirical work of the research group leader and colleagues on the topic of face morph

attack detection for digital images. In this context, various abstractions (models) for media object

(source) characteristics, morphing attack influences (of different morphing pipelines) on images, and

detection models were provided by the author between 2016 and 2019. An overview of selected work

on this topic is provided in this section, excerpting the work from the corresponding feeder papers and

discussing it in the wider context of this treatise.
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3.1.1 Modelling Media Generation Processes and Source Models

One of the most important tasks in media forensics is the modelling of the generative process that

created the media object. The reason for this need is summarised perfectly in [ENFSI22a]:

“Authenticity analysis of digital audio recordings is based on traces left within the

recording during the recording process, and by other subsequent editing operations. The

first goal of the analysis is to detect and identify which of these traces can be retrieved from

the audio recording, and to document their properties. In a second step, the properties of

the retrievable traces are analysed, to determine if they support or oppose the hypothesis

that the recording has been modified. It is not always obvious whether traces are due to

recording or post-processing. A key objective of any authenticity analysis is therefore to

determine whether observed features of a piece of audio evidence were introduced by the

original recording process or by subsequent actions.”

The structured analysis of the signal, the detection and identification of traces, and their documentation

require a corresponding process model that fits the needs of such an investigation. In [ENFSI22a], an

example of a simplified recording process flow model for audio recordings is presented, describing the

typical traces left in an audio recording by the different components involved in the recording (including

the environment, the microphone/transducer, A/D converter and encoder). This European Network of

Forensic Science Institutes (ENFSI) BPM then discusses how traces of post-processing can be identified

based on the modelled source characteristics: “The main and most important characteristic of such

traces is that they cannot be attributed to any part of the purported (claimed) recording process

[...]” [ENFSI22a]. Both kinds of traces (those attributed to the original recording process and those

attributed to post-processing) are then used in a forensic process to support or refute “a hypothesis

that the evidence under analysis is an authentic recording, based on the characteristics of the traces

within the recording and the available contextual information” [ENFSI22a]. The work of the forensic

practitioner on the case with regard to the results obtained is summarised in this ENFSI BPM as follows:

“[I]t should be clear that the goal of authenticity analysis is not to state which proposi-

tion is the correct one, but to evaluate which hypothesis is the more likely, and how strong

(or weak) this support for that proposition is. It is possible to have no support for either

case.”

The simplified recording process flow model used in [ENFSI22a] for illustrative purposes is not fit

for supporting in-depth analyses. For this purpose, a much more detailed process model for such

a media generation process for audio material has been published by the author in his PhD the-

sis [Krätzer13]. Extended versions also modelling selected post-processing operations (like e.g., playback

and re-recording in [Kraetzer12]) have been discussed by the author in further papers and a book chap-

ter (see [Kraetzer15b]). Since this work on modelling media generation processes for audio recordings

has already been used in parts in the author’s dissertation project, it is excluded from further use in

this habilitation treatise. Instead, the focus shifts towards conceptual modelling work started after the

author’s PhD thesis was published in 2013.

One feeder paper where such generation process and source modelling is carried out is [Kraetzer17]

(included as Chapter 6 of this cumulative habilitation treatise). Based on the concept of a life-cycle

model for photo-ID documents and well defined checks therein (see Section 3.1.2), the need for specific

source models for these checks is argued. To address part of the need for such models, an image editing

history model for face images is then introduced. This image editing history model formally describes

the current state of a digital image by:

• describing the sequence of editing operations applied to the original camera image to obtain the

current image, and

• aggregating knowledge about which traces are left behind in the image after applying each par-

ticular editing operation.
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If the editing history of an image is known, the image can be analysed to determine which artefacts

are produced by which sequence of editing operations. The aggregated knowledge gives a clue about

which traces should be looked for in an image with an unknown editing history to reveal the presence

or absence of particular image editing operations in its editing history. Here, the editing history model

should provide support when deciding whether a face image is authentic or has been tampered with.

This concept is consistent with the content analysis concepts later discussed in the ENFSI BPM for

DIA [ENFSI21].

A visualisation of the descriptive image editing history model introduced in [Kraetzer17] is shown on

page 90 (in Chapter 6). A specific editing history is represented in that visualisation by a path in the

full-connected directed graph, with two specific nodes denoting the original (I0) and the current state of

an image (In). Other nodes correspond to image states after particular image editing operations. The

current image in that history results from the propagation of the original image through the intermediate

nodes, one in each layer. The set of image editing operations in each layer is the same. In addition to all

relevant editing operations, the set includes a ‘no op’ operation to model the case of no image editing.

An edge represents the parameters of the consecutive editing operations. It should be noted here that pa-

rameters can also include another image, e.g., for splicing operations. Formally, a current image is given

by the following recursion: In = (In−1, editing operation: En, parameters: pn), I0 = original image.

Another important component of the model is the set of traces or artefacts that can be found in an

image: T = {Ti, i = 1..k}.
In order to better describe the relation between an editing operation and traces in the image, the model

is specified by introducing three attributes for each editing operation: preserved, altered and acquired

characteristics or, more specifically, traces. Cropping, for instance, preserves camera-imposed finger-

prints and the content of an image, changes the image dimensions and adds no new traces. A camera

fingerprint as a trace is considered to be an element in T .

The set of image editing operations is divided into subsets of legitimate and illegitimate operations.

An image is considered to be authentic if only legitimate image editing operations are present in its

editing history. A single illegitimate operation in a path makes an image non-authentic. Detecting a

non-authentic face image should raise an alarm in the Checks described in Section 3.1.2. For more

detailed discussions on legitimate and illegitimate operations, the reader is referred to [Kraetzer17],

which is included as Chapter 6, pages 89 ff. in this cumulative habilitation treatise. In the paper, the

image editing history model is integrated into a document life-cycle model (see Section 3.1.2) and used

to provide illustrative editing graphs for two different types of face morphing pipelines for a precise

description of the data generation pipelines used to generate the training and test material for the

empirical evaluations in the paper.

Synopsis: The synopsis presented in 2017 in [Kraetzer17] and confirmed here for modelling media

generation processes and providing corresponding source models is that researchers should be encour-

aged to use such formalism to gather knowledge about which traces are caused (or destroyed) by which

editing operations (or sequences of editing operations). This perspective is coherent with the efforts

discussed by ENFSI practitioners in the BPMs for image and audio material authentication ([ENFSI21]

and [ENFSI22a] respectively), with the basics on media generation modelling provided there in 2021

and 2022.

The results presented for an image editing history model relate to REQ1 (as specified in Section 1.3).

This conceptual model is then used in [Kraetzer17] to systematically describe the evaluation setups,

which relates to REQ2. The classification of legitimate and illegitimate operations is part of an initial

attacker model and relates to REQ3.

3.1.2 Media Life-Cycle (Usage) and Attack Modelling

In the feeder paper [Kraetzer17], included as Chapter 6 of this cumulative habilitation treatise, a life-

cycle model for photo-ID documents is introduced, and selected attacks on the documents themselves

and on the digital images contained therein are discussed.
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In [Kraetzer17], the generalised process for the generation and use of an authentication token based

on a face image is reduced to three core steps: Image data acquisition, document generation and

document use

• In step 1, the face image is newly generated or acquired for re-use.

• In step 2, a person applies for a document, and all administrative and authentication steps that are

necessary for commissioning the document creation are performed by the corresponding authority.

The document is then created and picked up by or delivered to the applicant.

• In step 3, the document is used in authentication scenarios like border control, authentication at

the desk of a car rental agency, etc.

All three steps are characterised in [Kraetzer17] by the following four-tuple data set: the acting entity

(AE ; a person, group of persons, or, in some cases, also automated processes) performing the necessary

operations in the step, the identity (ID) assigned to the document (e.g., a passport number linked to a

citizen of a country), the provided subject (ProS ; equivalent to the intended validity set for the image

or document under consideration; traditionally this set contains exactly one person, but in the case of

the specific attacks discussed below several persons can be engaged), and the presented subject (PreS).

The specification of subjects requires additional explanation: In the case of a morphing attack, there is

a document that could be successfully used/provided by two (or more) subjects (ProS), but contains

only one ID and can at one point of time (e.g., a check at a border control station) be presented by

only one subject (PreS).

In addition to the steps and the entities, the model includes a third important component: The Checks

that connect two steps in the pipeline (Check 1 as the assessment of a supplied face image for docu-

ment creation purposes, and Check 2 as the validation of the document and the included face image

during a border control event). In these Checks, various document-specific characteristics are evalu-

ated, including, among others, authenticity (document as well as entity authenticity, the latter including

a comparison of ID, ProS and PreS) and integrity checks as well as checks of the compliance with

standards. [Kraetzer17] points out that at the time of writing of that paper, media forensic consider-

ations were mostly neglected for these Checks, even though most of the example processes discussed

in the paper already contained automated check components that could have benefited strongly from

media forensic detectors. Addressing this gap and providing a strong motivation for the improvement

of the Checks already in place by adding media forensic detectors was one of the goals of the ANANAS

research project.

In [Kraetzer17], the three misuse events selected as examples (presentation of a stolen document,

document forgery and face morphing attack) are discussed and then compared using the life-cycle and

attack modelling introduced. For details of this comparison, the reader is referred to pages 88 and 89

(in Chapter 6). In summary, only in the case of the face morphing attacks, the malicious operation

happens before the document generation step and enables the (presumably criminal) attacker to obtain

a ‘clean’, valid and un-tampered document issued by the official authority. This motivated the work on

an image history model in [Kraetzer17], which is summarised in this cumulative habilitation treatise

as part of Section 3.1.1.

Which image manipulations have to be considered as belonging to the class of ‘legitimate’ operations or

to the class of ‘illegitimate’ operations respectively depends on the nature of the corresponding Check

and has to be specified accordingly in the life-cycle model. The basic principle for the decision was

already introduced in Section 3.1.1: An image is considered to be authentic if only legitimate image

editing operations are present in its editing history. A single illegitimate operation in a path makes an

image non-authentic.

Synopsis: Media life-cycle models and corresponding attack models help to integrate different source

models into the bigger context of a typical media life cycle. Source characteristics expected at specific

points of time in a media life cycle (e.g., the camera image submitted for document generation, i.e.,

the input to Check 1 in that use case) might differ significantly from the source characteristics at other
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points in the cycle (e.g., the ICAO-compliant passport image stored into a current eMRTD30, i.e., the

input to Check 2 in that use case). Corresponding authenticity and integrity checks therefore always

have to consider the actual investigation context.

The results presented on the conceptual modelling of media generation processes and the correspond-

ing source models in [Kraetzer17] relate to REQ1 (as specified in Section 1.3). The discussion of

the different Checks and their constraints relates to the specification of different (targeted) forensic

investigation processes to implement these Checks and therefore to REQ3.

3.1.3 Attack Detection Modelling

For the testing of hypotheses in media forensics, it is important to model the characteristics supporting

the H0 hypothesis (i.e., the assumption that the evidence presents traces that the media object under

investigation is authentic; see [ENFSI22a]) as well as the H1 hypothesis (i.e., the assumption that the

evidence presents traces that the media object under investigation is not authentic). The first kind of

traces is strongly related to the source model for the media object, and the second is often supported

by specific attack models used in corresponding detectors. In the following sub-sections, detection

modelling approaches from feeder papers are summarised, including considerations for single detectors,

sequences of detectors, and multi-expert (fusion) detectors.

3.1.3.1 Attack Detection Modelling for Single Detectors

One description of an attack detection model (here used synonymously with ‘manipulation detection

model’) for FMA is the one introduced in the feeder paper [Neubert19]. At its core lies a stan-

dard pattern recognition pipeline consisting of pre-processing (here a down-scaling to achieve compli-

ance to ICAO requirements for face images to be used in Electronic Machine Readable Travel Doc-

uments (eMRTD)), feature extraction, and classification. The whole procedure is described in detail

in the feeder paper included as Chapter 7 of this cumulative habilitation treatise (pages 101 ff.). The

corresponding modelling of the three different kinds of face morphing attacks performed is presented

in the same feeder paper on page 100.

One of the main reasons for attack modelling in ANANAS was the realisation that there are more than

one possible technical implementions for the concept of face morphing attacks, and each of these po-

tential realisations leaves characteristic artefacts in the generated media objects. So instead of a typical

two-class problem (‘genuine’ vs. ‘morphed’), a multi-class approach is necessary for FMA detection in

practice (i.e., ‘genuine’ vs. ‘morph type 1’ vs. ‘morph type 2’, etc.).

In the feeder paper [Neubert19], the differentiated attacks and the corresponding modelling of attack

detection are used, among other research goals, to determine the impact of different morph generation

pipelines on the detection performance when using two different feature spaces.

Synopsis: In many cases, the capabilities for providing traces supporting the hypothesis that the

media object under investigation is not authentic rely on specific attack models used in corresponding

detectors. As a consequence, the detection performance of such detectors in most cases strongly relies

on the quality of these trained attack models, including the modelling of the classification problem

(in the example above taken from the feeder paper [Neubert19] discussed as being either a 2-class

problem (‘genuine’ vs. ‘morphed’) or an n-class model).

The results on attack detection modelling presented in [Neubert19] relate to REQ1 (necessary pre-

processing methods for increasing the robustness of FMA detection adapted for an application scenario),

REQ2 (evaluation of different potential influencing factors for the obtained error rates), REQ4 (re-

evaluation of methods from [Kraetzer17]), and REQ5 (description of the feature space extensions

performed and corresponding feature sub-space performance evaluations) as specified in Section 1.3.

30(Electronic) Machine Readable Travel Documents (eMRTD) are international travel documents (i.e., passports)
compliant with the International Civil Aviation Organization (ICAO) Doc. 9303.
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3.1.3.2 Attack Detection Modelling for Sequences of Detectors

One feeder paper significantly extending detection modelling from a single pattern recognition pipeline

to a sequence of classification operators is [Neubert18a]. In this paper, a three-stage detection

and verification sequence is introduced with the aim of reducing the false alarm rate (FAR) of the

overall FMA detection. The sequence includes a state-of-the-art morph detector on the first level,

which delivers a binary classification result (‘morph’ or ‘authentic’) for an input face image. The

second-level component is the 3-class morph pipeline footprint detector newly introduced in that paper,

which determines whether an image classified as ‘morph’ on the first level belongs to one of the three

trained morphing pipelines (‘complete morph’, ‘splicing morph’ or ‘combined morph’; see the feeder

paper [Neubert18a] included as Chapter 8 of this cumulative habilitation treatise). The third-level

component is a verification engine used to validate the classification result from the first level with the

knowledge derived on the second level. It performs the final decision between the determined morph

pipeline and the class ‘authentic’.

The results of this conceptual extension from a single detector to a detection and verification sequence

are empirically evaluated in feeder paper [Neubert18a] and show a significant reduction of the overall

FAR by approximately 84% at the cost of additional run-time for the second and third classification

and a slightly increased false missing rate (FMR), which rises by approximately 11%. In the feeder

paper [Neubert18a], it is argued that in the chosen application scenario (use of eMRTD at automated

border control (ABC) gates), the decrease of the FAR is far more significant than the impact on the

FAR (see page 111 in Chapter 8 of this cumulative habilitation treatise).

Synopsis: Sequences of detectors that incrementally generate and use knowledge about the media

object under investigation can improve the overall performance of a media forensics investigation. The

cost (increased run-time) is assumedly compensated by the benefits in terms of optimised performance

and assumed better interpretability of a sequence of context-defined decisions.

The results discussed on attack detection modelling for sequences of detectors relate to REQ1 (a detailed

image processing and feature extraction pipeline(s) description), REQ2 (a three-stage detection and

verification sequence, with FAR and FMR discussions) and REQ4 (re-evaluating previously used FMA

detectors), as specified in Section 1.3.

3.1.3.3 Attack Detection Modelling for Detector Fusion

There are many different approaches to defining fusion (or information fusion) in literature. In the

context of this habilitation treatise, the term is best understood as the rule-based, automated combina-

tion of (independent) expert systems into one (media) forensic mechanism. In academic literature on

various forms of security mechanisms, fusion has long been considered a significant means to increase

the performance (in terms of decision accuracy) of pattern recognition systems. The rise of solutions

driven by neural networks over the last few years has slightly changed the drive for fusion-based solu-

tions. Nevertheless, even today, many established academic authors in media forensics consider fusion

the only feasible solution to complex problems. A good example that supports this statement is the

following quote taken from the recent ‘Handbook of Digital Face Manipulation and Detection - From

DeepFakes to Morphing Attacks’ [Tolosana22] (as part of [Rathgeb22]):

“Recent studies suggest that no single feature/characteristic is adequate to build effective

and robust detectors of face manipulations. On the other hand, many successful real-life

machine learning solutions are based on ensemble models that fuse results from individual

types of features or detectors [...].”

In the same book, the detection problem and the need for a fusion-based solution are emphasised

even further by including the issue of counter-forensic measures, intended to interfere with forensic

analyses [Rathgeb22]:

“[A] skilled attacker, aware of the principles on which forensic tools work, may enact some

counter-forensic measure on purpose [...]. Therefore, the integration of multiple tools, all

designed to detect the same type of attack but under different approaches, may be expected
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to improve performance, and especially robustness with respect to both casual and malicious

disturbances.”

In [Kuncheva04], the following three types of reasons why a classifier ensemble might be better than a

single classifier are identified:

• Statistical: Instead of picking a potentially inadequate single classifier, it would be a safer option

to use a set of unrelated ones and consider all their outputs.

• Computational: Some training algorithms use hill-climbing or random methods, which might lead

to different local optima when initialised differently.

• Representational: It is possible that the classifier space considered for a problem does not contain

an optimal classifier.

Independently of the exact reason for choosing a fusion approach instead of a single classifier, the text-

book [Kuncheva04] explicitly warns that “an improvement on the single best classifier or on the group’s

average performance, for the general case, is not guaranteed.” By combining classifiers (or other expert

systems), the users hope for a more accurate decision at the expense of increased complexity, but this

cannot be guaranteed. This explains why forensic practitioners hesitate to rely on fusion. Here, the

fact that a potentially negative impact on classification accuracy might occur due to incorrect use or

parametrisation, and the increased complexity of fusion (including the inherently higher costs for plau-

sibility validation31) are considered to be in conflict with the fundamental requirements for forensics,

even though the potential benefits of fusion are acknowledged. In the feeder paper [Kraetzer21] (itself

loosely based on a conference paper originally published as [Makrushin19]), included as Chapter 9 of

this cumulative habilitation treatise, an in-depth discussion of the pros and cons of information fusion

approaches in the context of media forensics is provided for the application scenario of digital image

authenticity and integrity analysis for face morphing attack detection.

The findings of the feeder paper [Kraetzer21] are summarised in the following. The empirical eval-

uations performed for the application example of FMA detection for image authenticity and integrity

verification compare the detection accuracy of five single face morphing attack detectors selected as

examples and four fusion approaches (one at decision level (majority voting), and three at matching

score level (weighted linear combination, Dempster-Shafer Theory of Evidence, and forensic likelihood

ratio)). In the summary of the fusion experiments’ results presented in [Kraetzer21] (see Chapter 9,

pp. 133 ff. of this document), three main reasons are given why the fusion experiments fail to outperform

the best individual classifier in the presented results:

1. “Lack of diversity of the individual detectors”: Four of the five individual detectors were developed

by the same research group and rely on training of Deep Convolutional Neural Networks (DCNN)

with similar data sets but strong variances in data augmentation. Hence, it is very likely that

these detectors make mistakes on the same samples in field application. Only the fifth detector

relies on entirely different morphing detection clues and is developed by a different research group

using a different data set for training. In theory, an assumed clustering of four apparently very

similar detectors might prove a strong bias in fusion that should be avoided at any cost. In

practice, the experiments on different ensembles of classifiers in [Kraetzer21] showed a better

performance if only those four detectors were used instead of all five.

2. “Lack of performance in individual detectors”: The results presented show that for one of the five

individual detectors, significant generalisation problems occur for the estimated default decision

threshold. Better calibration of the method (here, using more diverse datasets for the estimation

of a suitable decision threshold) resulted in significantly lower error rates.

3. “Lack of similarity between the training and test data”: Different proprietary data sets were

used for training the individual classifiers, which is a very common method, but the datasets for

31As pointed out in the ENFSI documents analysed in Section 2.3.4, technical capabilities (such as accuracy or through-
put) are by far not the most significant characteristics of forensic methods. In general, these are usually rated by forensic
practitioners by their maturity, i.e., their scientific admissibility.
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adjusting fusion parameters (evaluation data set) and for actual testing are also very different

from each other and from the training data set. It is doubtful whether it makes sense to use

different data sources for adjusting fusion parameters and for testing, but this is the real-life

situation: In practice, it is very difficult to precisely foresee and provide significant in-field data

at the stage of system development or parameter adjustment. Moreover, there is no guarantee

that the in-field data that will be obtained in the future is at all similar to the presented training

data.

The main findings of the feeder paper [Kraetzer21] for the chosen application domain of face morphing

attack detection for image authenticity and integrity verification are generalised in the paper itself as

follows:

“The results presented in the empirical evaluations in this paper demonstrate that fusion

can fail even with a set of relevant individual classifiers. [...] Summarizing the lessons learned

from the approach of using fusion for [face morphing attack detection] detection as done

in this paper and drawing some generalization toward other media forensics classification

or decision problems, the following has to be said: The requirements for (media) forensic

methods in terms of scientific admissibility (or Daubert compliance) are obviously important!

Methods should indeed be published upon and peer reviewed, their error rates should be

precisely known and standards for the application of methods should be known. But the

threat that Champod and Vuille identify as a problem of ascertaining the error rates of a

test ‘can prove misleading if not all its complexities are understood’ [Champod11] plays

a very significant role as demonstrated in the evaluations performed here. Besides the

requirements for individual expert systems to be used in forensic investigations (including its

accurateness), if it comes to information fusion, additional constraints have to be observed.

These are, at least:

• The diversity of the detectors, which has to be ascertained either by knowledge about

the precise means of decision generation and the diversity of those means or empirically.

• An independent and thorough benchmarking of detectors to establish also an idea on

the generalization power of performance claims made by their creators.

• Considerations on the similarity/correlation between training data available (during

training of the individual classifiers and the training of the fusion methods) and the

data to be expected in field application are very important. If very precise assumptions

are possible on the application data, weighting might be applicable in fusion. Else-

wise, only unweighted fusion strategies like majority voting or the sum-rule should be

employed, if any fusion is used in those cases at all.

The diversity issue becomes very problematic if features (as the means to represent a

decision problem in a feature space) are not hand crafted by experts but learned, e.g., by

DCNN. In this paper, the diversity problem of the detectors used here as ‘black boxes’ has

been established in direct contact with the developers of those methods, which is hardly an

option in most field applications.

Also, the recent trend to generate synthetic data sets for the training of pattern recog-

nition methods (either traditional or neural network based) introduces another degree of

freedom into the characteristics of datasets. [T]his approach is used to avoid tedious data

collection tasks while creating sufficiently sized data sets for modern day data-greedy clas-

sifiers. The problem here is the influence of the synthesis process on its output (i.e., the

synthesis-specific artifacts) that will become part of the model trained by each classifier. It

is related to the questions of source characteristics imposing themselves into trained models

but carries a different degree of relevance for forensic application scenarios.

The general problem with training- and test data being mismatched in practice is hardly

new. It hardly ever occurs in scientific papers on applied pattern recognition, because it

can easily be prevented in lab tests. Nevertheless, it is a very good argument why media

forensics methods should undergo rigorous testing and benchmarking by third parties, like

50



3.2. Work Published in the Application Domain of DeepFake Detection

it is done in the field of [face morphing attack detection] in the National Institute of Stan-

dards and Technology (NIST) FRVT MORPH challenge. Only such joint efforts can lead

to methods that might become mature enough to aim at court admissibility.”

Synopsis: In academic research on media forensics, (automated) information fusion is often seen as

a valuable method to improve detection performances, bought at the cost of increased run-time com-

plexity. Forensic practitioners on the other hand are reluctant to rely on fusion, due to the associated

risk that the overall performance might be reduced (which can happen in practice, as shown with the

results in [Kraetzer21]), and the more severe problem of explainability of the results.

The results discussed for attack detection modelling for detector fusion relate to REQ1 (in-depth discus-

sion of the necessary conditions as well as potential pros and cons of using information fusion approaches

in the context of media forensics), REQ2 (empirical evaluations using a set of FMA detectors with dif-

ferent fusion methods and fusion ensemble composition strategies), REQ3 (discussion on the need of

benchmarking and proficiency testing for media forensics methods, especially in fusion setups), REQ4

(identification of diversity criteria for methods used in fusion), and REQ5 (systematic description of the

used fusion methods and fusion ensemble composition strategies), as specified in Section 1.3.

3.1.4 Result Overview for the Application Domain of Face Morph Attack
Detection

The work performed in this context focuses on finding means for specific application scenarios to

combine image editing history models, attacker models and attack detection models into a unified

picture. This work focuses primarily on research on the modelling of media generation processes and

source models (here, the introduced descriptive image editing history model and life-cycle model for

photo-identity (ID) documents). This pays respect to the significance placed on such source models,

e.g., in [ENFSI22a]:

“[T]he properties of the retrievable traces are analysed, to determine if they support or

oppose the hypothesis that the recording has been modified. [...] A key objective of any

authenticity analysis is therefore to determine whether observed features of a piece of [...]

evidence were introduced by the original recording process or by subsequent actions.”

A second focus of the work in this application domain is placed on different attack detection models,

including single detector approaches, sequences of detectors, and fusion approaches.

The results presented in the corresponding feeder papers contribute to all requirements REQ1-REQ5

derived in the problem outline of this treatise in Section 1.3.

3.2 Work Published in the Application Domain of DeepFake De-

tection

The operational modelling work done by the author in the context of the FAKE-ID project (2020-

2024, see Section 1.2) supports the empirical work of the research group leader and of colleagues

on the topic of DeepFake detection for digital videos. In the context of this ongoing research effort,

various abstractions of forensic processes were presented in published work, refining an approach for

operational modelling based on the German BSI ‘Leitfaden IT-Forensik’ [BSI11] and on publications

extending these German national guidelines for IT forensic investigations, such as the Data Centric

Examination Approach (DCEA) presented in [Kiltz20]. An overview of selected work on this topic is

provided in this section, excerpting the work from the corresponding feeder papers and discussing them

in the wider context of this cumulative habilitation treatise.

3.2.1 Initial Steps in Operational Modelling for DeepFake Detection

In the feeder paper [Siegel21] (included as Chapter 10 of this cumulative habilitation treatise), the

first research paper co-authored by the author in the scope of the FAKE-ID research project, a first step
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towards an operational model for DeepFake detection is made. The paper projects the needs identified

for such an operational model onto the German BSI ‘Leitfaden IT-Forensik’ [BSI11] and the DCEA.

The paper concludes with the synopsis that the DCEA is “not yet perfectly capable to fit the needs of

media forensics analyses” and provides a justification of this claim as well as initial ideas for necessary

process modelling expansions based on this established best practice.

The criticism (or rather identification of needs for expansion of this best practice model) in [Siegel21]

focuses on two topics: on the one hand, the forensic data models available in the BSI ‘Leitfaden IT-

Forensik’ and the DCEA, and on the other hand, the projection onto phases and forensic method classes.

Regarding the data models, [Siegel21] discusses two existing models from [Kiltz15] and [Kiltz20]: the

original model for digital forensics and the adaptation thereof presented in [Kiltz15] for the field of

digitized forensics (illustrated for the field of dactyloscopy32). The synopsis of [Siegel21] (see also

pp. 152 and 153 in Chapter 10 of this cumulative habilitation treatise) on this discussion is:

“One important realization when trying to apply the DCEA data types for digital or digitized

forensics [...] is that they do not perfectly match the media forensics task at hand. Using

the original model for digital forensics, only four of the data types would be covered (raw

data differentiated into different user data media streams (video, audio, network stream)

and possibly hardware data (derived from the camera / microphone used) as well as details

about data). If the model for digitized dactyloscopy is used, which is slightly better matching

the characteristics of our application scenario, then eight of the ten data types would be

directly relevant [...] while one other would very likely also to be of significance [...].”

The authors reason that “an adapted data type model for media forensics would be required to be able

to make use of the full potential of the DCEA in this context”. Such a domain-adapted data model is

presented in the follow-up publication [Siegel22].

Regarding the phases and forensic method classes, a first projection of the different operational aspects

of training, validating and applying the DeepFake detectors in the established process model DCEA is

performed in [Siegel21] to show how such media forensics methods could be integrated into forensic

procedures. The first of two items discussed in this context is the question of where a DeepFake detector

is supposed to be placed in an operational model. The following answer is given in [Siegel21]:

“There exist two potential operation points in the phases described by DCEA: Either as

a method of Explicit means of intrusion detection (EMID) as part of incident detection

mechanisms, which would place the whole DeepFake detection with the training of the

method and its application into the phase of Strategic Preparation (SP), or in Scaling

of methods for evidence gathering (SMG) which would place DeepFake detection after

an incident is detected or suspected and place corresponding components in the phases

Operational Preparation (OP), Data Gathering (DG), Data Investigation (DI) and Data

Analysis (DA). These two distinct operation points as a live detector or as means of

post-mortem (or a posterior) analysis in data investigation have, amongst other effects,

significant impact on the training scenario that can be assumed: In case of application as

an live detector EMID in SP only pre-trained models can be applied. In case of a post-

mortem SMG detector, in OP the material to be investigated can be analysed to design

targeted training datasets perfectly matching the characteristics encountered. Using those

sets (and own DeepFake algorithms to generate also specimen for this class) optimal models

could be trained for each case.”

The second item concerns questions of reproducibility, explainability and interpretability for media

forensics methods based on machine learning. Here, the following summary is presented in [Siegel21]:

“The accompanying documentation in DCEA is meant to allow for interpretability and

plausibility validation steps while compiling the case documentation in DO. For our work

32Forensic fingerprint analysis and comparison

52



3.2. Work Published in the Application Domain of DeepFake Detection

this implies not only documenting all details of the pattern recognition process at hand but

also using this data to reason about the plausibility of decisions (e.g. by comparing the

characteristics of training- and test sets to determine questions of generalisation power).”

In addition to these initial steps on the path towards operational modelling, [Siegel21] also provides

the conceptual model for a fusion-based DeepFake detection pipeline. This conceptual model is used in

later publications, such as [Siegel22], as the basis for the operational modelling of DeepFake detection

processes.

Synopsis: All components of operational models for forensic processes require domain adaptation for

specific application domains. In [Siegel21], the needs for such a domain adaptation are discussed using

the example of the forensic data model component of the DCEA as foundation of the corresponding

research work.

The results presented on conceptual and operational modelling relate to REQ1 (modelling the investi-

gation contexts for DeepFake detection), REQ2 (empirical evaluation with three sets of hand-crafted

features and three different fusion strategies), REQ3 (first steps of a projection onto a pre-existing, data-

centric examination approach for conceptual and operational forensics process modelling), and REQ5

(detailed descriptions of the modelling background and implementation of the individual detectors and

used fusion operators), as specified in Section 1.3.

3.2.2 A Domain-Adapted Data Model for Media Forensics

In the feeder paper [Siegel22] (included as Chapter 11 of this cumulative habilitation treatise), the

work of [Siegel21] is expanded by proposing a domain-adapted data model for media forensics and

illustrating its applicability for the application scenario of DeepFake detection. The paper points out

that “[p]erforming abstract data modeling without precise knowledge about the context, in which the

data type is supposed to be used, is a futile task”. As a consequence, a conceptual model for a gen-

eralised media forensics analysis process is first briefly discussed in the paper. Typical data streams

within such a process are then identified, followed by a differentiation of the data streams into data types.

In summary, the following five data streams are identified in [Siegel22] (for details, see pp. 176 ff.):

• The process description is proposed as a sourceable or instantiable template, which is generated

before starting the investigation.

• The media data contains all forms of media, such as images, videos, audio and/or network streams

used and created in the course of the investigation process.

• The non-media output of the individual examination steps is gathered into the data stream forensic

process/pipeline internal data and reporting.

• The process control data is the combination of all settings used in the investigation, including all

parameters and models used.

• The contextual data contains all information regarding the context of a specific investigation.

The following summary is presented in [Siegel22] concerning these data streams:

“This subdivision of the data associated with an investigation is a functional classification

paying respect on one hand to the characteristics of data objects involved and on the other

hand to operational and security requirements. The media data stream of an investigation

might easily contain terabytes of video data which would require a access to a private cloud

for efficient handling, while the reporting data would assumed be much smaller in data

size but be more frequent and have other constraints like reliable time-stamping. From the

operational and security perspective also different protection levels (and as a consequence

security mechanisms) would be required depending on the nature of the objects in a stream

and the risks associated.”
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The Media Forensic Data Types (MFDTs) summarised in Table 3.1 are derived based on the data

streams. For details on these MFDTs, the reader is referred to page 177 of this cumulative habilitation

treatise. A projection between the five defined data streams, the data types for digitized forensics (DD)

from [Kiltz20], and the domain-adapted data model is shown in Figure 3.1.

These MFDTs are then used in [Siegel22] for modelling forensic functions or procedural elements (op-

erators) as well as forensic processes (see Sections 3.2.3 and 3.2.4).

Data type Derived from DD Description

MFDT1 - Digital in-
put data

DD1 The initial media data considered for the investigation.

MFDT2 - Processed
media data

DD2 Results of transformations to media data (e.g., grayscale con-
version, cropping)

MFDT3 - Contex-
tual data

DD3 Case-specific information (e.g., for fairness evaluation)

MFDT4 - Parameter
data

DD4 Contains settings and other parameters used for acquisition,
investigation and analysis

MFDT5 - Examina-
tion data

DD5, DD6, DD8 Includes the traces, patterns, anomalies, etc. that lead to an
examination result

MFDT6 - Model
data

DD7 Trained model data (e.g., face detection and model classifica-
tion data)

MFDT7 - Log data newly defined Data relevant for the administration of the system (e.g., system
logs)

MFDT8 - Chain of
custody & report
data

DD9, DD10 Data used to ensure integrity and authenticity (e.g., hashes and
time stamps) as well as the accompanying documentation for
the final report

Table 3.1: Media Forensic Data Types (MFDTs) proposed in [Siegel22], adapted from [Siegel22]

Figure 3.1: Mapping between the five data streams identified in [Siegel22], the forensic data types (DD) for digitized
forensics as presented in [Kiltz20] and [Kiltz15], and the domain-adapted data model for the media
forensics application scenario of DeepFake detection used in this treatise (image based on [Siegel22]).

Synopsis: One of the unsolved issues identified in [Siegel21], the lack of a suitable forensic data

model, is addressed here by proposing MFDTs. This design of a modelling component relates to REQ3,

as specified in Section 1.3.

Potential expansions of this modelling work would have to consider additional aspects, including privacy

concerns33 as well as material review data (see e.g., https://forensicworkinggroup.com/MAT.pdf)

to provide even more structured (i.e., closer to the actual data) representations.

33[Vaughan20] states on ‘Ethical governance and oversight’:

“The increasing scope of digital forensic capabilities raises new ethical dilemmas for policing to consider.
Some of these overlap with other digital investigation issues, such as using AI to analyse datasets and
concerns about aggregating investigative data. Other concerns are particular to digital forensics (DF)
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3.2.3 Modelling of Procedural Elements

In the feeder paper [Siegel22] (included as Chapter 11 of this cumulative habilitation treatise), the

core component of all operational models is defined as an ‘operator’ (or ‘processing operation’). It is

considered to be an atomar processing black box component with an identifier and (usually) a description

of the processing performed in this operation. The following connectors are defined for an operator:

• input

• output

• parameters

• log data

• (model data)

The fifth connector is conditional. For this part, [Siegel22] states:

“To pay respects to the particularities of this field and make the following modeling task

easier, a fifth connector is defined within this paper for a specific type of operator which

requires a knowledge representation or a model for its processing operation. In that case,

this fifth connector is labeled model. Depending on the nature of the operator this could

be a rule set, signature set, statistical model, neural model, or any other form of knowledge

representation.”

In [Siegel22], an example of a processing pipeline for face detection is described as a sequential com-

bination of three atomar operators. This example is taken from the work presented on DeepFake

detection and represents the sub-routine of face segmentation as a necessary step in DeepFake detec-

tion for videos. The first operator in this three-step processing sub-routine is loading the video from

its input. The parameters need to be chosen based on the video format and the output is stored as

a video stream. In the next operator, this video stream is then split into single frames as necessary

pre-processing for an image-based face detection and segmentation algorithm. For the face detection

and segmentation, a pre-trained model with 68 landmarks (here from [King09]) is loaded at the third

operator’s model connector. This is the only step in this example where model data is used.

Each step provides corresponding process documentation in the form of logs and chain of custody (CoC)

data at its log data connector.

Synopsis: Atomar ‘operators’ are considered here as the core component of all operational modelling

work. Their combination enables the creation of more complex processes. This process modelling issue

relates to REQ3, as specified in Section 1.3.

3.2.4 Modelling of Forensic Processes

Combining the work on MFDTs and the ‘operators’ discussed in Sections 3.2.2 and 3.2.3 as well as

the phase-driven modelling of forensic processes as discussed in the DCEA [Kiltz20], the feeder paper

[Kraetzer22] updates the operator description, adding the ‘model’ connector as a conditional compo-

nent (i.e., only available when a model-driven operation is considered).

The next step, taken in feeder paper [Siegel22] is to place the aforementioned components into an initial

operational model for media forensics investigations for the application example of DeepFake detection.

This operational model takes into account the role assigned in the BSI ‘Leitfaden IT-Forensik’ [BSI11]

and the DCEA [Kiltz20] to the phase of SP. In this phase, all forensic methods need to be prepared (and

evaluated, including proficiency testing). This also includes the training of models required for model-

driven forensic methods. Later, as part of the OP or DI and DA phases, these models are then loaded

and used. This design and preparation of a forensic investigation pipeline is called the templating of a

forensic process in [Siegel22]. Its use is referred to as the instantiation of the corresponding forensic

science. For example, managing sensitive personal data coming from mobile phone analysis, which involves
‘collateral intrusion’ into others’ privacy when reviewing messages, or friends and family photographs.”
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process. For illustrations of the templating and instantiation, the reader is referred to pages 177 to 179

of this cumulative habilitation treatise.

Based on these initial examples, the feeder paper [Kraetzer22] (included as Chapter 12 of this cumula-

tive habilitation treatise) presents more detailed operational modelling considerations on the orchestra-

tion of operators (and sub-processes) in forensic investigation contexts (see pages 196 and 197). The

synopsis is presented in Chapter 12 as follows:

“At the end of the process in SP, well specified templates exist that can easily be instantiated

into practical investigations as soon as an event/incident triggers an investigation request.”

Efforts put into the SP of a forensic process are assumed to prepare for an effective response in case of

an incident or post-mortem investigation. They are intended to increase forensic readiness of response

and investigation units as well as strengthen the whole field by providing standardised (and certified)

methods and procedures, This is addressed in [Kraetzer22] as follows:

“[In OP,] a prepared (as well as benchmarked and potentially certified) template from SP

is filled with life by invoking the corresponding orchestration of operators on the assigned

processing nodes. Decision models pre-trained in SP are loaded [...] together with the used

pre-processor and classifier parameters. Thus initialised, the operators are then applied

to the input data to the process (MFDT1) to determine traces or information relevant

for the investigation at hand. [...] When a template is then instantiated for a case in

OP, the required documentation packages are marshalled together into the investigation

accompanying documentation of the case.”

What this hard split into SP and operations (OP, DG, DI, DA and Documentation phase (DO)) is

supposed to provide are more precise process descriptions, which can more easily be verified by third

parties. Furthermore, they make training, benchmarking and testing procedures more transparent and

are thus intended to improve the identification of influence factors, training bias and potential error

sources. To make this split less absolute and to facilitate learning from issues encountered in instantia-

tion, the natural interaction between the SP and operations of forensic processes is reflected upon in an

update of the phase model by including an explicit feedback loop (from OP) to the SP (see page 190

in Chapter 12).

Synopsis: Operational models for model-driven methods need to take into account the fact that these

models have to be trained and evaluated prior to application. This is acknowledged here by splitting the

proposed operational model into the templating in SP and the instantiation in a specific investigation

in the OP phase. In a well-prepared forensic process, the instantiation of an investigation template in

OP would (besides other things) trigger the initialisation of the accompanying documentation of the

investigation by marshalling the corresponding documentation packages.

This process modelling issue relates to REQ3, as specified in Section 1.3.

3.2.5 Attack Detection Modelling for the Application Domain of DeepFake
Detection

Even though the focus of the work in this application domain lies on operational modelling, all feeder

papers for this application scenario also contain empirical studies on DeepFake detection, based on the

corresponding attack detection modelling. The work in [Siegel21], for example, focuses on three sets

of hand-crafted features and three different fusion strategies to implement DeepFake detection. The

results obtained with third-party reference databases show performances similar (peak AUC > 0.95)

to those of methods using features learned by neural networks. In [Siegel22], the work presented

in [Siegel21] for a fusion-based DeepFake detection approach is re-structured and expanded using

the newly introduced operational modelling components (see Section 3.2.3 above). In [Kraetzer22]

(included as Chapter 12 in this cumulative habilitation treatise), the set of detectors and the opera-

tional modelling components from the previous papers are revisited, expanded and re-evaluated in a
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benchmarking-driven approach for fusion weight determination for the DeepFake detection framework.

In this context, two new feature spaces (both semantically analysing the blinking behaviour in a video)

are integrated into the framework and then evaluated. For this evaluation, a discussion on benchmark-

ing metrics (with a focus on Cohens Kappa) is presented.

In [Siegel23b], a detector from [Siegel21] is re-evaluated using data minimisation. It is shown that the

achieved accuracy is not significantly impaired. These empirical evaluations performed to establish the

trade-off between detection performance and data minimisation for DeepFake detection are motivated

by the European Union (EU) General Data Protection Regulation (GDPR).

[Kraetzer23] (included as Chapter 14 in this cumulative habilitation treatise) expands the DeepFake

detection from a 2-class problem to an n-class decision problem, presenting results for the potential

attribution/identification of the DeepFake generation method used. In the accompanying empirical

evaluations, an estimation of the generalisation power (or lack thereof) of pre-existing DeepFake de-

tectors in intra- and inter-data set benchmarking using different data selection strategies and classifiers

is presented. The results presented in the context of the n-class DeepFake classification experiments

imply significant problems with overfitting DeepFake detection models to specific DeepFake generation

methods.

Despite the criticism presented in Section 3.1.3.3 regarding forensic solutions based on information

fusion, they are considered to be one of the few existing options to overcome this problem with the

generalisation power of DeepFake detection models.

While fusion is widely believed to be strongly beneficial to decision problem solution approaches like

pattern recognition or anomaly detection, publications such as [Kraetzer21] and [Kraetzer22] point

out that information fusion, which indeed has a huge potential to improve the accuracy of pattern

recognition systems, is still applied with great hesitation in the forensic sciences. The reason given is

that a potentially negative impact on the classification accuracy if wrongly used or parameterised as

well as the increased complexity (and the inherently higher costs for plausibility validation) of fusion

are in conflict with the fundamental requirements for forensics. To overcome this hesitation, the

typical solution is the following (discussion expanded from [Kraetzer22], page 197 of this cumulative

habilitation treatise):

• Very thoroughly benchmark under different training and evaluation scenarios (see [Neubert18b]

and (for DeepFake detection) [Siegel21] as well as [Kraetzer22]) the individual expert systems

(here detectors) to be used in the fusion to precisely establish their requirements and capabilities

as well as the error rates attached

• Benchmark different fusion schemes under different training and evaluation scenarios (see

[Kraetzer21]), and establish the impact of different weighting strategies on the (detection)

performance and error patterns

• Design systems as decision support systems instead of automated solutions to enable human-in-

control principles

• Consider decision confidences (where available) for opinion forming

• Allow for auditability as well as human oversight for the entire process

Especially the third and the last item, the aspects of human-in-control and the required human over-

sight, are recent trends for critical AI applications (incl. forensics) which are, among other regulations,

manifested in the current initiative towards an EU Artificial Intelligence Act (AIA, see Section 3.2.6).

Synopsis: Despite the fact that the focus of the work in this application domain lies on operational

modelling, all papers published also contain conceptual modelling results, usually in the form of empirical

experiments for DeepFake detection. The results of these, usually evaluations based on detector fusion,

include, among other things, descriptions of feature sets suitable for detection (e.g., the eye-blinking

semantics features from [Kraetzer22]). These DeepFake detection experiments are accompanied in the

later papers by additional investigation goals including recent perspectives such as data minimisation

(motivated by GDPR considerations) or the attribution or identification of the DeepFake generation
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method used. Especially the latter is of significance for the entire application domain, since the results

obtained show a significant overfitting of the evaluated DeepFake detection models to specific Deep-

Fake generation methods. This raises the question of which generalisation power DeepFake detection

methods can actually achieve in unconstrained detection (i.e., without an applicable source model or

an indication which DeepFake generation method might have been used).

The results presented for all of these empirical research efforts relate to REQ2 and REQ4 respectively,

iteratively challenging previously achieved results for the evaluation of methods with new investigation

procedures (e.g., the data minimisation in [Siegel23b]).

3.2.6 Selected GDPR and AIA Considerations for DeepFake Detection

Later feeder papers for this application scenario, like [Siegel23b] and [Kraetzer23], also consider shifts

in this research domain that are motivated not by technical innovations but rather by organisational

and regulatory aspects.

In [Siegel23b], the potential impact of data minimisation in DeepFake detection model generation

is discussed with a series of experiments. One DeepFake detection approach is used as an example

to show that data minimisation can be successfully applied in this context, without significant loss of

detection accuracy.

For [Kraetzer23], the operational modelling work discussed in Section 3.2.3 is expanded to include

human-in-the-loop and human-in-control aspects as made necessary by changing requirements/legisla-

tion world-wide, esp. the (upcoming) EU Artificial Intelligence Act (AIA). This is consistent with the

emphasis put on ‘human-based functions’ and the required qualifications and proficiency testing for the

involved personnel in ENFSI BPM FIT [ENFSI15].

Additionally, [Kraetzer23] focuses on the need to separate duties in the evaluation, benchmarking and

certification of model-driven forensic methods (see Chapter 14, page 227).

Synopsis: Even though the research community in media forensics is strongly focused on technical

developments (usually more reliable detectors), changing environmental conditions, including changing

regulatory requirements, also have to be considered by the researchers. One relevant act of legislation

that will influence the development and use of methods based on machine learning (at least in Europe)

is the (upcoming) EU AIA.

The results presented for these research efforts relate to REQ3 (in terms of updates of standardised

procedures that might become necessary) and (to some extend) to REQ4 (existing methods might have

to undergo re-evaluation under changed evaluation criteria), as specified in Section 1.3.

3.2.7 Reflection on the Conceptual and Operational Modelling in Relation to
ENFSI BPM for Digital Image Authentication

In [Siegel23a], conceptual modelling aspects from [Kraetzer22] and [Kraetzer23] are projected

onto the conceptual model of the ENFSI Best Practice Manual (BPM) for Digital Image Authenti-

cation (DIA) [ENFSI21] to discuss the similarities and differences between both models, showing how

the research work done in academia might expand the conceptual and operational models discussed in

expert groups composed of forensic practitioners (such as the ENFSI Expert Working Group (EWG)).

The most important outcome of [Siegel23a] for this habilitation treatise is that the categorisation of

forensic methods proposed in [ENFSI21] provides a starting point for modelling the classes of forensic

methods in media forensics that seems to be much better suited for this domain than the original

third pillar of the ‘Leitfaden IT-Forensik’ model (the classes of forensic methods). The results of this

modelling is shown on page 236 in Chapter 15 of this cumulative habilitation treatise.

Synopsis: Selected ENFSI BPMs (esp. [ENFSI15]) call for a closer cooperation of forensic practitioners

and research communities in the corresponding fields. While this might at first glance seem unattractive

to researchers, who are caught in their own mechanisms, including the race for funding summarised

in Section 2.2.2, it would be hugely beneficial to the overall field. As a consequence, cutting-edge re-

search would also have to take into account existing standardisation documents (like the ENFSI BPMs
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or other documents of similar nature like the BSI ‘Leitfaden IT-Forensik’) and indicate how to update

such documents accordingly to reduce the gap between research and field application in this domain.

The results presented for these research efforts relate to REQ3 (identify possibilities for updating stan-

dards), as specified in Section 1.3.

3.2.8 Overview of Results for the Application Domain of DeepFake Detection

The work performed in this context focuses on operational modelling aspects. On the basis of the orig-

inal code of practice for IT forensics published by the German Federal Office for Information Security

(BSI) in its ‘Leitfaden IT-Forensik’ [BSI11] (see Section 2.3.3.1) and the additions to its process model

published by others (see Section 2.3.3.2), corresponding expansions, mostly to the forensic data model

and the phase-driven investigation model, are presented. In place of the third pillar of the ‘Leitfaden

IT-Forensik ’ model (the classes of forensic methods), a different starting point for suitable modelling

is identified for media forensics with the categorisation of forensic methods proposed in [ENFSI21].

Regarding the forensic data model, the feeder papers provide a domain-adapted version that is derived

in [Siegel22] from the data model for digitized forensics as presented in [Kiltz20] and [Kiltz15] (see

Section 3.2.2). In the papers following [Siegel22], the MFDTs are used to describe the various inputs

and outputs of operational blocks in forensic (sub-)processes (see below).

Regarding the work on the phase-driven investigation model, the following three aspects form the

main items of the operational modelling work performed in the context of this habilitation project:

the modelling of operational elements (‘operators’), their orchestration into (sub-)processes, and the

considerations on templating versus instantiation of forensic processes.

Figure 3.2 compares three different models of operational elements (called ‘operators’ in Section 3.2.3).

The first sub-figure is taken from [ENFSI15] and shows the very rudimentary degree of granularity

found there. The two sub-figures (b) and (c) show two different iterations of the author’s own work

(from [Kraetzer22] and [Kraetzer23]). The expansions illustrate first the combination of process

and data modelling performed in [Kraetzer22], and then (marked in red in the sub-figure (c)) the

‘human-in-the-loop’ and ‘human-in-control’ aspects discussed in [Kraetzer23].

