
Prototype Based Clustering in

High-Dimensional Feature Spaces

DISSERTATION

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.–Ing.)

angenommen durch die Fakultät für Informatik

der Otto–von–Guericke–Universität Magdeburg

von Dipl. Inform. Roland Winkler

geb. am 19.07.1982 in Bernburg

Gutachter

Prof. Dr. habil. Rudolf Kruse

Prof. Dr. habil. Frank Klawonn

P.D. Dr. habil. Alexander Hinneburg

Promotionskolloquium:

Magdeburg, den 18.06.2015

P R O T O T Y P E B A S E D C L U S T E R I N G I N
H I G H - D I M E N S I O N A L F E AT U R E S PA C E S

roland winkler

D I S S E RTAT I O N

Fakultät für Informatik
Otto–von–Guericke–Universität Magdeburg

Magdeburg, 11.12.2015

A B S T R A C T

Clustering algorithms have many applications in high-dimensional
feature spaces: group detection in astronomical spectral data, remote
sensing for city planing, aircraft movement patterns analysis, text
mining and group detection in social networks among many others.
The mathematical background and practical use of clustering algo-
rithms is currently not well understood if the feature space has more
than 20 dimensions.

In my thesis, I study the ’curse of dimensionality’ in terms of dis-
tance concentration. I show that this effect can be described using
the pairwise covariances of the marginal distribution functions that
model the data. Furthermore, I compare 10 prototype based cluster-
ing algorithms using 800, 000 clustering results of artificial data sets.
I investigate how and why clustering algorithms are effected by the
number of features. Using the clustering results, I also review how
well 5 of the most commonly used cluster quality indices estimate
the true cluster quality.

Z U S A M M E N FA S S U N G

Clusteralgorithmen in hochdimensionalen Merkmalsräumen können
vielseitig eingesetzt werden: zum Beispiel zur Gruppenerkennung in
astronomischen Spektren, Analyse von Bodenbeschaffenheiten, für
die Erkennung von Flugzeugbewegungsmustern, zur Textanalyse und
zur Gruppenerkennung in sozialen Netzwerken. Wenn die Anzahl
der Dimensionen 20 überschreitet, sind jedoch die mathematischen
Hintergründe und praktische Anwendung von Clusteralgorithmen
nur sehr wenig erforscht.

In dieser Arbeit untersuche ich den ”Fluch der Dimensionen” mit-
tels dem Begriff der Distanzkonzentration. Ich zeige, dass dieser Ef-
fekt im Datenmodell mittels der paarweisen Kovarianzkoeffizienten
der Randverteilungen beschrieben werden kann. Zusätzlich verglei-
che ich 10 prototypbasierte Clusteralgorithmen mittels 800.000 Cluste-
rergebnissen von künstlich erzeugten Datensätzen. Ich erforsche, wie
und warum Clusteralgorithmen von der Anzahl der Merkmale beein-
flusst werden. Mit den Clusterergebnissen untersuche ich außerdem,
wie gut 5 der populärsten Clusterqualitätsmaße die tatsächliche Clus-
terqualität schätzen.

A C K N O W L E D G M E N T S

I want to thank my two supervisors, Prof. Rudolf Kruse and Prof.
Frank Klawonn for their continuous support. Thanks especially to
Prof. Frank Klawonn for his great advice, help and ideas and Prof.
Rudolf Kruse for pushing me where necessary. Big thanks goes to
Lars Stockmann, Lars Rösler and Annette Temme for sanity-checking
my thesis and overall improving its quality. Thanks to Thorsten Mühl-
hausen and the DLR for their hospitality where I spend half of my
thesis time and the AIP for hosting the data. Thanks goes to Christian
Borgelt for posing the problem: ’Many prototype-based algorithms
are not able to analyse high-dimensional data. But that problem is
largely ignored by the community.’ which got me interested in the
topic in the first place.

I cannot express enough gratitude for all the countless people that
unknowingly contributed to this work. That includes people in sci-
entific history, the countless software engineers that created LATEX and
its packages, Java for programming, GIT for revision control as well
as all the Organizations that created the open source software that I
used.

I want to thank my parents and friends for their long lasting un-
derstanding that my priorities were often not with them. Last but not
least, many thanks to Doreen Dittrich, my partner in life and love for
her unending patience, occasional kicks in the backside and for her
support when I spend my weekends with this thesis rather than with
her.

