
A Deep Learning Framework for Predicted 4D
MRI

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von

Gino Gulamhussene, M.Sc.

geb. am 16.08.1989 in Staßfurt

1. Gutachter Prof. Dr.-Ing. Christian Hansen
Fakultät für Informatik
Otto-von-Guericke University

2. Gutachter Prof. Dr.-Ing. Frank Gerrit Zöllner
Medizinische Fakultät Mannheim
Universität Heidelberg

3. Gutachter Prof. Dr.-Ing. Dietrich Paulus
Fachbereich Informatik
Universität Koblenz

Betreuer Prof. Dr.-Ing. Christian Hansen and Dr.-Ing. Marko
Rak

Magdeburg, 07. Oktober 2024



Gino Gulamhussene
A Deep Learning Framework for Predicted 4D MRI
Dissertation, 07. Oktober 2024
Gutachter: Prof. Dr.-Ing. Christian Hansen , Prof. Dr.-Ing. Frank Gerrit Zöllner und Prof.
Dr.-Ing. Dietrich Paulus
Betreuer: Prof. Dr.-Ing. Christian Hansen und Dr.-Ing. Marko Rak

Otto-von-Guericke-Universität Magdeburg
Virtual and Augmented Reality Group
Department of Simulation and Graphics
Faculty of Computer Science
Universitätsplatz 2
39106 and Magdeburg



Kurzfassung

Organbewegungen stellen eine ungelöste Herausforderung bei bildgesteuerten
Interventionen wie Strahlentherapie, Biopsien oder Tumorablationen dar. In dem Be-
streben, dieses Problem zu lösen, hat sich das Forschungsgebiet der zeitaufgelösten
volumetrischen Magnetresonanztomographie oder 4D MRT entwickelt. Die derzeiti-
gen Techniken sind jedoch für die meisten Interventionen ungeeignet, da sie nicht
über eine ausreichende zeitliche und/oder räumliche Auflösung verfügen und lange
Aufnahme- und Rekonstruktionszeiten haben.

In dieser Arbeit wurde ein öffentlicher Datensatz erstellt, welcher aus dynamischen
2D und statischen 3D Leber magnetic resonance imaging (MRI) von 20 gesunden
Probanden besteht und für die Entwicklung und das Testen von 4D MRI Methoden
genutzt werden kann. Auf diesem Datensatz wurde eine klassische Sortier- und
Stacking-Methode, welche Template-Updates nutzt entwickelt und getestet. Sie
dient als Referenz für die anschließende Entwicklung eines auf Deep Learning
basierenden Ansatzes. Es wird gezeigt, dass Template-Updates die Robustheit
der Methode gegenüber ouf-of-plane Bewegungen der verfolgten Landmarken
verbessern und gleichzeitig die Rekonstruktion beschleunigen.

Ein neuartiges, auf Deep Learning basierendes Framework für die Erstellung von
4D Leber MRI wurde auf demselben Datensatz entwickelt und getestet. Es ver-
wendet ein Deep-Learning-Netzwerk, bei dem Input und Output nach dem hier
vorgeschlagenen Konzept der transitiven Informationsbrücken organisiert werden.
Dies macht die Methode zu einer durchgängig trainierbaren Lösung für das 4D
MRI Rekonstruktionsproblem. Die netzwerkunabhängige Eigenschaft des Ansatzes
wurde mit verschiedenen Architekturen getestet. Das Framework erreicht Rekon-
struktionszeiten von unter einer Sekunde für hochauflösende 3D Leber MRI mit
großem field of view (FOV) und ermöglicht so echtzeit 4D Leber MRI.

Darüber hinaus wird eine Transfer-Learning-Strategie vorgeschlagen, um die Menge
der Trainingsdaten und damit die für die 4D MRI Rekonstruktion benötigte vorherige
Aufnahmezeit zu reduzieren. Damit wird dem medizinischen Hintergrund Rechnung
getragen, dass lange Aufnahmezeiten medizinisch und wirtschaftlich nicht praktika-
bel sind. Es wird eine Ensembling-Strategie vorgeschlagen, bei der mehrere Modelle
ein 4D MRI vorhersagen. Es wird gezeigt, dass der Mittelwert der Vorhersagen eine
verbesserte Qualität und einen verbesserten Vorhersagefehler aufweist. Zudem wird
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die Standardabweichung der Vorhersagen zur Berechnung einer Unsicherheitskarte
verwendet. Darüber hinaus wird die Wiederverwendung von Trainindaten als transi-
tive Informationsbrücken vorgeschlagen, um die Zeit für die vorherige Erfassung
von Trainingsdaten zu reduzieren. Es wird gezeigt, dass diese Wiederverwendung
auch die Vorhersagequalität verbessert.
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Abstract

Organ motion poses an unresolved challenge in image-guided interventions like
radiation therapy, biopsies or tumor ablation. In the pursuit of solving this problem,
the research field of time-resolved volumetric magnetic resonance imaging or 4D
MRI has evolved. However, current techniques are unsuitable for most interventional
settings because they lack sufficient temporal and/or spatial resolution and have
long acquisition and reconstruction times.

In this work a public data set of dynamic 2D and static 3D liver MRI of 20 healthy sub-
jects was established for the development and testing of 4D MRI methods. On this
dataset a classical sorting and stacking method that utilizes template updates was
developed and tested as a baseline for the subsequent development of a deep learn-
ing based approach. It is shown that template updates improve robustness against
out of plain motion of tracked landmarks, while speeding up the reconstruction at
the same time.

A novel deep learning based framework for the generation of 4D liver MRI was
developed and tested on the same dataset. It uses a deep learning network where
the input and output are organized according to the here proposed concept of
transitive information bridges. This makes the method an end-to-end trainable
solution to the 4D MRI reconstruction problem. The approaches network agnostic
property was tested with different architectures. The framework achieves sub-second
reconstruction times for high resolution, large FOV 3D liver MRI, thus facilitating
real-time 4D liver MRI.

Furthermore a transfer learning strategy is proposed to reduce the amount of training
data and thus the prior acquisition time needed for 4D MRI reconstruction. This
addresses the medical background where long acquisition times are medically and
economically not feasible. An ensembling strategy is proposed in which multiple
models predict a 4D MRI. It is shown that the mean of the predictions has an
improved quality an prediction error and the standard deviation is used to calculate
an uncertainty map. Furthermore, also to reduce prior acquisition times needed
for training data, the reuse of training samples as transitive information bridges is
proposed. It is shown that this re-utilization also improvement prediction quality.
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Introduction 1
1.1 Motivation

During the last decade, 4D MRI has gained considerable interest in research,
because it promises clinical access to information on the respiratory motion of the
thorax and abdomen free of radiation. Respiratory motion information is vital for
many medical applications in diagnostic (Merchavy et al., 2016), treatment planning
(Han et al., 2018) and execution (Colvill et al., 2016). In this wide field, this thesis
is motivated by the potential of the use of 4D MRI in MRI guided percutaneous
interventions on the liver like radio frequency-, microwave- and cryoablation, as well
as biopsies and brachytherapy.

These interventions have in common the insertion of a needle instrument through
the skin of a patient and the advancement of the needle tip to a target location. In
case of the biopsy this is done to retrieve cell samples for diagnostics. In the other
interventions the goal is to effectively kill all tumor cells, by either heating, freezing,
radiating the cells with ionizing radiation or disintegrating their cell membrane. In
the case of a liver intervention, the target is moving due to breathing. The liver
is a good example of the basic problem of organ motion, because it exhibits high
variability in deformation due to the breathing motion. It is a challenge to navigate
the needle towards a tumor solely based on what the radiologist can see in planning
data and live image data, both viewed on a display in the intervention room. Having
to navigate the needle within a moving organ towards a moving tumor adds to the
challenge. In other words, inter- and intra-organ motion in the abdomen and thorax
poses a challenge in image guided interventions in this body area (Cleary et al.,
2010; Ha et al., 2018; Xing et al., 2006; Gueulette et al., 2005; Lambert et al., 2005).
That is a problem, because insufficient compensation of irregular organ motion
during image-guided interventions can lead to inaccuracies in the instrument’s
navigation to the target and thus to deteriorated treatment results. For example,
a needle that diverges from the planned intervention path during advancement
of the needle, might injure risk structures, or an initially misplaced needle might
need to be re-positioned, prolonging the intervention and thus increasing the risk
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for complications or, if not re-positioned, it may cause the under-ablation of tumor
tissue.

Furthermore, several works were published proposing computer systems to aid
image guided interventions. They mostly seek to lower the mental load of the
radiologist. However, none of these methods have integrated a correction for organ
deformation, as this is still part of active research and no readily usable solutions to
this problem exist (Mewes et al., 2019; Heinrich et al., 2019).

On the other hand, motion models could be used to account for organ motion in
these methods and they are already used in radiation therapy (Ha et al., 2018; Xing
et al., 2006). Motion models can be trained on 4D MRI or 4D CT data (Tanner
et al., 2012). The notion of 4D means that the imaging modality acquires several
3D volumes over a period of time. Hence, resolving the target organ in three space
dimensions as well as in the time dimension, i.e., 3D+t. While 4D MRI does not
involve ionizing radiation, it is not easily available from a medical point of view and
still an area of active research. Part of this is due to the significant amount of data
needed to reconstruct different breathing states, which needs a lot of costly scanner
time. However, the properties of high soft tissue contrast and being free of ionizing
radiation make MRI the imaging modality that is most prominent in the research
for a 4D imaging technique for the abdomen or thorax. Development of 4D MRI
methods is becoming more advanced and seeks to make 4D MRI readily available
for use in clinical scenarios, like image guided radiation therapy or needle guidance
during percutaneous cancer intervention on the liver.

In this avenue several problems have to be addressed. First of all, MRI is inherently
slow compared to computer tomography (CT) or ultra sound (US) and is even slower
for large FOV. Yet, due to the size of the target organs like the liver or lung, 4D MRI
methods need a large FOV. And to be usable they need a high temporal resolution
as well, which is difficult, due to MRI being slow. Because of that, current 4D MRI
techniques are unsuitable for most interventional settings because they are limited
to specific breathing phases, i.e., they are only reconstructing a single averaged
breathing cycle, neglecting variability in organ movement and deformation, lack
temporal and/or spatial resolution, and have long prior acquisition times and/or
reconstruction times.
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1.2 Research Gap and Problem Definition

During an initial literature research, which is discussed in chapter 3, limitations
of current 4D MRI methods were identified. Three of them are addressed in this
thesis:

1. No real-time 4D MRI method: While there exist 4D MRI method that have
some of the characteristics that are necessary to be applicable in the afore-
mentioned scenarios, no method exhibits all of these requirements. These
necessary characteristics are:

a) Large FOV: The method needs a large FOV, to fit the entire target organ,
e.g., liver or lung.

b) High resolution: The method needs a spatial resolution good enough to
discern inner structures of the organ, like vessels. (2mm× 2mm× 4mm)

c) Real-time imaging: It must be real-time capable, having a high temporal
resolution and realize imaging and reconstruction of separate 3D volumes
in sub-seconds.

d) Time-resolved: It also must be time-resolved, representing the actual,
current organ deformation, rather than an averaged breathing phase.

e) Short prior acquisition time: Most time-resolved methods need training
or reference data, which is acquired beforehand. However, the method
must facilitate short prior acquisition times (leq2min), for it to be both
medically feasible and economical.

f) High image quality: Most methods with short prior acquisition times
trade that off for image quality. However, the image quality must be good
enough to allow for the inference of fine organ deformations, which in
turn are important to determine the position of a targeted tumor. This
means, the images cannot be blurry or contain ghosting artefacts.

2. No uncertainty estimation: Regarding 4D MRI methods that utilize machine
learning, there exists little research regarding uncertainty estimation of these
methods. Yet, especially in case of image generation there is a need for an
estimate of how confident or uncertain the method is about the anatomical
and temporal correctness of its output, e.g., regarding the position of a tumor
or risk structure.
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3. No public data set and common benchmark: While there exist large pub-
lic datasets and benchmarks for other medical image processing tasks like
segmentation in the liver or prostate, there is no public data set for the de-
velopment, testing, and direct comparison of 4D MRI methods that facilitate
further research in the area as well as comparability of methods.

1.3 Research Questions

Based on the limitations of the current state of the art, the aim of the present work was
to develop a real-time capable, time-resolved 4D MRI method with large FOV and
high spatial and temporal resolution. Because deep learning has shown enormous
successes in a variety of medical image processing tasks, this thesis focused on the
realization of such a method based on deep learning. The first research question
therefore was:

R1:

"Can deep learning methods be used to generate real-time 4D MRI with high
spatiotemporal resolution, base on a real-time 2D MRI sequence?"

Seeing the need for such a method to be readily available and be both medical and
economically feasible, a second focus of this thesis was to reduce the necessary
reference or training data of such a method. Hence, the second research question
was:

R2:

"Can the training data requirement for the training of such a deep learning based
4D MRI method be limited to below 3min, while achieving high prediction quality?"

1.4 Thesis Structure

The thesis is structured as follows.
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Chapter 2 gives the medical and technical background, necessary to understand
this thesis. This includes the basic principle of magnetic resonance (MR)
imaging, as well as the basic ideas of convolutional neural networkss (CNNs)
and UNets, which are the basis of the deep learning based 4D MRI approach
presented.

Chapter 3 presents the state of the art of 4D MRI methods. A classification of
current methods is made and advantages and limitations are discussed, which
lead to the presented research gap.

Chapter 4 describes the acquisition and structure of data set, which was used for
the development of the 4D MRI methods presented in this thesis, and was
published to be of use for other researchers.

Chapter 5 describes a classic sorting approach to the 4D MRI problem both as a
prototype and method to compare the deep learning approach against and to
check the validity of the data base.

Chapter 6 presents a novel real-time deep learning based 4D MRI prediction
framework.

Chapter 7 focuses on reducing the prio acquisition time of training data needed for
the deep learning framework.

Chapter 8 focuses on increasing the image quality while reducing the prior acquisi-
tion time further as well as presenting a way of uncertainty assessment within
the proposed framework.

Chapter 9 summarizes the findings, limitations and future work that arise from the
thesis as a whole. A complete list of publications of the author is given as well.

1.5 Publication List

A list of all publications this thesis is based on is given in the following. Note that
the last two conference papers did not directly contribute to this thesis. They are
marked with "not used for this thesis".
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Background 2

Synopsis

This chapter introduces the clinical as well as the technical background. In the medical part, first, the Liver, which

is used as example target organ throughout this thesis is described and respiration, which is fundamental to the

entire work as a restricting factor, is formalised. An outline of a state of the art clinical workflow of an image-guided

intervention is given. In the technical part, the fundamentals of magnetic resonance imaging are explained as well

as associated concepts, which are relevant for this work. A background of deep learning is given and finally the

evaluation measures used in the thesis are described.
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2.1 Target Organ Liver

The liver is used in this thesis as a target organ to exemplify the presented methods.
Akinyemiju et al. (2017) state that liver cancer is among the leading causes of cancer
deaths globally and that liver cancer cases increased by 75% between 1990 and
2015. This trend has continued in more recent times. Until 2020, the incidences of
liver cancer and cancer in general have been further increasing (Galle et al., 2018;
Bray et al., 2018; Sung et al., 2021). Besides primary liver tumors the liver is the
second most common site for metastatic disease. More than 50% of all patients with
malignant diseases develop liver metastases with significant morbidity and mortality
(Pereira, 2007).

Fig. 2.1: The liver with its macro anatomy is divided in left and right liver lobe. Indicated are
also the four in going and outgoing vessels systems, which all branch into the liver.
Based on Anatomy and physiology of the liver – Canadian Cancer Society (2015)

The liver performs various functions, including the production of bile, metabolization,
vitamin and mineral storage and the filtering of the blood (Anatomy and physiology
of the liver – Canadian Cancer Society 2015). It is located in the abdominal cavity,
below the rib cage and below the diaphragm that separates the chest cavity from
the abdominal cavity and is surrounded by other organs. The lung and heart are
located directly above the liver, on the other side of the diaphragm. The stomach
and colon are below the liver. The liver contains four vessel systems that branch
into the liver. The portal vein, which supplies 80% of the livers blood is draining
from the spleen and intestines. The hepatic artery supplies the remaining 20% of
the blood which is highly oxygenated and comes from the heart. The outflow of the
liver is provided by the hepatic vein. (Sibulesky, 2013). The fourth is the bile duct
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system. The liver is divided by the falciform ligament into a larger right lobe and a
smaller left lobe (see Fig. 2.1)

2.2 Formalizing Breathing

Breathing is an important aspect in image guided interventions, as it interferes with
the procedure. When a person inhales, the chest and with it the lungs expand while
the diaphragm moves and pushes the abdominal organs like the liver down which
also lets the stomach expand. While moving, the liver also deforms. This happens
periodically with the breathing. Because there are interventions, for example on
the liver, that are performed under free breathing, assistance system for these
interventions need to account for breathing and hence must uses some kind of
formalisation of the breathing act. There are two main approaches to do this. The
first way is to derive a one dimensional relative or absolute breathing signal. The
second way is to derive a multi-dimensional absolute breathing state.

While the terms breathing, respiration, and ventilation have different meanings in
different scientific fields, in this thesis, all three terms are treated as synonym and
mean the act of breathing in and out.

One dimensional Absolute Breathing Signal

The one dimensional absolute breathing signal tells how deep the inhale or exhale
currently is. The absolute signal can be obtained by breathing through a hose and
measuring the air volume. Another more easy and less accurate way is to use
a belt that measures the expansion of either the chest or the stomach. The belt
stretches when the chest or stomach expand and this stretch can be registered.
A third way is to use interventional imaging and derive the signal from the image.
For example measuring using the body cross section in an image slice. Because
this formalization reduces all movement and deformation of the inner organs to
one dimension, i.e., the current breathing depth, all breathing cycles can only be
differentiated by their end-inhale and end-exhale breathing depths. All information
about differences due to deformation is lost.
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One dimensional Relative Breathing Signal

The one dimensional relative breathing signal tells the current so called breathing
phase. When subdividing a breathing cycle into several phases of equal length,
we get breathing phases or respiratory phases. In most of the relevant literature,
the breathing cycle is divided into 6 or 10 phases (see Chapter 3 Tab.3.2). The
simplest example is the division of the breathing cycle into four phases: 1) the
inhalation phase, 2) the end-inhalation phase (or just end-inhale), 3) the exhalation
phase, 4) the end-exhalation phase (or just end-exhale). These four phases define
the breathing cycle from end-exhale to end-inhale and back again to end-exhale.
However, a breathing cycle can be arbitrarily divided into more phases. The 6
phases example would have following phases: 25% inhale, 50% inhale, end-inhale,
25% exhale, 50% exhale, end-exhale.

The signal is derived from either image data or from raw data before image re-
construction. This is often done in MRI sequence programming. For that data is
acquired during free breathing and retrospectively sorted or binned into a number
of previously defined breathing phases.

Importantly, with this formalization approach each breathing cycle is described as
identical and can’t be distinguished at all after the formalization. In that way, it
is the simplest and least descriptive formalization, describing each respiration as
the repetition of identical breathing cycles broken down into identical breathing
phases. While this simplicity is a great benefit of this approach, it can also be seen
as a limitation, because a person breathes irregularly. Lets imaging two different
breathing cycles of the same person. One was a deep breath, the other a shallow
one. The liver in both breathing cycles at end-inhale will have a different place and
deformation. This is a problem because if the breathing information is used to derive
the position of a target, the derived target position will be wrong.

Another limitation is that all methods using this approach work only retrospectively.
This is due to the relative nature of the signal. Because the breathing phase is
determined relative to the complete breathing cycle, it must be captured in total first
before deriving the individual phases.

Multi-dimensional Absolute Breathing State

In contrast to the breathing phase the breathing state is multi-dimensional and
absolute. It is multi-dimensional to preserve the information about the position and
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deformation of the inner organs that are effected by respiration. See Fig. 2.2 for a
visualization on the non linear deformation of the liver, caused by breathing.

Fig. 2.2: Visualisation of the multi-dimensionality of breathing deformation. Used are two
liver MRI slices of one subject at the same position and at exhale and inhale time
points from the data set established in this thesis. The dataset is described in
chapter 4. The inhale image is superimposed (in red) on the exhale image (in
green). The liver contour of both inhale and exhale are drawn as well. White arrows
show the movement of vessel cross sections. Note the apparent differences in
arrow length as well as direction, which indicates the multi-dimensionality of liver
deformation, caused by breathing.

The formulation is also absolute in the sense that the breathing state can be de-
termined at a singular point in time without needing the reference of a completed
breathing cycle. The current position and deformation of all inner organs is what
can be call the breathing state. However, one can keep the representation of the
breathing state as simple as is needed for the use case. For example if the target
organ of an intervention is the liver than it might be sufficient to only account for
the liver motion and deformation and hence define the breathing state solely by the
position and deformation of the liver. Furthermore, the position and deformation
can be described with more or fewer degrees of freedom. The extreme case of
one degree of freedom is equal to the one dimensional absolute breathing signal
describing only the position of the liver. In all other cases the breathing state is a
high-dimensional concept and thus not easily depicted visually. Because of that, in
this thesis, The temporal change in the breathing state is shown in simplified form
as a one-dimensional breathing curve. Throughout the work presented in this thesis,
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Fig. 2.3: The adapted Barcelona Clinic Liver Cancer (BCLC) staging and treatment strategy
according to the EASL guidelines. The green highlights were added to the diagram
retrospectively and mark the decision paths that lead to minimally invasive image
guided local thermal ablation, in short, image guided interventional treatment of
the tumor specifically. Taken from Galle et al. (2018)

breathing is formalized as a succession of breathing states not of simple breathing
phases. The formalization relies on imaging. Location and deformation are derived
from interventional real-time images.

2.3 Image-Guided Interventions

After a tumor was diagnosed, a multidisciplinary tumor board discusses the treatment
options following the EASL guidelines (Galle et al., 2018) (see Fig. 2.3). Besides
image-Guided interventions, the treatment options include the systemic therapy,
liver resection (hepatectomy), transplantation (Malek et al., 2014). Systemic therapy
is associated with side effects such as nausea, vomiting and worsening of liver
function (Malek et al., 2014). Liver resection and transplantation are radical surgeries.
While resection is contraindicated in cases of tumor related macrovascular invasion,
transplantation is only performed when the Milan criteria are met and no extrahepatic
metastases or vascular invasion was identified (Galle et al., 2018).

The background to the present work is thhe percutaneous local ablation. It is
suited especially for older patients and patients with weakened hepatic function,
multiple smaller tumors (Galle et al., 2018) or even larger tumors (Bale et al., 2010).
Ablation, also called thermoablation, has several advantages over surgical resection:
lower morbidity, increased preservation of surrounding tissues, reduced cost and
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shorter hospitalization times (Pereira, 2007). Percutaneous interventions were made
possible through the advent and advances of cross-sectional imaging (Chu et al.,
2014) like CT, MRI, and US.

Whenever the term intervention is used in the present work, it refers to minimally
invasive, local, percutaneous interventions. The seminal technique was percuta-
neous ethanol injection (PEI). It induces coagulative necrosis of the lesion as a
result of cellular dehydration, protein denaturation, and chemical occlusion of small
tumour vessels. (Galle et al., 2018) It was followed by local thermal ablations, which
are classified as either hyper-thermic treatments or cryoablation. While the first
is the heating of tissue at 60 to 100 ◦C to irreversibly damage it and includes radio
frequency ablation (RFA), microwave ablation (MWA), and laser ablation (Galle
et al., 2018), cryoablation is the freezing of tissue at −20 to −60 ◦C. Most of these
procedures are performed percutaneous (Galle et al., 2018). The aim is always
to irreversible damage the cell, which leads to cell death. For example, the cell
death caused by RFA is based on the frictional heat generated using high-frequency
alternating current, which produces coagulative necrosis of the tumour. It allows the
extension of the necrosis to a safety margin. RFA has been evaluated as first-line
therapy in early hepato-cellular carcinoma (HCC). Overall survival in very early HCC
(< 2 cm) treated by RFA was demonstrated to be at least equal to surgical treatment
in a Markov model and in a cost-effective analysis based on data from a systematic
review (Galle et al., 2018). A limitation of RFA is its susceptibility to the heat-sink
effect in proximity to large blood vessels, in which heat is transported away from the
ablation zone by the flowing blood. This decreases the hyperthermia and thus the
efficacy of the RFA. This makes RFA less suitable for tumor tissue that is adjacent
to vasculature (Chu et al., 2014).

2.3.1 General Clinical Workflow

The general workflow was described by Mewes (2019) for MWA interventions in
MRI (see Fig. 2.4), however the general workflow is the same for other ablation
techniques like RFA and for the imaging modality CT.

1. It starts with the preparation of the patient. This includes the patient education,
positioning of the patient on the table of the MRI as well as the intubation
anaesthesia. Then a flexible coil is placed on the operating field. The patient
is translated into the MRI bore.
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Fig. 2.4: Workflow of an image-guided percutaneous thermal ablation in green and pre-
and postinterventional steps in blue. Based on Mewes (2019)
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2. The planning step comes directly before the intervention. Morphological T1
and T2-weighted datasets of the target region are acquired. The applicator
path is planned from outside the intervention room in the control room. Using
the anatomical data acquired, the optimal entry point and path to the target
position is identified. The radiologist identifies a path that is easily accessible,
contains no structure of risk, and is short. The MRI planes are adjusted
accordingly in order to visualize the complete instrument path. The planning
data and interventional image data both are presented on a display in the
intervention room near the MRI bore.

3. The actual intervention starts with finding the planned entry point on the patient.
This is described in detail in section 2.3.2. After finding the entry point non-
sterile, the intervention area is sterilized and the rest of the patient is covered
in surgical drape. The access point is locally anaesthetised.

4. The instrument is advanced to the target under constant interventional live
imaging, also called fluoroscopy. For that a fast T1-weighted MRI sequence
is used. This is also described in detail in 2.3.2.

5. The tumor is ablated for typically 8 to 10 minutes in case of MWA, depending
on tumor size and applicator specifications. The process is monitored using
thermometry imaging (Roujol et al., 2010; Kägebein et al., 2018b). An addi-
tional T1-weighted dataset is acquired to check for the completeness of the
ablation. If the tumor is not fully covered by the ablation zone, the applicator
is repositioned and the ablation is continued. Otherwise, the necrosis zone
is verified in a final control scan using contrast agent. After the ablation, the
patient is moved out of the bore and extubated in the wake-up room. The
whole intervention time is approximately 120 to 180 minutes. A follow-up is
set for three and twelve months later.

2.3.2 Instrument Navigation

The instrument navigation from the entry point on the patient skin to the targeted
tumor can be seen as containing two stages. First, finding the entry point and
second, advancing the needle-like instrument to the target.
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Fig. 2.5: The radiologist moves a finger on the patient skin near the presumed entry point
and verifies the correct entry position in a real-time MRI image stream, while
orienting on landmarks seen in both the real-time image as well as the planning
data. The figure shows three different time points (t1, t2, and t3) of the real-time
image stream. Based on Mewes (2019)

Finding the Entry Point

The most common method to find the entry point is the finger tipping method (Mewes,
2019) using the index finger (Fischbach et al., 2011; König et al., 2003; Fritz et al.,
2011) or a saline filled syringe (Lewin et al., 2000). During continuous imaging in
the planned imaging plane the radiologist moves the index finger along the patient
until it can be seen in the live interventional image. In practice that means, during
continuous acquisition, a new image is presented at least every 2 s. The finger is
then moved along the imaging plane until it reaches the planned entry point. For
orientation, the radiologist is using anatomical land marks that are visible in the
planning data in which the entry point was planned. Once the entry point is found
the finger remains in place while the patient is moved out of the bore. Then the
position sterile draped, local anaesthetic administered, the skin incision is made,
and the MR-compatible needle is inserted and advanced subcutaneously, then the
patient is moved into the magnet. (Fischbach et al., 2011; Koenig et al., 2001).

Targeting the Tumor

Once the needle is inserted, it is guided along the planned path towards the targeted
location, e.g., the tumor. The most common and simple method is the freehand
technique (Rothgang et al., 2013), which requires continuous MRI fluoroscopy.
Three parallel or orthogonal planes are acquired to provide orientation along the
planned path (Rothgang et al., 2013). Within the MR image the needle is only visible
as a needle artifact. The fluoroscopy images together with the planning images
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are presented to the radiologist within the intervention room on an in-room display
(Rothgang et al., 2013). The three main advantages of the freehand method are
that it allows for fast reactions to positional changes of organs, due to breathing, that
it allows for complex non-linear paths to the target, by means of bending the needle
and by that passing around a risk structure and that it does not require additional
equipment, like tracking cameras or a physical needle guide.

The workflow is comparable with the US-guided percutaneous intervention (Roth-
gang et al., 2013). However, the manual adaptation of the planned applicator path
requires re orientations of the MR imaging plane, which is a major workflow distur-
bance (Mewes, 2019). This is also the case when the applicator unintentionally
leaves the imaging plane. This happens more often in the beginning of the needle
advancement, because it is difficult to infer the needle orientation in the first cen-
timetres of the path, because the needle artefact is only visible inside the patient’s
body. Also the contrast of the interventional image might be a different one than the
contrast of the planning image, which makes it harder to mentally match landmarks
between interventional imaging and planning data. This also includes the fact that
the tumour could be visible in the planning data but not in the interventional data.
This can be either due to the selected MRI sequence during planning, because the
visibility of the tumor is dependent of the MR contrast, or due to the use of contrast
agents during planning.

There exist also mechanical guidance systems that are directly connected to the
MRI, consisting of a remote manipulator and allowing for dynamic imaging plane
adjustments according to the current needle orientation (Tsekos et al., 2005). It’s
missing haptic feedback is still a major drawback that has to be actively researched
on (Schreiter et al., 2023).

Another solution was proposed by Kägebein et al. (2018a). They developed an
automatic MR image alignment, using a so called Moiré phase markers rigidly
attached to a needle instrument, which are tracked by a bore ceiling mounted
camera. They developed a special MRI sequence in which the imaging plane is
adapted based on the needle tracking information. The limitation of this approach is
it’s small field of view and the marker rig attached to the instrument, which could
interfere with the workflow of the radiologist.

In conclusion, even so image guidance for percutaneous interventions exist, there
is still need for improvement regarding the orientation those systems provide for
the radiologist. For example and in particular providing the radiologist with the
current position of the tumor, even if it is not visible in the used interventional MRI
sequence.
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2.4 Magnetic Resonance Imaging

2.4.1 Physical basics

Nuclear Magnetic Resonance

Atomic nuclei that have an odd number of protons and/or neutrons have a nuclear
angular momentum also known as nuclear spin. In the human body, hydrogen nuclei
occur bound in the form of water. This is predominantly the light isotope with only one
proton and no neutrons. So it has a nuclear spin. If the hydrogen nucleus is exposed
to an external static magnetic field B0, the nucleus has additional potential energy. In
an MRI machine the external static magnetic field is generated by a superconducting
magnet (see Fig. 2.6). The hydrogen nucleus behaves like an atomic gyroscope
due to the external static magnetic field B0. Due to the conservation of angular
momentum the magnetic moment µ is precessing with the Larmor frequency f0
around the main axis of the static magnetic field (see Fig. 2.7). In total, a number
of all hydrogen spins are aligned in the direction (parallel) and a number against
(anti-parallel) the main axis z of the magnetic field. When considering the entire
spin ensemble, a macroscopic net magnetisation along the z-direction can be
measured.