Regarding the orchestration of forensic (sub-)processes, Figure 3.3 compares two different examples,

one from the ENFSI BPM FIT [ENFSI15] and one from [Siegel22]. The main difference is the level of

detail used in the modelling (here the data streams and data flows), but the intention behind the split

into sub-processes and functions is the same in both publications: to allow for a more precise description

of process components and to make benchmarking, proficiency testing and (potential) certification of

functions, sub-processes and processes easier.
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(a) Process component modelling in [ENFSI15]

(b) Process component (operator) in [Kraetzer22]

(c) Process component as modelled in [Kraetzer23];
HO = ‘human operator’; Sys Admin = system ad-
ministrator

Figure 3.2: Comparison of the process component modelling from ENFSI BPM FIT (sub-figure (a)), and two
different iterations of the author’s own work (sub-figures (b) and (c)).

(a) Process modelling in [ENFSI15]

(b) Sub-process modelling from [Siegel22]

Figure 3.3: Comparison of the (sub-)process component modelling from ENFSI BPM FIT (sub-figure (a)) and one
example of the author’s own work (sub-figure (b)).
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Regarding the considerations on templating versus instantiation of forensic processes, Figure 3.4 shows

two different descriptions of the same investigation process. Sub-figure (a) represents an early con-

ceptual model of the investigation as published in [Siegel21]. Sub-figures (b) and (c) represent the

templating of a sub-process selected as an example in the phase of SP and the instantiation of the

whole process in the phase of OP of an investigation. It should be noted here that later feeder papers

like [Kraetzer23] expand this operational modelling even further, e.g., by including the different hu-

man operators required in the practical instantiation of a forensic investigation (see Chapter 14 of this

cumulative habilitation treatise).

In addition to the much more precise description of the investigation process that is made possible by

the concept of templating and instantiation, this concept also motivates the feedback loop from the

investigations into SP that was first mentioned in [Kraetzer22]. It has to be assumed that during

the investigation process itself, necessary improvements or updates to templates will be identified by

the human operators/practitioners tasked with conducting the corresponding (sub-)processes. Usually,

these would be communicated to the case leader who in turn (considering the investigation context)

should be in a position to invoke updates of the template (and potentially initiate the re-certification

of the updated template, etc.) if such a modification seems beneficial.

Only the feeder paper [Siegel23a] addresses the issue of the classification of forensic methods,

the third main aspect in the BSI ‘Leitfaden IT-Forensik’ [BSI11]. As discussed in Section 3.2.7, the

classification scheme introduced in the ENFSI BPM for Digital Image Authentication (DIA) [ENFSI21]

seems more suitable for this application domain than the original scheme introduced in [BSI11].

In summary, the results presented here and in the corresponding feeder papers contribute to all require-

ments REQ1-REQ5 derived in the problem outline of this treatise in Section 1.3.
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(a) Evaluation context modelling/description in [Siegel21], including the detector (DFmouth) as example.

(b) Sub-process templating in the phase of Strategic Preparation (SP) for one detector
(DFmouth) selected as example. Image taken from [Siegel22].

(c) Process instantiation in the phase of Operational Preparation (OP) of the whole investigation process, including the sub-process for
the detector DFmouth. Image taken from [Siegel22].

Figure 3.4: Comparison of two different illustrations of the same investigation process: Sub-figure (a) shows a
fusion-based detection approach as discussed in [Siegel21]; sub-figures (b) and (c) represent a later
modelling of the same process (from [Siegel22]), with the templating (of the detector (DFmouth)
selected as example) in sub-figure (b) and instantiation in sub-figure (c).
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3.3 Work Published in the Application Domain of Forensic Ste-

ganalysis

The conceptual modelling work done by the author in the context of the UNCOVER project (2021-2024,

see Section 1.2) supports the empirical work of the research group leader and colleagues on the topic

of forensic steganalysis. As explained in Section 1.2, parts of the research project UNCOVER have

been classified by the EU as RESTREINT UE/EU RESTRICTED (R-UE/EU-R). As a consequence,

publication activity on the results in the project is significantly reduced in comparison to other research

projects with a significant number of academic partners. Only one paper addressing this research

context is used as a feeder paper in this cumulative habilitation treatise. In the case of [Kraetzer24],

the publication underwent the specified procedure with the UNCOVER security advisory board (SAB) to

prepare the paper for publication and verify that its content does not reveal any classified information.

The following overviews are excerpts of the findings from this feeder paper and discuss them in the

wider context of this cumulative habilitation treatise.

3.3.1 Conceptual Modelling for Forensic Steganalysis

In [Kraetzer24] (included as Chapter 16 of this cumulative habilitation treatise), the conceptual mod-

elling work in forensic steganalysis is summarised based on [Provos02] and [Fridrich09] (see page 247).

In [Provos02], the authors introduce an early multi-stage forensic steganalysis approach based on a

multi-class steganalysis tool called Stegdetect to perform steganographic detection and tool attribution

(i.e., tool identification), and a verification engine called Stegbreak to (try to) perform result verification

by a message retrieval and interpretation attempt. The scope of the empirical evaluation in [Provos02]

was limited to a set of three image steganography algorithms (JSteg, JPHide and OutGuess 0.13b,

which were state-of-the-art algorithms in 2002) used for training the multi-class detector in Stegdetect

and a multi-language dictionary of about 1,800,000 words used together with JPHide’s retrieval func-

tion as core for the password brute-force tool Stegbreak.

In [Provos02], Stegdetect is then applied blindly (without knowledge of the true class) to two million

images downloaded from eBay auctions and one million images obtained from USENET archives. As a

result, Stegdetect classified over 1% of all images as apparently having been steganographically altered

(mostly by JPHide) and therefore containing hidden messages. These images attributed to JPHide were

then fed into Stegbreak under the assumption that at least some of the passwords used as embedding

key for the steganographic embedding were weak passwords (i.e., words contained in the dictionary). To

verify that their tools work correctly, Provos and Honeyman inserted tracer images into every Stegbreak

job. As expected, the dictionary attack found the correct passwords for these tracer images. However,

they did not find a single genuine hidden message. In their paper, the authors offer four possible

interpretations of this result: a) there is no significant use of steganography on the internet; b) they

have been analysing images from sources that are not used to carry steganographic content; c) nobody

uses steganographic systems that can be found with their detector; or d) all users of steganographic

systems carefully choose passwords that are not susceptible to dictionary attacks. Even though the

result of this large-scale investigation was negative, the methodology and concepts for addressing the

interpretability of the evaluations in [Provos02] are remarkable because they try to exploit an inher-

ent weakness of steganography for this media forensics analysis approach: Actual steganography tools

embed a message to be extracted again on the recipient’s side. So if the key/password used by the

covert sender in the embedding of the message is known or can be obtained (e.g., through a brute-

force analysis of the key-space), the forensic practitioner performing the investigation can validate the

success by extracting and decrypting/deciphering the message. In this regard, steganalysis shares a

lot of similarities with cryptanalysis, with similar problems with the assumable analysis times for brute-

forcing modern, well-designed schemes. In contrast to most encryption tools currently available, many

existing steganography tools (especially older ones) use a short-cut to ensure successful synchronisation

between covert sender and covert receiver: In these cases, the message to be embedded is expanded by

a corresponding prefix header, usually containing a hard-coded synchronisation pattern and sometimes

also additional information such as a checksum, etc.
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Based on work like [Provos02], the text-book [Fridrich09] describes a conceptual model for forensic

image steganalysis in more detail, addressing the following six steps:

1. Selection of investigation targets

2. Reliable 2-class detection that distinguishes steganographic images from cover images

3. Identification of the embedding method

4. Identification of the steganographic software

5. Searching for the stego key and extracting the embedded data

6. Decoding/deciphering the extracted data and obtaining the secret message (cryptanalysis)

Steps 2, 3 and 4 form a sequence of analyses based on machine learning / AI that usually needs to

perform a reliable 2-class detection first to distinguish steganographic images from cover images. This

step can be implemented by various means, including universal steganography detectors trained for a

cover type, (banks of) trained targeted detectors or anomaly detectors trained for a specific source

model. Without high accuracy in the methods used in this step, all consecutive analyses become much

more difficult if not impossible to perform. The third and fourth step are closely related n-class clas-

sification/attribution problems, looking into the identification of the embedding method (e.g., least

significant bit (LSB) replacement for images) and the specific implementation (i.e., software tool; e.g.,

one of the hundreds of different LSB replacement implementations for image steganography currently

available on popular platforms like Github).

Publications like [Nissar10] and [Birnbaum23] show that in case the steganographic tool leaves de-

tectable, tool-specific signatures in the meta-data or the content of a stego file, steps 2, 3 and 4 can

potentially be combined into one operation performing multi-class detection and attribution.

Synopsis: Steganalysis on actual steganography tools34 is one of the media forensics sub-domains

where the verification of analysis results can be performed with intrinsic methods, here by using the

corresponding message retrieval function of the steganographic tool and trying to obtain the key used

to control the embedding. It has to be pointed out that if the steganography tool is designed and

implemented well, this is no trivial task, comparable to the cryptoanalysis of modern-day encryption

methods. Since the work of Provos and Honeyman in 2002 [Provos02], this basic assumption has defined

the conceptual model for forensic steganalysis. More recent work (including [Birnbaum23]) shows that

in case the steganography tool is not implemented well, signature-based detection and attribution can

be used to improve forensic steganalysis in practice.

For other media forensics methods, similar forensic helper methods might be worth considering. In

the case of the example of PRNU-based camera authentication discussed in Section 2.2.2, the EXIF

metadata analysis and matching can be considered to be such a helper method, which would allow to

perform a very fast camera model identification and can then be accompanied by the actual camera

verification using the PRNU fingerprint. Another helper, this time relevant for the face morphing

attack detection and DeepFake detection scenarios discussed in Sections 3.1 and 3.2, would be the

wide-spread inclusion of digital watermarks in all digital cameras sold, as currently discussed by an

industry alliance of global news organisations, technology companies, and the camera manufacturers

dominating the marked for professional digital cameras (see https://asia.nikkei.com/Business/

Technology/Nikon-Sony-and-Canon-fight-AI-fakes-with-new-camera-tech).

These considerations relate to requirements REQ1, REQ2, REQ3 and REQ4, as specified in Section 1.3.

3.3.2 Aspects of Explainability and Interpretability in Forensic Steganalysis

In [Kraetzer24], a series of empirical evaluations is performed using Stegdetect, a 20-year-old ste-

ganalysis tool. Initially, the corresponding experiments were intended to evaluate how well trained

models age, using the hard-coded detector models of Stegdetect, trained in 2002, on the output of

steganographic tools supposedly supported by Stegdetect but used on a more recent image database.

34The main difference between academic research on steganographic methods and practical steganography is that most
of the academic algorithms are only embedding simulations (without a corresponding retrieval function to extract the
message) while actual steganography tools embed a message to be extracted again on the recipient’s side.
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This is done to counter a phenomenon that is known in the steganalysis community as cover-source

mismatch (CSM) problem, the mismatch between the training data distribution and the unseen data

used in testing, which is known to lead to a substantial loss of detection performance. CSM was first

documented in [Goljan06], where it was observed that training a classifier on a dataset containing im-

ages only taken with a given camera and testing it on a second dataset built only using another camera

led to far poorer performance than when the classifier was tested on a dataset built only with the

first camera. This issue became even more evident during the competition ‘Break Our Steganographic

System’ (BOSS) [Bas11], where the organisers added images to the testing set which were taken with

a camera not present in the training set. This resulted in a significant drop in steganalysis performance

on these very images. What is rarely highlighted is that these outliers were not only taken with an

unknown camera, but that they had also all undergone double JPEG compression while the images used

in training, had only been compressed once. This indicates that the processing pipeline might also play

an important role in steganalysis performance.

The results presented in the feeder paper [Kraetzer24] (included as Chapter 16 of this cumulative

habilitation treatise) show that this media forensics solution driven by machine lerning suffers signif-

icantly from CSM (i.e., ageing effects of the trained models): In the corresponding experiments, the

performance obtained is much poorer than the original performance reported in 2002, even though the

conditions of the tests are closely reconstructed (see pages 248 to 251).

Based on this first set of results, the black-box detector of Stegdetect is turned into a (more) trans-

parent (here, gray-box) mechanism, which is achieved by using the raw feature vectors that could be

obtained as output from Stegdetect for debugging, and training new detection models using a set of

classification algorithms from Weka [Frank16]. For two of the evaluated algorithms, the newly trained

models show a significant improvement in detection performance in comparison to the original detector

models, confirming the need for re-training detectors to counter ageing effects (relevant for REQ4).

Additional experiments are conducted in [Kraetzer24], aiming at understanding the feature space used

in Stegdetect and thereby addressing explainability and interpretability issues raised (among others

by [INTERPOL23] and the EU AIA, see Section 2.3.5 and the feeder paper [Kraetzer22]). These

experiments show that Stegdetect apparently learns the statistical characteristics caused by the JPEG

encoder used. In the case of steganography tools that embed in the JPEG transform domain (e.g.,

Jsteg, which directly modifies the discrete cosine transform (DCT) coefficients), these tools basically

implement their own, non-standard JPEG encoder. Therefore, the attribution of the steganography tool

as an attribution of the encoder will give reliable results in their case. In other cases, a high number

of false positives will occur in applied steganalysis for all other tools that are using the same JPEG

encoder library as the steganography tool under analysis.

Synopsis: The work presented in [Kraetzer24] includes multiple items that are relevant in the context

of this treatise: Firstly, as discussed in Section 3.3.1, it shows that the intrinsic characteristics of an

application domain (here, the retrieval function of a steganography tool) might aid the media foren-

sics investigations. Secondly, it indicates that detector models for media forensics detectors age and

might require re-training with novel, more representative content. Especially in media forensics, trained

models are assumed to age considerably as the assumed source characteristics change significantly over

time. This can be illustrated well with digital images, where the technical developments since the late

1990s have seen a steady increase in resolution as well as abrupt changes with new image formats.

Thirdly, the evaluation (and re-evaluation) of methods requires evaluation setups that help to under-

stand the learned classification boundary trained for ML-/AI-based media forensics methods. This was

illustrated in [Kraetzer24] by showing that the detector learns to distinguish the characteristics caused

by different JPEG encoders and not (as assumed) the characteristics of a steganographic method as

implemented by a specific steganographic tool. In case these tools implement their own, non-standard

JPEG encoder, the outcome might be reliable steganalysis. If the tools use standard JPEG libraries,

the result of using the Stegdetect feature space will be a very high number of false positives for original

images.

Concerning the explainability and interpretability of the outcomes of such forensic investigations (as
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requested, among others, in [INTERPOL23]), quality assurance35 and proficiency testing need to en-

sure not only the quality of forensic methods included in trustworthy forensic processes but also the

necessary technical expertise of the individual practitioners involved in an examination. Explainability

and interpretability also need to enable the investigators to have sufficient understanding of the ML/AI

systems used and to be able to ascertain and demonstrate the validity and integrity of evidence in the

context of criminal proceedings. These issues relate to requirements REQ1, REQ2, REQ3 and REQ4,

as specified in Section 1.3.

35This includes the initial evaluation of methods as well as a cyclic re-evaluation of the models trained and the feature
spaces used to be performed during the operational life of such an ML-/AI-based forensic method.
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4
Summary, Conclusions and Considerations on

Potential Future Work

This chapter concludes the habilitation treatise and in Section 4.1 provides a comprehensive summary,

reflecting the content of the treatise in relation to the requirements specified in Section 1.3. This is

followed by a conclusion in Section 4.2 and considerations for possible future work in Section 4.3.

4.1 Summary of the Contributions

Sections 3.1.4, 3.2.8 and 3.3.2 contain short overviews of the results for the three selected application

domains (face morphing attack (FMA) detection, DeepFake detection and forensic steganalysis) con-

sidered in this cumulative habilitation treatise.

Regarding requirements REQ1 to REQ5, as specified in Section 1.3, the synopsis of each section in

Chapter 3, except for the summaries, contains an explicit projection onto the requirements concerned.

In addition, these projections are also included in a condensed version in the feeder papers overview in

Section 1.4.

What remains in terms of a summary is a reflection on the overall results of the work conducted by the

author together with the working group leader and the various post-doc and PhD candidate co-authors.

This reflection is again based on the requirements specified in Section 1.3:

• REQ1: ‘Describing necessary conditions for using a method’

In all papers involved, the intention was to provide precise and reproducible descriptions of meth-

ods and evaluation setups. The conceptual and operational modelling operations aimed at pro-

viding compact36 yet clear descriptions to fit this purpose.

The work on modelling media generation processes and source models, especially in the applica-

tion scenario of face morph attach detection, focuses strongly on technical pre-requisites for the

media forensics approach (see e.g., the discussions on passport-scaled images in Section 3.1.2,

based on the work in [Kraetzer17], included as Chapter 6). For the application scenario of

DeepFake detection, the focus shifts towards operational modelling and in particular to the impor-

tance of the preparation (here termed ‘templating’) of forensic methods in the phase of Strategic

Preparation (SP). This preparation includes the training of detector models to be used later (in

Operational Preparation) in the instantiations in investigations/evaluations (see Section 3.2.4).

For the application scenario of forensic steganalysis, the issue of model ageing (called the ‘cover-

source mismatch’ in this domain, see Section 3.3.2) is a strongly limiting factor for the use of

trained methods. Furthermore, the individual steps of the six-step conceptual model for forensic

steganalysis summarised from existing literature have dependencies (i.e., they build on the results

of the previous steps) which have to be taken into consideration (see Section 3.3.1).

Regarding the work presented here for conceptual and operational modelling, it is hoped that this

work might improve the communication between researchers and developers of forensic methods,

and the corresponding forensic practitioners intending to use these methods.

36From an academic perspective, this also helps to adhere to the page number limits specified by the publishers of
workshop, conference and journal papers in addition to the benefits for the documentation of forensic investigations.
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• REQ2: ‘Evaluation of new methods’

The evaluation methodology and the evaluation results have been published for the evaluation

of all methods. The tests were performed with a statistically significant number of samples and

aimed at relevant domain coverage, using established third-party reference datasets wherever

possible to enable comparability with the results of other researchers.

The empirical results presented for all feeder papers can be summarised as follows:

(a) Media forensic detectors are presented that obtain positive results, i.e., perform significantly

better than random guessing in the corresponding tasks.

(b) In no case are perfect detection results (i.e., 100% detection accuracy) obtained for relevant

setups.

(c) An overfitting to specific attack implementations is observed with all tested detectors, leading

to generalisation problems for these detectors.

(d) Detector sequences are successfully used to reduce error rates.

(e) Fusion approaches are used to improve detection performance and generalisation power of

the detection approaches.

(f) The specific problems encountered with fusion approaches are discussed.

(g) Issues regarding model ageing are discussed.

The limitations of all tested methods are communicated clearly, and especially the tendency of

overfitting towards specific attacks (item (c) above), the problems encountered with fusion-based

approaches (item (f) above) and selected model ageing issues (item (g) above) are discussed in

detail (see e.g., Section 3.2.5, Section 3.1.3.3 and Section 3.3.2 respectively).

• REQ3: ‘Standardisation of investigation processes’

It has to be conceded that successful standardisation work is outside the scope of what could be

achieved with this habilitation project. Nevertheless, the work on operational modelling presented

for the application scenario of DeepFake detection in Section 3.2 might assist standardisation

efforts in this domain.

• REQ4: ‘Re-evaluation of methods’

In the course of this habilitation project, the same methods are evaluated iteratively with chang-

ing application contexts, data sets and other constraint variations. A good example of such a

constraint variation are the empirical evaluations of the impact of data minimisation discussed

in Section 3.2.6 (based on feeder paper [Siegel23b], included as Chapter 13 of this cumulative

habilitation treatise). This variation is not motivated by technical developments, but rather by

organisational requirements, in this case the intention to find a method to train DeepFake detec-

tion models that better comply with the European Union (EU) GDPR.

It is foreseeable that the current trend towards regulating AI development and use (e.g., with the

upcoming EU Artificial Intelligence Act (AIA)) might trigger a number of re-evaluations of estab-

lished procedures and methods, especially with a focus on explainable AI methods and decisions.

In addition to changing external influences and new technological developments, specific char-

acteristics of model-driven methods, especially the rate with which the corresponding (trained)

models age, are also a factor to be considered as a driver for a cyclic re-evaluation of methods.

• REQ5: ‘Publication of methods and processes’

The original publication work was already achieved with the publication of the feeder papers and, in

case of the workshop and conference papers, their presentation and discussion at the corresponding

scientific events. This cumulative habilitation treatise places these individual publications in a

wider context and at the same time integrates the feedback received from reviewers, workshop

and conference audiences as well as the project partners in the corresponding research projects.

68



4.2. Conclusions

4.2 Conclusions

Using the common structure of the European Network of Forensic Science Institutes (ENFSI) Best

Practice Manuals (BPMs) discussed in Section 2.3.4 as a projection surface, the following conclusions

are drawn based on the work performed in the course of this habilitation project:

Personnel:

In addition to the ‘customer’ (i.e., the beneficiary of a forensic report), the [ENFSI21] defines the

separate roles of the ‘case leader’ and the ‘examiner’. This segmentation has administrative reasons,

but is also a crucial requirement to prevent bias37 in the investigation. In addition to human-in-control

aspects, the feeder paper [Kraetzer23] focuses on such a separation of duties in the evaluation, bench-

marking and certification of model-driven forensic methods (see Chapter 14, page 227).

A second important aspect is the need for a ‘local quality management’, which involves not only

technical aspects (regarding forensic methods and processes; REQ2 and REQ4) but also personnel

and corresponding questions of training and certification. This also relates to the aspects of human

operators in forensic processes as well as to the corresponding discussions on human-in-control and

human-in-the-loop in [Kraetzer23].

A third important aspect that is of uttermost importance for this habilitation project are the require-

ments specified in ENFSI BPM Forensic Examination of Digital Technology (FIT) [ENFSI15] for all

technical personnel involved in forensic processes, especially the aspects that ask for a close relation-

ship with the corresponding research communities (including “[p]ublication of a technical paper in a

recognised peer reviewed forensic journal related to digital technology/evidence” [ENFSI15], roughly

equivalent to REQ5 of this treatise) and to “[a]id in the development of local procedures and standards

and improve the technical advancement of examinations” (see Section 2.3.4.1). Here, the correspond-

ing academic research communities would have to be open to assist the forensic practitioners accordingly.

Classes of methods:

As pointed out in Section 3.2.8, only the feeder paper [Siegel23b] addresses the issue of the clas-

sification of forensic methods (the third core concept in the German Federal Office for Information

Security (BSI) ‘Leitfaden IT-Forensik’ [BSI11]). The work in this feeder paper relates to REQ3 and

does not model the media forensic classes of methods required for the application domain of Deep-

Fake detection based on the method classes from the BSI ‘Leitfaden IT-Forensik’ [BSI11] or the Data

Centric Examination Approach (DCEA) [Kiltz20], but instead based on the work in the ENFSI BPM

Digital Image Authentication (DIA) [ENFSI21], extending the modelling as necessary and projecting

the Media Forensic Data Types (MFDTs) from [Siegel22] onto the updated scheme (see Section 3.2.7

and [Siegel22], included as Chapter 15 of this cumulative habilitation treatise).

Validation and estimation of uncertainty of measurement:

Much research effort has been invested in the validation of methods and an estimation of their uncer-

tainty of measurement (here: error behaviour). The results and their shortcomings (especially in terms

of generalisation power) are summarised in Section 4.1 for items REQ1, REQ2 and REQ4. It has to

be pointed out explicitly that all methods discussed as part of practical investigations in the context of

this treatise have to be considered to be ‘non-verified functions’ in the terminology of the ENFSI BPM

FIT [ENFSI15] (see Section 2.3.4.3 for the differentiation between ‘non-verified functions’, ‘verified

functions’, ‘validated processes’, etc.). Everything above this level is entirely outside the possibilities of

what can be achieved by a habilitation project like this one, but the work presented in the context of this

cumulative habilitation treatise could act as a starting point for the (in-lab) validation of methods. This

would have to be accompanied by many other efforts to allow for the creation of ‘verified functions’

as the basis of ‘validated processes’ or ‘trustworthy processes’ in forensic laboratories. These addi-

tional steps would need to include tasks like industrial-strength implementations of the methods as well

as the creation of large, well-curated reference datasets for training, benchmarking and testing purposes.

37Various forms of contextual and operational bias are a crucial threat to police investigations as well as to forensic
investigations, as illustrated for example by the misidentification by the FBI in the famous Brandon Mayfield case [DOJ11].
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Quality assurance:

Even though the aspect of quality assurance in the ENFSI BPM is very much focused on verifying “that

[in] the existing laboratory process human-based risks remain within acceptable bounds” [ENFSI15]

(see Section 2.3.4.4), it is also aligned with REQ1, REQ2 and REQ4 of this treatise. Quality assurance

requires in-house quality controls which are invoked regularly as well as event-based to safeguard the

methods and processes used. The benchmarking work performed in the context of this treatise could

help in designing the corresponding setups when establishing such quality controls.

Case assessment / initial assessment:

This item relates to REQ3 of this treatise and shows the relevance of the operational modelling per-

formed for the application domain of DeepFake detection. For the involved forensic laboratory, the

forensic investigation starts with case assignment, case assessment and the selection of the case leader.

At this point, the case-related documentation in the lab begins (extending the documentation and chain-

of-custody documents handed over to the lab), and templates for investigation processes prepared in

the phase of SP are instantiated by the case leader or the examiners in Operational Preparation (OP);

see Section 3.2.4).

Evaluation and interpretation:

These aspects again relate to REQ1, REQ2 and REQ4 of this treatise and address two relevant aspects:

firstly, the “performance of the elementary method on available datasets” and “information on its dis-

criminating power” [ENFSI21] - which is again a benchmarking aspect as already discussed above for

the validation of methods and procedures as well as the quality assurance aspects -, and secondly, the

importance of the experience of the examiner as well as of the case leader in estimating the discrimi-

nating power of elementary methods, resulting in conclusions that state the evidential weight as a level

of support for each of the competing propositions (see Section 2.3.4.6).

Presentation of results:

The ENFSI statements on the presentation of results, as discussed in Section 2.3.4.7, point out that

in forensics not only ‘courtroom-ready’ results are relevant, but other forms of reporting that are not

“designed to such stringent levels as those that are required for court review / use” [ENFSI15] might

also be of use. Nevertheless, even in these cases, all reporting “should still enable independent review

or reproduction of the reported results” [ENFSI21]. This request for reproducibility is a strong driver

for the conceptual and operational modelling discussed in Chapter 3 of this habilitation treatise and

benefits from all progress made towards the five requirements (REQ1 to REQ5) specified in Section 1.3.

Tool development:

Performing tool development for forensic institutions is outside the scope of this habilitation project.

In fact, most academic research is restricted by the funding instrument to specific technology readi-

ness levels (TRL; see Section 2.3.4.8). In the case of the research projects ANANAS, FAKE-ID and

UNCOVER, which provided the context for this habilitation project, the maximum TRL of the outcome

was intended by the funding body to be TRL 6 (‘technology demonstrated in relevant environment’).

One result worth mentioning are two patent applications resulting from the ANANAS project that

were filed with the European Patent Office and list the author as co-inventor. Both patent applica-

tions describe methods for face morph detection in the document life-cycle of eMRTD as discussed in

Section 3.1.2 and Section 3.1.3. This relates to REQ1, REQ3 as well as to REQ5.
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4.3 Considerations on Potential Future Work

The national digital forensic science strategy paper [Vaughan20] published by the National Police Chiefs’

Council (NPCC) of the UK clearly states that the members of the NPCC assume that a change of cur-

rent standard operational procedures (SOPs) in digital forensics (DF) is necessary (see Section 2.2.1).

Even though the NPCC in its document obviously addresses the current situation in the United Kingdom

of Great Britain and Northern Ireland (UK), it can be assumed that these observations can also be gen-

eralised to a large extent for other local contexts, including the situation in Germany (see Section 2.3.3).

An academic publication such as this habilitation treatise cannot directly propose SOPs for a forensic

sub-domain. This would require standards published by the corresponding authority, like the German

BSI or the National Institute of Standards and Technology (NIST) in the US. What a publication

like this treatise might achieve is to provide stakeholders like members of ENFSI or policy makers in

executive systems with arguments and recommendations for changing established best practices (like

the ENFSI BPMs) or policy documents, which might then eventually result in updated SOPs.

The following two subsections present a possible roadmap from the perspective of this habilitation

treatise for the technical (i.e., research and development) and organisational (‘Improved Operations’)

aspects.

4.3.1 Research and Development

[Vaughan20] recommends that central national police bodies should “coordinate and influence an R&D

programme drawing in R&D effort nationally”. They should link “casework-driven capabilities that

practitioners develop” with academic research and the research and development activities that are per-

formed by vendors of forensics tools. Unfortunately, the latter group, the vendors of forensics tools, is

becoming smaller, with [Vaughan20] attributing this to the fact that “forensic science funding reductions

have led to a substantial decrease in the size of the supplier market”. One way of compensating for this

would be to opt for the ‘improved commercial practices’ recommended by [Vaughan20] to strengthen

the supplier market (see Section 2.2.1). The author sees an alternative option in the practice of coun-

tries like the Netherlands or Canada, where governments heavily invest in technical solutions developed

by security forces or forensic institutions themselves. In Germany, a new institution, the Central Office

for Information Technology in the Security Sector (ZITiS), was founded to assist German law enforce-

ment agencies with research and development activities. Such institutions would also be in an ideal

position to influence the research agendas of national R&D programmes, build strategic relationships

with academia and industry to develop and access new capabilities and host the academic advisory

groups recommended in [Vaughan20].

In this context, it is interesting to see that EU-wide efforts are emerging in parallel with national efforts.

While ENFSI tries to homogenise best practices, the European Anti-Cybercrime Technology Develop-

ment Association (EACTDA) was founded in 2020 for the development of technological solutions (i.e.,

tools) for European law enforcement agencies (LEA) and forensic laboratories.

The conclusions drawn in this habilitation treatise for this aspect from a German academic perspective

are the following:

• ENFSI is a highly esteemed entity in the field, and its Expert Working Group (EWG) massively

support the whole field with their BPMs. Nevertheless, the interaction with academic research

could be improved. The ENFSI Annual Meeting, for example, is open only to ENFSI members (see

e.g., https://enfsi.eu/agenda/enfsi-annual-meeting-2023-in-the-hague/). Opening

up part of this event for outsiders might significantly foster collaboration.

• As summarised in Section 2.3.6, the situation in (large parts) of Europe is significantly different

from the situation in the US in terms of regulations and ‘market’ size for forensic R&D.38 Even

38In the view of the author, the main difference lies in the strength of the private sector in US forensics, with a resulting
preference for commercial tools with certification in comparison to the EU / ENFSI preference for verified tools (preferably
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between European countries, the conditions for forensic practitioners differ significantly. As a

result, a national policy for building strategic relationships with police forces, forensic practitioners,

academia and industry to develop and access new capabilities as well as for the coordination

of R&D funding in this field would have to be formulated in each country based on national

legislation. For an EU country like Germany, these efforts would need to be closely aligned with

the European stakeholders (e.g., Europol and EACTDA).

• The funding of academic research efforts in the forensics domain should always include practition-

ers (LEA or forensic institutions) as partners or associated partners to ensure that the research

goals are chosen with practical application in mind. This requires law enforcement agencies and

forensic laboratories willing to participate in funded research initiatives, even though the funding

instruments usually do not foresee a progression above TRL 6, which means that the project

outcomes will usually not be usable directly in the daily work of the participating LEA.39

• On the national or international (e.g., EU) level, funding and technology transfer schemes are

required to help the research demonstrators, which are the usual outcome of publicly funded

research as described in the previous item, overcome the so-called ‘Valley of Death’, i.e., raise

them from TRL 6 to a TRL 9 solution. Potential actors have been founded in the last few years

with ZITiS and EACTDA, which might be capable of providing this support. Part of the task

of such transfer schemes might include identifying promising research at early stages (TRL 4 to

TRL 6) and approaching the corresponding researchers.

• More and more of the tools developed for forensics are Open Source tools that range from large

(funded) projects like the Assemblyline framework (https://cybercentrecanada.github.io/

assemblyline4_docs/) to much smaller projects like ‘dcfldd’ (https://github.com/adulau/

dcfldd). On the one hand, this reflects a trend with funding bodies, which in many cases

currently aim for Open Source, Open Data and Open Access regarding the funded research. On

the other hand, it also reflects the status quo in information technology (IT) communities, where

‘doing it once for the benefit of many’ has become an established paradigm of progress. This is

especially beneficial for forensic software because in these cases forking and extension as well as

source code analysis as part of tool validation are possible.

At a first glance, the Open Source concept might seem to contradict the security interests of LEAs

and forensic institutions, but a good example of how to integrate both is Hansken (the open digital

forensics platform developed by the Netherlands Forensic Institute (NFI) as a Digital-Forensics-

as-a-Service (DFaaS) solution): It is not Open Source in the sense of public Open Source but

only provided to specific registered entities (mostly LEA and forensic institutes) together with a

public Software Development Kit (SDK) for developing new plug-ins and components.

• Efforts are necessary to align the quality considerations between academics and forensic practition-

ers in many fields, including media forensics. The differences between academic ‘lab condition’

evaluations and robust forensic laboratory proficiency testing of methods often lead to different

estimates of the maturity of methods. In academia, about 80% of the effort usually goes into

the design and implementation of a method, and 20% into testing. For forensic labs, about 20%

of the effort usually goes into the design and implementation/purchase, and 80% into testing,

including validation by independent third parties, cyclic / event-based re-evaluation as well as

proficiency testing (see Sections 2.3.4.3 and 2.3.4.4).

including source code review for Open Source tools) in validated processes. To wait for solutions required for (media)
forensics investigation problems coming from the US seems not to be a viable solution for European practitioners because
the market is very small in comparison - only a limited number of forensic laboratories (usually one in a smaller country, up
to a few (dozen) in a large country) in contrast to the thousands of forensic labs active in the US (see Section 2.3.1). As a
consequence of the very limited number of potential customers, the market is not very attractive for commercial software
development or even for the adaptation of forensic software originally developed for the US market. For the sovereignty
of European solutions, this issue will have to be addressed (as is currently seen with the example of Hansken in the
Netherlands). The ENFSI BPMs discuss tool development by forensic laboratories as one item in their recommendations
(see Section 2.3.4.8).

39In the experience of the author, gathered during various funded research projects, there is often a clash of expecta-
tions in joined research projects, where end-user partners hope for field-applicable methods/tools as an outcome, while
participating academic partners intend to strictly stick to the boundaries imposed by the funding body - often a maximum
TRL between 4 and 6 - in order to not jeopardise current and potential future funding.
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4.3.2 Improved Operations

In [Vaughan20], the authors put an emphasis on ‘improved operations’, which for the NPCC means

that

“[s]tandardising, industrialising and providing services centrally - ‘doing it once for the

benefit of many’ are the foundations to transform DF science service. Standardising pro-

cesses will allow forces to collaborate on casework, technology, R&D and quality assuring

processes.”

The current, fragmented system (which is described by the NPCC for the UK but is also found in

many other countries world-wide) with a large number of national- and local-level forensics units, which

individually develop their own methods, procure and deploy their own hardware and software and manage

their individual quality accreditations “involves substantial duplication of effort and inevitable waste of

resources” [Vaughan20].

The conclusions drawn in this habilitation treatise for this aspect from a German academic perspective

are the following:

• Best practices documents, like the ENFSI BPMs, will have to be constantly updated to include

novel methods and processes for forensic investigations. This requires a healthy dialogue be-

tween the forensics community (as represented by ENFSI) and academic communities in the

corresponding fields. The ENFSI BPM FIT strongly recommends such a close interaction (see

Section 2.3.4.1), but in practice there is still a lot of potential for improvement of the collaboration

between practitioners and academia in this field.

• Existing national guidelines for forensic procedures (like the BSI guidelines document discussed

in Section 2.3.3) need to be updated on a regular basis. Since ENFSI, due to the nature of the

initiative, cannot provide SOPs but is restricted to best practice recommendations, the responsible

national bodies have to turn these into standards that forensic practitioners and their ‘customers’

(police, prosecutors, judges, etc.) can rely on within the context of a national legislation.

• Forensic process models (as part of guidelines or SOPs) have been established as an important

foundation for creating and maintaining trustworthy and validated forensic procedures. They

enable reproducible procedures and precise investigation descriptions in documentation. It has

to be acknowledged that they are also subject to an ageing effect: Technological as well as

regulatory changes will make updates necessary. Continuously (or event-based) improving existing

process models means adapting them to these changing circumstances. As the last update of the

German BSI guidelines document was published in 2011 (see Section 2.3.3), an update would

seem to be required, especially since new developments (e.g., the increasing role of ML-/AI-based

investigation methods) have changed the field significantly since then.

• To better address the aspects of ‘standardising’ and ‘industrialising’ in the quote from [Vaughan20]

given above, the guideline documents might shift from providing mostly conceptual models (e.g.,

the phase-driven investigation model of the BSI ‘Leitfaden IT-Forensik ’ [BSI11]) to more detailed

operational models. A proposal for such operational models with their templating in SP and the

instantiation in a specific investigation in OP is discussed in this treatise in the application context

of DeepFake detection in Section 3.2.4. Work invested in this domain would also have to include

efforts to define other required modelling components as part of a standardisation roadmap for

forensic process models. These would have to include domain-adapted forensic data models, as

discussed in [Kiltz20], [Altschaffel20] and Section 3.2.2 of this treatise.

• A drive towards more mature (media) forensics solutions has to take into account recent de-

velopments regarding ML-/AI-driven solutions (esp. the EU AIA and the Interpol initiative on

‘Responsible AI Innovation in Law Enforcement’ [INTERPOL23]). The current trend shows a

shift towards ‘human-in-control’ (i.e., ML/AI as decision support systems), requiring explainabil-
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ity of AI systems and their decisions.40 This is already taken into consideration to some extent41

in the ENFSI BPMs but will assumedly have significant impact on R&D in this domain in the

coming years.

• Data models are very important for industrialising forensics. Handling forensic data requires

significant infrastructure. [Vaughan20] points out that “digital forensic submissions make up

the largest individual source of data in police forces”. This also poses additional challenges in

the processing, analysing and sharing of (digital) forensic data, including the need “to improve

both the ability to review the output from DF examinations and how we coordinate disclosure

with the [Criminal justice system]” [Vaughan20]. In 2020, the NPCC requested the design and

implementation of a national digital forensics (DF) data model for the UK:

“Essential to improving how we handle DF data is to standardise the way we store

this data, by developing a national DF data model. This model will define standard

metadata for different types of digital forensic information – such as text messages,

photos, documents or system log files – which will allow storage in a structured vendor-

independent form. [...] This data model will support moving towards full interoperabil-

ity between tools and infrastructure throughout the DF workflow, based on standard

data formats and interfaces between tools to enable forces to share data between

them. [Vaughan20]”

Obviously, such a national digital forensics data model would have to be built on an abstract

data model like the one discussed in the BSI ‘Leitfaden IT-Forensik’ (see Section 2.3.3) and

would need refinements for domain adaptation like the ones discussed in Section 3.2.2 before it

would then have to be turned into precise data structure descriptions for format specification and

implementation.

40[INTERPOL23] is very explicit on this item:

“In the context of criminal investigations, the explainability of AI systems used to obtain or analyze evidence is
particularly important. In fact, in some jurisdictions, criminal evidence obtained with the support of AI systems
has been challenged in courts on the basis of a lack of understanding of the way the systems function. While
the requirements for evidence admissibility are different in each jurisdiction, a sufficient degree of explainability
needs to be ensured for any AI system used to obtain and examine criminal evidence. This helps guaranteeing,
alongside the necessary technical competencies, that law enforcement officers involved in investigations and
forensic examinations have sufficient understanding of the AI systems used to be able to ascertain and
demonstrate the validity and integrity of criminal evidence in the context of criminal proceedings.”

. 41ENFSI BPM FIT [ENFSI15] indicates that “a set of minimal checks [...] should be applied when considering the
verification of specific tool functions used within a full validation method or process.” A list of such minimal checks
provided as an example in [ENFSI15] includes questions aiming at the performance of the tool (e.g., “Can you demonstrate
that it does match its reported capability?” and “What are the known conditions under which it is known to fail?”) as
well as questions aiming at its usability (e.g., “What skill level is required by analysts to use the function?”).
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Abstract

Information fusion, i.e., the combination of expert systems, has a huge potential to improve the accuracy of pattern
recognition systems. During the last decades, various application fields started to use different fusion concepts
extensively. The forensic sciences are still hesitant if it comes to blindly applying information fusion. Here, a
potentially negative impact on the classification accuracy, if wrongly used or parameterized, as well as the increased
complexity (and the inherently higher costs for plausibility validation) of fusion is in conflict with the fundamental
requirements for forensics.
The goals of this paper are to explain the reasons for this reluctance to accept such a potentially very beneficial
technique and to illustrate the practical issues arising when applying fusion. For those practical discussions the
exemplary application scenario of morphing attack detection (MAD) is selected with the goal to facilitate the
understanding between the media forensics community and forensic practitioners.
As general contributions, it is illustrated why the naive assumption that fusion would make the detection more
reliable can fail in practice, i.e., why fusion behaves in a field application sometimes differently than in the lab. As a
result, the constraints and limitations of the application of fusion are discussed and its impact to (media) forensics is
reflected upon.
As technical contributions, the current state of the art of MAD is expanded by:

a) The introduction of the likelihood-based fusion and an fusion ensemble composition experiment to extend
the set of methods (majority voting, sum-rule, and Dempster-Shafer Theory of evidence) used previously

b) The direct comparison of the two evaluation scenarios “MAD in document issuing” and “MAD in identity
verification” using a realistic and some less restrictive evaluation setups

c) A thorough analysis and discussion of the detection performance issues and the reasons why fusion in a
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1 Introduction
Information fusion has a long research history and its
core concept, the combination of outputs of different ex-
pert systems, has been rigorously studied and applied for
at least two decades in various application domains. The
concept of fusion has been studied under many different
terminologies, e.g., classifier ensembles [1], combining
pattern classifiers [2], or cooperative agents [3]. As a re-
sult of the growing popularity of machine learning at
that point of time and practical problems arising from
ever increasing feature space complexities, in 2002 [4]
stated that “instead of looking for the best set of features
and the best classifier, now we look for the best set of
classifiers and then the best combination method.” This
statement was rephrased by [5] into “the role of informa-
tion fusion […] is to determine the best set of experts in
a given problem domain and devise an appropriate func-
tion that can optimally combine the decisions rendered
by the individual experts [...].” In [2], the following three
different types of reasons why a classifier ensemble
might be better than a single classifier are identified:
Statistical (instead of picking a potentially inadequate
single classifier, it would be a safer option to use a set of
unrelated ones and consider all their outputs), computa-
tional (some training algorithms use hill-climbing or
random methods, which might lead to different local op-
tima when initialized differently) and representational (it
is possible that the classifier space considered for a prob-
lem does not contain an optimal classifier). Whatever
the exact reason for choosing a fusion approach instead
of a single classifier, [2] explicitly warns that “an im-
provement on the single best classifier or on the group’s
average performance, for the general case, is not guaran-
teed. What is exposed here are only ‘clever heuristics’
[...]”. In summary, by combining classifiers (or other ex-
pert systems), the applicants hope for a more accurate
decision at the expense of increased complexity.
The huge potential for accuracy improvement gained

by applying fusion has been well illustrated in many
fields of applied pattern recognition. A good example is
the field of biometric user authentication where, e.g., [5]
shows various benefits that this field can draw from fu-
sion at different steps of the pattern recognition pipeline.
When it comes to blindly applying information fusion,
among the disciplines that are currently still hesitant are
the forensic sciences. Here, the potentially negative im-
pact to classification accuracy as well as the increased
complexity (and the inherently higher cost for plausibil-
ity validation) of fusion are in conflict with fundamental
requirements for (media) forensics (as is discussed in
more detail in section 2.1). The goals of this paper are to
explain the reasons for this reluctance to accept a poten-
tially very beneficial technique such as information fu-
sion and to illustrate the practical problems of applying

fusion. To this end, an exemplary application scenario from
media forensics called face morphing attack detection
(MAD) is selected. This scenario is currently a hot research
topic due to the fact that this kind of attack imposes a re-
cent and currently unsolved threat to face image based au-
thentication scenarios such as border crossing using travel
documents (i.e., passports), see section 2.3.
By facilitating the understanding of the reluctance to

blindly use fusion in (media) forensics as well as the po-
tential pitfalls of practically applied fusion techniques, it
is the hope to facilitate acceptance both in the media fo-
rensics community as well as the community of forensic
practitioners. To achieve this, the paper provides the fol-
lowing contributions:

a) As general contributions, it is illustrated why (even
with a set of classifiers relevant to a specific
problem) the naive assumption that fusion would
make the detection more reliable can fail in
practice, i.e., why fusion behaves in a field
application sometimes differently than in the lab
and often delivers lower detection performances
than single detectors. As a result, the constraints
and limitations of the application of fusion are
discussed and its impact to (media) forensics is
reflected upon. The two main aspects addressed in
this discussion are the generalization power of
classification models and the relationship between
training and test data sets. In the evaluations, it is
shown that both aspects, despite being similar in
nature, have to be considered separately for applied
information fusion.

b) As technical contributions for face morphing attack
detection (MAD), the current state of the art is
expanded by:

� Introduction of likelihood ratio (LR) based fusion for
face morphing attack detection (MAD) to extend
the set of methods (majority voting, sum-rule, and
Dempster-Shafer Theory (DST) of evidence [6])
used in [7].

� Direct comparison of the two evaluation scenarios:
“MAD in document issuing” vs. “MAD in identity
verification.”

� Analysis and discussion of detection performance
issues found with the fusion based detectors (note:
questions of feature or classifier selection are out of
scope for this paper), the results show that:

� Fusion can fail even when a set of accurate
individual classifiers is available. The results
presented for fusion detectors are in the vast
majority of the cases worse than the results of the
best individual classifier used.
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� Trained thresholding and weighting strategies as
well as sophisticated (context adapted) fusion
methods (especially DST and LR based) can under
specific circumstances perform significantly worse
than unweighted, simplistic fusion approaches like
the sum-rule or majority voting.

� Different fusion ensemble composition strategies
(i.e., using all available detectors vs. selecting a
subset of those) have an influence on the decision
error rates.

� For the two evaluation scenarios “MAD in
document issuing” (SC1) vs. “MAD in identity
verification” (SC2) different detection and fusion
trends are observed, resulting from differences in the
inherent characteristics of the application scenario
(esp. the amount and type of data available for
investigations).

The rest of the paper is structured as follows: section 2
performs a discussion of related work on requirements
for media forensic methods, the current state of the art
in face morphing attacks detection (MAD) and informa-
tion fusion approaches in MAD. In section 3, the investi-
gation concept from [7] is summarized and extended
into the concept for fusion-based face morphing attack
detection used in this paper. Section 4 defines the evalu-
ation setup (incl. the two application scenarios “MAD in
document issuing” vs. “MAD in identity verification”).
Section 5 presents the evaluation results and their dis-
cussion, while in section 6 the conclusions are drawn
from the presented results.

2 Related work
Technical capabilities (such as accuracy) are by far not
the most significant characteristics of forensic methods.
In general, those are usually rated by practitioners in
criminal investigations by their maturity, i.e., by their
scientific admissibility. Section 2.1 discusses some issues
of scientific admissibility in European contexts (where,
due to the very nature of the EU and its member states,
it is currently much less well regulated as for example in
the USA) to establish an understanding on the require-
ments and limitations for forensic methods originating
from this field.
Section 2.2 briefly summarizes the media forensics

application domain selected for this paper, the face
morphing attack detection (MAD). More detailed
overviews over the research activities in this field,
which is very active since 2014, can be found in the
two survey papers [8, 9].
Several studies have demonstrated that both manually

and automatically generated high-quality morphs cannot
be recognized as such neither by algorithms nor by hu-
man examiners [10–13], and even low-quality morphs

pose a threat to the identity verification process if it is
completely automated. This explains the urgent need for
automated face morphing detectors. At the time of writ-
ing this paper, none of the existing research initiatives
working on this specific image manipulation detection
problem has been able to present detectors that achieve
sufficient detection accuracy on a wide range of
morphed images (see the ongoing NIST FRVT MORPH
challenge [14]). As a logical consequence fusion ap-
proaches are used to combine the existing detectors and
thereby improve the overall performance. The state of
the art approaches in information fusion for MAD are
briefly discussed in section 2.3.

2.1 Requirements for media forensic methods in terms of
scientific admissibility
When working in media forensics, the question of deter-
mining the maturity of methods arises. In lab tests ana-
lyzing data for which ground truth information exists, an
answer to that question is easy. In that case, the degree
of agreement between ground truth label and detector
response can simply be used to express the accuracy of
the method.
In field applications of forensics, there usually exists

no ground truth information for an object under investi-
gation. In these cases, other means of establishing the
maturity or suitability of a forensic method have to be
used. In forensics, the whole field of work looking into
this aspect is termed “scientific admissibility.” It is a very
complex topic on which Champod and Vuille state in
[15]: “The scientific admissibility of evidence, while sub-
ject to fairly precise rules in United States law, [...], is
seldom addressed in European legal writings, [...]. The
question of scientific reliability is seen as intrinsically
linked with the assessment of the actual evidence, that is
with the determination of its probative value […].” Re-
searchers in the fields of computer science and applied
pattern recognition have to rely on the verdict of legal
experts defining the hurdles media forensics approaches
have to take before achieving the ultimate goal of court
admissibility. Looking at [15], it can be stated that there
is no EU wide regulation on scientific admissibility ques-
tions but that there are common principles that would
have to be considered. In that in-depth analysis of the
current legal situation in [15] a non-exhaustive list of
such principles is presented, containing in its core the
following aspects:

� Methods should be peer reviewed and accepted
within the corresponding scientific community.