C O N T E N T S

1 introduction 1

1.1 Examples . 1

1.2 Data Mining . 7

1.3 Motivation, Thesis Questions and Outline 11

2 the curse of dimensionality 15

2.1 Distance Concentration 16

2.2 Conditions for Distance Concentration 19

2.3 Distance Functions . 26

2.4 Tests for Distance Concentration 28

2.5 Distribution Testing . 31

2.6 Noise, Overlapping Classes and Outliers 32

2.7 Clustering in High-Dimensional Spaces 37

3 prototype based clustering algorithms 41

3.1 Mathematical Framework 42

3.2 Hard c-Means . 48

3.3 Fuzzy c-Means . 50

3.4 FCM with Polynomial Fuzzifier Function 54

3.5 Rewarding Crisp Memberships FCM 60

3.6 Expectation Maximization 65

3.7 Applying Prototype based Clustering Algorithms . . . 73

4 benchmarks 83

4.1 Artificially Generated Data Sets 84

4.2 External Cluster Quality Measures 89

4.3 Internal Cluster Quality Measures 93

4.4 Benchmark Setup . 98

5 experimental results 103

5.1 Number of Dimensions and Clusters 103

5.2 Comparing Clustering Algorithms 119

5.3 Internal Cluster Quality Index Verification 123

6 conclusions and future research 137

6.1 Thesis Questions: Discussion 137

6.2 Critique and Future Research 141

6.3 Conclusions . 146

a artificially generated data sets 151

a.1 Spherical Normal Shaped Classes of Identical Size . . . 151

a.2 Spherical Normal Shaped Classes of Various Sizes . . . 152

contents

a.3 Distorted Classes Data Set 152

a.4 Corner Classes Data Set 163

b edmoal 167

b.1 Motivation for EDMOAL 167

b.2 The Basic Structure . 169

c data and results 171

c.1 Data Repository . 171

c.2 Data Files . 171

c.3 Result Files . 172

c.4 Score List . 174

d quality of clustering algorithms 177

d.1 Data Set Family D1 . 178

d.2 Data Set Family D2 . 180

d.3 Data Set Family D3 . 182

d.4 Data Set Family D4 . 184

e ranking capability of internal indices 187

e.1 Data Set Family D1 . 188

e.2 Data Set Family D2 . 189

e.3 Data Set Family D3 . 190

e.4 Data Set Family D4 . 191

f internal and the F1 index correlations 193

f.1 Data Set Family D1 . 194

f.2 Data Set Family D2 . 195

f.3 Data Set Family D3 . 196

f.4 Data Set Family D4 . 197

g internal vs . the F1 index plots 199

g.1 Plots for m = 3 and c = 5 200

g.2 Plots for m = 10 and c = 100 204

g.3 Plots for m = 15 and c = 20 208

g.4 Plots for m = 50 and c = 150 212

bibliography 217

L I S T O F F I G U R E S

Figure 1.1 Star spectra . 2

Figure 1.2 Aviris data example 3

Figure 1.3 S.O.D.A. 4

Figure 1.4 Microarray . 6

Figure 1.5 FCM Failure . 8

Figure 1.6 Chaos Dataset . 12

Figure 2.1 (fractional) p-norm circles 27

Figure 2.2 RV heatmap . 29

Figure 3.1 Membershiplevels example 46

Figure 3.2 Example Data Set 47

Figure 3.3 Membershiplevels HCM 49

Figure 3.4 Example Data Set 49

Figure 3.5 Membershiplevels FCM 51

Figure 3.6 Example Data Set 52

Figure 3.7 Membershiplevels NFCM 53

Figure 3.8 Membershiplevels PFCM 57

Figure 3.9 Example Data Set PFCM 58

Figure 3.10 Membershiplevels PNFCM 60

Figure 3.11 Membershiplevels RCFCM 62

Figure 3.12 Example Data Set RCFCM 64

Figure 3.13 Membershiplevels RCNFCM 65

Figure 3.14 Membershiplevels EMGMM 71

Figure 3.15 Example Data Set EMGMM 72

Figure 3.16 Parameter Series FCM 73

Figure 3.17 Parameter Series PFCM 74

Figure 3.18 Parameter Series RCFCM 75

Figure 3.19 Example Data Set with wrong noise distance . . 76

Figure 3.20 Variable noise distance 77

Figure 4.1 Examples of D1 and D2 85

Figure 4.2 Example classes of D3 87

Figure 5.1 Example of the F1 score plot 105

Figure 5.2 Simplex Dataset Visualization 107

Figure 5.3 HCM cluster quality on data set family D1. . . 108

Figure 5.4 FCM2 cluster quality on data set family D1. . . 109

Figure 5.5 FCM2 on the simplex dataset 110

Figure 5.6 FCMm on the simplex dataset 112

Figure 5.7 PFCM on the simplex dataset 114

Figure 5.8 PNFCM cluster quality on data set family D2. . 114

Figure 5.9 PNFCM cluster quality on data set family D3. . 115

Figure 5.10 RCFCM on the simplex dataset 116

Figure 5.11 RCNFCM cluster quality on data set family D2. 116

Figure 5.12 Membership values plots with circles 118

Figure 5.13 Best algorithms on D1 119

Figure 5.14 Best algorithms on D2 120

Figure 5.15 Best algorithms on D3 121

Figure 5.16 Best algorithms on D4 122

Figure 5.17 BS Index Ranking quality on D3 126

Figure 5.18 NPC to F1 ranking correlation on D2 130

Figure 5.19 DB and XB to F1 ranking correlation on D3 . . . 131

Figure 5.20 BS and NPC vs. F1 clustering quality on D2 . . 134

Figure 5.21 BS and NPC vs. F1 clustering quality on D3 . . 135

Figure A.1 Initialization of distorted classes 154

Figure A.2 Examples Unary Functions ULC 156

Figure A.3 Example of logistic distortion function 157

Figure A.4 Examples Binary Functions 158

Figure A.5 Series of distortions 159

Figure A.6 Scaled and shuffled distorted cluster 161

Figure A.7 Examples of distorted clusters 162

L I S T O F TA B L E S

Table 4.1 Individual parameters of the algorithms, used
in the benchmark. 100

Table 4.2 Setup combinations for data sets in the bench-
mark. 101

Table C.1 Columns of the scoreList data file. 175

1
I N T R O D U C T I O N

In the last 50 years, data processing has become more and more im-
portant. Computer systems have become more powerful while data
gathering tools like sensors have become cheaper and more abund-
ant. There is no reason to believe this trend could stop any time soon
which makes it very likely that future data sets contain many obser-
vations with many data sources. Data is accumulated and analysed
throughout our entire culture, in scientific experiments, in finance
and economy, in social networks and countless other areas, a few ex-
amples are presented in Section 1.1. Throughout this

work, I will share
some experiences
and topic related
thoughts in side
notes like this one.