Fig. 2.6: Left: The super conduction magnet in the MRI machine produce a strong magnetic
field B0. Right: This external magnetic field causes the proton spins to align. Parts
based on Pooley (2005)

By using an electromagnetic radio frequency (RF) pulse with the excitation frequency
fT , which is generated by an RF antenna (transmitting coil), the longitudinal mag-
netisation tilts out of its equilibrium state. This is only true if the exitation freqtuency
fT is the resonance frequency of the spins, which means fT = f0. The extent to
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which the longitudinal magnetisation is tilted from its rest position in the direction of
the transverse x-y plane depends on the so-called flip angle α (Kägebein, 2018).
This in turn is determined by the duration of the RF pulse. The tilting leads to
a magnetisation in the x-y plane and is referred to as transverse magnetisation
Mxy. The transverse magnetisation rotates with the frequency f0 and induces an
alternating voltage into a correspondingly positioned HF antenna (receiving coil).

Fig. 2.7: Left: Precession of the proton spin with the Larmor frequency around the main
axis of B0. Right: Prior to an RF pulse, the net magnetization (black arrow) is
longitudinal aligned with B0. An RF pulse at the Larmor frequency will allow energy
to be absorbed by the protons, exciting it, thus causing the net magnetization to
tilt away from the z axis. Parts based on Pooley (2005)

Relaxation

There are two central interactions between the hydrogen nuclei and their environment.
First, the spin-lattice relaxation and second, the spin-spin relaxation (Brown et al.,
2014). The spin-lattice relaxation describes the return of the spin ensemble to the
thermodynamic equilibrium state, which corresponds to the minimum energy state
of the system. The necessary thermal energy exchange happens with the crystal
lattice, whereby the spin ensemble can align itself parallel to the external static
magnetic field again. The time constant that determines this process is the time T1,
which depends on the main magnetic field B0 and the composition of the human
tissue (Brown et al., 2014).

The second effect, the spin-spin relaxation, also leads to a reduction in transverse
magnetisation. The magnetic field present locally at the individual spin is a combina-
tion of the external static magnetic field and the magnetic field of the neighbouring
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spins. As a result, the local precession frequency varies, which in turn leads to a
difference in dephasing for the individual spins. The corresponding transverse mag-
netisation of the spin ensemble thus decreases steadily over time. The descriptive
time constant is the time T2 , which is primarily dependent on the local composition
of the human tissue.

In reality, there are additional local fluctuations of the external magnetic field, which
leads to a faster decay of the transverse magnetisation. Together with T2, this leads
to the total relaxation time T∗

2 (Brown et al., 2014).

Spatial Encoding

The basic principle of MR imaging is the measurement of the transverse magneti-
sation Mxy at a specific point in time (echo time (TE)) after the RF pulse has been
emitted. The transversal magnetisation varies depending on the tissue under con-
sideration and thus the times T1 and T∗

2. Assuming that this signal intensity was
measured with a receiving coil, each excited spin ensemble in the human body
would contribute to the signal with the locally present transverse magnetisation
Mxy. The gradient fields Gx, Gy and Gz generated by three separate gradient coils
form a practical solution approach. They produce gradient fields. Their strength
changes gradually in the respective spatial direction, hence the name gradient field.
Irrespective of their orientation, the gradient coils generate a magnetic field aligned
with the external magnetic field in the z-direction and thus leads to local variation or
moderation of the total field (Bernstein et al., 2004).

This property is used to encode the local magnetisation Mxy. The coding process
can be very diverse and that is what MR sequence programming is about. However,
for a 2D sectional image, i.e., for an image slice, it follows the following basic
principle, which has three streps.

1. Slice Selection: To realize a layer selective excitation, a slice selective gradient
is applied (see Fig. 2.8). For example, consider the gradient field Gz is applied, the
Larmor frequency f0 of the spins varies as a function of the z position within the
bore that the hydrogen nuclei is located. Accordingly, the RF pulse can only excite
those spins whose precession frequency f0 is equal to the exciting frequency fT of
the pulse. Note that the selected slice can have any orientation by using a some
linear combination all three gradients Gx, Gy and Gz.
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Fig. 2.8: Left: A gradient field is superimposed onto B0 changing the local field strength.
The precession frequency of the proton spin depends on the local field strength.
Right: An RF pulse is applied, exciting only a narrow slice, i.e., contraining protons
with a matching Larmor frequency f0

2. Phase Encoding: Between the excitation and the measurement of the transverse
magnetisation, a second gradient is applied. The positional dependence of its field
strength is orthogonal to the earlier applied slice selective gradient. Following our
example, where only the Gz gradient was used as slice selective gradient, now the
Gy gradient would be applied to vary the frequency of the spins for only a short
time as a function of the y position of the nuclei within the magnetic field. After
switching off the gradient, the spins continue to precess with the same frequency
f0, but have different phases now. The used gradient is therefore referred to as the
phase encoding gradient.

3. Frequency Encoding: During the measurement or readout process of the trans-
verse magnetisation, the third gradient is applied constantly. This gradient is also
aligned orthogonal to the two previous gradients. Note again, the orientation of the
gradients is the spatial direction in wich the field strength varies, it is not necessarily
the same as the direction of their magnetic fields. In the example the Gx gradient
would be used. The local precession frequency changes depending on the x position.
The gradient used in this step is known as the readout gradient.

The measured raw data is entered into a matrix known as k-space. The one-time
execution of the described process of slice selection, phase encoding, and frequency
encoding plus readout, fills one k-space line. For the reconstruction of an image,
it is necessary to fill the k-space appropriately. Therefore the process is repeated
several times. The interval between two consecutive RF pulses is referred to as
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Fig. 2.9: Three main image or slice orientations are used in medical imaging. Sagittal, axial
and coronal. The axes are defined by anatomical terms of location and direction,
anterior (A) to posterior (P), right (R) to left (L) and inferior (I) to superior (s)

the repetition time (TR). As soon as the k-space is sufficiently filled, the location-
dependent signal intensity can be decoded using an inverse Fourier transformation.
The complex signal intensity I(x, y) obtained is proportional to the local transverse
magnetisation Mxy. The magnitude of the complex signal is used for the display of
morphological MRI images. The display of a phase image, is primarily used for the
evaluation of physical parameters, e.g., temperature or flow velocity.

2.4.2 Medical Image Orientation

In medical tomographic imaging the imaging planes have a distinct naming scheme,
depending on their orientation (see Fig. 2.9). The sagittal orientation is from anterior
(A) to posterior (P) and inferior (I) to superior (S). The axial orientation is from right
(R) to left (L) and anterior (A) to posterior (P). The last orientation is the coronal one,
it is from right (R) to left (L) and inferior (I) to superior (S).
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2.5 Deep Learning

2.5.1 CNN

In medical image processing, CNNs play a important role and are extensively utilized.
The concept of CNNs was initially introduced by LeCun et al. (1989) and gained
prominence with the introduction of the AlexNet by Krizhevsky et al. (2017) 23 years
later. CNNs draw conceptual inspiration from the visual cortex and leverage the
grid-like organization of information in digital images. This is achieved by connecting
neurons of one layer solely to neurons of the previous and subsequent layers within
a defined neighborhood.

CNNs possess a significant computational advantage over fully connected networks
due to their design. At the core of CNNs lie two components: convolution and
pooling operations.

The convolution operation, utilizing a uniform filter kernel across the entire image,
inherently introduces redundancy in the weights of convolutional layers. This re-
dundancy is further exploited through the implementation of shared weights within
a single convolutional layer. By leveraging shared weights, CNNs achieve greater
space efficiency in storing network architecture information.

Fig. 2.10: a) Example convolution with filter kernel size 3x3, stride 1 and no padding. If
now padding is applied, the output is smaller than the input. b) Example of max
pooling with a size of 2x2 and stride 2

The CNNs architecture is structured in layers, with each layer comprising a collection
of convolutional kernels or filters denoted as K with a given size s×s (see Fig. 2.10
a)), along with associated weights (W) and biases (B) corresponding to the size of
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the kernel. This organized layer structure facilitates hierarchical feature extraction
from input data, making CNNs highly effective in tasks such as image classification,
segmentation, and image generation.

In CNNs, each filter operates on its input to produce a feature map, which is then
non-linearly transformed element-wise. Specifically, the filters in layer l utilize the
feature maps from the previous layer (Xl−1) as input to generate their own feature
maps (Xl). Different boarder handling strategies are used. The most common one
is the same padding, which pads the input, such that the output has the same size
as the input.

As mentioned, pooling operations play a crucial role in CNNs by enhancing spatial
context across the network’s layers. These operations condense local regions of
input feature maps into a single value, typically by extracting either the maximum
(max pooling) or the average value (average pooling) (see Fig. 2.10 b)).

The parameters (W and B) of a neural network are iteratively learned through
optimization of the loss function using gradient descent. This process involves
calculating the gradient of the loss function with respect to the parameters, a task
accomplished using the backpropagation algorithm, introduced by Rumelhart et al.
(1986). This whole process is also refered to as training.

Fig. 2.11: Training a model sees the training error as well as the validation error decrease.

2.5.2 Training

Prior to training a model, the available data is split into a training set, a validation
set and a test set. The training set contains the actual training data point which are
used to compute the prediction error that is backpropagated. The validation data is
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used to ensure the model does not overfit and instead achieves some meaningful
generalization on the whole data set distribution. The test set is hold out until the
end of training and hyper parameter tuning. The actual training is normally done in
epochs. In each epoch the prediction error of the model is computed for all training
data, also called training error or training loss. Often the computation is done in
batches. After each epoch a validation error is computed on the validation data.
The training is successful if the training as well as the validation error decrease over
the course of epochs (see Fig. 2.11).

2.5.3 Overfitting

On the other hand, overfitting is the notion that a network learns a model with very
high variance in order to perfectly model the seen training data (Shorten et al., 2019)
while at the same time loosing its generalization to the whole distribution of the
data. Overfitting is a common problem in deep neural networks and can be spotted
when comparing the models training error curve with its validation error curve (see
Fig. 2.12). There are several strategies to counter overfitting. Some of them are
given in the following.

Fig. 2.12: A models overfitting to seen training data can be identified by comparing the
training error curve with the validation error curve. While the validation error
initially improves with the training error, it starts to worsen after some training
epoch. At that point the model starts to overfit.
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2.5.4 Dropout

Dropout is a way for addressing overfitting and was proposed by Srivastava et al.,
2014. The key idea is to randomly drop units, i.e., neurons of the network, during
training. This results in a "thinned" network. In that way dropout samples from an
exponential number of different “thinned” networks during training. At test time, the
effect of averaging the predictions of all thinned networks is approximated by using
a single "un-thinned" network that has smaller weights. This significantly reduces
overfitting.

2.5.5 Batch Normalization

Batch normalization (Ioffe et al., 2015) is another regularization technique that
normalizes the set of activations in a layer (Shorten et al., 2019). Training Deep
Neural Networks encounters the problem that the distribution of each layer’s inputs
changes during training. This slows down the training by requiring lower learning
rates and careful parameter initialization. Ioffe et al. (2015) refer to this phenomenon
as internal covariate shift. To address it they proposed to make normalization a
part of the model architecture and performing the normalization for each training
mini-batch. To normalize a input batch, the batch mean is subtracting from each
activation and dividing by the batch standard deviation. This allows for the use of
much higher learning rates, relaxes the need for careful initialization, and in some
cases eliminates the need for Dropout.

2.5.6 Augmentation Strategies

Of course, one way to address the problem of overfitting is to use large amounts of
training data, however, that is not always practical like in the case of medical image
analysis (Shorten et al., 2019). Data augmentation is another common means
of countering overfitting. It artificially increases the number of training samples
by altering the image data in predefined ranges. A survey on data augmentation
strategies is given by Shorten et al. (2019). There are several image data aug-
mentation techniques like geometric transformations, color space transformations,
kernel filters, mixing images, random erasing, feature space augmentation, adver-
sarial training, GAN-based augmentation, neural style transfer, and meta-learning
schemes (Shorten et al., 2019). In this work only geometric transformations are
utilized as data augmentation strategies, namely rotation, translation and scaling.
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With any data augmentation strategy it is important to consider it’s safety with re-
gards to the label. For example rotation can be used for augmentation, but in a digit
recognition task such as presented by MNIST (LeCun et al., 2010), rotating a "6" by
180 deg is not safe as the digit looks like a "9" after the augmentation. The safety
is also dependent on the task. For example in a demonising task, the input and
label can be safely rotated by the same amount, thus ensuring the correspondence
of input and label is preserved. In the task dealt with in this paper, for example, it
is relevant that the augmentation only changes the images to the extent that they
are still plausible. This means that the shape and size of the organs as well as
the orientation must remain valid. For example, if subjects are always lying on the
back during MRI imaging and the intervention, than the augmentation should not
result in an image that would only be produced if the patient or subject would stand
upright within the MRI bore. Besides rotation, translation, i.e., shifting images left,
right, up, or down can be a very useful transformation to avoid positional bias in the
data. Again this translation must be in ranges such that the result could plausibly
be produced the MRI imaging protocol. Finally, scaling can be applied to the input
and label to change the size of the structures that are visible in the image.

2.5.7 U-Net

The name of the U-Net stems from its topology that looks like a U shape (see
Fig. 2.13). It is due to the two symmetric paths, the encoder or contraction path,
which extracts features from the input and compresses it to a denser representation
and the decoder, or expansive path, which up-samples the dens or latent features
back to the original size of the input image. The encoder and decoder are connected
by the two central convolutional layers, in between which the feature maps represent
the latent feature space. In the U shape analogy this is at the bottom of the U.
Both encoder and decoder comprise distinct stages operating at varying resolution
levels. In the original formulation, each stage consists of a convolutional block
containing two convolutional layers with a 3 × 3 kernel and a stride of 1. After each
convolutional layer, an activation function, in this case a rectified linear unit (ReLU)
function is applied, thereby introducing non-linearity to the network.

Following each stage in the encoder, a down-sampling operation is performed to
expand the network’s receptive field. In the original U-Net design, down-sampling
is achieved through 2 × 2 max pooling with a stride of 2. However, alternative
implementations of the U-Net in the literature utilize strided convolutions, with strides
larger than one, for down-sampling instead of max pooling. Moreover, the number
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Fig. 2.13: Original U-net architecture. Blue boxes correspond to a multi-channel feature
map. The number of channels is denoted on top of the box. The x-y-size is
provided at the lower left edge of the box. White boxes represent copied feature
maps. The arrows denote the different operations. Figure from Ronneberger
et al. (2015), reprinted with permission from Springer.

of feature channels is doubled at each stage of the network’s encoder, including the
bottom-most layer, to enhance its capacity.

Similarly, each stage of the decoder initiates with an up-sampling operation, and
the number of feature channels is halved in each convolutional block. In the original
U-Net, up-sampling is accomplished using deconvolutions, enabling the learning of
nonlinear up-sampling. The up-sampled feature channels are concatenated with
feature maps that come from the encoder path at the corresponding resolution level
just before feeding them into the convolutional block. This facilitates the transmission
of finer details from earlier stages of the network, thus enabling the generation of a
more detailed final result, e.g., a segmentation map as or a generated image as
output. The network concludes with a final 1 × 1 convolution layer that produces the
output channels.
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2.6 Evaluation Measures

To quantitatively assess the performance of a method that generates images and
for the statistical analysis of differences between methods, two image based er-
ror measures will be used, namely root mean squared error (RMSE) and mean
displacement (MDISP), and one key point based error measure target registration
error (TRE). They will be used to express the similarity or dissimilarity between a
generated image and the ground truth. In this thesis, methods will generate MRI
slices in one of the following two ways. The first way is to find MRI slices with similar
breathing state in a larger set of MR images, which are then averaged. The second
one will be to predict MRI slices using reference MRI slices in a deep learning
approach. The computation time that a method needs for the generation will also be
used as a quantitative measure for comparison. The four measures are described
in the following.

RMSE

The RMSE between two images, e.g., predicted slice and ground truth is calculated
as expressed in Eq. 2.1 by computing the voxel-wise intensity difference di and then
taking the root of the mean of the squared differences.

RMSE =

√√√√ 1

W ·H

W ·H∑
i=0

d2i , (2.1)

where W and H are the width and height of the images. It is common practice to
report the RMSE in the evaluation of 4D MRI methods. However, the comparability
of the measure across works is limited because different image normalization might
be used. Moreover, image differences that are due to the appearance or presence
of structures on the one hand and the displacements of structures on the other hand
both contribute to a change in the measure. However, especially in the case of
predicted or synthetic images it might be interesting to differentiate between those
to sources of error or dissimilarity. That is, it is one type of error if a method predicts
an anatomically incorrect image of the abdomen and it is another error if the method
predicts an anatomically correct image of the abdomen but in the wrong breathing
state, i.e., particular structures within the anatomy are not correctly located. To
overcome this limitation two additional measures are used. Namely the MDISP and
the DN_RMSE, described in the following.
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MDISP

The mean displacement error (MDISP) quantifies the difference of two MRI slices of
the same subject and organ at the same slice position by attributing the difference
to deformation and displacement. The MDISP is computed by first performing a
B-spline deformable registration using simpleITK (Lowekamp et al., 2013) to obtain
a dense deformation field between the two images, e.g., a predicted image and a
ground truth image.

The parameterization of the deformable registration algorithm was empirically de-
termined as follows. The ANTSNeighborghoodCorrelation (radius = 2) option was
used as the similarity measure. It visually yielded better registrations than the other
options MeanSquarse, MattesMutualInformation, and correlation. To make the
registration more robust and speed efficient, a pyramid scheme with two levels was
utilized. In the first level, the images were smoothed with a sigma of 0.25 before
halving their resolution using linear interpolation. In the second level, the original
image was used with no smoothing. The grid size of the deformation mesh was
4 × 4 in the first level. It was doubled to 8 × 8 in the second level. A gradient
descent optimizer (learning rate = 0.25, number of iterations = 20, convergence
minimum value = 1e−7, convergence window size = 10, estimate learning rate =
True, maximum step size in physical units = 0.25) was used.

The resulting dense deformation field was then sampled in a 16 × 16 grid (8 × 8

voxel spacing) to obtain a sparse displacement field of displacement vectors. The
sparse displacement field is masked to omit vectores that originate outside of the
liver. For that the target organ (liver) was manually segmented for a breath hold MRI
volume for each subject. The segmentation was used as the mask. The average
Euclidean norm of the remaining displacement vectors was calculated in mm.

The MDISP is a better measure for comparison across works than the RMSE
because the displacement of structures is independent of image normalization.
However, the measure has it’s limitations. First, the displacement field between
a generated image and the ground truth is not always well defined. For example,
when a prediction contains structures not present in the ground truth or vice versa
when structures are missing. An extreme example is an empty prediction, which
would lead to an MDISP of zero, which of course, would not reflect the actual
similarity. Another practical limitation is the need to parameterize the deformable
registration. In this work the parameterization was choosen to yield the best results
for the used data. In other work the optimal parameterization could be different.
This dependence on the parameter set makes the comparability difficult again.
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DN_RMSE

To alleviate some of the shortcomings of RMSE and MDISP, a new measure is
proposed: the deformation-normalized root mean squared error (DN_RMSE). The
idea is to compute the RMSE after the image in question is deformably registered
to the ground truth using the same pipeline as used for MDISP. In other words,
DN_RMSE tries to express the similarity purely based on appearance and the
presence of anatomical structures and not on deformation or displacement. It can
be used to interpret small MDISP values better. Not unlike MDISP, taken by itself,
DN_RMSE is not conclusive. However, combined with MDISP, it aids in a better
comparison of generated images within a single work.

TRE

The TRE is a medically crucial metric for accuracy. To compute it, the position of
vessel cross-sections is marked in both the generated MRI image and the ground
truth. In the presented work this was done manually. For that a self written tool was
used that shows both images and allows to place markers in a series of images,
making it easier to track the cross sections. Tracking was performed within slice
positions. In practice, from one to six vessel cross-sections were tracked, first in
the ground truth and after that in other image, e.g., a predicted image. The number
of tracked vessels depended on the availability of visible landmarks, i.e., vessel
cross-sections in a given liver and slice position. Based on that, the TRE is defined
as the mean euclidean distance of corresponding marked positions in the generated
image and the ground truth.
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Related Work 3

Synopsis

This chapter gives an over view of the related work in the field of 4D MRI methods. A classification is made that
divides the relevant work in two types: phase-resolved and time-resolved methods. The unique advantages and
disadvantages of both types are discussed.
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3.1 Structured Literature Research

A structured literature research was performed using the search engine pubMed.
The search was limited to the time period between January 1st 2000 and August 31th
2022 and resulted in 307 initial retrieved papers. The search term was constructed
using five categories. To account for different spellings, several synonyms per
category were used. (see table 3.1). The categories and synonyms were established
after performing an unstructured literature research. The categories represent the
following:

A) The method must be a 4D method, i.e., both temporally and spatially resolved.

B) The method must be applicable on large organs or areas.

C) The imaging modality must be MRI.

D) It must be a technical method and not a paper just regarding the application
of the method.

E) Some related concepts and work must be excluded because they are out of
the scope of this work.

The search term was constructed to fulfill all categories A,B,C, and D and exclude
category E. Equation 3.1 shows the outer structure of the search term.

A ∩B ∩ C ∩D ∪ E (3.1)

All synonyms within a category were included by concatenating them using the OR
operation. The final pubMed readable search term, including its inner structure
looks as follows:

((4D[Title/Abstract] OR 4-dimensional[Title/Abstract] OR
four-dimensional[Title/Abstract] OR time-resolved[Title/Abstract] OR respiration

resolved[Title/Abstract] OR temporal phase-resolved[Title/Abstract] OR respiratory
motion-resolved[Title/Abstract] OR respiratory phase-resolved[Title/Abstract])

AND

(abdominal[Title/Abstract] OR liver[Title/Abstract] OR lung[Title/Abstract] OR
thorax[Title/Abstract] OR abdomen[Title/Abstract] OR pulmonary[Title/Abstract] OR

large FOVs[Title/Abstract])
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AND

(MRI[Title/Abstract] OR magnetic resonance imaging[Title/Abstract] OR
MR[Title/Abstract] OR magnetic Resonance[Title/Abstract])

AND

(reconstruction[Title/Abstract] OR imaging[Title/Abstract] OR
acquisition[Title/Abstract] OR prediction[Title/Abstract] OR approach[Title/Abstract]

OR technique[Title/Abstract] OR method[Title/Abstract] OR
procedure[Title/Abstract] OR strategy[Title/Abstract])

NOT

(angiography[Title/Abstract] OR flow[Title/Abstract] OR subtracted[Title/Abstract]
OR cardiac[Title/Abstract])

AND

(2000/1/1:2022/8/31[pdat]))

The 307 results were further filtered. Any paper that did not present a method for
the reconstruction of 4D MRI was omitted from the initial list of papers, leaving a
total of 23 papers. Also included in the related work are 5 more papers that did not
match the search term but were found during the non-structured literature research
and were relevant related work.
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Categories
A B C D E
4D abdominal MRI reconstruction angiography
4-dimensional liver magnetic resonance imaging imaging flow
four-dimensional lung MR acquisition subtracted
time-resolved thorax magnetic Resonance prediction cardiac
respiration resolved abdomen approach
temporal phase-resolved pulmonary technique
respiratory motion-resolved large FOVs method
respiratory phase-resolved procedure

strategy
Tab. 3.1: The categories and synonyms or terms within each category that were used to build the search term for the structured literature research.

The term was chosen to include synonyms from the category A to D and to preclude synonyms from category E.
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The unstructured and subsequent structured literature research revealed that there
exist two approaches to the acquisition of 4D MRI, each with its unique advantages
and disadvantages. The first approach is to acquire fast 3D MRI sequences in
real-time as done by Kim et al. (2014), Dinkel et al. (2009) and Bled et al. (2011).
The main advantage of this approach is that it does not rely on gating and thus
supports the imaging of events that do not occur repeatedly, i.e., events that are
not periodic. The main disadvantage of this approach is that it typically has either a
small FOV, low spatial resolution or inferior image quality. Kim et al. (2014) use a
FOV of 20 cm× 16 cm× 8 cm, Dinkel et al. (2009) use a voxel size of 3.1× 3.1× 4

and have a bad image quality. This renders this approach incapable to capture the
respiratory motion of large organs like the liver in a sufficient temporal and spatial
resolution. They are thus not further discussed in this work.

The second approach is to reconstruct volumes for different breathing states or
breathing phases of the organ or area of interest in retrospection. This is done
by binning previously acquired data. This approach can be further divided into
two main types: respiratory phase-resolved or time-resolved methods. They are
descried in the following sections. Both types can share similarities. For example,
the used surrogate or breathing signal, which is used for the data binning, can be
either intrinsic or extrinsic. Intrinsic signals, rely on image or k-space information.
Extrinsic signals, are externally recorded, e.g., using a breathing belt or tracking
markers that are placed on the abdomen of the subject. Also using a flight of time
or depth camera can be counted to extrinsic signals. In the following the two types
and relevant works are discussed in detail. A summary of the works can be found
in table 3.2.

3.2 Respiratory Phase-Resolved Methods

The first type can be described as respiratory phase-resolved. Methods of that
type are mainly based on sequence programming and unique k-space sampling
designs. The sparsely sampled k-space data is binned into respiratory phases
and each bin then gives rise to the reconstruction of a single volume for that given
respiratory phase. The total data acquisition of these methods usually takes around
5min. The number of phases they can reconstruct is generally fixed (usually 10 or
fewer phases) as well is the number of breathing cycles that can be reconstructed
is generally restricted to a single averaged breathing cycle.
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Tokuda et al. (2008) proposed an adaptive 4D MR imaging method based on
navigator echo and multiple gating windows leading to a more efficient acquisition.
Cai et al. (2011) acquire axial MRI slices to derive an image based intrinsic breathing
signal, which they call body area. They use the signal retrospectively to sort the axial
slices into four respiratory phases. Hu et al. (2012) proposed a triggering scheme that
consists of a preparation stage and an acquisition stage. Immediately prior to MRI
acquisition, the preparation stage monitors the respiration via an external respiratory
belt. Based on the respiratory amplitude the respiration cycle is equally divided
into N respiratory phases (they showed it for 4 bins). Each phase was associated
with a trigger which started image acquisition for a single slice. A complete 4D MRI
was acquired by acquirring slices at each position and in each respiratory phase.
Yanle Hu et al. (2013) used single-shot acquisition with parallel imaging and partial
k-space imaging to improve acquisition speed. They reconstruct four respiratory
states of one breathing cycle, the mid point and end point of both inhalation and
exhalation in a slice wise manner. Each slice is acquired once in all four breathing
states. They use a triggering mechanism for MRI image acquisition based on the
respiratory amplitude instead of respiratory phase as in other 4D techniques. The
promise a high contrast by using the T2 weighted sequences. Tryggestad et al.
(2013) have developed a longer-duration MRI and post processing technique to
derive the average or most-probable state of mobile anatomy and meanwhile capture
and convey the observed motion variability. They acquire sagittal and coronal slices
and derive in in a two-pass approach respiratory interval-correlated volumes, by
retrospectively sorting them into ten respiratory phase volumes. However, by using
a prolonged acquisition, they lose the normally inherent advantage of this type of
methods, its short acquisition time. Y. Liu et al. (2014) proposed 4D MRI construction
based sorting of 2D data slices into respiratory phases, useing a sagittal body area
surrogate to determine the respiratory phase.

Paganelli et al. (2015) acquire serial interleaved 2D multislice MRI data and use
mutual information to automatically determine a stable reference phase. They
then sort the image slices retrospectively without the need for navigator frames
by directly comparing neighboring slices using mutual information to reconstruct
eight breathing phases of one breathing cycle. Deng et al. (2016) implemented
a continuous spoiled gradient echo sequence with 3D radial trajectory and 1D
self-gating for respiratory motion detection. They sort data retrospectively into
different respiratory phases based on their temporal location within a respiratory
cycle. Ten phases are reconstructed via a self-calibrating CG-SENSE program.
Based on the balanced steady-state free-precession (bSSFP) technique and 3D
k-space encoding, Han et al. (2017) designed a novel rotating cartesian k-space
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(ROCK) reordering method. It incorporates repeatedly sampled k-space center lines
as the self gated motion surrogate, which is used to retrospectively bin the k-space
data into different respiratory positions based on the amplitude of the surrogate.
Each of the eight k-space data bins is then subsequently reconstructed using a
joint parallel imaging and compressed sensing method with spatial and temporal
regularization. Rank et al. (2017) proposed the 4D joint motion-compensated high
dimensional total variation algorithm, which alternates between motion-compensated
image reconstruction and artifact-robust motion estimation at multiple resolution
levels. Lindt et al. (2018) acquire axial slices using a dynamic multi-slice 2D Turbo
Spin Echo (TSE) sequence. They extract an image-based self-sorting signal by
computing correlation coefficients between all acquired slices. Images are then
sorted into 10 phases while missing data is interpolated.

Harris et al. (2018) proposed to use a combination of prior 4D MRI volumes, which
are acquired using a retrospective approach as prior information and kV imaging
(x-ray) of a linear accelerator (LINAC) system, which is acquired in real time during
the intervention, to generate on-board 4D MRI prospectively and in real time. To
that end, they determined a end exhale volume from the prior 4D MRI and computed
a synthetic CT volume from that. The CT volume was then registered, using de-
formable transformation and projection of the volume, to the real time x-ray. Finally
the on-board 4D MRI is generated by deforming end prior exhale MRI volume ac-
cording to the optained deformation field. Meschini et al. (2019) exploit a k-medoids
clustering approach to sort 2D MRI into 4D MRI. Data slices were sorted using
multiple automatically tracked internal landmarks using the scale-invariant feature
transform (SIFT) without using a separate navigator image. Richter et al. (2020)
implemented a wave-CAIPI k-space trajectory in a respiratory self gated 3D spoiled
gradient echo pulse sequence. Trajectory correction applying the gradient system
transfer function was used, and images were reconstructed using an iterative conju-
gate gradient SENSE algorithm. Navest et al. (2020) proposed to use a so called
noise navigator as respiratory surrogate signal for 4D-MRI generation. It is based on
the respiratory-induced modulation of the thermal noise variance measured by the
receiver coils during acquisition and thus is inherently present and synchronized with
MRI data acquisition. This eliminates the need for acquisition of an actual navigator
frame. The k-space data was binned into ten equally sized respiratory phases
using phase binning. Kavaluus et al. (2020) acquired a proprietary T2-weighted
single-shot fast spin echo research sequence. The respiratory surrogate signal
was observed within a linear navigator interleaved with the anatomical liver images.
The navigator was set on head-feet direction on the superior surface of the liver to
detect the edge of diaphragm. The navigator signal and 2D liver image data were
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retrospectively sorted into 4D MRI using the position of the diaphragm seen in the
navigator.