� Error rates associated with a method should be
precisely known,

� Existence of standards for the application and
maintenance of methods.
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This list is very similar to the state-of-the-art criteria
used by judges in the USA to address the questions of
court admissibility for forensic (and other) methods, i.e.,
the so called Daubert and FRE702 criteria [15]. While
pointing out the benefits of such selection principles,
Champod and Vuille also provide some form of criticism
into their application: for peer reviewed methods they
point out that “this criterion does not indicate whether a
technique accepted in scientific literature has been used
properly in a given case” and regarding the issue of as-
certaining the error rates of a test, they claim that those
“can prove misleading if not all its complexities are
understood” [15].
In the context of work presented in this paper, those

statements imply two important things: First, that a very
careful investigation of the precise constrains for the ap-
plication of a method such as information fusion is re-
quired for any specific forensic application case. Second,
that the associated complexities in practical application
(such as the attempt to improve MAD detection used
for illustration purposed within this paper) are clearly
and openly discussed.

2.2 Face morphing attacks and their detection
Face images in documents are an established and well
accepted means of identity verification. Current elec-
tronic machine readable travel documents (eMRTD) are
equipped with digital portraits to automate the identity
verification process. The automation saves manpower
and enhances security due to switching from subjective
(officers) to objective (automated face recognition sys-
tems) matching of faces. The benefit of automation is es-
pecially relevant in high-throughput applications like an
airport border control. However, the automation entails
the risk of face morphing attacks [16].
In publications such as [12, 16], it has been shown that

the blending of face images (here called face morphing)
of two or more persons can lead to a face image resem-
bling the faces of all persons involved. Using such an
image as a reference in a document is referred to as face
morphing attack because it enables illicit document
sharing among several users. Such morphing attacks
have been shown to be effective in an automated border
control (ABC) scenario giving a wanted criminal a
chance to cross a border with a chosen (i.e., wrong)
identity [10, 17, 18].
Document issuing procedures are different depending

on the country and its national regulations. In many
countries, the biometric face image can be (and often is)
submitted as a hard copy. Here, the attack aims at fool-
ing an officer at the document issuing office by submit-
ting a morphed face image. As long as persons are
allowed to submit images to the document issuing office
during the document generation, face morphing attacks

will remain a severe threat to photo-ID-based verifica-
tion. Indeed, if an officer accepts a morphed face image,
the issued document would pass all integrity checks, and
if an automated face recognition (AFR) system matches
a live face with a morphed document image, access will
be granted to an impostor.
The risk of the morphing attack can be reduced by

supporting both officers and AFR systems with a dedi-
cated morph detector. The only way to completely re-
move the threat of such attacks would be to take the
picture directly in the controlled environment of the is-
suing office and by ensuring that there is no malware-
enabled morphing attack embedded into the digital part
of the document issuing pipeline, too. The question
whether to take the picture directly in place is a political
issue, which has in the past lead to many controversial
discussions (e.g., in France and Germany) between gov-
ernmental regulation and the photo industry. But even if
this problem would be solved for one country, there
would still be the issues of legacy passports (which might
still be valid for up to 10 years) as well as foreign
documents.
Figure 1 depicts the document life-cycle of a docu-

ment with a face morphing attack present. While publi-
cations such as [19] also discuss the role of forensics
(and anti-forensics) in the quality assessment (QA) of
the attacker during the morph generation process, in the
scope of this paper, only the image forensic analysis of
the images submitted into the document creation and
the corresponding analysis in every document usage
(e.g., in an ABC gate) are relevant. These two investiga-
tion points are representing the evaluation scenarios
“MAD in document issuing” (SC1) and “MAD in identity
verification” (SC2) considered in this paper. They are
discussed in detail in section 4.
The face morphing attack detection (MAD) ap-

proaches are typically categorized into two groups re-
garding whether a trustworthy reference face image is
presented or not. The first group is often referred to as
single-image or no-reference MAD approaches. The sec-
ond group is referred to as two-image differential or
reference-based MAD approaches. Despite the fact that
the reference-based MAD has more potential for robust
operation, the non-reference MAD approaches are better
represented in the literature.
Within the group of reference-based MAD ap-

proaches, as ponted out in [21] there are two subcat-
egories: Reconstruction-based and reference-based
MAD. The most prominent examples from the first sub-
category try to reconstruct a likely original face (from
the assumedly morphed face image provided) by making
use of a trustworthy reference face image taken life from
the person in front of a camera. This process is often re-
ferred to as de-morphing. The detection is done in this

Kraetzer et al. EURASIP Journal on Information Security          (2021) 2021:9 Page 4 of 25

Chapter 9. [Kraetzer21] Potential Advantages and Limitations of Using Information Fusion in
Media Forensics – A Discussion on the Example of Detecting Face Morphing Attacks

118



case by comparing the reconstructed image and the ref-
erence one. The de-morphing is done either by inversion
of the common morphing procedure [22] or by applying
neural networks such as an autoencoder [23] or genera-
tive adversarial networks (GAN) [24]. Alternative ap-
proaches to implement reference-based MAD could also
be relying on reference feature vectors instead of
complete face images.
The approaches from the second subcategory extract

features from both presented images (probe document
image and trustworthy reference image) and either com-
pare them to each other [13] or combine them for the
further classification [25], or even train an additional
classifier based on difference vectors [26]. The common
problem of all single-image MAD approaches based on
“hand-made” or "hand-crafted" features is that they do
not detect morphing but rather traces of image manipu-
lations. Since, there is a set of legitimate image manipu-
lations such as in-plane rotation, cropping, scaling, and
even some kinds of filtering the morphing characteristics
can be easily simulated to prevent detection. The more
sophisticated single-image MAD (like [27]) approaches
make use of deep convolutional neural networks
(DCNN) which are learned to automatically extract fea-
tures characterizing morphing artifacts based on a large
set of samples. If a training set is large and diverse
enough covering all frequently used image manipula-
tions, there is a chance that the network will learn not
the characteristics of a special dataset, but actual charac-
teristics of morphing. Training of different DCNN archi-
tectures for morphing detection was conducted in [17,
26, 28] applying transfer learning with pre-trained net-
works as well as learning from scratch. In [29], a

feature-level fusion of two DCNNs (AlexNet and
VGG19) trained by means of transfer learning is shown
to outperform BSIF features.
The majority of the aforementioned detectors are

learned with morphed face images created by the stand-
ard morphing approach which roughly includes three
steps: alignment of faces, warping of face components
given by polygons (usually triangles), and blending of
color values [12, 17, 30]. However, the recent trend is
the application of GAN to create realistic face images
[31, 32]. The performance of MAD approaches to detect
standard morphs and morphs produced by GAN are
compared in [33, 34]. Several MAD approaches are com-
pared within the framework of the ongoing NIST FRVT
MORPH challenge [14].

2.3 Information fusion approaches in face morphing
attack detection
Decision-making systems can be fused at four different
levels [2]: data level, feature level, classifier level, and
combination (or decision) level. The earlier the fusion is
applied, the higher are implementation costs (esp. the
computation power required), but also the higher accur-
acy is expected.
A huge number of different fusion approaches exist,

ranging from simplistic methods, like the sum-rule (also
known as average rule, meaning the linear combination
of matching scores with equal weights) or majority vot-
ing to complex schemes like Dempster-Shafer Theory
(DST) of evidence [35]. Since DST has a theoretical
foundation for handling contradicting and missing deci-
sions of expert systems, it has been successfully applied
in a wide range of applications [36]. There, exist

Fig. 1 Document life-cycle in case of a face morphing attack including the evaluation scenarios “MAD in document issuing” (SC1) and “MAD in
identity verification” (SC2) (image derived from [19], combined morph generated based on [12] original face images taken from the ECVP
face dataset [20]
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different ways on how to exactly implement fusion based
on DST. For details of our own realization, we refer to
section 4.3 accordingly.
For the question which fusion method should be

chosen, there exists, to the best of the authors’ know-
ledge, no universally agreed upon theory to answer this
question. Some experts put a strong focus on one spe-
cific method, e.g., Kittler et al. in [37], where the authors
claimed that the sum-rule is not only simple, intuitive,
remarkably robust, but also outperforms in their experi-
ments all other aggregation operators tested. Other ex-
perts, like Ho [4] and Kuncheva [38], explicitly refrain to
give any generalized recommendation. Acknowledging
the fact that, even when a critical mass of single classifi-
cation models has been accumulated in a field of appli-
cation, there are still open questions regarding their
combination and the interpretation of the combination
output.
If, within media forensics, the field of image manipula-

tion detection is considered (which also contains MAD
as a research question) the same wide range of methods
are used in research papers, ranging from the simple to
complex. A good example in this domain would be the
work of Fontani et al. in [39, 40]. In those papers, the
authors apply with DST a very sophisticated approach to
image manipulation detection task and additionally use
its benefits to counter anti-forensics.
A face morphing attack detector is in its nature a bin-

ary pattern classifier. The methods for combining such
pattern classifiers have been thoroughly studied for a
long time, e.g., in [38]. The paper [7] summarizes the
state of the art in information fusion for MAD and ex-
tends it by introducing DST to this field. The test results
presented do show that the error rates with the DST-
based fusion are significantly lower compared to those
of individual detectors as well as some simplistic fusion
approaches applied previously (majority voting and aver-
age rule). Here, the work from [7] is used as basis for
this paper, taking its fusion framework and extending it
even further by including likelihood-based fusion. The
reason to do so is the prominent role that the forensic
sciences currently attribute to the usage of likelihood ra-
tios in expert testimony, see, e.g., [41] for the example of
footwear marks (and underlying forensic analyses, see,
e.g., [42]).
While many scientific publications address applying

fusion under lab conditions, only very few publications
address the question of generalization as well as the ap-
plicability for forensic procedures within the context of
criminal investigations. In [43], classical probabilities are
replaced by Shafer belief functions and an analogy of the
Bayes’ rule is introduced that is capable to overcome the
traditional inability to distinguish between lack of belief
and disbelief. Besides mathematical modeling, the

consequences of applying the fusion theory for legal
practice are discussed. They conclude that there is still a
lot of room for explaining the advantages and limitations
of using information fusion to forensic researchers as well
as the actual practitioners in criminal investigations. Here,
the discussion of the advantages and disadvantages of in-
formation fusion is continued and its limitations, if applied
in real-life conditions, are empirically demonstrated.

3 The concept of fusion-based face morphing
attack detection
In theory, a necessary and sufficient condition for a
combination or fusion of classifiers to be more accurate
than any of its members is that the individual classifiers
are accurate and diverse. An accurate classifier has a
classification performance better than random guessing
and two diverse classifiers make errors on different data
points [44]. In practice, experimental evidence has been
provided that, for the case of classifiers with a low level
of dependence, a consensual decision is likely to be more
accurate than any of individual decisions [45]. It has
been also shown that lowering correlation among classi-
fiers increases the accuracy of combination [46].
Application of fusion to MAD approaches and espe-

cially of the Dempster Shafer Theory (DST) is initially
discussed in [7]. In the experiments performed there, the
fusion always outperforms individual classifiers in terms
of lower error rates. The evaluation concept from this
paper is considered here as a reference. It is expanded
and it is demonstrated that under certain conditions the
superiority of fusion is not always the case. In particular,
it is illustrated why the assumption that fusion would
make the detection more reliable can nevertheless fail in
practice. This enables a discussion on the constraints
and limitations of the application of fusion and reflects
upon the impact of generalization power of single classi-
fiers as well as fusion methods and the relationship be-
tween training and test data sets. Figure 2 roughly
depicts the initial evaluation concept.
The concept consists of five major components:

1. The set D of individual morphing attack detectors.
Each individual morphing detector is considered as
a black box (i.e., they are used as pre-trained
methods implying that we have no influence on the
training of the classification model). An input for an
individual detector is a face image and an output is
a score between 0 and 1. High scores indicate
morphs and low scores genuine samples.

2. The set of approaches for establishing weights for
individual decisions in the fused one. In the case of
DST, the mass (belief) functions are required. The
process of deriving such parameters is referred to as
training in Fig. 2.
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3. The set of fusion approaches F. A fusion approach
gets a list of individual decisions and the
“importance” of each decision and returns the
consensual decision.

4. The evaluation data, which includes training data
for establishing fusion parameters (e.g., weights or
mass functions) and test data for estimation of error
rates. The training and test datasets are created by
splitting the AMSL Face Morph Image Data Set
(made available via: https://omen.cs.uni-magdeburg.
de/disclaimer/index.php). This dataset was initially
created to simulate a border control scenario and
includes cropped and JPEG-compressed face images
which do not exceed 15 kByte and, therefore, fit
onto a chip of an eMRTD. In the evaluation, this
application scenario is referred to as “MAD in iden-
tity verification” (SC2). For creating morphed face
images, the combined morphing approach from
[30] is applied.

5. Comparison of individual detectors and fusion
approaches. As a performance metric, we have
chosen the error rates of classification
approaches.

Here, this concept and its components are re-used and
extended by the following: (1) providing a better separ-
ation between the training and test datasets by using
completely different data sources, (2) adding a fusion ap-
proach based on forensic likelihood ratios, (3) adding
two types of morphed face images: complete and splicing
morphs [12], and (4) adding the application scenario
“MAD in document issuing” (SC1).
For scientific rigor, it has been ensured in communica-

tion with the authors of the MAD approaches that the
datasets used for training of the individual detectors do

not overlap with the datasets used for training and test-
ing of the fusion approaches.

4 Evaluation setup
Figure 3 depicts the evaluation concept for this paper.
The components from [7] and the modifications and ex-
tensions summarized in section 3 are apparent in the
comparison to Fig. 2.
The representation of the evaluation scenario is done

by either using images in their native format and reso-
lution (for application scenario “MAD in document issu-
ing” SC1) or in the format specified for ICAO compliant
eMRTD (for application scenario “MAD in identity veri-
fication” SC2). The evaluation scenarios are discussed in
more detail in section 4.1. In section 4.2, the used single
classifiers for MAD are discussed, while section 4.3 sum-
marizes the fusion methods evaluated (including the
strategies for determination of decision thresholds and
score normalization). Section 4.4 introduces the per-
formance metrics and 4.5 the databases that are used to
create the evaluation data sets.

4.1 Detailed specification of two evaluation scenarios
So far, the evaluation of morphing attack detection
(MAD) mechanisms has not been focused on the appli-
cation scenario. The MAD approaches were rather clas-
sified in two groups regarding whether a trustworthy
reference face image is presented or not (reference-based
vs. single-image/no-reference approaches; see section
2.2). Here, two application scenarios “MAD in document
issuing” (SC1) and “MAD in identity verification” (SC2),
representing the two forensic checks required in the
document life-cycle of a face image based identity docu-
ment (see Fig. 1), are considered. Table 1 compares both
application scenarios.

Fig. 2 Evaluation concept for MAD in identity verification from [7]
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The most intuitive mapping would be to link single-
image MAD approaches to SC1 and reference-based
MAD approaches to SC2. In fact, both application sce-
narios can be tuned in the way that the reference image
is presented. For SC2, taking a “live” face image is an in-
herent part of the procedure. Note that this image could
be used solely for face recognition and ignored by the
MAD module. For the document issuing in SC1, a web-
cam could be installed next to the officer at the issuing
authority, providing a possibility for capturing “live” face
images of an applicant.
No-reference MAD approaches are limited to the

search for content-independent statistical anomalies or
content-dependent visual artifacts caused by the morph-
ing process. Such methods often apply techniques devel-
oped within the context of digital image forensics (see
section 2.2). Reference-based MAD algorithms try to re-
construct the morphing process aiming at predicting the
face of an “accomplice” and comparing this face to the
trustworthy “live” image. Hence, the presence of a

reference face image rather gives additional options for
the choice of detection mechanisms, but does not deter-
mine the application scenario.
In contrast, the face image format in SC2 is very closely

defined by national and international regulations, especially
by the International Civil Aviation Organization (ICAO)
standardization of eMRTD. As a result, the limitations to
the digital image that should be stored in an eMRTD are
caused by antiquated physical storage limitations. For in-
stance, the current generation of German (and other coun-
tries) passports limits the free space for a digital face to 15
kB. During the application for a new document, an appli-
cant submits a printed face photograph of the size of 35 ×
45 mm. These images are scanned with the resolution of
300 dpi and undergo lossy compression before they are
stored in the passport. The submission of printed face im-
ages is in fact the main vulnerability spot making the face
morphing attack easy to execute. The reason is that the
printing process destroys almost all traces of image ma-
nipulation so that human examiners are highly prone to

Fig. 3 Our enhanced evaluation concept—switching from “MAD in identity verification” to “MAD in document issuing” is done by deactivating
the dashed boxes

Table 1 Comparison of the document issuing (SC1) and identity verification (SC2) scenarios

Document issuing (SC1) Identity verification (SC2)

Attack’s target Officer at the document issuing authority Identity verification system

Time constraints Up to several minutes Few seconds (< 2 s)

Face image format - Low-size printed document image
- High-resolution digital image from a
certified photo-kiosk

- Low-resolution compressed digital document image
- Low-size re-printed document image partially occluded
by watermarks

Currently used morphing detection
mechanisms

- Naked eye, comparison to the person
in front of the desk

- No explicit mechanisms
- AFR systems may be set to rejecting at low similarity

Proposed morphing detection
mechanisms

- Primarily non-reference (blind) detection
- Could be extended by reference-based
detection

- Reference-based detection
- Demorphing
- Could be extended by non-reference (blind) detection
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errors when categorizing such images [12]. The straightfor-
ward way to reduce the danger of the morphing attack is a
prescription to submit high-resolution digital face photo-
graphs of a decent quality. Having done this, the image
resolution would not be an issue any more for at least a
document issuing scenario. As described in section 2.2, tak-
ing the picture directly in the controlled environment of
the issuing office would limit the threat by morphing at-
tacks. This is not only a political issue but would also re-
quire the elimination of further attack vectors.
The file format used in this paper to implement SC2 is

a face image compliant with ICAO specifications for
eMRTD: 531 × 413 pixels (inter-eye distance of at least
120 pixels), in JPEG2000 format, compressed to fit the
15 kB size constraint. The file format to implement SC1
is not that narrowly defined; here, the original file format
of the reference databases (see section 4.5) is used.

4.2 Morph attack detection approaches
In this paper, five morph attack detection (MAD) ap-
proaches are examined. The first one (Dkeypoints) is based
on localization and counting of keypoints [19]. The
keypoint-based morphing detector indirectly quantifies
the blending effect as an indispensable part of the morph-
ing process. Blending leads to a reduction of face details
and therefore to a reduction of “significant corners” and
edge pixels. The detector counts the relative number of
keypoints in the face region detected by different ap-
proaches as well as the relative number of edge pixels. For
classification within Dkeypoints, a linear support vector ma-
chine (SVM) was trained based on 24-dimensional feature
vectors with a dataset of 2000 genuine and 2000 morphed
high-resolution passport images. These morphs were cre-
ated using the approaches from [12, 30].
The other four MAD approaches are based on Deep Con-

volutional Neural Networks (DCNN). Two of them desig-
nated as DArXivNaive and DArXivMC are described in [26]. The
other two designated as DBIOSIGNaive and DBIOSIGMC are de-
scribed in [17]. All four of these detectors are based on the
VGG19 network. Transfer learning is applied to build a bin-
ary classifier from the classification model originally trained
for the ILSVRC challenge. The training dataset is comprised
of approximately 2000 genuine images and the same num-
ber of morphs. Genuine images were collected from several
public face databases and scraped from the internet. The
major difference between classifiers is in the approach for
generation of morphed face images for training. While the
DArXivNaive is an older detector trained with lower quality
morphs and DArXivMC is the same detector with an updated
data augmentation strategy in the training, the DBIOSIGNaive

and DBIOSIGMC detectors applied for the creation of the
training data sophisticated morphing with artificially added
high-frequencies to compensate the blurring effect of the
blending operation. The differences between the Naive

training and the MC (multiclass/complex morphs) versions
lie in the composition of the training data: For Naive 50%
genuine images and 50% complete morphs are used. For
MC 50% genuine images and a mix of complete and partial
morphs are used, with the aim of forcing the network to
take all available information for its decision-making into ac-
count (i.e., prevent it from focus on selected face regions like
the eyes to detect morphing attacks). The details on the
training concept for Naive and MC versions of the detectors
used here can be found in [17].

4.3 Fusion approaches
Here, each MAD approach operates as a “black box”
returning a matching score for an input sample. As a
consequence of the evaluation concept, fusion on signal
level is out of scope for this paper and fusion on feature
level (see section 2.3) is not feasible. Hence, the detec-
tion accuracy gain from one fusion approach at the deci-
sion level (majority voting) and three fusion approaches
at the matching score level (weighted linear combin-
ation, Dempster-Shafer Theory (DST) of evidence, and
forensic likelihood ratios (LR)) is explored. Below, the
fusion operators F are described in detail:

4.3.1 Majority voting (FM)
The naive consensus pattern of simple majority [38] is used
for opinion combination. If the number of votes for every
alternative is equal, the majority rule returns “no decision.”

4.3.2 Weighted linear combination (FWLC)
The sum-rule (or weighted linear combination) extends
the average rule by assigning different weights to the
output of the individual classifiers to be combined. For
the case of the same weights, the fusion strategy is often
referred to as average rule. Here, two different strategies
are used: average rule as well as weighted linear combin-
ation with pre-determined weights (see section 5.1 for
details on these two strategies).

4.3.3 Fusion based on Depster-Shafer Theory (FDST)
The Depster-Shafer Theory (DST) is based on two con-
cepts: belief functions representing degrees of belief for one
question from subjective probabilities for a related question
and Dempster’s rule for combining such degrees of belief
when they are based on independent items of evidence.
In our case, the frame of discernment is defined as Θ

= {mor, gen}, with m(mor)/m(gen) representing the basic
beliefs that the face is morphed/genuine respectively,
and m(Θ) is a mass of uncertainty. A degree of belief
(mass) is assigned to each subset. As proposed in [7], we
construct mass functions as cumulative distribution
functions of matching scores obtained from an experi-
ment. Let pmor(s) and pgen(s) be the approximations of
probability density functions of scores for verification
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attempts with morphed and genuine images respectively.
For a detector outcome s* ranging from 0 to 1, we define
the mass m(mor) as an area under pmor(s) between 0
and s* and m(gen) as an area under pgen(s) between s*
and 1, and the mass of uncertainty as a complement to
the sum of both masses:

m morð Þ ¼
Zs�

s¼0

pmor sð Þds;m genð Þ ¼
Z1

s¼s�

pgen sð Þds ð1Þ

m Θð Þ ¼ 1− m morð Þ þm genð Þð Þ ð2Þ
Note that we interpret the detector outcome s* (also

called matching score) as a decision confidence with 1
for 100% confidence that the image is morphed and 0
for 100% confidence that the image is genuine.
Technically, the three masses are calculated for each

morphing detector based on the matching scores of
training samples and stored as a parameter of our fusion
engine. At the time of decision-making, for each out-
come si* of the ith detector, we obtain the values
mi(mor), mi(gen), and mi(Θ) as the nearest points on the
corresponding discrete mass curves.
Dempster’s rule of combination for two beliefs from

independent sources is given by:

m A≠Oð Þ ¼ 1
K

X
A¼A1∩A2

m1 A1ð Þ �m2 A2ð Þð Þ ð3Þ

K ¼ 1−
X

A1∩A2¼0

m1 A1ð Þ �m2 A2ð Þð Þ ð4Þ

where m(A) represents the combined mass on A (a
given member of the power set), m1 and m2 represent
the masses of first and second items of evidence re-
spectively, and K represents the normalization con-
stant. The second term in K describes the conflict
between two items of evidence. If it is equal to 1
then K is equal to 0 implying that these two items
contradict each other and cannot be combined by ap-
plying Dempster’s rule.
The efficient application of the Dempster’s rule for

computation of combined belief can be found in [6]:

m morð Þ ¼ 1−
1
K

Yn
i¼1

1−mi morð Þð Þ ð5Þ

m genð Þ ¼ 1−
1
K

Yn
i¼1

1−mi genð Þð Þ ð6Þ

m Θð Þ ¼ 1
K

Yn
i¼1

mi Θð Þ ð7Þ

K ¼
Yn
i¼1

1−mi morð Þð Þ

þ
Yn
i¼1

1−mi genð Þð Þ−
Yn
i¼1

mi Θð Þ ð8Þ

4.3.4 Fusion using likelihood ratios (FLR)
Likelihood ratios (LR) are used in forensics in order to
express uncertainty [47]. The basic concept relies on the
quotient of the probabilities of the correctness of two
hypotheses with respect to an observation within binary
decisions which are common in forensics. Semantically,
the LR describe how much more probable one of the hy-
potheses is in comparison to a complementary one when
specific observations can be made.
Within the scope of a forensic comparison of face im-

ages, LR are discussed, e.g., in [42] and is already used in
some countries in the forensic practice as well, as shown,
e.g., in [41] for a case involving footwear marks in the
UK. Sometimes the observed LR are mapped to particu-
lar levels regarding the confidence in the hypothesis in
order to make the result more accessible to forensic lay-
men as the requirements for particular LR differ be-
tween forensic domains, see, e.g., [48]. Generally, a
likelihood ratio close to 1 indicates a weak decision as
the probabilities for the two hypotheses are almost
identical.
With the availability of multiple detection algorithms,

a fusion using LR is also possible as suggested, e.g., in
[49] for multiple biometric matchers. For each detection
algorithm, a quality value needs to be determined as a
weight in the fusion algorithm.
In our experiments, the LR for a single detector D pro-

viding confidence levels c in a two-class problem is de-
termined by the quotient of the detectors confidence for
a sample s toward a genuine sample—cD(gen)—divided
by the confidence toward a morphed sample—cD(mor):

LR s;Dð Þ ¼ cD genð Þ
cD morð Þ ð9Þ

Note that the inverse of the LRs is used in the experi-
ments performed here, in order to achieve a defined
value of zero for a confident decision. Usually the tested
hypothesis—in this case whether an image is a morph—
would be used as the numerator. As a result, the FLR
shows the same behavior. In addition to that, it is pos-
sible to normalize FLR using the number of detectors (in
this paper 5). Otherwise, this number would have to be
taken into account during the interpretation of fusion
operator.
The LR-based fusion score FLR of a sample image in

question for the k = 5 detectors D = {Dkeypoints,

Kraetzer et al. EURASIP Journal on Information Security          (2021) 2021:9 Page 10 of 25

Chapter 9. [Kraetzer21] Potential Advantages and Limitations of Using Information Fusion in
Media Forensics – A Discussion on the Example of Detecting Face Morphing Attacks

124



DArXivNaive, DarXivMC, DBIOSIGNaive, DBIOSIGMC} is deter-
mined as the quotient of weighted sum of LRs toward a
genuine sample (LRg) divided by the LRs toward a

morph (LRm) with LRgðs;DÞ ¼ 1
LRmðs;DÞ ¼

cDðmorÞ
cDðgenÞ :

FLR sð Þ ¼
Pk

i¼1LRg s;Dið Þ�wiPk
j¼1LRm s;Dj

� ��wj

ð10Þ

The factor wi/wj represents here the weighting factor
for the LR fusion as described in section 5.1. A quotient
FLR(s) closer to zero indicates a larger confidence of the
decision toward a morph.

4.3.5 Normalization
In order to perform a reasonable fusion, the matching
scores of the individual classifiers should be brought into
the same range. The detectors DArXivNaive, DarXivMC,
DBIOSIGNaive, and DBIOSIGMC return negative values for
genuine faces and positive values for the morphed faces.
The default decision threshold is 0. In contrast, the de-
tector Dkeypoints returns values between 0 and 1. Lower
values are for genuine faces and higher values for
morphed faces. The default decision threshold is 0.5.
Within the training phase performed in this paper using
the DEFACTO dataset (see section 4.5), we perform
min-max normalization of the matching scores and
adapt the default decision thresholds. As a result, the
normalized matching scores of all detectors range then
from 0 to 1 and the new default decision threshold can
be found in Table 3 (column τfixed). For each classifier,
the MIN and MAX values of matching scores are stored
to perform the min-max score normalization at the
evaluation phase. The aforementioned decision thresh-
olds are also stored as parameters of the fusion and are
used in the evaluations in SC1 and SC2.

4.4 Performance metrics
Morphing detection is a standard two class problem
with two possible outcomes: “passport image is
morphed” or “passport image is not morphed” and two
types of errors: morphed image is recognized as non-
morphed and vice versa. Driven by the idea that the
morphing attack can be seen as a special case of the
presentation attack, the detection performance metrics
from the presentation attack detection testing standard
[50] are adopted. Attack Presentation Classification
Error Rate (APCER) describes the proportion of
morphed face images incorrectly classified as genuine
(bona fide) and Bona Fide Classification Error Rate
(BPCER) describes the proportion of genuine (bona fide)
face images incorrectly classified as morphed. MAD ap-
proaches are typically designed to report two values: a

binary decision on whether the image is morphed or
not and a confidence score for this decision from the
interval [0; 1]. Higher values indicate higher confi-
dence that the image is morphed. In fact, the binary
decision is derived from the confidence score by com-
paring it to an algorithm-dependent predefined deci-
sion threshold. Hence, APCER and BPCER are the
reciprocal functions of decision threshold. Formally,
the BPCER is computed as the proportion of bona
fide images over the threshold and the APCER as the
proportion of morphed images below the threshold.
At the stage of development, when an algorithm can
be evaluated with different decision thresholds, the
more informative way to compare algorithms is draw-
ing the detection error trade-off (DET) curves (re-
spectively the area under curve (AUC)) on the same
plot. Traditionally, BPCER is seen as a convenience
measure while APCER as a security measure. The
DET curve represents BPCER as a function of APCE
R. Here, also the half total error rate (HTER) is used
as an average of BPCER and APCER with the fixed
decision threshold to compare performances in an
easier way.

4.5 Evaluation datasets
There are four databases used in the experiments in this
paper: The DEFACTO database [51] containing morphs
and genuine face images is used for the training of the
fusion methods (see Fig. 2). This database is chosen as a
neutral dataset for training because it ensured by the au-
thors that it was not used in the creation (i.e., training)
of any of the five used “black box” individual detectors
and its used morphing method being unknown. By this
choice, a realistic evaluation setup can be ensured, with
training data (DEFACTO material) having an unknown
similarity to test data (for SC1 and SC2; see Fig. 1),
reflecting the constraints that will be encountered in
field application. The following datasets (and subsets)
are used:

� The DEFACTO dataset contains 200 genuine face
images and 39980 morphs. Since using the whole
dataset would represent an extremely strong bias
toward morphs, only a subset of 2309 randomly
selected morphed images is used.

� Three other databases are used to simulate the
evaluations conducted within the comparison
between single classifiers and fusion methods
performances:
� For two of them (the ECVP (aka Utrecht)

[20] and London Set [52] databases) morphed
images are generated using the approaches from
[12, 30]. The subsets of morphed images are
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denoted as complete, splicing, and combined
according to the generation method used.

� Additionally, as a source for further genuine face
images, mugshots from the Alabama News
Network [53] are taken.

Using the original sized images (and morphs based on
those), the experiments simulate the passport issuing
scenario (SC1). In order to simulate the verification sce-
nario (SC2), the images are down-scaled (to 413 × 531
pixels) and compressed using the JPEG2000 format in a
way that the image size does not exceed 15 kilobyte (kB)
as described in section 4.1. Figure 3 shows the exact
evaluation concept and Table 2 summarizes the infor-
mation about the image (sub-)sets used in our
experiments.

5 Evaluation results and discussion
This chapter contains a large number of results from dif-
ferent empirical evaluations as well as their interpret-
ation. It is structured as follows:

� Section 5.1 summarizes the DEFACTO experiments,
which serve as a baseline as well as an estimator for
fusion weights (or mass functions).

� Section 5.2 evaluates the individual detectors and
fusion methods (using the full ensemble of
detectors) for the two simulated application
scenarios SC1 and SC2.

� Section 5.3 discusses the impact of the performed
fusion to the field of MAD.

� Section 5.4 determines the impact of using smaller
ensembles (i.e., subsets of the available detectors) for
fusion.

� Section 5.5 determines the impact of less restrictive
assumptions in the evaluation setup composition on
the error rates achieved in fusion.

� Section 5.6 provides a final summary and
generalization on the obtained results.

5.1 DEFACTO training and baseline experiments
The experiments with the DEFACTO dataset have two
objectives:

1. Fair comparison of the MAD approaches to each
other regarding their error rates with a disjunctive
dataset. In fact, face images in the DEFACTO
dataset do not overlap with those used for the
training of MAD approaches. Moreover, the
morphing procedure with the DEFACTO
significantly differs from those with the individual
MAD approaches.

2. Training of the fusion parameters including fusion
weights and decision thresholds of the individual
MAD approaches as well as mass curves for the
DST-based fusion. An importance (or in other
words a credibility) of one or another detector in
the fusion is given by the fusion weight. Here, we
consider two thresholding strategies “fixed” and
“adaptive” to define at the same time the decision
thresholds and weights (the latter only for FWLC

and FLR):

For the “fixed” strategy, we rely on the default decision
thresholds suggested by the developers of the MAD ap-
proaches and assign equal weights for fusion approaches
that accept weights. This trivial strategy (which con-
siders all available detectors as being equally important)
is typically the only choice if no additional evaluation of
classifiers can be performed, or if there is a suspicion
that the evaluation dataset does not fit to the in-field
data.
For the “adaptive” strategy, we set a new decision

threshold at the point at which the EER of a MAD ap-
proach is reached. Additionally, we calculate the fusion
weights for FWLC and FLR based on the EER values.
To be more precise, the inverse of the EER values are
used as weights of the individual MAD approaches in
the fusion. Since the possible EER values for a binary

Table 2 Evaluation data sets

Database Number of images SC1 (document issuing) SC2 (identity verification)

DEFACTO morphs 2309 tiff, 500 × 652 15kB, jpeg2000, 413 × 531

DEFACTO genuine 200 jpg, 500 × 652 15kB, jpeg2000, 413 × 531

ECVP complete 1326 png, 900 × 1200 15kB, jpeg2000, 413 × 531

London complete 5050 png, 1350 × 1350 15kB, jpeg2000, 413 × 531

ECVP splicing 2614 png, 900 × 1200 15kB, jpeg2000, 413 × 531

London splicing 9352 png, 1350 × 1350 15kB, jpeg2000, 413 × 531

EVCP combined 2652 png, 900 × 1200 15kB, jpeg2000, 413 × 531

Alabama genuine 1343 jpg, image resolution varies 15kB, jpeg2000, 413 × 531
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classifier range from 0 (for a perfect classifier) to 0.5
(for a random guess) and the weight should spread
over the interval [0, 1], an EER value is multiplied by
2, see Equation (11).

wi ¼ max 0; 1−2 � EERið Þ ð11Þ

with i representing one of the five MAD approaches.
Figure 4 shows the DET curves of the five addressed

MAD approaches on the original-sized DEFACTO im-
ages. Crossings with the dashed black line represent the
EER of the detectors. Regarding the EER, three detectors
DArXivNaive, DBIOSIGMC, and DBIOSIGNaive demonstrate
comparable performances, with DBIOSIGMC achieving the
best performance by a small fraction. The DArXivMC

demonstrates slightly worse performance and the Dkey-

points is by far the worst detector.
Table 3 demonstrates the EER values of the individual

MAD approaches, the decision thresholds τ at which the
EER are reached, and the weights assigned to the ap-
proaches for fusion for both strategies “fixed” and “adap-
tive.” If the fusion is done at the decision level, the
decision thresholds are used to derive decisions from
matching scores.
The mass functions for the DST fusion are demon-

strated in Fig. 5. The mass curves for the “genuine” and

“morphed” matching scores reproduce the classic error
curves so that the crossing point indicates the EER.
What can be observed from the results in Table 3 is

that DBIOSIGMC outperforms the other four detectors by
presenting the smallest EER (resp. the highest AUC). As
a result, it is assigned the highest weight for the fusion
operations. The results for Dkeypoints confirm what was
already indicated in Fig. 4: Despite its good performance
on other image sets, this detector is here performing sig-
nificantly worse than the other four. As a result, it gets
with 0.42 the lowest weight assigned for the fusion.
If the EER locations (the projection of the EER onto

the x-axis) and the uncertainty curves shown in Fig. 5
are analyzed, it can be seen that four of the five curves
(resp. EER locations) are shifted from the center to the
left (indicating a bias toward morphed images) and only
Dkeypoints is shifted to the right with a strong bias toward
genuine images. The amount of the shift correlates with
the ranking of the detectors: DBIOSIGMC shows the smal-
lest shift (a nearly centered uncertainty curve with a very
small skew) while the other four show an increase in the
shift (and skew) with their higher EER.

5.2 Experiments with individual detectors and fusion
methods
The sections 5.2.1 and 5.2.2 summarize the results on
the performance of the individual detectors and fusion
methods evaluated with the two simulated application

Fig. 4 DET curves of the individual detectors with the DEFACTO dataset (original-sized images)
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scenarios SC1 and SC2. All these tests use as data the
combined images from the ECVP, London and Alabama
datasets (see section 4.5). For SC1 the original-sized im-
ages are used and for SC2 the 15 kB versions.

5.2.1 Scenario SC1 (“MAD in document issuing”)
Figure 6 shows the DET curves for the tests on
complete, splicing, and combined morphs in SC1. The
individual classifier performance is displayed by solid
lines (with the same color coding as in Fig. 4), and the
performance of the fusion methods is given as dashed
lines (where a continuous space of operation points is
possible) or symbols (in case only one operation point,
either the “fixed” setting or the “adaptive,” is possible).
For all three morphing types, the individual classifier

DarXivNaive achieves the best performance for SC1,
followed by the weighted linear combination (FWLC).
The three single classifiers DBIOSIGNaive, DBIOSIGMC, and
Dkeypoints show the lowest performance. FM with “fixed”
and “adaptive” thresholding strategy achieve the lowest
performance of the fusion methods. The more

sophisticated fusion operators (FDST and FLR) perform
better than FM, in some cases FDST even outperforms
FWLC, but both show a significant bias toward morphed
images. Especially for FDST, this is apparent with an
APCER close to 0 at a BPCER of roughly 0.2.

5.2.2 Scenario SC2 (“MAD in identity verification”)
Figure 7 shows the DET curves for the tests on
complete, splicing, and combined morphs in SC2. The
same color coding and symbols are used as in Figs. 4
and 6.
The general performances of the individual and fusion

based detectors in SC2 are very similar to the SC1 re-
sults shown in Fig. 6. A slight decrease in the detection
performances can be observed for all tested methods.
This decrease can be attributed to the fact that the 15
kB image format that is used in SC2 leaves generally less
room for media forensic investigations on image ma-
nipulation. What is remarkable in the results is that the
results of the more sophisticated fusion operators (FDST
and FLR), while also showing some performance de-
crease, loose some of their bias toward morphed images.
Especially for the splicing morphs, it can be observed in
Fig. 7 that FDST shows an APCER larger than 0, even
slightly outperforming at the corresponding APCER
values all other detectors.

5.3 Discussion of the impact of fusion to face morphing
attack detection
Tables 4, 5, and 6 summarize the results. Table 4 dem-
onstrates a baseline using only the individual classifiers,

Fig. 5 Mass functions for the DST fusion resulting from the evaluation with the DEFACTO dataset (original-sized images)

Table 3 Evaluation of detectors with the DEFACTO dataset and
associated weights

Detector AUC EER τadaptive wadaptive τfixed wfixed

DArXivMC 0.94 0.14 0.35 0.72 0.47 1.00

DArXivNaive 0.97 0.10 0.40 0.80 0.59 1.00

DBIOSIGMC 0.98 0.09 0.48 0.82 0.53 1.00

DBIOSIGNaive 0.97 0.10 0.36 0.81 0.52 1.00

Dkeypoints 0.77 0.29 0.87 0.42 0.50 1.00
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showing that DArXivNaive performs best in testing in both
application scenarios SC1 and SC2 on all three morph
types.
Tables 5 and 6 present the single classifier and fusion

results in the “fixed” (Table 5) and “adaptive” (Table 6)
thresholding strategies. The difference lies in the basic
assumption for the similarity of training data (here
DEFACTO) and the material encountered in field appli-
cation (here, the mix of ECVP, London, and Alabama
material, either in original (for SC1) or the 15 kB version
(SC2)). While the “adaptive” setting is the setting en-
countered in most lab experiments, the “fixed” one
(which assumes a much lower similarity between train-
ing and test data) is a more realistic assumption, leading
to more trustworthy error estimates in this media foren-
sic analysis.
When focussing on the single classifier results ob-

tained for both thresholding strategies (“fixed” decision
threshold and fusion weights vs. “adaptive” decision

threshold and fusion weights), it can be seen that DBIO-

SIGMC, which performed best on the DEFACTO dataset
(see Fig. 4 in section 5.1) demonstrates in the evalua-
tions significantly worse performance in both application
scenarios SC1 and SC2. In Fig. 4, in two of the six tests
(the two evaluations run on splicing morphs), it actually
shows the lowest performance (i.e., highest HTER).
When looking at Tables 5 and 6, these results are con-
firmed. For both thresholding strategies and all three dif-
ferent morphing types, DBIOSIGMC achieves the second
lowest detection performances, followed only by Dkey-

points. The best performance for a single classifier is in all
cases achieved by DarXivNaive with the “fixed” decision
threshold.
When comparing the single classifier and fusion re-

sults in Tables 5 and 6, the general picture established in
section 5.2 is confirmed: In nearly all cases for SC1 as
well as SC2, the fusion approaches fail to outperform the
best individual detector. Neither for selected morphing

Fig. 6 DET curves for the tests on complete, splicing, and combined morphs in SC1
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approaches nor for one of the two thresholding strat-
egies, the fusion generally outperforms the best single
classifier, even though in one case for SC2 and splicing
morphs it is close (best single is DarXivNaive with “fixed”
at an HTER of 8.5% and the best fusion is FLR with
“adaptive” and an HTER of 8.92%). Most interestingly,
the DST-based fusion, which is the most sophisticated
fusion strategy and which is highly regarded in many
other application fields, leads here in all cases to low
performances.
For the thresholding strategies, it can be summarized

that for the four classifiers DBIOSIGNaive, DBIOSIGMC , Dar-

XivNaive, and DarXivMC, there is a tendency that the best
results are obtained with the “fixed” decision threshold
while for Dkeypoints in the majority of the cases better re-
sults are obtained with the adaptive decision threshold.
For the fusion, no clear tendency which thresholding
strategy leads to better results can be observed.

When considering the differences in the detection per-
formance for the three tested morph types (combined,
complete, and splicing), it can be summarized that all de-
tection approached discussed here yield very similar de-
tection performances (both in SC1 as well as SC2).

5.4 Variation of the fusion ensemble
During the review phase for this journal paper, the re-
viewers raised the question why it is assumed that a fu-
sion using all five single classifiers is the optimal choice
at hand. Alternative fusion ensembles using three or four
classifiers might be capable to outperform the whole set
of five, especially when removing the weakest candidate
(Dkeypoints). To address this issue, Table 7 compares the
results of three different sets of fusion ensembles for the
“fixed” decision thresholds. The results shown are for
the complete set of 5 detectors as baseline, the best per-
forming ensemble of 4 (here DBIOSIGNaive, DBIOSIGMC,

Fig. 7 DET curves for the tests on complete, splicing, and combined morphs in SC2
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DarXivNaive, and DarXivMC; the evaluations performed in
this case were a complete leave one out sequence but
only the most relevant result is presented here) and the
ensemble of three with the most disparate characteristics
(DarXivNaive, DBIOSIGMC, Dkeypoints; i.e., selection by limit-
ing redundancy). The results show an apparent decrease
of the HTER for SC1 and SC2 if switching from an en-
semble of 5 (denoted as “5 det” in Table 7) to an ensem-
ble of (the most suitable) 4 detectors (denoted as “4 det”
in Table 7). When compared to the single detector per-
formance reported in Table 5 above, it can be seen that
the best ensemble of 4 also seems to outperform the in-
dividual detectors. Some of the figures presented have to
be considered very carefully since they are hiding a
problem in the scheme: This is absolutely no problem
for cases where the individual weighting makes dead-
locks neigh to impossible (e.g., in case of the FWLC) but
is especially relevant for the majority vote where signifi-
cant numbers of “undecided” events occurred (e.g., cases
where 2 detectors predicted one class and the other 2
the other) that are not reported in the table. These “un-
decided” events amount over the various tested ensem-
bles to up to 10% of all majority vote cases.
In case of the chosen ensemble of 3 detectors (denoted

as “3 det” in Table 7) all HTER values increased signifi-
cantly, showing that this ensemble (which more strongly
relies on the opinion of the rather weak Dkeypoints) is out-
performed by the bigger ensembles.
Similar to Table 7, Table 8 performs the same ensem-

ble tests for the “adaptive” thresholding strategy. Here,

the results also show better results for the best ensemble
of 4 detectors when compared to the complete ensemble
of 5. In contrast to the “fixed” thresholding strategy dis-
cussed above, the performance increase obtained by
leaving Dkeypoints out seems smaller but also the number
of “undecided” events is way smaller (less than 3%) so
that here the gain has to be considered higher. This per-
formance gain is also evident in the comparison to the
single detector results discussed in Table 6.
Like in the case of the “fixed” thresholding strategy,

the tested cases of 3 detector ensembles showed signifi-
cantly worse results, increasing the HTER to 18% or
even higher.
Summarizing the results on these detector ensemble

selection experiments, it has to be said that the best per-
forming set of 4 detectors outperformed for both thresh-
olding strategies (“fixed” and “adaptive”) and SC1 as well
as SC2 the complete ensemble of 5. For fusion methods
that are prone to deadlock or “undecided” situations
(esp. the majority vote), the even number of detectors in
this cased caused a small issue, generating in the worst
case up to 10% deadlock results that would have to be
handled in application. All results for the chosen ensem-
ble of the 3 most dissimilar detectors proved near fatal
for the system performance since the HTER was signifi-
cantly increased in all these cases.

5.5 Discussion on alternative evaluation setups
Another issue, raised during the review phase for this
journal, is the choice of a realistic but rather challenging
experimental scenario where the dataset used for train-
ing is disjoint from the ones used for testing. The ques-
tion was how an overlap between training and testing
set (i.e., more favorable conditions for the individual de-
tectors) would influence the outcome of the experi-
ments. To address this question, two different sets of
less realistic experimental setups are discussed below:
first, a tenfold stratified cross-validation with disjoint
sets of genuine samples and morphs, and second an even
less realistic (i.e., more lab-condition) test with a static
percentage split on one a set containing genuine and
morphs that are derived directly from these genuine
images.
For the first of these alternative setups, additional tests

are performed here to show how a deviation from rigor-
ous evaluation routines reflects in the error rates ob-
tained. Table 9 summarizes the results for the “fixed” as
well as the “adaptive” thresholding strategy. If comparing
the results in Table 9 to the results in Tables 4 and 5,
then the single detector performances in the “fixed”
thresholding remain nearly unchanged while the HTER
values in case of the fusions decrease (e.g., from 11.85%
to 2.6% in case of FLR in SC1 for combined morphs of
from 13.70% to 5.9% in case of FLR in SC2 for combined

Table 4 Theoretical performance of the individual detectors
with the combined LondonDB/UtrechtDB/Alabama datasets
(best result per morph type marked in bold)

SC1 SC2

Detector Morph type EER τadaptive EER τadaptive
DArXivMC Combined 3.95% 0.528241 8.27% 0.417467

DArXivNaive 1.94% 0.594687 4.96% 0.499938

DBIOSIGMC 9.75% 0.617098 16.31% 0.561516

DBIOSIGNaive 7.74% 0.558175 13.56% 0.478364

Dkeypoints 12.65% 0.971509 19.08% 0.990942

DArXivMC Complete 4.00% 0.526729 7.75% 0.424468

DArXivNaive 1.82% 0.600357 4.06% 0.507648

DBIOSIGMC 9.75% 0.616997 14.98% 0.565297

DBIOSIGNaive 7.45% 0.563476 12.07% 0.496052

keypoints 12.43% 0.972011 19.53% 0.990758

DArXivMC Splicing 4.99% 0.501098 9.37% 0.406828

DArXivNaive 2.76% 0.566983 5.37% 0.492199

DBIOSIGMC 12.67% 0.594189 20.64% 0.541497

DBIOSIGNaive 9.08% 0.54235 14.84% 0.470685

Dkeypoints 11.09% 0.976876 19.08% 0.990933
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morphs). For the “adaptive” thresholding, the single de-
tector HTER values reported significantly improve (e.g.,
from 9.62 to 2.2% for DArXivNaive in SC1 for combined
morphs). In some cases, they are getting really close to
the EER values for the corresponding experiment, which
represents the best value that could be achieved in this
test. The fusion results for this thresholding strategy see
an even more significant drop in the HTER values pre-
sented (e.g., 13.41% to 2.8% for FM in SC1 for combined
morphs).
For the second, an even less realistic (i.e., more lab-

condition) test no additional test has to be performed
here. Instead results from an earlier publication on fu-
sion in face morph attack detection are re-used here. As
authors of [7], we used a static percentage split (50%:
50%) on one a set containing genuine (originating from
exactly one public database) and morphs that are derived

directly from these genuine images to perform initial
tests with DST in this field. The results presented were
astonishing HTER values of less that 1%. While the re-
sults did indicate the potential benefit of using fusion in
MAD, the observed lack of realism in the setup made us
question the actual extend of the performance increase
we could realistically hope for. This realization moti-
vated the research work on the empirical limitations of
using information fusion and the constraints for its ap-
plication that lead to this journal paper.
Summarizing the results obtained on alternative (i.e.,

less realistic) evaluation setups, it has to be said that the
error rates obtained achieved when drawing training and
test data from the same parent population are obviously
lower than in a setup with disjoint populations used. In
the experiments discussed above, the fusion approaches
benefit more from the unrealistic lab-condition like

Table 5 Realistic performance of the individual detectors and fusion approaches with the fixed decision thresholds and equal fusion
weights with the combined LondonDB/UtrechtDB/Alabama datasets (best result per morph type marked in bold)

SC1 SC2

Detector Morph type BPCER APCER HTER BPCER APCER HTER

DArXivMC Combined 7.45% 1.00% 4.22% 3.87% 18.56% 11.22%

DArXivNaive 2.01% 1.82% 1.91% 0.97% 13.32% 7.14%

DBIOSIGMC 25.76% 1.35% 13.56% 23.10% 10.12% 16.61%

DBIOSIGNaive 11.47% 5.25% 8.36% 9.54% 18.05% 13.80%

Dkeypoints 87.86% 0.00% 43.93% 96.94% 0.00% 48.47%

FM 11.39% 0.56% 5.97% 7.15% 9.30% 8.23%

FWLC 18.09% 0.02% 9.05% 19.90% 0.84% 10.37%

FDST 25.47% 0.02% 12.74% 35.02% 0.01% 17.52%

FLR 23.68% 0.02% 11.85% 27.05% 0.35% 13.70%

DArXivMC Complete 7.45% 1.00% 4.22% 3.87% 15.73% 9.80%

DArXivNaive 2.01% 1.60% 1.81% 0.97% 10.57% 5.77%

DBIOSIGMC 25.76% 1.38% 13.57% 23.10% 8.38% 15.74%

DBIOSIGNaive 11.47% 4.47% 7.97% 9.54% 14.31% 11.92%

Dkeypoints 87.86% 0.00% 43.93% 96.94% 0.00% 48.47%

FM 11.39% 0.31% 5.85% 7.15% 3.76% 5.46%

FWLC 18.09% 0.02% 9.05% 19.90% 0.60% 10.25%

FDST 25.47% 0.02% 12.74% 35.02% 0.02% 17.52%

FLR 23.68% 0.02% 11.85% 27.05% 0.27% 13.66%

DArXivMC Splicing 7.45% 2.57% 5.01% 3.87% 24.81% 14.34%

DArXivNaive 2.01% 3.54% 2.77% 0.97% 16.04% 8.50%

DBIOSIGMC 25.76% 3.54% 14.65% 23.10% 17.39% 20.25%

DBIOSIGNaive 11.47% 7.39% 9.43% 9.54% 21.22% 15.38%

Dkeypoints 87.86% 0.02% 43.94% 96.94% 0.00% 48.47%

FM 11.39% 1.45% 6.42% 7.15% 12.35% 9.75%

FWLC 18.09% 0.07% 9.08% 19.90% 1.42% 10.66%

FDST 25.47% 0.03% 12.75% 35.02% 0.03% 17.52%

FLR 23.68% 0.03% 11.85% 27.05% 0.55% 13.80%
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evaluation setups than the single detectors and the
“adaptive” thresholding strategy benefits more than the
“fixed” one.