Data mining is the process of transforming data into useful inform-
ation. Clustering, as part of data mining, is the search for patterns in
previously unsorted collections of data. It is not well understood how
the number of features/dimensions of a data set effects the process
of clustering. This work is dedicated to fill this gap, the focus hereby
lies on prototype based clustering algorithms.

A more detailed explanation of the title and a short introduction
into the topic is presented in Section 1.2. More subtopics that are
relevant for this work are approached using 4 thesis questions, stated
in Section 1.3, along with a motivation for each question.

1.1 examples

To understand the significance of this thesis, first consider the ex-
amples presented in this section. The examples range from phys-
ical applications in spectroscopy over text clustering to clustering in
graphs. Examples from economic systems like stock markets or cus-
tomer characterization are not directly addressed but the example of
clustering aircraft movements on an airport can be regarded as a rep-
resentative. All these examples have one thing in common: the data
objects of these data sets have many attributes and the data mining
task is to find groups of data objects that belong together. Even the
limited number of examples in this section show a large variety of
applications, hence give a glimpse in the diversity of the topic. There
are possibly hundreds of other applications for clustering high-di-

1

2 introduction

mensional data sets, many might not even be similar to the presented
examples.

1.1.1 Astronomical Spectral Data

Figure 1.1: Spectra of different types of stars1

In astronomy, spectra of stars or distant galaxies contain a lot of
information [Ostlie and Carroll, 2006]. By observing the spectrum of
a star, it is possible to estimate its chemical composition, its lateral
velocity and its rotational speed. The stars photosphere radiates light
with a distinct range of wavelength depending on its temperature.
The stars chromosphere above the photosphere does not radiate as
much light as the photosphere and is almost not visible. In contrary,
depending on the chemical composition of the chromosphere, parts
of the light is filtered out and becomes visible as dark lines in the
stars spectrum. In Figure 1.1, several different spectra of various stars
are presented.

It is expected that most stars are born in groups within large mo-
lecular clouds [Ostlie and Carroll, 2006]. Each molecular cloud has a
unique fingerprint of chemical elements that are roughly equally dis-
tributed through the entire cloud. Consequently, the stars, which are
born from a single molecular cloud, should have roughly the same
composition. In our galaxy, these star clusters dissolve (e.g. the stars
loose their gravitationally bound to the host cluster) over time and the
group structure of the stars is not apparent any more today. But the
stars, which are born together, should have similar chemical compos-
ition and some other galactic orbital parameters, even though their
location might diverge over time. Scientists hope this can indicate
which stars originally belonged together in order to reconstruct the
history of the milky way galaxy. This problem is essentially a cluster-

1 Source: http://en.wikipedia.org/wiki/File:Obafgkm_noao_big.jpg,
Date: 18.04.2004, NASA

http://en.wikipedia.org/wiki/File:Obafgkm_noao_big.jpg

1.1 examples 3

ing task in a feature space with many parameters, hence an example
for a high-dimensional clustering problem.

1.1.2 Hyper-spectral Remote Sensing

Figure 1.2: Aviris data example2

Hyper-spectral remote sensing is a process of taking pictures of the
earth surface from a satellite or airplane [Lee et al., 1999; Melgani
and Bruzzone, 2004] and observing a broad range of frequencies in
the electromagnetic spectrum. Analysing the data gives information
about the chemical composition of the surface and can be used for
example in mineralogy, biology, agriculture, or city planning. Applic-
ations are for example identifying the health status of a forest or the
type of crops in agricultural areas or its status of fertilisation. The
data is usually a 2-dimensional image with each pixel containing the
spectrum (instead of the usual RGB colors). Due to the spectrum, the
data is essentially a 3-dimensional cube with each voxel (3D-pixel
or volume pixel) holding a single luminosity value. For example the
AVIRIS project of NASA can produce images like shown in figure 1.2.
The third dimension in this figure represents the spectral data in each
pixel.

2 Courtesy NASA/JPL-Caltech, source: http://aviris.jpl.nasa.gov/data/image_

cube.html, Date: 13.02.2013

http://aviris.jpl.nasa.gov/data/image_cube.html
http://aviris.jpl.nasa.gov/data/image_cube.html

4 introduction

This type of 3-dimensional representation is usually not well suited
for data mining because the interpretation of the spectral lines is miss-
ing. Instead, the spectra are reduced to the relative strength of emis-
sion and absorption lines. The number of interesting lines can easily
reach 100, resulting in a high-dimensional clustering problem with
each pixel of the 2-dimensional image and its related spectral lines
interpreted as a data object. The additional area information of the
location of pixels creates a challenging complication to the distance
measurement between two data objects and increases the structural
complexity of the data set.