Yang et al. (2020) developed a method that uses the diaphragm in sagittal slices as
an anatomic feature to guide the sorting of axial slices into ten breathing phases.
Initially, both abdominal 2D sagittal cine MRI images and axial MRI images were
acquired. The sagittal cine MRI images were divided into 10 phases as ground
truth. Following that, the phase of each axial MRI image is determined by matching
its diaphragm position in the intersection plane to the ground truth cine MRI. Then,
those axial images with matched phases were sorted into 10-phase bins, which were
identical to the ground truth cine images. 10-phase 4D-MRI were reconstructed from
these sorted axial images. Eldeniz et al. (2021) developed a deep learning method
to remove streaking artifacts and noise from free-breathing magnetic resonance
imaging using a radial acquisition and k-space undersapmling. The method does
not rely on high-quality ground truth. Self-navigation was used to bin k-space data
into 10 respiratory phases. Short acquisitions were simulated by using subsets of
radial spokes to reconstruct images with multicoil nonuniform fast Fourier transform
(MCNUFFT), compressed sensing (CS). They developed a deep leaning network
Phase2Phase that is trained to remove artifacts from the simulated low quality 4D
MRI images. Keijnemans et al. (2022) developed a hybrid 2D/4D-MRI methodology
that uses a simultaneous multislice accelerated MRI sequence, which acquires
two coronal slices simultaneously and repeatedly cycles through slice positions
over the image volume. Slices are sorted retrospectively into respiratory-correlated
4D-MRIs using an intrinsic end-exhale reference. Li et al. (2022) proposed a novel
motion-aligned reconstruction method based on higher degree total variation and
locally low-rank regularization to recover 4D MR images from the highly undersam-
pled Fourier coefficients. They proposed a two-stage reconstruction framework
alternating between a motion alignment and regularized optimization reconstruction,
presenting a unified framework to exploit the spatial and temporal correlation of the
4D-MRI data. A fast alternating minimization algorithm based on variable splitting
was utilized to solve the optimization problem efficiently.

In summary, one can note that the strength of respiratory phase-resolved methods,
lies in the ability to capture periodic breathing state changes with a large FOV
within a few minutes depending on the length of the motion cycle. Its weaknesses
are its assumption of strictly periodic organ motion. In reconstructing only one
average or dominant motion cycle of the target organ, which is not ensured to be
physiologically meaningful, it cannot account for arbitrary or irregular breathing and
thus irregular breathing cycles. Furthermore, this type introduces image artifacts
Mickevicius et al. (2017) and Pang et al. (2016) that could hinder motion estimation
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from the reconstructed 4D MRI. This however was addressed by Eldeniz et al.
(2021). Another disadvantage is that it requires the MRI machine to allow the use
of the non-standard sequences on with those methods often rely.

3.3 Time-Resolved Methods

4D MRI methods of this type can reconstruct variable and irregular breathing motion
and are mainly based on clinically available MRI sequences. They often utilize a
fast dynamic 2D sequence to acquire images at different slice positions, which in
total cover the organ of interest. After that most methods apply retrospective gating
to the acquired 2D image slices, to bin them by different breathing states of the
organ and sort them based on their slice position in their respective volumes.

In 2007, M. v. Siebenthal et al. (2007) were the first to propose a time-resolved 4D
MRI reconstruction framework suitable to account for arbitrary breathing motion of
the liver. They acquired two sets of fast 2D MRI image sequences. First, a data
set of images, which subsequently was sorted to form a 4D volume and, second,
a dynamic reference sequence, which was used to sort the other images by and
that showed the course of the respiratory movement of the liver within a navigator
slices position. The first set was a series of 2D images alternating between spatially
fixed navigators and spatially moving data slices. Using a similarity search strategy,
these were then reconstructed into a 4D MRI that corresponds to a given sequence
of navigators with respect to the breathing state. Thus, they reconstructed time-
resolved 4D MRI from dynamic 2D navigators, accounting for arbitrary breathing.
The shortcoming of this method was the long acquisition time needed to establish
the data set in which the similarity search is performed and the time-expensive
search during reconstruction itself.

Several works adapted the idea and tried to address the shortcomings within the
framework, i.e., the long acquisition and reconstruction times. They applied machine-
learning methods to interpolate navigators or data slices, effectively reducing acqui-
sition time or improving image quality.

Wachinger et al. (2012) proposed a purely image-based retrospective respiratory
gating method. They created 4D MR within the Siebenthal-framework but using
a navigator based on Laplacian eigenmaps, a manifold learning technique, to
determine the low-dimensional manifold embedded in the high-dimensional image
space. This made the sorting more robust against ouf-of-plane motion of liver
structures, which before posed a problem to the template based approach of M. v.
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Siebenthal et al. (2007). Tanner et al. (2014) addressed the long acquisition times
and propose to actively generate more suitable data images instead of only selecting
from the available images that were actually acquired. Thus they can either reduce
the number of data slices that actually actually have to be acquired or increase
the image quality by boosting the number of reference images. The method is
based on learning the relationship between the motion of navigator and data-slice
by linear regression after dimensionality reduction. They use this to predict new
data slices for a given navigator by warping existing data slices by their predicted
displacement field. Among the approaches within the Siebenthal-framework, the
method of Tanner et al. has the most similarities to the deep learning based 4D
MRI method presented later in this thesis. This is because it is based on learning
the relation between navigator and data slices. The essential difference is that their
method is not an end-to-end learnable formulation for the 4D MRI reconstruction,
i.e., the machine learning technique does not solve the complete problem of 4D
reconstruction but rather a part of it. Thus the method still requires a time-expensive
search for similar data slices within the prior acquisitions, making the method suited
for retrospective reconstruction but not for prospective reconstruction.

Celicanin et al. (2015) also addressed the acquisition time, by simultaneously
acquiring navigator and data slices, cutting the total acquisition time in half. They
used a standard balanced steady state free precession sequence and modified
it to simultaneously acquire two superimposed slices with different phase cycles,
i.e., an image and a navigator slice. Instead of multiband RF pulses, two separate
RF pulses were used for the excitation. Images were reconstructed using offline
CAIPIRINHA reconstruction.

Karani et al. (2018) also addressed the long acquisition times and proposed the
temporal interpolation of navigator slices using a CNN. They used that to effectively
half the number of navigator acquisitions by replacing every second navigator with
an interpolation. They showed that an extension of the temporal context from T=1
to T=2, improved the interpolation result, however, a further extension did not result
in further improvements. Zhang et al. (2018) addressed both the long acquisition
time as well as the reconstruction time by expanding on the idea of Karani et
al.. They proposed the re-formulation of the temporal interpolation idea using the
prediction of a motion field as an intermediate step, reducing the problem of blurry
predictions and missing structures. Another advantage of their formulation was
that it provides an unsupervised estimation of bi-directional motion fields that can
be used to halve the number of registrations required during 4D reconstruction.
That way they also reduced the reconstruction time. Qiu et al. (2019) proposed a
method that incorporates Sliding Motion Compensation into the standard Low rank
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+ Sparse reconstruction. The global superior-inferior displacement of the internal
abdominal organs is inferred directly from the undersampled raw data and then
used to correct the breathing induced sliding motion. The reconstructed temporal
frames are roughly registered before applying the standard Low rank + Sparse
decomposition.

Romaguera et al. (2019) proposed a fully automatic self-sorting 4D MRI volume
construction method outside of the Siebenthal-framework. They used a 2D T2-
weighted true FISP sequence, first extracting a pseudo-navigator signal for each
2D dynamic slice acquisition series. Then, a weighted graph was created using
both spatial and motion information provided by the image based pseudo-navigator
to ensure the temporal coherence of the reconstruction. The volume at a given
time point was reconstructed following the shortest paths in the graph starting at
the time point of a reference slice chosen based on its pseudo-navigator signal.
Yuan et al. (2019) proposed a time-resolved large FOV 4D MRI reconstruction
technique, which also does not operate within the Siebenthal-framework. It is based
on sequence programming to shorten MRI acquisition times drastically. It attains
high temporal resolutions (615ms) at moderate spatial resolution (128 × 128 × 56

voxels, 2.7× 2.7× 4.0mm3). The method is still a retrospective solution, because
the volume reconstruction takes around 20 s. Also, the authors state that the huge
amount of captured data (91 MR images/s) risks filling up the scanner’s memory
during longer imaging sessions.

In summary, time-resolved methods have three advantages. First, most of them
relaxs the strict constraint of periodicity of the breathing motion, to a degree that
quasi-periodic and even non-periodic changes in the organ can be captured. Al-
though, an event or breathing state still has to occur multiple times to be reliably
captured. The only exception here is the method of Yuan et al. (2019). The second
advantage is the high temporal and spatial resolution. Hence these methods are
well-suited to capture motion variation, e.g., deep or shallow, abdominal or thoracic
breaths within one session with a sufficient spatio-temporal resolution. This method
type can work with a time-resolved navigator or respiratory signal to ensure physio-
logical correctness of reconstructed motion. The third advantage is its availability.
Most methods work with all MRI machines and all standard clinically available 2D
MRI sequences that are fast enough. The disadvantages of this type of method
are that it is generally more time-intensive. The data acquisition takes up to 60min.
Also, none of the methods presented so far are real-time capable due to long recon-
struction times of tens of seconds. Furthermore, a significant portion of the acquired
data is often redundant. This, however, can advantageously be used to increase
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the SNR of the reconstructed 4D images in classical approaches or boost the data
basis for machine learning approaches.
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TR P/R Matrix size Resolution
in mm3

Breath. cycle
smpl. vps Recon. time

in s/vol.
befAcq
in min

RMSE
median (95%)

P R P R -

Tokuda et al. (2008) no R 256x128x24 - - 5 - - - 18 -
Cai et al. (2011) no R 256x166 1.5x1.5x5 - 4 - - - - -
Hu et al. (2012) no P - - 10 - - - - - -
Yanle Hu et al. (2013) no R 250x176x32 1.5x1.5x5 - 4 - - - 3 -
Tryggestad et al. (2013) no R 175x190x9 2x2x5 - 10 - - - 13 -
Y. Liu et al. (2014) no R 256x166 2.5x2.5x5 - 10 - - - - -
Paganelli et al. (2015) no R 256x224x20 1.28x1.28x5 - 8 - - - 1.2 -
Deng et al. (2016) no R - - - 10 - - - 8 -
Han et al. (2017) no R 416x250x125 1.2x1.2x1.6 - 8 - - 75 5 -
Rank et al. (2017) no - 256x256x60 1.5x1.5x5 - 20 - - 22.5 0.7 -
Lindt et al. (2018) no R 138x208x30 2x2x5 - 10 - - 30 5 -
Harris et al. (2018) no P - 1.67x1.67x1.67 10 - - - - - -
Meschini et al. (2019) no R 256x224x20 1.28x1.28x5 - 8 - - 262 1.2 -
Kavaluus et al. (2020) no R - 1.33x1.33x3 - 8 - - - 15 -
Richter et al. (2020) no R 224x224x144 2.24x2.23x2.23 - 8 - - 11 10 6.51
Navest et al. (2020) no R - - - 10 - - - - -
Yang et al. (2020) no R - 1.67^1.67x5 - 10 - - - - -
Eldeniz et al. (2021) no R 318x318x96 1.13x1.13x3 - 10 - - 2.7 5 -
Keijnemans et al. (2022) no R 52x240x136 6.7x1.9x1.9 - 8 - - - 3 -
Li et al. (2022) - - 256x256x25 1.37x1.37x4 - - - - - - -
Wachinger et al. (2012) no R - - - - - - - - -
M. v. Siebenthal et al. (2007) yes R 192x192x25 1.8x1.8x4 - 36 - 5 73 60 -
Tanner et al. (2014) yes R 224x224x53 1.3x1.3x5 - 36 - 4.4 - 10 -
Celicanin et al. (2015) yes R 120x128 1.87x1.87x6 - 20 - 3.33 - - -
Zhang et al. (2018) yes R - 1.33x1.33x5 - 36 - 2.4 36.5 30 10.23 (13.74)
Karani et al. (2018) yes R - 1.33x1.33x5 - 36 - 2.4 - 20 4.09 (6.81)
Romaguera et al. (2019) yes R - 1.7x1.7x3 - 46 - 7.5 - 28 -
Qiu et al. (2019) yes R 256x256x53 1.34x1.56x4 - - - 1.6 - - -
Yuan et al. (2019) yes R 128x128x56 2.7x2.7x4 - 9.78 - 1.63 20 0.33 -

Tab. 3.2: Comparison of the related work regarding whether its time-resolved (TR), whether reconstruction is done pro-/retrospectively (P/R),
matrix size, voxel resolution, how many phases of a breathing cycle can be resolved (breath. cycle smpl.) based on a 6 s breathing cycle,
volumes per second (vps) in pro- and retrospective reconstruction (P/R), prior acquisition time (befAcq), reconstruction time, and RMSE.
Values taken from respective publications. Best values bold.
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3.4 Summary

To summarize, let us revisit the advantages and limitations of phase-resolved and
time-resolved methods that also were anticipated in the introduction.

phase-resolved methods

pro short acquisition times of around 5min

pro high spatial resolution

con single breathing cycle

con no accounting for irregular breathing

con fixed number of breathing phases (<= 10)

con not readily usable in all MRI sites (sequence programming)

con no real-time capability, i.e., no live imaging

con low image quality

con no uncertainty or error estimation

time-resolved methods

pro multiple breathing cycles

pro accounting for irregular breathing

pro high temporal resolution

pro high spatial resolution

pro high image quality

pro use clinically available MR sequences

con long prior acquisition time (»10min)

con not real-time capable, i.e., no live imaging

con no uncertainty or error estimation
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In a direct comparison the time-resolved methods have more advantages than
limitations compared to the phase-resolved methods. For this reason a time-resolved
method was developed during the work presented in this thesis, in which the following
three limitations have to be addressed:

1. long prior acquisition times

2. long reconstruction times, i.e., no real time capability

3. no uncertainty or error estimation
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MRI Data Base for 4D MRI
Reconstruction

4

Synopsis

This chapter reports the establishment of a public MRI database for developing and testing 4D MRI methods. The
MRI data, study information, and MR sequence protocols used in this study are available in the Open Science Repos-
itory for Research Data and Publications of OVGU (Creative Common License 4.0) in part one: https: // doi.
org/ 10. 24352/ UB. OVGU-2019-093 and part two: https: // doi. org/ 10. 24352/ UB. OVGU-2021-071 .

About this chapter

Parts of this chapter have been published in: Gino Gulamhussene, Fabian Joeres, Marko Rak, Maciej Pech, and

Christian Hansen (2020). "4D MRI: Robust sorting of free breathing MRI slices for use in interventional settings".

PloS one, 15(6), e0235175. (Gulamhussene et al., 2020).
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4.1 Introduction

Previously there has been no publicly available data set for the development and
testing of 4D MRI methods. At the beginning of this thesis such a data set was
generated and made publicly available for fellow researchers to develop and test
their methods. This chapter describes the generation of a public data set. First, a
general motivation of the data requirements is given and the resulting study design
is described. Then section 4.2 describes what exact data was acquired and what the
structure of the data is like. Section 4.3 describes both how the data was acquired
and the MRI sequences that were used.

4.1.1 Data Requirements

The data set had to fulfill some requirements. First, the contained MR images must
mimic the interventional image data, which is available during an interventional setup,
described in 2.3 as closely as possible. This specifically means high acquisition
speed and a contrast that is just good enough to detect the respiratory motion.
Second, to make the data set suitable for the development and testing of a variety of
4D MRI methods that are compatible with a wide range of also external surrogates,
no body array coil (surface array coil comprised of multiple elements) but only the
bore fixed receiver coil was used, to ensure a free line of sight to the abdomen of
the subject. This made the acquisition compatible with, for example, surrogates
based on a scan of the abdomen’s surface or marker tracking on the abdomen.
This was important to make the gathered motion information available for a wide
range of interventional scenarios where different surrogates may be used to track
breathing.

4.1.2 Study Design

The data acquisition was carried out in two acquisition periods. The first ran from
February to June 2018. The second was started and completed within November
2020. Healthy subjects were invited to participate in a MRI study to acquire images
of the liver. Subjects had to fulfill all requirements to participate. For example,
subjects with tattoos, non-removable piercings, braces, or metal implants were
excluded from the study. 13 healthy subjects participated in the first round. Further
seven healthy subjects participated in the second round. For each of the 20 subjects
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two image sets were acquired. Over the period of several days three acquisition
sessions per day were scheduled. The volunteers were invited and imaged on two
different acquisition sessions on different days, to include variations that occur in
between imaging sessions.

The ethics board of the Otto-von-Guericke-University Magdeburg/Germany approved
our study "Studies with healthy subjects in 3 Tesla for methodological development of
MRI experiments" (approval number 172/12), concluding that there were no ethical
concerns and that this approving assessment was made based on unchanged
conditions. All research was performed in accordance with relevant guidelines and
regulations. Verbal and written informed consent was obtained from all subjects.

The data was made publicly available in the Open Science Repository for Re-
search Data and Publications of the OVGU (Creative Common License 4.0) in
two parts. Part one: https://doi.org/10.24352/UB.OVGU-2019-093 and part two:
https://doi.org/10.24352/UB.OVGU-2021-071. The images were anonymized
and uploaded in the DICOM image format. A detailed MRI acquisition protocol, and
description of the high level data structure was attached to the data.

4.1.3 Study Protocol

Each acquisition session for a specific subject followed the same study protocol:

1. Determination of contraindications, like tatoo, piercing, etc.

2. Subject education

3. Obtaining verbal and written Consent

4. Subject instruction (Duration of the session, no special breathing, i.e., free
breathing and no breath commands)

5. Positioning of the subject on the MRI table

6. Get subjects out of the MR room

7. Ask about well-being
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4.2 Data Structure

An overview of the general structure of the data set is given in Fig. 4.1 and an
overview of the data set on a subject level is given in Fig. 4.2. The data set
comprises 20 subjects. For each subject two image sets were acquired on different
days. Each of the two image sets per subject contains three parts (see gray boxes
in Fig. 4.2):

1. two static 3D liver MRI

2. several data sequences (between 38 and 61)

3. two reference sequences

3D volumes and 2D slices of the same subject share common scanner coordinates.
Throughout this thesis the reference sequence and navigator frames will be depicted
as orange and the data frames as purple. All three parts to the data base are
described in the following.

Fig. 4.1: Data set structure: The data set contains data of 20 subjects. Two image sets
belong to each subject. Each image set contains two static volumes, several
(N) data sequences and two reference sequences. Data sequences contain
alternating navigator (orange dots) and data slices (purple dots). Reference
sequences contain only navigator slices.
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Fig. 4.2: Image set structure and acquisition: Each image set (two sets per subject) consists
of three parts: 1) two static volumes, 2) several data sequences, alternating
between navigators (orange dots) and data slices (purple dots), and 3) two dynamic
reference sequences.

4.2.1 Static Volume

For each subject two static 3D volumes were acquired using a STAR VIBE MRI
sequence with axial slice orientation. The sequence itself is described in more detail
in section 4.3. Exaples of four subjects are given in Fig. 4.3. Because it is a static
volume, it will be also refer to as breath-hold volume. Note, that technically this
sequence is not acquired under breath-hold. The subjects are breathing freely during
the STAR VIBE volume is acquired. However, this single volume mimics a breath-
hold acquisition by binning k-space data into breathing states and reconstructing
only one dominant breathing state. The two STARE VIBE volumes were acquired
before and after the data sequence and reference sequence.

4.2.2 Reference Sequence

A reference sequence is a dynamic 2D MRI sequence of so-called navigator frames,
which is acquired during free breathing. Note, MRI sequences that are dynamic
are also refereed to as cine. In this case a TRUFI MRI sequence, described in
section 4.3, was used, because it allows for a fast slice acquisition of 166ms per
slice. A schematic depiction can be found in Fig. 4.2 in the gray box 3). Example
images for three subjects can be seen in Fig. 4.4. The reference sequence is
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Fig. 4.3: Examples of STAR-VIBE volumes shown in four axial slices of four subjects (S1 -
S4).

dynamic in time but static in position, i.e., the slice position does not change. It is
the same fixed position as the one of the navigator in the data sequences. Navigator
frames represent an image plane, in which the respiratory motion is visible via organ
deformation and the positional change of vessel cross-sections. In this case, the
navigator is a sagittal slice that intersects the right liver lobe.

This sequence is used for the 4D reconstruction, as a respiratory reference, i.e.,
a breathing signal or surrogate signal, because it contains a natural succession
of different breathing states and pattern that depend for example on shallow or
deep, thoracic or abdominal breathing, and is thus physiologically meaningful. The
reference sequence represents the real-time imaging of interventional MRI and is
used as breathing surrogate for the 4D MRI method. Like the static volume, the
first reference sequence was acquired at the beginning and the second at the end
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Fig. 4.4: Examples of TRUFI reference sequences of three subjects (S1 - S3). Shown are
four frames representative of one inhale. The relative frame number is shown
in the left upper corner of each image, e.g., as f5. The dashed line serves as
reference for the breathing motion.

of each subject session. A reference sequence comprises 513 images, i.e., time
points, covering a time span of 85 seconds. This is about 20 breathing cycles. The
sagittal position of the navigator slice is the same for all sequences per subject.

4.2.3 Data Sequence

A data sequence consists of navigator frames and data frames that were acquired
alternatingly, i.e., in an interleaved fashion. It was also acquired during free breathing,
using the TRUFI MRI sequence. An example of a data sequence of one subject is
given in Fig. 4.5. The data sequence shows a different breathing curve than the
navigator sequence, because it was imaged at another time. However, it contains
similar or the same breathing patterns, albeit in a different order of succession.

Each data sequence consists in equal parts of data frames and navigator frames
(between 150 and 200 each), see gray box 2 in Fig. 4.2. The acquisition of one
slice took 166ms per slice. Each data sequence was acquired for 1min before
moving the imaging plane of the data slice 4mm to the left, while keeping the
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Fig. 4.5: Examples of TRUFI data sequences of one subject. Shown are 16 consecutive
frames. To signify interleaved character of the sequence pairs of navigators and
data frames are framed with gray boxes. The relative frame number is shown in
the left upper corner.

navigator position fixed. This is repeated until the entire liver is covered. Keeping
the navigator position exactly the same as in the reference sequence, renders
temporal reconstruction possible. Sweeping the data slices over the target organ in
4mm gaps during acquisition, renders spatial reconstruction possible. In other words,
while the navigator position is the same for all data sequences, the slice positions for
the data frames are distinct for each data sequence. Data sequences were acquired
in the order from right to left. For each slice position of the reconstructed volume,
i.e., at 4mm distances, one data sequences is acquired. The total number of data
sequences per subject ranges between 38 and 57 (mean = 46.68), depending on
the size of the subjects’ liver to capture its whole extent. Thus, the overall acquisition
time for a subject ranged between 40 and 80min, plus ∼15min per subject for
imaging localizers, determining the navigator position and setting up the interleaved
sequences.

In the sorting approach to 4D MRI, which will be discussed in chapter 5, the 4D MRI
method sorts the data frames into a 4D MRI volume based on information extracted
from the navigators that come befor and after the data frame.

In the deep learning approach to 4D MRI, which will be discussed in chapter 6,
the entire data sequence can be thought of as made up from a series of pairs or
training samples, i.e., navigator and data slices. The navigator slices will be part
of the networks training input, and the data slices will be the training label images.
Because the ground truth is an important part of the data in the deep learning
approach, it and its limitations are discussed in a bit more detail here. The ground
truth data is contained in the data sequence. Specifically, the data slices will be
used in all relevant tests as the ground truth, regarding the the task: given navigator
frame N what is the appropriate data frame D for slice position P? That means
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the data set does not contain a ground truth for a whole volume as one 3D image.
Rather for the full volume the ground truth is divided into multiple slices that are not
coherent in time. Because of that the ground truth must be handled separately for
each slice position. That is also the reason why this ground truth does not support
the testing or training of a method directly on the whole reconstructed volumes but
only for each slice position individually.

Note, M. v. Siebenthal et al. (2007) noted that a better acquisition scheme for the data
sequence exist. Instead of first acquiring all data slices in one position before moving
on to the next data slice position, it is beneficial to move the slice position after each
acquisition while keeping the navigator position fixed. This has advantages, which
are discussed later. However, the Siemens MRI machine used for this study did not
allow for this acquisition scheme with on board software. A separate software, the
SIEMENS Healthineers Access-I Framework, like done by Alpers (2023) in another
context, or alternatively sequence programming is needed to do that.

4.3 MRI Sequences

The whole data set was acquired on a MAGNETOM Skyra MRI scanner (Siemens
Medical Solutions, Erlangen, Germany). In this work the Philips based MRI se-
quences proposed by M. v. Siebenthal et al. (2007) were translated to their equivalent
on a Siemens machine.

STAR-VIBE

Parameter value
matrix size 320× 320× 72− 88
slice thickness 3mm
in plane resolution 1.19× 1.19mm2

phase oversampling 0%
slice oversampling 44.4%
FOV read 380mm
FOV phase 100%
TR 2.83mm
TE 1.48ms
flip angle 9◦

slice partial Fourier 7
8

Tab. 4.1: Parameters used for the STAR-VIBE sequence in this work
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Fig. 4.6: An example liver volume from one subject, acquired using a STAR-VIBE MRI
sequence. The liver tissue appears bright in contrast to the vessel-cross sections,
which appear dark.

As can be seen in Fig. 4.6, the liver tissue in a STAR-VIBE volume appears bright,
while the vessel-cross sections appear dark. In general major vessels are visible,
smaller vessels are harder to identify. When the subject did breath more deeply
during the STAR-VIBE acquisition, the volumes are more blurry. In these cases finer
vessels are not visible.

The parameters used in this work for the STAR VIBE sequence can be found in
Tab.4.1. No body array coil was used, limiting acquisition to the bore’s fixed receiver
coil. The acquisition of one volume took between one and two minutes.

TRUFI

As can be seen in Fig. 4.7, the liver tissue appears to be dark in contrast to the bright
vessel cross-sections. The sequence parameters are given in Tab. 4.2. For faster
measurement, a partial Fourier was used sampling 5/8 of the k-space asymmetrically
in phase-encoding direction, i.e., roughly 60% of the ky lines, resulting in 88 actually
acquired ky lines. This resulted in an acquisition time of 166ms/slice. No body array
coil was used, limiting acquisition to the bore’s fixed receiver coil.
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Fig. 4.7: An example liver slice from one subject, acquired using a TRUFI MRI sequence.
The liver tissue appears dark in contrast to the bright vessel-cross sections.

Parameter value
matrix size 140 x 176
slice thickness 4mm
in plane resolution 1.82mm x 1.82mm
FOV 255 mm x 320 mm
TR 39.96 ms
TE 1.49 ms
echo spacing 3.33 ms
flip angle 30◦

slice partial Fourier 5/8
readout bandwidth 676 Hz/px
base resolution 176 kx
phase resolution 80

Tab. 4.2: Parameters used for the TRUFI sequence in this work
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4D MRI: Robust Sorting of
free Breathing MRI Slices for
use in Interventional Settings

5

Synopsis

This chapter reports on the development and evaluation of a 4D MRI method, which serves as a baseline for
further development in this thesis. The main strengths of the method are its large FOV, high image quality and its
ability to capture irregular breathing motion. It is based on the sorting and stacking approach and uses template
updates and search regions for faster and more robust vessel cross-section tracking in the navigator slices in the
presence of out-of-plane motion.

About this chapter

Parts of this chapter have been published in: Gino Gulamhussene, Fabian Joeres, Marko Rak, Maciej Pech, and

Christian Hansen (2020). "4D MRI: Robust sorting of free breathing MRI slices for use in interventional settings".

PloS one, 15(6), e0235175. (Gulamhussene et al., 2020)
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5.1 Introduction

The previous chapter described the acquisition and establishment of a public data
set for the development and testing of 4D MRI methods. This chapter describes
the development of a 4D MRI reconstruction method based on the classical sorting
and stacking approach using the data set. The method will serve as the image
quality baseline for the development of the deep learning based method described
in chapter 6.

The recent years have seen the introduction of 4D MRI methods (as discussed in
chapter 3), however, none of these methods have met all the necessary requirements
for interventional use as defined in chapter 1 section 1.2, nor can they serve as
a strong baseline method for this thesis. Specifically, breathing phase resolved
methods lack physiological correctness, while retrospective sorting and stacking
approaches that are time-resolved lack robustness against out-of-plane motion.
This work follows the retrospective sorting approach because, as highlighted in the
related work chapter (3), it is the only method capable of capturing physiologically
meaningful, non-periodic organ motion with high temporal and spatial resolution and
large field of views. While the approach has a disadvantage of long acquisition time
and susceptibility to out-of-plane motion, these can be overcome as demonstrated in
this and following chapters. Our work builds specifically upon the method proposed
by von Siebenthal et al. (M. v. Siebenthal et al., 2005; M. v. Siebenthal et al., 2007)
and utilizes retrospective sorting of dynamic 2D TRUFI MRI slices. It is capable
of imaging the whole liver during free breathing and capturing organ motion and
deformations caused by respiration. It reconstructs a physiologically meaningful
sequence of respiratory states by utilizing a dedicated navigator frame.

Our methodological contribution is, to introduce template updates and search regions
to the sorting and stacking approach, to improve robustness against out-of-plane
motion and to enhance the reconstruction speed.

5.2 Materials and Methods

This section, first describes the general concept of 4D MRI reconstruction used
by von Siebenthal and the proposed adapted method (section 5.2.1). Then in
section 5.2.2 the determination of the breathing state is described. After that, the
sorting of data slices based on the breathing state is explained in sections 5.2.3.
Finally section 5.2.4 describes how the method was improved by the utilization of
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Fig. 5.1: Sorting and stacking scheme of 4D MRI reconstruction.

template updates to increase robustness against out-of-plane motion and search
regions to speed up the sorting process.

5.2.1 4D MRI Reconstruction

The last chapter, already described the reference sequence containing navigator
frames. The general idea of the method, described in this chapter is, to use the
navigator frames to generate a 3D volume for every navigator frame. Each navigator
frame defines a breathing state and from that, the method generates a volume
with the corresponding breathing state. Repeated for every navigator frame in the
reference sequence, this results in a 4D MRI sequence showing a physiological
progression of respiratory states.

Figure 5.1 illustrates the scheme of volume reconstruction per navigator frame in
detail. The scheme consists of four steps as follows. First, the breathing state of a
navigator frame is determined (see section 5.2.2). Second, a search is performed
in every data sequence to find all data frames that match this breathing state. The
matching criterion used in the first two steps is described in following sections. Third,
all found data frames from the same data sequence, i.e., same slice position, are
averaged to produce one image slice to improve the signal-to-noise ratio (SNR).
As a result, an averaged slice is obtained with the correct breathing state for each
data sequence. Fourth, the averaged slices are inserted into the volume at their
position, since each data frame has a unique and known position in the liver volume.
This step is referred to as the "stacking" step, and it results in a volume with the
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same breathing state as the navigator. Doing this for all navigator frames results in
a continuous 4D MRI sequence.

The size of the reconstructed volumes, both in terms of FOV and spatial and temporal
resolution, is determined by the MRI sequence used to acquire the data sequences.
The FOV of the reconstructed volumes is based on the FOV of the acquired slices
and the number of slice positions used to cover the entire liver. In this study, the
FOV of the volumes is 255mm× 320mm× 152 to 288mm, which corresponds to a
matrix size of 140× 176× 38 to 57 voxels.

5.2.2 Determine the Breathing State

Section 2.2, introduced the concept of breathing states. To determine the breathing
state of the liver, the positions of vessel cross-sections in the navigator are tracked.
These vessel positions convey both the liver’s position as well as its deformation. To
track vessels, first a subset of well-visible vessels with high contrast in the navigators
of the subject were select. Typically 3 to 5 vessels were chosen. They represent
and determine the breathing state. Manually defined region of interests (ROIs)
around vessel cross sections were used to define template images and use them
to find the vessel cross section positions via template matching. The matched
positions of the templates represent the breathing state of the liver at the time the
navigator was acquired. However, we are interested in the breathing states of the
data frames, because we want to sort data frames according to their breathing
state. To achieve this, the breathing state of a data frame was defined based on the
breathing states of the two navigators acquired immediately before and after the
data frame, i.e., the leading and the following navigator. See Fig. 5.2. This can be
called a derived breathing state, which can be differentiated from the definition of a
breathing state that is only based on a single navigator. In fact, the derived breathing
state of a navigator is also used in the reference sequence, to correspond with the
derived breathing state of a data frame. Of course, this is only an approximation,
because only vessel cross-sections within the navigators are considered and from
that conclusions about the breathing state of the liver as a whole are drawn.