5.6 Summary on the fusion experiments results
There are three main reasons why fusion fails to out-
perform the best individual classifier in the results
discussed in section 5.3:

1. Lack of diversity of the individual detectors. The
detectors DArXivNaive, DarXivMC, DBIOSIGMC, and
DBIOSIGNaive are developed by the same research
group and rely on training of DCNN with similar
data sets but strong variances in data
augmentation. Hence, it is very likely that these

detectors make in field application mistakes on
the same samples. Only the Dkeypoints detector
relies on entirely different morphing detection
clues and is developed by another research group
using a different data set for training. In theory,
an assumed clustering of four apparently very
similar detectors might prove a strong prejudice
in fusion that should be avoided at any cost. In
practice, our experiment on different ensembles
of classifiers showed a better performance if only
those four detectors are used instead of all five.

2. Lack of performance in individual detectors. It can
be seen from the evaluation with the DEFACTO
dataset, that Dkeypoints lacks generalization power.

Table 6 Realistic performance of the individual detectors and fusion approaches with the adaptive decision thresholds and fusion
weights based on the estimated EER with the combined LondonDB/UtrechtDB/Alabama datasets (best result per morph type
marked in bold)

SC1 SC2

Detector Morph type BPCER APCER HTER BPCER APCER HTER

DArXivMC Combined 30.08% 0.01% 15.04% 20.79% 0.89% 10.84%

DArXivNaive 19.21% 0.03% 9.62% 20.34% 0.50% 10.42%

DBIOSIGMC 39.76% 0.35% 20.05% 37.03% 4.51% 20.77%

DBIOSIGNaive 34.18% 0.65% 17.41% 33.76% 3.29% 18.52%

Dkeypoints 47.95% 1.15% 24.55% 73.17% 0.26% 36.72%

FM 26.81% 0.01% 13.41% 29.14% 0.42% 14.78%

FWLC 0.60% 10.87% 5.73% 0.30% 46.48% 23.39%

FDST 25.17% 0.02% 12.59% 33.53% 0.01% 16.77%

FLR 14.00% 0.09% 7.04% 14.31% 1.90% 8.10%

DArXivMC Complete 30.08% 0.00% 15.04% 20.79% 0.63% 10.71%

DArXivNaive 19.21% 0.02% 9.61% 20.34% 0.35% 10.34%

DBIOSIGMC 39.76% 0.38% 20.07% 37.03% 3.45% 20.24%

DBIOSIGNaive 34.18% 0.44% 17.31% 33.76% 2.46% 18.11%

Dkeypoints 47.95% 1.13% 24.54% 73.17% 0.09% 36.63%

FM 26.81% 0.01% 13.41% 29.14% 0.23% 14.68%

FWLC 0.60% 10.30% 5.45% 0.30% 41.15% 20.72%

FDST 25.17% 0.02% 12.59% 33.53% 0.02% 16.77%

FLR 14.00% 0.05% 7.02% 14.31% 1.30% 7.80%

DArXivMC Splicing 30.08% 0.03% 15.05% 20.79% 1.38% 11.08%

DArXivNaive 19.21% 0.05% 9.63% 20.34% 0.64% 10.49%

DBIOSIGMC 39.76% 1.11% 20.44% 37.03% 8.60% 22.82%

DBIOSIGNaive 34.18% 1.07% 17.62% 33.76% 4.35% 19.05%

Dkeypoints 47.95% 0.78% 24.36% 73.17% 0.25% 36.71%

FM 26.81% 0.01% 13.41% 29.14% 0.65% 14.89%

FWLC 0.60% 17.18% 8.89% 0.30% 56.84% 28.57%

FDST 25.17% 0.01% 12.59% 33.53% 0.03% 16.78%

FLR 14.00% 0.26% 7.13% 14.31% 3.53% 8.92%
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The default decision threshold of 0.5 is far away
from the sub-optimal (i.e., containing an offset due
to training data vs. test data mismatch) threshold of
0.87252 obtained from its evaluation. Even higher
are the sub-optimal decision thresholds with the
mixed test data set (London, ECVP , and Alabama

images). The values of approximately 0.97 for the
SC1 and 0.99 for the SC2 indicate a large discrep-
ancy between the data used for the training of the
classifier and for evaluation/testing. As a conse-
quence, the APCER and BPCER values are imbal-
anced, both are on the margins of the [0, 1] interval

Table 7 Comparing fusion ensembles consisting of all five, one set of four (DBIOSIGNaive, DBIOSIGMC, DarXivNaive, and DarXivMC), and one
set of three (DarXivNaive, DBIOSIGMC, Dkeypoints) detectors with the fixed decision thresholds and equal fusion weights with the combined
LondonDB/UtrechtDB/Alabama datasets (best result per morph type and ensemble size marked in bold)

SC1 SC2

Fusion Morph type BPCER APCER HTER BPCER APCER HTER

FM (5 det) Combined 11.39% 0.56% 5.97% 7.15% 9.30% 8.23%

FWLC (5 det) 18.09% 0.02% 9.05% 19.90% 0.84% 10.37%

FDST (5 det) 25.47% 0.02% 12.74% 35.02% 0.01% 17.51%

FLR (5 det) 23.68% 0.02% 11.85% 27.05% 0.35% 13.70%

FM (4 det) 2.98% 0.56% 1.77% 1.56% 9.30% 5.43%

FWLC (4 det) 5.29% 1.07% 3.18% 2.31% 12.17% 7.24%

FDST (4 det) 22.34% 0.02% 11.18% 19.75% 0.49% 10.12%

FLR (4 det) 7.67% 0.61% 4.14% 4.47% 8.53% 6.50%

FM (3 det) 26.14% 0.19% 13.16% 23.25% 3.85% 13.55%

FWLC (3 det) 88.38% 0.00% 44.19% 98.06% 0.00% 49.03%

FDST (3 det) 25.91% 0.01% 12.96% 44.86% 0.01% 22.43%

FLR (3 det) 60.46% 0.01% 30.23% 77.35% 0.01% 38.68%

FM (5 det) Complete 11.39% 0.31% 5.85% 7.15% 3.76% 5.46%

FWLC (5 det) 18.09% 0.02% 9.05% 19.90% 0.60% 10.25%

FDST (5 det) 25.47% 0.02% 12.74% 35.02% 0.02% 17.52%

FLR (5 det) 23.68% 0.02% 11.85% 27.05% 0.27% 13.66%

FM (4 det) 2.98% 0.30% 1.64% 1.56% 3.76% 2.66%

FWLC (4 det) 5.29% 0.97% 3.13% 2.31% 9.57% 5.94%

FDST (4 det) 22.34% 0.02% 11.18% 19.75% 0.64% 10.19%

FLR (4 det) 7.67% 0.58% 4.12% 4.47% 6.51% 5.49%

FM (3 det) 26.14% 0.09% 13.11% 23.25% 1.36% 12.30%

FWLC (3 det) 88.38% 0.00% 44.19% 98.06% 0.00% 49.03%

FDST (3 det) 25.91% 0.02% 12.96% 44.86% 0.00% 22.43%

FLR (3 det) 60.46% 0.00% 30.23% 77.35% 0.00% 38.67%

FM (5 det) Splicing 11.39% 1.45% 6.42% 7.15% 12.35% 9.75%

FWLC (5 det) 18.09% 0.07% 9.08% 19.90% 1.42% 10.66%

FDST (5 det) 25.47% 0.03% 12.74% 35.02% 0.03% 17.52%

FLR (5 det) 23.68% 0.03% 11.85% 27.05% 0.55% 13.80%

FM (4 det) 2.98% 1.45% 2.21% 1.56% 12.35% 6.96%

FWLC (4 det) 5.29% 2.33% 3.81% 2.31% 16.71% 9.51%

FDST (4 det) 22.34% 0.05% 11.19% 19.75% 0.84% 10.29%

FLR (4 det) 7.67% 1.42% 4.55% 4.47% 11.66% 8.06%

FM (3 det) 26.14% 0.48% 13.31% 23.25% 6.01% 14.63%

FWLC (3 det) 88.38% 0.00% 44.19% 98.06% 0.00% 49.03%

FDST (3 det) 25.91% 0.03% 12.97% 44.86% 0.03% 22.44%

FLR (3 det) 60.46% 0.01% 30.24% 77.35% 0.00% 38.67%
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and the HTER values are close to 43% in SC1 and
48% in SC2 for the “fixed” thresholding strategy. If
the decision threshold for Dkeypoints is readjusted,
based on the training set (DEFACTO), the HTER
values in testing become significantly lower, ap-
proximately 24% in SC1 and 36% in SC2. However,

the APCER and BPCER values are still imbalanced.
The impact of one bad detector on the overall fu-
sion is shown very well in the experiment on differ-
ent ensembles of classifiers showed where a better
performance was achieved when only an ensemble
of four (all except Dkeypoints) is used.

Table 8 Comparing fusion ensembles consisting of all 5, 4 (DBIOSIGNaive, DBIOSIGMC, DarXivNaive, and DarXivMC), and 3 (DarXivNaive, DBIOSIGMC,
Dkeypoints) detectors with the adaptive decision thresholds and fusion weights based on the estimated EER with the combined
LondonDB/UtrechtDB/Alabama datasets (best result per morph type and ensemble size marked in bold)

SC1 SC2

Detector Morph type BPCER APCER HTER BPCER APCER HTER

FM (5 det) Combined 26.81% 0.01% 13.41% 29.14% 0.42% 14.78%

FWLC (5 det) 0.60% 10.87% 5.73% 0.30% 46.48% 23.39%

FDST (5 det) 25.17% 0.02% 12.59% 33.53% 0.00% 16.77%

FLR (5 det) 14.00% 0.09% 7.04% 14.31% 1.90% 8.10%

FM (4 det) 17.20% 0.00% 8.60% 16.10% 0.42% 8.26%

FWLC (4 det) 6.40% 0.86% 3.63% 3.06% 10.31% 6.68%

FDST (4 det) 23.90% 0.01% 11.95% 21.68% 0.68% 11.18%

FLR (4 det) 7.89% 0.62% 4.26% 4.77% 8.36% 6.56%

FM (3 det) 29.41% 0.01% 14.71% 36.36% 0.19% 18.28%

FWLC (3 det) 0.00% 64.59% 32.29% 0.00% 93.25% 46.62%

FDST (3 det) 25.69% 0.01% 12.85% 43.59% 0.00% 21.80%

FLR (3 det) 33.88% 0.00% 16.94% 42.18% 0.03% 21.10%

FM (5 det) Complete 26.81% 0.01% 13.41% 29.14% 0.23% 14.68%

FWLC (5 det) 0.60% 10.30% 5.45% 0.30% 41.15% 20.72%

FDST (5 det) 25.17% 0.02% 12.59% 33.53% 0.02% 16.77%

FLR (5 det) 14.00% 0.05% 7.02% 14.31% 1.30% 7.80%

FM (4 det) 17.20% 0.00% 8.60% 16.10% 0.23% 8.16%

FWLC (4 det) 6.40% 0.78% 3.59% 3.06% 8.03% 5.54%

FDST (4 det) 23.90% 0.02% 11.96% 21.68% 0.77% 11.23%

FLR (4 det) 7.89% 0.61% 4.25% 4.77% 6.29% 5.53%

FM (3 det) 29.41% 0.01% 14.71% 36.36% 0.04% 18.20%

FWLC (3 det) 0.00% 64.16% 32.08% 0.00% 91.78% 45.89%

FDST (3 det) 25.69% 0.02% 12.85% 43.59% 0.00% 21.80%

FLR (3 det) 33.88% 0.00% 16.94% 42.18% 0.02% 21.10%

FM (5 det) Splicing 26.81% 0.00% 13.40% 29.14% 0.65% 14.89%

FWLC (5 det) 0.60% 17.18% 8.89% 0.30% 56.84% 28.57%

FDST (5 det) 25.17% 0.01% 12.59% 33.53% 0.03% 16.78%

FLR (5 det) 14.00% 0.26% 7.13% 14.31% 3.53% 8.92%

FM (4 det) 17.20% 0.00% 8.60% 16.10% 0.65% 8.37%

FWLC (4 det) 6.40% 2.01% 4.21% 3.06% 14.28% 8.67%

FDST (4 det) 23.90% 0.05% 11.98% 21.68% 1.17% 11.43%

FLR (4 det) 7.89% 1.45% 4.67% 4.77% 11.32% 8.05%

FM (3 det) 29.41% 0.00% 14.71% 36.36% 0.24% 18.30%

FWLC (3 det) 0.00% 75.02% 37.51% 0.00% 97.08% 48.54%

FDST (3 det) 25.69% 0.01% 12.85% 43.59% 0.02% 21.80%

FLR (3 det) 33.88% 0.00% 16.94% 42.18% 0.07% 21.12%
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3. Lack of similarity between the training and test
data. Different proprietary data sets are used for
training individual classifiers, which is a very
common case, but the datasets for adjusting fusion
parameters (evaluation data set) and for actual
testing are also very different from each other and
the training data set. One can say that it makes
absolutely no sense to use different data sources for
adjusting fusion parameters and for testing, but this
is the real-life situation. In practice, it is very diffi-
cult to precisely foresee and provide significant in-
field data at the stage of system development or
parameter adjustment. Moreover, there is no guar-
antee that the in-field data that will be obtained in
the future is even similar to the presented training
data.

The case study performed in this paper clearly demon-
strates that if the training, evaluation, and test datasets
lack similarity, the adaptation of the classifier parameters
such as a decision threshold may lead to performance
degradation. This can be well explained on the example
of the classifier DArXivNaive which in the tests performed

shows the best generalization power. The classifier is
well trained with the default decision threshold of
0.59072. An attempt to adapt the decision threshold
based on the DEFACTO data set actually fails with shift-
ing it to 0.39958, resulting in an EER of 10%. As a conse-
quence, the APCER and BPCER values are imbalanced
in the test leading to the HTER values of approximately
9.5% in SC1 and 10.5% in SC2 (see Table 6). However, if
there is no adaptation of the decision threshold, the sub-
optimal (i.e., offset) thresholds of 0.594687, 0.600357,
and 0.566983 are close to the default one and the APCE
R and BPCER values are well balanced in SC1 leading to
HTER values of 1.91%, 1.81%, and 2.77% for combined,
complete, and splicing morphs respectively (see Table
5). In contrary, the sub-optimal thresholds in the SC2
would be 0.499938, 0.507648, and 0.492199 for com-
bined, complete, and splicing morphs respectively which
are far away from the default value of 0.59072. Hence, in
the test within SC2 the APCER and BPCER values are
imbalanced leading to the HTER values of 7.14%, 5.77%,
and 8.50% for combined, complete, and splicing morphs
respectively. The same situation can be observed with
the detectors DarXivMC, DBIOSIGMC, and DBIOSIGNaive.

Table 9 Fusion under laboratory conditions: tenfold stratified cross-validation with 90% training/10% test split; genuine samples
from the Alabama dataset [53]; morphs from LondonDB and UtrechtDB (best result per morph type and application scenario
marked in bold)

Combined Complete Splicing

SC1 SC2 SC1 SC2 SC1 SC2

EER HTER EER HTER EER HTER EER HTER EER HTER EER HTER

Fixed

DArXivMC 3.8% 4.3% 8.2% 11.2% 3.9% 4.2% 7.2% 9.8% 4.8% 5.0% 9.2% 14.3%

DArXivNaive 1.5% 1.9% 3.9% 7.1% 1.3% 1.8% 3.4% 5.8% 1.8% 2.7% 4.4% 8.5%

DBIOSIGMC 9.3% 13.6% 15.7% 16.6% 9.3% 13.6% 14.7% 15.7% 12.8% 14.7% 20.2% 20.2%

DBIOSIGNaive 7.1% 8.4% 13.4% 13.7% 7.0% 7.9% 11.8% 11.9% 8.4% 9.4% 14.2% 15.4%

Dkeypoints 12.3% 43.9% 18.6% 48.8% 12.2% 43.9% 19.3% 48.8% 8.9% 43.9% 18.3% 48.8%

FM 6.0% 8.2% 6.2% 5.9% 6.4% 9.7%

FWLC 9.6% 10.9% 9.2% 10.6% 9.2% 10.6%

FDST 2.6% 5.9% 3.0% 6.7% 2.9% 7.3%

FLR 2.6% 5.9% 3.0% 6.7% 2.9% 7.3%

Adaptive

DArXivMC 3.8% 3.9% 8.2% 8.3% 3.9% 4.0% 7.2% 7.9% 4.8% 4.9% 9.2% 9.4%

DArXivNaive 1.5% 2.2% 3.9% 5.0% 1.3% 2.1% 3.4% 4.4% 1.8% 3.0% 4.4% 5.6%

DBIOSIGMC 9.3% 9.8% 15.7% 16.4% 9.3% 9.8% 14.7% 15.0% 12.8% 12.7% 20.2% 20.7%

DBIOSIGNaive 7.1% 7.9% 13.4% 13.6% 7.0% 7.6% 11.8% 12.1% 8.4% 9.1% 14.2% 15.0%

Dkeypoints 12.3% 12.7% 18.6% 19.0% 12.2% 12.5% 19.3% 19.3% 8.9% 11.4% 18.3% 19.2%

FM 2.8% 6.0% 2.2% 4.5% 3.3% 6.8%

FWLC 15.2% 39.2% 14.3% 35.5% 17.7% 45.8%

FDST 2.8% 5.8% 3.3% 6.6% 3.1% 7.3%

FLR 2.8% 5.8% 3.3% 6.6% 3.1% 7.3%
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Considering the results of different fusion strategies,
it can be said that in almost all cases, the APCER
and BPCER values are imbalanced in the case when
training, evaluation, and test datasets lack similarity.
This results in the conclusion that pre-determining
the proper decision thresholds (as well as the fusion
weights) in real-life conditions (where the training,
evaluation, and in-field data might be dramatically
different) is hardly possible.
When considering alternative (less strict) evaluation

setups, where training and test data show and artificial
similarity due to the fact that they have been drawn
from the same parent distribution, we see in section 5.5
significantly lower HTER values not only for fusion re-
sults but in some cases also for the individual detectors.
The results presented more clear indicators that the

similarity between the training and test data is the dom-
inating factor for the error rates achieved. If this similar-
ity is an artificial one (e.g., in an unrealistic setup where
training, parameterization, and test data are drawn from
the same parent population) instead of a natural one
(i.e., the fusion as well as the individual detectors are
suitably well trained) the low error rates obtained are
meaningless.
The practical consequence of these three issues is that

one of the individual detectors (obviously accurate but
far from perfect in its performance) in all evaluations
outperforms four different fusion approaches, ranging
from simplistic to very sophisticated, in different param-
eterizations in the tests performed in 5.3 but becomes
marginalized by fusion approaches as soon as either the
ensemble of detectors used in the fusion is optimized (as
done by removing one disturbing detector in section 5.4)
or the similarity between training and test data is in-
creased (as in section 5.5).

6 Conclusions
The results presented in the empirical evaluations in this
paper demonstrate that fusion can fail even with a set of
relevant individual classifiers. This can be seen in both
application scenarios (“MAD in document issuing” and
“MAD in identity verification”) evaluated in this paper.
Here, the three reasons for this phenomenon discussed
above are (a) low diversity of the detectors, (b) lack of
performance in individual detectors, and (c) lack of simi-
larity between the training and test data.
Summarizing the lessons learned from the approach of

using fusion for MAD detection as done in this paper
and drawing some generalization toward other media fo-
rensics classification or decision problems, the following
has to be said: The requirements for (media) forensic
methods in terms of scientific admissibility (or Daubert
compliance) are obviously important! Methods should
indeed be published upon and peer reviewed, their error

rates should be precisely known and standards for the
application of methods should be known. But the threat
that Champod and Vuille identify as a problem of ascer-
taining the error rates of a test “can prove misleading if
not all its complexities are understood” [15] plays a very
significant role as demonstrated in the evaluations per-
formed here.
Besides the requirements for individual expert systems

to be used in forensic investigations (including its ac-
curateness), if it comes to information fusion, add-
itional constraints have to be observed. These are, at
least:

� The diversity of the detectors, which has to be
ascertained either by knowledge about the precise
means of decision generation and the diversity of
those means or empirically.

� An independent and thorough benchmarking of
detectors to establish also an idea on the
generalization power of performance claims made by
their creators.

� Considerations on the similarity/correlation between
training data available (during training of the
individual classifiers and the training of the fusion
methods) and the data to be expected in field
application are very important. If very precise
assumptions are possible on the application data,
weighting might be applicable in fusion. Else-wise,
only unweighted fusion strategies like majority
voting or the sum-rule should be employed, if
any fusion is used in those cases at all.

The diversity issue becomes very problematic if fea-
tures (as the means to represent a decision problem in a
feature space) are not hand crafted by experts but
learned, e.g., by DCNN. In this paper, the diversity prob-
lem of the detectors used here as “black boxes” has been
established in direct contact with the developers of those
methods, which is hardly an option in most field
applications.
Also, the recent trend to generate synthetic data sets

for the training of pattern recognition methods (either
traditional or neural network based) introduces another
degree of freedom into the characteristics of datasets. In
publications such as [54], this approach is used to avoid
tedious data collection tasks while creating sufficiently
sized data sets for modern day data-greedy classifiers.
The problem here is the influence of the synthesis
process on its output (i.e., the synthesis-specific artifacts)
that will become part of the model trained by each clas-
sifier. It is related to the questions of source characteris-
tics imposing themselves into trained models but carries
a different degree of relevance for forensic application
scenarios.
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The general problem with training- and test data being
mismatched in practice is hardly new. It hardly ever occurs
in scientific papers on applied pattern recognition, because
it can easily be prevented in lab tests. Nevertheless, it is a
very good argument why media forensic methods should
undergo rigorous testing and benchmarking by third par-
ties, like it is done in the field of MAD in the NIST FRVT
MORPH challenge. Only such joint efforts can lead to
methods that might become mature enough to aim at court
admissibility.
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Abstract: DeepFake detection is a novel task for media forensics and is currently receiving a lot of
research attention due to the threat these targeted video manipulations propose to the trust placed
in video footage. The current trend in DeepFake detection is the application of neural networks to
learn feature spaces that allow them to be distinguished from unmanipulated videos. In this paper,
we discuss, with features hand-crafted by domain experts, an alternative to this trend. The main
advantage that hand-crafted features have over learned features is their interpretability and the
consequences this might have for plausibility validation for decisions made. Here, we discuss three
sets of hand-crafted features and three different fusion strategies to implement DeepFake detection.
Our tests on three pre-existing reference databases show detection performances that are under
comparable test conditions (peak AUC > 0.95) to those of state-of-the-art methods using learned
features. Furthermore, our approach shows a similar, if not better, generalization behavior than neural
network-based methods in tests performed with different training and test sets. In addition to these
pattern recognition considerations, first steps of a projection onto a data-centric examination approach
for forensics process modeling are taken to increase the maturity of the present investigation.

Keywords: DeepFake detection; hand-crafted features; forensic process model; plausibility of decisions

1. Introduction

DeepFakes (a neologism combining the terms “deep learning” and “fake”) are syn-
thetic videos (or images) in which a person’s face (and optionally also voice) is replaced
with someone else’s likeness using deep learning technologies. Having emerged in late
2017, DeepFakes nowadays pose a serious threat to the trust placed in video footage. Pa-
pers such as [1,2] elaborate on the effect of DeepFakes on current politics, disinformation
and trust.

Like countering any other form of image, audio or video manipulation, detecting
DeepFakes is an important task for media forensics and is currently receiving a lot of
research attention due to the significance of the threat.

According to a well established definition given in [3], information technology (IT)
forensics is: “The use of scientifically derived and proven methods toward the preservation,
collection, validation, identification, analysis, interpretation, documentation and presentation
of digital evidence derived from digital sources for the purpose of facilitating or furthering the
reconstruction of events found to be criminal, [. . . ]”.

This paper focuses on DeepFake detection as a novel challenge in the IT forensics
subdiscipline of media forensics. In contrast to many other forensic subdisciplines, such as,
e.g., the field of fingerprint analysis, this field is an especially young and immature research
field, currently being far away from achieving the ultimate goal of courtroom readiness.

Regarding the basic methodology applied in the state-of-the-art work in DeepFake
detection, it can be stated that most of the current research work is based on pattern
recognition approaches using feature spaces learned with the help of neural networks.
While this method achieves promising detection rates for small scale empirical evaluations
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with selected DeepFake datasets, it has the inherent drawback that it is extremely hard to
validate the plausibility of decisions made by a neuronal network since the semantics of
the features learned cannot easily be interpreted by humans. For other, more established,
pattern recognition disciplines such as template matching or statistical pattern recognition,
the issue of plausibility testing also exists, because the results generated by the application
of machine learning strategies lack the intuitive verification that usually accompanies
human decision-making processes. Nevertheless, for these disciplines, validation methods
have been developed over the decades to establish whether the results of the learning and
decision processes are reasonable. In practice, this means to establish that the patterns
trained and detected are really the patterns that the user wants to distinguish between and
that side-effects as well as external influence factors are known for the pattern recognition
process. Such methods, which include, amongst others, feature selection strategies, as
well as model analysis methods aimed at establishing the exact decision (or detection)
performance and error behavior of an analysis method. The reason to do this is that this
knowledge determines the plausibility of the result of the application of pattern recognition
mechanisms in a forensic application scenario and should therefore be directly linked to
the trust we place in their decisions.

In addition to the problems in estimating the plausibility of decisions of current
(mostly neural network-driven) DeepFake detection methods, a second shortcoming in the
current state of the art in this field has to be mentioned here: Apart from the considerations
of efficiency (i.e., detection performance and plausibility), all forensic methods should
aim at fulfilling some form of forensic conformity. Criteria for such conformity should
address the admissibility of methods as a basis for expert witnesses’ testimony as evidence
in legal proceedings. For the United States of America (by far the most active legal
system worldwide), those criteria are codified, amongst other regulations, by the so called
Daubert standard (see e.g., [4] or [5] for a detailed discussion of this US case-law standard)
in combination with the US Federal Rules of Evidence (FRE) [6]. In addition to those
admission criteria for expert witnesses’ testimony questions of evidence handling (i.e.,
chain of custody) also have to be looked into.

To address aspects of these two identified shortcomings (i.e., the explainability issues
of feature spaces learned using a neural network on one hand and the lack of adherence
to forensic process models on the other hand), this paper provides the following two
main contributions :

• Using hand-crafted features for DeepFake detection and comparison with the perfor-
mance of state-of-the-art deep learning-driven approaches, we discuss three sets of
hand-crafted features and three different fusion strategies to implement DeepFake
detection. Those features analyze the blinking behavior, the texture of the mouth
region as well as the degree of texture found in the image foreground. Our tests on
three pre-existing reference databases show detection performances that are under
comparable test conditions to those of state-of-the-art methods using learned features
(in our case obtaining a maximum AUC of 0.960 in comparison to a maximum AUC
of 0.998 for a recent approach using convolutional neural networks). Furthermore,
our approach shows a similar, if not better, generalization behavior (i.e., AUC drops
from values larger than 0.9 to smaller than 0.7) than neural network based methods in
tests performed with different training and test sets .
In addition to those detection performance issues, we discuss at length that the
main advantage which hand-crafted features have over learned features is their in-
terpretability and the consequences this might have for plausibility validation for
decisions made.

• Projection onto a forensic process model: With the aim to improve the maturity of pat-
tern recognition-driven media forensics, we perform first steps of the projection of our
work onto an established forensic process model. For this, a derivative of the forensic
process model for IT forensics published in 2011 by the German Federal Office for
Information Security (BSI) is used here. This derivative, or more precisely extension,
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is called the Data-Centric Examination Approach (DCEA) and has seen its latest major
overhaul in 2020 in [7]. While it is not yet perfectly capable of fitting the needs of
media forensics analyses, our work shows first benefits of this modeling as well as
points where DCEA would need to undergo further extension to fit those purposes.

The paper is structured as follows: In Section 2, the background and state of the art in
DeepFake detection (Section 2.1), feature space design alternatives (Section 2.2) and the
forensic process model chosen for this paper (Section 2.3) are discussed. Section 3 discusses
the chosen solution concept for implementing DeepFake detection with hand-crafted
features, while Section 4 focuses on implementation details.

Section 5 presents and discusses our evaluation results, structured into results for
individual detectors (Section 5.1) and for fusion operators (Section 5.2). In Section 6, we
provide a summary of the results and a comparison with other approaches from the state of
the art (in Section 6.1) as well as our conclusion on the comparison between hand-crafted
and learned features for DeepFake detection (in Section 6.2). Section 7 closes the paper
with some indication for potential future work.

2. Background and State of the Art

By arguing that "Multimedia Forensics is not Computer Forensics", the authors of [8]
point out that “multimedia forensics and computer forensics belong to the class of digital forensics,
but they differ notably in the underlying observer model that defines the forensic investigator’s view
on (parts of) reality, [. . . ] while perfect concealment of traces is possible for computer forensics, this
level of certainty cannot be expected for manipulations of sensor data”. Even though this statement
dates back to 2009, before the rise of neural network-driven data generation methods, such
as generative adversarial networks (GANs), it still holds true; additionally, modern-day
targeted media manipulations such as DeepFake generation, either leave telltale traces
of the manipulation (here, the synthesis and insertion of a face into a video) or violate
the source characteristics (e.g., violating the noise pattern of the camera). Recent papers
on DeepFake detection, such as [9], provide strong indication that, if applied correctly,
targeted detection using pattern recognition methods might be a viable media forensics
approach to counter DeepFakes.

In Section 2.1 of this chapter, the state of the art regarding recent DeepFake detection
methods is briefly summarized. Following this survey, which points out that nearly all
recent methods found in the literature are looking at learned feature spaces as a means of
tackling this pattern recognition problem, Section 2.2 discusses the existing alternatives
for feature space design and reflects upon their suitability in sensitive decision processes,
such as e.g., medical image processing or (media) forensics. Additionally, in Section 2.3,
a discussion on the needs for integration of pattern recognition-driven methods into a
forensic process model is summarized.

2.1. DeepFake Detection

Usually, the detection of DeepFakes happens with various combined Convolutional
Neural Network (CNN) architectures such as autoencoders (AEs). The reasons behind
this are obvious: First, most DeepFakes are produced with AEs because internet platforms
such as YouTube provide many video sources with different human faces which are usable
for the training of DeepFake generators based on neural networks. FakeApp [10] is one
example of an autoencoder–decoder structure which is able to swap the latent features
of two different faces [11]. These architectures introduce several artifacts to the video
while creating a DeepFake that are, in most cases, not visible for the human eye but are
potential artifacts that could be utilized for DeepFake detection using image or video
analysis methods. It stands to reason that neural networks are also useful for the detection
of DeepFake videos, assuming that there is a sufficiently large set of representative data to
train features, allowing for the localization of the aforementioned artifacts. Second, which
is also a consequence of the first reason, several large and publicly available DeepFake
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databases (such as FaceForensic++ [12] or Celeb-DF [13]) already exist and provide huge
datasets, which can easily be used for the training of CNN-based DeepFake detectors.

The survey paper from Nguyen et al. [11] summarizes different DeepFake detec-
tion approaches into the two main categories of temporal features across video streams (i.e.,
inter-frame analysis) and visual artifacts within video frames (i.e., intra-frame analysis). For ex-
ample, the approach of Sabir et al. [14] extracts temporal features of video streams for the
detection of DeepFake videos: The authors analyze a potential DeepFake video frame-by-
frame for low level artifacts which are only present in single frames to class a video as a
DeepFake. Then, they use a Recurrent Convolutional Network (RCN) model to detect and
track the temporal artifacts across frames [11,14]. In Li et al.’s work [15], another CNN-
based inter-frame analysis approach addresses the eye blinking of a person in a video under
the assumption that many DeepFake generated videos are not able to reproduce a natural
blinking behavior. The authors first extract the eye areas based on six eye landmarks from
a segmented face region. After that, they use the extracted eye area of all video frames
in a long-term recurrent convolutional network (LRCN) to detect temporal discrepancies
in the blinking behavior [11,15]. An approach which should also be considered for these
temporal features across video streams category is described in [16]. Here, the authors
analyze (amongst other detection strategies) the lip movements with a combined neural
network structure of Mel-Frequency Cepstral Coefficients (MFCCs), Principal Coefficients
(PCAs) and an RNN-based (recurrent neural network) Long Short-Term Memory (LSTM)
and check whether the lip movement is synchronized to the audio signal [16,17].

The second category for DeepFake detectors, defined by Nguyen et al. [11] (i.e., the
intra-frame analyses), is divided into the subcategories of deep and shallow classifiers:
During the DeepFake creation process, it is necessary to warp the face area by scaling,
rotation and shearing. Deep classifiers address resolution inconsistencies between the
warped face area and the surrounding context. These inconsistencies are represented in
artifacts which are detectable by CNNs (see, e.g., [11,18]). In contrast, the so called shallow
classifiers refer to different visual feature artifacts in head pose, eyes, teeth or in facial
contours. In particular, the last three features are addressed in Matern et al.’s work [19].
They solve the DeepFake detection by analyzing the eye and teeth areas for missing
reflections or details as well as the texture features from the facial region [11,19].

Other survey papers in this rapidly growing research field, such as the work of, e.g.,
Yu et al. [20], use the main structure of the DeepFake detection method to classify these
methods into several detector categories. Similar to Nguyen et al., they distinguish broadly
between inter- and intra-frame analyses. In their scheme, the first (i.e., temporal) features
are covered by temporal consistency-based methods using mainly network structures such
as recurrent CNNs which are able to detect temporal features frame-by-frame. The latter
category is addressed by general network-based methods, which are divided into transfer
learning methods and specially designed networks. The methods of transfer learning
re-train detectors originally trained for a different recognition problem, while specially
designed networks construct and train entirely novel architectures and detectors dedicated
entirely to the task of detecting DeepFake videos.

In summary of the (survey) papers discussed above, it can be stated that most Deep-
Fake detection approaches are based on (convolutional) neural networks to learn the feature
space to be used. This approach usually requires big databases of real and DeepFake videos
to generate detectors that usually perform with very high detection rates on test material
that is similar to the used training material in terms of its characteristics.

Hand-crafted feature methods, as an alternative to features learned with neural net-
works, have the benefit that they (at least theoretically) could work without training. In
addition to this and other potential benefits (see Section 2.2), hand-crafted feature spaces
for the detection of DeepFake videos are much less common in the literature than neural
network-based approaches. Most of the existing research papers relying on hand-crafted
approaches (such as [21–23]) use Support Vector Machines (SVMs) for a fast and efficient
detection of DeepFake videos.
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For the DeepFake detection of persons of interest (POIs) such a Barack Obama, Hillary
Clinton or Donald Trump, Gu et al. [23] analyzed speech in combination with face and head
movements. They followed the assumption that a person has individual facial expressions
and head movements while they are speaking. Their detection pipeline starts with a single
video were they tracked facial and head movements first. These facial expressions are
defined by 2D and 3D facial landmark positions and several facial action units which are
then used for further evaluation steps. For the DeepFake detection, they trained and tested
one-class SVMs only with extracted features from authentic videos of specific POIs.

Jung et al. [24] present a hand-crafted DeepFake detector called DeepVision [24],
which evaluates eye blinking behavior. In their first step, they extract the face region from
a potential DeepFake video. In the following, they use an eye tracker to detect the eye area
of a person. After this step they check the eye area of each frame for closed or open eyes
and calculate the eye blink elapsed times and eye blink periods.

Unfortunately, the authors of some survey papers, such as [25,26], refer to learned
features using specially designed networks (such as those proposed in [15,18]) and also as
being "hand-crafted". This is not our perspective of hand-crafted features because they only
design the neural network architectures and not the actual features and their semantics.
In the following section, we will provide working definitions for the terms hand-crafted
and learned features to be used in this paper.

2.2. Feature Space Design Alternatives

In pattern recognition, feature extraction starts from an initial set of input data and
builds derived values (features) intended to be informative and non-redundant, facilitating
the subsequent learning and generalization steps. It is generally seen to be one form of
dimensionality reduction projecting the input into an easier to process and (optimally)
less noisy representation. In applied pattern recognition, there generally exist two distinct
approaches for feature design:

(a) Features are especially designed (so-called hand-crafted) by domain experts for an
application scenario in a process, which, despite the fact that it is sometimes also
called intuition-based feature design, usually requires strong domain knowledge.
Here, the domain expert uses his/her own experience to construct the features
to encode his/her own knowledge about the semantics (and internal as well as
external influence factors) inherent to the different pattern classes in the problem
at hand. As a result, usually rather low-dimensional feature spaces are designed,
which require only small sets of training data (or none at all) for the training (i.e.,
adaptation/calibration) to a specific application scenario. The semantic character-
istics intrinsic to these feature spaces can easily be exploited to validate decisions
made using such a feature space.
Such features can also be the result of the transfer of features from other, related or
similar pattern processing problems.

(b) Feature spaces are g by methods such as neural networks, where a structure (or
architecture) for the feature space is designed (or chosen from a set of known goods)
and then labelled training specimens are used to train the network from scratch
or re-train an already existing network in transfer learning. The inherent charac-
teristic of this process is that it requires very large sets of labelled, representative
data for the training of the network (a little less so in case of transfer learning).
The resulting feature spaces and trained models usually lack the encoding of easily
interpretable semantics.

While neural network-based methods have seen a growing popularity in the field
of media forensics in the last few years, they are still burdened by the problem that the
plausibility of a decision made on the basis of such features is extremely hard to verify. One
of the main reasons for this is the fact that the learned features as such hardly ever encode
semantics that could be interpreted by a human expert. Instead, with the help of decision
validation approaches such as the expert interpretation of heatmaps using methods such as
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Layer-wise Relevance Propagation (LRP; [27]), it can be shown that these methods assign
meaning to regions in the input (see e.g. [28]).

For this reason, i.e., problems with the interpretability of the feature space and cor-
responding decisions, many application fields with sensitive tasks are hesitant to rely on
learned features. A good example of a very thorough discussion of the pros and cons of
hand-crafted features in contrast to those learned using convolutional neural networks can
be found in Lin et al.’s work [29]. In this paper, the authors discuss this issue for specific
medical data analysis problems, which, similar to forensics, is another very sensitive re-
search field applying pattern recognition. In their work, they highlight and demonstrate
with their datasets three main drawbacks of neural network-based feature space learning:

1. In the case of only small amounts of training data being available (which seems
to be a problem encountered often in medical data analysis problems, including
clinical studies where “the recruitment of a large number of patients or collection of large
number of images is often impeded by patient privacy, limited number of disease cases,
restricted resources, funding constraints or number of participating institutions” [29]), the
classification performance of hand-crafted features (which usually show persistent
detection performances with small training datasets) outperformed their feature
spaces learned by neural networks. This is hardly astonishing since it is well known
that CNNs require a large amount of training data for reliable imaging classification.
This situation changes with increasing training dataset sizes.

2. Another advantage of hand-crafted features is interpretability. Lin et al. summarize
this issue as follows: “Therefore, interpretability of [hand-crafted] features reveal why
liver [magnetic resonance] images are classified as suboptimal or adequate” [29], i.e., these
features allow for expert reasoning on errors, loss or uncertainty in decision making.

3. Feature selection strategies help learning about significance and contextual relation-
ship for hand-crafted features, while they fail to produce interpretable results for
learned features.

For the more traditional feature space designs (i.e., using hand-crafted features), the
question of plausibility verification is usually easier to address. A multitude of methods
for feature space analysis have been discussed in the past, including feature space-driven
plausibility validation as well as model-driven validation.

Initially, there existed two main approaches for feature selection: wrapper methods,
in which the features are selected using the classifier, and filter methods, in which the
selection of features is independent of the classifier used. Around 2001, both main ap-
proaches were joined into a so-called hybrid method (see, e.g., [30,31]), which are usually
used nowadays to analyze hand-crafted feature spaces.

2.3. A Data-Centric Examination Approach for Incident Response and Forensic Process Modeling

Forensic process models are an important cornerstone in science and more impor-
tantly the practice of forensics. They guide investigations and make them comparable,
reproducible as well as certifiable. Usually, the adherence to strict guidelines (i.e., process
models) is regulated within any legal system (e.g., in the US by the fourth Daubert criterion
(“the existence and maintenance of standards and controls” [4])). For mature forensic sciences,
such as, for example, dactyloscopy, internationally accepted standards (such as the ACE-V
process model for dactyloscopy) have been established over recent decades.

Due to the fact that IT forensics is a rather young discipline in this field (with media
forensics being an even younger subdiscipline), it is hardly astonishing that here the
forensic process models have not yet achieved the same degree of maturity as in other fields.
Nevertheless, they would still be important to achieve universal court acceptability of
methods. One well established forensic process model for IT forensics is the one proposed
by the German Federal Office for Information Security (BSI). When it was originally
published in 2011, its sole focus was on computer and network forensics, but since then it
has evolved to also include suite and also some extend the needs of other subdisciplines
such as digitized forensics. The latest major revision of this process model, which is used
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within this paper, can be found in [7] and is called the Data-Centric Examination Approach
(DCEA). The core of the DCEA consists of three main aspects: a model of the phases of a
phase-driven forensic process, a classification scheme for forensically relevant data types and
forensic method classes.

The DCEA phases are briefly summarized in Table 1.

Table 1. Sets of examination steps for digital forensics, as defined in [7] (updated from [32]) .

Sets of Examination Steps Description (According to [7])

Strategic preparation (SP)

Includes measures taken by the operator of an
IT system and by the forensic examiners in or-
der to support a forensic investigation prior to
an incident

Operational preparation (OP)
Includes measures of preparation for a forensic
investigation after the detection of a suspected
incident

Data gathering (DG) Includes measures to acquire and secure digital
evidence

Data investigation (DI) Includes measures to evaluate and extract data
for further investigation

Data analysis (DA)
Includes measures for detailed analysis and cor-
relation between digital evidence from various
sources

Documentation (DO)

Includes measures for the detailed documenta-
tion of the proceedings, also for the transforma-
tion into a different form of description for the
report of the incident

One important reason for this paper to use the DCEA to model our own work is the
separation of preparation steps in an investigation into two distinct phases (the strategic
preparation (SP) on one hand an the operational preparation (OP) on the other). In [7], the
SP is generally defined as: “The strategic preparation [. . . ] includes all preparation procedures
taken ahead of the actual occurrence of a specific incident”. Exemplary measures for SP in the
context of digital forensics are given by [7] as: “Documentation and extension of knowledge
of IT systems specifics, tool testing for forensic data types and sets of methods determination for
error loss and uncertainty estimation, setup of logging capabilities, performance of system landscape
analysis, data protection considerations, [. . . ]”. In contrast, the OP is specified to “[. . . ] include
all preparation procedures taken after of the actual occurrence of a specific incident. Those procedures
by definition do not alter any data on the targeted system”. These preparation phases are then
followed by the actual application of forensic procedures, separated in DCEA into the triplet
of data gathering (DG), data investigation (DI) and data analysis (DA). The whole process
is, in every phase (including SP and OP), supported by accompanying documentation,
which is in the last phase (documentation (DO)) used as basis for the generation of the
official documents regarding the investigation (e.g. the evidence to be interpreted in expert
testimony in a court case).

The second core aspect of DCEA is the classification scheme for forensically relevant
data types, as summarized in Table 2. The categories in this scheme are not classes in
a mathematical sense, since all other later data types are interpreted out of raw data.
More recent publications, such as [33], have shown that this scheme needs to be extended
accordingly if new investigation domains are considered.
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Table 2. Forensic data types defined in [7] (updated from [34]).

Forensic Data Type Description (According to [7])

Raw data A sequence of bits or data streams of system
components not (yet) classified

Hardware data Data not or only in a limited way influenced by
the OS and application

Details about data Meta data describing other data

Configuration data Modify the behavior of the system and applica-
tions

Communication protocol data Modify the communication behavior of the sys-
tem

Process data Data about a running process

Session data Data collected by a system during a session

User data Content created, edited or consumed by the
user

This original set of data types, which was designed with digital (IT) forensics in
mind, needs to be adapted to every investigation domain. In [7,32], such an adaptation for
the field of digitized forensics has been discussed for the field of dactyloscopy (forensic
fingerprint analysis and comparison). This adaptation is summarized in Table 3 below
because it is much closer to the requirements we face within this paper than the original
data types summarized in Table 2.

Table 3. Forensic data types defined in [7] for an exemplary selected process in digitized forensics (here, digital dactyloscopy)
(updated from [32]).

Forensic Data Type Description (According to [7])

Raw sensor data (DD1) Digital input data from the digitalization process (e.g., scans of test samples)

Processed signal data (DD2) Results of transformations to raw sensor data (e.g., visibility enhanced fingerprint
pattern)

Contextual data (DD3) Contain environmental data (e.g., spatial information, spatial relation between
traces, temperature, humidity)

Parameter data (DD4) Contain settings and other parameters used for acquisition, investigation and
analysis

Trace characteristic feature data (DD5) Describe trace specific investigation results (e.g., level 1/2/3 fingerprint features)

Substrate characteristic feature data (DD6) Describe trace carrier specific investigation results (e.g., surface type, individual
surface characteristics)

Model data (DD7) Describe trained model data (e.g., surface specific scanner settings, reference data)

Classification result data (DD8) Describes classification results gained by applying machine learning and compara-
ble approaches

Chain of custody data (DD9)
Describe data used to ensure integrity and authenticity and process accompanying
documentation (e.g., cryptographic hash sums, certificates, device identification,
time stamps)

Report data (DD10) Describe data for the process accompanying documentation and for the final report

The third core aspect of DCEA is the definition of forensic method classes as presented
in Table 4. For a detailed discussion on these method classes, including considerations on
the estimation of availability in certain investigation contexts, practicalities of the forensic
process, etc., we refer to [7].
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Table 4. Grouping of sets of methods for the forensic process in digital forensics defined in [7]
(updated from [32]).

Sets of Methods for the Forensic Process in
Digital Forensics Description (According to [7])

Operating system (OS)
Methods that provide forensically relevant data
as well as serving their main purpose of dis-
tributing computing resources

File system (FS)
Methods that provide forensically relevant data
as well as serving their main purpose of main-
taining the file system

IT application (ITA)
Methods provided by IT applications that pro-
vide forensically relevant data as well as serv-
ing their main purpose

Explicit means of intrusion detection (EMID)
Methods that are executed autonomous on a
routine basis and without a suspicion of an in-
cident

Scaling of methods for evidence gathering
(SMG)

Methods that are unsuited for routine usage
in a production environment (e.g., due to false
positives or high computation power require-
ments)

Data processing and evaluation (DPE) Dedicated methods of the forensic process that
display, process or document information

The DCEA is relevant for the work presented in this paper for two different reasons:
On one hand, we will use it in Section 3 to provide a comparative description of the solution
concept to address the issue of DeepFake detection in this paper. On the other hand, we
will elaborate on the question related to how well this process model fits the needs of media
forensics investigations and which changes or extensions would be required in DCEA to
provide better support for this very young subdiscipline in IT forensics.

3. Solution Concept for DeepFake Detection with Hand-Crafted Features

The main findings considering the background and state of the art in Section 2 can
be summarized as follows: DeepFake detection is a very active research field trying to
address a significant recent threat. While many detection approaches have been published
in the last few years (some reporting astonishing detection performances), only a small
number of publications have been tackling the questions of interpretability and plausibility
of results. We attribute this lack of studies mainly to the type of features used in the
majority of the research published so far, which rely on neural networks to learn feature
spaces used, a method that has inherent difficulties with interpretability (see Section 2.2).
Additionally, this question of creating the feature spaces required for a pattern recognition-
driven media forensics method such as DeepFake detection, a close integration of forensic
procedures and “the existence and maintenance of standards and controls” [4] is an open issue.
This can contribute to the comparative novelty of many media forensics methods, including
DeepFake detection.

To address both of these apparent gaps (interpretability of feature spaces and projec-
tion into forensic procedures), our work in this paper focuses on the usage of hand-crafted
features for this pattern recognition problem as well as discussions on the applicability of
the Data-Centric Examination Approach (DCEA, see Section 2.3) to map out our work.
Regarding the pattern recognition aspects, the concept in this paper focuses on four items:

• The design, implementation and empirical evaluation of features for DeepFake detec-
tion: Here, two feature spaces hand-crafted especially for DeepFake detection and a
hand-crafted feature space derived from a different but similar pattern recognition
problem domain (face morph detection) are implemented and evaluated. For the
empirical evaluation, pre-existing reference databases containing DeepFake as well as
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benign ("original") face video sequences are used together with a pre-existing out of the
box classification algorithm implementation. To facilitate the interpretation of results
and the comparability with other detector performances reported in the state of the art,
different well established metrics are used: detection accuracy, Cohen’s kappa as well
as (ROC) AUC (Area Under the Curve (of the Receiver Operating Characteristic)).