1.1.3 Aircraft Movement Patterns

Figure 1.3: 8 Clusters out of a total of 62 clusters in the S.O.D.A. dataset.
The clusters are colour coded and each data object is represen-
ted by a series of dots.

A closely related example to this work is the clustering of aircraft
movements at Frankfurt airport, published in [Winkler et al., 2013].
During my time at DLR, I worked on this data set in order to im-
prove the data analysis process in cooperation with Fraport AG. They
develop a tool called S.O.D.A. (Surveillance Data Analysis Tool) to
analyse the movement patterns of aircraft on the airfield of the Frank-
furt airport. At the time of analysis, the database contained approx-
imately 700, 000 aircraft tracks and the goal was to find groups of
aircraft that move on similar routes.

Due to the large number of tracks in the database and the complex-
ity of comparing two tracks directly, we decided to simplify the task
by transforming the data. A set of 457 reference points are defined
on the airport traffic ways. For each track, the closest distance to each
reference point is computed. To simplify the data further, the distance
values are transformed using a simple, trapezoid fuzzy rule [Zadeh,
1965]. Each fuzzified distance value corresponds to one feature in the
final data set, the resulting dataset is therefore 457-dimensional.

1.1 examples 5

Using a special variation of the fuzzy c-means clustering algorithm
[Winkler et al., 2013] (not presented in this work), a total of 62 clusters
were found. In Figure 1.3, 8 out of the 62 clusters are presented. To The algorithm

works well, but
it has significant
shortcomings in
terms of mathemat-
ical rigidity. This
algorithm fails my
current quality
requirements and
is therefore not
presented in this
work.

reduce the overlapping effect of fuzzy clustering for this figure, only
tracks with a membership value of at least 0.85 to their respective
cluster are shown. Without taking special care for the high number of
features, this result would not have been possible.

The cluster structure of this data set provides an additional insight
in movement patterns on the airport. This data can be used for ex-
ample to verify simulations of the airport. It might also be used to
estimate typical taxi times for aircraft which in turn reduces the un-
certainty of travel time predictions for customers.

1.1.4 Text Mining

Text clustering is used to automatically grouping documents, sort-
ing emails, finding and assigning keywords, automated text searches
for similar documents, and many more [Aggarwal and Zhai, 2012;
Hotho et al., 2001; Shafiei et al., 2007]. The most common approach
is, to assign a score for each word or phrase in a document. The
vector of scores of a document is then interpreted as a data object,
which lies within a very high-dimensional feature space. When limit-
ing a set of documents to a list of terms, a fixed-dimensional feature
space is generated, which can be used to cluster the documents ac-
cording to their location in the feature space. The dimensionality of
such text clustering feature spaces can be very high. Thousands of di-
mensions are common with the additional problem that most values
in a data object are 0 [Katz, 1987]. Most approaches use dimension
reduction techniques to approach the problem in a meaningful man-
ner, but even the reduced dimensionality can be high. Examples for
such data sets can be found in the UCI machine learning database,
for example the bag of words3 or the Reuter 50 504 data set.

1.1.5 Network Clustering

Clustering a graph structure to find groups of connected subgraphs
is not a typical application for clustering algorithms, as they mostly
operate on vector spaces. There is an ever increasing need of finding
groups in graphs. Typical algorithms to find cliques in graphs are too
restricted for many applications, for example in social networks [Ma
et al., 2010; Saha et al., 2011]. Also in biology and medical research,
groups are searched in graphs, for example for protein–protein in-
teractions [Asur et al., 2007]. These applications have in common that

3 http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

4 http://archive.ics.uci.edu/ml/datasets/Reuter_50_50

http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
http://archive.ics.uci.edu/ml/datasets/Reuter_50_50

6 introduction

the data sets are mapped to a very high-dimensional real vector space
prior to the data mining process. The dimension reduction techniques
generally increase the complexity of the group finding process, be-
cause it cannot be guaranteed that the group structure before and
after the data reduction process is identical. A clustering algorithm,
which can be applied directly on the high-dimensional projection of
the graph data, can avoid this problem provided the algorithm is able
to find clusters in that high-dimensional space.

1.1.6 Microarray Data

Figure 1.4: A small part of a micro-array.

The huge successes of microarrays in biology [Ness, 2006] resulted
in a large afford to analyse data, which has more dimensions than
data objects. An example of a microarray is presented in Figure 1.4,
see also [Lashkari et al., 1997]. Each spot in the figure corresponds to
one type of molecule (e.g. a gene) and is interpreted as a feature of
the data set. Since it is easier to prepare molecules of the same origin
than to acquire samples (or patients), the number of features often
exceeds the number of data objects in microarray data sets. In this
thesis however, it is assumed that a data set has much more (ideally
several magnitudes more) data objects than features, even though the
number of features is high. Therefore, the contents of this work are
generally of limited value to microarray data mining.

1.2 data mining 7

1.2 data mining

The science of data mining is concerned with the question: how to
find knowledge within data, see [Frawley et al., 1992]. But more data
does not automatically lead to more knowledge. Counter-intuitively,
extracting knowledge from data can become more complex and dif-
ficult if data is more abundant because the data complexity may rise
with the available data. There are basically two ways the amount of
data can become large: by a huge number of observations and by
storing more values per observation. Each observation is represen-
ted by a data object, which mathematically is a tuple or vector ~x of
m attributes, which are usually called features or dimensions in this
work. The number of dimensions m specifies the number of features
of a data set or likewise the number of attributes/parameters of each
data object. The mathematical environment for the data is referred to
as feature space. A data set X is in this work limited to a finite subset
of an m-dimensional real vector space: X ⊂ Rm. The problems con-
nected to data sets with many features/dimensions are investigated
within this work.