5.2.3 Sorting Data Frames based on the Breathing State

As mentioned in section 5.2.1 a matching criterion is used to search for data frames
within the data sequences that show the same breathing state as the navigator.

66 Chapter 5 4D MRI: Robust Sorting of free Breathing MRI Slices for use in
Interventional Settings



Fig. 5.2: Scheme of matching breathing state of a navigator in the reference sequence a)
to the breathing state of a data slices in a data sequence b). On the left hand, the
reference sequence is depicted. The red bracket represents the third breathing
state and the matching data slice in the data sequence, depicted on the right.
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Because the respiratory state of a data frame is determined by its enclosing navi-
gators, the matching criterion compares the tracked vessel positions between the
two leading navigators and between the two following navigators. (see brackets in
Fig 5.2). Assume a navigator frame nti at time point ti in the reference sequence
that shows a reference breathing state BSr. We want to find a data frame dtj with
the same breathing state as nti . To this end, the enclosing navigator frames of both
dtj and nti are used. The leading and following navigator frames of dtj are ntj−1

and ntj+1 and the leading and following navigator frames of nti are nti−1 and nti+1 .
We compare the tracked vessel positions between ntj−1 and nti−1 and compute
their displacements. Likewise we compare the tracked vessels in ntj+1 and nti+1

to compute their displacements. When the sum of all displacements is under a
certain threshold, the frames are assumed to have the same breathing state and be
a match. This displacement threshold is a parameter of the method. It determines
the maximally allowed displacements for two frames to be counted as a match.

The vessel tracking is realized via template matching using OpenCV (Bradski, 2000)
and its similarity measure TM_CCOEFF_NORMED (see equation 5.1).

R(x, y) =

∑
x′,y′ (T

′ (x′, y′) · I′ (x+ x′, y + y′))√∑
x′,y′ T

′ (x′, y′)2 ·
∑

x′,y′ I
′ (x+ x′, y + y′)2

(5.1)

where

T′ (x′, y′) = T (x′, y′)− 1/(w · h) ·
∑

x′′,y′′ T (x′′, y′′)

I′ (x+ x′, y + y′) = I (x+ x′, y + y′)− 1/(w · h) ·
∑

x′′,y′′ I (x+ x′′, y + y′′)
(5.2)

Here T′ is the template T minus its mean pixel intensity, and I′ is an image patch
with the same size as the template. Its pixel values are also shifted by minus the
patches mean pixel intensity. w and h are the width and height of the template and
the patch.

R is the resulting image of the template matching. Each entry R(x, y) contains the
similarity value of the template to the source image at position (x, y)

The templates are manually defined for each tracked vessel cross section in the
reference sequence. To this end, a user identifies trackable vessels in one slice of
the reference sequence prior to the 4D reconstruction, which takes a few seconds. In
our case, trackable means that the vessel cross-section or cluster of cross-sections
will be visible in most navigator frames throughout the whole navigator sequence
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Fig. 5.3: Out-of-plane motion in ROI (green rectangle) in subsequent navigator slices. The
vessel cross-section changes its appearance during breathing (red rectangles).
For viewing purposes only, the images gradation curve was altered globally to
enhance contrast.

and that the cross-section has a high contrast to the surrounding tissue as well as a
high signal to noise ratio. This is mostly not the case for small cross sections but
true for larger ones. A tool to help facilitate the manual definition of ROIs around
the vessel cross section was developed.

5.2.4 Template Updates and Search Regions

One of the challenges for the template matching is the out-of-plane motion of the
vessels. That means the vessel cross-sections in the navigator frames are changing,
which in turn means, the searched-for regions are changing their appearance
throughout breathing. In Fig 5.3, one can see how the appearance of a vessel
cross-section can change during breathing. Hence, the approach of von Siebenthal
has difficulties to find them, using fixed templates.

To increase robustness against this out-of-plane motion, we propose to apply tem-
plate updates within the reference sequence. The method starts with the templates
that were defined manually on reference frame nt0 . Then, for each following navi-
gator frame nti that was captured at time point ti, the templates get automatically
updated, as follows: The positions of all tracked vessels in nti are found with sub-
pixel precision using the templates from time point ti−1. Then a new set of templates
is cut from nti at the matched positions. The template positions are updated with
floating-point precision. The updates ensure that changes in the appearance of the
tracked vessel are represented in the updated templates. The subpixel precision in
the updates avoids template drift during the update.

Another concern of the reconstruction approach is speed. In its naive form, the
method matches each template against the whole navigator frame, resulting in a
substantial computational burden. We propose to speed up the vessel tracking by
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exploiting spatial coherence between temporally adjacent navigator frames. The
underlying assumption is that the next searched-for match is in a small spatial
neighborhood around the previously found match, which is the case due to fast
and continuous acquisition. Therefore, only a small neighborhood around the last
matched template position is used as a search area.

5.3 Experimental Design

We compare our method with the state of the art method of von Siebenthal et al.
through reconstruction rate and image quality. The reconstruction rate is defined as
the percentage of the number of slices in the volume that could be reconstructed by
the method. Note that this does not account for false positives or false negatives
because the ground truth is not available to us. It is also investigate how the
acquisition order of the reference sequence and data sequence influences the
method’s ability to find matching data frames. False positives are evaluated indirectly
using a qualitative assessment of both approaches. The image quality is assessed
in a double-blind study with interventional radiologists.

Reconstruction Rate Ablation Study The reconstruction rate of both methods is
compared for different parameterizations. This is possible because Siebenthal’s
method uses the same parameters in its matching criterion. When a subject was
imaged multiple times, the reconstruction rates of its respective data sets were
averaged for the statistical analysis to avoid possible biases. The parameters shown
in Table 5.1 were tested. We tested the displacement threshold, for the values 0.5, 1,
and 2. Evaluating different thresholds from a quantitative point-of-view allows us to
judge which method will be more suitable for different applications that differ in the
wanted trade-off between precision and coverage. With lower (stricter) thresholds,
the coverage goes down and the precision increases. With higher thresholds, the
coverage increases and the precision decreases.

Two similarity measures from OpenCV were tested, namely TM_CCOEFF_NORMED
(defined earlier in equation 5.1) and TM_CCORR_NORMED (see equation 5.3),
and the influence of the chosen reference sequence, ref. 1 and ref. 2, was tested,
where ref. 1 is acquired before and ref. 2 is acquired after the data sequences.

The TM_CCORR_NORMED is defined as follows:
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Tab. 5.1: Tested parameter values

Parameter Values
Threshold 0.5; 1; 2

Similarity measure TM_CCORR_NORMED; TM_CCOEFF_NORMED
Reference Sequence ref. 1; ref. 2

R(x, y) =

∑
x′,y′ (T (x′, y′) · I (x+ x′, y + y′))√∑

x′,y′ T (x′, y′)2 ·
∑

x′,y′ I (x+ x′, y + y′)2
(5.3)

where T is the template, I is the image and R is the resulting image with the highest
intensity in position (x, y), where the similarity was the highest.

A four-factorial analysis of variance (ANOVA) was conducted to test for the effects
of the reconstruction method and the aforementioned factors on the reconstruction
rate.

Reconstruction Quality A double-blind study with ten interventional radiologists
was conducted to compare the reconstruction quality of both methods and to evalu-
ate whether our method’s reconstruction quality improves compared to Siebenthal’s
method. Participants were recruited from a General Radiology clinic. Their profes-
sional experience ranged from 4 months to 20 years (median: 16 months, mean:
62 months).

The interviews were in no way invasive, and no data that would allow for participant
identification was included in the analysis. Thus, IRB approval was not requested for
the interviews. In all cases oral participation consent was obtained and recorded.

Each radiologist was shown a set of 48 slice image pairs. The images of a single pair
were reconstructed from the same subject and breathing state, showing the same
anatomical structure and having the same slice position and orientation. One slice
in a pair was sampled from a reconstruction from Siebenthal’s method. The other
was sampled from a reconstruction of our method. The orientation and position
of a slice pair was randomly chosen within a range, such that the sampled slice
would show the target organ. Slices were sampled either in sagittal, coronal, or
axial orientation. Slices of a reconstructed volume are depicted in Fig 5.4. Due to
a software error, the number of slices for different planes was slightly imbalanced:
Overall, 100 slices were shown for the sagittal and axial orientation each, and 280
slices were shown for the coronal orientation.
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Furthermore, in both volumes, sagittal slices were automatically masked out (setting
intensity values to black), where either of the methods did not find a matching data
frame. Both volumes were made identical in the amount and distribution of black
slices. This was done because it is likely that a reduced reconstruction rate for a
volume would be detrimental to its perceived reconstruction quality. Sagittal slices
were not sampled from masked positions.

The radiologists had to decide which of the images in a pair shows the anatomy
of the target organ more faithfully, i.e., with fewer image artifacts. Participants did
not see the two slices from each pair simultaneously but could switch back and
forth between them as often as they wanted before picking one. Participants were
asked to select the slice they considered better. A neutral option was provided. For
the evaluation of reconstruction quality, the parameter set was chosen to be 1 px
threshold and TM_CCOEFF_NORMED as a similarity measure for both methods.
Only those volumes were considered for comparison, for which both methods had
a reconstruction rate of at least 80%. For each radiologist, 48 volume pairs were
chosen randomly. From these volumes the image pairs were sliced from.

For each of the 480 image pairs shown to participants, it was recorded which method
was preferred, if either. For data analysis, the two methods were appointed one
‘point’ each for every time they had been preferred. For each neutral vote, both
methods were appointed a half ‘point’. This led to a dichotomous variable that allows
for a direct comparison of the two methods’ scores. A one-sided binomial test was
conducted (H0 : pour_method ≤ 0.5, H1 : pour_method > 0.5).

5.4 Results

Table 5.2 shows the mean reconstruction rates for all parameter combinations.
Our method has a consistently higher reconstruction rate than Siebenthal et al.
(about twice as high) for all parameter sets. Fig 5.5 and 5.6 depict the respective
distributions of reconstruction rates.

The four-factorial ANOVA showed significant main effects for all four factors and one
significant interaction effect for the reconstruction method and the threshold used
(Table 5.3). This interaction effect describes that while our method performs better
than Siebenthal’s method at all threshold levels, it achieves stronger improvements
at higher thresholds (see also Fig 5.5 and 5.6).
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Fig. 5.4: Axial, coronal and sagittal slices of a reconstructed volume. The images gradation
curve was altered globally to enhance contrast for better viewing only. In the axial
and coronal orientation, one can see that our method is capable of reconstructing
smooth and continuous volumes from sagittal slices.

Tab. 5.2: Mean reconstruction rates [%] of our method and baseline Reconstruction rates
are given in percent reconstructed of a volume. Bold is the best rates for each
parameter set.

TM_CCORR_NORMED TM_CCOEFF_NORMED
threshold 2px 1px 0.5px 2px 1px 0.5px

ref. 1 baseline 24.58 15.95 9.94 41.78 24.10 12.74
our method 73.60 40.99 23.24 77.69 47.10 27.00

ref. 2 baseline 46.86 31.95 18.75 60.09 40.07 22.92
our method 79.67 56.89 36.78 82.18 58.53 37.34

avrg. baseline 35.72 23.95 14.34 50.93 32.08 17.83
our method 76.63 48.94 30.01 79.93 52.82 32.17

Tab. 5.3: Main results of the ANOVA on the reconstruction rate.

Effect type Factor df F p

Main effects

Reconstruction method 1 134.99 <0.001
Threshold 2 106.56 <0.001
Similarity measure 1 8.33 0.004
Reference sequence 1 37.40 <0.001

Interaction effect
Reconstruction method * Threshold 2 7.71 <0.001
Rec method * Similarity measure 1 1.95 0.164
Rec method * Reference sequence 1 1.41 0.236
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Fig. 5.5: Reconstruction rates of the proposed method compared to the baseline method
for reference sequence one. Also compared are the use of two different similarity
measures in the template matching.

Fig. 5.6: Reconstruction rates of the proposed method compared to the baseline method
for reference sequence two. Also compared are the use of two different similarity
measures in the template matching.
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Fig. 5.7: Correlation of slice position and number of slice matches. Red graphs represent
the average number of slice matches for the first reference sequence (averaged
over all subjects). Blue graphs correspond likewise to the second reference
sequence. Graphs with squares represent our method; graphs with crosses
represent Siebenthas method. Error bars represent standard deviation and are
scaled by 0.1 for better readability.

On the tested data, it was also more robust against the chosen similarity measure
used for the template matching and also more robust against whether the reference
sequence was acquired in the beginning or at the end of the session. Though, these
interaction effects could not be shown to be significant in the ANOVA.

A correlation between acquisition order of the slice positions relative to the reference
sequence and the ability of the methods to reconstruct these slice positions can
be seen in Fig 5.7. With the increasing temporal distance between the acquisition
of an data sequence and the reference sequence, both methods find fewer similar
slices for the corresponding slice position. Reference sequence one (red graphs) is
acquired before the data sequences. Here both methods find more slices for the
earlier slice positions. Reference sequence two (blue graphs) is acquired after all
data sequences. Here both methods find more slices for the later slice positions.

The mean reconstruction time of our method is 24.19 seconds, with a standard
deviation of 6.82 seconds. The mean reconstruction time of Siebenthals method is
73 seconds, with a standard deviation of 21.81 seconds.
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Fig. 5.8: Participant choice. The bars represent the number of times each option was
chosen out of 480 trials.

In the double-blind study, overall, participants selected our method in 156 trials,
Siebenthal’s method in 111 trials, and had no preference in 213 trials (see Fig 5.8).
Following our analysis method, this yielded 262.5 ‘points’ for our method and 217.5
‘points’ for Siebenthal’s method (p=0.02).

The study shows that radiologists perceive the reconstruction quality of our method
as better than Siebenthal’s method, although the effect seems to be small, it was
shown to be significant in the one-sided binomial test.

5.5 Discussion

The particular acquisition scheme shows difficulties with changes in breathing
patterns that arise over a more extended period, like the typical flattening of the
resting breath. Slice positions to the subject’s left are imaged only at the end of
acquisition time, whereas slices to the right are only imaged at the beginning. As
a consequence, if the reference sequence was captured in the beginning, it can
show breathing states that do not occur later, when slice positions to the left are
imaged. Deep breaths often can not be fully reconstructed since image data of the
left slice positions was not acquired for deep breathing states. Generally speaking,
the scheme has difficulties with breathing states that are less frequent. This problem
can be solved in changing the acquisition scheme. Instead of first acquiring all
slices in one position before moving on to the next slice position, it is beneficial to
move the slice position after each acquisition while keeping the navigator position
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fixed. This rotating acquisition scheme could also be combined with intermediate
reference sequences. This would directly counter the problem with flattening breath
over time. Furthermore, with the new scheme, it is feasible to give a few commands,
so the subject can take a few more deep breaths in the beginning before starting to
relax more.

The rotating acquisition scheme was used by Siebenthal et al. on a 1.5T Philips
Intera whole-body MRI system (M. v. Siebenthal et al., 2007). However, Siemens
MRI machines do not allow this kind of scheme. A solution to the problem that is
independent of the scanner used, is, to use external respiratory signals instead
of navigator frames. Preiswerk et al. (2017) had correlated 1D MR compatible
ultrasound with 2D and multiplanar MRI. This allows for the continuous rotating
acquisition of the data slices on any MRI machine. Celicanin et al. (2015) propose
a simultaneous multislice (SMS) imaging technique that allows for the simultaneous
acquisition of navigator and data frames, increasing the temporal coherence of
navigator and data frame. Barth et al. (2016) give a current overview of parallel
imaging and SMS imaging techniques. These would integrate well with the rotational
acquisition scheme when using body array coils. No body array coil is used in
our experiment to ensure a line of sight for external marker tracking. However,
when external marker tracking is not needed, a body array coil can readily be
used in conjunction with our method to have better image contrast and possible
faster imaging with aforementioned SMS techniques applied. When flat, flexible
array coils with an opening for operation become available, those benefits, i.e,
higher SNR, faster acquisition and line of sight, could be combined. Regarding the
acquisition time, the aforementioned changes to the acquisition scheme would half
the acquisition time in our case to between 20 and 40 min.

Regarding the reconstruction rate, because of the lack of ground truth, it is not
possible to account for false negatives and false positives in the evaluation. Based
on this fact, the reconstruction rate of both methods will possibly be higher than
measured in this study. This is because, in our test data, for some slice positions
there might be no matching image in the data sequence, for a given breathing state,
resulting from the acquisition scheme mentioned above.

An open issue arises when vessel cross-sections in the navigator frame are not
continually visible. This frequently happens to depend on blood flow. To solve
this, one could detect outliers in the template matching step and omit those for the
calculation of the summed displacement.

We decided to use MRI data of healthy volunteers for the development and evaluation
of the method. For a proof of concept of our method, this eliminates possible adverse
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effects of liver diseases on the respiration of the patient, making the evaluation
environment more controlled. However, in future work, it has to be evaluated if
typical diseases targeted by this method, like liver carcinoma, affect the method.
This could be especially the case if the disease impairs the respiration of the patient.
If the patient’s breathing shows no or few repetitions of patterns, this would be a
challenge for the method because whilst allowing for irregular breathing, it assumes
that patterns are recurring over time.

In its presented form, our method relies on a manual step in which the ROIs around
the vessel cross-sections are defined. In a real clinical setting, this is intended
to be done offline after the planning MRI acquisition and before the date of the
intervention on a suitable computer, not directly on the MRI machine. Even though
this manual interaction is minimal and takes less than a minute to perform, it could
and should be automated in future work. This could be solved as a classification
problem in image space using the temporal information of the reference sequence
as supporting information.

In our evaluation of the visual reconstruction quality, we only compare our method
relative to Siebenthal’s method. The provided neutral option does not differentiate
between equally good and equally bad or unusable, and no absolute data was
gathered. Hence, our analysis does not show whether the reconstructions are good
enough for a clinical task or not. The analysis only indicates that our method’s
reconstruction quality improves compared to the other method.

In summary, our results clearly show that template updates are an effective and effi-
cient means to increase reconstruction rates and image quality of the reconstruction
result for templatematching-based 4D MRI reconstruction methods. This chapter
reported that employing search regions significantly reduces reconstruction time.
The results suggest that our method is preferable compared to Siebenthal’s method.
This is regardless of the application’s favorable trade-off between precision and
coverage because, in all cases, our reconstruction rates are higher.

5.6 Conclusion

In conclusion, this chapter has presented a method for robust sorting of free-
breathing MRI slices to reconstruct 4D MRI. It has been shown that it outperforms
the state of the art method of von Siebenthal in terms of reconstruction rate by
addressing the problem of ouf-of-plane motion. It also substantially reduces the
acquisition time, despite the need for further improvement in that regard. Moreover,
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a double-blind study, conducted with radiologists, has shown that the proposed
method also produces higher image quality. The method presented in this chapter
serves as a baseline for the development of a more advanced method to address
still open problems, which are described in the following chapters. The findings
from this study highlight the importance of further research in this area and provide
a starting point for following investigations to build upon.
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Predicting 4D Liver MRI for
MR-guided Interventions

6

Synopsis

This chapter reports the development of a Deep Learning based framework for real-time predicted 4D MRI. It
is a network-agnostic, end-to-end trainable, deep learning formulation. It can be used in two ways: First, it can
reconstruct high quality fast 4D MRI with high resolution 0.6 s/volume during an intervention. Second, it can be used
for retrospective 4D reconstruction with an even higher temporal resolution of 0.166 s/volume for motion analysis,
intervention planning and use in radiation therapy. The mean target registration error (TRE) of 1.19± 0.74mm, is
below voxel size. The results are compared with the baseline described in the previous chapter. Visual evaluation
shows comparable quality. Different network architectures are compared within the formulation. Small training
sizes with short acquisition times down to 2min can already achieve promising results and 24min are sufficient
for high quality results.

About this chapter Parts of this chapter have been published in: Gino Gulamhussene, Anneke Meyer, Marko

Rak, Oleksii Bashkanov, Jazan Omari, Maciej Pech, and Christian Hansen (2022). "Predicting 4D Liver MRI for

MR-guided Interventions". Computerized Medical Imaging and Graphics, 101, 102122. (Gulamhussene et al.,

2022)
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6.1 Introduction

As set out in chapter 2 and 5, virtually all earlier proposed 4D MRI methods cannot
acquire or reconstruct a 4D MRI in real-time, whether they are prospective or
retrospective. Also, the baseline that was presented in the previous chapter, is not
real-time capable. To address this limitation, we propose a method that realizes the
near real-time prediction of 4D MRI. It uses the concept of a dynamic 2D navigator
slice, which is acquired, using a readily available clinical MRI sequences. Our
method also has the capability of retrospectively reconstructing 4D MRI.

The novel approach to generate 4D MRI, presented in this chapter, is the first deep
learning-based 4D MRI prediction framework. It is fast enough to be practical in the
context of medical interventions, while providing high spatial resolution and support-
ing irregular breathing. It is end-to-end trainable and network-agnostic. By being
end-to-end trainable, the proposed approach overcomes the previously necessary
explicit sorting of MRI slices. This results in a fast near real-time reconstruction.
Our method can be used in two ways. First, it can predict 4D full-liver MRIs in near
real-time. This predicted 4D MRI has a high spatial resolution (209×128×128 matrix
size, isotropic 1.83mm3 voxels) and high temporal resolution (600ms). Second, it can
retrospectively reconstruct 4D MRIs. In this case, the reconstructed 4D MRI has an
even higher temporal resolution of 116ms with the same spatial resolution. In both
cases the method can cope with irregular breathing or arbitrary physiological breath-
ing patterns, extracted from the 2D navigator sequences. Our method is capable
of reconstructing 3D liver MRIs even with drastically reduced training data, cutting
acquisition times to only a few minutes comparable to breathing phase resolved
onboard 4D MRI techniques. Most importantly, it outperforms other methods in the
ability of being real-time capable.

6.2 Materials and Methods

This section first discusses the parts of the data base that were used for the devel-
opment and testing of the deep learning based 4D MRI prediction framework. Then,
the concept of the framework is illustrated before finally, a detailed description of
the framework is given.
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Fig. 6.1: All three parts of the data base are used. Specifically: 1) one static volume, 2)
all data sequences, i.e., training sequences; brackets indicate pairs of naviga-
tors (orange dots) and data slices (purple dots), and 3) one dynamic reference
sequences.

6.2.1 Training Data

The deep learning framework utilizes all three parts of the data base. Namely
the data sequences, the breath hold volumes and the reference sequences (see
Fig 6.1). In chapter 4 the data parts were described in detail. In the deep learning
framework, the data sequences and breath hold volumes are used for training, and
the reference sequence is used for inference.

In the last chapter 5, we described the baseline method, which used the data
sequences to sort and stack 4D MRI according to the reference sequence. In that
context, the data sequences were seen as series of triplets. Furthermore, those
triplets were interconnected. That means, the last navigator of one triplet was the first
navigator of the next triplet. This was necessary for the sorting part of the method. In
contrast to that, in the context of the deep learning base framework, a data sequence
is treated as a series of disjunct pairs of training samples, containing navigator and
label. In other words, the data sequences are seen as training, validation and test
data for the deep learning approach.

Regarding the deep learning task, an important fact is that there are only 2D labels
available as ground truth data and no 3D labels. For the loss function there are no
full volumes available, but only one slice within each volume as ground truth. How
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the framework is formulated, to still be able to train a model to predict 3D volumes,
is discussed in section 6.2.2.

In the remainder of the thesis it will be often refer to the amount of used or available
training data. Depending on clarity and readability this will be done in one of two
ways. First, we will refer to it in the total number of training samples. For example
8431 samples. Second, we will refer to it in the amount of time the acquisition of
that number of samples took. Each sample is an image pair and each image takes
166ms of acquisition time using the TRUFI MRI sequence. So for example, 8431
samples amount to 46.652min or around 47min and 361 samples amount to 2min.
We will use the second way of referring to the training data amount more often. It is
easier to read and emphasizes the clinical impact or cost of acquiring the training
data.

The MRI data is available in the DICOM format. For further processing, it is converted
to the nifti format using the dicom2nii command line tool, which conserves all
necessary meta data of the image file like scanner coordinates and voxel spacing.
Before the images are further converted to image arrays during the training pipeline,
the images are re-sampled using scanner coordinates. Re-sampling is done to
harmonize the network input. The TRUFI slices are re-sampled to 128×128 voxels
with a size of 1.8× 1.8mm2. The STAR VIBE breath hold volume is re-sampled to
209×128×128 voxels with a size of 1.8× 1.8× 1.8mm3.

To facilitate robustness, we augmented the training data in physiological plausible
ranges in-plane with random translation of up to ±10 voxel (±18.18mm), random
rotation of up to ±3◦ and random scaling within [0.8, 1.2].

Inorm =
I − µ

σ2
adj

, and σ2
adj = max

(
σ2,

1√
#voxels

)
, (6.1)

where Inorm are the whitened (normalized) intensities, µ is the average intensity
for all slices of one subject. Likewise, σ2

adj is the standard deviation, which was
adjusted by a reasonable lower bound that depends on the number of voxels #voxels

available for that subject.

6.2.2 Deep Learning based 4D MRI Framework

Lets now illustrate the general idea of the framework. Let’s assume we have a
real-time interventional 2D sequence with 6 fps during an intervention. From that, we
get a dynamic navigator slice from the subjects liver and predict what the full MRI
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volume of the abdomen for each navigator would look like, as soon as the navigator
is acquired. In other words, the general idea is, to predict a 4D MRI from a series
of 2D navigator MRIs, that come from a real-time interventional sequence during
an intervention. For the development and testing of the framework, we use the
reference sequence, to simulate the real-time stream of interventional navigators.

There are three aspects to the framework. First, the utilization of a deep learning
network. Second, the three channel input of the network that is used to encode the
slice position and breathing sate, to be predicted. And third, a batching scheme
that allows to predict volumes in one forward pass, without the need for 3D training
labels.

Lets start with the first aspect: the network. We cannot implement the training in
a straightforward way using a 3D network architecture, because we do not have
volumetric training data as pointed out in 6.2.1. If we had pairs of navigators and
corresponding 3D volumes with the correct breathing state as labels, we could train
a 3D network. But we only have pairs of 2D navigator slices and 2D data slices.
So instead of training a 3D network to predict a whole volume at once, i.e., EVERY
slice position, we train a 2D network to predict ANY slice position that we specifically
tell it to predict. In section 6.2.4 we discuss the network architecture in detail. But
first lets continue with the second aspect, the three channel input, which becomes
important at this point. It is used in a way that we can encode the slice position,
the network should predict, and the breathing sate, the slice should have. This
encoding, together with, what we call transitive information bridging, is explained in
the following section. That does not mean that we have to infer each slice position
one after the other. We can infer all slice positions in a single batch, which is the
third aspect. For that, we encode each slice of a volume with the same breathing
state in another batch entry and infer the volume in one forward pass.

Here, we want to point out a conceptual difference, regarding the breathing state
of a data frame, compared to the last chapter. There, it was defined by the two
navigators that came before and after the data frame. In contrast to that, in the
deep learning framework, the breathing state of a data frame is only defined by the
navigator that came before. The implications of that are discussed in 6.5

In the following sections, we describe the three aspects of the framework in more
detail. In section 6.2.3 the three input channels are explained and how they form,
what we call, a transitive information bridge that allows the network to predict a
volume from a 2D slices. Section 6.2.4 will illustrate the network agnostic property
of the framework and describe four specific network architectures that were tested

6.2 Materials and Methods 85



Fig. 6.2: The network input consists of three channels. The first channel receives a navigator
slice that tells which breathing state to predict, i.e., the breathing state that follows
the navigator. The second channel receives a static volume slice (vol. slice A) at
the navigator position, to act as a still reference to the moving navigator. The third
channel receives a static volume slice (vol. slice B) that tells the network at which
position to predict the new slice.

with the framework. Finally, the actual prediction of a 4D MRI, using the framework
is described in section 6.2.6.

6.2.3 Input Channels and Transitive Information Bridges

An integral part of the framework formulation is the three channel input of the network,
which is shown in Fig 6.2 together with the prediction and the ground truth label.
Lets first see which data is fed to the input channels and than how we can interpret
that. The first channel gets the 2D navigator slice. During inference the navigator is
taken from the reference sequence, which represents the real-time interventional
sequence. During training, however, the navigator slices, together with the training
labels are taken from the training samples in the data sequences. Remember the
navigator is the first image in the pair, the label is the second image of the pair. The
second channel gets a slice, which is sampled from the breath hold volume at the
same position and orientation of the navigator. The third input channel gets another
slice from the breath hold volume. This one is sampled at the position of the label,
again in the same sagittal orientation. Within one batch entry, all three channel
inputs as well as the label correspond to the same subject. However, during training,
samples of multiple subjects can be used within one training run.

Now we can interpret the three channel input. The idea is that the network can
determine the breathing state from the fist two channels. The navigator in the first
channel shows the breathing state that the network must predict, but for another
slice position. The volume slice in the second channel acts as a still reference to
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Fig. 6.3: Visualization of the bridge with transitive relations

the navigator. And finally, the volume slice in the third channel encodes the slice
position that the network must predict.

In this three channel input, the volume slices in the second and third channel, act as a
transitive information bridge. Because this is a central concept within the framework,
lets call this simply a bridge and discuss it in more detail. To learn the breathing
state from the input and apply it to the output, the network uses the bridge, which
is made up by transitive relations between the input channels, the output, and the
label. This is visualized in Fig. 6.3, which gives another view on the input and output
of the network, focusing on these transitive relations, which are depicted as black
arrows. As already discussed, the navigator (channel 1) and the first volume slice
(channel 2) are relate, by having the same slice position (N). The two volume slices
(channel 2 and 3) are related by sharing the same breathing state (B2), because
they both come from the same breath hold volume. Finally, the second volume slice
(channel 3) and the label are related by sharing the same position (D). The bridge
works, because of a fourth relation, which is that the navigator and the label share
the same breathing state.

Although we said that the network determines the breathing state from the first two
channels, actually, it rather learns the difference in breathing states. Let B1 be the
breathing state, which is visible in the navigator in channel one. Although technically,
the navigator was acquired 166ms before the lable and thus has a slightly different
breathing state, we assume it to be the same as the breathing state of the label or
at least in a fixed relation. Let ∆B be the difference between the breathing states
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B1 and B2. The network can learn the effects of ∆B from seeing the two slices
with same position but different breathing states in the first two channels (transitive
relation 1). Using transitive relation 2, the network applies the inverse of ∆B to the
third channel, thus predicting the breathing state B1 for that slice position. Finally, it
learns to apply the MR contrast of the navigator to that slice position, using transitive
relation 3 and 4. The result is a predicted slice at the same slice position as the
volume slice in channel three and the label and with the same breathing state as
the navigator in channel one. In summary, the first two input channels encode the
breathing state, while the third channel encodes the slice position to be predicted.

6.2.4 Network Architecture
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Fig. 6.4: The four architectures that are evaluated in the deep learning framework. White boxes are convolutions followed by leaky ReLU, grey
down arrows denote max or average pooling, gray up arrows denote up sampling via transpose convolution, pluses and dots denote
element wise addition and concatenations of feature maps. Number of feature maps are given in brackets in the boxes.
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Fig. 6.5: The four block types used to build the different architectures. White boxes are
convolutions followed by leaky ReLU, except in residual blocks, where the acti-
vation is denoted separately, pluses and dots denote element wise addition and
concatenations of feature maps. Kernel size and strides are given below the boxes,
number of feature maps are given in brackets in the boxes.