• The discussion of different information fusion techniques and the empirical compar-
ison with detection performances of individual classifiers: Here, with feature-level
fusion and decision-level fusion, two different concepts are applied. For the latter,
with the majority voting and weighted linear combination, two popular choices are
used and compared with single classifiers in terms of the classification performance
achieved.

• The comparison of the detection performance of our hand-crafted features with
performances of learned feature spaces from the state of the art in this field: Here,
the results obtained by single classifiers as well as fusion approaches are compared in
terms of detection accuracy with different approaches from the state of the art, relying
on learned features.

• Attempts at validating the detectors’ decisions on basis of the features and trained
models: Some classifiers, such as the decision tree algorithm used in this paper, train
models that can be read, interpreted and compared by humans. Here, we analyze the
decision trees trained on different training sets to identify the most relevant features
and see how much these trees have in common and where they differ.

In addition to these pattern recognition aspects, we project the different operational
aspects in training, validating and applying the DeepFake detectors into the established
process model DCEA to show how such media forensics methods would have to be
integrated into forensic procedures. In this projection, the first question to be asked
concerns where the detector is supposed to be used. There exist two potential operation
points in the phases described by the DCEA: either as a method of explicit means of
intrusion detection (EMID) as part of incident detection mechanisms, which would place
the whole DeepFake detection with the training of the method and its application into the
phase of strategic preparation (SP), or in scaling of methods for evidence gathering (SMG),
which would place DeepFake detection after an incident is detected or suspected and
place the corresponding components in the operational preparation (OP), data gathering
(DG), data investigation (DI) and data analysis (DA) phases. These two distinct operation
points as a live detector or as means of post-mortem (or a posterior) analysis in data
investigation have, amongst other effects, significant impact on the training scenario that
can be assumed: In the case of application as an live detector (EMID), in SP, only pre-trained
models can be applied. In the case of a post-mortem (SMG) detector, in the OP the material
to be investigated can be analyzed to design targeted training datasets perfectly matching
the characteristics encountered. Using those sets (and own DeepFake algorithms to also
generate a specimen for this class) optimal models could be trained for each case. In this
paper, the conceptual choice made is that of a live detector, reserving considerations on
targeted training for future work.

The concept of training brings us to a second issue where the principles of the DCEA
can help structuring of the description of media forensics methods such as DeepFake
detectors: The accompanying documentation in the DCEA is meant to allow for inter-
pretability and plausibility validation steps while compiling the case documentation in
DO. For our work, this implies not only documenting all details of the pattern recognition
process at hand but also using these data to reason about the plausibility of decisions
(e.g., by comparing the characteristics of training and test sets to determine questions of
generalization power).

One important realization when trying to apply the DCEA data types for digital or
digitized forensics, as summarized in Tables 2 and 3, is that they do not perfectly match the
media forensics task at hand. Using the original model for digital forensics, only four of
the data types would be covered (raw data differentiated into different user data media
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streams (video, audio, network stream) and possibly hardware data (derived from the
camera/microphone used) as well as details about data). If the model for digitized dacty-
loscopy is used, which slightly better matches with the characteristics of our application
scenario, then eight of the ten data types would be directly relevant (processed signal
data (DD2), contextual data (DD3), parameter data (DD4), trace characteristic feature data
(DD5), model data (DD7), classification result data (DD8), chain of custody data (DD9) and
report data (DD10)), while one other would very likely also to be of significance (raw sensor
data (DD1), which might be used to calibrate specific cameras or camera models, etc.).

It is apparent that an adapted data type model for media forensics would be required
to be able to make use of the full potential of the DCEA in this context. Nevertheless, it is
outside the scope of this paper to propose such an adapted data type model.

4. Implementation of the Individual Detectors and the Fusion Operators

For our DeepFake detection methods, the input video is evaluated frame-wise with
the intention to analyze inter-frame patterns (e.g., the time between two blinks of one
eye). In a pre-processing step, the presence of a face in a frame is determined, the face
region is segmented and annotated frame-wise with a semantic model localizing 68 facial
landmarks. This semantic model [35] is provided by the dlib library [36]. The output of
this pre-processing is shown in Figure 1.

Figure 1. Visual representation of the 68 facial landmark model [35]. Image originates from Utrecht
ECVP [37] with application of keypoints generation by dlib [36] followed by cropping.

In case no face can be localized in a frame, this event is logged, if a face is found,
and the segmented face pixel matrix and the positions of these 68 facial landmarks are
then forwarded to the feature extraction component of each individual detector as well
as the concatenation operator for the feature-level fusion. This process is repeated frame-
wise until the end of the video is reached, which initializes the detection operations
performed. The entire processing sequence is shown in Figure 2. Due to the specific
recording conditions of the datasets used in this paper (which all represent a single person
in an ideal interview-like recording setting with perfectly illuminated faces and none of
the facial key regions, such as eye and mouth, occluded), the pre-processing could be kept
that simple. In case more realistic/averse videos have to be analyzed, this pre-processing
would necessarily have to be extended.
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Figure 2. Concept pipeline considered in this paper.

The domain knowledge used here in hand-crafting features for DeepFake detection is
based on the fact that DeepFake generators (similar to face morphing algorithms) rely on
blending operations in the face region, which is a well established fact in the state-of-the-art
research in this field [13]. Blending itself describes the process of a weighted combination
of two or more faces to create a new identity [38]. This often goes hand in hand with a loss
of local details in the face regions, while the background of a video or image is usually
not affected, which is a fact also used in similar media forensics detectors such as, e.g.,
morphing attack detectors [39].

This knowledge is translated in Section 4.1 into three distinct hand-crafted feature
spaces aiming at solving the following pattern recognition tasks to distinguish between
DeepFake and genuine videos: (a) anomaly detection for eye blinking (Section 4.1.1),
(b) anomaly detection in mouth and teeth region level of detail (Section 4.1.3), and
(c) DeepFake detection based on image foreground texture (Section 4.1.3). In terms of
the DCEA data type model, these features would make up the Trace characteristic feature
data (DD5) from the data model discussed in [7] for digitized forensics. While the broad
category actually fits, the extensive discussion on feature space design alternatives for
DeepFake detection presented in Section 2.2 indicates that more detailed modeling would
be required to sufficiently address this aspect.

To implement the actual classification, we decided not to design or implement our
own but instead rely on a proven classification algorithm detection which does facilitate
feature space as well as model-driven plausibility considerations. The actual algorithm that
we use here is the WEKAs [40] J48 decision tree, which is an open source implementation
of Ross Quinlans C4.5 decision tree algorithm [41]. The classifier is used here in its default
parameterization, i.e., without parameter optimization being applied.

To further increase the performance and robustness of DeepFake detection, differ-
ent fusion operators for feature-level fusion and decision-level fusion are implemented,
as shown in Section 4.2.

In terms of datasets (i.e., processed signal data (DD2)), the pre-existing, publicly avail-
able and widely accepted reference datasets TIMIT-DF [16,42], FaceForensics++ [12,43,44]
and Celeb-DF [13] are used in our evaluations. VidTIMIT [42], which was used to create
TIMIT-DF [16], is a long-established reference database for various video processing tasks.
It represents recording criteria that are ideal for face recognition and similar tasks: uniform
lighting, the presence of exactly one person in each video, a frontal position to the camera,
an average duration of 3 to 5 s and the speaking of ten different, pre-defined sentences.
A total of 430 videos are included in the set, recorded using 43 volunteers. The resulting
DeepFake videos were generated for TIMIT-DF by face swapping in two different reso-
lutions with the autoencoder resolutions 64 × 64 and 128 × 128, respectively. Through
prior selection, 16 suitable pairs of faces were selected for the generation, resulting in 32
DeepFake entities. This yields a total of 640 DeepFakes, which were taken into account in
the TIMIT-DF dataset [16].

The second dataset considered is called DeepFakeDetection (DFD) [44], which origi-
nates from the FaceForensics++ [12] dataset. It contains a total of 363 source videos based
on 28 actors (DFD-source). DeepFake synthesis was performed with an autoencoder resolu-
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tion of 256 × 256 pixels and a total of 3068 DeepFake videos (DFD-DF) were generated. All
videos considered were compressed with H.264 at CRF 23. Due to time constraints, only a
subset of the DFD dataset, containing 55 DFD-source and 55 DFD-DF videos, were used.
Video selection was carried out manually, selecting videos in which only a single person
can be found speaking towards the camera. In the DFD dataset, this was carried out by
searching for the keyword talking in conjunction with against wall or outside.

The third dataset is Celeb-DF [13], which includes videos (harvested from YouTube) of
celebrities being interviewed. These source videos were divided in [13] into the two datasets
Celeb-YouTube and Celeb-real, whereby only Celeb-real was considered for the DeepFake
synthesis. The synthesis method is more advanced than the one from TIMIT-DF in terms of
quality, using an autoencoder resolution of 256 × 256. Due to an average video duration of
about 13 to 15 s, only a subset of this dataset is used in our own paper. For our evaluations,
120 source and 120 DeepFake videos were chosen. For simplification, the entire dataset is
subsequently also referred to as Celeb-DF.

Those three datasets, summarized in Table 5 were used to design different training
and testing scenarios to be able to establish facts about the generalization power of the
detectors trained, which is an important aspect of the quality assessment for every method.
Such evaluations would have to be performed as part of quality assurance in the strategic
preparation (SP) phase of each forensic process.

Table 5. Collection of datasets used for this paper.

Dataset Number of Videos Reference

VidTIMIT 430 * [42]

TIMIT-DF 640 [16,42]

DFD-source 55 * [12,44]

DFD-DF 55 * [12,44]

Celeb-YouTube 60 * [13]

Celeb-real 60 * [13]

Celeb-DF (v2) 120 * [13]
*: Numbers do not reflect the total but rather the number of videos used in the context of this work.

4.1. Individual Detectors Using Hand-Crafted Features

In general, the 68 facial landmark model [35] used in this paper (see Section 4) can be
structured into different facial areas, as shown in Figure 1. Here, the following segmentation
alternatives are used to derive the features for our individual detectors: The first set of
keypoints, numbers 0 to 26, describes the edges of the face along the chin and eyebrows.
These keypoints are used to segment the image foreground, as explained in Section 4.1.3.
Keypoints 27 to 35 describe the nose, which is neglected in this work. The eyes are described
with the help of keypoints 36 to 47 and form the basis for the detection of blinking behavior
considered in Section 4.1.1. The final keypoints, 48 to 67, are used to model the mouth,
which is examined in more detail in Section 4.1.2.

In the following subsections, our three distinct detectors relying on different hand-
crafted features spaces are described. A summarizing overview over all features extracted
is presented in Table A1 at the end of the document in Appendix A.

4.1.1. DeepFake Detection Based on Eye Blinking

The first implemented detector is based on the biometric modality eye and acts on the
behavior of eye blinking. Using the 68 facial landmark model [35], each eye is described by
six keypoints (keypoints 36 to 41 and 42 to 47, respectively). The process of blinking itself
occurs subconsciously about 10 to 15 times per minute. On average one blink takes 0.3 to
0.4 s between closing and reopening the eyes. It should be noted that blinking behavior
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is also influenced by gender, age, time of day and how tired the person is [24]. In some
publications, the minimum duration of human blinking is noted as 0.1 s [45]. To enable
the detection of blinking, the eyes are modeled to two possible states—open and closed.
To distinguish between these two states, the degree of aperture for each eye is determined
individually by the formula:

AspectRatio =
yMax − yMin
xMax − xMin

The parameters of this bounding box are determined from the six keypoints of the
68 facial landmark model, which describe the respective eye. The main idea of the feature
design here is strong likeliness of DeepFake synthesis artifacts leading to lower average
AspectRatio values, due to the inherent impact of the blending operation. Considering
diversity in eye shapes and the inclusion of emotions, as shown in Figure 3, results on the
use of a dynamic threshold (determined empirically on the training data used) were used
to distinguish the eye states.

Figure 3. Illustration of the challenges of correctly detecting the aperture of eye opening as widely
open (left), based on ethnicity (center) and inclusion of emotions (right). Images originate from
LondonDB [46] dataset with application of cropping.

The eye state classification is carried out as binary decision, under the assumption
that the aspect ratio always represents exactly one of two values, representing the two
eye states (open and closed). The threshold under consideration was implemented as a
bimodal distance function. Here, both states are described by a value which corresponds to
the most frequent value of the upper and lower thirds of values found in the training data.
The closed state is described by the most frequent value of the lower third of the value range.
Conversely, open is described by the most frequent value, which is found in the upper third
of the value range. Subsequently, the state for each eye and frame is determined via smaller
distance to one of the two values representing the states.

For DeepFake classification based on eye blinking, a feature vector of fixed size of
13 dimensions was designed. Seven out of these 13 features are directly based on the
AspectRatio, one is based on the difference between the two eyes and the other six are
based on eyelid movements. This eyelid movement is detected as a rate of change on a
frame-by-frame basis. Features 8 to 13 are based on the given eye state modeling. One
feature introduces a new metric of anomaly, hereinafter referred to as noise. This noise
is described as a frequent change in eye states below the expected frequency. In detail,
this timespan is set to 0.05 s and thus corresponds to half the duration of a blink to detect
anomalies only. Another feature describes the percentage of time in the video that the
person has their eyes open. The last four features considered refer to the extreme values
given the duration in each eye state.

In the summarizing overview of all features in this paper, given in Table A1 at the
end of the document in Appendix A, these eye blinking features are the first 13 feature
vector elements.

4.1.2. DeepFake Detection Based on Mouth Region

The second implemented detector is based on the biometric modality lip-movement.
The focus of this approach is on analyzing the highly detailed teeth region. Under the
assumption of blending as part of DeepFake creation, a blurred, less detailed image of
the teeth is expected. The 68 facial landmark model is also used to localize the mouth
region by using keypoints 48 to 67. These keypoints allow the mouth to be displayed as
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two separate images, one of which represents the entire mouth described by keypoints 48
to 59. This representation is henceforth called the OuterBoundRegion (OBR). The other
keypoints (60 to 67) can be used show another representation considered in this work.
This, in the following, is called the InnerBoundRegion (IBR) and represents the mouth
area with the exception of the lips. The IBR is used to determine whether the mouth is
open, since a closed mouth can be represented by a non-existent IBR. The third and last
representation considered to describe the mouth region is the so-called TeethRegion (TR).
The TR is created by segmenting the OBR to preserve potential teeth found in the image.
An example of the representations can be found in Figure 4. In addition, the degree of
aperture of the mouth is determined as an additional parameter based on the OBR. Here,
the x and y dimensions are considered separately in order to act independently of the
spoken phoneme. The respective values are determined by the bounding box of the OBR
using Aperturex = xMax − xMin and Aperturey = yMax − yMin for each frame.

Figure 4. Illustration of the proposed representations for the mouth region OBR (left), IBR (center)
and TR (right). Mouth image originates from LondonDB [46] dataset with application of keypoint
generation by dlib [36], segmentation and cropping.

Based on these representations, a total of three states are conceived to describe the
mouth. These states are: closed mouth, open mouth without detectable teeth and open mouth
with detectable teeth. The subdivision of the states is made by two binary decisions. The first
decision is based on the IBR and describes whether the mouth is open. The metric used
for the decision is the number of pixels found in the IBR. Here, a conscious decision is
made against cropping and scaling of the representations in order to prevent distortion
of the image when viewing different visemes [47]. As a consequence, the number of
pixels of the OBR is taken as a reference. Thus, the decision threshold is determined
empirically on training data as: PixelCountIBR

PixelCountOBR
> 0.211137, for criteria for an open mouth.

The second decision, if the mouth is classified as open, is made with the help of the number
of pixels in the TR, once again using the OBR as a reference. The threshold considered
(after empirical determination from training data) is PixelCountTR

PixelCountOBR
> 0.11455 for detectable

teeth. An example of each state considered can be found in Figure 5.

Figure 5. Illustration of the proposed mouth states: closed (left), open without detectable teeth
(center) and open with detectable teeth (right). Image originates from VidTIMIT [42] dataset with
application of keypoint generation by dlib [36] and cropping.

For the detection of DeepFakes based on mouth region, a feature vector of dimension-
ality 16 is designed. Six of these features are based on mouth movements. This mouth
movement is recognized image-wise as the rate of change, which corresponds to the ex-
treme values for the x- and y-dimensions, respectively. The other 10 features are based on
the detected mouth states, leaving out the closed mouth state. Thus, the focus of this review
is based on the description of the level of detail in the mouth region. For this purpose,
FAST and SIFT keypoint detectors as well as Sobel edge detection and the number of
closed regions are considered. All of them are implemented by OpenCV [48] and used with
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default parameters. For the open without teeth state, the maximum of each feature, and for
state open with teeth, the minimum of each feature are determined over all frames. Lastly,
the percentage of time in both states is considered. The expectation for this approach is a
low level of detail in the open with teeth state for DeepFakes or even a wrong assignment to
the open without teeth state, although teeth are recognisable, due to blending of artifacts.

In the summarizing overview over all features in this paper, given in Table A1 at the
end of the document in Appendix A, these mouth movement features are elements 14 to 29
of the feature vector.

4.1.3. DeepFake Detection Based on Image Foreground

The third and last proposed detector is based on domain transfer of hand-crafted
features from a similar media forensics task. As shown by Kraetzer et al. [39], such a domain
transfer seems plausible to detect blending anomalies in face morph attack detection. This
requires an image foreground, which is characterized by a uniform distance towards the
camera. Image foreground ImgForeground is designed as an extension of the facial region
ImgFace, which is determined based on the 68 facial landmark model—more precisely,
keypoints 0 to 26. The extension of the facial region is carried out by widening along
the vertical axis to include the upper body, which is potentially shown in the image.
A third representation, called ImgROI , is conceived as the differential image of the previous
two, formally described as ImgROI = ImgForeground − ImgFace. A visual example of each
representation can be found in Figure 6.

Figure 6. Illustration of the proposed representations for anomaly detection based on image fore-
ground ImgFace (right). Image originates from VidTIMIT [42] dataset with application of keypoint
generation by dlib [36] and segmentation.

For the detection of DeepFakes based on the image foreground, a feature vector of
fixed size of eight elements was designed. The first subset of features is based on face
detection itself, counting the number of frames and sequences where no face can be found.
Here, it is assumed that a failure is due to anomalies of the DeepFake synthesis. The second
set of features is based on the level of detail in ImgFace relative to ImgROI . For each frame
and representation, the characteristics of FAST and SIFT keypoints as well as the Sobel edge
image are determined. The implementation of these metrics is carried out using the default
parameters given by OpenCV [48] and the scoring for each frame corresponds to ImgFace

ImgROI
.

Lower values for DeepFakes are expected here. Lastly, the respective extreme values of all
frames are extracted as features.

In the summarizing overview of all the features in this paper, given in Table A1
at the end of the document in Appendix A, these features are elements 30 to 37 of the
feature vector.

4.2. Fusion Operators

To further increase the performance as well as robustness of the detection, different
methods of fusion were implemented for our evaluation. The fusion itself is considered
here both at feature level and decision level [49]. At the feature level, the feature spaces
of the individual detectors are concatenated, without additional pre-processing such as
weighting or filtering. At the decision level, a total of four operators are applied: The
first operator makes an unbiased decision using simple majority voting [50]. In contrast,
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the other three operators implement weighted linear combinations and derive the weights
for each individual detector based on its classification performance on the training set.
Considering the different training scenarios, there are two sets of weights, each based on
the training using dataset TIMIT-DF [16,42], DFD ( [12,44]) or Celeb-DF [13]. The explicit
weights determined this way can be found in Section 5.2. In summary, the following five
fusion operators are considered:

1. Feature-level fusion: concatenation of all features;
2. Decision-level fusion: simple majority voting;
3. Decision-level fusion: weighted, based on accuracy using TIMIT-DF for training;
4. Decision-level fusion: weighted, based on accuracy using DFD for training;
5. Decision-level fusion: weighted, based on accuracy using Celeb-DF for training.

5. Evaluation Results

The evaluation of the created approaches (i.e., our three feature spaces used in training
and testing with the used J48 classifier) for DeepFake detection is looking into aspects of
performance, generalizability and plausibility of the decisions made (i.e., the kind of informa-
tion summarized in the DCEA data type model for digitized forensics as Classification
result data (DD8)). To address performance and generalizability, the three datasets used for
training and testing are presented as different scenarios (as shown in Table 6). Scenarios
S1, S5 and S9 , which represent evaluations in a simplistic (i.e., very naive) setup, split one
dataset in disjointed training and test subsets. These three scenarios are used to validate
the performance of detectors under optimal conditions.

In contrast, for evaluations on the generalizability, separate training and testing datasets
are used in scenarios S2, S3, S4, S6, S7 and S8. Since the individual detectors classify binary
according to {DeepFake, OK}, the evaluation is carried out using the metrics’ true positive
rate (TPR; a true positive (TP) in our case being a DeepFake detected as a DeepFake), true
negative rate (TNR; a true negative (TN) being an unmodified video classified as OK),
accuracy and Cohen’s kappa (κ).

Table 6. Representation of the considered training and testing scenarios, given by differentiation of
the training and testing datasets used.

↓ Training/Testing→ TIMIT-DF DFD Celeb-DF

TIMIT-DF scenario 1 (S1) scenario 2 (S2) scenario 3 (S3)

DFD scenario 4 (S4) scenario 5 (S5) scenario 6 (S6)

Celeb-DF scenario 7 (S7) scenario 8 (S8) scenario 9 (S9)

In addition, the hand-crafted features are evaluated in terms of interpretability and
relevance. This is carried out by manually evaluating the trained decision trees in model-
driven decision validation, looking at the individual features used to make the decision, the
threshold used, and their distance from the root node. To support this analysis, the complete
list of all features and experts’ assumptions about their content behavior can be found in
Table A1 at the end of the document in Appendix A. To extend the initial model-driven
decision validation, a comparison of the three decision trees trained on the different
datasets, TIMIT-DF, DFD and Celeb-DF, is made.

5.1. Results for Individual Detectors

The detection approach based on blink behavior has a generally higher TPR than TNR,
regardless of the scenario considered. For S1, it has a TNR of 70.47% and a TPR of 90.94%,
resulting in an accuracy of 82.15% and κ of 0.6306. In comparison, S9 shows a TNR of
63.33% and TPR of 75.00%, resulting in an accuracy of 69.17% and κ of 0.3833. It is assumed
that the Celeb-DF dataset also represents an improvement of the DeepFake synthesis over
the older TIMIT-DF by incorporating more realistic blinking behavior. Considering the
generalizability, a drastic decrease in detection rates can be seen in S7, S8 and S9, with a
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tendency to label all videos as DeepFake. In numbers, S3 indicates a TNR of 33.33% and
TPR of 75.00%, with an accuracy of 54.17% and κ of 0.0833. In comparison, S7 shows
a TNR of 6.05% and TPR of 99.53%, resulting in an accuracy of 61.96% and κ of 0.0659.
By performing feature selection on the 13 features considered, only the eyelid movement-
based features (ID2blink to ID7blink) seem suitable. In addition, looking at the two eyes
separately shows added value. As a result of the model-driven comparison of both trained
decision trees, a DeepFake can be described by a higher difference between opening and
closing speeds, relative to a non-manipulated video. However, the ranges of the values
found as well as the associated thresholds are different for the TIMIT-DF and Celeb-DF
datasets, explaining the drastic performance decrease for S3 and S7. Training on the DFD
dataset shows only the use of features ID9blink and ID10blink for decision making.

The second detection approach considered, based on the mouth region, has the highest
individual classification performances. For S1, a TNR of 88.84%, TPR of 97.81%, accuracy
of 94.21% and κ of 0.8779 was achieved. In contrast, S9 resulted in a TNR of 91.67%, TPR of
97.50%, accuracy of 94.58% and κ of 0.8917, thus showing better results in direct comparison.
Based on this result, it is suspected that newer DeepFake generators, such as the one used
to create Celeb-DF, also exhibit said blending artifacts. Once again, there are clear losses in
generalizability for S3 and S7: For S3, a TNR of 40.83%, TPR of 72.50%, accuracy of 56.67%
and κ of 0.1333 were observed. S7 shows slightly better results with a TNR of 63.02%, TPR
of 71.09%, accuracy of 67.85% and κ of 0.3378, which are justified by more general inclusion
conditions of the Celeb-DF data and more general classification model. Based on the 16
features considered in feature selection, the set of features describing the grade of detail,
excluding the ones using Sobel operator, are used to classify a DeepFake. This clearly
shows that blending results in a loss of detail in the facial region, which can be found for
both states open without teeth and open with teeth. Additionally, the assumption that the state
open with teeth is found less frequently for DeepFakes is correct. However, it should be
noted here that the approach only works if an open mouth can be found—for example, if a
person is speaking.

The trend of high TPR at the expense of TNR is also emerging for the detector based
on the image foreground. For S1, a TNR of 52.33%, TPR of 87.50%, accuracy of 73.36% and κ
of 0.4182 were observed. For S9, the results look similar, with a TNR of 56.67%, TPR of
85.00%, accuracy of 70.83% and κ of 0.4167. This approach also shows poor generalizability,
with a TNR of 43.33%, TPR of 70.00%, accuracy of 56.67% and κ of 0.1333 for S3. Lastly,
S7 shows a TNR of 32.79%, TPR of 79.38%, accuracy of 60.83% and κ of 0.1297. For the
decision making itself, the features based on the level of detail except for the Sobel operator,
as well as the number of frames without a found face, are used. However, the ID1foreground
shows a different classification strategy depending on the dataset considered, when at
least one frame without a face is found. While for TIMIT-DF and DFD it is interpreted as a
DeepFake, for Celeb-DF it serves the classification OK. It is suspected that for TIMIT-DF
and DFD, the synthesis may result in artifacts, making the face undetectable. On the other
hand, less strict recording conditions in Celeb-DF do not exclude side shots that cannot be
detected by the facial landmark model. The use of features ID3foreground to ID6foreground
corresponds to the assumptions about blending, whereby lower levels of detail are taken
as an indication of a DeepFake.

In conclusion, regardless of the detection approach considered, in all cases, a value for
Cohen’s kappa > 0 was obtained, implying for all cases a detector performance better than
chance agreement (i.e., better than guessing). Nevertheless, it has to be admitted that the
differences between the more naive setups (S1 and S9 with κ > 0.35) and the more realistic
setups (S3 and S7 with κ < 0.15 for all but one case) indicate a very limited generalization
power of the trained detectors.

Analyzing the trained models in more detail, it has to be highlighted that the decision
tree trained on Celeb-DF is shown to be smaller and more compact. This is justified
by a lower number of suitable features for the detection of higher quality DeepFakes.
In addition, S3 generalizes better than S7, which goes hand in hand with the preceding
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statement. Here, Celeb-DF represents a more general dataset, with fewer indicators of
DeepFakes, where the trained model applies better to TIMIT-DF than vice versa.

5.2. Results for Fusion Operators

For all fusion operators considered, the metrics TPR, TNR, accuracy and Cohen’s
kappa are used to allow comparability between fusion and individual detectors. In addition,
the receiver operating characteristic (ROC) for all scenarios considered, based on the different
approaches of fusion at the decision level, are determined. The resulting graphs can be
found in Figure 7. Based on the ROC, the area under curve (AUC) is determined in order to
realize a better comparison with research results in the state of the art in the literature.

Figure 7. Receiver operation curves (ROCs) for the decision-level fusion methods simple majority
voting and weighted fusion, based on DFD and Celeb-DF. Scenarios S5, S6, S8 and S9, which consider
both the DFD and Celeb-DF datasets, are presented here. The false alarm rate (false positive rate) is
plotted on the x-axis. The sensitivity (true positive rate) is plotted on the y-axis.

The first fusion approach considered is carried out at the feature level by concatenating
all features without prior adjustments or filtering. A descriptor of this vector can be found
in Table A1. For S1, a TNR of 96.74%, TPR of 98.13%, accuracy of 97.57% and κ of 0.9494
and for S9 a TNR of 92.50%, TPR of 95.83%, accuracy of 94.17% and κ of 0.8833 are achieved.
This outperforms the best individual detector from Section 5.1. However, this performance
is accompanied by even more significant losses for generalizability seen for S3 and S7:
A TNR of 70.83%, TPR of 38.33%, accuracy of 54.58% and κ of 0.0917 are achieved for S3
and a TNR of 63.02%, TPR of 64.22%, accuracy of 63.74% and κ of 0.2653 are achieved for S7.
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The model-driven feature selection shows that mainly features of the mouth region are
used here. From the other two feature spaces, only ID2blink and ID6foreground are considered
(the latter is found in the root of the respective decision trees). This again implies that
the individual features based on blinking and image foreground appear more unsuitable
than the features based on the mouth region. In addition, the differences between the
performances on the datasets and corresponding differences in threshold determination
described at the end of Section 5.1 are again apparent.

The second approach of the fusion operators takes place at decision-level in the form
of simple majority voting. Here, detection rates of TNR of 79.53%, TPR of 98.75%, accuracy
of 91.03% and κ of 0.8075 for S1 and TNR of 78.33%, TPR of 94.17%, accuracy of 86.25%
and κ of 0.7250 for S9 are determined. Furthermore, simple majority voting shows the best
generalizability of all approaches for S3, with a TNR of 53.33%, TPR of 64.17%, accuracy
of 58.75% and κ of 0.1750. A TNR of 26.74%, TPR of 91.41%, accuracy of 65.42% and κ of
0.2015 are determined for S7.

For the considered weighted decision-level fusion approaches, the weight combinations
wblink = 0.328967, wmouth = 0.377246 and wforeground = 0.293787 based on the use of TIMIT-
DF for training, wblink = 0.257934, wmouth = 0.420621 and
wforeground = 0.321445 based on the use of DFD as well as wblink = 0.294849,
wmouth = 0.403197 and wforeground = 0.301954 based on the use of Celeb-DF for training
are derived based on the determined detection performances in training. In addition,
the optimal threshold value for the classification is determined manually. For both cases,
the ideal threshold can be described as:

wblink + wforeground < threshold < wmouth + wblink|foreground

It is therefore necessary that both the detector based on the mouth region and an-
other one arrive at the classification result DeepFake so that the fusion also arrives at that
conclusion. In the following, a threshold value of 0.65 is used. Considering the results,
these resemble the detector based on the mouth region and show S1 with a TNR of 91.40%,
TPR of 97.03%, accuracy of 94.77% and κ of 0.8904, as well as a TNR of 91.67%, TPR of
94.17%, accuracy of 90.42% and κ of 0.8083 for S9. In the context of generalizability, this
fusion approach for S3 shows a TNR of 59.17%, TPR of 55.83%, accuracy of 57.50% and
κ of 0.1500. Scenario S7 has a TNR of 63.72%, TPR of 70.94%, accuracy of 68.04% and κ
of 0.3427 are determined, representing the best results of all considered implementations
for S7. A marginal improvement of the weights based on the Celeb-DF can be found in
consideration of the ROC AUC, as shown in Figure 7.

In conclusion, previous trends are confirmed showing that S7 has a higher performance
than S3 and thus more refined DeepFakes and less limiting factors of acquisition are
necessary for a more accurate classifier.

Table 7 summarizes and compares the performances of the individual and fusion
detectors. While the best performances are very similar, the fusion-based approaches show
a much smaller range in their results, which implies that the strongest of the three single
detectors (using the mouth region features) has a dominating impact out of all three fusion
operators tested. By switching from single classifiers to fusion approaches, here no gain
could be made in terms of increasing generalization power. The reason has to be sought
in the different thresholds that were derived for both training sets (see the corresponding
discussion at the end Section 5.1).
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Table 7. Classification results based on accuracy in percent, followed by Cohen’s kappa in parenthesis, for the different
methods proposed in this paper. Best result for each combination of training and test data is highlighted bold.

Training Dataset→ TIMIT-DF [16,42] DFD [12,44] Celeb-DF [13]

↓ proposed method test dataset→ TIMIT-
DF DFD Celeb-

DF
TIMIT-
DF DFD Celeb-

DF
TIMIT-
DF DFD Celeb-

DF

DeepFake detection based on 82.15% 50.00% 57.50% 58.32% 59.09% 52.92% 62.06% 58.18% 69.17%
eye blinking (0.63) (0.00) (0.15) (0.15) (0.18) (0.06) (0.07) (0.16) (0.38)

DeepFake detection based on 94.21% 76.36% 56.67% 64.95% 96.36% 53.75% 67.85% 69.09% 94.58%
mouth region (0.88) (0.53) (0.13) (0.29) (0.93) (0.08) (0.34) (0.38) (0.89)

DeepFake detection based on 73.36% 53.64% 56.67% 58.33% 73.64% 54.02% 60.83% 54.55% 70.83%
image foreground (0.42) (0.07) (0.13) (0.17) (0.47) (0.11) (0.13) (0.09) (0.42)

Feature-level fusion 97.57% 66.36% 54.58% 65.05% 97.27% 56.25% 63.74% 60.00% 94.17%
(0.95) (0.33) (0.09) (0.30) (0.95) (0.13) (0.27) (0.20) (0.88)

Decision-level fusion: 91.03% 69.09% 58.75% 59.72% 61.18% 52.08% 65.42% 62.73% 86.25%
simple majority voting (0.81) (0.38) (0.18) (0.24) (0.24) (0.04) (0.20) (0.25) (0.73)

Decision-level fusion: 94.77% 70.91% 57.50% 67.00% 95.45% 53.75% 68.04% 65.45% 90.42%
weighted (threshold=0.65) (0.89) (0.42) (0.15) (0.33) (0.91) (0.08) (0.34) (0.31) (0.81)

6. Summary and Conclusions

To allow for a direct comparison of hand-crafted and learned features, Section 6.1
discusses our obtained performances and the generalization behavior observed in direct
comparison with a state-of-the-art paper using deep learning under comparable evaluation
conditions. Furthermore, we compare our feature concept implementations for eye blinking,
mouth region and foreground texture analysis with other hand-crafted and learned features
considering the same facial regions.

In Section 6.2, we summarize our conclusions on the comparison of hand-crafted and
learned features for DeepFake detection.

6.1. Summary of the Results and Comparison with other Approaches from the State of the Art

In the sections below, we provide a comparison of the results obtained in our ex-
periments with selected work from the state of the art in this fast growing research field.
Section 2.1 shows that there exists a wide range of different approaches to distinguish
DeepFake from real videos, with a strong tendency towards relying on features learned by
using neural networks. In subsection 6.1.1, we compare our results with selected detection
performances and generalization behaviors observed in the state of the art. In Section 6.1.2,
we compare our concepts for feature designs (looking at hand-crafted features, espe-
cially for eye blinking, mouth region and image foreground) with similar approaches by
other authors.

6.1.1. Performances and Generalization Power

Table 8 consists of two parts, the upper half represents our results on fusion-based
detectors trained on the DFD and Celeb-DF dataset and tested on TIMIT-DF, DFD and
Celeb-DF. The values given above are the results taken from Table 7 translated into area
under curve (AUC).

The second half are the results resented by Bondi et al. in [9], where the authors
performed very similar experiments like us only with a feature space learned with a
convolutional neural network (CNN). In their paper, they also used a total of four sets to
design training and test setups as we did with our S1 to S9. Two of the sets are Celeb-DF
and DFD, which are also used by us. Comparing our work and the AUC results from
Bondi et al. on the sets that are used in both papers, we can state that our approach with
hand-crafted features performs only slightly worse (maximum AUC = 0.960) than their
method relying on learned features (maximum AUC = 0.998). Furthermore, we can point
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out that their experiments with training and testing on different sets of DeepFakes results
in very similar, if not worse problems in terms of generalization power (i.e., AUC drops
from values larger than 0.9 to smaller than 0.7).

Table 8. Comparison (in terms of AUC) of different state-of-the-art DeepFake detectors with the presented methods. Further
separation based on differentiating training and test dataset.

Training Dataset→ DeepFakeDetection (DFD) [12,44] Celeb-DF [13]

↓ fusion method test dataset→ TIMIT-DF DFD Celeb-DF TIMIT-DF DFD Celeb-DF

Ours: simple majority 0.668 0.947 0.556 0.690 0.685 0.925

Ours: weighted based on accuracy 0.685 0.960 0.556 0.682 0.712 0.954
using DFD for training

Ours: weighted based on accuracy 0.685 0.960 0.556 0.698 0.712 0.955
using Celeb-DF for training

[9]: Baseline - 0.987 0.754 - 0.708 0.998

[9]: Triplet Training - 0.882 0.759 - 0.554 0.995

[9]: EfficientNetB4. Binary Cross
Entropy with augmentation - 0.990 0.842 - 0.795 0.998

[9]: EfficientNetB4. Triplet Loss
with augmentation - 0.982 0.809 - 0.604 0.995

6.1.2. Comparison of Feature Concepts

In the case of DeepFake detection, eye blinking is a feature which is used for hand-
crafted as well as learned feature space approaches. Section 2.1 also recaps the main
functionality of DeepVision by Jung et al. [24] where they describe a hand-crafted detection
method of the eye blinking behavior of persons in potential DeepFake videos. This ap-
proach is similar to our proposed feature detector for the eye blinking behavior. After the
face detection happens in both cases, the detection of both eyes frame-by-frame. In our
work, for every detected eye the AspectRatio changes are tracked over time. Jung et al. [24]
evaluate only the amount of blinking events in a video and also the blink elapsed time
as well as the blinking period time, which would correspond to the features ID8blink to
ID13blink of our work. Implementation differences are visible in handling the threshold for
state (open vs. closed) determination.

Li et al. [15] used a CNN for the segmentation of the eyes after they located the face
area in a video. For their inter-frame blinking analysis they use an RNN with LSTM cells.
The output of each RNN neuron is connected to a fully connected network, which estimate
the output of the LSTM cells if an eye is open or closed.

Unfortunately, a direct comparison with these other publications in terms of perfor-
mances is not possible here, since entirely different datasets were used.

To our knowledge, there is currently in the literature no similar DeepFake detection
approach analyzing only the visible mouth region in the video with hand-crafted features.
Currently, our approach only analyzes the mouth region in the video stream but does
not consider of the spoken speech in the audio stream combined with the lip movements.
Extending it with methods for fake voice detection, as in [51], would be an interesting next
step for this method.

Considering neural network-based approaches for analysing the mouth region, Agar-
wal et al. [47] present the hypothesis that DeepFake videos are not able to reproduce spoken
phoneme such as "M", "B" or "P", where the mouth is normally completely closed for the
pronunciation. Their detection pipeline starts with the extraction of all phoneme locations.
The phoneme generation is managed by the transcribing API Speech-To-Text of Google
and then manually reduced to six phoneme groups ({OY,UH,UW}, {AA}, {M,B,P}, {L}, {F,V},
{CH,JH,SH}). The video stream is then aligned to these phonemes. After that, they measure
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the visemes for several evaluation tests in three different ways (manual, profile, CNN) [47].
This approach corresponds to a simplified lip-sync approach for a DeepFake detection,
which is realized in [16] (see Section 2.1).

To the best of our knowledge, in the current literature, no hand-crafted approach
analyzing only the image foreground to detect DeepFakes using image foreground can
be found.

Looking for neural network-based approaches implementing such a feature space,
the papers of Zhang et al. [52,53] have to be mentioned here. In contrast to our approach,
they developed an automatic approach using a CNN. The idea behind their approach is that
the image compression ratio of the face and background is different between the DeepFake
and original. The reason behind this issue is that the resolution all current DeepFake
algorithms is very limited. In addition, the generated fake faces are modified by affine
transformations such as scaling, rotating and shearing. Based on this hypothesis, Zhang
et al. try to detect the resulting artifacts of these affine transformations. The detection of
the compressing distortions happens in their case with the well known error level analysis
(ELA) method [54]. It follows that the training of a CNN with these ELA images which
extracts the counterfeit features of the ELA images. If the CNN is able to extract these
counterfeit features, then the input image of the CNN is a DeepFake. Even though the
detection in [52,53] uses only DeepFake images in its tests, it would be possible to upgrade
this approach for a DeepFake detection of videos.

6.2. Comparison of Hand-Crafted and Learned Features for DeepFake Detection and Conclusions

Our proposed hand-crafted features as well as hand-crafted features from other
sources such as [21–24] have shown that also such expert knowledge-driven approaches
are able to distinguish real from DeepFake videos. The detection rates are usually high
but in most cases slightly lower than the performance achieved with learned feature
spaces. The main advantage that hand-crafted features have over learned features is
their interpretability and the consequences this might have for plausibility validation for
decisions made.

All current approaches for DeepFake detection in the literature show error rates which
are far from perfect. In particular, when DeepFake detectors are evaluated in a realistic
setting, i.e., with independent training and test sets, then current hand-crafted as well as
learned feature space approaches suffer generalization problems if the characteristics of
training and test data are different. This has been demonstrated in our results but also in
papers performing similar tests with learned feature spaces, such as Bondi et al. in [9].

Obviously, the problems of individual detectors could be increased if the DeepFake
generators would include active mechanisms (counter-forensics) into the generation pro-
cess to enforce false results with known detectors. Various strategies could and should be
applied to address these performance and reliability issues. In this paper, we performed fu-
sion operations to improve detection performances of hand-crafted feature spaces. In their
work, Lin et al. [29] propose to extend fusion even further by combining hand-crafted
features and CNN features. By doing so, they imply that it would enable us to find a solu-
tion that combines the interpretability of hand-crafted features with the potentially higher
classification accuracy of learned features. The main benefit of such fusion approaches
is that they generate complexer decision constructs that could compensate the problems
of individual detectors in the set and might be more resilient against counter-forensics.
However, these benefits would be bought at the cost of throughput/runtime behavior and
a much more difficult interpretability of decisions.

In most cases, hand-crafted approaches do not need much data for model training,
which may also result in lower process costs for memory or calculation time. Additionally,
approaches which are including neuronal networks and specially convolutional neuronal
networks need much more memory (mostly graphic memory) and CPU or GPU power
for the training of the detection networks. In particular, the analyzing process of whole
videos and specially a recurrent network structure have a huge impact to the needed
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memory. These learned approaches are also expensive in purchase costs for (new) hardware
architectures. However, when the networks are finally trained, the networks are able to
detect DeepFake videos in a very short time, similar to models created/trained with hand-
crafted features. Therefore, neither choice would limit the application in incident response
procedures (EMID), where fast (close to real time) detector responses would be required
for live detectors.

7. Future Work

Our proposed hand-crafted features reach acceptable detection rates for DeepFake
videos. However, not every video was classified correctly. Some DeepFake videos were
detected as real video and vice versa. It is necessary to detect, analyze and find the
reasons for a misclassification to improve our proposed approaches for DeepFake detection.
A further improvement can be achieved by investigating different feature selection methods
to strengthen the suitability of the proposed features. Possible improvements would
also affect approaches from other sources, as it is extremely unlikely that any detection
method can correctly classify every video, especially considering potential counter-forensics
methods included in the DeepFake generation. Different detection approaches should be
analyzed and the benefits of these approaches should be finally combined into a single
detection method with a better detection rate and higher robustness against counter-
forensics. This also concerns the fusion of hand-crafted and learned features whereat
also the integration of hand-crafted methods into learned approaches are meant. In this
context, the evaluation of our approaches should expand to other DeepFake databases
to create a wider base for training or construct more evaluation scenarios to validate the
generalizability of the approach.

A DeepFake video usually consists of two media types: the visible video and the
underlying audio. These different media types should be analyzed in combination at
the same time. For example, our handcrafted detector for the mouth region should be
expanded to include a lip synchronization detector. It is also possible to extract the current
emotion of a person in a video. Here, it is imaginable to analyze the emotion of one area
(e.g., the left eye) and compare it to another (e.g., the right eye and/or the mouth). Possible
aspects to determine emotions are facial expression (e.g., gesture of mouth and eyes), as
well as the way of speaking.

In this paper, we started with trying to project the media forensics method of DeepFake
detection onto a forensic process model (here, the data-centric examination approach
(DCEA) introduced in Section 2.3). In future work, more effort is required to extend this
projection, including a required extension of the DCEA data type model to make it suitable
for the media data characteristics encountered here. As discussed in Section 3, the most
significant change would be the design of a new, domain specific data type model for
this media forensics task. While many components (such as the Processed signal data
(DD2), Contextual data (DD3), Classification result data (DD8), Chain of custody data
(DD9) and Report data (DD10)) could be re-used with only minor modifications, others
(esp. Parameter data (DD4), Trace characteristic feature data (DD5) as well as Model data
(DD7)) would need a major overhaul. The updated data modeling would also have to
reflect that, in this media forensics task, different correlated (media) data streams such
as video, audio, network, meta and synchronization data would have to be analyzed in
parallel to substantiate the findings.

In addition to the data-driven nature of DCEA, a second reason for its choice as a
forensic process model here is that it explicitly requests of modeling the error, (information)
loss and (decision) uncertainty of forensic methods [7]. These considerations have to by
extended for media forensics from closed set tests (where the ground truth class label in
a pattern recognition problem is known) to field applicability (where only the detector
response is available and the true class of a specimen encountered will remain unknown).
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Appendix A. Collection of Features Proposed in this Paper

Table A1. Collection of all features and their expected behaviors proposed in this paper.

ID Feature Description

ID1fusion
ID1blink

Maximum AspectRatio difference between both
eyes.

The expected difference is close to 0, whereby a larger distance
is suspected as an indication of a DeepFake. Additionally, the

absence of winking is required for this feature.

ID2fusion
ID2blink

Absolute maximum AspectRatio rate of change for
the left eye.

Based on several studies the eyelid movement varies based on
different aspects, e.g., age and gender [24,45]. Nevertheless,
the maximum speeds, as well as the relation of opening and

closing speeds, could be an indication for DeepFake detection.
This rate of change for each frame is determined by the

difference between previous and following frame.
Normalization is carried out by multiplying the rate of change
by the frame rate of the video. This results in the AspectRatio

change every 3 seconds, described as ∆AspectRatio
3s .

The suitability of these features is based on the disregard of
blink behavior in DeepFake synthesis.

ID3fusion
ID3blink

Maximum AspectRatio rate of change for the left eye.
Maximum opening speed of the left eye.

ID4fusion
ID4blink

Minimum AspectRatio rate of change for the left eye.
Maximum closing speed of the left eye.

ID5fusion
ID5blink

Absolute maximum AspectRatio rate of change for
the right eye.

ID6fusion
ID6blink

Maximum AspectRatio rate of change for the right
eye. Maximum opening speed of the right eye.

ID7fusion
ID7blink

Minimum AspectRatio rate of change for the right
eye. Maximum closing speed of the right eye.

ID8fusion
ID8blink

Noise count in the eye state signal.
Noise is defined as a rapid change of eye state, where one state
lasts for a maximum of 0.08 seconds. A higher number of these

noises is expected for DeepFakes.

ID9fusion
ID9blink

Percentage of video time at which the state open is
classified.

Another feature that can be justified by studies about human
blinking behavior [24,45].

Assuming a healthy person in a non-manipulated video,
on average a value of about 0.9 should be expected.

ID10fusion
ID10blink

Minimum duration detected for the eye state open in
seconds.

Features based on the durations of the states are again based on
the knowledge of human blinking behavior.

It is assumed that the eyes are open longer than they are closed.
As a conclusion ID12blink < ID10blink and ID13blink < ID11blink

are expected.

ID11fusion
ID11blink

Maximum duration detected for the eye state open in
seconds.

ID12fusion
ID12blink

Minimum duration detected for the eye state closed
in seconds.

ID13fusion
ID13blink

Maximum duration detected for the eye state closed
in seconds.

167



J. Imaging 2021, 7, 108 26 of 29

Table A1. Cont.

ID Feature Description

ID14fusion
ID1mouth

Absolute maximum rate of change in y-dimension.
This rate of change for each frame is determined by the

difference between previous and following frame.
Normalization is carried out by multiplying the rate of change
by the frame rate of the video. This results in the AspectRatio

change every 3 s, described as ∆AspectRatio
3s .

For these features, a maximum speed is assumed, which is
determined by training the model. Exceeding this maximum

speed is assumed to be an indication for the classification
DeepFake.

Limitation: only works with videos where the person moves
their lips during the video, e.g., when speaking.

ID15fusion
ID2mouth

Maximum rate of change in y-dimension. Lip
opening movement in y-dimension.

ID16fusion
ID3mouth

Minimum rate of change in y-dimension. Lip closing
movement in y-dimension.

ID17fusion
ID4mouth

Absolute maximum rate of change in x-dimension.

ID18fusion
ID5mouth

Maximum rate of change in x-dimension. Lip
opening movement in x-dimension.

ID19fusion
ID6mouth

Minimum rate of change in x-dimension. Lip closing
movement in x-dimension.

ID20fusion
ID7mouth

Percentage of video time at which the state open
without teeth is classified. The assumption for feature ID7mouth is that DeepFakes are

more often classified in this state compared to non-manipulated
videos. The cause is the blending subprocess in the creation of
DeepFakes, which leads to a loss of information and detail in

the mouth region due to smoothing. As a consequence,
DeepFakes are assumed to have both a comparatively low level
of detail due to said blending and a comparatively high level of
detail due to possible misclassification of open with teeth as open

without teeth.
Normalization takes place relative to the number of pixels in

the TR (see Figure 4).
Default value is set to -1 to be outside the considered range.

ID21fusion
ID8mouth

Maximum number of regions based on all frames of
the video for state open without teeth.

ID22fusion
ID9mouth

Maximum number of FAST keypoints based on all
frames of the video for state open without teeth.

ID23fusion
ID10mouth

Maximum number of SIFT keypoints based on all
frames of

the video for state open without teeth.

ID24fusion
ID11mouth

Maximum number of Sobel edge pixels based on all
frames of

the video for state open without teeth.

ID25fusion
ID12mouth

Percentage of video time at which the state open with
teeth is classified. The assumption for feature ID12mouth is that non-manipulated

videos are more often classified in this state compared to
DeepFakes. The cause is the blending subprocess in the creation
of DeepFakes, which leads to a loss of information and detail in

the mouth region due to smoothing. As a consequence,
DeepFakes are assumed to have a comparatively low level of

detail due to said blending.
Normalization takes place relative to the number of pixels in

the TR (see Figure 4). Default value is set to −1 to be outside the
considered range.