1.2.1 Prototype based Clustering

It is assumed that a data set consists of multiple disjoint subsets
(classes) of data objects. Likewise, it is assumed that the classes are
generated from independent processes and it is not known which
data object belongs to which class. Clustering is the process of par-
titioning data objects into disjoint subsets, called clusters, in such a
way, that the clusters can be associated with the classes of the data
set [Jain et al., 1999]. In other words, the data set has an inherent and
hidden structure, determined by the classes. Clustering is the task
of finding that structure. Please note, that the term class refers to a During writing

this theses, in
many occasions I
needed a way to
distinguish classes
from clusters. This
specific distinction
is not shared within
the clustering/classi-
fication community.
Many authors
use the two terms
synonymously or
make no distinction.

property of the data set while the term cluster refers to the result of
a clustering algorithm, but both are partitions of the same data set.
Ideally, the clusters and classes of a data set are identical. As will be
seen later however, this is often not the case.

There are many approaches to clustering [Fayyad et al., 1996], pro-
totype based clustering (see Chapter 3) is one of them. A prototype
of a cluster can be seen as a representative of all data objects within
this cluster. It can also be associated with the centre of the cluster.
An example for a prototype based clustering algorithm, applied to
an artificial data set is presented on the left-hand side in Figure 1.5.
In this example, a 2-dimensional data set with 3 classes is clustered
by the fuzzy c-means clustering algorithm (see Section 3.3). The pro-
totypes are represented as black outlined circles and the association
of data objects to their clusters are colour coded. The ’tails’ of the
prototype represent the trajectory the prototypes took from their (ran-

8 introduction

dom) starting position until their final position, they visualise the pro-
gress of the clustering process. The concentric height-lines represent
the strength of cluster association, which are at levels of 0.9, 0.8, 0.7,
0.6 and 0.5. Please note, that the 0.5 cluster association height-lines
between two neighbouring clusters do not touch due to the residual
influence of the third cluster. In this example, the classes (groups of
data objects) are well represented by the clusters, visualised by the
colour assignments.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.5: A 2-dimensional example data set with 3 classes/clusters (left)
and a 2-dimensional projection of a 50-dimensional data set with
100 classes/clusters (right), both clustered with the standard
fuzzy c-means clustering algorithm, see Section 3.3.

1.2.2 The influence of Dimensions

The data set in the example on the left-hand side of Figure 1.5 has
only 2 features/dimensions. In reality, the number of dimensions
m can be high, 10 or more are very common, see for example the
data sets in the USI mashine learning repository [Bache and Lichman,
2013]. What exactly high means depends on the application (examples
are presented in the next section) or on the data mining (i.e. cluster-
ing) algorithm. From personal experience, data sets with 5 or lessThis problem is

similar to: How
many trees make a
forest? How many
grains of sand are

required to form
a heap? It is not
possible to draw
a crisp line here.

features are usually not regarded as high-dimensional, while data
sets with 100 and more features certainly can be regarded as high-di-
mensional. The notion is somewhat fuzzy in between, for example 20
dimensions is in the grey area and for some algorithms 20 dimensions
is already a problem, for others it is not as indicated by the results in
Chapter 5. Generally, the number of dimensions m can be regarded
as high (and the vector space Rm as high-dimensional feature space)
if the number of features m has a significant influence on the data
mining procedure.

A high number of features can cause unexpected problems, loosely
called the ’curse of dimensionality’ [Bellman, 2003]. On the right-

1.2 data mining 9

hand side in Figure 1.5 a 2-dimensional projection of a data set with
50 dimensions and 100 classes is presented. The data set is generated When I observed

this effect for the
first time, I was
convinced there is a
bug in the software.
But that was not the
case, this effect is
real.

using similar rules as in the left-hand side example and it is again
clustered with the fuzzy c-means clustering algorithm. When extra-
polating from the 2-dimensional example, the clustering algorithm
should work, but apparently, something is wrong. All prototypes run
from their randomly defined starting position into the centre of mass
of the data set. As a consequence, all clusters become identical and
share the entire data set equally. None of the clusters in this example
can be associated with any of the classes in the data set, the clustering
result is useless. This work is dedicated to explain this and similar ef-
fects and to analyse the influence of the number of dimensions m on
the process of clustering, specifically for prototype based clustering
algorithms.

1.2.3 Dimension Reduction

When dealing with high-dimensional data, the first idea is often to
reduce the number of dimensions. In this work however, dimension
reduction is not further considered. The explanation for this decision
is presented in this subsection.

It is possible that the data objects of an m-dimensional data set
are located in a lower < m-dimensional manifold. If all data objects
of the data set are located in this lower dimensional manifold, the
true (lower) dimensionality of the data is called intrinsic dimension-
ality [Silva and Tenenbaum, 2002]. For example, the data could lie
on the surface of a m-dimensional hyper-sphere, which is m− 1 di-
mensional, one dimension lower than the embedding m-dimensional
feature space. The general approach of dealing with lower intrinsic
dimensionality is to use dimension reduction approaches in order to
reduce the complexity of the data set.