One of the strength of the proposed 4D MRI framework is that it is network agnostic.
That means, it does not rely on a specific network architecture. The only requirement
is for the network to have a three channel input as described in 6.2.5. The proposed
method is evaluated with four different architectures, depicted in Fig. 6.4. The basic
structure of the networks is the one of a U-Net (Ronneberger et al., 2015) the used
block types are depicted in Fig. 6.5. The input to the networks is processed in an
encoding and decoding path. The encoding employs one of the following building
blocks, which are also depicted in the figure. To get four different networks, we use
four different building blocks. Specifically, these are the plain block as first described
in the original U-Net paper (Ronneberger et al., 2015), the residual block (He et al.,
2016), the dense block (Huang et al., 2017) and the inception block (Szegedy et al.,
2015), which were proposed in the corresponding papers. As with the original U-Net
architecture, skip connections are used to forward details from the encoding path to
the decoding path. The total number of parameters for each network is presented
in Table 6.1. All networks have a 128×128×3 input and 128×128 output. The
leaky rectified linear unit (leaky ReLu) with a slope coefficient of 0.1 is used as
activation function in all building blocks and networks. Also, all convolutions are
padded to keep the size of feature maps. In the following the network architectures
are described in more detail. A visual depiction of the blocks are given in Fig. 6.5.

U-Net

The U-Net is constructed from plain blocks. This block consists of two 3× 3 con-
volutions, each followed by an activation. The second convolutional layer in each
plain block doubles the number of features, increasing the network’s capacity. The

90 Chapter 6 Predicting 4D Liver MRI for MR-guided Interventions



first convolution has the same number of features as the second convolution of the
previous block. The first three blocks are followed by a MaxPooling operation. The
128×128×3 input to the network is processed by 32 filters in the first convolutional
block and results in 512 filters in the latent feature space. The decoding reconstructs
the image from the latent space. To this end, three transposed convolutional blocks
up sample the features, each of which consists of two convolutional layers with a
dropout layer in between. At each up sampling, the filter size is halved. At the end,
a final 1× 1 convolution layer outputs the reconstructed image.

Res-UNet

The Res-UNet is constructed from residual blocks. It is similar to the plain block,
with the difference being that a residual connection is introduced, which element
wise adds the blocks input to the feature map of the second convolution (before
activation). To match the number of features after each down or up sampling a 1x1
convolution is used. The number of features is doubled after each second residual
block.

D-UNet

The D-UNet is a U-Net constructed from dense blocks, which is similar to the residual
block. It consists of eight convolutions that build four groups. Four skip connections
concatenate each groups input to its output before its fed into the next group. In
the D-UNet the number of features does not increase from block to block, rather a
hidden state is build up by concatenating the feature maps of previous blocks.

I-UNet

The I-Unet is a U-Net constructed from inception blocks. This block has four paths
from input to output. The fist path contains a 1 × 1 convolution, the second and
third paths begin with a 1× 1 convolution, followed by a 3× 3 and 5× 5 convolution
respectively. The fourth path consists of a MaxPooling with stride 3× 3, followed
by a 1 × 1 convolution. The number of features within a block is the same for all
convolutions. It is doubled from block to block in the encoding path of the I-UNet
and results in 512 features in the latent feature space.
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parameters trainable sfs lfs activ. function optimizer
U-Net 6.8 Mio. 6.8 Mio. 32 512 leaky ReLU Adam
Res-UNet 8 Mio. 8 Mio. 32 512 leaky ReLU Adam
D-UNet 0.77 Mio. 0.77 Mio. 16 64 leaky ReLU Adam
I-UNet 9.9 Mio. 9.9 Mio. 32 512 leaky ReLU Adam

Tab. 6.1: Architecture overview, (trainable) parameters, starting feature size (sfs), latent
feature size (lfs), activation function and optimizer.

6.2.5 Training

All networks are implemented and trained with Keras (Chollet et al., 2015). For
training we used the Adam optimizer (Kingma et al., 2014). The networks were
trained for 200 epochs using the mean squared error (MSE) as loss function between
predicted slice and label. For that the available samples of each subject were split
into 8,811 training and 180 validation samples (roughly 4 validation samples per
slice position). Hyper parameters were empirically determined using a Bayesian
search using Weights & Biases (Biewald, 2020) across 16 subjects. The following
best parameter settings were obtained: learning rate (0.000413), drop out ratio
(0.15), data shuffling (true) and batch normalization (false). We also tested the
augmentation parameters and found them to improve the reconstruction results for
all subjects irrespective of the exact range of any single parameter.

6.2.6 4D MRI Prediction

As mentioned before the method can be utilized in two ways. First, we can use the
model to predict 3D liver MRI in near real-time for any real-time navigator image
during interventions. Because in the training data, the navigator slice is acquired
166ms before the label data, the network actually predicts data slices 166ms ahead
of time. Second, we can use the network to reconstruct a 4D liver MRI from a
sequence of navigator slices. In both cases, for each time point, an input batch is
constructed, where each entry of the batch corresponds with a slice position in the
reconstructed volume. This allows us to infer all slices for a 3D volume in a single
forward pass. After inference, the predicted 2D slices are concatenated to a volume.
The meta information, like scanner coordinates and voxel spacing is copied from the
breath hold volume. Note, that within one batch, all inputs have the same navigator
slice (first channel), while all third channels show different positions of the static
liver volume. This process is repeated for all time points of the navigator sequence
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to form a 4D MRI. The computation time for one 3D prediction is ≤ 600ms on a
GeForce GTX 1080.

6.3 Experimental Design

This section first describes the research questions that will be answered, regarding
the deep learning based 4D MRI method. Then the split in training, validation and
test data is described. Finally, the experiments are described that were conducted
to answer the research questions.

6.3.1 Research Questions and Hypothesis

In this chapter five research questions (RQs) are addressed, which are summarized
in Tab. 6.2. The RQs and the corresponding null hypothesis (H0) and alternative
hypothesis (HA) are described in the following.

RQ 1: Can the deep learning (DL) based 4D MRI framework achieve the same
image quality as the baseline method? H0 1: The image quality is not the same.
HA 1: The image quality is the same.

RQ 2: Does the framework work with different network architectures? H0 2: The
framework does not work with different network architectures. HA 2: the framework
does work with different network architectures.

RQ 3: How accurate is the position of vessels in the prediction? H0 3: The TRE
of the method is above voxel size. HA 3: The TRE of the method is below voxel
size.

RQ 4: What is the minimal amount of training data to achieve the same quality
results as the baseline method? There are no hypothesis for RQ 4.

RQ 5: Does the method perform equally good at all slice positions? H0 5: It performs
equally good. HA 5: It does not perform equally good.
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RQ 1: Can the new method achieve the image quality of the baseline comparable?
RQ 2: Does the framework work with different network architectures?
RQ 3: What is the positional accuracy of vessels in the prediction?
RQ 4: How much training data is required to match the baseline image quality?
RQ 5: Does the method perform equally good at all slice positions?
Tab. 6.2: Research questions

6.3.2 Training, Validation, Test Split

For evaluation the data was randomly split into training data (16 subjects) and test
data (4 subjects). The data sequences of the training subjects was split in training
(8,811 samples) and validation (180 samples). The data sequences of the test
subjects was split in training (4,496), validation (180), and test (4135).

6.3.3 Experiments

Visual Evaluation We visually assessed prediction results and image quality of
our method. For that we trained a model for each test subject and analyzed the
predicted 4D liver MRIs. We visually compare the prediction with the reconstruction
results of the baseline method for the same test subjects. The baseline method was
described in chapter 5.

Architecture Evaluation We evaluate the framework using the four different ar-
chitectures described in 6.2.4. We compare them with respect to RMSE, MDISP,
cosine and prediction time, which were defined in 2.6. To that end, for each network
architecture and test subject a model was trained and evaluated for all metrics,
following the training described in 6.2.5. The metrics were computed for roughly
one breathing cycle per each slice position. The breathing cycles contained ∼ 17

consecutive time points. That amounts to ∼730 data points per subject. The pre-
diction times were only computed for every second slice position and for ∼ 8 time
points each. That amounts to ∼170 data points per subject. A one-factorial analysis
of variance (ANOVA) was performed to test for a main effect of the architecture on
the metrics. A post-hoc pair-wise t-test was performed to test for significance of the
difference in the means between architectures pairs. The ANOVA and t-test require
the distribution of the variables to be normally distributed, which the metric values
are not, which is indicated by the Lilliefors-Test and is to be expected, because the
values are zero bound. However, the large sample size allows for the use of the
t-test. The effect size of differences in means was determined using Cohen’s d.
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Target Registration Error The best performing architecture in the architecture
evaluation was used to evaluate the positional accuracy of vessels in the predicted
MRI images. Using this architecture, a model was trained for each test subject.
The training and validation parts of the test subjects was used for the training.
Training was performed as described in 6.2.5. Then for each subject a subset of
four slice positions was chosen at roughly −3 cm, −2 cm, 0 cm and 3 cm distance to
the navigator. Negative distances indicate that the position is left of the navigator
and positive distances represent positions right of the navigator position. Then, a
time series was predicted for each slice position in the subset using test split of the
corresponding data sequences. This corresponds to a total of 16 predicted 2D+t
time series (4 subjects × 4 slice positions). Within each of these the starts and
endings of the breathing cycles were manually determined by finding all time points
of end-exhale. A breathing cycle contained between 8 to 17 images, from end-exhale
to end-exhale. For each time series, one breathing cycle was randomly chosen, on
which the TRE was evaluated. To that end, for each selected breathing cycle, 1 to 5
vessel cross sections were manually tracked in all images of the breathing cycle, in
both the prediction and the ground truth, i.e., data slices.

That way, we generated a total of 1566 data points in both ground truth and prediction
that were used for TRE evaluation. The TRE was computed as the mean distance
between corresponding tracked markers in prediction and ground truth. Fig. 6.6
shows an example of a breathing cycle that was chosen for TRE evaluation. It
shows both a prediction as well as the ground truth and the manually marked vessel
cross sections in prediction and ground truth (arrows). The dashed lines illustrate
the breathing motion. The solid red lines mark the end-exhale position of the liver
dome.

Ablation Study We evaluated the reconstruction quality of the models depending
on the training data size. For that the best performing network from the architecture
experiments was used. To simulate the reduction in training data availability, we
defined 6 levels. Because each subject has a different number of data sequences,
which results in a different total amount of available training data, we define the
levels as percentages of the total training data amount of a subject. For the 4
test subjects, the total amount of training data ranged between 44min and 50min.
For the levels we chose 98%, 75%, 50%, 25%, 10% and 5% (training + validation
data). For example, the number of available training samples at level 98% was 8431
or 47min and for 5% it was 430 or 2min. For this experiment a different training,
validation, test split was performed. Independent of the level, the last 2% of the data
sequences remained as test data. For each of the test subjects we trained models
for all 6 levels. The models were evaluated on the 2% of test data. The evaluation
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Fig. 6.6: Sample breathing cycle (prediction and ground truth) for the TRE calculation with
tracked vessels (arrows) and their traces (dashed lines). Red solid lines serve as
reference for the breathing depth. For compactness, only every second time point
is shown. Slice position is 3.8 cm left of the navigator.

was performed quantitatively using MSE and qualitatively by visual comparison to
the baseline method. Remember, although no 3D ground truth is available, for each
predicted volume, the test data contains the ground truth for one of the volume slices
when the prediction is performed on navigators from test samples. That means, full
volumes were predicted for the visual comparison, but the MSE was only evaluated
for the slice positions with existing ground truth. The MSE was avaraged over all
slice positions within each test subject.

Dependence on slice position We evaluated how the performance of our method
depends on the predicted slice position. For the test we used the training data
availability level of 50%. We evaluated the MSE as described before. But instead
of averaging the MSE over all slice positions and test subject, we binned the slice
positions into 12mm bins. The MSE was then averaged over all test subjects per bin.
We also compare the MSE between the validation data, i.e., the one used during
training, and test data, to show potential over fitting in different slice positions.

Comparison to Related Work We compare acquisition and reconstruction times
with state of the art methods in Table 6.5. Note that our method can be combined
with the last three methods in the table, which would lower the acquisition times
further.
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6.4 Results

Visual Evaluation All reconstructions were visually plausible when compared with
the baseline reconstruction. Fig. 6.7 illustrates a reconstructed end-exhale and
end-inhale volume from the baseline method on the left side and for a predicted
volume using the framework on the right side. The volumes are presented as three
orthogonal slices in axial, sagittal and coronal orientation. At this point remember,
both methods, the baseline as well as the deep learning frame work, perform
reconstruction and prediction slice-wise using sagittal slices. Therefore, in this
figure, special attention should be given to the coronal and axial views, as any
out-of-plane discontinuities would be apparent here. For both the exhale and inhale
baseline reconstructions (a,b), we observe that blood vessels and liver boundaries
are continuous and smooth in axial and coronal views. In the predicted exhale
and inhale volumes (c,d), the liver dome and vessels are continuous along all
view axes. The major vessels are present and smooth. In-plane details are well
reconstructed, however some smaller vessels are missing in the prediction or do
not show the correct trajectory in axial orientation. The breathing depths match
excellently between baseline and prediction. It should also be noted that, to a limited
degree, the deep learning based method is capable of reconstructing regions of the
thorax and abdomen on the left and right side that were never seen during training.
This is observable in the axial and coronal views. The baseline method, or any other
sorting method, cannot reconstruct these regions, as these can only sort and stack
available data slices. Interestingly, comparing the prediction with the ground truth
(see Fig. 6.6), it can be observed that the network prediction enhances the image
quality compared to the label and predicts vessels correctly that are barely visible
in the ground truth. This means that RQ 1 can be answered positively, the image
quality of the ædg based frame work is the same as the baseline.

Architecture Evaluation The results of the architecture evaluation and comparison
are shown in tabel 6.3. The significance of pair-wise mean differences (pair wise
t-test) and the effect sizes (Cohen’s d) are shown in Fig. 6.8. Overall, the ANOVA
revealed a significant main effect of the architecture on the performance (p<0.001),
with respect to all tested metrics. While, the effect sizes between the groups were
mostly small (d≤0.5) or negligible (d≤0.2) for RMSE, MDISP, and Cosine, the
differences in prediction time between the architectures showed large effect sizes.
Regarding the image errors, the I-UNet performs best, although the difference to the
Res-UNet is not significant, which has the second best prediction time. Regarding
the prediction time the UNet outperforms the other architectures. That means
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Fig. 6.7: Example reconstruction of baseline and our method, presented as axial, sagittal
and coronal slices at identical temporal and spacial position, for an exhale-state
(a,c) and inhale-state (b,d). Red lines indicate liver dome position of baseline
reconstruction.

RQ 2 can be answered positively, the framework does work with different network
architectures.

architecture RMSE MDISP Cosine Prediction Time
UNet 0.240 0.352 0.861 0.571

Res-UNet 0.232 0.347 0.866 0.839
D-UNet 0.270 0.397 0.844 1.041
I-UNet 0.231 0.336 0.866 1.270

Tab. 6.3: Architecture comparison

Target Registration Error For the evaluation of the TRE the U-Net was selected as
the overall best performing architecture. Time is one of the most valuable resource
in a clinical context and here, the U-Net outperformed the other architectures by far
and performed similar with regard to the other metrics.

The experimental results for the TRE are shown in table 6.4. All TREs are below
voxel size, with the only exception being subject S1 at a slice distance of −3 cm. All
subjects have a similar overall TRE. The mean±standard deviation (std) of the TRE
for all test subjects is 0.66± 0.41voxel, or expressed in millimeter 1.19± 0.74mm.
One can also see that, in general, the TRE is smaller near the navigator than further
away from the navigator, which will also be seen in the results of the ablation study.
Answering RQ 3, the TRE of the method is below voxel size.

Ablation Study Fig. 6.10 shows the baseline reconstructions in the leftmost column.
The other columns show reconstructions from six networks with decreasing amounts
of training data (98% to 5%).
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Fig. 6.8: Performance metrics for our method depending on the used architectures. RMSE,
MDISP in mm, cosine and prediction time in s are given with effect size (Cohen’s
d) and significance level from t-test (p).

slice distance to navigator
subject 3 cm 0 cm −2 cm −3 cm all positions

S1 0.70± 0.38 0.53± 0.37 0.92± 0.62 1.21± 0.65 0.84± 0.50

S2 0.66± 0.40 0.64± 0.47 0.80± 0.49 0.80± 0.54 0.72± 0.47

S3 0.44± 0.27 0.45± 0.34 0.60± 0.30 0.94± 0.55 0.61± 0.36

S4 0.45± 0.27 0.31± 0.21 0.53± 0.38 0.58± 0.33 0.47± 0.37

S1-S4 0.56± 0.33 0.48± 0.35 0.71± 0.45 0.88± 0.52 0.66± 0.41

Tab. 6.4: TREs (in voxel) of predictions using the UNet as the best overall architecture for all
test subjects. Columns 2-5 show TREs per slice position, the last column shows
mean TREs per subject, i.e., over all four slice positions. The last row shows
mean TREs over all test subjects.
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Fig. 6.9: Test data MSE as a function of the amount of available training data.

As can be seen, our method is capable of reconstructing full-liver volumes with
different breathing states while capturing major and minor vessels. We observe that
4D MRI, reconstructed from 2min of training data has a worse image quality than
the baseline, but still looks promising. Compare that with a standard MRI acquisition,
it would take roughly 2min to capture only one 3D volume with comparable quality.
We further observe that 50% of the training data (24min) yield comparable results
to 98% and the baseline quality.

This observation is also confirmed by the MSE. The mean and standard deviation of
the MSE over all slice positions and test subjects as a function of available training
data is depicted in Fig. 6.9. Increasing the training data size beyond 50% does not
improve the loss further, as the latter plateaus at around 0.075. This indicates that
24min of training data would be sufficient for a good reconstruction.

Hence, RQ 3 can be answered with, the minimal amount of training data to achieve
the same quality results as the baseline method is24min.

Dependence on slice position Fig. 6.11 shows the loss as a function of the
distance of the prediction to the navigator slice. Blue and green boxes represent the
validation and test data losses respectively. For visualization, the distances were
binned into 12mm bins (3 slice positions per bin). The test data loss is comparable
with validation data loss. Two effects are visible for both data sets. First, our method
performs better on the left of the navigator (subjects’ right) and worse on the right
(subjects’ left). Second, our method performs better when closer to the navigator.
This is consistent with the observation made in the analysis of the TRE. Finally, the
last research question can be answered with, the method does not perform equally
good at all slice positions.

Comparison to Related Work The comparison of our method with the related work
shows that it has the shortest acquisition and reconstruction times (see table 6.5).
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Fig. 6.10: Reconstruction results depending on training data size. Reconstructed are an
inhale and exhale state. The training data size in samples (spl.) is depicted at
the top. For each volume reconstruction, three slices are presented: two sagittal
slices, one at navigator position (nav. pos.), one 4 cm left of the navigator and
one coronal slice. Predictions are cropped to the same FOV as the baseline.

Fig. 6.11: Loss as function of distance between prediction and navigator position.
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method acq. time recon. time
ours 2 to 24min 0.571 s
Yuan et al. (2019) * 0.615 s
M. v. Siebenthal et al. (2007) 15 to 60min 73 s
Gulamhussene et al. (2020) 15 to 60min 24 s
Tanner et al. (2014) 9 to 12min -
Celicanin et al. (2015) 1/2 -
Zhang et al. (2018) 1/4 1/2 **

Tab. 6.5: Reported acquisition time (of training/stacking data) and reconstruction time (per
time point). * reconstruction during acquisition, ** for sorting approaches.

6.5 Discussion

6.5.1 Interpretation of Result

Regarding the visual comparison to the baseline one can say, the predictions of
the deep learning based 4D MRI framework are anatomically correct and have the
same image quality as the baseline. The comparison of different architectures within
the framework revealed, regarding the image quality, that the I-UNet and Res-Unet
are the best architectures. However the Res-UNet must be favored over I-UNet
because of its significant shorter prediction time. Sill, the UNet outperforms the
other architectures by far regarding the prediction time. Because this is the most
valuable clinical recourse and the difference in the image quality is small compared
to the other architectures, the UNet is the overall best architecture tested in our
framework.

The mean TRE is well below voxel resolution 0.66± 0.41voxel (1.19± 0.74mm), which
is medically sufficient and renders the approach very promising. However, the
methods accuracy is dependent on the distance of predicted slice to the navigator,
especially further away from the navigator position the prediction quality decreases.
Regarding the needed amount of training data one can say, that 24min and more
are sufficient to yield excellent image quality on a par with the baseline. However,
such a lengthy acquisition time is likely to be impractical for clinical use and needs
further reduction to make the approach feasible.
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6.5.2 General Discussion

The three key strengths of the deep learning based 4D MRI framework, from a medi-
cal point of view, are high reconstruction accuracy, high image quality and resolution
and high speed in both acquisition and reconstruction. The main contribution of the
approach described in this chapter, to achieve these key strengths, is the proposition
of an end-to-end trainable deep learning formulation of the 4D MRI reconstruction
problem.

The chapter showed that, with our method, the acquisition time could be halved from
47min (8431 training samples) to 24min (4302 samples) without losing reconstruction
quality. It can even be reduced to 2min (430 samples) while losing some image
quality. Some of the earlier proposed methods report acquisition times between
9 and 60min, while others report acquisition time reductions between 1/4 and
1/2. Because our new method complements these methods, it can be used in
conjunction to multiply the reduction effects. Thus, a combined acquisition time
reduction of up to 3/4 without loss of reconstruction quality seems achievable.
In practice, reconstructing breathing sequences of arbitrary length would mean
acquisition times of around 6min, which is a reasonable time in clinical practice. Our
reconstruction quality is comparable to the state-of-the-art and robust with respect
to the network architecture. Only the prediction time is highly dependent on the
chosen network architecture.

In contrast to the last chapter, the breathing sate was defined in this chapter by only
one navigator. This has two implications. On the one hand, breathing states are no
longer interpolated between two navigators in time, but predicted, i.e., extrapolated.
This means the new method is more potent than the baseline. On the other hand, it
is possible that the information about whether the breathing state is in the inhalation
or exhalation phase could be obscure or even lost, making it arguably more difficult
to predict the next breathing state. This is a possible risk, but also makes the method
as fast as possible, because it needs just one navigator slice not two.

The transitive information bridge are just an interpretation and informed the design
of the model input. To get a better understanding of how the model internally actually
works, more specific experiments must be conducted, using techniques from the
research field regarding the explain-ability of deep learning models.

The t-test showed high significance levels even for the metrics where the effect sizes
were small. This is likely due to the large sample size.
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6.5.3 Future Work

For the future work, there are possibilities to further improve the framework. The
primary limitation of the method, which currently impedes its clinical feasibility,
lies in the substantial amount of training data required, resulting in a long prior
acquisition time. In future research, it would be valuable to explore methods such as
transfer learning and domain adaptation to address this limitation effectively. These
approaches have the potential to reduce the dependency on extensive training data
and mitigate the need for prolonged prior acquisition, making the method more
viable for clinical applications. The combination of transfer learning with the deep
learning base 4D MRI framework is investigated in the next chapter.

Another direction to investigate is the used architecture dimensionality. Because our
formulation works with a 2D architecture, the network cannot acquire full knowledge
of 3D relations between navigator and data slices. The further away the data
slice is from the navigator, the looser the 3D relations become, and the poorer the
reconstruction quality ends up. To mitigate this effect, one could potentially divide the
volume into distance ranges and train one network for each range, thus reinforcing
knowledge for 3D relations over larger distances. We expect that an ensemble of
such networks will provide a considerable gain in quality for a fixed level of training
data or constant quality for less training data. In general an ensemble strategy is
likely to improve image quality further without needing more training data.

Additionally, in our method, one model is trained for each subject. The possibility of
having only one base model that abstracts not only beyond seen breathing states,
but also beyond seen subjects, or adapts quickly to new subjects is also investigated
in the next chapter using a transfer learning strategy which, in turn, will further
reduce the amount of necessary training data.

6.6 Conclusion

This chapter presented a novel end-to-end trainable, network agnostic, deep learning
formulation of the 4D MRI reconstruction problem that predicts high quality, fast,
4D full-liver MRI. It shows that predicted real-time 4D MRI techniques are possible
and provides a solution to reduce the acquisition time and effort for retrospective
reconstruction approaches. Nevertheless, the method still necessitates a significant
number of pre-acquisition scans for training, which remains the primary obstacle
to its clinical feasibility. In conclusion, the deep learning-based 4D MRI framework
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has exhibited promising results, providing motivation for further research in the
field. This thesis addresses some of the ongoing research in the following chapters,
presenting the findings and advancements achieved.
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Transfer-Learning is a Key
Ingredient to Fast Deep
Learning-Based 4D Liver MRI
Reconstruction

7

Synopsis

The last chapter showed that deep learning based real-time 4D MRI prediction methods are promising. However,
the prior acquisition time of the proposed method was still to long to be clinically feasible. This chapter describes
how a transfer learning (TL) strategy can be used to drastically reduce prior acquisition time and an ensembling
strategy is proposed to realize an uncertainty estimation and improve image quality of the prediction. Models
trained from scratch on target domain data are compared with models fine-tuned from a pre-trained base model.
Significant improvements (P<.001) of the root mean squared error (RMSE) of up to 12% (effect size d=-0.5),the
mean displacement (MDISP) of up to 12.5% (d=-0.263), and the deformation-normalized RMSE (DN_RMSE) of
up to 15% (d=-0.679) are reported. It is shown that the prior acquisition time can be significantly shortened down
to 2min and still preserving a high level of image detail. This shows that TL significantly reduces beforehand
acquisition time and improves reconstruction quality, rendering it a key component in making 4D MRI clinically
feasible.

About this chapter Parts of this chapter have been published in: Gino Gulamhussene, Marko Rak, Oleksii

Bashkanov, Fabian Joeres, Jazan Omari, Maciej Pech, and Chistian Hansen (2023). "Transfer-learning is a key in-

gredient to fast deep learning-based 4D liver MRI reconstruction". Scientific Reports, 13(1), 11227. (Gulamhussene

et al., 2023b)
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7.1 Introduction

Current 4D reconstruction techniques are unsuitable for most interventional settings
because they are limited to specific breathing phases, lack temporal/spatial reso-
lution, and have long prior acquisitions or reconstruction times. As set out in the
last chapter, deep learning-based 4D MRI approaches promise to overcome these
shortcomings. However, acquiring real-time 4D MRIs of a large target region during
an intervention is currently not feasible due to the need for a significant amount of
reference data beforehand. Although the framework presented in the last chapter
demonstrated promising results using only 24min of training data, this timeframe
is still impractical for routine clinical settings where time is crucial. Additionally,
there are limits to the specific absorption rate (sar) allowed during MRI imaging,
and these limits are likely to be exceeded during prolonged imaging. On the other
hand, reducing the prior acquisition time and training data, domain shift becomes
a considerable problem, which will be shown in this chapter. Consequently, the
effective application of 4D MRI in the intervention room remains challenging.

In essence, using previous works, one had to choose between long acquisition
times or limited breathing phase support, i.e., no irregular breathing, none of which
is clinically acceptable.

In the work presented in this chapter, the shortcoming of our previously proposed
methods’ long prior acquisition time is addressed. First, domain shift is identified as
a major issue for DL-based 4D MRI prediction, which gets more severe the smaller
the amount of available target domain data is, which fits into the observations of a
recent 2021 survey of Guan et al. (2021). Second, it is showed that the beforehand
acquisition time can be substantially reduced (from 24min to 2min) by using transfer
learning (TL) techniques without losing the support for irregular breathing. Third,
combining multiple models in an ensemble strategy, mitigates the negative impact of
reduced training data and improves the accuracy and reliability of the predictions.

7.2 Materials and Methods

This section first gives an overview of the parts of the data base that were used for
the development and evaluation of the TL and ensembling approach that is used to
reduce the prior acquisition time of the prediction framework. Then, a short recap
of the framework is given, lastly, the TL and ensembling method is described.
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Fig. 7.1: 1) a static volume, 2) several alternating dynamic sequences (brackets indicate
pairs of navigators and data slices), and 3) a dynamic reference sequence.

7.2.1 Training Data

In this chapter all three parts of the data set (see gray boxes in Fig. 7.1) are used.
They are briefly described in the following. The detailed description is found in
chapter 4.

Static volume

The static 3D liver volume is used as an anatomical reference during training and
inference. It was acquired with a STAR VIBE MR Sequence (320×320×72-88
matrix size, 3mm slice thickness, 1.19× 1.19mm2 in-plane resolution).

Training sequences

The training sequences are several dynamic 2D sequences that were acquired
during free breathing. In these sequences navigator slices alternate with data slices.
Navigators and data slices form pairs and are used as training samples. While
the navigator slice position is fixed in the right liver lobe, the data slice position is
unique for all sequences, equidistantly sampling the liver from right to left. The
navigator serves as a respiratory motion signal. Each training sequence consists
of 175 navigators and 175 data slices. For each subject, the number of training
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Fig. 7.2: A) U-Net architecture, with three-channel input. Blue boxes are convolutions; grey
arrows are max pooling or upsampling, and pluses are feature map concatenations.
B) Ensembling of n models and generation of uncertainty map.

sequences ranged between 38 and 57, depending on the size of the subjects’ livers.
Overall the acquisition time ranged between 40 and 80min per subject.

Reference sequence

Reference sequences are dynamic 2D sequence of navigator slices only that were
also acquired during free breathing. The navigator position is the same fixed position
as in the training sequences. The reference sequence contains a natural succession
of different breathing cycles/patterns. It is used for inference as a respiratory
reference, i.e., a breathing signal. The reference sequence comprises 513 time
points in our data, covering 85 seconds (typically about 20 breathing cycles).

Both, training as well as reference sequence were acquired using the TRUFI MR
sequence (14×176 matrix size, 1.8× 1.8mm2 in-plane resolution, 4mm out of plane
resolution, 255× 320mm2 FOV). The acquisition time was 166ms/slice.
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7.2.2 Deep learning prediction of 4D MRI

Deep learning formulation

To recap the deep learning base 4D MRI framework. A deep network with three 2D
input channels is trained using training sequences together with slices of the static
volume. Each training input corresponds to a specific subject. However, samples
from different subjects can be used. A training input consists of three channels (see
Fig. 7.2). Pairs of navigator and data slices are taken from the training sequences
of a subject. The navigator is fed to the first channel. The data slice serves as
ground truth (label). Two slices are sampled from the static volume (from the same
subject): one slice at the navigator position is fed to the second channel, and one
at the ground truth position (the slice to be predicted) is fed to the third and last
channel.

The navigator (first channel) is dynamic in time and static in its position. It determines
(shows) the breathing state. The volume slice at the navigator position (second
channel) is static in both time and position and acts as a still reference to the dynamic
navigator. It contains information on the relationship between the two different MR
contrasts of the TRUFI and STAR VIBE MR images. The volume slice at the label
position (third channel) is static in time but dynamic in position and acts as a still
reference to the dynamic output we seek to predict and expresses the position that
should be predicted.