ID26fusion
ID13mouth

Minimum number of regions based on all frames of
the video for state open with teeth.

ID27fusion
ID14mouth

Minimum number of FAST keypoints based on all
frames of the video for state open with teeth.

ID28fusion
ID15mouth

Minimum number of SIFT keypoints based on all
frames of the video for state open with teeth.

ID29fusion
ID16mouth

Minimum number of Sobel edge pixels based on all
frames of the video for state open with teeth.

ID30fusion
ID1foreground

Total number of frames in the video without a
detectable face.

The consideration of these features is made under the
assumption that DeepFake synthesis could result in artifacts,
causing the face detection to fail. Normalization is relative to

the number of frames of the video to ensure comparability
regardless of the video length.

ID31fusion
ID2foreground

Total number of segments in the video without a
detectable face.
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Table A1. Cont.

ID Feature Description

ID32fusion
ID3foreground

Maximum number of FAST keypoints based
on all frames of the video for the image

foreground.

The assumption for this set of features is that an almost constant
value can be found throughout the course of the video. As a result,
no significant differences between minimum and maximum of each
feature are expected. Greater distances are seen as an indication of

DeepFakes.
Normalization is carried out on the basis of the two representations
Face and ROI (see Figure 6 for reference) based on the level of detail

as well as the number of pixels. Formally, this takes the form of
FeatureFace
FeatureROI

, where FeatureFace|ROI =
FeatureCountFace|ROI

PixelcountFace|ROI
.

In order to prevent division by 0, the default value is set to −1 to be
outside the considered range.

ID33fusion
ID4foreground

Minimum number of FAST keypoints based
on all frames of the video for the image

foreground.

ID34fusion
ID5foreground

Maximum number of SIFT keypoints based
on all frames of the video for the image

foreground.

ID35fusion
ID6foreground

Minimum number of SIFT keypoints based
on all frames of the video for the image

foreground.

ID36fusion
ID7foreground

Maximum number of Sobel edge pixel based
on all frames of the video for the image

foreground.

ID37fusion
ID8foreground

Minimum number of Sobel edge pixel based
on all frames of the video for the image

foreground.
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Abstract
The recent development of AI systems and their frequent

use for classification problems poses a challenge from a foren-
sic perspective. In many application fields like DeepFake detec-
tion, black box approaches such as neural networks are commonly
used. As a result, the underlying classification models usually lack
explainability and interpretability.
In order to increase traceability of AI decisions and move a cru-
cial step further towards precise & reproducible analysis descrip-
tions and certifiable investigation procedures, in this paper a do-
main adapted forensic data model is introduced for media foren-
sic investigations focusing on media forensic object manipulation
detection, such as DeepFake detection.

Introduction
IT-forensics is a domain that, due to its novelty and the

fast changes experienced in the threat landscape that has to be
considered, still sees a lot of research activity. Many of the
corresponding research initiatives unfortunately remain on a
purely academic level, lacking the degree of maturity required
for field application of analysis methods.
In this context the existence of standardized process models plays
an important role on the path to mature solutions, because to
achieve the ultimate benchmark for a forensic method (which
would be its admissibility in court proceedings), it would require
a standardization and certification of the tool(s) and procedures
as well as training and certification of the practitioners / forensic
experts. While much work exists on forensic process models
(including crucial components such as data models) for older
sub-disciplines of IT forensics, for the younger sub-discipline of
media forensics domain adapted solutions are still amiss.

As main contribution of this paper, a domain adapted foren-
sic data model is introduced for media forensic investigations fo-
cusing on media forensic object manipulation detection. The new
data model is derived by domain transfer from established best
practices. Furthermore, its applicability is demonstrated by using
the new model to completely rework an analysis pipeline descrip-
tion form an earlier paper on DeepFake detection.
These results are considered important to move a crucial step fur-
ther towards precise & reproducible analysis descriptions and cer-
tifiable investigation procedures. In addition they constitute an
important step towards explainable artificial intelligence (XAI),
fair AI and human oversight concepts who are major aspects of
the upcoming EU Artificial Intelligence Act (AIA).

The paper is structured as follows: In section a short sum-
mary on the state of the art on forensic process models and cor-

responding data models is presented. In section a new domain
adapted data model is derived from the existing state-of-the-art,
which is then used in section to rework an existing investiga-
tion pipeline description for DeepFake detection to improve this
description. At the end of the paper, section presents a short sum-
mary and presents starting points for potential future work.

State-of-the-art on Forensic Process Models
Since the legislative and administrative process governing

the usage of evidence in court (including expert testimony) is
different for every country, it always has to be reflected in the
light of the national regulations. In the German situation (which
is relevant for the authors of this paper) one of the most important
guidelines for IT forensics (and sub-disciplines) is the “Leitfaden
IT-Forensik” [2] of the German Federal Office for Information
Security (BSI; the national cyber security authority). It provides
various means for modeling forensic processes, including the
definition of a phase-driven investigation & reporting model, a
basic data model and a classification of methods and tools. Since
its last official update in 2011, it has been reflected upon and
extended in many publications, such as [6] and [1].
What is currently amiss in this line of research is a domain
specific adaptation to media forensics. This became apparent
to the authors when analysis work performed in a previous
publication (here: [12], where an analysis of video data with the
aim of DeepFake detection is performed using three individual
detection operators and alternative fusion operators) turned out
to be hard (if not entirely impracticable) to project onto the
pre-existing data models.

The following section elaborates more on this research gap
while section briefly summarizes with the Data-Centric Exam-
ination Approach for Incident Response- and Forensics Process
Modeling (DCEA) the latest extension to the BSI guidelines
from [2], which is used here as starting point for the extension
work.
The work in the following chapters is than focused primarily on
extending the data model and secondarily on the impact to aspects
of the investigation & reporting mode.

Media forensic processes
Textbooks on media forensics such as [5] as well as relevant

research work like [9] agree upon the fact that at the core of mod-
ern media forensics pipelines looking into questions of integrity
one or more pattern recognition or anomaly detection mechanisms
are to be found. After data collection and pre-processing opera-
tions either sequences or parallel networks of such operators (in
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the latter case followed by fusion operators) are used to imple-
ment a set of analysis tasks. The output of the analyses will then
have to be interpreted by an human expert, e.g., in form of an ex-
pert testimony in court.
While agreement exists in the community on the fundamental out-
line of analysis pipelines, the existing state-of-the-art lacks do-
main specific data models. Those are required to: a) facilitate ef-
ficient requirement engineering, design specification, implemen-
tation, certification and deployment of media forensic analysis
pipelines, b) enable error, loss and uncertainty estimations in in-
dividual forensic analyses performed (see [6]) and c) ease pro-
cesses aiming at the explainability and fairness in forensic inves-
tigations (novel factors that have to receive increased attention due
to the current changes in legislation governing the application of
AI, such as the upcoming EU Artificial Intelligence Act).
Due to the lack of such domain specific data models, this paper
focuses on proposing such a model, suitable to the task at hand.
This is done by performing a domain transfer on an established
data model for digitized forensics (see section ).

A Data-Centric Examination Approach for Incident
Response- and Forensics Process Modeling

Forensic process models are an important cornerstone in the
science and more importantly the practice of forensics. They
guide investigations and make them comparable, reproducible as
well as certifiable. Usually, the adherence to strict guidelines (i.e.
process models) are regulated within any legal system (e.g. in the
US by the fourth of the Daubert criteria (“the existence and main-
tenance of standards and controls” [3])). For mature forensic
sciences, like for example dactyloscopy, internationally accepted
standards (like the ACE-V process model for dactyloscopy) have
been established over the last decades.
Due to the fact that IT forensics is a rather young discipline in this
field (with media forensics being an even younger sub-discipline)
it is hardly astonishing that here the forensic process models have
not yet achieved the same degree of maturity as in other fields.
Nevertheless, they would still be important to achieve univer-
sal court acceptability of methods. One well established foren-
sic process model for IT forensics is the one proposed by the
German Federal Office for Information Security (BSI). When it
was originally published in 2011, its sole focus was on computer
and network forensics but since then it has evolved to suite also
to some extend the needs of other sub-disciplines such as digi-
tized forensics. The latest major revision of this process model,
which is used within this paper, can be found in [6] and is called
the Data-Centric Examination Approach (DCEA). The core of
DCEA consists of three main aspects: a model of the phases of a
phase driven forensic process, a classification scheme for forensic
method classes and forensically relevant data types.
The six DCEA phases are briefly summarized as: Strategic prepa-
ration (SP), Operational preparation (OP), Data gathering (DG),
Data investigation (DI), Data analysis (DA) and Documentation
(DO). While the first two (SP and OP) contain generic (SP) and
case-specific (OP) preparation steps, the three phases represent
the core of any forensic investigation. The phase DO is split in [6]
into two aspects: case accompanying documentation (Chain-of-
Custody, etc) as well as final documentation (e.g. the expert opin-
ion statement presented in court). For details on the phase model
the reader is referred, e.g. to [6] or [1].

Figure 1. Phase model (based on [2])

The second core aspect of DCEA is the definition of forensic
method classes as presented in [6]. They consist of methods of:
the Operating system (OS), the File system(s) (FS), IT applica-
tions (ITA), Explicit means of intrusion detection (EMID), Scal-
ing of methods for evidence gathering (SMG) and Data process-
ing and evaluation (DPE). Like the phases, this aspect is of limited
relevance for this paper. For details on this classification scheme
for investigation methods the reader is referred to [6].
The third (and in the context of this paper most relevant) aspect is
the specification of forensically relevant data types. More recent
publications, such as [1], have shown that this scheme needs to
be extended accordingly if new investigation domains are consid-
ered.
The original set of data types, which was designed with digital IT
forensics in mind, needs to be adapted towards every investigation
domain. In [7] and [6] such an adaptation for the field of digitized
forensics has been discussed for the field of dactyloscopy (foren-
sic fingerprint analysis and comparison). This adaptation is sum-
marized in Table 1. Because it is much closer to the requirements
faced within this paper than the original data model, it is used as
starting point for the modeling work performed here.

Deriving a Forensic Data Model for Artificial
Intelligence based Media Forensic Investiga-
tions focusing on Integrity

Performing abstract data modeling without precise knowl-
edge about the context, in which the data type is supposed to be
used, is a futile task. Therefore, first a generalized media forensic
analysis process is briefly discussed in section . This is followed
in section by an identification of the typical data streams within
such a process. As the last step in the data modeling, the data
streams are further differentiated into data types in section .

Modeling a generalized media forensic analysis
process

In general, each processing operation (or operator) is consid-
ered here as an atomar processing black box component with an
identifier and (usually) a description of the processing performed
in this operation. Each component has four well defined connec-
tors: input, output, parameters and log data. To pay respects to
the particularities of this field and make the following modeling
task easier, a fifth connector is defined within this paper for a spe-
cific type of operator which requires a knowledge representation
or a model for its processing operation. In that case, this fifth
connector is labeled model. Depending on the nature of the oper-
ator this could be a rule set, signature set, statistical model, neural
model, or any other form of knowledge representation.
Figure 2 shows the modeling for a small, exemplary selected pro-

cessing sub-routine within a bigger media forensic investigation
process (here the sub-routine of face segmentation as necessary
step in DeepFake detection for videos). The first operator in this
three step processing sub-routine is loading the video from its in-
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Figure 2. Exemplary modeling of the process for face detection.

put. The parameters need to be chosen based on the video format
and the output is stored as video stream. This video stream is
then in the next operator split into single frames as necessary pre-
processing for an image based face detection and segmentation
algorithm. For the face detection and segmentation, a pre-trained
model with 68 landmarks (here from [8]) is loaded at the third
operators model connector. This is the only step in this small ex-
ample where model data is used.
Each step provides corresponding process documentation in the
form of logs and chain of custody (CoC) data at its log data con-
nector.

Identifying typical data streams
Based on the atomar operator description above and gener-

alizing media forensic (i.e., passive) investigations focusing on
analyzing the integrity of media objects, here five typical data
streams are identified: The process description is proposed as a
sourceable or instantiable template, which is generated before
starting the investigation. It is supposed to be generated in the
phase of Strategic preparation (SP) and contains general infor-
mation (such as process layouts/graphs, interfaces and operators
involved) independent from a specific investigation. Besides the
actual process layout this stream inherits also information from
DD7, DD9 and DD10 of the data types form digitized forensics
(see table 1).
The second data stream media data contains all forms of media
such as images, videos, audio and/or network streams used and
created within the investigation process. Media data could be
found both on input and output connectors of a component and
would in case of an investigation in digitized forensics contain
information from DD1, DD2 and DD8.
The non-media output of the individual examination steps

is combined into the data stream forensic process/pipeline
internal data and reporting. It contains actual (intermediate)
investigation results and CoC data such as hashes and logs
as well as error, loss and uncertainty indicators, meta data
and traceability/explainability information (such as a risk and
circumstantial evidence map (RCEM)). This output is gathered in
the phases OP, DG, DI and DA and would in case of an digitized
forensics investigation be described by DD2, DD3, DD8, DD9
and DD10.
Another important aspect is the combination of all settings used
in the investigation, including all parameters and models used.
This combination is defined as process control data and contains
in digitized forensics DD3, DD4, DD7 and DD8.
The last data stream is contextual data, which contains all
information regarding the context of a specific investigation.
In general it contains information such as operator IDs, data
source descriptors (e.g., camera types) and the results of a
content analysis of the media objects required for plausibility and
fairness evaluation. In case of an digitized forensics investigation
contextual data would be found in DD3, DD8, DD9 and DD10.

This subdivision of the data associated with an investigation
is a functional classification paying respect on one hand to the
characteristics of data objects involved and on the other hand to
operational and security requirements. The media data stream
of an investigation might easily contain terabytes of video data
which would require a access to a private cloud for efficient han-
dling, while the reporting data would assumed be much smaller
in data size but be more frequent and have other constraints like
reliable time-stamping. From the operational and security per-
spective also different protection levels (and as a consequence se-
curity mechanisms) would be required depending on the nature of
the objects in a stream and the risks associated.

Deriving the domain specific data model
Taking the data streams identified above for media forensics

into account, it is necessary to adapt the existing data models. As
starting point, here the data types from digitized forensics are cho-
sen because they require a less wide-ranging re-modeling. The
objective of deriving a domain specific data model for integrity

Forensic data type Description (according to [6])

DD1 Raw sensor data Digital input data from the digitalization process (e.g. scans of test samples)
DD2 Processed signal data Results of transformations to raw sensor data (e.g. visibility enhanced fingerprint pattern)
DD3 Contextual data Contain environmental data (e.g. spatial information, spatial relation between traces, temperature,

humidity)
DD4 Parameter data Contain settings and other parameter used for acquisition, investigation and analysis
DD5 Trace characteristic
feature data

Describe trace specific investigation results (e.g. level1/2/3 fingerprint features)

DD6 Substrate characteristic
feature data

Describe trace carrier specific investigation results (e.g. surface type, individual surface
characteristics)

DD7 Model data Describe trained model data (e.g. surface specific scanner settings, reference data)
DD8 Classification result data Describes classification results gained by applying machine learning and comparable approaches
DD9 Chain of custody data Describe data used to ensure integrity and authenticity and process accompanying documentation

(e.g. cryptographic hash sums, certificates, device identification, time stamps)
DD10 Report data Describe data for the process accompanying documentation and for the final report

Forensic data types defined in [6] for an exemplary selected process in digitized forensics (here digital dactyloscopy) (updated
from [7])
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focused media forensics is a specification and overlap-free rep-
resentation of data types. As a result of the modeling performed
here, eight media forensic data types (MFDT, see table 2) are de-
fined, which are loosely derived from the ten data types of dig-
itized forensics. Digital input data (MFDT1) is a re-definition
based on DD1 and considers now any kind of media data as it
is initially taken as input to the investigation. Processed media
data (MFDT2) is derived from DD2 and contains all operator
output which are media data. Contextual data (MFDT3) is de-
rived from DD3 and includes case specific information regarding
the investigation process and -objects. Contextual data can also
be used to control targeted parametrization and thus allow case
or objects specific parameter optimization. They also allow for
plausibility and fairness evaluations as part of the assessment of
an investigation performed. Parameter data (MFDT4) is similar
to DD4 from digitized forensics and contains all configurations
and parametrizations for operators in an investigation (except for
model data, see MFDT6 below), including those who are used for
training of classifiers and models before the actual investigation.
Examination data (MFDT5) combines and extends the data types
DD5, DD6 and DD8 from digitized forensics. It comprises all oc-
curring non-media outputs (e.g., trace information, patterns and
anomalies identified) of the investigation. Model data (MFDT6)
corresponds to DD7 from digitized forensics. It includes trained
models of machine learning algorithms like rule based approaches
or decision trees as well as models of neural networks (incl. their
network architecture). Log data (MFDT7) is an component of
the documentation which is here newly added to the data model
and is used for administration and maintenance (including Sys-
logs and information about the memory usage). Data in MFDT7
are not relevant for the specific case in the investigation, but are
necessary for the administration of the system (e.g., to notice that
the memory allocated for the task is not sufficient). Chain of cus-
tody & report data (MFDT8) is a combination of DD9 and DD10
from digitized forensics. They characterize the case relevant doc-
umentation for integrity and authenticity assurance as well as the
accompanying documentation for the final report. For admissi-
bility in court the final report would be required following the
corresponding chain of custody guidelines.

Chain of custody & report data (MFDT8) also have to ad-
dress the description of the deployed (process) modeling with

regard to origin and provenance of decision (AI) models used.
Especially in the context of neural networks a detailed specifica-
tion of the network structure(s) (MFDT4, MFDT6) as well as the
used parameters for training, (potential transfer-learning), testing
and validation phases (MFDT4) would be required to allow for
the necessary reproducibility of setups and corresponding error,
loss and uncertainty as well as explainability considerations for
explainable AI. But not only classifier designs and parameteri-
zations have to be reported upon: Another aspect for the docu-
mentation refers to the data used in the process(es) of model gen-
eration, focusing on the training and validation sets taken from
the content of data types MFDT1 and MFDT2. The decisive
factors in this respect are origin, diversity and quantity of data
(summarized within MFDT3). It is also significant for the doc-
umentation to characterize the differences between training and
test/evaluation/validation phases of each mechanism. For exam-
ple the consideration of disjoint data sets for training and testing
yields a more generalizable and trustworthy result than a cross-
validation would obtain. Furthermore, the documentation of ini-
tial control parameters (MFDT4: e.g., learning rate, optimizer,
loss function) as well as information about the training process
(MFDT7 & MFDT8: training duration, used hardware, etc.) are
very important for traceability as well as interpretability.
Also important is the run-time of the detection process, which
needs to be evaluated and documented in relation to the hardware
used. Another documentation criteria refers to the type of result
data (MFDT2 or MFDT5) calculated by methods such as neu-
ral network. In decision-based classification, the result is often
represented by a classification/prediction label (MFDT5) and/or
confidence estimate (MFDT5). In some cases it can also be an
image or other media object (MFDT2) that represents relevant in-
formation such as a map of anomalies found, to be interpreted by
a human investigator.
In field application, because of the typical black box usage of
mostly Neural Networks, with an unknown internal behaviour in
the hidden layers between in- and output, it might be possible
that there exist no process data or feature vectors/data (MFDT5).
But for a mature forensic method aiming for court admissibility
such kind of black box behavior would not sufficient, because re-
sult data of forensic operators must be comprehensible. Because
of that, methods focusing on explainability (e.g., LIME [11] or

Data type Derived from DD Description
MFDT1 Digital input
data

DD1 The initial media data considered for the investigation.

MFDT2 Processed
media data

DD2 Results of transformations to media data (e.g. grayscale conversion, cropping)

MFDT3 Contextual
data

DD3 Case specific information (e.g. for fairness evaluation)

MFDT4 Parameter
data

DD4 Contain settings and other parameter used for acquisition, investigation and analysis

MFDT5 Examination
data

DD5, DD6, DD8 Including the traces, patterns, anomalies, etc that lead to an examination result

MFDT6 Model data DD7 Describe trained model data (e.g. face detection and model classification data)
MFDT7 Log data newly defined Data, which is relevant for the administration of the system (e.g. system logs)
MFDT8 Chain of
custody & report data

DD9, DD10 Describe data used to ensure integrity and authenticity (e.g. hashes and time stamps)
as well as the accompanying documentation for the final report.

Media Forensic Data Types (MFDT) proposed in this work
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Figure 3. Template structure for a single component

LRP[10]) have to be included in the investigation. Moreover, the
network structure could be expanded between hidden layers with
more output layers to allow obtaining processed data (MFDT2) or
feature vectors (MFDT5). As a necessary result, a neural network
would become more transparent, interpretable and explainable.

Figure 3 shows the link between media forensic data types
(MFDT) for the operator description presented above. As dis-
cussed in section , depending on whether a model is used in an
operator or not, each component has four or five well defined
connectors. The operator (i.e., process step itself; here shown as
a box) has an unique identifier and a description of the process.
This description should increase traceability as well as explain-
ablity. The input of a component has a form of media data, the
court exhibits itself (MFDT1) or after previously done prepro-
cessing steps (MFDT2) or examination data (MFDT5). Depend-
ing of the processing step, the generated output could be media
data (MFDT2), a derived information on the investigation con-
text (MFDT3) or investigation results (MFDT5). It is also pos-
sible during the phase of Strategic preparation (SP) that a model
is trained (MFDT6). The process control is done by parameters
(MFDT4). Furthermore, the gathered contextual data (MFDT3)
can be used for optimization of the parameters in the specific in-
vestigation. MFDT3 could for example be information about the
recording device, resolution or lighting conditions, which might
be useful to estimate decision uncertainty and thereby allowing to
estimate the fairness of an investigation. The loading of a model
(MFDT6) is limited to model-driven operators, which why it is
shown by a dashed line. Process accompanying documentation
will be divided and separately saved in log data (MFDT7) and
chain of custody data (MFDT8) based on the modeled data types.

Illustration of the practicability of applying
the proposed new data model

As indicated in section , one motivation for this paper were
apparent problems when projecting an exemplary selected media
forensics processing pipeline designed for DeepFake from a pre-
vious paper (here [12]) of the authors onto existing data models.
In this section it is shown, how the adapted data model from chap-
ter can be successfully used for the pipeline in that publication.
The modeling work is done in two separate steps. The first instan-
tiation is focusing on training models for the operators in Strate-
gical preparation (SP). This initialization is done using well es-
tablished DeepFake reference data sets for the training. First, the
original videos and corresponding DeepFakes are imported and
pre-processed in a suitable format so that they can be further pro-

Figure 4. Illustration of the DeepFake detection based on mouth region

modeled as a template in the proposed context model in the phase of

Strategic preparation (SP)

cessed as a video stream. The video stream is then divided into
individual frames (single images). The resulting list of images
is used for both face detection and subsequent DeepFake detec-
tion (see figure 2). Assuming one face per frame, a pre-trained 68
landmark model is used for face detection. It locates the position
of each of those facial landmarks and stores them in a vector field.
The detection algorithm itself consists of the components feature
extraction, classifier training, classification and benchmarking. In
the feature extraction each frame is evaluated based on the corre-
sponding landmarks relevant to the region it focuses on and gener-
ates a feature vector relevant to the classification. Exemplary for
the detector DFmouth, the classifier DFmouth model is created using
the J48 classifier from Weka [4], testing different models and pa-
rameter settings. The optimal model then gets integrated into the
classification, which then returns the decision (e.g. Dmouth). Af-
terwards a second instance of validation is done by benchmarking
and confidence estimation. Based on the confidences the weights
for a consecutive fusion step are determined. The same procedure
is done for the algorithms DFeye and DFf oreground with differences
in the considered landmarks and generated features (for details
see [12]). During the whole process each step gets documented
and stored in the log and chain of custody databases respectively.
The second instantiation of the modeling corresponds to the ac-

tual investigation determining whether a DeepFake manipulation
occurred in the presented videos. Considering the pipeline pre-
sented in figure 1, it covers all phases from OP to Documentation.
The first processing steps are identical to those performed in the
SP instantiation. This is to be expected, because both training
and testing of an operator should be done under the same condi-
tions (i.e., after identical pre-processing). Changes can be found
in the application of the detection operators. Here the parts re-
garding model training are left out because the models pre-trained
in SP are loaded instead, together with the used classifier parame-
ters. Thus initialized the operators are applied to video material to
determine traces of DeepFake manipulations. The respective in-
dividual decisions Deye, Dmouth and D f oreground are then merged
into the fusion module to determine a final decision D f usion. The
required fusion weights used for this purpose also come from the
SP. A complete mapping of this process, including a labeling of
the Media Forensic Data Types communicated at each connector,
can be found in Figure 5.

Conclusion and Future Work
In this paper a domain adapted forensic data model is

introduced for media forensic investigations focusing on media
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Figure 5. Illustration of the DeepFake detection pipeline instantiated in the forensic process model phase of Operational preparation (OP), with the inclusion

of occurring data types

forensic object manipulation detection. The new data model
is derived by domain transfer from established best practices.
Furthermore, its applicability is demonstrated by using the new
model to completely rework an analysis pipeline description form
an earlier paper.

The work performed here motivates future work on the fol-
lowing aspects: First, on extending the considerations on tem-
plating and instantiation works in Strategic preparation (SP) and
Operational preparation (OP) phases to move a further step to-
wards precise and reproducible analysis descriptions and thereby
towards certifiable investigation procedures.
Second, on expanding the modeling with regard to knowledge
data generation and representation to be better able to include also
more complex operations (e.g. modern training scenarios for neu-
ral network based detectors) as well as context dependent pipeline
alternatives into forensic workflows.
Third, on extending the work on error, loss and uncertainty (on
basis of [6]) as well as explainability and fairness in AI-driven
forensics.
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Abstract: Academic research in media forensics mainly focuses on methods for the detection of
the traces or artefacts left by media manipulations in media objects. While the resulting detectors
often achieve quite impressive detection performances, when tested under lab conditions, hardly
any of those have yet come close to the ultimate benchmark for any forensic method, which would
be courtroom readiness. This paper tries first to facilitate the different stakeholder perspectives in
this field and then to partly address the apparent gap between the academic research community
and the requirements imposed onto forensic practitioners. The intention is to facilitate the mutual
understanding of these two classes of stakeholders and assist with first steps intended at closing
this gap. To do so, first a concept for modelling media forensic investigation pipelines is derived
from established guidelines. Then, the applicability of such modelling is illustrated on the example
of a fusion-based media forensic investigation pipeline aimed at the detection of DeepFake videos
using five exemplary detectors (hand-crafted, in one case neural network supported) and testing
two different fusion operators. At the end of the paper, the benefits of such a planned realisation of
AI-based investigation methods are discussed and generalising effects are mapped out.

Keywords: media forensics; forensic process model; certifiable investigation methods; DeepFake
detection

1. Introduction

Modern day media forensics is a strongly pattern recognition, respectively, artificial
intelligence (AI) driven domain. In a recent white paper titled “Secure, robust and traceable
use of AI-problems, procedures and actions required” [1] (translated from the German title
“Sicherer, robuster und nachvollziehbarer Einsatz von KI-Probleme, Maßnahmen und Handlungs-
bedarfe”), the German Federal Office for Information Security (BSI, the German national
cybersecurity authority; Since forensics, as part of legal proceedings, is regulated on basis
of national legislation, research in forensics also has to acknowledge national legal and
statutory requirements – in the case of this paper, therefore, besides internationally accepted
best practices, like the Daubert standard (see Section 2), the German national situation is
reflected, due to the fact that all authors are working at a German research institution and
the work is funded in part by the German Federal Ministry of Education and Research
(BMBF)) summarises the current situation with regards to trustworthy and reliable AI
applications as follows: There is currently an urgent need for further research into the
security of AI systems, in order to be able to make reliable statements about the security
and confidence of such systems. According to the BSI, there are three specific aspects on
which research needs to focus:

1. Development of standards, technical guidelines, test criteria and test methods: Cur-
rently, there exist no such standards that are sufficiently suitable for assessing the
security and reliability of AI systems for critical contexts (such as health care, finance
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health care, finance, etc.). There is also a lack of security benchmarks for less critical
applications (with a few exceptions).

2. Research effective countermeasures against AI-specific attacks: The existing measures
for such attacks are often insufficient. In order to ensure a secure and robust operation
of AI systems, further countermeasures must be researched.

3. Research into methods of transparency and explainability: The often inadequate ex-
plainability of AI systems has a significant influence on their Information Technology
(IT) security and causes a lack of acceptance of the systems.

What holds true for every form of AI usage is even more important if it comes down
to AI-driven processes that are (by regulation) restricted to decision support systems, e.g.,
in the case of forensics, where it internationally accepted standard that investigation results
have to be interpreted in expert testimony. Here, the corresponding expert has to be able to
explain the investigation method as well as all aspects influencing an investigation outcome
in front of a trier of fact (in most cases a single judge, a group of judges or a jury). Besides
other reasons, this human presentation and interpretation is considered necessary because
the expert can also interpret contextual information to reason about the intention of an
action (e.g., why a DeepFake video has been created—see Section 2.2 for a list of white
hat application scenarios for this dual-goods media manipulation method), which is a
challenge where the AI alone will still fail.

As contributions of this paper, the following items are addressed:

• The need for modelling forensic processes is reasoned upon.
• A concept for modelling media forensic investigation pipelines is derived from estab-

lished guidelines.
• The applicability of such modelling is illustrated on the example of a media forensic

investigation pipeline focusing on the detection of DeepFake videos. It is important
to already mention at this point, that the DeepFake detectors, test criteria and test
methods used in this paper are used for illustrative purposes on the processes and are
not claiming to represent the state-of-the-art in detector research.

• The benefits of such a planned realisation of AI-based investigation methods are discussed.

Regarding the first of these items (the reasoning on the need for modelling forensic
processes) it is shown that forensic process models are an important cornerstone in the
science and more importantly the practice of forensics. They guide investigations and
make them comparable, reproducible as well as certifiable. Usually, the adherence to strict
guidelines (i.e., process models) are regulated within any legal system (e.g., in the US by the
fourth of the Daubert criteria (“the existence and maintenance of standards and controls” [2])).
For mature forensic sciences, like for example fingerprint analysis, internationally accepted
standards (like the Analysis, Comparison, Evaluation and Verification methodology (ACE-
V) process model for dactyloscopy) have been established over the last decades. Due to the
fact that IT forensics is a rather young discipline in this field (with media forensics being
an even younger sub-discipline), it is hardly astonishing that here the forensic process
models have not yet achieved the same degree of maturity as in other fields. For this reason,
an effort is made here to move this field forward by presenting a concept for modelling
media forensic investigation pipelines, which is derived from well-established guidelines.
Since all the authors are working at a German research institution, here an extension of the
guidelines on IT forensics [3] by the German Federal Office for Information Security (BSI)
is used as the basis for this work.

Regarding the third item from the list of contributions identified above, the applica-
bility of the proposed modelling work is illustrated on the example of a media forensic
investigation pipeline focusing on the detection of DeepFake videos. This application
scenario it chosen because it is a recent threat scenario that currently achieves a lot of
research attention due to the potential implications it has for the trust assumptions in video
material used (amongst other scenarios) in political debates. Here, an already complex
investigation pipeline taken from previous work [4] consisting of three detectors plus a
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fusion operator (with two alternative fusion methods tested) is extended by adding two
additional detectors. Despite the fact that both new detectors are performing in bench-
marking significantly better than guessing (with a Kappa value of κ∼0.4), the following
empirical evaluations show a slight drop in the average detection performance (at least
by κ = 0.025). This drop is neither the expected nor an intuitive outcome, but illustrates
how important an extensive benchmarking of methods prior to field application (also in
a fusion setup) is. While the detection methods used here are admittedly not amongst
the most sophisticated detectors currently available, their general performance, especially
the mentioned problems with the generalisation power, are representative for the current
situation in this field of applied pattern recognition.

Following the discussions on this empirical work, the benefits of such a planned
realisation of AI-based investigation methods are discussed in the contexts of development
of standards, technical guidelines, test criteria and test methods on one hand and research
into methods of transparency and explainability of AI methods on the other hand.

The rest of the paper is structured as follows: In Section 2, a brief overview on the
state of the art on forensic process modelling for media forensics and DeepFake detection is
presented. This is followed in Section 3 by a summary of related work aiming at advancing
the basic forensics guidelines used in this paper (here, the German BSI guidelines on IT
forensics). Based upon these foundations, Section 4 introduces the modelling work in
this paper (based on previous work in Siegel et al. [5]). This chapter also summarises
known evaluation best practices, metrics as well as DeepFake data sets. In Section 5, an
application example using components from the introduced process modelling is given
for the description of a fusion-based DeepFake detector pipeline. The descriptions are
divided into a planning/templating phase and the instantiation of the pipeline for all
evaluations in this paper. Section 6 provides a brief summary of the results, before the
following Section 7 projects the conclusions onto the contributions identified in Section 1.
The paper is concluded by a short view into potential future work in Section 8.

2. State of the Art on Forensic Process Modelling for Media Forensics and
DeepFake Detection

In a very recent textbook on media forensics targeting digital face manipulations [6],
the authors reflect the current academic perspective on media forensics as: “In case manip-
ulation detection methods are used by public authorities competent for preventing, investigating,
detecting, or prosecuting criminal offences this shall be done in a lawful and fair manner. While
these are broad concepts, case law further explains how to apply these concepts.” Those mentioned
characteristics are further specified in [6] as:

• Lawfulness: “refers to the need [. . . ] to adopt adequate, accessible, and foreseeable laws with
sufficient precision and sufficient safeguards whenever the use of the detection technology,
[. . . ], could interfere with fundamental rights and freedoms”.

• Fairness: “points to the need for being transparent about the use of the technology. Further-
more, it is obvious that the use of the detection methods should be restricted to well-defined
legitimate purposes, [. . . ]”.

Regarding the fairness, the authors in [6] point out that when intended for court usage,
explainability of the forensic algorithms used is a strong requirement. In addition, they
state that: “From an organizational point, one should also know that decisions purely and solely
based on automated processing, producing adverse legal effects or significantly effecting subjects,
are prohibited, unless authorized by law, and subject to appropriate safeguards, including at least
human oversight and intervention.”

In accordance with other well established works originating in the academic parts of
media forensics research (like [7]), the synopsis presented in [6] is that “[t]he absence of a
unified approach, common regulatory framework, and commonly accepted practices has resulted in a
situation where different initiatives emerge across countries which share some common elements but
also numerous differences that can lead to challenges related to interoperability.”
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An important step towards more mature forensics are forensic process models. They
guide investigations and are supposed to make them comparable, reproducible, as well as
certifiable. Usually, the adherence to strict guidelines (i.e., process models) are regulated
within any legal system (e.g., in the US by the fourth of the Daubert criteria (“the existence
and maintenance of standards and controls” [2])).

Due to the fact that IT forensics is a rather young discipline in this field (with media
forensics being an even younger sub-discipline) it is hardly astonishing that here the
forensic process models (if they exist at all) have not yet achieved the same degree of
maturity as in other fields. Nevertheless, they would still be important to achieve universal
court acceptability of methods.

To pay respect to the difficulties in this domain, the following two subsections provide
the following: A brief overview over forensic process modelling requirements and best
practices for media forensics are presented in Section 2.1, starting with an international
perspective and then narrowing down for the German perspective relevant for the authors
of this paper. These discussions are then followed in Section 2.2 by a brief summary on
the current state of the art in the application domain of DeepFake detection, which is the
chosen application scenario within this paper.

2.1. Forensic Process Modelling for Media Forensics

In contrast to the international perspective of academic research on media forensics,
its field application is governed by national legislation. Undeniably the most active judicial
system worldwide, with a high demand for forensic and media forensic investigations,
is found in the USA. Naturally, a well-established set of best practices is the result. In
Section 2.1.1, a very brief overview on these best practices is presented. In the following
Section 2.1.2, the German situation, relevant to the authors, is reflected.

As a preamble to this section, it has to be highlighted that all authors are computer
scientists and possess absolutely no legal training. All statements and interpretations
presented below on legal considerations are therefore layman’s interpretation of freely
available material, which are made to the best of the authors’ knowledge.

2.1.1. Forensic Process Modelling Requirements and Best Practices (US Perspective)

On the U.S. federal level, strict rules for the integration of the results of forensic
investigations were established in 1975. These rules, the Federal Rules of Evidence (FRE [8]),
define the framework within which evidence can be admitted into court. Even if these
rules are in their original form only applicable on U.S. federal level, their concepts for
handling forensic data have influenced many other judicial systems worldwide and are
also considered with interest in many European legal systems (see [2]).

In general, under the FRE, forensic results have to be interpreted by experts to the
court. The reason for this lies in the assumption that any judge (or jury) will lack the expert
knowledge to completely interpret the findings of a forensic investigation on his/her own
and that therefore expert testimony is strictly required in court proceedings. If the expert’s
opinion helps the fact finder in understanding the significance of factual data, then the
expert witness is essential for the case and its opinion evidence is admissible.

Using the terminology of U.S. jurisdiction, the trial judge acts as a form of ‘gatekeeper’,
assuring that scientific expert testimony truly proceeds from reliable (or scientific) knowl-
edge. Considerations on relevance and reliability require the trial judge to ensure that the
expert’s testimony is ‘relevant to the task at hand’ and that it rests ‘on a reliable foundation’.
According to [9], the primary rules that are relevant for the presentation of forensic evidence
in court (i.e., that apply to expert witnesses) in the FRE are FRE rule 702 (“Testimony by
Experts”) and FRE rule 703 (“Bases of Opinion Testimony by Experts”).

In the year 2011, FRE rule 702 (“Testimony by Experts”) was amended to: “A witness who
is qualified as an expert by knowledge, skill, experience, training, or education may testify in the
form of an opinion or otherwise if: (a) the expert’s scientific, technical, or other specialized knowledge
will help the trier of fact to understand the evidence or to determine a fact in issue; (b) the testimony
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is based on sufficient facts or data; (c) the testimony is the product of reliable principles and methods;
and (d) the expert has reliably applied the principles and methods to the facts of the case”.

When analysing this rule, it can be seen that, in regarding the admissibility of an
expert, the judge has to establish whether the following four points are met:

• Qualification of a witness as expert: First, a witness has to qualify as an expert.
The conclusion of this process is that the presiding judge decides whether the witness
may offer opinion testimony as an expert.

• Type of knowledge considered: The first seven words of FRE rule 702 specify differ-
ent types of knowledge (e.g., scientific, technical or other specialised knowledge) that
an expert can offer.

• Who is addressed by the expert: Basically, there are two entities the expert has to
convince. First, the judge, to get admitted in pre-trial hearings, and second the ‘fact
finder’ (the “trier of fact” in FRE rule 702 [10], either a jury in normal cases or a judge
in non-jury trials) at the trial itself.

• Qualification: Any expert has to testify upon the five criteria listed in FRE rule 702
“knowledge, skill, experience, training, or education” [10]. This information helps the judge
to decide whether an expert can be admitted to trial in a specific case and helps the
‘fact finder’ (i.e., usually the jury) to assign corresponding weights to each expert’s
testimony in the decision process.

If these four points are established, the judge determines for the case whether an
expert is qualified to testify under FRE rule 702. The April 2000 (effective December 2000)
amendment of FRE rule 702 includes three further requirements, which must also be met.
The goal of these additional requirements is to make it easier to present effective scientific
and technical expert testimony whenever such evidence is warranted and provide a basis
for the exclusion of opinion testimony that is not based on reliable or mature methodology.
These additional requirements are [10]: “[. . . ] if (1) the testimony is based upon sufficient facts
or data, (2) the testimony is the product of reliable principles and methods, and (3) the witness
has applied the principles and methods reliably to the facts of the case.” In April 2011, another
requirement was added to this list [8] “[. . . ] the expert’s scientific, technical, or other specialized
knowledge will help the trier of fact to understand the evidence or to determine a fact in issue [. . . ]”.

In the notes on FRE rule 702 published by the Legal Information Institute at Cornell
Law School in December 2010 [11], the current regulations regarding the interpretation
of this rule for U.S. federal courts are summarised as follows: “Rule 702 has been amended
in response to Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579 (1993), and to
the many cases applying Daubert, including Kumho Tire Co. v. Carmichael, 119 S.Ct. 1167
(1999). In Daubert the Court charged trial judges with the responsibility of acting as gatekeepers to
exclude unreliable expert testimony, [. . . ]”. The main result of this amendment are the so called
Daubert hearings where the judge(s) are supposed to use the so called Daubert criteria (see
below) to assess the admissibility of methods and investigation results to legal proceedings.

The other FRE regarding opinions and expert testimony (rule 701 “Opinion Testimony
by Lay Witnesses”, rule 703 “Bases of an Expert’s Opinion Testimonies”, rule 704 “Opinion on an
Ultimate Issue”, rule 705 “Disclosing the Facts or Data Underlying an Expert’s Opinion” and rule
706 “Court-Appointed Expert Witnesses”; see [8]) are further regulating the usage of forensic
investigation results in court, but are of little relevance to this paper. For a more detailed
analysis, see [12].

Regarding the second and third point of the list given above in the analysis of FRE
rule 702 (‘Type of knowledge considered’ and ‘Who is addressed by the expert’), it has to
be summarised that if something is declared to be ‘science’ in regard to FRE rule 702, then
the criteria for the evaluation of scientific methods introduced in Daubert v. Merrell Dow
Pharmaceuticals, Inc., 509 U.S. 579 (1993) [13], ref. [14] have to be applied by the judge to
make the expert prove this declaration.

In 1923, the court in Frye v. United States, 293 F. 1013 (D.C. Cir. 1923) made a first
suggestion how to proceed with the admission of expert testimony based on novel forensic
techniques. The court in Frye suggested [15]: “Just when a scientific principle or discovery
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crosses the line between the experimental and demonstrable stages is difficult to define. [. . . ], the
thing from which the deduction is made must be sufficiently established to have gained general
acceptance in the particular field in which it belongs.” In Frye (or the Frye standard as it is
also referred to) the court concluded that the polygraph test that was intended to be used
in this case could not be admitted because it lacked the required general acceptance in
the corresponding research fields. Prior to this seminal ruling in Frye, according to [9],
the competence of an expert was equivalent to his success in real life. In [9] it is summarised
as: “If a person earned a living selling his or her knowledge in the marketplace, then that person
would be considered an expert who could testify at trial.”

The Frye standard was in 1975 partially replaced by the FRE. Initially, they contained
no special rule that, when dealing with ‘scientific’ evidence, novel or otherwise, ensured
that science-based testimony is reliable and, therefore, admissible. Therefore, all evidence
was considered admissible if relevant, provided its use in court was not outweighed by
“unfair prejudice, confusing the issues, misleading the jury, undue delay, wasting time or needlessly
presenting cumulative evidence”, as stated in FRE rule 402 [8].

The next relevant step in legal developments on expert testimony (and therefore the
means of introducing forensic sciences into court) occurred in 1993, when the U.S. Supreme
Court made another ground-breaking decision on expert testimony in Daubert v. Merrell
Dow Pharmaceuticals, Inc., 509 U.S. 579 (1993) [13]. Daubert was in 1999 followed by another
important court case, Kumho Tire Co. v. Carmichael, 119 S.Ct. 1167 (1999). Both Daubert
and Kumho Tire arose out of civil lawsuits. An extensive and intelligible summary of the
proceedings in the Daubert cases (original and the affirmation in the U.S. Court of Appeals)
is presented in [9]. The main point of interest for this paper is that the court unanimously
held that Frye did not survive the enactment of the FRE. In interpreting FRE rule 702,
the court in Daubert stated that if the admissibility of scientific evidence is challenged,
it is the function of the trial court to act as ‘gatekeeper’ to determine whether proffered
opinion evidence is relevant and reliable. The U.S. Supreme Court specified several flexible
and non-exclusive criteria (the so-called Daubert criteria or Daubert standard) to guide
other courts when they have to consider in deciding whether a scientific field is sufficiently
reliable to warrant admission of opinion evidence. As a further important milestone, in 1999
in Kumho Tire Co. v. Carmichael, 119 S.Ct. 1167 (1999), the U.S. Supreme Court applied the
Daubert criteria of proof of reliability to all forms of expert opinion testimony (i.e., scientific,
applied science, technological, skill and experience). Additionally, the court in Kumho
Tire made it clear that the list of Daubert criteria was meant to be helpful and is not a
definitive checklist, but rather a flexible, non-exclusive recommendation. As a result, no
attempt has been made in US law to ‘codify’ these specific criteria. Other U.S. law cases
have established that not all of the specific Daubert criteria can apply to every type of
expert testimony. The specific criteria, explicated by the Daubert court, are [11]:

“whether the expert’s technique or theory can be or has been tested – that is, whether the
expert’s theory can be challenged in some objective sense, or whether it is instead simply
a subjective, conclusory approach that cannot reasonably be assessed for reliability”;
“whether the technique or theory has been subject to peer review and publication”;
“the known or potential rate of error of the technique or theory when applied”;
“the existence and maintenance of standards and controls”;
“whether the technique or theory has been generally accepted in the scientific community”.

While the criteria DC2 to DC5 are self-explanatory (including the fact that publication
in DC2 means ‘open publication’), DC1 is summarised more precisely in [13] as “the theory
or technique (method) must be empirically testable, falsifiable and refutable”.

The Daubert criteria are widely accepted in the classical fields, like medical forensics.
It can also be, and is, applied in the much younger field of IT-forensics (see e.g., [16,17]).
It has to be admitted that the field of media forensics, which is the focus of this thesis, is
still lacking maturity in this regard. Here, only very specific methods applied in this field
already fulfil the Daubert criteria sufficiently. Overviews over the more mature techniques
in this field are given in [18,19].
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A well-established reference in this field is the document Forensic Examination of
Digital Evidence: A Guide for Law Enforcement [20] of the U.S. Department of Justice-
National Institute of Justice. Unfortunately, this document has not received any update
since 2004. Its place has been taken over in past years by publications of well-established
(and court-trained) forensic experts, such as [21,22] or [23]. Homogenising the different
individual views, expert bodies, like the Organization of Scientific Area Committees (OSAC)
Task Group (TG) on Digital and Multimedia Evidence have become normative institutions
arguing for harmonisation of procedures: “[. . . ] digital/multimedia evidence, and other forensic
disciplines, would be in a much stronger position to demonstrate their scientific basis if they were
considered as belonging to a harmonized forensic science rather than as mere disciplines at the
intersection of forensic specialties and other sciences.” [24]. As a reason, the following is given:
“Like many other specializations within forensic science, the digital/multimedia discipline has been
challenged with respect to demonstrating that the processes, activities, and techniques used are
sufficiently scientific.” This OSAC TG aims at advancing digital/multimedia evidence,
and forensic science as a whole by (amongst other aspects):

“Strengthen scientific foundations of digital/multimedia evidence by developing system-
atic and coherent methods for studying the principles of digital/multimedia evidence to
assess the causes and meaning of traces in the context of forensic questions, as well as
any associated probabilities.”
“Assess ways to mitigate cognitive bias in cases that require an understanding of the
context of traces in order to analyze digital/multimedia evidence, [. . . ]”
“Establish effective ways to evaluate and express probative value of digital/multimedia
traces for source level and activity level conclusions. This includes studying how quanti-
tative evaluation of digital/multimedia evidence can be constructed for different forensic
questions, [. . . ] as well as studying how such evaluative results can be communicated to
decision-makers.”

As a consequence, generalisable and standardised forensic process models are cur-
rently sought for to bridge the gap between the strict legal requirements (see the FRE 702
and Daubert requirements discussed above) and the current degree of (or rather lack of)
maturity of many media forensic approaches originating form academic research.

2.1.2. The German Perspective

As discussed in detail in [2], the situation in the U.S. can not be directly projected onto
the European situation. One of the main reason is that forensics are still entirely governed
by national legislation.

For the authors the German situation is relevant. Here, the currently most relevant
official guideline is the BSI code of practice for IT forensics (“Leitfaden IT-Forensik” [3])
of the German Federal Office for Information Security (BSI). One of the intentions of this
document was to try to homogenise forensic proceedings in the highly fragmented system
with 35 different police agencies independent from each other on federal- and state level.
In this regard, it is very similar in its intention to the document Forensic Examination of
Digital Evidence: A Guide for Law Enforcement [20] (2004) of the U.S. Department of
Justice-National Institute of Justice and similar to its U.S. pendant, it is outdated with the
last updated version of the “Leitfaden” (German for guidelines) having been published in
2011. Nevertheless, it is still a valuable starting point and has been used as such for more
recent work on forensic process modelling, see Section 3 below.

In its core, the BSI guidelines for IT forensics define a phases driven process model
model, tool categories and a forensic data model. In the phase driven process model, which
is for this paper the most relevant component of these guidelines, six different phases are
described: Strategic preparation (SP), Operational preparation (OP), Data gathering (DG),
Data investigation (DI), Data analysis (DA) and Documentation (DO). These phases, which
are outlining the process itself, are briefly summarised in Table 1 the interaction pattern
of these phases is shown in Figure 1. The actual passing of data and results between the
phases is taking place in the horizontal transitions, shown as horizontal arrows in the figure.
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It has to be admitted here, that this paper somewhat diminishes the role the Documentation
receives in [3]. Originally, the DO is considered to have two distinguishable aspects: the
accompanying documentation of the process (which can be seen as a combination of
complete logs as well as a tamper-proof (hence the uni-directional, solid-lined vertical
arrows in the figure), digital chain-of-custody) and the final documentation (e.g., as the
written expert report intended to be used in court as basis for an expert testimony). In the
present context, it is important to point out that the latter (i.e., the drafting of the final
documentation for a case) should be used to reflect upon potential improvements of the
processes and their implementation, acting as a feedback loop into SP. This is shown in
Figure 1 by adding the dashed arrow from DO into SP.

Table 1. Sets of examination steps for digital forensics as defined in [25] (updated from [3,26]).

Phases Description (According to [25])

Strategic preparation (SP)
Includes measures taken by the operator of an IT system and by
the forensic examiners in order to support a forensic investiga-
tion prior to an incident

Operational preparation (OP) Includes measures of preparation for a forensic investigation
after the detection of a suspected incident

Data gathering (DG) Includes measures to acquire and secure digital evidence

Data investigation (DI) Includes measures to evaluate and extract data for
further investigation

Data analysis (DA) Includes measures for detailed analysis and correlation between
digital evidence from various sources

Documentation (DO)
Includes measures for the detailed documentation of the pro-
ceedings, also for the transformation into a different form of
description for the report of the incident

Figure 1. Phase model (based on [3]), extended to include an optional feedback loop from the
Documentation (DO) into the strategic preparation (SP).