Dimension reduction can be done in parallel to clustering, see for
example [Belkin and Niyogi, 2001; Chakrabarti and Mehrotra, 2000].
These procedures however are very complex and out of scope of this
work.

Alternatively, the number of dimensions can be reduced prior to
performing the clustering algorithm, hence simplifying the clustering
process. Feature selection is (as the name states) a collection of meth-
ods to select features (i.e. dimensions or attributes), which seem to
be relevant for later analysis, see for example [Guyon, 2006]. Feature
selection is typically based on metrics to specify the amount of (mar-
ginal) information of the individual features, the most common might
be the Kullback-Leibler information gain [Kullback and Leibler, 1951].
Alternatively feature subset selection can be used, see [Hall, 1999],
where not individual features but subsets of features are rated and
the best subset is selected. Feature selection is used for example if

10 introduction

there are many more features than data objects, see the microarray
data example in Section 1.1.6.

Linear feature extraction is more general than feature selection be-
cause it finds arbitrarily oriented linear subspaces of the original fea-
ture space and projects the data to these linear subspaces. The most
popular algorithm for linear feature extraction is principle compon-
ent analysis (PCA) [Jolliffe, 2002; Pearson, 1901]. Another approach is
independent component analysis (ICA) [Comon, 1994], where it is as-
sumed that the data is a mixture of several, statistically independent
sources.

Finally, non-linear feature extraction generalises linear feature ex-
traction further by projecting the data into general lower-dimensional
manifolds. The problem however is, that general manifolds can be
much more complex than linear subspaces. Some of the algorithms
for non-linear feature extraction are based on other data mining ideas
like self organizing maps [Kohonen, 1982, 2001]. The kernel trick can
also be used to transform the PCA method into a non linear trans-
formation: kernel PCA [Schölkopf et al., 1997]. Isomap [Tenenbaum
et al., 2000] is jet another algorithm capable of mapping the data into
a non linear manifold. A starting point for more research on the topic
of feature extraction can be found in [Guyon, 2003, 2006].

Another algorithms of dimension reduction is based on non-linear
point mapping, proposed by [Sammon, 1969]. In this case, the data
is directly transformed into a lower dimensional representation by
minimizing the difference in their pairwise distance before and after
the projection.

There are many arguments pro- and contra dimension reduction. If
it is known in advance, that the data is located in a lower dimensional
manifold and the shape of the manifold is known in advance, it is usu-
ally a good idea to use an appropriate dimension reduction algorithm.
If this is not the case, dimension reduction is not recommended. It is
generally not possible to guarantee that the cluster structure of the
data is identical in the lower dimensional representation of the data
as it is in the original data set. Of course, this is the goal of all dimen-
sion reduction algorithms, but it is usually not known how well this
goal is achieved and there is currently no good way to test it. There-
fore, it is not possible to know that dimension reduction does more
good in terms of complexity reduction than bad in terms of obscur-
ing the cluster structure within the data set. Also, it might happen
that the dimensionally reduced data is still high-dimensional. Due to
these arguments, dimension reduction is not further considered for
this work.

1.3 motivation, thesis questions and outline 11

1.3 motivation, thesis questions and outline

As demonstrated in Section 1.1, the search for patterns (clustering)
in a data set has a wide variety of applications. It is foreseeable that
many more of this type of applications become relevant in the near
future. This makes the topic of this thesis ever more significant.

Prototype based clustering is one of the (if not the) most widely
used strategy for finding clusters in data sets and the process is very
well understood if the number of dimensions is small. As already
presented in Figure 1.5 however, standard prototype clustering algo-
rithms do not always work as intended in high-dimensional feature
spaces. Even worse, the problems connected to the dimensionality are
poorly understood on the algorithmic level. There is some mathemat-
ical ground-work on this subject, most notably in [Beyer et al., 1999;
Durrant and Kabán, 2008; Kabán, 2011], but that is not sufficient to
understand the effects properly. It is also not enough to engineer a
well working clustering algorithm.

This topic is summarised by thesis question Q1: Every scientific
journey starts with
a question. Or in
this case, four
of them. Going
on this journey
without a question
or goal of some kind
is like pushing a
well cooked noodle
through space.

Q1 What is the ’curse of dimensionality’ in the framework of clus-
tering and under which circumstances does it occur?

Due to its importance for the remaining part of this thesis, Q1 is
approached first, in Chapter 2.

In low-dimensional feature spaces, it is often possible to just plot
the data set in a suitable format and guestimate the class structure.
This is possible because a projection on two dimensions often holds
enough information to make a visual inspection of the data. In high-
dimensional feature spaces, this is only possible in very simple cases,
as presented in Figure 1.5 for example. In contrast, consider Figure 1.6
which is the 2-dimensional projection of a data set with 15 dimensions
and 10 classes but with a more complex shape of the classes. As a
human, it is impossible to eyeball the result. Even when colour coded,
it is impossible to see the class structure well because there are no 2-
dimensional projections that would clearly separate the classes.

In such a circumstance, it is very difficult to select a clustering algo-
rithm, which would likely work on the data set. The second and third
thesis questions are dedicated to that problem:

Q2 Which prototype based clustering algorithms can be used for
high-dimensional data sets?

Q3 How is the clustering quality influenced by the number of di-
mensions and the number of classes/clusters?