During inference, the first channel determines the breathing state of the slice that is
to be predicted, and the third channel determines its position. That way any current
breathing state (time domain) is reconstructed by providing a real-time navigator
(acquired during the intervention) at any position (space domain) by choosing the
proper position from the static volume (acquired before the intervention). By simply
inferring all positions in one batch (in one forward pass), a total 3D volume for a time
point is reconstructed. On a GeForce GTX 1080, this takes ≤ 600ms, yielding real-
time 4D MRI. Furthermore, if reconstruction is done retrospectively - and graphics
card memory permits - a whole 2D+T series at a fixed slice position or even a full
4D reconstruction can be performed in one batch.

Network architecture and training

The three-channel input is processed in standard U-Net encoding and decoding
paths. A leaky rectified linear unit (slope=0.1) follows each convolutional layer. The
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convolutions are padded to keep the size of feature maps and input constant. The
second convolutional layer in each block doubles the number of features, increasing
the network’s capacity. A MaxPooling operation follows the first three blocks. In
the first convolutional layer, 32 filters process the 128×128×3 input to the network.
Following the architecture results in 512 feature maps in the latent feature space.
The decoding reconstructs the image from the latent space. To this end, three
blocks of two transposed convolutional layers are employed that up-sample the
features. Between every two transposed convolutional layers, a dropout layer is
used. With each up-sampling, the filter size is halved. A final 1× 1 convolutional
layer outputs the reconstructed MR image.

The network was implemented with Keras (Chollet et al., 2015). The total of 6.8
million parameters are trained by an Adam optimizer (Kingma et al., 2014) (learning
rate = 0.0004). In the training run, a total of 200 epochs were performed using the
mean squared error (MSE) as the loss function. The training was conducted with a
batch size of 64. Checkpoints were employed and the model with the best validation
loss was used. Z-score normalization was performed, also known as whitening,
to the image intensities of each subject. This normalization process ensured that
the intensities had a zero mean and unit variance. It is important to note that this
normalization was reversed after the prediction stage and specifically before the
uncertainty map generation processes in the case of ensembling. The training data
was augmented in a physiologically plausible range as described in the last chapter
to facilitate robustness. Random augmentation was seeded for reproducibility. To
simplify the processing, all images were re-sampled to 1.8mm3 voxels.

Transfer learning

As will be shown in the next section, domain shift is a problem in MRI liver data
and results in a discrepancy in model performance. This issue was addressed by
fine-tuning a pre-trained model to a new target subject, because fine-tuning is a
simple to use and effective technique. Its practicality and effectiveness make it
particularly advantageous in a clinical context. Let S be the source domain and
s ∈ S be the subjects of the source domain. Likewise let T be the target domain
and t ∈ T be the subjects of the target domain. Transfer learning in the form of
fine-tuning is used to reduce the discrepancy in model performance in S and T.
Specifically, let Mj

pre be a pre-trained model that was trained on data from all N
source domain subjects [s1,sN ] ∈ S, where j denotes the minutes of training data
per subject s. Mj

pre is then fine-tuned with i minutes of training samples from a new
subject t ∈ T using the same training parameters as were used for the training of
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the pre-trained model (200 epochs, MSE loss, 64 batch size, data augmentation),
resulting in the fine-tuned model Mi

pre+TL.

Ensembling and uncertainty map

We propose to combine an ensembling strategy together with the transfer learning
strategy with our 4D MRI framework. This is illustrated in Fig.7.2 B). While fine-
tuning does enhance prediction quality, when limited training samples are available,
it may not completely mitigate the decrease in prediction quality caused by the
smaller training data set. Ensembling plays an important role in addressing this
issue. By combining multiple models, ensembling significantly improves the overall
prediction quality and helps to mitigate the negative impact of the reduced training
data set. To employ the ensembling strategy, N models were pre-trained, each
starting from a random parameter initialisation. These N models were fine-tuned
to a new subject following the training as described before. To form the final 4D
MRI the predictions of the individual models in the ensemble are averaged. An
uncertainty map is generated by computing the Coefficient of variation between the
predictions. For that, after the normalization was reversed, the voxel wise standard
deviation is dividing by the voxel wise mean.

7.3 Experimental Design

7.3.1 Research Questions and Hypothesis

In this chapter four RQs are addressed. They are summarized in Tab. 7.1. The
RQs and the corresponding null hypothesis (H0) and alternative hypothesis (HA)
are described in the following.

RQ 1: Is domain shift a significant problem? H0 1: Domain shift is not a significant
problem. HA 1: Domain shift is a significant problem.

RQ 2: Can TL reduce training sample size and improve image quality of a fine-tuned
model compared to a pre-trained model? H0 2: TL can not reduce training sample
size and improve image quality. HA 2: TL can reduce training sample size and
improve image quality.

RQ 3: Can TL reduce training sample size and improve image quality of a fine-tuned
model compared to a directly trained model? H0 3: TL can not reduce training
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RQ 1: Is domain shift a significant problem?
RQ 2: Does TL have an effect compared to pre-trained models?
RQ 3: Does TL have an effect compared to directly trained models?
RQ 4: Does ensembling improve image quality?

Tab. 7.1: Research questions

sample size and improve image quality. HA 3: TL can reduce training sample size
and improve image quality.

RQ 4: Does ensembling improve the image quality? H0 4: Ensembling does not
improve the image quality. HA 4: Ensembling does improve the image quality.

7.3.2 Training, Validation, Test Split

The 20 subjects were divided into a source domain S, containing 16 subjects, and a
target domain T, containing 4 Subjects. In both S and T, the first half of each training
sequence was used as training data and the second half as validation data.

7.3.3 Experiments

To quantitatively assess model performance and for statistical analysis, the RMSE,
MDISP, and DN_RMSE were used as error measures that express the dissimilarity
of predicted MR slice and ground truth. All three error measures were described
in 2.6.

Experiment 1: Test for domain shift In this study the term domain shift is used
in a general way, where it refers to the situation that the data distribution in the
training set is different from the test set. And that this leads to a decrease in model
performance. In clinical settings, the quantity of available training data is limited,
and there is a high likelihood that a new subject may not be adequately represented
by the training set distribution. The inadequate representation of the new subject
by the training set can be considered as domain shift. In our case, a small training
distribution does not faithfully represent the following variations: liver shape and
size, body height, abdominal girth (and, consequently, signal-to-noise ratio), body
fat, sex, and age. This list might not be exhaustive.

Remember, M24
pre is a model pre-trained on all 16 Subjects from the source domain

S, using 24min worth of training samples per subject. Of course, it would be best
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if it could be applied to a new subject t ∈ T directly and without any adaptation.
However, this requires that there is no domain shift present between S and T. To
test this, the domains are compared in two ways. First, the performance of M24

pre is
compared between validation data (from S) and test data (T) using the MDISP and
DN_RMSE. To that end, 50% of test samples were randomly chosen from the first
10 seconds of the second half of each training sequence, i.e., for each subject (in
S and T) and slice position. Then both similarity measures were computed for all
predictions of the test samples. Second, the anatomical variance was assessed
visually using the navigator frames.

Experiment 2: Pre-trained vs. TL and influence of source domain data availabil-
ity Because domain shift is a challenge in deep learning-based 4D MRI prediction,
we propose to employ TL. The effect of TL on our models is evaluated by compar-
ing Mj

pre (j ∈ [2, 5, 12, 24]) with M2
pre+TL regarding their performance in T. Where

M2
pre+TL is the result of fine-tuning Mj

pre with 2 minutes of samples from T (720
samples = 2min acquisition time). By that, it is also analyzed how the source
data amount j influences the effect of TL. For comparison, the RMSE, MDISP, and
DN_RMSE are used.

Experiment 3: Direct learning vs. TL and the influence of target domain data
availability It is evaluated whether TL is beneficial compared to directly learning a
model from scratch in the target domain. Moreover, it is evaluated how the target
sample availability influences that effect regarding the effect size. To that end,
models were trained directly from scratch on samples from T. They were compared
with fine-tuned models. Let Mi

direct be a directly learned model and let Mi
pre+TL be

a model fine-tuned from M2
pre, where i ∈ [1, 2, 5, 12, 24, 47]. M2

pre was chosen as the
base model because j showed virtually no influence on model performance in T.
Furthermore, acquiring only a few samples to train a base model in a real-world
scenario would be more economical. The model performance was tested dependent
on the availability of target domain samples from 1 minute to 47 minutes (see the
bottom row in Fig. 7.4). For each target data availability level i and target subject t,
one model was trained directly and one with TL (in total, 48 models).

Experiment 4: TL vs. TL+Ens This experiment evaluates whether the combination
of transfer learning with the ensembling strategy (TL+Ens) enhances the model
performance. For that, ensembles of fine-tuned models of different ensemble sizes
were compared with regard to RMSE, MDISP, and DN_RMSE. Where the ensemble
size N=1 represents only TL, i.e. no ensembling. A one-factorial ANOVA (Analysis
of variance) was performed to test for a primary effect of the ensemble size, which
reveled a significant effect. A post-hoc pair-wise Tukey’s test was performed for the
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Fig. 7.3: Navigators show considerable variance in anatomy, as illustrated by four source
domain subjects (top row) and four target domain subjects (bottom row). The violin
plot (right) shows the prediction error of a pre-trained model in the source domain
(S) and the target domain (T).

RMSE, MDISP, and DN_RMSE independently using p-adjustment. The pair-wise
effect size was computed, using Cohen’s d.

7.4 Results

7.4.1 Results of experiment 1: Domain shift

The MDISP and DN_RMSE distributions are visualised in a violin plot (see Fig. 7.3).
The violin plots show non-normal distributions with different mean. Because a
Shapiro-Wilk Test (n = 4000) and Kolmogorov-Smirnov test also showed that the
distributions are not normally distributed (p<.001). The Wilcoxon rank sum test (m
= 3040, n = 12352) was used to test for significance of the distribution shift. The
null hypothesis H0 1 of no shift in error distribution was rejected in favour of the
alternative hypothesis HA 1 at a significance level of p<.001. The mean of MDISP
and DN_RMSE are 0.30 and 1.29 in S and 0.49 and 2.06 in T. The effect size is
quantified with Cohen’s d (n=3040, m=12352). The effect size is large with d =
2.01 and 1.834. The visual comparison of the navigators shows variability in liver
anatomy across subjects concerning the superior-inferior extent of the liver and the
number and arrangement of vessels. Research question RQ 1 can be answered
with yes, domain shift is a significant problem in deep learning based 4D MRI.
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Fig. 7.4: Top: Comparison of no adaptation and TL at different levels of source domain
data. Middle: Comparison of Direct learning and TL at different levels of target
domain data. Bottom: Comparison of ensemble sizes.
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Fig. 7.5: Top row: displacement fields with a composite of (red) labels and (green) predic-
tions as reference. Bottom row: intensity differences images.

7.4.2 Results of experiment 2: Pre-trained vs. TL and influence of
source domain data availability

The top row of box plots in Fig. 7.4 shows the results of this experiment. Two
observations can be made. First, transfer learning improves the model performance
in the target domain for all tested measures. All tested measures show significant
differences between TL and pre-trained models, with a significance level of p<.001.
For example, at 2min source domain data the mean RMSE is improved from 0.51 to
0.31 (p<0.001, d=-1.609), the mean MDISP is improved from 2.22 to 1.61 (p<0.001,
d=-0.76), and the mean DN_RMSE is improved from 0.5 to 0.3 (p<0.001, d=-1.678).
Significances were computed using the Wilcoxon rank sum test (m = 3040, n =
12352) after confirming none normal distributions using the Shapiro-Wilk test (n
= 3040) and Kolmogorov-Smirnov test. High effect sizes can be observed with
|d| > 1.6 for RMSE and DN_RMSE and medium effect sizes with |d| > 0.7 for
MDISP.

That means, the null hypothesis H0 2 must be rejected in favour of the alternative
hypothesis HA 2 and the research question RQ 2 can be answered with yes, TL has
an effect on the model performance compared to pre-trained models. Second, the
amount of source domain data (beyond ∼ 1min /subject) has little to no influence
on the effect size d. It also does not affect the performance of either Mj

pre or M2
pre+TL

in T. In table 7.2 means and 95th percentiles are reported.
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mean
15s 30s 1min 2min 5min 12min 24min

no A TL no A TL no A TL no A TL no A TL no A TL no A TL
RMSE 0.57 0.33 0.52 0.32 0.51 0.32 0.51 0.31 0.5 0.31 0.5 0.31 0.5 0.3
MDISP 2.65 1.64 2.21 1.57 2.19 1.59 2.22 1.61 2.12 1.51 2.15 1.5 2.1 1.51
DN_RMSE 0.56 0.31 0.51 0.31 0.5 0.3 0.5 0.3 0.49 0.3 0.49 0.3 0.49 0.3

95th percentile
RMSE 0.83 0.89 0.77 0.48 0.76 0.48 0.76 0.48 0.75 0.48 0.75 0.47 0.74 0.46
MDISP 4.42 2.98 3.87 2.93 3.77 3 3.82 3.11 3.65 2.81 3.65 2.8 3.63 2.79
DN_RMSE 0.82 0.46 0.76 0.45 0.76 0.45 0.76 0.46 0.75 0.45 0.75 0.45 0.74 0.45
Tab. 7.2: Comparison of our method with no adaptation (no A) and with TL and different

availability of source domain data.

7.4.3 Results of experiment 3: TL vs. Direct learning and the
influence of target domain data availability

For target data availability between 1 and 12 minutes, significant improvements
(p<.001) are observed when using TL concerning RMSE, MDISP, and DN_RMSE,
and visual assessment reveals detail gain (see Fig. 7.6). For example, at 2min target
domain data the mean RMSE is improved from 0.34 to 0.31 (p<0.001, d=-0.329),
the mean MDISP is improved from 1.83 to 1.61 (p<0.001, d=-0.297), and the mean
DN_RMSE is improved from 0.34 to 0.3 (p<0.001, d=-0.472). That means, the null
hypothesis H0 3 must be rejected in favour of the alternative hypothesis HA 3 and
the research question RQ 3 can be answered with yes, TL has an effect on the
model performance compared to directly trained models.

Beyond the level of 12min, improvements are not significant. Effect sizes are largest
(small to medium) between 1 and 12 minutes when few target samples are available.
The effect size becomes negligible when large amounts of target samples are
available. The Wilcoxon rank sum test (m = 3040, n = 3040) was used to test
for significance after checking that the distributions are not normally distributed
using the Shapiro-Wilk test (n = 3040) and Kolmogorov-Smirnov test. Effect sizes
are reported as Cohen’s d. In table 7.3 means and 95th percentiles are reported.
Figure 7.5 illustrates the image quality and displacement fields of predictions for
increasing MDISP and RMSE values. 4D visualizations are presented in this video:
https://youtu.be/w1CAzOr2XEY.
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mean
1min 2min 5min 12min 24min 47min

Direct TL Direct TL Direct TL Direct TL Direct TL Direct TL
RMSE 0.41 0.36 0.34 0.31 0.3 0.28 0.27 0.26 0.24 0.24 0.21 0.2
MDISP 2.08 1.85 1.83 1.61 1.46 1.33 1.2 1.15 1.01 1.01 0.86 0.81
DN_RMSE 0.4 0.34 0.34 0.3 0.3 0.28 0.26 0.25 0.24 0.24 0.21 0.21

95th percentile
RMSE 0.59 055 0.49 0.48 0.44 0.44 0.4 0.4 0.38 0.37 0.29 0.28
MDISP 3.67 3.57 3.29 3.11 2.67 2.65 2.23 2.27 1.97 1.98 1.64 1.54
DN_RMSE 0.57 0.51 0.48 046 0.42 0.43 0.39 0.39 0.36 0.36 0.29 0.28
Tab. 7.3: Comparison of our method with direct learning and with TL. Availability of target

domain data given in minutes.

mean (95th percentile)
N = 1 2 5 10

RMSE 0.31 (0.49) 0.31 (0.47) 0.3 (0.47) 0.3 (0.46)
MDISP 1.58 (2.98) 1.56 (3.04) 1.53 (3.04) 1.51 (2.98)
DN_RMSE 0.3 (0.46) 0.3 (0.45) 0.29 (0.44) 0.29 (0.44)

Tab. 7.4: Comparison of ensemble sizes N.

7.4.4 Results of experiment 4: TL vs. TL+Ens

One can see that ensembles (TL+Ens) of size N=5 and 10 perform significantly
better than N=1 (TL) in all tested metrics. For N=10 the mean RMSE is improved
from 0.31 to 0.3 (p<0.001, d=-0.153), the mean MDISP is improved from 1.58 to
1.51 (p<0.001, d=-0.087), and the mean DN_RMSE is improved from 0.3 to 0.29
(p<0.001, d=-0.131). Although ensembling provides some benefits, the effect size
is relatively small, suggesting that our TL strategy has reached a saturation point in
terms of quantitative result quality. However, based on a subjective perspective, in
an interview, senior radiologists with extensive experience consistently preferred
the results of the TL+Ens approach over the TL-only results in all tested cases.

Together with the significant differences in mean RMSE, MDISP, and DN_RMSE,
that means, the null hypothesis H0 4 must be rejected in favour of the alternative
hypothesis HA 4 and the research question RQ 4 can be answered with yes, en-
sembling does improve prediction and image quality. The boxplots and all pairwise
significances and Cohen’s d are presented in Fig. 7.4. The mean and 95th percentile
are reported in Table 7.4.
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Fig. 7.6: From top to bottom predictions of: M2
pre, M2

direct, M2
pre+TL, ensemble of 10 ×

M2
pre+TL. Arrows indicate places of varying detail and image quality.
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7.5 Discussion

7.5.1 Interpretation of Result

The results of experiment 1 show, small training data sets especially when they
contain few subjects are not representative of the population causing a domain shift
between training data and unseen subjects. This makes it hard for a deep learning
based 4D MRI method to generalize to unseen subjects. The results of experiment
2 show that in those cases where few training samples are available fine tuned
models outperform pre-trained models significantly. The advantage of TL over a
pre-trained model is greatest when few training samples are available but becomes
negligible for training sample sizes of 24min and beyond. However, this matches
with the clinical need for short acquisition times. One can say that in cases where
only few subjects are available for training a base model, transfer learning is a key
component of the method.

The results from experiment 4 indicate that ensembling also leads to a significant
improvement in image quality. However, the magnitude of this improvement is not
as substantial as that achieved through TL. This could suggest two possibilities.
Firstly, it could imply that TL is more effective than ensembling in enhancing image
quality. Alternatively, it could indicate that the image quality has reached a point of
saturation, where further improvements are minimal. Based on the experimental
results alone, it is not possible to draw a definitive conclusion. To ascertain this,
ensembling should be tested in isolation, without the inclusion of TL, in order to
evaluate its independent impact on image quality. At 2min worth of training samples,
our method requires a fraction of beforehand acquisitions compared to the related
work.

7.5.2 General Discussion

The main advantage of utilizing TL and ensembling in our DL-based 4D MRI method
is that it dramatically reduces the effect of domain shift. Moreover, the amount of
target domain samples can be halved without hampering the model’s performance
compared to direct learning. From a clinical perspective, TL makes our method more
economical because less beforehand acquisition and, therefore, less patient time in
the MRI machine is needed. This is where our method stands out the most from
the related work. It enables short pre-imaging times while achieving high prediction
quality concerning RMSE, MDISP, and DN_RMSE comparable with the related
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work. We evaluated our method with different amounts of training data for fine-
tuning and believe 2 minutes yield a good balance between short acquisition time
and high prediction quality. With 2 minutes, our method achieves a mean MDISP
below voxel size with the 95th percentile below two voxels. Unlike the related work,
our method is an extrapolation technique fast enough to predict real-time 4D MRI
during an intervention, which is another unique strength. It should be noted that
comparing the related work with our method regarding MDISP is a bit unfair because
interpolation, where the used temporal context can extend into the future, is easier
than extrapolation. Nonetheless, our method can also be used retrospectively and
still be competitive.

It should be noted that although most tests showed high significance for our experi-
ments, this is not the main point, especially where the effect size is small. In these
cases, the high significance levels are caused by the large statistical sample size.
Overall the effect size is of greater relevance. We have shown that the effect of
TL is greatest when few training samples are available but becomes negligible for
training sample sizes of 24min and beyond. However, this matches with the clinical
need for short acquisition times.

We received positive feedback from two senior radiologists with extensive experience
in image-guided liver interventions, who confirmed that the presented results would
offer significant benefits if implemented in clinical practice. They preferred the
TL+ensemble. Specifically, the translation of our work to the clinic could yield
significant advantages in interventional planning and simulation. This would only be
possible because of the very short pre-acquisition time. The significant reduction
in pre-acquisition time is crucial for two reasons. Firstly, time is a critical clinical
resource. Reducing the time required for pre-acquisition allows for more efficient
and streamlined imaging procedures. Secondly, there are strict limits on the specific
absorption rate (SAR), which measures the amount of energy absorbed by the
patient during the MRI scan. Prolonged acquisition times could potentially exceed
these limits and pose safety risks. Therefore, the ability to shorten the pre-acquisition
time is not only advantageous for time management but also for ensuring compliance
with SAR regulations.

7.5.3 Future Work

The data set used in this study contains only healthy subjects. New studies are
needed to conclude how well the 4D MRI models generalize to patient data from
image guided liver interventions and other clinical settings.
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Fine-tuning was chosen as a simple yet effective way of transfer learning to exemplify
the novel combination of transfer learning with the deep learning based 4D MRI
method. Of course, more advanced techniques could help to gain additional quality,
which should be investigated in the future.

At 2min worth of training samples, our method requires a fraction of beforehand
acquisitions compared to the related work but has a larger MDISP. It would be
interesting to quantify the benefit of improving sub-millimeter precision in the context
of medical imaging, where voxel sizes typically range from 1mm to 2mm and whether
a mean displacement of < 1 voxel might be sufficient. We see a few avenues to
improve our method for future work. First, in the case of retrospective use, it would
be interesting to increase the amount of training data by incorporating navigator
interpolation (Zhang et al., 2018; Karani et al., 2018), and data interpolation (Tanner
et al., 2014) to double the temporal resolution to 83ms to increasing prediction
quality. Second, it would be interesting to investigate the use of coordConv layers
(R. Liu et al., 2018) in place of normal convolutions to improve prediction quality.
This seems very promising because the spatial component of the learning task is
dominant. Lastly, a 3D architecture instead of a 2D one might make it easier to learn
the 3D spatial relations of the liver motion. In that case, the training task could also
be reformulated to directly predict the 3D motion field, which would be beneficial for
use in radiation therapy.

We received positive feedback from two senior radiologists with extensive experience
in image-guided liver interventions, who confirmed that the presented results would
offer significant benefits if implemented in clinical practice. They preferred the
TL+ensemble. Specifically, the translation of our work to the clinic could yield
significant advantages in interventional planning and simulation. This would only be
possible because of the very short pre-acquisition time. The significant reduction
in pre-acquisition time is crucial for two reasons. Firstly, time is a critical clinical
resource. Reducing the time required for pre-acquisition allows for more efficient
and streamlined imaging procedures. Secondly, there are strict limits on the specific
absorption rate (SAR), which measures the amount of energy absorbed by the
patient during the MRI scan. Prolonged acquisition times could potentially exceed
these limits and pose safety risks. Therefore, the ability to shorten the pre-acquisition
time is not only advantageous for time management but also for ensuring compliance
with SAR regulations.

The senior radiologists suggested, that, in future research, it would be intriguing to
adapt our method to simulate the breathing motion of planning data from patients.
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7.6 Conclusion

This chapter presented the utilization of TL and an ensembling strategy to sub-
stantially reduce beforehand acquisition time and improve the prediction quality
of a DL-based 4D MRI prediction model. The approach uses only a few training
samples for each new subject. Both TL and ensembling can be combined with the
4D MRI method in both use cases: the real-time use, predicting 4D MRI during
image-guided interventions and the retrospective use, i.e., creating a 4D MRI as a
precursor for a respiratory motion model for intervention planning or radiotherapy.
We believe DL-based real-time 4D MRI with high spatial and temporal resolution has
the potential to impact image-guided interventions and radiation therapy because it
can help to solve the problem of organ motion without interfering with the clinical
workflow. Reducing the required training data to a minimum while maintaining the
prediction quality is a crucial step in advancing towards that goal.
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Using Training Samples as
Transitive Information Bridges
in Predicted 4D MRI

8

Synopsis

The last chapter showed that the prior acquisition time of the 4D MRI prediction method can be drastically reduced
by TL. The present chapter concerns the regain of prediction quality that was in part compromised for shorter
acquisition times in the last chapter. The existence of multiple MR contrasts in the network input is identified as a
factor that makes it challenging for the model to accurately predict the inner structures of the liver when only a small
number of training samples are available. To overcome this problem, we propose to re-utilize 2D training samples
as a secondary input for construction of transitive information bridges between the navigator slice primary input
and the data slice prediction. We thus equalize the MR contrasts at the input and remove the need for a separate
3D breath-hold MRI with different MR contrast as the secondary input. Results show that this construction leads to
improved prediction quality, with a significant decrease in median RMSE from 0.3 to 0.27 (p < 0.001, d = −0.19).
Additionally, removing 3D imaging reduces prior acquisition time from 3min to 2min.
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Fig. 8.1: For the work presented in this chapter, only the training sequences and the refer-
ence sequence were used.

8.1 Introduction

In the last chapter the issue of long prior acquisition times of the 4D MRI prediction
framework was addressed. The proposed solution, however, could not preserve
the image quality of the prediction fully. In this chapter, we present an updated
form of our 4D MRI prediction framework that involves reusing 2D training slices
for transitive information bridging, which leads to a reduction in acquisition time
and an improvement in image quality compared to the method presented in the last
chapter.

8.2 Materials and Methods

8.2.1 Data

In chapter 4 we described three parts that make up the data set. In this chapter,
the method that is discussed, uses only two parts of the data. The two parts are
depicted in the gray boxes in Fig. 8.1. Remember, the data sequences alternate
between navigator and data slices, forming navigator-data pairs that are used as
training samples in the 4D MRI prediction framework. While the navigator has a
fixed position and serves as a respiratory motion surrogate during training, the data
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Fig. 8.2: The Network architecture is that of an U-Net. Also shown is the implicit transitive
information bridging between input and output.

slice position changes for every sequence to sample the liver equidistantly in 4mm

steps. For each slice position, 175 navigator-data pairs are available. The total
number of slice positions ranges from 38 to 57, depending on the liver size. The
acquisition of a one slice took 166ms.

Reference sequences contain navigator slices only and show the succession of
breathing states. They are used as breathing surrogate during inference. Such a
sequence comprises 513 MRIs images. It represents a total time duration of 85 s
and shows around 20 breathing cycles.

8.2.2 Improved Transitive Information Bridging

The updated form of our deep learning-based 4D MRI framework is depicted in
Fig. 8.2. Before we discuss the changes to the formulation, lets first remember
the original formulation, presented in chapter 6. There, we proposed to train a Net
with a three channel input, using the data sequences together with slices of the 3D
breath-hold volume. The trained net is able to perform a 4D MRI prediction based
on a sequence of navigator frames. The first channel is fed by a navigator. During
training the navigator comes from a training pair. During inference it comes from
the reference sequence. The second channel is fed by a slice of the 3D volume at
navigator position, the third channel is fed by another slice of the 3D volume at label
position, which is the position we seek to predict. In this formulation, the second
and third channel are used to build, what we call, a transitive information bridge,
which we described in more detail in 6.2.3. The term transitive information bridge is
quite long and will be often used in the chapter, so we will use the term bridge as a
shorthand. Likewise we will call transitive information bridging just bridging.
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Fig. 8.3: Volume bridging: a) transitive information bridges are resampled from the static
STARE-VIBE volume in sagittal orientation and at the same position as the navi-
gator and ground truth, respectively. b) the main input and ground truth are taken
from the training split of the training sequences. Note the different MR contrast of
the bridges compared to main input, output and ground truth.

8.2.3 Volume Bridges

Now, central to this chapter, is the bridging part, and the fact that the breath-hold vol-
ume, used for it until this point, has a different MR contrast than the data sequences.
The breath hold volume are acquired using the STAR VIBE MRI sequence and the
reference and training sequences are acquired using the TRUFI MRI sequence.
While in a STAR VIBE volume the liver appears bright with dark vessels, in the
TRUFI the liver tissue is dark and the vessels are bright. A direct comparison is
given in Fig. 8.4. Both MRI sequences were also described in 4.3. Let us call the
type of bridging that is based on the breath-hold volume volume bridging (VB). In
this formulation, the learning task does not only involved learning ∆B, which was the
difference in breathing states (see 6.2.3) but also learning the apparent difference in
MR contrast and different appearance of vessels between the breath-hold volume
and the label.
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Fig. 8.4: Comparison of bridges sampled from a STAR-VIBE volume vs. bridges taken from
a TRUFI training sequence. Note, that the sample bridges have the same contrast
and vessel appearance as the main input and output of the network, whereas the
volume bridges have a different contrast and vessel appearance.

8.2.4 Sample Bridges

In this chapter, we propose to reuse the training samples from the data sequences
as bridges instead of requiring a separate breath-hold volume with a different MR
contrast. Lets call this type of bridging sample bridging (SB). In the case of SB,
channel two and three are fed by a second navigator-data slice pair. That means
within one batch entry two navigator-data slice pairs are used. One as navigator
and label in the first channel and the output and another one for the bridging in
the second and third channel. The second pair, however, is taken from the same
data sequence as the first one. Fig. 8.2 shows how the two navigator-data slice
pair are used during training. The two navigators (orange box) share the same slice
position but have different breathing states. The two data slices (purple box) also
have the same slice position and different breathing state. In this way it resembles
the original formulation. However, there are notable differences between VB and
SB. First, in SB, channels two and three have a know time offset of 166ms due to
the acquisition time. We hypothesize that the effect is negligible or compensated
by the network. Second, in VB, the bridges not only have a different MR contrast
but also lack image detail compared to the label. Whereas in SB, all inputs and
outputs share the same MR contrast and level of image detail. We hypothesize
that this simplifies the learning task. Third, SB avoids the need for acquiring a 3D
breath-hold volume, which reduces the beforehand acquisition time significantly by
1min. Within the framework, we use the same network architecture and training
setup as described in chapter 6, for comparability.
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We further differentiate SB into two types or flavors. First, fixed sample bridging
(FSB), and second, random sample bridging (RSB). In FSB for each slice position
one navigator-data pair is chosen as a bridge for the training. The same bridges
are then also used during inference. In RSB the bridges for each slice position are
randomly chosen for each forward pass during training. In the following two sections
both FSB and RSB will be described.

8.2.5 Fixed Sample Bridges

Remember each data sequence corresponds to one slice position. We need a
sample bridge (SB) for each slice position, which is a training sample, selected
from the corresponding data sequence. In our tests we used the last sample of the
training part of the data sequence, as shown in Fig. 8.5. This sample, however, was
not used as training sample but is regarded as part of another split, seperate from
the training and test split. Once, the bridges are selected before the training starts,
they are kept the same for training and inference. Hence, the name fixed sample
bridges. The SBs for all slice positions are cached to reduce the latency caused by
the reading access to the hard drive.