One important aspect here is the separation of preparation steps in an investigation
into two distinct phases (the strategic preparation (SP) on one hand, and the operational
preparation (OP) on the other). In recent work on this model (e.g., [25], which is available in
English), the SP is generally defined as: “The strategic preparation [. . . ] includes all preparation
procedures taken ahead of the actual occurrence of a specific incident”. Exemplary measures for
SP in the context of digital forensics are given by [25] as: “Documentation and extension of
knowledge of IT systems specifics, tool testing for forensic data types and sets of methods determina-
tion for error loss and uncertainty estimation, setup of logging capabilities, performance of system
landscape analysis, data protection considerations, [. . . ]”. In contrast, the OP is specified to “[. . . ]
include all preparation procedures taken after of the actual occurrence of a specific incident. Those
procedures by definition do not alter any data on the targeted system”. These preparation phases
are then followed by the actual application of forensic procedures, which can be separated
into the triplet of data gathering (DG), data investigation (DI) and data analysis (DA).
The whole process is in every phase (including SP and OP) supported by accompanying
documentation, which is in the last phase (documentation (DO)) used as the basis for the
generation of the official documents regarding the investigation (e.g., the evidence to be in-
terpreted in expert testimony in a court case). It has to be acknowledged here that these BSI
guidelines on outlining a forensic process, while acknowledging established best practices
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in this field, significantly differ from other national guidelines, even in other EU states. This
can be illustrated by comparing it, for example, with the model described in [27], which
very well reflects the Norwegian approach. It also builds upon a phase-driven model, but
with a different established phases layout: (1) Identification Phase, (2) Collection Phase,
(3) Examination Phase, (4) Analysis Phase and (5) Presentation Phase. This is much closer
to long-time established best practices in traditional (analogue world) forensic sciences and
requires then explicit activities to achieve and maintain “Digital Forensic Readiness” [27]
(an equivalent to the Strategic Preparation phase in the BSI guidelines) to successfully cope
with modern day digital and digitised forensics tasks.

The second core aspect of the BSI guidelines is the classification scheme for forensically
relevant data types. More recent publications (see Section 3 below) have shown that
the original scheme as proposed by the BSI in 2011 needs to be extended accordingly if
investigation domains other than hard-disk, RAM or network forensics are considered.

The third core aspect of the BSI guidelines is the definition of forensic method classes.
For a detailed discussion on these method classes, including considerations on the availabil-
ity in certain investigation contexts, practicalities of their application in a forensic process,
etc., we refer to [25].

2.2. (Brief) Summary on the Domains of DeepFake Generation and Detection

The methodologies and solution concepts for the generation of DeepFake material are
manifold. Due to this reason, these generative processes (which are mostly outside the scope
of this paper) are covered extensively in survey publications, like [28] or the corresponding
chapters in [6]. Generally, they are divided into the classes of facial re-enactment, facial
replacement (or face swapping), face editing and face synthesis.

If a target persons facial expression corresponds to the expression of another person,
presented as controlling input, then the generation process is called as facial re-enactment.
For the case of face replacement, a source face is transferred to a face in a target media object
where the facial expression of the target person has not changed. Face editing addresses the
same face in an image or video. Only the facial expressions or some face parts are modified.
In contrast to the methodologies described above, face synthesis refers to newly created
faces that are not linked to real persons [28].

The usage of DeepFakes does not automatically imply black hat (i.e., malicious) ap-
plications, but also a large number of white hat (i.e., benign or non-malicious) application
scenarios exist. The following subsection 2.2.1 briefly summarises examples for both
types of application scenarios, using the four different classes of generative processes
mentioned above.

The different generation strategies also create class-related artefacts in the output
media objects. In Section 2.2.2, these are very briefly summarised.

2.2.1. DeepFake Use Cases

The use of DeepFakes has a wide range of possible application scenarios, where their
impact can be on an individual or societal level. While mainly the negative aspects are
highlighted in existing literature, there are also positive examples of the use of DeepFakes.
As stated in [6]: “[. . . ] it is important to note that face manipulation techniques are also expected
to have positive impact on society and economy. [. . . ] can help to address privacy issues through
privacy-enhancing techniques, they facilitate the training of machine learning models with synthetic
data [. . . ], they can help with sustainability by facilitating virtual fitting rooms for the beauty and
fashion industries and drive economic development with (high added value) mobile e-commerce,
entertainment, and social media applications”.

This non-exhaustive list can easily be extended, with most use cases having both posi-
tive and negative aspects to be considered. DeepFakes have received first news coverage
due to usage in pornographic contexts using face-swaps, where primarily women became
victims of targeted defamation. Face-swaps are also used for white hat applications, e.g.,
showing the user wearing certain clothes (‘magic mirror’ scenarios for online shopping).
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In the context of lip synchronisation techniques used in DeepFakes, the most prevalent
examples show the manipulation of video footage and the spoken word of well known
politicians (e.g., former US president Barack H. Obama or Nancy Pelosi in her time as
Speaker of the United States House of Representatives), to spread misinformation. On the
other hand, the same technique can be used to break language barriers, in the example
of the “Malaria Must Die” campaign, where the famous football star David Beckham
addresses the audience in this health campaign in nine languages, due to the help of Deep-
Fake technology. In addition to the use of real voices, the use of synthetic voices is also an
application scenario to be discussed here. In white hat applications, this can increase the
accessibility of content (e.g., in text-to-speech systems). A possible threat of this synthetic
voice (or rather imitation of an existing voice) are the so-called Vishing attacks [29]. In terms
of face editing, the main purpose is fun applications, e.g., to simulate ageing, different hair
styles and makeup. Although the authors are not aware of any attack scenario based on
face editing, its use for rejuvenation and artificial ageing could pose a challenge for youth
protection. Another well-used application is the fictitious resurrection of deceased people,
which is often used to retain established actors for cinematic productions (e.g., Peter Wilton
Cushing in the film “Rogue One”). It can also be used for a more immersive experience
in education or to provide a more immersive experience in education (e.g., historical facts
presented by a contemporary witness). While the intents are positive, the use results both
in ethical and legal questions.

Finally, it is important to note that AI cannot decide whether a DeepFake is used
positively or negatively. A human observer/expert is always needed here to decide be-
tween black hat and white hat application, based on the context of the usage of DeepFake
technologies as summarised above.

2.2.2. DeepFake Detection

Because of their creation process, most DeepFakes are inherently compromised with
artefacts or traces which might unmask fake media. The amount and type of those artefacts
are versatile and depend on the used creation method. Artefacts are divided primary
into visual artefacts within single video frames (intra-frame) and temporal artefacts across
several video frames (inter-frame) [30]. Furthermore, Mirski et al. [28] subdivide both those
categories in smaller artefact categories. In case of visual artefacts, they differ between
blending, environment and forensics. Blending refers to “generated content [which] is blended
back into the frame” [28]. Blending artefacts are marked by edges. Environment artefacts are
specified by the content which differs from the rest of the frame (e.g., different lightning
conditions). Forensic artefacts are special fingerprints which are created by DeepFake
generation models (e.g., Convolutional Neural Networks (CNN)). Additionally, imper-
fections like unnatural head poses are mentioned in this context. Temporal artefacts are
distinguishing between behaviour, physiology, synchronisation and coherence. Regarding
behaviour artefacts, it is easier to replace one face by another than to copy the (gestical)
behaviour of the person. The investigations of similar but also different behaviours could
be a hint to those DeepFake artefacts. With a specific video camera setting, it is possible
to detect physiological signals like the heart rate of a person. Currently, DeepFake videos
are not able to reproduce these physiological signals before those physiological artefacts
are indications for interferences in DeepFake videos. Synchronisation artefacts address
inconsistencies between lip movements and the corresponding voice. Coherence artefacts
describe, e.g., flickers and jitters which may be present in DeepFakes [28].

Many different approaches detect those different artefacts with varying detection meth-
ods, which can be ordered into the following two main groups: Hand-crafted and learned
feature methods. Most approaches detect DeepFake artefacts with neural networks and a
huge amount of example data. After many training iterations, they analyse the example
data and produce learned features which are needed for further classification steps. Con-
volutional Neural Networks (CNNs) are able to detect spatial features whereas Recurrent
Neural Networks (RNNs) are preferable for the detection of temporal features. Li et al. [31]
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detect eye blinking with a Long-term Recurrent Convolutional Network (LRCN) model,
which consists mainly of three parts: feature extracting, sequence learning and state pre-
diction. They also suggest this approach for a DeepFake detection. However, the paper of
Li et al. [31] does not goes into detail in case of the evaluation of DeepFake detection.

In contrast to the neural networks-based methods, the alternative approach is learning
to identify DeepFake material with pre-defined, hand-crafted features defined by domain
experts. Hand-crafted feature methods are in DeepFake detection less common and of these
few existing papers using hand-crafted methods, like [32–34], most detect DeepFake videos
using Support Vector Machines (SVMs), typical 2-class classifiers. Other hand-crafted
feature methods (e.g., [4]) are implemented by decision trees. Jung et al. [35] created a
detector called DeepVision based on the Eye-Aspect-Ratio (EAR) of Soukupov et al. [36],
which combines Machine Learning techniques with heuristic methods based on results
of medical-, biology- and brain engineering research. They used the knowledge of the
behaviour of human eye blinking for the detection approach of their DeepFake detector.
Nevertheless, they tested their approach in [36] only on a statistically insignificant number
of different DeepFake videos (without any attempt to also determine the amount of false
positive errors on benign material).

Three of the five detectors used for empirical experiments in this paper are re-used
from previous work, published in [4]. All three are relying on hand-crafted features. These
three detectors are combined in information fusion with two newly implemented detectors
(see Sections 5.1.2 and 5.1.3 for details). This usage of ensembles of detectors for a complex
decision forming has been established as best practice for DeepFake detection. Regarding
detection pipelines intended for (forensic) field usage, in [6] the need for fusion-based
approaches is strongly argued for as follows: “[. . . ], a skilled attacker, aware of the principles
on which forensic tools work, may enact some counter-forensic measure on purpose [. . . ]. Therefore,
the integration of multiple tools, all designed to detect the same type of attack but under different
approaches, may be expected to improve performance, and especially robustness with respect to both
casual and malicious disturbances”.

3. Related Work and the Derived Challenge for This Paper

Modern day science means reaching out while standing on the shoulders of giants.
In this paper, pre-existing work already extending the German BSI guidelines for IT foren-
sics [3] is used to advance towards a comprehensive concept for modelling media forensic
investigation pipelines. Two different branches-related work are considered here: On one
hand, the works of Kiltz et al. on evolving the BSI guidelines into the so-called Data-Centric
Examination Approach (DCEA) for modern IT forensics (see Section 3.1), and on the other
hand, the authors own previous work on a domain adaptation for media forensics (see
Section 3.2). At the end of this chapter, in Section 3.3, the challenge addressed in this paper
is briefly summarised.

3.1. The Data-Centric Examination Approach (DCEA)

As discussed in Section 2.1.2 above, the last published official revision of BSI guidelines
dates back to 2011. Since then, it has been used and extended. Significantly updated version,
which is also used within this paper, can be found in [25] and is called by its authors the
Data-Centric Examination Approach (DCEA). The DCEA re-uses and extends the three
core aspects already present in the BSI guidelines from 2011: a model of the phases of a
phase driven forensic process, a classification scheme for forensically relevant data types and
forensic method classes.

The majority of the extensions done in recent publications focus on domain adaptation
for further investigation domains. While the original guidelines focused on hard-disk, RAM
and network traffic analysis, [25] extends this scope to also include aspects relevant for
digitised forensics (exemplary discussed for the field of dactyloscopy (forensic fingerprint
analysis and comparison)). Other publications, like, e.g., [37], adapt to domains with
specific constraints like Internet of Things (IoT) forensics.
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As a preparatory work for this journal paper, the authors already presented an domain
specific adaptation for media forensics, which is discussed in the following section.

3.2. Model Adaptation for Media Forensic Tasks

As pointed out above, modelling of media forensics processes is nothing new. In the
past, it has mainly been used in academia to provide understandable and reproducible
description of media analysis pipelines (see, e.g., [12]). To move forward and address the
crucial challenges of development of standards, technical guidelines and certifiable test
criteria and test methods as well as research into transparency and explainability of AI
driven forensic methods, more elaborate modelling is required.

In [5], a first step for a concept for modelling media forensic investigation pipelines is
derived from established guidelines has been done by modelling a corresponding domain
adapted data (types) model, derived from DCEA. This new data model, called Media
Forensic Data Types (MFDT) is summarised in Table 2.

Table 2. Media Forensic Data Types (MFDT) proposed in [5].

Data Type Description

MFDT1 Digital input data The initial media data considered for the investigation.

MFDT2 Processed media data Results of transformations to media data (e.g., greyscale
conversion, cropping)

MFDT3 Contextual data Case specific information (e.g., for fairness evaluation)

MFDT4 Parameter data Contain settings and other parameter used for acquisi-
tion, investigation and analysis

MFDT5 Examination data Including the traces, patterns, anomalies, etc that lead to
an examination result

MFDT6 Model data Describe trained model data (e.g., face detection and
model classification data)

MFDT7 Log data Data, which is relevant for the administration of the
system (e.g., system logs)

MFDT8 Chain of custody & report data
Describe data used to ensure integrity and authenticity
(e.g., hashes and time stamps) as well as the accompany-
ing documentation for the final report.

Taking the typical data streams in media forensics into account, in [5] an adaptation of
the existing data models was performed. As starting point the data types from digitised
forensics were chosen because they required a less wide-ranging re-modelling than any
other previously defined model. The objective for the modelling was (besides the domain
adaptation) a specification and overlap-free representation of data types. As a result the
following eight media forensic data types (MFDT) were defined: Digital input data (MFDT1)
considers any kind of media data as it is initially taken as input to the investigation. Pro-
cessed media data (MFDT2) contains all operator output which are media data. Contextual
data (MFDT3) includes case specific information regarding the investigation process and
objects. Contextual data can also be used to control targeted parametrisation, and thus
allow case or objects specific parameter optimisation. They also allow for plausibility and
fairness evaluations as part of the assessment of an investigation performed. Parameter data
(MFDT4) contains all configurations and parametrisations for operators in an investigation
(except for model data, see MFDT6 below), including those who are used for training of
classifiers and models before the actual investigation. Examination data (MFDT5) comprises
all occurring non-media outputs (e.g., trace information, patterns and anomalies identified)
of the investigation. Model data (MFDT6) is made up by trained models of machine learn-
ing algorithms like rule-based approaches or decision trees as well as models of neural
networks (including their network architecture). Log data (MFDT7) is a component of the
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documentation and is used for administration and maintenance (including Syslogs and
information about the memory usage). Data in MFDT7 are not relevant for the specific case
in the investigation, but are necessary for the administration of the system (e.g., to notice
that the memory allocated for the task is not sufficient). Chain of custody and report data
(MFDT8) characterise the case relevant documentation for integrity and authenticity assur-
ance, as well as the accompanying documentation for the final report. For admissibility
in court, the final report would be required following the corresponding chain of custody
guidelines. This data model is re-used as it is within this paper as one component in the
concept for modelling media forensic investigation pipelines.

3.3. The Challenge Addressed in This Paper

The discussions above illustrate the apparent gap between the academic research
community (as potential solution providers for forensic methods) on one hand and the
requirements imposed onto forensic practitioners on the other hand. The intention of this
paper is to facilitate the mutual understanding of these two classes of stakeholders and
assist with first steps intended at closing this gap. To do so, first a concept for modelling
media forensic investigation pipelines is derived from established guidelines. Then, the
applicability of such modelling is illustrated on the example of a media forensic investi-
gation pipeline focusing on the detection of DeepFake videos. At the end of the paper,
the benefits of such a planned realisation of AI-based investigation methods are discussed
and generalising effects are mapped out.

4. Materials & Methods for the Design of a Process-Driven Investigation Model for
DeepFake Detection

Even in the most recent academic publications in this field (like [6]), DeepFake detec-
tors are only evaluated in lab tests without any concerns about integration into operational
procedures. This might be sufficient for rapid prototyping and academic research, but does
not suffice for field applicable forensic methods. In this section, a perspective for the path
forward, towards more mature investigations, is presented. Its starts with the necessary
methodology and concepts, which are followed by the a discussion on suitable metrics
and materials (here specifically an overview over publicly available data sets that exist for
benchmarking purposes).

The main methodology for modelling media forensic investigation pipelines was
outlined already briefly in [5] (where a domain specific forensic data model was derived)
and is significantly extended here.

The ultimate benchmark for any forensic method, which is its applicability in court,
can only be achieved on a national level. It is acknowledged here that, due to the fact that
all authors are living and working in Germany, the work presented (despite being written
in English and presented in an international Journal context) is focused on the German
situation and corresponding technical guidelines. Furthermore, at this point it has to be
emphasised again that the authors are computer scientists and possesses absolutely no
legal training.

Any integration into an operational context would have to focus on various aspects.
These would include, among other issues:

• Organisational: Specifying the method (as an investigation workflow) and establish-
ing its constraints, limitations and potential errors attached to the method and/or
its application.

• Technical: Buying and installation of the investigation environment (e.g., forensic
workstations) and all required infrastructure (including software such as police case-
work systems as well as a suitable chain of custody realisation for digital assets).

• Personnel: Hiring, training and (re-)certification of experts for applying the method.

Within this paper, the focus lies on the organisational aspects of operationalising
investigation methods. It basically follows the BSI guidelines on IT forensics [3] with its
split into the separate contexts (the preparation in the forensic process model phase of
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Strategic preparation (SP), here called templating, and the actual usage of a method in the
other phases, starting with the Operational preparation (OP), here called instantiation).

In the following Section 4.1 the operational units (operators) that are supposed to
form parts of an investigation pipeline are modelled. This is followed in Section 4.2 by
considerations on the orchestration of operators into an investigation pipeline. Section 4.3
then discusses evaluation best practices and publicly available benchmarking data sets.

The work in this chapter is intended to prepare an illustration of an investigation
pipeline for DeepFake detection in Section 5, using own prior work (i.e., detectors).

4.1. Modelling of Operator Units

Each operation (or operator) in a forensic process is considered in the approach used
here as an atomic processing (black box) component with an identifier, a well defined and
documented functionality and (usually) a description of the processing performed in this
operation. Each component is modelled here as having four well-defined connectors (see
Figure 2): input, output, parameters and log data. To pay respects to the particularities of this
field and make the following modelling task easier, a fifth connector is defined within this
paper for a specific type of operator which requires a knowledge representation or a model
for its processing operation. In their case, this fifth connector is labelled model. Depending
on the nature of the operator this could be a rule set, signature set, statistical model, neural
model, or any other form of knowledge representation. Each of these decision-forming
approaches has individual advantages and disadvantages. Often, a comparison of these
methods and their trained models is solely done based on detection and generalisation
performance (e.g., by means of accuracy or area under curve). In addition, sometimes other
performance criteria determined are representing feature space dimensionality and number
of modelled classes (see, e.g., [38]).

Figure 2. Template structure for a single component (adapted from [5]).

Figure 2 shows the link between media forensic data types (MFDT; see Section 3.2)
for the operator description presented above. The input of a component has a form of
media data, the court exhibits itself (MFDT1) or after previously done pre-processing steps
(MFDT2) or examination data (MFDT5). Depending on the processing step, the gener-
ated output could be media data (MFDT2), a derived information on the investigation
context (MFDT3) or investigation results (MFDT5). It is also possible during the phase of
strategic preparation (SP) that a model is trained (MFDT6). The process control is done by
parameters (MFDT4). Furthermore, the gathered contextual data (MFDT3) can be used for
optimisation of the parameters in the specific investigation. MFDT3 could, for example, be
information about the recording device, resolution or lighting conditions, which might be
useful to estimate decision uncertainty and thereby allowing us to estimate the fairness of
an investigation. The loading of a model (MFDT6) is limited to model-driven operators,
which is why it is shown by a dashed line. Process accompanying documentation will be
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divided and separately saved in log data (MFDT7) and chain of custody data (MFDT8)
based on the modelled data types.

4.2. Orchestration of Operators into an Investigation Context

For mature media forensics approaches, the integration (or orchestration) of individual
operators into an investigation context has to be done in two distinct episodes: First, in the
planning and preparation of a type of investigation in the phase of strategical preparation
(SP), and second, in the initialisation of a forensic pipeline for a case-specific investigation
in the phase of operational preparation (OP).

First, in SP, the work is focusing on crucial tasks of organisational, personnel and
technical nature. Aspects of organisational are, e.g., defining (hereafter called templating)
workflows and procedures and getting these procedures certified (if necessary). Examples
of aspects of personnel nature would be the training of investigators (including their
certification if necessary) as well as the assignment of responsibilities. Technical aspects
include the hardware and software to be used, i.e., installation of the investigation systems
and all required infrastructure (log servers, chain of custody (CoC) infrastructure, etc.) as
well as the training of decision models for model driven operators and the benchmarking
of trained operator to assess their reliability.

At the end of the process in SP, well-specified templates exist that can easily be instan-
tiated into practical investigations as soon as an event/incident triggers an investigation
request. Figure 3 shows an example for such a templating, derived from the description of
a DeepFake detection pipeline in [4].

Figure 3. Illustration of the DeepFake detection pipeline described in [4] (exemplified using the
first frame of file Celeb-real ID0_0000 [39]) in its templating in the forensic process model phase of
Strategical Preparation (SP).

The second episode (hereafter called instantiation) corresponds to a set of actual in-
vestigations, e.g., determining whether a DeepFake manipulation occurred in a video file
or stream. Considering the pipeline presented in Figure 1, these investigations cover all
phases from OP to Documentation.

Here, a prepared (as well as benchmarked and potentially certified) template from
SP is filled with life by invoking the corresponding orchestration of operators on the
assigned processing nodes. Decision models pre-trained in SP are loaded (as shown in
Figure 4), together with the used pre-processor and classifier parameters. Thus initialised,
the operators are then applied to the input data to the process (MFDT1) to determine traces
or information relevant for the investigation at hand.
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Figure 4. Illustration of the DeepFake detection pipeline from [4], instantiated in the forensic process
model phase of Operational Preparation (OP), with the inclusion of occurring data types described
in [5].

Since sophisticated analysis pipelines will have to rely on information fusion (i.e., the
combination of multiple expert systems; see Section 2.2.2), additionally the required fusion
weights required for this purpose have to be loaded from the materials prepared in SP.

In addition to the preparation of the templates for actual investigation pipelines in
the SP, corresponding documentation packages are also prepared and constantly updated.
When a template is then instantiated for a case in OP, the required documentation packages
are marshalled together into the investigation accompanying documentation of the case.

4.3. Evaluation Best Practices and Publicly Available Benchmarking Data Sets

As final part of the materials and methods for this paper, in the following sub-sections,
first some evaluation best practices are summarised, together with a discussion on suitable
metrics, followed by an survey on existing data sets for DeepFake detector benchmarking.

4.3.1. Evaluation Best Practices

As correctly summarised in [6], fusion-based detection methods are required for
forensic DeepFake detection to acknowledge the fact that “[. . . ], a skilled attacker, aware of
the principles on which forensic tools work, may enact some counter-forensic measure on purpose
[. . . ]”. The fusion is therefore not only intended to boost the overall detection performance
(at the cost of an higher run-time complexity), but also to improve [. . . ] “robustness with
respect to both casual and malicious disturbances” [6]. While fusion is widely believed to be
strongly beneficial to decision problem solution approaches like pattern recognition or
anomaly detection, publications like [40] point out that information fusion, which indeed
has an huge potential to improve the accuracy of pattern recognition systems, is still very
hesitantly applied in the forensic sciences. The reason given is, that a potentially negative
impact on the classification accuracy, if wrongly used or parameterised, as well as the
increased complexity (and the inherently higher costs for plausibility validation) of fusion
are in conflict with the fundamental requirements for forensics. To overcome this hesitation,
the typical solution is to:

• Very thoroughly benchmark under different training and evaluation scenarios (see [4])
the individual expert systems (here detectors) to be used in the fusion to precisely
establish their requirements and capabilities as well as the error rates attached.

• Benchmark different fusion schemes under different training and evaluation scenarios
(see [40]) and establish the impact of different weighting strategies onto the (detection)
performance and error patterns.

• Consider decision confidences (where available) into the opinion forming.
• Allow for auditability as well as human oversight for the entire process.

Especially the last item, the aspect of required human oversight is a recent trend for
critical AI applications (including forensics) which is, among other regulations, manifested
in the current initiative towards an Artificial Intelligence Act (AIA), see [41,42].
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A very important issue regarding the benchmarking of pattern recognition-based
expert systems is the usage of a fair performance evaluation metric. Here, it is proposed to
use the Kappa statistics κ instead of the accuracy. It is basically a single-rater version of
Cohen’s Kappa (see [43,44]) in the range [−1, 1]. Therefore, the Kappa statistic measures
the agreement of prediction with the true class (i.e., the agreement normalised for chance
agreement). The following equation shows the computation of the Kappa statistics κ for an
n-class problem:

κ =
1
n

n

∑
a=1

Pa − Pchance
1− Pchance

(1)

For each of the n classes, Pa is the corresponding percentage agreement (e.g., between
the classifier and ground truth) and Pchance is the probability of chance agreement. Therefore,
κ = 1 indicates perfect agreement and κ = 0 indicates chance agreement for the overall
classification. Only in rare cases negative κ values are achieved, i.e., the classification
performance of a system is worse than simple guessing at the class. This is most likely the
case when the model was trained to distinguish between patterns completely different than
the ones actually presented in the evaluations.

For equally distributed classes, Pchance for all classes is simply 1
n . For differently

distributed classes, [44] describes different methods of how to calculate estimate Pchance.
For the computation of the Kappa statistics within this paper, the WEKA implementa-
tion [45] is used, estimating Kappa from the distribution of the classes in the supplied
test set.

By using Kappa statistics, it is possible to construct for classification-based investiga-
tions a degree of closeness of measurements of a quantity to its actual (true) value that is
exempt from the influence of the probability of guessing correctly. Such a metric does allow
for direct comparison between the classification performances of classifiers on problems of
different numbers of classes.

Regarding the interpretability of Kappa κ, ref. [46] presents a mapping between the
Kappa value and the agreements of the different raters (see Table 3). Within this paper, the
fact is used that it is actually known in the benchmarking performed in SP to which class
an input belongs in the evaluations performed. Based on this realisation, here the Kappa
values are mapped onto statistical confidence using the mapping defined in Table 3.

Table 3. Kappa values, agreements according to [46] and the statistical confidence mapping used in
this paper.

Kappa Value κ Agreement According to [46] Confidence Mapping Used Here

κ < 0 No agreement Poor

0 ≤ κ < 0.2 Slight agreement Poor to fair0.2 ≤ κ < 0.4 Fair agreement

0.4 ≤ κ < 0.6 Moderate agreement Fair to good0.6 ≤ κ < 0.8 Substantial agreement

0.8 ≤ κ ≤ 1.0 Almost perfect agreement Good

The usage of Kappa in research is not without controversy. Authors like Sim et al. [47]
argue that: “[. . . ], the magnitude of kappa is influenced by factors such as [. . . ] the number of
categories [. . . ]”. Furthermore, Kappa is generally not easy to interpret in terms of the
precision of a single observation, because according to [48], the standard error of the
measurements would be required to interpret its statistical significance. To address this
problem, Sim et al. propose in [47] multiple evaluations as the basis for the construction of
a confidence interval around the obtained value of Kappa, to reflect sampling errors.

Both facts (implicit influence of the number of classes as well as the standard error
in the measurement) are also considered here. In the statistical confidence mapping in-
troduced for this paper, the first fact should be negligible for the practical investigations,
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because the number of classes considered (and therefore assumedly also their implicit
influence) is exactly the same (i.e., two). Regarding the second fact, here the actual classes
in the investigations are actually known in the benchmarking performed in SP, which
solves part of this problem. Regarding the precision, it is assumed here (based on the
achieved evaluation results in initial tests) that it is high enough to allow for meaningful
investigations (i.e., the corresponding confidence interval would be suitably small).

In spite of the drawbacks that might be attached to the usage of Kappa, Sim et al. [47]
argue that: “If used and interpreted appropriately, the kappa coefficient provides valuable infor-
mation on the reliability of data obtained with diagnostic and other procedures [. . . ].”—which
is exactly the motivation why Kappa is used in this paper for benchmarking and weight
estimation purposes instead of the mere classification accuracy.

4.3.2. Publicly Available (Benchmarking) DeepFake Data Sets

The rapidly growing research efforts for the detection of DeepFakes result in the
creation of DeepFake data sets, which are, on the one hand, usable for the implementation
and training of new DeepFake detectors. On the other hand, they are needed for bench-
marking approaches for detectors. Recent work has shown that data sets are necessary,
which include specimen generated with more then one of the generation approaches for
DeepFake videos.

In this scope, TIMIT-DF [49] and UADFV [34] were the first publicly available data
sets. The number of identities (TIMIT-DF: 43, UADFV: 49) in those databases are very low,
as are the perceptual qualities of these DeepFakes. These are the reasons why they have
become less relevant during the last years. The Face-Forensics++ [50] data set uses four
different creation methodologies (Face2Face, DeepFake, FaceSwap, NeuralTextures). It also
increases the amount of DeepFake videos to 1000 per generation algorithm. Note that it is
not known to the authors of this paper how many identities have been used to build those
1000 videos.

Not really a part, but provided by the same creators as Face-Forensic++ is the data set
Google-DFD [51], which contains 28 identities. It is one more example for a set that includes
more than one DeepFake generation approach. Li et al. [39] introduced Celeb-DF with
59 identities. It consists of three parts: Celeb-real (590 videos), YouTube-real (300 videos)
and Celeb-synthesis (5639 videos), whereas Celeb-real is used for the DeepFake videos
in Celeb-synthesis. Furthermore, the authors in [39] proposed the grouping of several
DeepFake data sets into different generations (using the number of frames of the videos
in a set): Generation 1 consist of the data sets TIMIT-DF, UADFV and Face-Forensics++.
Generation 2 consists of Google-DFD and Celeb-DF. Additionally, the DFDC-Preview data
set of Dolhansky et al. [52], which contains of 66 identities, is classified in the second
generation of DeepFake data sets, later. This data set is the first part of the DeepFake
Detection Challenge (DFDC), which will introduce a newer generation (generation 3) of
DeepFakes in [53]. The authors adopt the classification attributes of Li et al. [39]. Every data
set which has a total frame amount of 10,000,000 or more as well as 10,000 videos or more is
grouped into this third generation. The DFDC data set is another example for a data set that
is build with more than one DeepFake generation method. In the time of the publication
of Dolhansky et al. [53], there were only two data sets which belonged to this generation:
DeeperForensics-1.0 [54] with 100 identities and the DFDC data set of Dolhansky et al. [53]
with 960 identities. DeeperForensics-1.0 [54] includes adversarial attacks in DeepFake
videos (e.g., added noise, blur, compression), aiming at making detection attempts more
realistic (i.e., considering an attacker that tries to hide the traces of the DeepFake attack).

Newer data sets are more and more specific for a defined use case which com-
plicates the grouping of those new databases into the old generations. For example
FakeAVCeleb [55] has the size for a generation 3. However, this data set has a differ-
ent structure. It combines real and fake media as well as image/video and audio data
in different ways for 490 identities. It contains video DeepFakes with real audio, audio
DeepFakes with real video and also DeepFakes consisting of fake audio and fake video.
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The real part is reused from VoxCeleb2 [56]. Furthermore, its authors try to increase di-
versity (in terms of ethnic backgrounds, ages, and gender). DeepFakeMnist+ [57] is a
small DeepFake data set which tries to reproduce different emotions or face movements.
While in the previously named data sets the DeepFakes are (mostly) created by the data
set authors themselves, WildDeepfake [58] consisted of 707 collected DeepFake videos
(plus corresponding benign counterpart video) from the internet (i.e., representing an ‘in
the wild’ set of mixed/heterogeneous generation methods). The advantage of this set
creation strategy is the diversity of different forgery techniques, which are also examined
by Zi et al. [58]. Kwon et al. [59] generates 175,776 fake clips from 62,166 real clips with 403
(mostly Koreans) identities with different generation models. They also labelled their data
set using categories for age, sex and location. Jain et al. [60] used for the data set DF-Mobio
72 identities. It is also divided into 31,950 real videos and 14,546 DeepFake videos. Note
that the real videos are taken from the Mobio data set in McCool et al. [61]. This data
set contains videos which are taken by the cameras of mobile devices (i.e., smartphones).
Table 4 summarises those data sets regarding to the amount of identities and the real and
DeepFake video size.

Table 4. Overview on existing publicly available video reference data sets for DeepFake detection (in
case of an ‘?’ in the table, the number of individuals has not been documented for this data set). The
TIMIT-DF and Celeb-DF data sets used in this paper are marked in bold.

Data Set # Individuals # Real Video # DeepFake Video

UADFV [34] 49 49 49

TIMIT-DF [62,63] 43 559 640

FaceForensics++ [50,64] ? 1000 4000

DFD [51] 28 363 3068

Celeb-DF [39] 59 890 5639

DFDC [53] 960 23,654 104,500

DeeperForensics [54] 100 50,000 10,000

WildDeepfake [58,65] ? 3805 3509

DeepFakeMnist+ [57] ? 10,000 10,000

FakeAVCeleb [55] 490 20,000+ 20,000+

KoDF [59] 403 62,166 175,776

DF-Mobio [60] 72 31,950 14,546

In addition to these dedicated DeepFake databases, a huge number of publicly avail-
able face video databases have also been created in other research domains, which can be
used to represent the other class (here, non-DeepFake or genuine face videos). Those data
sets can be used to design different training and testing scenarios, to be able to establish
facts about the generalisation power of the detectors trained, which is an important aspect
of the quality assessment for every method. Such evaluations would have to be performed
as part of quality assurance in the strategic preparation (SP) phase of each forensic process.

5. Application of the Updated Process Modelling to Describe a Fusion-Based
DeepFake Detector

The following two sub-sections summarise the work performed, split into the part
done in Strategic Preparation (SP, see Section 5.1) and the one started in Operational
Preparation (OP) and then conducted throughout the gathering, investigation and analysis
phases of a media forensic process (see Section 5.2).
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The test procedures and criteria used here are measurements on the detection perfor-
mance using Kappa statistics and a discussion of the impact of similarity or dissimilarity of
training and test data on the detection performance.

The detection methods used here (and discussed in detail in Sections 5.1.2 and 5.1.3) are
admittedly not amongst the most sophisticated detectors currently available, but the general
performance shown, including problems with the generalisation power are representative
for the current situation in this field of applied pattern recognition.

5.1. Templating (In SP) the Empirical Investigations for This Paper

The research performed in [4] is here extended by adding two additional detectors,
which have to be included into the benchmarking and fusion accordingly. Figure 5 visu-
alises the additions to the template made in contrast to the original template presented in
Figure 3 above.

Figure 5. Illustration of the DeepFake detection pipeline template (based on Figure 3 above and [4])
created in Strategic Preparation (SP) for the usage for the experiments in this paper.

The detector DFprob has an separate pre-processing pipeline (described in Section 5.1.3
below) while all four other detectors share the same pre-processing pipeline.

5.1.1. Data Sets Used for Training and Benchmarking

Here, from the long list of available data sets (as summarised in Table 4 in Section 4.3.2
above), the same ones are re-used here as in [4] for the necessary training operations of
detectors, their benchmarking, the determination of fusion weights and the evaluation of
fusion approaches. This is done to keep the results comparable (and is not intended to
imply a specific fitness/quality of these sets): The Celeb-DF data set is split into disjointed
subsets labelled Celeb-real, Celeb-synthesis and YouTube-real. For training purposes,
hereafter referred to as Celebtrain, Celeb-real and a subset of Celeb-synthesis of 590 videos
(which represents the number of samples in Celeb-real) are taken for the training of models.
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The rest is reserved for the evaluations performed in Section 5.2. In addition, a second
benchmarking round is performed using the whole TIMIT-DF data set, consisting of 559 real
and 640 DeepFake videos.

5.1.2. Pre-Existing Detectors Re-Used in This Paper

In [4], a total of three different detectors for DeepFake detection were presented,
analysing different video areas (eyes, mouth and image foreground). While the detector
based on the mouth region showed the best individual results (κ = 0.89) in evaluations,
the detectors based on eyes and image foreground (κ = 0.42) also revealed potential for the
detection of DeepFakes with (κ = 0.38 and 0.42, respectively).

5.1.3. Detectors Newly Implemented for This Paper

Besides the three detectors from previous work (see Section 5.1.2), two new detectors
(one hand-crafted and one neural network based) aiming at DeepFake detection based on
eye blinking inconsistencies are proposed here. For both the pre-processing is performed
frame by frame. First, the face is detected using dlibs 68 landmarks [66], with each eye
represented by 6 key points [4]. For comparison purposes, the facial region is resized to
an area of 256 × 256 pixels. For the hand-crafted approach, the so-called eye-aspect ratio
(EAR), given by EAR = |p2−p6||+||p3−p5||

2||p1−p4|| [35], is calculated as the first representation for
each eye (EARl and EARr).

For the neural network-based approach, the model presented in [31] by Li et al. is used.
To define the degree of aperture of each eye, the bounding box given by the corresponding
6 landmarks is determined. This is followed by probability estimation of the eye blinking
based on a Long-term Recurrent Convolutional Network (LRCN), using the bounding box
of each eye as input. As a result of both pre-processing approaches, two vectors (one for
each eye) are given, representing the EAR and probability of eye blinking, respectively.

For the following classification based on these pre-processed signals, only a hand-crafted
approach is taken due to time constraints. In addition to EARl and EARr, two additional repre-
sentations of the blinking behaviour as difference quotient (di f fl(i) = EARl(i)− EARl(i− 1)
and di f fr(i) = EARr(i)− EARr(i− 1)) for each eye are computed using consecutive video
frames (i) and (i− 1). Based on [35], the values for the following statistical descriptors µ
(arithmetic means), µ− σ, µ− 2σ, µ− 3σ, µ + σ, µ + 2σ, µ + 3σ are calculated, where σ is
an a posterior determined standard deviation. In Figure 6, those descriptors are plotted as
horizontal lines. Using these seven different descriptors, two different types of features
are derived: noise estimators (here, a set of crossing rates) and energy estimators (here,
equivalent to the area under a curve, representing the aperture of the eye). Additional
features are derived trying to iteratively estimate the skew of the distribution (which has
to be assumed since the eye is usually opened for a longer time than it is closed do to
blinking). Including (µ) and (σ), this results in a set of 30 features that are gathered for each
of the four representations. Then, the four sub-vectors are concatenated in a fixed sequence,
which in turn results in a vector of 120 features length.

What can be derived from Figure 6 is the fact that hand-crafted feature designs, like
the ones discussed above, can very well represent semantic characteristics of the signal
(here, the blinking of an eye in a video stream) with easily interpretable features.

The classification models used are acquired by training five different machine learn-
ing algorithms, specifically NaiveBayes [67,68], LibSVM [69], SimpleLogistic [70–72],
JRip [73,74] and J48 [75,76] (the WEKA implementations of these pre-existing algorithms in
their standard configurations; note: these classifiers were selected by the authors on basis
of previous work, for future work, more sophisticated classifier selection and parameter
optimisation could be required), of which the best one in terms of κ value is selected
for the investigation process template created. In the comparison of these five different
machine learning methods, no significant differences in run-time for the model training
was detectable. Only with respect to detection performance, given using Kappa statistics κ,
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differences are noticeable. Table 5 shows the performances of each model and highlights
the best one per detector, which then is used in the evaluations performed.

Figure 6. Illustration of the eye-aspect ratio (EAR) and the proposed descriptors (eye aperture
analysed for the left eye of file Celeb-real ID0_0000 [39], the small sub-figures on the right hand side
showing the corresponding aperture using segments of selected frames of that video).

Table 5. Achieved κ values for each classification model using CelebTrain in 10-fold cross validation.

Detector NaiveBayes LibSVM Simple Logistics JRip J48

DFEAR 0.0695 0.3254 0.3508 0.3678 0.2966

DFprob 0.2162 0.0063 0.3275 0.2480 0.2273

5.1.4. Fusion Operators and Weight Estimation

In [4] a total of five different fusion strategies (feature-level fusion as well as decision-
level in forms of simple majority voting and weighted-average fusion) have been shown to
increase the performance over single detectors. In line with this approach, the strategies
simple majority voting and weighted fusion are re-used here, but in contrast to [4] the
weights are determined in SP phase using κ instead of the decision accuracy. As discussed
in Section 4.3.1, Kappa is a more fair approach regarding unevenly split data sets and,
as shown in Section 4.3.2, most public available data sets have a higher amount of Deep-
Fake videos. Since there are five detectors, the weights have to be adjusted based on
the results on the training data set Celebtrain resulting in weye = 0.1590, wmouth = 0.3724,
w f oreground = 0.1757, wEAR = 0.1548 and wprob = 0.1381. A detailed comparison of the
individual Kappa values for each individual detector and its derived weights can be found
in Table 6.

Table 6. Overview of the results of each individual detector and the derived fusion weights.

Detector κ Fusion Weight

DFeye [4] 0.38 weye = 0.1590

DFmouth [4] 0.89 wmouth = 0.3724

DFf oreground [4] 0.42 w f oreground = 0.1757

DFEAR 0.37 wEAR = 0.1548

DFprob 0.33 wprob = 0.1381

As proposed in Section 4.3.1, a detector should only be included if at least a significant
confidence mapping is achieved. For forensic field applications this value should obviously
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be well above κ = 0.95, in academic research it should be at least in the range of “fair to
good” with κ ≥ 0.4.

Here, for the sake of illustrating the effect of this decision, this rule is violated on
purpose. As a result the detector DFeye as well as the two new detectors DFEAR and DFprob
are included in the template as inputs to the fusion despite the fact that their performances
in benchmarking are below κ = 0.4.

5.2. Instantiation of the Pipeline for the Evaluations in This Paper

Figure 7 shows the instantiation of the pipeline in OP for the evaluations performed in
this paper. In contrast to Figure 4, it shows the extension made since [4] (i.e., the addition
of two additional detectors). Since the whole pre-processing is equivalent to the one
performed in SP (see Figure 5), this part is omitted here.

Figure 7. Illustration of the DeepFake detection pipeline in this paper, based on [4], instantiated in
the forensic process model phase of Operational Preparation (OP), with the inclusion of occurring
data types described in [5].

5.2.1. Data Sets Used for Evaluation

Here, from the long list of available data sets (as summarised in Section 4.3.2 above),
the following are reserved for the evaluation operations of the individual detector, YouTube-
real (300 real videos) and a part of Celeb-synthesis (5049 DeepFake videos), this set CelebTest
is disjointed from the data used for training, benchmarking and weight estimation purposes
in Section 5.1 above. In addition, the benchmarking for the fusion is done on the same data
set as in [4] and contains a total of 120 real and 120 DeepFake videos of Celeb-DF.

5.2.2. Single Detector Evaluation Results

The evaluation of the CelebTest shows in Table 7 a drastic decrease in Kappa for
both DFEAR and DFprob, reducing it to almost zero. To further investigate the causes, the
corresponding curves for a DeepFake video and its corresponding source are compared.
As shown in Figure 8 (top row), the curves for both detectors appear to be almost identical,
showing that the synthesis method used in Celeb-DF is able to reproduce the natural
blink behaviour.
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Table 7. Overview of the results for the proposed individual detectors on the specified testing data set.

Detector κ on CelebTest κ on TIMIT-DF

DFEAR 0.0191 0.552

DFprob 0.0408 0.433

The tests on TIMIT-DF show a different result, both in terms of generated curves
as well as Kappa values. Both DFEAR and DFprob show Kappa above 0.4, with 0.55 and
0.43, respectively. In addition, there are also major differences in the curves to be seen
in Figure 8, and thus showing that the DeepFake blinking behaviour in this data set is
clearly distinguishable from real blinking. The comparison of higher and lower quality
DeepFakes of TIMIT-DF further shows that the higher quality is closer to a real blink.
Taking into account the generations in which both data sets are placed, it can either be seen
as a potential flaw in earlier generations or it could be caused by the generation method
(which is not considered in the generations specified).

Figure 8. Comparison of the acquired blinking curves for a DeepFake and its source based on EAR
(left) and probabilities (right) for both considered data sets Celeb-DF (top) and TIMIT-DF (bottom).

5.2.3. Results of the Fusion-Based Detection

As shown in Table 8, the inclusion of the new detectors results in a slight drop in
the average detection performance. For the majority voting, κ = 0.542 is determined,
in contrast to the previously achieved performance of κ = 0.725, a drop in performance of
0.18. Presumably, this can be explained by the use three of the five detectors individually
showing κ < 0.4 in DFeye, DFEAR and DFprob, all based on eye features outvoting the other
two (performance-wise better) detectors.

In the case of the weighted fusion, the drop is smaller, but still recognisable (by 0.02
from 0.808 to 0.783). The optimal decision threshold for the fusion operator is determined
iteratively here. It is noticed in these experiments that a shift in optimal threshold value for
the classification shifts from 0.65 to 0.5 occurs. This new threshold could be equivalent to
DFmouth (with a weight of 0.3724) agreeing with at least one other detector, which is very
similar to the fusion outcome shown in [4].
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Table 8. Overview of the results for the fusion strategies in comparison to previously achieved results
given in [4].

Fusion Strategy κ

majority voting (old detectors) [4] 0.725

weighted fusion (old detectors) [4] threshold = 0.65 0.808

majority voting (5 detectors) 0.542

weighted fusion (5 detectors) threshold = 0.5 0.783

6. Results

This chapter provides a brief summary of the results, before the following Section 7
projects the conclusions onto the contributions identified in Section 1.

6.1. Experimental Evaluation Results and Comparison with the SOTA/Related Work

It is apparent that the detection performances of the detectors used in this paper are
not fit to compete with the best detection performances presented in the state-of-the-art
publications on detector designs. However, it can be assumed that the findings presented
here generalise as follows:

• The comparison of the investigation results and the differences experienced when
looking at the performances on the TIMIT-DF and Celeb-DF data sets indicate a
sensitivity of trained detection approaches to specific DeepFake generation methods.
In consequence two alternative strategies for compensating this sensitivity should
be explored: Generalisation or specialisation of the training scenario for detectors.
For the first alternative, training sets with large heterogeneous DeepFake parts would
be required, potentially resulting in models with a high false positive rate due to the
fact that the model component(s) characterising the DeepFake class are very dispersed
in the feature space. For the second alternative, targeted training for the different
DeepFake generation would be required, effectively transforming the task into an
n-class problem.

• Extensive benchmarking of detectors is required for any application of forensic meth-
ods. What is true for single detectors, becomes even more relevant when combining
single expert systems into a fusion approach. The practical evaluations summarised in
Section 5.2 above show how adding two detectors, which are performing individually
better than the probability of guessing correctly (which would be κ = 0), negatively
impairs a fusion outcome. What has not been reflected upon in the discussions made
in Section 5 is that the question of fairness and bias are also becoming much more com-
plex in the context of fusion: Out of the five detectors used within this paper, three are
concentrating on the eye regions. This effectively leverages the weight estimation for
fusion weights, which were made under the implicit assumption of the independence
of involved detectors.

6.2. Lessons Learned during the Templating and Instantiating of the Pipeline in SP/OP

When reflecting the work presented in this paper on the three specific aspects for
current research needs according to the whitepaper “Secure, robust and traceable use of
AI-problems, procedures and actions required” [1] as discussed in Section 1, the following
can be summarised: Instead of focusing on research on effective countermeasures (i.e.,
DeepFake detectors), like most of the scientific papers currently published, the work
presented is focusing on the other two aspects: first, supporting the development of
standards, technical guidelines, test criteria and test methods as well as, second, the research
into methods of transparency and explainability.

The efforts invested in the Strategic Preparation (SP) of a forensic process are assumed
to prepare for effective response in case of an incident. They are intended to increase
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forensic readiness of response and investigation units as well as strengthening the whole
field by providing standardised (and certified) methods and procedures.

Reflecting this basic principle of a hard split into SP and operations (OP, DG, DI, DA
and DO) into academic research might seem weird at first, but is, in the opinion of the
authors, a step that might in the long run help to bridge the gap between academic research
in media forensics and the practitioners requiring court admissible methods.

What this split is supposed to provide are more precise process descriptions, which
can easier be verified by third parties. Furthermore, they make training, benchmarking
and testing procedures more transparent and are thereby supposed to better allow the
identification of influence factors, training bias and potential error sources.

In addition to the templating and instantiation considerations regarding the design
and implementation of processes, the modelling work presented has a second relevant
aspect: the domain-adapted media forensic data types presented in Table 2. With their help,
the actual data flows in complex systems, such as police case management systems, should
become manageable. More details regarding this data model, its usage and benefits are
presented in [5].

7. Conclusions and Discussion

Drawing the conclusions from the work presented and projecting them to the contri-
butions identified in Section 1, it has to be said that:

The need for modelling forensic processes is reasoned upon, with a brief overview
over forensic process modelling requirements and some best practices for media foren-
sics (in Section 2.1). It can be (and is, e.g., in [1]) summarised as: (a) the development of
standards, technical guidelines, test criteria and test methods; (b) research into effective
detectors/countermeasures and (c) research into methods of transparency and explain-
ability of AI-driven methods. Out of these three well-grounded needs, current research
(esp. academic research) in media forensics focuses mainly on (b), ignoring the fact that
without also achieving the other two, the required degree of maturity for court room
acceptability will not be achieved. This paper tries to highlight this gap and facilitate the
understanding between the media forensic research community and practitioners in the
field of applied forensics.