Thesis question Q2 demands a comparison of clustering algorithms
and an expectation of their performance. The other thesis question,
Q3 goes deeper and demands an explanation of why some algo-
rithms perform well and others do not. Such questions are best ap-
proached using a benchmark. In many papers, individual algorithms

12 introduction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.6: A 2-dimensional projection of a 15-dimensional data set with
10 classes. The pure data set is presented on the left-hand side
and the same data set with colour-coded class information is
presented on the right-hand side. This is an example of a data
set from data set family D3, see Section 4.1.3.

are applied on a few, simple artificial data sets or on well known data
sets such as the Iris data set [Anderson, 1935], the Wine data set or
the Blood type data set [Bache and Lichman, 2013]. None of these is
enough to answer thesis questions Q2 and Q3 because they are too
selective. A large survey, ranging over many numbers of dimensions
and several different types of data sets with different properties are
necessary, which is exactly what is done within this thesis.

A range of prototype based clustering algorithms are defined and
their application is discussed in Chapter 3. The algorithms are tested
and compared by using a Benchmark, which is presented in Chapter
4. The benchmark is fairly complex and is designed to answer not
only Q2 and Q3 but also Q4 (see below). Four different families of
procedurally generated data sets (described in detail in Appendix A)
with a variety of dimensions and classes are used. Also, Chapter 4

contains a description of how to measure the quality of a clustering
result, hence allowing a quantitative comparison of algorithms based
on the knowledge of the correct result. In total, 800 ′000 clustering
processes are performed, which gives a large enough foundation to
compare the algorithms on a statistically significant level.

To answer the third thesis question, Q3, a deeper understanding
about the behaviour of clustering algorithms in high-dimensional fea-
ture spaces is required. It is especially interesting to understand the
transition between a successful clustering in low-dimensional feature
spaces and an unsuccessful clustering in high-dimensional feature
spaces. The hope is that this knowledge leads to the design of cluster-
ing algorithms that are more resistant to the number of dimensions
(and classes/clusters), especially for algorithms that are not discussed
in this work. The number of classes within a data set is similarly rel-

1.3 motivation, thesis questions and outline 13

evant as the number of dimensions (see [Winkler et al., 2011a]), which
is why the number of classes is part of this question.

There is one more topic that needs to be addressed for clustering
in high-dimensional feature spaces. It is expressed by asking the last
thesis question:

Q4 Are internal cluster quality index measures useful to assess the
quality of clustering results in high-dimensional feature spaces?

Q4 demands an answer to the problem: How to determine the
quality of a clustering result if the true class structure is unknown?
Besides finding a good clustering algorithm, this is maybe the most
pressing problem for clustering high-dimensional feature spaces. It
is not intuitively clear, how the quality of a clustering result can be
estimated without the knowledge of the correct result. As already
demonstrated in Figure 1.6, a visual inspection might not always give
a good indication.

Usually, internal cluster quality indices are used to estimate the
quality of a clustering result. In this work, 5 of the most commonly
used indices are reviewed to answer thesis question Q4, they are
presented in Chapter 4. The large number of clustering results, which
are generated to answer thesis questions Q2 and Q3, provide the ne-
cessary data to review internal cluster quality indices on a statistical
level. Therefore, Q4 is approached simultaneously with Q2 and Q3
by using the same benchmark. Since the true class structure of the
data sets is always known, it is possible to judge the performance of
the internal cluster quality indices.

In Chapter 5, the results of the benchmarks are presented and the
answers to the three practical thesis questions Q2, Q3 and Q4 are fi-
nally given. The huge amount of data, which is gathered throughout
the benchmarks cannot be completely presented in Chapter 5. In Ap-
pendices D, E and F a complete overview of all relevant benchmark
results are provided in graphical form.

All relevant software that was developed for this work is available
online as open source project EDMOAL, a brief overview is available
in Appendix B. It contains all algorithms which were required to gen-
erate the results within this work. Likewise, all data sets, results and
other information to reproduce the results within this work are avail-
able online, see Appendix C.

The answers to all thesis questions are summarized in Chapter 6.
This last chapter also contains a critical discussion about the decisions,
which had a significant influence on this work. Furthermore, open
questions are addressed and points for further research are presented.

14 introduction

2
T H E C U R S E O F D I M E N S I O N A L I T Y

The term curse of dimensionality was coined by Richard E. Bellman in
1957 on his topic of dynamic programming [Bellman, 2003]. The com- For practical reas-

ons, the reference
is pointing to the
reprinted version of
2003.

putational problems at that time (1957) were significantly different to
the ones we face now, but the problem of gaining knowledge from
high-dimensional data sets is still as significant as in 1957. The curse
of dimensionality has many interpretations but might be summed up
with: ’Some algorithms that work well on low-dimensional data do
not produce useful results when applied on high-dimensional data’.
That description however does not give any useful insight into the
problem, clearly a mathematical formulation is required. Within this
chapter, such a description is presented.