8.2.6 Random Sample Bridges

In the case of RSB we want to randomize the SBs. So instead of selecting one
separate training sample as SB for one slice position and keep it the same, we use
the available training samples as a pool to randomly select a SB during training. That
means, for each training iteration, the bridges were randomly chosen for all slice
positions. When the batch size was greater than one, then SBs were independently
selected for each batch entry. It was ensured, that the training sample used as
SB was not the same as the training sample used for channel one and the label.
If per chance, the same sample was selected, then a new random selection was
performed. In the experiments we varied the available amount of training samples.
So for RSB the pool of potential SBs also varies.
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Fig. 8.5: Fixed sample bridging: a) transitive information bridges are taken from a first split,
reserved for bridges, of the training sequences. Bridges are chosen to have the
same positions as the navigator and ground truth, respectively. b) the main input
and ground truth are taken from the training split of the training sequences. Note
the MR contrast of the bridges, main input, output and ground truth is the same.
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Fig. 8.6: Random sample bridging: a) transitive information bridges are randomly chosen
from the training samples. Bridges are chosen to have the same positions as the
navigator and ground truth, respectively. b) the main input and ground truth are
taken from the training split of the training sequences.
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8.3 Experimental Design

8.3.1 Research Questions and Hypothesis

This chapter addresses seven RQs. A summary is listed in Tab. 8.2. The RQs
regard three aspects under which the framework is evaluated. The first aspect is
the use of data from the source domain S and the target domain T. The split into S
and T will be described in 8.3.2. The second aspect regards the type of bridging
that is used, i.e., VB, FSB, RSB, and RFSB. The third aspect regards the amount of
training data that is available, i.e., used, in S and T, respectively.

Combining the first two aspects results in a matrix of possible configurations. The
matrix overview of the configurations is depicted in table 8.1. We denote these
configurations as XX+YYY (for example TL+FSB), where XX+ corresponds to the
first aspect and can be either one of TL+, DL+ (direct learning), or empty. It indicates
whether source domain data or target domain data or both kinds of data were used.
Specifically, TL+ indicates transfer learning was utilized, and means a base model
was trained in S and fine-tuned in T. So, respective models have seen samples
from both S and T. DL+ indicates direct learning, and means a model was directly
trained in the target domain T without starting from a base model that is fine-tuned.
So, respective models only have seen training samples from T. Note, only in the
context of the configurations, do we use the term DL to denote direct learning.
Configurations missing the XX+ part indicate that a model was trained only in S and
that its out-of-domain performance was evaluated in T. So, respective models have
only seen samples from S. In this context, out-of-domain performance always refers
to the performance of a model that was trained in the source domain S, when it is
tested in the target domain T without fine-tuning.

The YYY part of the configuration denotes the bridge type. It can be either one of the
three earlier described bridging types: VB, RSB, or FSB with one additional special
case of RFSB. The special case means RSB was used in the base model and FSB
was used during fine-tuning and testing. That means it only appears in conjunction
with TL. Following this notation we can note three groups of configurations that will
be evaluated. First, VB, RSB, and FSB, second, DL+VB, DL+RSB, and DL+FSB,
and third, TL+VB, TL+RSB, TL+FSB, and TL+RFSB.

The third aspect is the amount of available data in S and T. To address this aspect,
we define discrete levels. The data availability level in S we call LS and the data
availability level in T we call LT . For LS , seven levels are defined at the following
steps: 24min, 12min, 5min, 2min, 1min, 0.5min, and 0.25min. Note, models that

8.3 Experimental Design 135



Usage of S and T
Bridge Type

VB RSB FSB RFSB
only S VB RSB FSB
only T (DL) DL+VB DL+RSB DL+FSB
S and T (TL) TL+VB TL+RSB TL+FSB TL+RFSB

Tab. 8.1: Evaluated configurations.

are trained in the source domain S are always trained with samples of all 16 source
subjects. So, for example, a LS of 2min means, that from each source subject, there
were 2min worth of training samples used. So, at that level, a total of 16×2min of
training samples was used to train the respective model.

For LT , six levels were defined at the following steps: 47min, 24min, 12min, 5min,
2min, and 1min. Models that are trained directly or are fine-tuned in T are always
trained exclusively on the training samples of a single target subject. So unlike in S,
LT directly represents the training sample amount used for training or fine-tuning a
respective model.

Using the ten configurations and levels of data availability we formulate seven RQs
and the corresponding null hypothesis (H0) and alternative hypothesis (HA).

RQ 1: Does SB, i.e., FSB, and RSB, improve the out-of-domain performance over
VB?
H0 1: SB does not improve the out-of-domain performance over VB.
HA 1: SB improves the out-of-domain performance over VB.

RQ 2: If SB, does improve the out-of-domain performance, is there an interaction
effect between the bridge type and LS?
H0 2: There is no interaction effect between bridge type and LS .
HA 2: There is an interaction effect between bridge type and LS .

RQ 3: In combination with TL, i.e., in fine-tuned models, does SB, i.e., TL+FSB,
TL+RSB, and TL+RFSB, improve model performance over TL+VB?
H0 3: For fine-tuned models, SB does not improve model performance over TL+VB.
HA 3: For fine-tuned models, SB does improve model performance over TL+VB.

RQ 4: For fine-tuned models, is there an interaction effect between the bridge type,
and LS , used for the training of the base model?
H0 4: For fine-tuned models, there is no interaction effect between the bridge type
and LS , used for base model training.
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RQ 1: Does SB improve out-of-domain performance over VB?
RQ 2: If so, does this effect depend on LS?
RQ 3: Does SB improve performance over VB in fine-tuned models?
RQ 4: If so, does the effect depend on LS?
RQ 5: And does it depend on LT for fine-tuning?
RQ 6: Does FSB and RSB improve models directly learned in T?
RQ 7: If so, is the effect dependent on LT?

Tab. 8.2: Summary of the research questions in this chapter

HA 4: For fine-tuned models, there is an interaction effect between the bridge type
and LS , used for base model training.

RQ 5: For fine-tuned models, is there an interaction effect between the bridge type
and LT , used for fine-tuning?
H0 5: For fine-tuned models, there is no interaction effect between the bridge type
and LT , used for fine-tuning.
HA 5: For fine-tuned models, there is an interaction effect between the bridge type
and LT , used for fine-tuning.

RQ 6: For directly learned models in T, does SB, i.e., DL+FSB and DL+RSB improve
the model performance over DL+VB?
H0 6: For directly learned models in T, SB does not improve the model performance
over DL+VB.
HA 6: For directly learned models in T, SB does improve the model performance
over DL+VB.

RQ 7: For directly learned models in T, is there an interaction effect between the
bridge type and LT?
H0 7: For directly learned models in T, there is no interaction effect between the
bridge type and LT .
HA 7: For directly learned models in T, there is an interaction effect between the
bridge type and LT .

8.3.2 Training, Validation, Test Split

For the experiments the data is randomly split into two domains, the source domain
S that contains 16 subjects and the target domain T that contains 4 subjects. The
experimental design requires a second split. The data of each subject from both S
and T are split into training, validation and test sets. For that, each data sequence
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is split into: training (50%), validation (2%), and test (48%) sets. The second split is
performed in sequence, i.e., in order. That means the training set contains the first
50% of the data sequence, the validation set the following 2% and the test set the
last 48%.

8.3.3 Experiments

To address the RQs that we formulated in 8.3.1, four experiments were conducted.
They are described in the following. An overview of the experiments and the respec-
tive configurations that were compared is given in 8.3. All quantitative experiments
are conducted for each slice position separately. That means, the performance
of the models or configurations is computed as RMSE on slice predictions not on
volume predictions, because the ground truth is not available for whole volumes,
but only for slice positions, as set out in chapter 4 section 4.2.3. However, the sta-
tistical tests were perform over all slice positions combined. Furthermore, a visual
comparison of all combinations based on 3D MRI predictions was performed.

Exp 1 (addressing RQ 1 and 2): For every subject in S, three sets of seven models
each were trained. Each of the three sets corresponds to one of the bridge types,
utilizing VB, RSB, or FSB respectively. And each of the seven models per set was
trained at a specific level of training data amount. As described earlier, the seven
levels were defined at the following distinct steps: 24min, 12min, 5min, 2min, 1min,
0.5min, and 0.25min. The out-of-domain performance of all models was evaluated
separately for all four target subjects in T on the respective test sets. For that the
RMSE was computed between slice predictions and ground truth labels, which
came from the test split of the data secquences. That resulted in a sample size
for statistical analysis of 21280 samples for each of the three tested configurations,
VB, RSB, and FSB, or 3040 sample per group, which is a combination of the three
bridge types and the seven data availability levels. We call the data availability levels
in S LS .

We want to perform a two-way ANOVA, to test not only for the main effect of the
bridge type (RQ 1) but also for an possible interaction effect between bridge type and
training data availability level (RQ 2). We know the data is not normally distributed,
because the RMSE is zero bounded. Also, the Lilliefors test confirms none-normality.
However, the ANOVA is known to be robust against none-normally distributed
variables when the sample size is large. In this case the sample size is very large,
with 3040 samples per group. Also, the ratio of the largest variance and smallest
variance between the groups was smaller then four to one, which is a widely used rule
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of thumb for accepting the variances as being equal, which is another assumption of
the test. After verification of the assumptions, a two-factorial ANOVA was performed
to test for main effects and possibly interaction effects of the bridge type and data
availability level on the RMSE. A post-hoc Tukey’s HSD test was performed to
determine which pairs of group means are significantly different from each other.
Finally, the Cohen’s d was computed to quantify the effect sizes.

Furthermore and to support the ANOVA results in the presence of none-normal
distributed data, a second line of statistical tests using none-parametric tests was
performed. The one-way Kruskal-Wallis-Test was performed to test for effects of
the bridge types on the RMSE. This was done for each data availability level. After
a significant effect was observed a post-hoc pairwise Wilcoxon Rank Sum Tests
was performed to determine which pairs of group means are significantly different.
To correct for multiple testing the Benjamini-Hochberg method was used. The
significance level was set to 0.05 for all statistical tests.

Exp 2 (addressing RQ 3 and 4): All pre-trained models of Exp 1 were fine-tuned for
each subject in T separately. For that 2min of training data were used. This resulted
in three model sets corresponding to the configurations TL+VB, TL+RSB, and
TL+FSB in which the same bridge types are used as in the base models. A fourth
set corresponds to the configuration TL+RFSB, where the base models were trained
using RSB and fine-tuned using FSB. All models were evaluated separately on the
test data of the same subject used for fine-tuning. That resulted in a sample size
for statistical analysis of 21 280 samples for each of the four tested configurations,
TL+VB, TL+RSB, TL+FSB, and TL+RFSB, or 3040 sample per group, which is a
combination of the four bridge types and the seven levels of LS .

The statistical analysis was performed in the same way as described in Exp 1. First
an ANOVA was performed, testing for the main effect of the bridge type (RQ 3) and
a possible interaction effect between the bridge type and data availability level on
the RMSE (RQ 4) for models that were fine-tuned. A post-hoc Tukey’s HSD test
was performed, identifying group pairs with significantly different mean RMSE. The
effect sizes were computed with Cohen’s d. Also a none-parametric second line
of testing was performed. Using the Kruskal-Wallis-Test and a post-hoc pairwise
Wilcoxon Rank Sum Tests, with correction for multiple testing.

Exp 3 (addressing RQ 5): Those pre-trained models from Exp 1 that were trained
at the training data amount level of 2min, were used as base models. Each base
model was fine-tuned separately for each subject in T. Specifically, each base model
was fine-tuned once at each of the six training data amount levels that are defined
in the following. The levels were defined at decreasing training data amounts at
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Exp configurations data avalability levels
Exp 1 VB RSB FSB

7 levels in SExp 2 TL+VB TL+RSB TL+FSB
Exp 3 TL+VB TL+RSB TL+FSB TL+RFSB

6 levels in TExp 4 DL+VB DL+RSB DL+FSB
Tab. 8.3: Overview of the experiments

the following steps: 47min, 24min, 12min, 5min, 2min, and 1min. This resulted
in four model sets of six models each, where the sets are corresponding to the
configurations TL+VB, TL+RSB, TL+FSB, and TL+RFSB. The performance of the
models was evaluated on the test data of the subject used for fine-tuning. That
resulted in a sample size for statistical analysis of 18 240 samples for each of the
four tested configurations, TL+VB, TL+RSB, TL+FSB, and TL+RFSB, or 3040
sample per group, which is a combination of the four bridge types and the six data
availability levels. We call the data availability levels in T LT .The statistical analysis
was performed in the same way as in Exp 1 and 2.

Exp 4 (addressing RQ 6 and 7): For all four subjects in T, three sets of six models
each were trained. The models were trained directly and separately on the target
subjects. The three sets per subject correspond to the three configurations DL+VB,
DL+RSB, and DL+FSB. Each set contains six models that correspond to the six
levels of available trained data amount defined in Exp 3. The performance of all
models was evaluated on the test data part of the subject used for training. That
resulted in a sample size for statistical analysis of 18 240 samples for each of the
three tested configurations, DL+VB, DL+RSB, and DL+FSB, which is a combination
of the three bridge types and the six of LT . The statistical analysis was performed
in the same way as in Exp 1, 2 and 3.
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8.4 Results

8.4.1 Results of Exp 1

The distribution of RMSEs is presented as box plot in Fig. 8.7. The median and 95th
percentile are presented in Tab. 8.4. The main results of the ANOVA are presented
in Tab. 8.5. The ANOVA shows significant main effects for both LS and the bridge
type and a significant interaction effect between the two factors. The first main effect,
regarding LS was already shown in chapter 7 and is confirmed in this experiments.

Fig. 8.7: Exp 1 RMSE box plots grouped by configuration and LS .

LS (min/subject)
0.25 0.5 1 2 5 12 24

VB 0.57 (0.83) 0.51 (0.78) 0.5 (0.77) 0.5 (0.77) 0.49 (0.76) 0.5 (0.76) 0.49 (0.75)
RSB 0.39 (0.68) 0.34 (0.58) 0.33 (0.55) 0.31 (0.55) 0.31 (0.55) 0.31 (0.57) 0.32 (0.58)
FSB 0.39 (0.61) 0.35 (0.59) 0.33 (0.57) 0.32 (0.55) 0.31 (0.55) 0.31 (0.55) 0.31 (0.55)

Tab. 8.4: Exp 1 RMSE Median and 95th percentile in brackets.

We can interpret the second main effect, regarding the bridge type, with the result
of the post-hoc Tukey’s HSD test (Tab. 8.6). Here we see that SB, i.e., both RSB
and FSB, reduce the RMSE in the target domain compared to VB. For example, at
the data availability level of 2min RSB reduces the median RMSE from 0.50 to 0.31
(see Tab. 8.4). The Cohen’s d reveals a large negative effect of SB, reducing the
RMSE in all tested data availability levels. This effect is significant with p < 0.05

(see Tab. 8.8). That means, we must reject the null hypothesis H0 1 in favour of
the alternative hypothesis HA 1 and can answer the research question RQ 1 with
yes, SB improves the out-of-domain performance over VB. This is solidified by
the Kruskall-Wallis test that also confirms that, in general, the bridge type has a
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significant effect on the RMSE in all tested data availability level LS (see Tab. 8.7).
In Exp 1, the difference between RSB and FSB is not significant (Tab. 8.6).

On the other hand, the found interaction effect describes that, while at all levels
of LS , SB performs better than VB, it achieves greater improvements at higher
LS . This can be seen in Tab. 8.8 that shows that the effect size d increases with
increasing LS . That means, we must reject the null hypothesis H0 2 in favour of
the alternative hypothesis HA 2 and can answer the research question RQ 2 with
yes, the effect of bridge type depends on LS . The effect size also shows that the
difference between RSB and FSB is small and, at some levels, not significant.

Fig. 8.8 depicts a qualitative comparison of the out-of-domain performance of all
three related configurations, using the same amount of training data LS = 2min.
One can see that RSB and FSB yield more image detail than VB. For example, in
the sagittal orientation, we see the vessel tree clearly when SB is used, which is not
the case for VB.

Effect type Factor Df F p

Main effects
LS 6 342.133 <0.001
bridge type 2 11411.1 <0.001

Interaction effects LS ∗ bridge type 12 4.20652 <0.001
Tab. 8.5: Exp 1 Main results of the ANOVA on the RMSE.

comparison Estimate Std. Error p
RSB - VB -0.159 0.003 <0.001
FSB - VB -0.163 0.003 <0.001
FSB - RSB -0.004 0.003 0.522

Tab. 8.6: Exp 1 Main results of the Tukey’s HSD test.
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Fig. 8.8: Exp 1 Out-of-Domain predictions of VB, RSB, and FSB for LS = 2min.
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LS χ2 p
0.25 1992.231 <0.001
0.5 2420.277 <0.001

1 2526.175 <0.001
2 2688.222 <0.001
5 2699.339 <0.001

12 2683.511 <0.001
24 2509.224 <0.001

Tab. 8.7: Exp 1 main results of the
Kruskall-Wallis test on the
RMSE, showing the effect of
bridge types within data avail-
ability level l in minutes.

LS comparison d p

0.25
RSB vs FSB 0.028 0.209
RSB vs VB -1.028 <0.001
FSB vs VB -1.171 <0.001

0.5
RSB vs FSB -0.080 <0.001
RSB vs VB -1.238 <0.001
FSB vs VB -1.180 <0.001

1
RSB vs FSB -0.068 0.009
RSB vs VB -1.280 <0.001
FSB vs VB -1.213 <0.001

2
RSB vs FSB -0.075 0.002
RSB vs VB -1.342 <0.001
FSB vs VB -1.262 <0.001

5
RSB vs FSB -0.062 0.013
RSB vs VB -1.333 <0.001
FSB vs VB -1.264 <0.001

12
RSB vs FSB 0.015 0.908
RSB vs VB -1.274 <0.001
FSB vs VB -1.307 <0.001

24
RSB vs FSB 0.058 0.161
RSB vs VB -1.184 <0.001
FSB vs VB -1.281 <0.001

Tab. 8.8: Exp 1 Main results of Cohen’s d
and the pairwise Wilcoxon rank
sum test (p) on the RMSE.
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8.4.2 Results of Exp 2

The distribution of RMSEs is presented as box plot in Fig. 8.9. The median and 95th
percentile are presented in Tab. 8.9. The main results of the ANOVA are presented
in Tab. 8.10. The ANOVA shows significant main effects for both LS and the bridge
type and a significant interaction effect between the two factors. The first main effect,
regarding LS was already shown in chapter 7 and is confirmed in this experiments.

Fig. 8.9: Exp 2 RMSE box plot.

LS (min/subject)
0.25 0.5 1 2 5 12 24

TL+VB 0.31 (0.48) 0.3 (0.49) 0.3 (0.48) 0.3 (0.48) 0.29 (0.47) 0.29 (0.46) 0.29 (0.46)
TL+RSB 0.3 (0.48) 0.29 (0.47) 0.28 (0.47) 0.28 (0.46) 0.27 (0.46) 0.27 (0.45) 0.27 (0.45)
TL+FSB 0.29 (0.5) 0.28 (0.5) 0.28 (0.49) 0.28 (0.49) 0.27 (0.48) 0.27 (0.48) 0.27 (0.47)
TL+RFSB 0.29 (0.51) 0.28 (0.5) 0.28 (0.49) 0.27 (0.48) 0.27 (0.47) 0.26 (0.45) 0.27 (0.45)

Tab. 8.9: Exp 2 RMSE Median and 95th percentile.

We can interpret the second main effect, regarding the bridge type, again, with the
result of the post-hoc Tukey’s HSD test (Tab. 8.11). Here we see that SB, i.e., all
three combinations TL+RSB, TL+FSB, and TL+RFSB, compared to TL+VB, reduce
the RMSE in the target domain. For example in Tab. 8.9, we see at LS = 2min,
TL+RFSB reduces the median RMSE from 0.3 to 0.27 (d = −0.213 see Tab. 8.13).
The Cohen’s d (see Tab. 8.13) reveals a small negative effect of SB compared
to VB, reducing the RMSE in all tested data availability levels. This effect is also
significant. This means, we must reject the null hypothesis H0 3 in favour of the
alternative hypothesis HA 3 and can answer the research question RQ 3 with yes, SB
compared to VB improves the performance of fine-tuned models. This is supported
by the Kruskall-Wallis test that also confirms that, in general, the bridge type has a
significant effect on the RMSE in all data availability level LS (see Tab. 8.12). In Exp
2, the Tukey’s HSD test reveals that the differences between TL+RSB, TL+FSB, and
TL+RFSB, are not significant (Tab. 8.11). This is supported by the Cohen’s d, which
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shows very small effect sizes for the differences between the three configurations
and the pairwise Wilcoxon rank sum test that shows the differences are not significant
at most levels of LS .

On the other hand, the found interaction effect describes that, while at all levels of
LS , TL+SB performs better than TL+VB, it achieves greater improvements at higher
LS . This can be seen in Tab. 8.13 that shows that the effect size d increases with
increasing LS . This means, we must reject the null hypothesis H0 4 in favour of the
alternative hypothesis HA 4 and can answer the research question RQ 4 with yes,
the effect of the bridge type depends on LS .

Fig. 8.10 depicts a qualitative comparison of the performance of all four config-
urations tested in Exp 2. The examples correspond to data availability levels of
LS = 2min and LT = 2min. One can see that TL+RSB, TL+FSB, and TL+RFSB
contain slightly more image detail than TL+VB. For example, in the coronal view, at
the upper right liver dome, marked by the arrows, we see small vessels that are not
visible for TL+VB.

Effect type Factor Df F p

Main effects
LS 6 92.288 <0.001
bridge type 3 163.755 <0.001

Interaction effects LS ∗ bridge type 18 2.255 0.002
Tab. 8.10: Exp 2 Main results of the ANOVA on the RMSE.

comparison Estimate Std. Error p
TL+RSB - TL+VB -0.011 0.003 <0.001
TL+FSB - TL+VB -0.012 0.003 <0.001
TL+RFSB - TL+VB -0.012 0.003 <0.001
TL+FSB - TL+RSB -0.001 0.003 0.946
TL+RFSB - TL+RSB -0.001 0.003 0.982
TL+RFSB - TL+FSB 0.000 0.003 0.998

Tab. 8.11: Exp 2 Main results of the Tukey’s HSD test.
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Fig. 8.10: Exp 2 Predictions of TL+VB, TL+RSB, TL+FSB, and TL+RFSB, for LS = 2min
and LT = 2min.
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LS χ2 p
0.25 80.022 <0.001
0.5 93.933 <0.001

1 103.240 <0.001
2 149.895 <0.001
5 139.973 <0.001

12 211.332 <0.001
24 146.695 <0.001

Tab. 8.12: Exp 2 main results of the
Kruskall-Wallis test on the
RMSE, showing the effect of
bridge types within data avail-
ability level l in minutes.

LS comparison d p

0.25

TL+RSB vs. TL+VB -0.118 <0.001
TL+FSB vs. TL+VB -0.129 <0.001
TL+RFSB vs. TL+VB -0.125 <0.001
TL+FSB vs. TL+RSB -0.014 0.079
TL+RFSB vs. TL+RSB -0.009 0.107
TL+RFSB vs. TL+FSB 0.004 0.76

0.5

TL+RSB vs. TL+VB -0.167 <0.001
TL+FSB vs. TL+VB -0.146 <0.001
TL+RFSB vs. TL+VB -0.127 <0.001
TL+FSB vs. TL+RSB 0.013 0.324
TL+RFSB vs. TL+RSB 0.032 0.945
TL+RFSB vs. TL+FSB 0.018 0.324

1

TL+RSB vs. TL+VB -0.191 <0.001
TL+FSB vs. TL+VB -0.125 <0.001
TL+RFSB vs. TL+VB -0.146 <0.001
TL+FSB vs. TL+RSB 0.058 0.252
TL+RFSB vs. TL+RSB 0.034 0.984
TL+RFSB vs. TL+FSB -0.022 0.252

2

TL+RSB vs. TL+VB -0.224 <0.001
TL+FSB vs. TL+VB -0.157 <0.001
TL+RFSB vs. TL+VB -0.213 <0.001
TL+FSB vs. TL+RSB 0.053 0.558
TL+RFSB vs. TL+RSB 0.005 0.421
TL+RFSB vs. TL+FSB -0.047 0.227

5

TL+RSB vs. TL+VB -0.208 <0.001
TL+FSB vs. TL+VB -0.142 <0.001
TL+RFSB vs. TL+VB -0.225 <0.001
TL+FSB vs. TL+RSB 0.056 0.248
TL+RFSB vs. TL+RSB -0.021 0.098
TL+RFSB vs. TL+FSB -0.075 0.008

12

TL+RSB vs. TL+VB -0.248 <0.001
TL+FSB vs. TL+VB -0.182 <0.001
TL+RFSB vs. TL+VB -0.277 <0.001
TL+FSB vs. TL+RSB 0.052 0.519
TL+RFSB vs. TL+RSB -0.034 0.014
TL+RFSB vs. TL+FSB -0.084 0.003

24

TL+RSB vs. TL+VB -0.186 <0.001
TL+FSB vs. TL+VB -0.130 <0.001
TL+RFSB vs. TL+VB -0.233 <0.001
TL+FSB vs. TL+RSB 0.051 0.23
TL+RFSB vs. TL+RSB -0.048 0.011
TL+RFSB vs. TL+FSB -0.097 <0.001

Tab. 8.13: Exp 2 Main results of Cohen’s
d and the pairwise Wilcoxon
rank sum test (p) on the
RMSE.
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8.4.3 Results of Exp 3

The distribution of RMSEs is presented as box plot in Fig. 8.11. The median and
95th percentile are presented in Tab. 8.14. The main results of the ANOVA are
presented in Tab. 8.15. The ANOVA shows significant main effects for both LT and
the bridge type and a significant interaction effect between the two factors. The first
main effect, regarding LS was already shown in chapter 7 and is confirmed in this
experiments.

Fig. 8.11: Exp 3 RMSE box plot.

LT (min)
1 2 5 12 24 47

TL+VB 0.34 (0.55) 0.3 (0.47) 0.26 (0.43) 0.23 (0.4) 0.22 (0.38) 0.2 (0.28)
TL+RSB 0.3 (0.52) 0.28 (0.46) 0.26 (0.43) 0.24 (0.4) 0.23 (0.37) 0.21 (0.32)
TL+FSB 0.3 (0.52) 0.28 (0.48) 0.25 (0.46) 0.23 (0.42) 0.21 (0.39) 0.19 (0.27)
TL+RFSB 0.29 (0.51) 0.27 (0.48) 0.25 (0.45) 0.23 (0.41) 0.21 (0.38) 0.19 (0.27)

Tab. 8.14: Exp 3 RMSE Median and 95th percentile.

The second main effect, describes that the bridge type has a significant effect on
the RMSE and the result of the Tukey’s HSD test (Tab. 8.16), indicates that all
three combinations TL+RSB, TL+FSB, and TL+RFSB, compared to TL+VB, reduce
the RMSE in the target domain and that this effect is significant. The combination
TL+RSB constitutes an exception. It inverts its effect for LT ≥ 12. The Cohen’s d
(see Tab. 8.18) reveals a medium negative effect of TL+SB compared to TL+VB,
reducing the RMSE in all tested data availability levels, again, with the exception of
TL+RSB. The significance of the pairwise differences is confirmed by the Wilcoxon
rank sum test. This is supported by the Kruskall-Wallis test that also confirms that, in
general, the bridge type has a significant effect on the RMSE in all data availability
level LT (see Tab. 8.17).
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The found interaction effect between the bridge type and LT is of complex nature. We
use the Cohen’s d and the results of the pairwise Wilcoxon rank sum test (Tab. 8.18)
for the interpretation of that interaction effect. First, the negative effect of TL+RSB
decreases with increasing LT and even inverts for LT ≥ 12. Second, the negative
effect of TL+FSB starts to decrease with increasing LT , but then increases again
for large LT ≥ 24, having the greatest effect for LT = 47. Third, the same behavior
can be observed for TL+RFSB. And fourth, the difference between TL+RSB on the
one hand and TL+FSB and TL+RFSB on the other, shows a very small effect and
mostly no significance for LT ≤ 5, however the difference increases to a medium
effect for LT ≥ 12 and becomes significant. This means, we must reject the null
hypothesis H0 5 in favour of the alternative hypothesis HA 5 and can answer the
research question RQ 5 with yes, the effect of the bridge type depends on LT .

Effect type Factor Df F p

Main effects
LT 5 3256.196 <0.001
bridge type 3 129.065 <0.001

Interaction effects LT ∗ bridge type 15 27.493 <0.001
Tab. 8.15: Exp 3 Main results of the ANOVA on the RMSE.

comparison Estimate Std. Error p
TL+RSB - TL+VB -0.034 0.002 <0.001
TL+FSB - TL+VB 0.031 0.002 <0.001
TL+RFSB - TL+VB -0.041 0.002 <0.001
TL+FSB - TL+RSB 0.003 0.002 0.5856
TL+RFSB - TL+RSB -0.007 0.002 0.0113
TL+RFSB - TL+FSB -0.010 0.002 <0.001

Tab. 8.16: Exp 3 Main results of the Tukey’s HSD test.
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LT χ2 p
1 343.870 <0.001
2 126.981 <0.001
5 59.710 <0.001

12 61.782 <0.001
24 118.162 <0.001
47 657.174 <0.001

Tab. 8.17: Exp 3 main results of the
Kruskall-Wallis test on the
RMSE, showing the effect of
bridge types within data avail-
ability level l in minutes.

LT comparison d p

1

TL+RSB vs. TL+VB -0.317 <0.001
TL+FSB vs. TL+VB -0.291 <0.001
TL+RFSB vs. TL+VB -0.384 <0.001
TL+FSB vs. TL+RSB 0.025 0.429
TL+RFSB vs. TL+RSB -0.062 0.008
TL+RFSB vs. TL+FSB -0.087 <0.001

2

TL+RSB vs. TL+VB -0.203 <0.001
TL+FSB vs. TL+VB -0.141 <0.001
TL+RFSB vs. TL+VB -0.192 <0.001
TL+FSB vs. TL+RSB 0.051 0.527
TL+RFSB vs. TL+RSB 0.004 0.343
TL+RFSB vs. TL+FSB -0.046 0.155

5

TL+RSB vs. TL+VB -0.085 <0.001
TL+FSB vs. TL+VB -0.085 <0.001
TL+RFSB vs. TL+VB -0.114 <0.001
TL+FSB vs. TL+RSB -0.004 0.063
TL+RFSB vs. TL+RSB -0.030 0.005
TL+RFSB vs. TL+FSB -0.025 0.361

12

TL+RSB vs. TL+VB 0.014 0.434
TL+FSB vs. TL+VB -0.059 <0.001
TL+RFSB vs. TL+VB -0.083 <0.001
TL+FSB vs. TL+RSB -0.069 <0.001
TL+RFSB vs. TL+RSB -0.094 <0.001
TL+RFSB vs. TL+FSB -0.022 0.434

24

TL+RSB vs. TL+VB 0.029 0.049
TL+FSB vs. TL+VB -0.084 <0.001
TL+RFSB vs. TL+VB -0.124 <0.001
TL+FSB vs. TL+RSB -0.110 <0.001
TL+RFSB vs. TL+RSB -0.151 <0.001
TL+RFSB vs. TL+FSB -0.036 0.309

47

TL+RSB vs. TL+VB 0.287 <0.001
TL+FSB vs. TL+VB -0.353 <0.001
TL+RFSB vs. TL+VB -0.312 <0.001
TL+FSB vs. TL+RSB -0.595 <0.001
TL+RFSB vs. TL+RSB -0.556 <0.001
TL+RFSB vs. TL+FSB 0.034 0.393

Tab. 8.18: Exp 3 Main results of Cohen’s
d and the pairwise Wilcoxon
rank sum test (p) on the
RMSE.
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8.4.4 Results of Exp 4

The RMSEs distribution is presented as box plot in Fig. 8.12. The median and 95th
percentile are presented in Tab. 8.19. The main results of the ANOVA are presented
in Tab. 8.20. The ANOVA shows significant main effects for both LT and the bridge
type and a significant interaction effect between the two factors.