A concept for modelling media forensic investigation pipelines is derived from
established guidelines. Due to the nationality of the authors, this concept is derived from
long standing German guidelines on IT forensics, which are extended here to better fit
the specifics in the field of media forensics. By doing so, the authors do not claim that
this starting point, published by the German Federal Office for Information Security (BSI)
in 2011, is the most suitable choice (which it obviously is not), but acknowledge the fact
that regulation concerning the admissibility of procedures and methods happens on a
national level. The introduced approach to modelling investigation pipelines focuses on
a two-step procedure: First, in a preparatory step called here Strategic Preparation (SP),
the planning or templating of an investigation pipeline, combined with all organisational,
technical and personnel steps required for implementing one or multiple pipelines of this
nature (see Section 4.2) happens. The operations in this phase would include among other
things the certification or investigation methods and procedures as well as the training of
corresponding experts. In the following step, here called Operational Preparation (OP),
the previously prepared pipelines are instantiated as required, i.e., used in a standardised
way to perform specific investigations.

Despite the fact that the work presented in this paper is still a rough sketch on the
actual work required to get methods ‘court ready’, it gives an idea on the required next steps
after a technical solution (e.g., detector) has been found fit for publication by its authors.

The applicability of the introduced modelling is illustrated on the example of a me-
dia forensic investigation pipeline focusing on the detection of DeepFake videos, extending
previous work of the authors on possible fusion-driven detection pipelines. The results
show after adding two further detectors, which where in benchmarking in SP on purpose
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wrongfully determined to be suitable (κ∼0.4), a drop of the detection results in the experi-
ments. This implies that the benchmarking strategies used here still leave significant room
for improvement.

The benefits of such a planned realisation of AI-based investigation methods are
discussed to some extend. Here, it is apparent that these discussions only cover the tip
of the iceberg! One recent trend of how to counter the issue of manipulations is well
summarised in [6] by the following statement: “Face manipulation brings an array of complex
legal issues. There is no comprehensive legislation on the use of manipulated images, yet several
aspects are already regulated in various countries. It should hence not surprise that the development
of new manipulation technology and the detection thereof also leads to new issues and questions
from a legal perspective which deserve further research. If it is used to mislead, manipulated images
can cause significant harm [. . . ] In some countries, altered (body) images used for commercial
purposes (such as the fashion industry) need to be labelled. More generally, legislative proposals
in several countries try to tackle the transparency issue by imposing an obligation to inform users
that they interact with AI-generated content (such as DeepFakes)”. However, this implicitly
only white hat application of methods like DeepFakes. No (criminal or other) threat
actor will adhere to such an obligation when spreading fake news or other media-related
manipulations. As a consequence, entities such as news agencies strongly relying on
media objects submitted from external sources would also require mature manipulation
detection mechanisms that would have to be integrated into their already established
source (material) verification routines. The exact extent and scope of such analysis methods
and ‘filters’, their transparency and fairness, as well as their potential impact to public and
politic debates are currently a hot debate especially in Europe (see for example [77] for the
discussion of free speech implications of Article 17 (regulating upload filters) of the EU
‘Directive on copyright and related rights in the Digital Single Market’ as adopted in 2020).

8. Future Work

Instead of focusing on research on effective DeepFake detectors, the work presented is
concentrating on the two aspects of supporting the development of standards, technical
guidelines, test criteria and test methods as well as the research into methods of trans-
parency and explainability. Despite the fact that the detectors in this paper were mostly
used for illustrative purposes, their quality of course also has to be enhanced, either by
improving the existing detectors or including better ones into the fusion-driven decision
system. The next step along these empirical lines would then be the design of best-practices
for evaluations, focusing on data sets, first allowing for more realistic error rate estimates
(e.g., ‘ìn-the-wild’ sets (eventually also including counter-forensics), like [53,54,58]) and
second for fairness considerations (e.g., looking at challenging data sets like [55,59] to
determine racial bias). As shown in Table 4, a wide range of suitable data sets is currently
available for such a purpose.

In addition to those single-classifier benchmarking aspects, also bias evaluations
regarding the fusion would be necessary to be performed: In our illustrative example
pipeline, the five detectors were chosen and combined in a way that is overvaluing/biased
towards parts of the signal (here, the eye regions the video-which is significantly over-
represented with three out of the five detectors focusing on this small part of the video)
effectively counteracting the actual weighting done for the fusion. This might first seem
a unlikely situation in practice but with many neural network driven detection methods,
it remains unclear what exactly the features learned are actually representing. Therefore,
such situations are a threat that is, in the opinion of the authors, likely to occur with learned
feature spaces and that is so far going mostly unnoticed by many practitioners. As a
consequence it would be required to understand such learned feature spaces to avoid such
kind of bias.

Returning to the infrastructure considerations dominating the work in this paper,
two separate aspects are discussed below: first, perspectives for extending the presenting
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modelling and evaluation work, and second, the big issue of demystifying modern machine
learning and AI systems.

8.1. Extending the Presented Modelling and Evaluation Work

As indicated by the results discussed in Section 7 regarding the perceived drop in the
fusion performance after the adding of two assumed good new detectors, one of the most
important next steps regarding the introduced approach is the design of a practical bench-
marking framework for single detectors in Strategic Preparation (SP). This would allow
for a more fine-granular detector evaluation and corresponding fusion operator design and
parameterisation (including the fusion weights). Such a benchmarking framework would
have to consider a wide range of data sets, classified using the four different concepts
for DeepFake generation (facial reenactment, facial replacement (or face swapping), face
editing and face synthesis) as well as clearly identified types of traces imposed to the
media objects by the corresponding modifications. Only with such a framework, necessary
reasoning regarding performance influencing factors as well as bias and/or fairness issues
(see e.g., [55,59]) can be performed.

In addition to the escalation of the benchmarking extent, also the basic strategies
should be revised. Here, in accordance with the work presented in [60], a re-modelling of
the detection/classification problem as an n-class problem (where n corresponds to the
number of different DeepFake creation strategies, see Section 2.2) might become necessary.
This paradigm shift is assumedly strongly beneficial to the detection performance as well
as the interpretation of error behaviours (i.e., the decision plausibility and transparency).
Conceptually, it allows us to handle each of the different creation strategies as what they
are: different manipulation pipelines leaving clearly distinguishable artefacts or traces.
Technically, it would allow to train much more precise decision models for each DeepFake
creation strategy, instead of representing them all as different sub-spaces of the class
‘DeepFake’ in the currently trained models.

A second important issue for future work is the extension of investigations into error,
loss and uncertainty in the forensic processes as motivated in previous work (esp. [25]).
This requires research efforts especially in the field of demystifying AI system decisions
(see Section 8.2 below), not only for classical decision methods with hand-crafted features,
but also for the more recent approaches relying of neural network to learn feature spaces
that lack intuitive interpretation.

Third, but most important, increasing the maturity of approaches requires the ex-
tension of the work from modelling into practical frameworks. Here, joint efforts with
system developers (e.g., for police case management systems) as well as certification bodies
would be required to achieve this goal. An very interesting success story in this regard
is the following: Regarding digital camera forensics a major breakthrough can be seen in
the law case United States of America v. Nathan Allen Railey (United States District Court
for the Southern District of Alabama (for a short summary of the relevant part of the
court case see [78])). In the Daubert hearings of this case, the method of digital camera
authentication based on intrinsic characteristics of its image acquisition sensory developed
by Jessica Fridrich and her university research group (see e.g., [79]) got accepted for the
first time as forensic evidence. The FBIs Forensic Audio, Video, and Image Analysis Unit
(FAVIAU) established in the Daubert hearings that this approach (and the corresponding
tool ‘FindCamera’ developed and evaluated in a public private partnership effort lead by
the FBI and the US Airforce Research Labs) meets all necessary Daubert criteria and the
presiding judge furthermore decided that this evidence (or more precisely the FBI expert
testimony based on this media forensic analysis) also meets the FRE rule 702 criteria.

As discussed above in Section 2.1.2 forensics are entirely governed by national leg-
islation. Therefore, this requires nation specific efforts to get such methods and proce-
dures court-ready.
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8.2. Demystifying Machine Learning and AI Systems

To demystify machine learning, a comparison of the advantages and disadvantages
of each individual decision forming method as well as each trained model is required.
Besides the previously mentioned aspects of detection and generalisation performances
and the dimensionality and composition of the feature space, further aspects such as
training duration (including training success estimates) and model complexity (including
its impact on explainability) have to be considered. Modern neural network based analysis
and detection methods show impressive results regarding detection results on data similar
to the training data used to create the network. What are still issues for research are the
generalisation power of such methods (i.e., how well the systems perform on previously
unseen data) as well as the transparency, correctness and fairness of their decisions.

Recent research is looking especially into these questions of understanding the inner
workings of black box neural networks, e.g., by determining the most important neurons
in a network and deducing knowledge from those analyses. Some papers, like [80], even
extend into automated linguistic annotation methods to provide better understandable
descriptions of internal workings.
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Pros and cons of comparing and combining hand-crafted and
neural network based DeepFake detection based on eye blinking
behavior
Dennis Siegel1, Stefan Seidlitz1, Christian Kraetzer1, Jana Dittmann1

1 Otto-von-Guericke University, Magdeburg, Germany

Abstract
Temporal feature spaces are a promising approach for Deep-

Fake detection, since DeepFake synthesis is most often done on a
frame-by-frame basis. With the existing and upcoming regulations
on European level, the EU General Data Protection Regulation
(EU GDPR) and Artificial Intelligence Act (AIA) in particular,
data minimization and decision transparency are of concern also
for such media forensic methods. In order to bring these aspects
together, this paper utilizes two different algorithms both analyz-
ing the eye blinking in the videos. The first one is implemented
using deep learning to predict blinking behavior. It shows chal-
lenges of hyper-parameter tuning for the training of such a model.
The second detector uses an existing hand-crafted approach to
identify a suitable number of frames (i.e., video duration) required
to reliably detect DeepFakes. Considering GDPR concerns, an
optimal trade-off between detection performance and data mini-
mization is found in the range of 35 to 40 seconds of video, giving
a detection accuracy of 96.88% for the DeepFakes tested.

Introduction and Motivation
DeepFakes present a recent advancement in technology en-

abling manipulations in digital media that focus on the replace-
ment of a face in a video by another face. They have a wide area
of use cases and their intent is not always clear, as they may also
have positive aspects that need to be considered [19]. In particu-
lar the usage as a privacy enhancement technique (PET) has to be
named here [6]. Regardless of their use case, DeepFakes should
be identifiable, to detect and prevent their misuse, which requires
suitable detection approaches. In general, these can be catego-
rized according to temporal and spatial methods. This division
goes hand in hand with image or video DeepFakes. Spatial meth-
ods utilize image manipulation detection techniques. In contrast,
temporal methods have stricter requirements of inputting a video
and potentially higher computational costs. Their suitability is
given due to flaws / restrictions in current DeepFake synthesis
methods. This is due to the fact that most DeepFake synthesis
methods are working frame by frame, creating temporal anoma-
lies in video streams. [24]

In this paper the focus is on temporal methods. It contains
the following contributions: First, the evaluation of a deep learn-
ing based eye blinking predictor. Second, the identification of
medical concerns regarding blinking and development of privacy
enhancement strategies. Third, the identification of suitable video
duration thresholds for DeepFake detection using eye blinking.

State of the art in DeepFake detection
A wide variety of different approaches for DeepFake de-

tection has been introduced in literature. Mirsky and Lee [24]
categorize detection approaches based on spatial and temporal
features. Furthermore, the approaches are divided by them into
hand-crafted and deep features. A similar survey overview can be
found in Nguyen et al. [26], where the separation is done based
on image- and video-based techniques, without further splitting
based on the used machine learning techniques. In Yu et al. [41]
the separation is solely done for DeepFake videos. Again, the
categories are similar, including approaches for both spatial and
temporal features. Although spatial approaches are also important
(especially forensic approaches focusing on individual images),
they are outside the scope of this paper. Instead, the following
sections present selected approaches to DeepFake detection using
hand-crafted and deep learning based temporal approaches.

DeepFake detection using hand-crafted feature
spaces

In general, it is difficult to separate approaches based on the
categories of ‘hand-crafted’ and ‘deep learning’. There are vari-
ous combinations of both modalities by introducing hand-crafted
feature spaces, which are classified by deep learning [3, 7]. In
terms of traditional machine learning classification, most hand-
crafted detectors utilize support vector machines (SVM) [23, 39].

Agarwal et al. present DeepFake detection based on lip syn-
chronization, by comparing the spoken word sounds (phonemes)
with mouth movements in video (viseme) [3]. The evaluation
is done both manually, by introducing a human operator label-
ing frames and automated using a convolutional neural network
(CNN). In addition, the detection performance is evaluated based
on video duration.

In [34] three hand-crafted detectors are proposed based on
eye, mouth and the comparison of foreground and background to
detect DeepFakes. While these detectors did not yield acceptable
detection performances individually, a decision-level fusion in-
creased the performance. In [19] both an hand-crafted and deep
learning based feature extractor are used to detect DeepFakes
based on inconsistencies in eye blinking behavior.

DeepFake detection using deep learning feature
spaces

Established images based DeepFake detectors are by reason
of the video compression not always applicable for video data,
because video compression results in strong degradation within
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the video frames [2]. Furthermore, most neural networks based
detectors (e.g. [21], [25] or [32]) solely detect DeepFakes based
on individual frames. In consequence, it is possible that contigu-
ous frames of DeepFake videos results in inconsistencies between
the frames which are in certain circumstances not visible by the
human eye. In the area of neural networks those temporal ar-
tifacts are detectable by recurrent network structures. For ex-
ample, Korshunov et al. [18] used a Long Short-Term Memory
(LSTM) architecture to detect inconsistencies between the au-
dio and video stream. For the audio stream they used Mel fre-
quency cepstral coefficients (MFCC) and for the video stream
they calculate 42 distances between mouth keypoints of the 68
landmarks dlib model [17]. Güera et al. [13] combine in a convo-
lutional LSTM the spatial dimension using Convolutional Neural
Networks (CNNs) and the temporal dimension using LSTM to
analyze coherence inconsistencies between the frames. Another
recurrent network structure is the Gated Recurrent Unit (GRU)
network which is used by Sabir et al. [31]. They first cropped the
frames to the facial area which are then compared by the GRU
network to detect temporal discrepancies across the frames.

Motivated by the fact that the human blinking behavior was
not or less present in first DeepFake videos, Li et al. [20] proposed
a LSTM based blinking detector. They combined the LSTM layer
with a convolutional layer to detect closed or opened eye states
in the faces of all video frames. Newer DeepFake generation ap-
proaches solved the problem of missing blinking events within
the video. The detector of Li et al., also known as In Ictu Oculi, is
not able to differentiate between a real and a fake eye blink event.
Only videos without blinking events allows the detector to clas-
sify those videos as fake. Further, the detector was not tested on
DeepFakes which are not generated by the DeepFake tool used by
its authors. An implementation of In Ictu Oculi is provided by its
authors on GitHub1 but this version only works as a blinking de-
tector, not being able to differentiate between real and fake videos
(it only returns open or closed eye states for the frames within
a video with a probability between 0 and 1 but no indication of
whether this implies a DeepFake or not).

Regulatory Requirements and their Impact to
Feature Space Design

Additional requirements for AI applications (such as media
forensics methods and frameworks) conditions are established by
legislation at the European level. One such regulation was in-
troduced with the EU General Data Protection Regulation (EU
GDPR, [10]). It addresses general principles of data protection in
terms of data collection and processing. In particular, the follow-
ing three (out of seven) principles are of importance ([10]):

• Lawfulness, fairness and transparency: “Processing must be
lawful, fair, and transparent to the data subject.”

• Purpose limitation: “You must process data for the legiti-
mate purposes specified explicitly to the data subject when
you collected it.”

• Data minimization: “You should collect and process only as
much data as absolutely necessary for the purposes speci-
fied.”

In addition, Article 9 of the GDPR states: “Processing of per-

1https://github.com/yuezunli/WIFS2018 In Ictu Oculi

sonal data revealing racial or ethnic origin, political opinions,
religious or philosophical beliefs, or trade union membership,
and the processing of genetic data, biometric data for the pur-
pose of uniquely identifying a natural person, data concerning
health or data concerning a natural person’s sex life or sexual
orientation shall be prohibited.” [10]

Another regulation relevant in the context of this paper is the
upcoming EU Artificial Intelligence Act (AIA) [11], addressing
the usage of AI systems. One aspect of particular importance is
the criterion of human oversight in using AI systems (Article 14).
This is supposed to lead to a reduction of black-box algorithms
and enforces human-in-the-loop and human-in-control aspects
for AI systems. In addition, Article 52 Paragraph 3 of the current
AIA draft states, that DeepFakes must be marked as such [11].

In this paper, as underlying forensic process model, the prin-
ciples established in the best practice guidelines on IT forensics
of the German BSI (German Federal Office for Information Se-
curity) [5] (German: “Leitfaden IT-Forensik”) are used. This best
practice document provides various means for modeling foren-
sic processes, including the definition of a generic phase-driven
investigation & reporting model, a basic data model and a clas-
sification of methods and tools. Like many other best practice
documents in this field it covers basic investigation principles,
process models, forensic data types, etc. but does not provide do-
main specific process models and guidelines for specific media
forensic investigations such as DeepFake detection. Here, exist-
ing research, such as the latest extension to the BSI guidelines [5]
described as the Data-Centric Examination Approach for Incident
Response- and Forensics Process Modeling (DCEA) summarized
in [16] and [35], is used as basis for extending the scope of these
guidelines to achieve a higher degree of maturity for the state of
the art in taylor-made models for media forensics (incl. DeepFake
detection).

The core of DCEA has three main components: a model of
the phases of a forensic process, a classification scheme for foren-
sic method classes and forensically relevant data types. The six
DCEA phases are briefly summarized as: Strategic preparation
(SP), Operational preparation (OP), Data gathering (DG), Data
investigation (DI), Data analysis (DA) and Documentation (DO).
At this point only the importance of the SP has to be pointed out,
since it is the phase that also includes all research and evaluation
activities considered in this paper. For further details on the phase
model as well as the method classes and data types, the reader is
referred, e.g. to [16].

Privacy concerns in the evaluation of biometric
data

The human face is an often used biometric trait, that besides
the ID also reveals other information about the person. Even pic-
tures of parts of the face allow to derive personal attributes like
the gender, age, ethnical background, etc. as well as certain health
issues [37]. The work presented in that paper indicates that it is
possible to identify illnesses such as glaucoma and cataracts based
even on single images. Furthermore, there are various studies ad-
dressing the aspect of spontaneous eye blinking. On average, a
human blinks around 10 to 15 times a minute (i.e., once every 4
to 6 seconds [1]). In a study by Sforza et al. [33] it was identified,
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Figure 1. Reduction steps taken for data acquisition

that woman blink more frequently than men and it further differ-
entiates based on age. In contrast, babies and children blink less
frequent with around 2 times a minute. In addition, the blinking
frequency can be affected by external influences, such as talk-
ing [36]. Another study by Jung et al. [15] identified a correlation
between children frequently blinking and tic disorders.

Based on that, in conjunction with the previously discussed
Article 9 of the GDPR, it is important to protect these personal at-
tributes and prevent misuse or (unintended) information leakage.
In general, there are three different possibilities to handle privacy
concerns:

• all critical aspects are available to all
• features are overwritten by default parameters
• critical aspects are excluded, removed or overwritten

The first approach does not exclude personal attributes, instead it
makes them available to all entities with access to the data set.
This might require extensive labeling and also the agreement of
the subjects of each sample. The privacy enhancement can be
done either on feature or image level. On feature level, one pos-
sibility would be to overwrite features by default values. Rele-
vant features have to be identified, that enable deriving personal
attributes. As stated by Angwin et al. [4] personal attributes do
not rely on individual features, but rather a correlation of multiple
features. Lastly, critical aspects could be excluded, removed or
overwritten. One possible approach for this is by using semantic
image inpainting [40]. By now there are various existing privacy
preserving methods, such as de-identification of facial images [8].
Othman and Ross [27] use morphing techniques to change the ap-
pearance of an face image. By using both a male and female
image in the morph process they preserve the identity, but change
the gender. Also DeepFake synthesis can be used for this purpose.
In [6] its usage on social media is discussed, to anonymize faces
in online media. For this purpose, the faces are replaced selec-
tively based on the degree of acquantance, so to the user unknown
faces are anonymized.

Although using image inpaiting or DeepFake to secure pri-
vacy in the video database seems most appropriate, it is not cur-
rently possible to use these techniques for the task of DeepFake
detection. One reason for this is that the methods cause a change
in the data and thus real training data might been changed by this
method and then have to be regarded as DeepFake. To mitigate
the downside for DeepFake detection, it is necessary to restore
the original media of the synthesis. Based on a recent DeepFake
challenge by Guarnera et al. [12], one question was to recreate
the source image of DeepFake synthesis. Unfortunately no algo-
rithms were submitted for this subtask.

In contrast to the possibilities discussed above, this paper
presents an approach of information reduction based on a multi-
level representation minimization. As shown in figure 1 a total of
five different representations were considered for data extraction.
Each reduction step also reduces the amount of information in
the corresponding representation. So by changing from frames to

keypoint representation for example, the requirement of storing
the data as image is removed and replaced by keypoint graphs.

Development of a LSTM Network to predict
blinking behavior

The development of the LSTM network based blinking pre-
dictor would occur within the strategical preparation (SP) phase
of a forensic framework. The proposed forensic pipeline is il-
lustrated in figure 2. The State-of-the-Art section above gives a
small overview about existing LSTM approaches, but many more
LSTM approaches exists. In consequence it is important to de-
cide which approach is applicable for an eye blinking prediction
which come with many different training iterations. A stacked
LSTM network consisting of more than one LSTM layer seems
the best strategy to train human eye blinking behavior.

For this paper, the training data for the LSTM network is
the Celeb-real part of the Celeb-DF [22] data set. In preparation,
the eye aspect ratio (EAR) for both eyes in each video is gener-
ated, according to the proposed method in [19]. All curves were
normalized in the range of 0 and 1, calculated by the lowest and
highest eye aspect ratio (EAR) value of all training samples. The
prediction utilizes a sliding window approach, where two consec-
utive windows are taken, the first one for model training and the
second for prediction. The window size is calculated as 5 seconds
multiplied by 30 frames, which is the median frame rate of all
Celeb-real videos. In other words the LSTM network was trained
on 150 frames to create a prediction for the next 150 frames.

After the LSTM training the aim was to compare the pre-
dicted EAR curves with the calculated EAR curve from all
videos of the Celeb-DF data set, divided into the three classes
Celeb-real, YouTube-real and Celeb-synthesis. The difference be-
tween both the calculated and predicted curves is determined by
∑n

x=s(max(calcx, predx)−min(calcx, predx))/n, with s being the
index of the first predicted frame and n the total number of pre-
dicted frames. The calculated distance can then be used as feature
for DeepFake detection.

Evaluation setup
As indicated above, for the training the Celeb-real part of the

Celeb-DF [22] is used. The dlib face detector [17] analyzes all
videos to detect faces in every frame of all included videos. In the
training phase, a total of 56 videos had to be removed, because the
face detection was not successful in several frames. Furthermore,
the videos of Celeb-real do not have the same video length and
some even had less than 300 frames. Due to the selected window
size for the LSTM network of 300 frames, these videos were un-
usable. Additional 51 videos have been removed from the training
data set because they were to short.

Addressing the hyper-parameter tuning for the LSTM net-
work training, different training strategies were carried out. Dif-
ferent LSTM unit amounts were tested from ranging from 100 to
300, different counts of LSTM layers were tested from 2 to 4 lay-
ers and also dropout in different strengths from p = 0.1 to p = 0.9
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Figure 2. Illustration of the DeepFake detection pipeline used in this paper in its templating in the forensic process model phase of Strategical Preparation

(SP). Components outside the scope of this paper are marked by dashed lines.

was inserted after every LSTM layer. The maximal training it-
erations was adjusted after full convergence of the training loss,
which in most cases was after 500 epochs.

Evaluation results

Figure 3. Predicted eye aspect ratio and initial EAR curve on the example

of the left eye for the video id13 0008 [22]

Figure 3 shows an initial EAR curve calculated from a Celeb-
real video of the Celeb-DF data set and the predicted blinking
curve with estimated blinking events of a trained LSTM network.
For the model a stacked LSTM network with two LSTM lay-
ers followed by a dropout layer with p = 0.2 and a final dense
layer was trained for 500 epochs. The model by itself is not
well trained, but a tendency of the predicted curve is visible and
promising. The model predict approximately every 50 to 100
frames a blinking event, considering 30fps approximately every
1.66 to 3.33 seconds. Although the blinking appears to be slightly
too often, it can be explained by the fact that the person in the
video was talking (which results usually in a slightly increased
blinking behavior). The sudden change in predicted values on
frame 300 occurs because of a new segment, which is predicted
with the real EAR data between frame number 150 and 300. The
consequence of the results shown in figure 3 is the insight that
further hyper-parameter tuning of the LSTM network is needed,
which will also increase the computational cost that has to be in-
vested into this detector in the strategical preparation phase. This
highlights an important difference between hand-crafted and deep
learning based approaches, namely the scope and depth of hyper-
parameter tuning. At the current state of this blink predictor, fur-
ther hyper-parameter tuning is required, to make the results more
reliable.

The second evaluation goal is to identify a suitable video
duration to detect DeepFakes based on eye blinking. For this pur-
pose, the DeepFake detector DFeye [34] is used on an in-house
data set aggregating data from FaceForensics++ [29, 30], Celeb-
DF [22], DFD [9] and HiFiFace [38] (2904 samples in total). The
model is trained using the J48 [28] classification algorithm pro-
vided by WEKA [14] in its default parameterization and with 10-
fold stratified cross-validation. Afterwards, the samples used are
analyzed for the impact of the duration on the achieved accuracy.
Due to the different frame rates, the optimal length is determined
based on the video duration instead of the number of frames.

frames per second 15 18 24 25 29 29-30 30 60
# samples 6 2 413 852 5 19 1596 11

Framerate distribution in the considered data set.

Figure 4 shows the results categorized in 5 second video du-
ration spans and the corresponding number of samples (=videos
in the used set) per duration. The peak performance of 96./8% ac-
curacy is achieved for video durations between 35 and 40 seconds
(containing 96 samples in the used set). Longer samples first re-
sult in slight decrease in accuracy. A perfect classification is then
again achieved for samples with an duration of at least 55 sec-
onds, however the amount of samples of this duration (33) is too
small to be relevant in the larger picture. The results obtained here
suggest, that there is both a minimum (for accurate detection) and
maximum (for privacy enhancement purposes) length for videos
in the range of 35 to 40 seconds.

Summary, Conclusions and Future Work
This paper shows possibilities and challenges of deep learn-

ing approaches for the purpose of DeepFake detection, especially
focusing on the relevance of suitable hyper-parameter tuning. The
current state of the blinking predictor enables future work to ex-
tend the existing approach towards a full blown blinking-based
DeepFake detector. This can be used to integrate both hand-
crafted and neural network-based methods and evaluate and com-
pare them against each other. Furthermore, the possibility to use
both blinking probability curves generated by [20] as well as eye
aspect ratios as baseline, allows to consider different representa-
tions of data. This enables the comparison of different training
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duration (in s) 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70 70-75
# samples 121 1179 707 343 158 107 96 49 57 18 17 8 7 1
accuracy (in %) 66.12 73.20 75.53 83.38 84.81 91.59 96.88 89.80 92.98 88.89 100 100 100 100

Evaluation results based on an inhouse data set for the detector DFeye.

Figure 4. Evaluation results based on an inhouse data set for the detector

DFeye.

data representations, to evaluate the usage for privacy enhance-
ment against the detection performance.
In addition to the work on blinking prediction, a video duration
analysis based on this approach is possible. The experiments per-
formed within this paper established an optimal minimum of 35
seconds and maximum of 40 seconds duration for this particular
data set. In general, the human eye blinking and the evaluation
itself is influenced by various external factors, such as distance of
the person towards the camera and the fact that the person was
talking in most samples used. Because of that, more training data
is required to also increase the necessary diversity of training and
testing material.
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Human-in-control and quality assurance aspects for a bench-
marking framework for DeepFake detection models
Christian Kraetzer1, Dennis Siegel1, Stefan Seidlitz1, Jana Dittmann1

1 Otto-von-Guericke University, Magdeburg, Germany

Abstract
Human-in-control is a principle that has long been estab-

lished in forensics as a strict requirement and is nowadays also
receiving more and more attention in many other fields of applica-
tion where artificial intelligence (AI) is used. This renewed inter-
est is due to the fact that many regulations (among others the the
EU Artificial Intelligence Act (AIA)) emphasize it as a necessity
for any critical AI application scenario. In this paper, human-in-
control and quality assurance aspects for a benchmarking frame-
work to be used in media forensics are discussed and their usage
is illustrated in the context of the media forensics sub-discipline
of DeepFake detection.

Introduction and Motivation
Intended courtroom usage of forensic methods requires stan-

dardized investigation and analysis procedures that underwent
quality assurance as well as standardization prior to application to
case work. Internationally accepted best practices governing this
field are e.g. the United States Federal Rules of Evidence (FRE;
esp. FRE 702, see [18]) and the Daubert standard in the US.
Authors like Champod et al. point out that, even if the Daubert
standard is only directly legally binding for court proceedings on
US federal level, they are also in many other countries worldwide
considered as a best practice for evaluation of the degree of matu-
rity of forensic methods as basis for expert testimonies intended
to be used in court (see e.g. [3], where the influence of the Daubert
standard on the evaluation and admissibility of scientific evidence
in Europe is discussed).
Within this paper focusing on the benchmarking of media foren-
sic methods, especially the following three (out of five) Daubert
criteria are relevant ([3]):

• “whether the expert’s technique or theory can be or has been
tested – that is, whether the expert’s theory can be chal-
lenged in some objective sense, or whether it is instead sim-
ply a subjective, conclusory approach that cannot reason-
ably be assessed for reliability”

• “the known or potential rate of error of the technique or
theory when applied”

• “the existence and maintenance of standards and controls”

Especially the second and the last of the criteria quoted
above are of importance within this context, because they imply
on one hand a strong need for process modeling as foundation
of work in standardization and on the other hand require
benchmarking work to allow to suitably measure or estimate the
potential rate of error of the method when applied in practice.

Many process models for forensic processes exist for ‘tra-
ditional’ forensic sub-disciplines (e.g. dactyloskopy), with the
intended purpose of making corresponding investigations fit for
courtroom usage. What they usually have in common is that they
define standards for application of methods and requirements for
the certification of practitioners, strictly putting an expert operator
in control of the investigation, leading to an expert testimony in
court. Most media forensic approaches today still lack maturity
in this regard because the focus here currently lies mostly only
on proposing AI detectors for specific forensic tasks, like image
manipulation detection or DeepFake detection, neglecting most of
the necessary modeling, benchmarking and standardization work
required to make such approached mature enough for court room
appearance.
This gap (i.e., the lack of required domain specific process mod-
eling and benchmarking work) is addressed in this paper in part
by the following contributions in this paper:

• An extension of existing modeling work on domain spe-
cific process models for media forensic investigations (here
illustrated on the example of DeepFake detection), to in-
clude human-in-the-loop and human-in-control aspects as
requested by changing requirements/legislation worldwide,
esp. the upcoming EU Artificial Inteligence Act (AIA).

• An empirical estimation of the generalization power (or lack
there-off) of pre-existing DeepFake detectors in intra and
inter data set benchmarking, using different data selection
strategies and classifiers.

• Initial tests on 2- vs. multi-class modeling of the decision
problem, showing interesting results for the potential at-
tribution / identification of the used DeepFake synthesis
method.

The rest of the paper is structured as follows: First, a very
brief overview over the current state of the art on domain specific
process modeling for media forensics in Europe and Germany is
given. The following section presents the modeling work in this
paper, extending an existing Data-Centric Examination Approach
for Incident Response- and Forensics Process Modeling (DCEA)
by including quality assurance aspects for a benchmarking frame-
work for DeepFake detection models. Based on this modeling
work, the core part of this paper presents empirical benchmarking
activities on the example case of DeepFake detection, describing
the setup and results for performance benchmarking for various
DeepFake detection models compared in the same framework.
The paper closes with conclusions and a summary of perspectives
for potential future work.
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Domain specific process modeling for media
forensics in Europe and Germany

The most recent best practice document for media forensics
in Europe is, at the time of writing this paper, the European
Network of Forensic Science Institutes (ENFSI) Best Practice
Manual (BPM) for Digital Image Authentication [8]. In its own
words it “aims to provide a framework for procedures, quality
principles, training processes and approaches to the forensic
examination” and is intended “to establish and maintain working
practices in the field of forensic Image Authentication (IA)
that will: deliver reliable results, maximize the quality of the
information obtained and produce robust evidence. The use of
consistent methodology and the production of more comparable
results will facilitate interchange of data between laboratories.”
It generalizes a workflow for an image authentications exam-
ination and provides a classification scheme for methods for
digital image authentication but insists that it “is not a standard
operating procedure (SOP) and addresses the requirements of the
judicial systems in general terms only” [8].
The reason why the ENFSI BPM does not intend to be a standard
operating procedure or a forensic process model as basis for
standardization purposes is, that such processes are governed by
national law and ENFSI has no directive authority in Europe.
Here, national regulation would be required to define the precise
legal context for any media forensic investigation and the usage
of the corresponding results in court.

Regarding the German situation, which is relevant for the
authors of this paper, the most relevant best practice document
regarding IT forensics in general (incl. media forensics) is the
BSI (German Federal Office for Information Security) guide on
IT forensics [2] (German: “Leitfaden IT-Forensik”). It provides
various means for modeling forensic processes, including the
definition of a generic phase-driven investigation & reporting
model, a basic data model and a classification of methods and
tools. Like many other best practice documents in this field it
covers basic investigation principles, process models, forensic
data types, etc. but does not provide domain specific process
models and guidelines for specific media forensic investigations
such as DeepFake detection. Here, existing research, such as
the latest extension to the BSI guidelines [2] described as the
Data-Centric Examination Approach for Incident Response-
and Forensics Process Modeling (DCEA) summarized in [14]
and [25], is used as basis for extending the scope of these
guidelines to achieve a higher degree of maturity for the state of
the art in taylor-made models for media forensics (incl. DeepFake
detection).

The core of DCEA has three main components: a model
of the phases of a forensic process, a classification scheme for
forensic method classes and forensically relevant data types.
The six DCEA phases are briefly summarized as: Strategic
preparation (SP), Operational preparation (OP), Data gathering
(DG), Data investigation (DI), Data analysis (DA) and Documen-
tation (DO). While the first two (SP and OP) contain generic (SP)
and case-specific (OP) preparation steps, the three phases DG, DI
and DA represent the core of any forensic investigation. At this
point the importance of the SP has to be pointed out, since it is
the phase that also includes all standardization, benchmarking,

certification and training activities considered in this paper. For
details on the phase model the reader is referred, e.g. to [14]
or [1].

The second core aspect of DCEA is the definition of
forensic method classes as presented in [14]. The third aspect
is the specification of forensically relevant data types. They
can be summarized as: MFDT1 “digital input data” (the initial
media data considered for the investigation), MFDT2 “processed
media data” (results of transformations to media data), MFDT3
“contextual data” (case specific information (e.g. for fairness
evaluation)), MFDT4 “parameter data” (contain settings and
other parameter used for acquisition, investigation and analysis),
MFDT5 “examination data” (including the traces, patterns,
anomalies, etc that lead to an examination result), MFDT6
“model data” (describe trained model data (e.g. face detection
and model classification data)), MFDT7 “log data” (data, which
is relevant for the administration of the system (e.g. system
logs)), and MFDT8 “chain of custody & report data” (describe
data used to ensure integrity and authenticity (e.g. hashes and
time stamps) as well as the accompanying documentation for the
final report).

In general, each processing operation (or operator) in an
DCEA process pipeline is considered here as an atomar process-
ing black box component with an identifier and (usually) a de-
scription of the processing performed in this operation. Each
component has four well defined connectors: input, output, pa-
rameters and log data (see figure 1). To pay respects to the par-
ticularities of this field and make the following modeling task ea-
sier, a fifth connector is defined within this paper for a specific
type of operator which requires a knowledge representation or a
model for its processing operation. In that case, this fifth connec-
tor is labeled model. A detailed description of the modeling of
these operators is given in [25].

The focus of the proposed extensions of the DCEA lies in
this paper on the integration of the human operator into the proce-
dures. Human-in-control is an principle that has long been estab-
lished in forensics as a strict requirement and is nowadays also re-
ceiving more and more attention in any field of application where
artificial intelligence (AI) is used. Among other regulations, the
EU Artificial Intelligence Act (AIA, [7]) emphasizes it as a neces-
sity for any critical application scenario. This extension is shown
in figure 1 where two human operators are added to the compo-
nent: One (labeled ‘HO’) as operator in control of the functional-
ities of the component and another one (labeled ‘Sys admin’) in
the loop on the infrastructure, analyzing the system logs (MFDT7)
and reacting to potential technical events such as an hard disc fail-
ure, etc.

Example case: Quality assurance aspects for
a benchmarking framework for DeepFake de-
tection models

Depending on the actual position of the component in a
forensic investigation pipeline, the human operator (HO) in con-
trol could be a someone defining in-house quality assurance
strategies (e.g. human operator ‘HO1 ’ in figure 2), a media foren-
sics expert performing explainable AI (xAI) tasks in the used fea-
ture space (‘HO 2’ in figure 2) or a data scientist at a standardiza-
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Figure 1. Template structure integrating the human operator(s) (HO) high-

lighted in red.

tion body like NIST running a benchmark and performing certi-
fication of the model trained (‘HO 3’ in figure 2). Obviously, all
these different example HO would need different expertise and
might have conflicting intentions.

The empirical evaluations performed in this paper focus on
the interplay between ‘HO 1’, ‘HO 2’ and ‘HO 3’ in figure 2.
Their interaction represents the cycle of decision model devel-
opment (or training), its benchmarking and reasoning on the ob-
tained results. For the performed evaluations in DeepFake detec-
tion, the following evaluation goals are defined:

• Estimation of generalization power (or lack there-off) in in-
tra and inter data set evaluations, using different data selec-
tion strategies and classifiers

• Initial discussion on 2- vs. n-class classification (where n is
the number of DeepFake synthesis methods plus one class
for original, non-modified videos)

• Impact of data augmentation in training (model robustness)
• First considerations on video post-processing operations as

potential counter-forensics

Evaluation setup
The evaluation setup is build according to the process model

and the evaluation goals discussed in the previous section. Its
general purpose is to provide an evaluation framework for Deep-
Fake detection models, based on suitable DeepFake data sets. The
video selection is done for each data set, where the selected num-
ber of videos corresponds to the minimal size of all data sets
given. The extracted source data is augmented using different
augmentation methods. All videos are processed in feature ex-
tractors introduced in [24] to classify DeepFakes based on eye

(DFeye), mouth (DFmouth) and image foreground (DFf oreground)
regions respectively. In addition, meta data is gathered to enable
a human operator (here ‘HO 1’) to further curate the data. The ex-
tracted feature lists are then split into distinct training and test data
for all model generation and benchmark strategies. This separa-
tion is further used to enable different evaluation scenarios, such
as intra and inter data set evaluations.

Benchmarking data set selection
Previous experiments given in [16] have shown that early

DeepFake video data sets, such as TIMIT-DF [23, 15], show vis-
ible flaws in the videos, making them unsuitable for a fair bench-
marking of detectors. Therefore, a manual curation and evaluation
of data sets to be used is performed. FaceForensics++ [21, 22]
is another early data set, that includes various DeepFake synthe-
sis methods, but also got a recent extension in HiFiFace [27].
Initially, DeeperForensics [11] was included into the data pool
to be used in this paper as an augmented data set based on
FaceForensics++, but was then replaced by in-house augmenta-
tion for comparability reasons. The DeepFake Detection data
set (DFD) by Google and JigSaw [6] is available as a part of
FaceForensics++, providing both additional real videos as well
as the output of a DeepFake synthesis method. Celeb-DF [19] is
large data set, using an Autoencoder for synthesis. Furthermore,
FakeAVCeleb [13] was originally considered for usage in this pa-
per, due to the fact that it also includes audio data and a labeling
of ethical background and gender, but it was dropped due to a low
resolution of 224x224. In table 1 a summary of selected data sets
can be found.

Data augmentation
Based on the selected data sets an equal amount of 3631

videos per subset of each data set are taken for evaluation. The
selection occurs pseudo-random based on a seed (here, the ran-
domly chosen value 7 is taken as seed). To further augment the
data sets and simulate a less optimal training scenario, the se-
lected videos undergo two different post-processing operations:
One additional data set is generated by re-sampling the videos
to 15 frames per second, a second data set is created by resizing
them to a width of 480 pixels while keeping the aspect ratio to
prevent distortion. This augmentation is done using the FFmpeg
library [9]. In total, 7986 videos (363 + 7*3*363) are used in this
benchmark.

For classification, a total of five different classifiers from
WEKA [10] are selected to represent a variety of different algo-
rithms. These are NaiveBayes [12], LibSVM [4], Simple Logis-
tics [17, 26], JRIP [5] and J48 [20].

To ensure the distinct split of training and test data two differ-
ent approaches are taken. The first one utilizes methods built into
WEKA, which includes a 66% training 34% testing percentage
split, as well as 3-, 5- and 10-fold stratified cross-validation. The
second approach involves manual pre-processing and dividing of
the samples in fixed splits. This allows for more precise group-
ing of the data and thus enables addressing of specific evaluation
questions. For reproducibility, the splits occur pseudo-randomly
by using a deterministic script with a seed (again the value 7 is

1The number of files in the smallest set used (here ‘DFD-actors’) de-
fines the size of the subsets drawn from all other data sets used, to ensure
equally sized representations in training and testing.
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Figure 2. Illustration of the DeepFake detection pipeline created as a template in the forensic process model phase of Strategic Preparation (SP), with the

inclusion of human operators (HO) implementing human-in-control as well as human-in-the-loop (for ‘Sys Admin’). Contribution is highlighted in red.

data set # individuals # real video # DeepFake video subset # selected videos
FaceForensics++ [21, 22] ?2 1 000 4 000 youtube-real 363

Face2Face 363
FaceShifter 363

NeuralTexture 363
DFD [6] 28 363 3 068 DFD-actors (real) 363

HiFiFace [27]1 ?2 0 1 000 FaceSwap 363
Celeb-DF [19] 59 890 5 639 Celeb-real 363

Celeb-synthesis 363
Overview of the data sets used in this paper for benchmarking of DeepFake detection models.
1: Based on the youtube-real subset of FaceForensics++.
2: Numbers correspond, but unfortunately the exact number have not been disclosed by the original authors.

taken). Using this script, disjointed training and testing splits of
66%/34%, 80%/20% and 90%/10% are generated automatically.

Evaluation results
As discussed previously, the evaluation is done in multiple

individual experiments. In the first experiment the evaluation aims
at different model generation and benchmark strategies, using the
non-augmented data for evaluation. With the consideration of all
three detectors DFeye, DFmouth and DFf oreground the same tenden-
cies of classification can be found, with some small exceptions.

Figure 3 displays the results on the example of DFeye. In general,
it can be said, that there are almost no differences between 3-, 5-
and 10-fold cross validation in this benchmark. In terms of pre-
defined splits, an increase in detection performances can be found
with increasing training data set size. This comes with an excep-
tion for the J48 classifier on the detectors DFeye, where smaller
training splits yield higher detection performance on the test set,
indicating generalization problems (here in the handling of out-
liers in the test data) for this setup. Besides this mall glitch in
the performance of J48, none of the tested classifiers is signifi-
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cantly better than the others. Each of the detection approaches
had a different classifier scoring best, in all cases achieved on the
90/10 fixed split. LibSVM for DFeye (Kappa=0.4991), J48 for
DFmouth (0.4113) and Simple Logistic for DFf oreground (0.3620).
The Kappa statistics of DFmouth are in the range of 0.2544-0.4113,
showing a significant drop in performance compared to previous
results in [24]. This might suggest that anomalies in the mouth
region are data set specific and do not occur to the same extent
as in the previous experiment. Same can be said for DFf oreground
ranging Kappa values from 0.1810 to 0.3620, showing lower but
less fluctuating performances.

Figure 3. Detection performances (Kappa values) for different model gen-

eration and benchmark strategies, on the example of DFeye

The second experiment addresses the usage of augmentation
strategies in both training and testing. For this purpose, the data
set is divided into native and augmented videos. Independently
of the detector, augmentation usage solely for training or testing,
results in a drop of detection performance. But it also has to be
noted, that the integration of augmentation strategies in both train-
ing and testing did not impact the detectors negatively, and even
increased the performance of DFmouth and DFf oreground (see the
corresponding table).

The third experiment focuses on the impact of different
DeepFake synthesis methods and considers every method as an
individual class. Based on the considered data sets this results
in a 6-class classification problem, which is then back projected
to 2-class (‘original’ vs. ‘DeepFake’) for direct comparison. In
terms of individual synthesis methods, it turned out that HiFiFace
is clearly different from the others, especially for DFeye. Here,
none of the other types is classified as HiFiFace and also the Hi-
FiFace subset is solely classified as ‘real‘ or ‘HiFiFace‘. This
suggests that more recent DeepFakes show less flaws in creation,
here on the case of eye region and blinking specifically. This dis-
tinction is not found for DFmouth and DFf oreground . However, con-
sidering the results, the separation does not show an improvement
in detection performance in any detector compared to a 2-class
classification. Nevertheless, it allows for an attribution / identi-

fication of the used synthesis method and therefore for a better
justification of the decision made by using this model.

detector 2-class 6-class
DFeye 73.55% (0.4312) 72.73% (0.4348)

DFmouth 69.90% (0.3347) 67.60% (0.3186)
DFf oreground 71.83% (0.3199) 62.19% (0.2228)

Comparison of 2- and 6-class DeepFake detection.

Summary, Conclusions and Future Work
Summarizing the empirical results presented in this paper,

it is shown that the promising results previously shown in [24]
are not reliable (i.e., not generalizing well) when properly bench-
marked: The extension of the data considered (in different eval-
uation scenarios) shows challenges in generalization power, an
important lesson learned regarding human-in-control and QA as-
pects, highlighting the relevance of benchmarking for data selec-
tion as well as feature and decision model quality assurance.
First tests on 2- vs. multi-class modeling of the decision problem
show interesting initial results for the potential attribution / iden-
tification of the used DeepFake synthesis method.
Important future work would be to extend the introduced bench-
marking framework to include additional datasets to cover an even
wider range of DeepFake synthesis methods and also more differ-
ent sets of ‘genuine’ (non-DeepFake) samples with different pre-
processing histories. In this regard, the first data augmentation
tests discussed here could be a suitable starting point for creat-
ing more robust detector models. Extensions along this line could
e.g. use the DeeperForensics data set (with its augmentations) as
an extension of FaceForensics++.
Besides the generalization issue, also the closely related question
of training bias and fairness has to be considered in future work,
potentially with evaluations using the FakeAVCeleb data set with
its metadata annotations (incl. among other characteristics an in-
dication on the ethical background of the person in the video).
From the perspective of potential courtroom fitness, an important
future step would be to find a independent and trustworthy third
party like NIST in the US or the BSI in Germany that could be
motivated to perform independent benchmarking (and potentially
also certification) of methods and trained models.
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in video conferencing based on the metadata of encrypted audio and video streams - consider-

ations and possibilities. Proc. SECURWARE 2020: the Fourteenth International Conference on

Emerging Security Information, Systems and Technologies, November 21-25, S. 82-89, 2020.

• A. Makrushin, C. Kraetzer, J. Dittmann, C. Seibold, A. Hilsmann und P. Eisert: Dempster-

shafer Theory for Fusing Face Morphing Detectors. 27th European Signal Processing Conference

(EUSIPCO) - [Piscataway, NJ]: IEEE, S. 1-5, 2019.

• A. Makrushin, C. Kraetzer, G. Mittag, H. Birkholz, U. Rabeler, A. Wolf, C. Seibold, A. Hilsmann,

P. Eisert, L. Wandzik, R. Vicente Garcia und J. Dittmann: Distributed and GDPR/IPR Compliant

Benchmarking of Facial Morphing Attack Detection Services. Proceedings of the International

Conference on Biometrics for Borders 2019: Morphing and Morphing Attack Detection Methods,

2019, Warsaw, Poland, 2019.

• T. Neubert, C. Kraetzer und J. Dittmann: A Face Morphing Detection Concept with a Frequency

and a Spatial Domain Feature Space for Images on eMRTD. Proceedings of the ACM Workshop

on Information Hiding and Multimedia Security - New York, NY: The Association for Computing

Machinery, S. 95-100, 2019.

• Andrey Makrushin, Christian Kraetzer, Tom Neubert, Jana Dittmann: Generalized Benford’s

Law for Blind Detection of Morphed Face Images. In Proceedings of the 6th ACM Workshop

on Information Hiding and Multimedia Security (IH&MMSec ’18). ACM, New York, NY, USA,

49-54.

• Tom Neubert, Christian Kraetzer, Jana Dittmann: Reducing the False Alarm Rate for Face Morph

Detection by a Morph Pipeline Footprint Detector. Proc. 26th European Signal Processing

Conference (EUSIPCO 2018), Rome, Italy, September 3rd - 7th, 2018.

• Christian Kraetzer, Jana Dittmann: Steganography by synthesis: Can commonplace image ma-

nipulations like face morphing create plausible steganographic channels?. In Proceedings of the

255



Appendix A: Complete List of Publications Published during the Habilitation Project

13th International Conference on Availability, Reliability and Security (ARES 2018). ACM, New

York, NY, USA, Article 11, 8 pages. DOI: https://doi.org/10.1145/3230833.3233263, 2018.

• Andrey Makrushin, Christian Kraetzer, Tom Neubert and Jana Dittmann: Generalized Benford’s

Law for Blind Detection of Morphed Face Images. In IH&MMSec ’18: 6th ACM Workshop

on Information Hiding and Multimedia Security, June 20–22, 2018, Innsbruck, Austria. ACM,

Innsbruck, Austria, https://doi.org/10.1145/3206004.3206018

• Christian Kraetzer, Andrey Makrushin, Tom Neubert, Mario Hildebrandt, Jana Dittmann: Mod-

eling Attacks on Photo-ID Documents and Applying Media Forensics for the Detection of Facial

Morphing. In Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia

Security (IH&MMSec ’17). ACM, New York, NY, USA, 21-32.

DOI: https://doi.org/10.1145/3082031.3083244, 2017.

• Christian Kraetzer, Robert Altschaffel, Jana Dittmann: Tendenzen zum Profiling von verschlüssel-
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