Fig. 8.12: Exp 4 RMSE box plot.

LT (min)
1 2 5 12 24 47

DL+VB 0.4 (0.58) 0.33 (0.49) 0.29 (0.45) 0.25 (0.41) 0.22 (0.38) 0.2 (0.29)
DL+RSB 0.35 (0.57) 0.3 (0.49) 0.27 (0.44) 0.25 (0.4) 0.23 (0.37) 0.21 (0.31)
DL+FSB 0.34 (0.55) 0.3 (0.51) 0.26 (0.45) 0.23 (0.42) 0.21 (0.39) 0.19 (0.28)

Tab. 8.19: Exp 4 RMSE Median and 95th percentile.

The first main effect describes that an increase in LT leads to a decrease of the
RMSE, which is a confirmation of the expected behavior that was already described
in chapter 7.

The second main effect, describes that the bridge type has a significant effect on
the RMSE. At first, the result of the Tukey’s HSD test (Tab. 8.21) suggests that both
combinations DL+RSB and DL+FSB, compared to DL+VB, reduce the RMSE in the
target domain and that this effect is significant. However, taking LT into account,
the combination DL+RSB, again, constitutes an exception. It inverts its effect for
LT ≥ 24. The Cohen’s d (see Tab. 8.23) reveals a medium negative effect of
DL+SB compared to DL+VB, reducing the RMSE in all tested data availability levels,
again, with the exception of DL+RSB. The significance of the pairwise differences is
confirmed by the Wilcoxon rank sum test, which is supported by the Kruskall-Wallis
test that also confirms that, in general, the bridge type has a significant effect on
the RMSE for directly learned models in all data availability level LT (see Tab. 8.22).

152 Chapter 8 Using Training Samples as Transitive Information Bridges in Pre-
dicted 4D MRI



This means, we can not reject the null hypothesis H0 6 in favour of the alternative
hypothesis HA 6. The answer to research question RQ 6 is inconclusive. DL+SB is
different from DL+VB, but it does not always improve the performance of directly
learned models.

The reason is the interaction effect between the bridge type and LT that was also
found by the ANOVA. Again, this interaction is complex. Using the Cohen’s d and
the results of the pairwise Wilcoxon rank sum test (Tab. 8.23) that interaction effect
can be interpreted. First, the negative effect of DL+RSB decreases with increasing
LT and even inverts for LT ≥ 24. Second, the negative effect of DL+FSB starts to
decrease with increasing LT , but then increases again for LT = 47, having almost
the same effect size as for LT = 1. Third, the difference between TL+RSB and
TL+FSB shows a very small effect and no or weak significance for LT ≤ 5, however
the difference increases to a notable effect for LT ≥ 12 and becomes significant.
This means, we must reject the null hypothesis H0 7 in favour of the alternative
hypothesis HA 5 and can answer the research question RQ 5 with yes, the effect of
the bridge type depends on LT .

Fig. 8.13 depicts a qualitative comparison of all 3 configurations with direct learning
using the same amount of training data LT = 2min. We see that the predictions
with DL+RSB, DL+FSB, and DL+FSB contain more image detail than the on with
DL+VB. This can be seen in the sagittal view were the vessel tree is almost not
reconstructed in the case of DL+VB, but is reconstructed in the case of DL+RSB
and DL+FSB.

Effect type Factor Df F p

Main effects
LT 5 4895.921 <0.001
bridge type 2 315.889 <0.001

Interaction effects LT ∗ bridge type 10 40.319 <0.001
Tab. 8.20: Exp 4 Main results of the ANOVA on the RMSE.

comparison Estimate Std. Error p
DL+RSB - DL+VB -0.039 0.002 <0.001
DL+FSB - DL+VB -0.045 0.002 <0.001
DL+FSB - DL+RSB -0.006 0.002 0.011

Tab. 8.21: Exp 4 Main results of the Tukey’s HSD test.
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Fig. 8.13: Exp 4 Predictions of DL+VB, DL+RSB, and DL+FSB for LT = 2min.
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LT χ2 p
1 459.419 <0.001
2 278.035 <0.001
5 187.276 <0.001

12 104.279 <0.001
24 101.419 <0.001
47 403.109 <0.001

Tab. 8.22: Exp 4 main results of the
Kruskall-Wallis test on the
RMSE, showing the effect of
bridge types within data avail-
ability level l in minutes.

LT comparison d p

1
DL+RSB vs. DL+VB -0.366 <0.001
DL+FSB vs. DL+VB -0.449 <0.001
DL+FSB vs. DL+RSB -0.057 0.076

2
DL+RSB vs. DL+VB -0.290 <0.001
DL+FSB vs. DL+VB -0.294 <0.001
DL+FSB vs. DL+RSB -0.016 0.018

5
DL+RSB vs. DL+VB -0.205 <0.001
DL+FSB vs. DL+VB -0.233 <0.001
DL+FSB vs. DL+RSB -0.035 0.001

12
DL+RSB vs. DL+VB -0.070 0.006
DL+FSB vs. DL+VB -0.162 <0.001
DL+FSB vs. DL+RSB -0.095 <0.001

24
DL+RSB vs. DL+VB 0.030 0.016
DL+FSB vs. DL+VB -0.123 <0.001
DL+FSB vs. DL+RSB -0.151 <0.001

47
DL+RSB vs. DL+VB 0.179 <0.001
DL+FSB vs. DL+VB -0.359 <0.001
DL+FSB vs. DL+RSB -0.512 <0.001

Tab. 8.23: Exp 4 Main results of Cohen’s
d and the pairwise Wilcoxon
rank sum test (p) on the
RMSE.

8.5 Discussion

8.5.1 Interpretation of Results

Interpretation of Exp 1: SB has a profound effect on the prediction quality and
image detail of an out-of-domain prediction and it out-performs VB by far. in its
strength, the effect is comparable with the effect of transfer learning. It is large in all
levels of LS , regardless of the interaction effect found by the ANOVA. In experiment
1 RSB and FSB perform equally good, showing almost no significant differences.
There seams, however, to be a tendency of RSB to slightly perform better. From a
qualitative point of view, SB makes the difference between an almost unrecognisable
image (VB) and a clearly visible vessel structure within the liver (RSB and FSB). This
means it is strongly advisable to utilize SB to substantially improve the prediction
quality, when no data of the target domain is available.

Interpretation of Exp 2: When target domain data is available and fine-tuning is
an option, then TL+SB also improves the performance compared to TL+VB. The
effect is smaller than the one found in Exp 1, which regards the out-of-domain
performance, but it is significant. The Tukey’s HSD test did not reveal a significant
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difference between the three SB configurations TL+RSB, TL+FSB, and TL+RFSB.
Although the box plots as well as the Cohen’s d indicate that TL+RSB and TL+RFSB
perform slightly better than TL+FSB at LT = 2min, this difference is not significant.
It is also evident, that the effect of SB is greater at higher levels of LS , which is
part of the interaction effect. However, the effect size becomes nearly constant for
LS ≥ 2min. From a qualitative stand point, SB adds image detail, although the
effect is far more subtle than it is in the case of out-of-domain predictions. This
means, that SB should be utilized in conjunction with fine-tuning to further improve
the prediction result. This is also a strong recommendation, because even if the
improvements are small, they come at no additional cost. In fact, SB reduce the
cost in form of prior acquisition time.

Interpretation of Exp 3: When only 1min of target data and a base line model are
available, TL+RFSB is the option that yields the best results, significantly outper-
forming TL+VB, TL+RSB, and TL+FSB. When 2min of target data and a base line
model are available, TL+RSB yielded the best results. Outperforming TL+VB more
then the other two alternatives. However, the difference to the alternatives TL+FSB
and TL+RFSB were not significant. Also TL+RSB is sensitive to LT . It loses its
power to improve the prediction in conjunction with fine-tuning when LT ≥ 12min

and is most effective for LT = 2min, but does not significantly outperform the other
SB options. In this experiment TL+RFSB performed the best over all. So we find
that TL+RFSB is be the best option of configurations, when the level LT varies. It
either performs better than the other options or equally good.

Interpretation of Exp 4: When no base model and no source domain data is
available, then DL+SB improves prediction performance over DL+VB, however,
DL+RSB has to be viewed with care, as its positive effect inverts for LT ≥ 12min.
We argue that LS = 2min and LT = 2min yields a good trade-off between prediction
quality and acquisition time. At this level DL+RSB outperforms DL+VB and it has
also a slightly better 95th percentile then DL+FSB, however this effect is negligible.
Together with the results of Exp 3 we can reason that both DL+RSB and TL+RSB,
in general, have problems with large LT because the randomization of the bridge
makes the learning task harder, when the pool of possible bridges is large. This
means, that first, DL+FSB is the best option when no source domain data is available,
as it significantly outperforms the other two options DL+VB and DL+RSB. And
second, TL+RSB is unsuitable for large LT .
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8.5.2 General Discussion

Comparing the results of all experiments TL+RFSB yields the best over all perfor-
mance. Especially at LS = 2min and LT = 2min, TL+RFSB provides the best
balance of efficiency and performance. If fine-tuning is not possible, FSB still greatly
improves prediction performance, almost as much as TL alone. An advantage of
all FSB configurations and TL+RFSB is that it also works with extremely few data.
That is not the case with the RSB configurations that need a minimum pool size of
training samples to chose from as bridge. SB comes at no additional cost, in fact,
it reduces the prior acquisition time and at the same time improves the prediction
quality. So it can be recommended to use SB in all cases.

As expected, the data that was statistically analysed is not normally distributed,
because the error values are bound by zero. Of course, the Lilliefors test confirmed
that. A transformation of the data was not possible. Even after a log transform and
mean shift the distribution diverted from the Gaussian bell and did not pass the
Lilliefors test. Because the ANOVA is known to be robust against none-normal data
and the sample size was large the ANOVA was used for statistical analysis but was
supported by a one-way Kruskal-Wallis-Test, to confirm found effects.

A concern of the proposed method is that the out-of-plane resolution of the 3D
predictions is limited by the slice thickness and distance of the training samples.
However, it is easy to handle this. One must acquire more slice positions with thinner
slices and to keep the prior acquisition time unchanged, fewer slices per position
are taken. As an illustration, collecting 2 samples for every 1mm slice instead of
8 samples for each 4mm slice, improves the out-of-plane resolution from 4mm to
1mm while maintaining image quality and acquisition time.

8.5.3 Future Work

In future work it would be interesting to add new subjects with more slice positions
of thinner slices to the public data base to evaluate whether it is possible to increase
the out-of-plane resolution of the method without hampering the strength of it. Then
it should also be investigated, whether the samples for SB should also be used as
navigator-label pairs, when there are only 2 samples acquired per slice position. With
the updated database, another possible approach to explore would be to use training
samples for SB only at intervals of every 4mm. During training and inference, the
SB for the intermediate slices could be interpolated using the techniques proposed
by Karani et al. (2018) or Zhang et al. (2018). In future research, the most important
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findings of this chapter should be further evaluated using additional metrics like the
SSIM and TRE and cross-validation techniques. Finally, a very promising possibility
to investigate is to utilize SB for ensembling. Predicting the same slice position
multiple times, using different SB would serve two goals. First, the avarege of the
prediction could improve the prediction quality. Second, the standart deviation of
the predictions would serve as an uncertainty map. This map could be a valuable
secondary input to the intervention support system that relies on the 4D MRI data
or the derived 4D motion data. This can increase safety because the navigation
system can decide whether the movement information is reliable or not.

8.6 Conclusion

This chapter presented a new approach for utilizing training samples in the input
of the 4D MRI model, resulting in a significant improvement in prediction quality
and shortened acquisition time by reducing the complexity of the learning task and
eliminating the need for a prior 3D scan.
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Conclusion 9
Organ motion poses a challenge in image-guided interventions like radiation therapy,
biopsies or tumor ablation. The research field of time-resolved volumetric magnetic
resonance imaging or has evolved in the pursuit of solving this challenge. However,
for most interventional settings current techniques are falling short in providing a
integration of sufficient temporal and spatial resolution, large field of view, as well
as short acquisition and reconstruction times.

In this work a new data set for the development and testing of 4D MRI methods was
established and made publicly available and a new deep learning based framework
for the generation of 4D liver MRI was proposed. The framework is an end-to-end
trainable solution to the 4D MRI problem, achieving sub-second reconstruction
times. Further a transfer learning approach and the reusing of training samples
as transitive information bridges was proposed to reduce prior acquisition times
for training data and the improvement of prediction quality. Finally an ensemble
strategy was proposed to facilitate the generation of a uncertainty map giving insight
on the certainty of the prediction.

9.1 Contribution

To conclude this thesis we revisit the research gap that was set out in the introduction.
It can be summarized as the four following points:

1. There exists no 4D MRI method that combines the following characteristics:

a) Large FOV

b) High resolution

c) Real-time imaging

d) Time-resolved

e) Short prior acquisition time

f) High image quality
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2. There is no uncertainty estimation for 4D MRI

3. No public data set and common benchmark for development and comparison
of 4D MRI methods

Furthermore, the following research questions were defined in chapter 1 and ad-
dressed in chapters 6 to 8.

1. "Can deep learning methods be used to generate real-time 4D MRI with high
spatiotemporal resolution, base on a real-time 2D MRI sequence?"

2. "Can the training data requirement for the training of such a deep learning
based 4D MRI method be limited to below 3min, while achieving high predic-
tion quality?"

In the following the contribution of this thesis will be summarized and a tabular
comparison of the methods proposed in this thesis with the related work is given in
Tab. 9.1.

Public Data Set

A data set of 20 healthy subjects for the development and testing of 4D MRI methods
was created. The data set comprising 291GB of image and meta data, was made
publicly available to be used by fellow researchers. This addresses the problem
of no public data set and common benchmark. The dataset can be used for both
classical sorting based 4D MRI methods, using a variety of different image based
breathing surrogates as well as for fully deep learning based approaches.

Real-Time 4D MRI Framework

This thesis introduced a novel deep learning-based framework for 4D MRI that
addressed the first outlined problem. Specifically, the proposed framework is the
first to exhibit all of the five previously outlined characteristics. First, the framework
works with large FOV 2D MRI slices, sampled over the full width of the liver and
predicts a Large FOV comprising the entire liver. Second, the framework works with
high resolution 2D MRI slices and predicts high resolution dynamic 3D volumes.
Third, the framework is based entirely on deep learning. It tackles the entire task of
predicting a 3D volume from a single 2D MRI slice in a single network inference.
Because dedicated hardware can readily be used for inference, this is very fast
and works in sub-seconds, i.e., in real-time. Fourth, the framework reconstructs 3D
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volumes with respect to a time-resolved, physiological, multi-dimensional breathing
signal, i.e., the whole dynamic navigator sequence. Consequently, it can produce
time-resolved 4D æmri images capturing multiple distinct breathing cycles, rather
than averaging phases of a single cycle. Fifth, the framework suffices with little
subject specific training data, equivalent to 2min of acquisition time, hence facilitating
a short prior acquisition time. And lastly, the framework is able to carry the high
image detail of the 2D slices over to the 3D volumes and by that provides high image
quality. So research question 1 can be answered with yes. Because the framework
reconstructs 4D MRI with high resolution in real-time, based on 2D slices.

Demonstration of Framework Capabilities

Chapter 7 highlighted the versatility of the proposed framework, illustrating the
seamless integration with transfer learning and ensemble strategies. Chapter 8
added to this, by demonstrating an effective method for reusing training samples
within the framework, leading to enhanced prediction quality and decreased prior
acquisition time. The seamless integration of these strategies into the framework
addressed two of the method requirements. First, the use of transfer learning in
the framework is integral for reducing the prior acquisition time from 47min to 2min

to achieve short prior acquisition times. Second, the use of transfer learning and
reusing of training samples are central for the high image quality of the prediction.

Also the problem of uncertainty estimation was addressed by using an ensembling
strategy in the framework, facilitating the estimation of uncertainty of the prediction
on the image level. With that, research question 2 can be answered with yes,
because the framework is capable of generating high quality 4D MRI with only 2min

of training data per subject.
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TR P/R Matrix size Resolution
in mm3

Breath. cycle
smpl. vps Recon. time

in s/vol.
befAcq
in min

RMSE
median (95%)

P R P R -

Tokuda et al. (2008) no R 256x128x24 - - 5 - - - 18 -
Cai et al. (2011) no R 256x166 1.5x1.5x5 - 4 - - - - -
Hu et al. (2012) no P - - 10 - - - - - -
Yanle Hu et al. (2013) no R 250x176x32 1.5x1.5x5 - 4 - - - 3 -
Tryggestad et al. (2013) no R 175x190x9 2x2x5 - 10 - - - 13 -
Y. Liu et al. (2014) no R 256x166 2.5x2.5x5 - 10 - - - - -
Paganelli et al. (2015) no R 256x224x20 1.28x1.28x5 - 8 - - - 1.2 -
Deng et al. (2016) no R - - - 10 - - - 8 -
Han et al. (2017) no R 416x250x125 1.2x1.2x1.6 - 8 - - 75 5 -
Rank et al. (2017) no - 256x256x60 1.5x1.5x5 - 20 - - 22.5 0.7 -
Lindt et al. (2018) no R 138x208x30 2x2x5 - 10 - - 30 5 -
Harris et al. (2018) no P - 1.67x1.67x1.67 10 - - - - - -
Meschini et al. (2019) no R 256x224x20 1.28x1.28x5 - 8 - - 262 1.2 -
Kavaluus et al. (2020) no R - 1.33x1.33x3 - 8 - - - 15 -
Richter et al. (2020) no R 224x224x144 2.24x2.23x2.23 - 8 - - 11 10 6.51
Navest et al. (2020) no R - - - 10 - - - - -
Yang et al. (2020) no R - 1.67^1.67x5 - 10 - - - - -
Eldeniz et al. (2021) no R 318x318x96 1.13x1.13x3 - 10 - - 2.7 5 -
Keijnemans et al. (2022) no R 52x240x136 6.7x1.9x1.9 - 8 - - - 3 -
Li et al. (2022) - - 256x256x25 1.37x1.37x4 - - - - - - -
Wachinger et al. (2012) no R - - - - - - - - -
M. v. Siebenthal et al. (2007) yes R 192x192x25 1.8x1.8x4 - 36 - 5 73 60 -
Tanner et al. (2014) yes R 224x224x53 1.3x1.3x5 - 36 - 4.4 - 10 -
Celicanin et al. (2015) yes R 120x128 1.87x1.87x6 - 20 - 3.33 - - -
Zhang et al. (2018) yes R - 1.33x1.33x5 - 36 - 2.4 36.5 30 10.23 (13.74)
Karani et al. (2018) yes R - 1.33x1.33x5 - 36 - 2.4 - 20 4.09 (6.81)
Romaguera et al. (2019) yes R - 1.7x1.7x3 - 46 - 7.5 - 28 -
Qiu et al. (2019) yes R 256x256x53 1.34x1.56x4 - - - 1.6 - - -
Yuan et al. (2019) yes R 128x128x56 2.7x2.7x4 - 9.78 - 1.63 20 0.33 -
TU (Ch. 5) yes R 140x176x47 1.82x1.82x4 - 36 - 6 27 60 -
DL Framework (Ch. 6) yes P/R 209x128x128 1.8x1.8x1.8 10.5 36 1.75 6 0.57 6 0.29 (0.45)
TL (Ch. 7) yes P/R 209x128x128 1.8x1.8x1.8 10.5 36 1.75 6 0.57 3 0.31 (0.47)
TL+RFSB (Ch. 8) yes P/R 50x128x128 4x1.8x1.8 10.5 36 1.75 6 0.57 2 0.27 (0.48)

Tab. 9.1: Comparison of the methods proposed in this thesis with the related work regarding whether its time-resolved (TR), whether reconstruction
is done pro-/retrospectively (P/R), matrix size, voxel resolution, how many phases of a breathing cycle can be resolved (breath. cycle
smpl.) based on a 6 s breathing cycle, volumes per second (vps) in pro- and retrospective reconstruction (P/R), prior acquisition time
(befAcq), reconstruction time, and RMSE. Values taken from respective publications. Best values bold.
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9.2 Limitations

9.2.1 Technical Limitations

3D Relationships

The proposed 4D MRI framework employs a 2D network, which limits its ability to fully
comprehend the 3D relationships between navigator and data slices. As the distance
between a data slice and the navigator increases, the 3D relationships weaken,
resulting in poorer reconstruction quality. To address this issue, one potential
approach is to divide the volume into distance ranges and train a separate network
for each range. This would reinforce knowledge of 3D relationships across larger
distances. We anticipate that an ensemble of such networks would significantly
improve quality with a fixed level of training data or maintain consistent quality with
less training data. Alternatively, a 3D architecture like the 3D U-Net (Çiçek et al.,
2016) instead of a 2D one might make it easier to learn the 3D spatial relations of
the liver motion. In that case, the training task might also be reformulated to directly
predict the 3D motion field, which could be beneficial for use in radiation therapy or
intervention assistance systems.

Model Re-Use

Although the application of transfer learning strategies, diminishes the required
amount of training data within the framework, it is still a separate model trained for
each subject. Data of more different subjects and patients is needed to to explore
the feasibility of employing a single model that strongly and sufficiently generalizes
across observed subjects.

Basic Deep Learning Methods

In the presented work a prove of concept is shown. Basic architectures, like the UNet
and normal convolutional layers as well as basic deep learning methods, like fine
tuning and transfer learning were utilized to show a solution to a complex problem,
i.e., 4D æmri reconstruction. In future work the utilization of more advanced tech-
niques should be investigated. This includes exploring state-of-the-art architectures,
leveraging advanced optimization algorithms, incorporating attention mechanisms,
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and exploring novel regularization techniques. By embracing these advanced meth-
ods, the method could achieve even more accurate and robust results. In the case
of retrospective use of the presented framework, it would be interesting to virtually
increase the amount of training data by incorporating navigator interpolation (Karani
et al., 2018; Zhang et al., 2018) , and data interpolation (Tanner et al., 2014) to
double the temporal resolution to 83ms to increase the prediction quality. It would
also be interesting to investigate the use of coordConv layers (R. Liu et al., 2018),
which artificially introduce positional context to each convolution, in place of normal
convolutions to improve prediction quality. This seems very promising because the
spatial component of the learning task is dominant.

9.2.2 Methodological Limitations

Compatibility with other Organs

It’s important to note that the presented method has not yet been tested on other
organs, which are a place of interventions and subject to breathing motion, like the
lung. While the current focus has been on demonstrating feasibility and efficacy in
the context of the liver, future investigations should involve extending the data basis
to encompass diverse anatomical structures such as the lungs and other organs.
This expansion will be crucial for validating the generalizability and applicability of
the approach across a broader range of imaging guided interventions.

Small Data Basis and Biases

It’s important to acknowledge the limitations regarding subject selection underlining
the presented work. The subjects included in the dataset are not be representative
of the global population, as they predominantly consist of healthy individuals from
European descent in their 20s and 30s, with a limited representation of women. This
skewed sample population raises concerns about the potential presence of biases
within the model or framework. It is imperative to investigate whether the trained
model exhibits biases related to factors such as race, gender, or other demographic
characteristics.

For instance, it’s known that liver shape can vary among different ethnic groups, with
Europeans having distinct liver shapes compared to Asians. Therefore, applying
the proposed method to individuals from diverse ethnic backgrounds may result in
varying degrees of quality degradation, highlighting the importance of assessing the
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robustness and generalizability of the model across different populations. Also the
data set used in this work contains only healthy subjects. New studies are needed
to conclude how well the 4D MRI models generalize to patient data from image
guided liver interventions and other clinical settings.

To mitigate these concerns, continuous fine-tuning of the model with each new
subject and intervention will be necessary. This iterative refinement process will
help address potential biases and improve the model’s adaptability to a wider range
of demographic and anatomical variations. However, thorough investigation and
validation are essential to ensure the reliability and fairness of the model across
diverse populations.

Ground Truth

As described in previous chapters, ground truth data is only available for a single
slice position within each predicted volume. Albeit different slices for different
volumes, in total encompassing the full liver. Still, for a single predicted volume,
there is always just one slice for which the prediction error can be measured. This
limitation is inherent to the problem itself. If it were possible to acquire ground truth
of the full liver for a specific breathing state within 200ms the problem of 4D MRI
would be solved already. Consequently, the evaluation metrics are performed on a
slice level and further primarily encompass the entire image rather than focusing
solely on the liver region. While this approach might bias metrics towards larger
regions within the image, it provides insights into the model’s ability to capture and
reconstruct anatomical structures beyond the liver, which is valuable for assessing its
generalizability and robustness. However, it’s worth noting that evaluating the entire
image may obscure the specific performance of the model within the liver region.
Thus, future investigations may consider refining the evaluation metrics to focus
specifically on liver-related metrics, e.g., using automatic liver segmentation to asses
metrics only within the liver, for a more nuanced assessment of the model’s efficacy.
Despite these limitations, the current evaluation approach provides valuable insights
into the model’s performance and lays the groundwork for further refinement and
optimization in future research endeavors.

Quantitative Comparison

In this thesis, a quantitative comparison was conducted with several other works.
However, it was limited to metrics reported in the respective papers. While this

9.2 Limitations 165



comparison provides valuable insights, it’s crucial to recognize that the metrics
used for comparison may vary across different studies, which can influence the
comprehensiveness of the evaluation. Only one method from the literature was
reimplemented and tested within the same test setup as the proposed method in
this work.

Furthermore, it’s important to consider that the prediction time score is dependent of
the hardware used for evaluation, even though the experiments were conducted on
the same hardware throughout the study. While maintaining hardware consistency
ensures reliability within the study, it’s essential to recognize that the prediction time
may vary across different hardware configurations of other studies.

Moreover, enhancing the evaluation process by incorporating additional metrics
and employing cross-validation techniques can further improve the accuracy and
reliability of the results. For example, evaluating performance using metrics beyond
those reported in the literature can provide a more comprehensive understanding of
the framework’s capabilities.

9.2.3 Medical Limitations

The medical limitations regard mainly the clinical transfer that has not yet been
done. It is divided into three aspects. First, the clinical workflow, second, the
clinical-technical limitations, and lastly the clinical evaluation.

Clinical Workflow

Workflow: The workflow outlined in this thesis remains in a prototypical research
state and has not yet been tailored for potential end-users, lacking consideration for
aspects such as clinical workflow or user experience. The setup of the required MRI
sequences on the MRI machine remains a task for experts. It requires reading the
papers that this thesis is based on and involves significant complexity, particularly
with Siemens MRI machines where each slice position must be adjusted separately.
Additionally, the mental workload associated with this setup process has yet to been
investigated in the future and needs to be addressed by streamlining it.
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Pipeline: Moreover, the framework currently has no continuous pipeline in place.
Pre-acquisition tasks, such as setting up sequences and selecting navigator posi-
tions, as well as post-acquisition tasks like transferring MR images to the training
machine and initiating model finetuning with new subject data, are not seamlessly
integrated. Similarly, prior to and during interventions, processes such as detecting
the correct navigator slice position and transferring interventional images to the
model for automatic inference are not streamlined. Furthermore, there is a lack of
direct visualization tools for radiologists and a lack of an interface to assistance
systems that want to make use of the real-time information about the breathing
motion. This lack of a continuous pipeline could be addressed in the future using
existing interfaces like Access-I. Also, in the case of assistance systems, part of the
user experience has to be addressed by the assistance system itself.

Finally, there has been no systematic survey conducted on various current interven-
tional workflows, and it’s possible that some workflows may struggle to integrate
this framework effectively. Appropriate studies still need to be carried out.

Clinical-Technical Limitations

From a clinical-technical perspective, several limitations merit consideration.

Needle Insertion: The impact of needle insertion has not been investigated within
the scope of this work. This omission raises questions about the robustness and
efficacy of the proposed method in scenarios involving needle insertion, which is
a common aspect of many medical interventions. To address this concern, one
could investigate the possibility of angulated navigator slices that always contain the
needle, By incorporating data from the needle into the navigator slice, the model
could gain insights into the altered motion and deformation of the organ caused by
the needle insertion. It’s important to note that integrating such data into the training
database would be necessary to ensure the model’s ability to effectively learn and
adapt to these changes.

Vendor Compatibility: The framework has not been tested across all MRI ven-
dors. Variations in MRI machine specifications and software implementations may
introduce inconsistencies or limitations in the applicability of the method across
different platforms. Thus, broader vendor compatibility testing is needed to ensure
the framework’s applicability and reliability across diverse MRI systems.
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Sequence Compatibility: Similarly, the framework has not been evaluated with
a wide range of interventional MRI sequences. Different sequences offer distinct
advantages and may be preferred for specific interventional scenarios. Assessing
the performance of the framework with various sequences is essential in future work
to ascertain its suitability and effectiveness across different imaging protocols.

Overall, these clinical-technical limitations underscore the need for further research
to address potential challenges and ensure the robustness and applicability of the
proposed method in clinical settings.

Clinical Evaluation

Data Privacy Concerns: The potential implications of data privacy have not yet
been fully addressed. Given the sensitive nature of medical data, it is essential
to implement robust data privacy measures to protect patient confidentiality and
comply with different national regulatory requirements. Failure to address data
privacy concerns could hinder the adoption of the proposed method in clinical
settings and undermine patient trust.

Clinical Validation: While initial validation studies have been conducted, further
clinical validation involving collaboration with medical experts and real interventional
scenarios is imperative. This will provide valuable insights into the method’s clinical
utility, safety, and effectiveness in real-world settings.

Addressing these clinical considerations is essential to ensure the successful trans-
lation of the proposed method from research to clinical practice. By prioritizing data
privacy, engaging medical experts in the validation process, and conducting rigorous
clinical evaluations, researchers can establish the method’s credibility, foster trust
among healthcare professionals, and ultimately enhance patient care outcomes.

9.3 Future Work

Overall, a multidisciplinary approach that combines clinical expertise, technical
innovation, and regulatory compliance is essential to advance the method and
facilitate its translation from research to clinical practice.
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9.3.1 Further Technical Development

Continued technical development is necessary to enhance the method’s perfor-
mance, scalability, and robustness. This will involve optimizing hardware and
software integration and refining the deep learning methods, such as other trans-
fer learning techniques, ensemble methods, or attention mechanisms. As well as
investigating other slice orientations to follow a potential needle with the navigator.

9.3.2 Clinical Validation and Integration

Conducting comprehensive clinical validation studies involving medical experts and
real interventional scenarios is essential. This would involve testing the method in
diverse clinical settings to assess its efficacy, safety, and usability. Integration into
existing clinical workflows and systems would also need to be explored to ensure
seamless adoption and integration into routine clinical practice.

According to our medical partners, the next step in a clinical research scenario
would be expanding our method to simulate the breathing motion of planning data
from patients. This adaptation has the potential to revolutionize treatment planning
in various medical disciplines, particularly in radiation therapy and image-guided
interventions. Simulating patient-specific breathing motion would enable clinicians
to anticipate and account for respiratory motion during treatment planning, leading
to more precise and effective treatment delivery. For example, in radiation ther-
apy, accurately modeling breathing motion can help optimize treatment plans to
minimize radiation exposure to healthy tissues while maximizing dose delivery to
target areas. Similarly, in image-guided interventions, simulating patient-specific
breathing patterns can enhance the path planning by accounting for organ motion
and deformation and help the radiologist mentally prepare for the patient’s specific
breathing movement patterns.

9.3.3 Data Privacy and Regulatory Compliance

Addressing data privacy concerns and ensuring compliance with regulatory require-
ments is crucial and needs to be done in the future, implementing robust data privacy
measures and protocols to protect patient confidentiality and comply with regulatory
standards.
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