For computational problems that involve the distances to reference
points (e.g. least squares methods), prototypes (e.g. clustering or clas-
sification) or query points (e.g. k-nearest neighbours), the curse of
dimensionality is best expressed in terms of distance concentration,
which is defined in the first section in this chapter. In Section 2.2,
some necessary and sufficient conditions for distance concentration
under the assumption of using a p-norm induced distance function
are presented. The thesis question Q1 is also discussed in that section.
Following the restriction on the p-norm induced family of distance
functions, a short discussion on the choice of distance functions is
presented in Section 2.3. For a given data set, it is not immediately
clear how strong distance concentration might effect any algorithm if
the distribution function of the data is unknown. The gradient des-
cend/ascend method can be used to get estimates on distance con-
centration, which is presented in Section 2.4.

In the last three sections in this chapter, aspects that are more gen-
erally connected to high-dimensional feature spaces are considered.
One of the major problems of high-dimensional feature spaces is, that
it is hard to test if an assumed distribution of the data is plausible,
which is presented in more detail in Section 2.5. Subsequently, the
influence of noise and outliers as well as missing values in high-di-
mensional feature spaces is discussed in Section 2.6.

Most topics discussed in this chapter have a wide range of applic-
ation, much wider than clustering. To note the importance of dis-

15

16 the curse of dimensionality

tance concentration for prototype based clustering in particular, this
chapter closes with a short discussion on this topic in Section 2.7.

2.1 distance concentration

The first to describe the curse of dimensionality by a model of distance
concentration were [Beyer et al., 1999]. In the paper, they analyse prob-
lems for a k-NN (k-nearest neighbour) search in high-dimensional
data. Although the mathematical description is for k-NN searches,Actually, [Beyer

et al., 1999] did
not use the term

’distance concentra-
tion’, instead they
used ’stability’ or

’meaningfulness’ of
distances. I prefer
the term ’distance
concentration’ as

it describes the
effect more precisely.

it is also valid for describing problems of clustering algorithms be-
cause the relevant factor are the distances to a query point (proto-
type). Most data mining algorithms require a finite dimensional fea-
ture space, which is why the theory presented below is restricted to
m-dimensional vector spaces Rm.

2.1.1 Definition of Distance Concentration

Let m ∈ N denote the dimensionality or the number of features of a
data set, a random variable or any other dimension dependent object.
Let d : Rm×Rm → R be a distance function on the vector space Rm,
that satisfies the properties ∀~x,~y,~z ∈ Rm:

d(~x,~y) = d(~y,~x) (symmetry)

d(~x,~y) = 0⇔ ~x = ~y (identity of indiscernibles)

d(~x,~y) > 0 (non-negativity)

d(~x,~y) = d(~x+~z,~y+~z) (translation invariance)

(2.1)

If d additionally satisfies

d(~x,~z) 6 d(~x,~y) + d(~y,~z) (triangle inequality) (2.2)

it is called a metric and can be induced by norms ‖ · ‖: d(~x,~y) =

‖~y−~x‖. Distance functions induced by ’fractional norms’, as they areAnnoyingly,
’fractional norms’

are not norms
because they do not
satisfy the triangle

inequality. I still go
with the generally

accepted term here.

often discussed in conjunctions with distance concentration and the
curse of dimensionality (see Section 2.3.2), are valid candidates for
d that do not satisfy the triangle inequality hence are not a metric.
The first to describe the following definition of distance concentration

The symbol R>0
refers to all positive

real values exclud-
ing 0, likewise:
R>0 refers to

all positive real
values including 0.

were again Beyer et al. [Beyer et al., 1999], with a slight difference:
they introduced a parameter p ∈ R>0 as an exponent to d. Due to
construction of Properties (2.1): if d is a distance function, also dp is
a distance function. Therefore, it is not necessary to keep noting the
exponent p in all equations as Beyer et al. did in their paper.

Nevertheless, the parameter p can be helpful if d is induced by a
p-norm:

d(~x,~y) = (

m∑

k=1

(|xk − yk|
p))

1
p (2.3)

2.1 distance concentration 17

because the outer exponent vanishes for dp, which is used in Section
2.2.2. Mathematically, a

set cannot hold two
identical objects.
Since all data
objects in a data
set have a unique
number assigned
to them, they are
not identical w.r.t.
the definition of
a set. The ID is
however never used
in any calculation or
equation.

The set of distances from a query point ~q ∈ Rm to all data objects
of a data set X ⊂ Rm is defined as

D~q(X) = {d(~q,~xj) | ~xj ∈ X} (2.4)

The empirical mean (sample expectation) of distances is then defined
as

Ê(D~q(X)) =
1

n

n∑

j=1

d(~q,~xj)

where n = |X| is the number of data objects in data set X. The empir-
ical variance of distances is defined as

V̂(D~q(X)) =
1

n− 1

n∑

j=1

(d(~q,~xj) − Ê(D~q(X)))
2

From that, the empirical relative variance of distances is defined as:

R̂V
(
D~q(X)

)
=
V̂
(
D~q(X)

)
Ê2
(
D~q(X)

) (2.5)

Analogously, the relative variance (without the term ’empirical’) is
defined for random variables. Let the distributions G and H be joint Note the different

font for random
variables X and
data sets X. The
difference is subtle,
but since the two
mathematical
objects stand at
the same place in
similar equations,
the similarity is
intentional.

cumulative distribution functions in Rm. Furthermore, let ~X and ~q
be m-dimensional random variables that are G- and H-distributed re-
spectively: ~X ∼ G and ~q ∼ H; also let ~X and ~q be independent. Then
D~q(~X) = d(~X,~q) is a random variable of distances. Note that the nota-
tion here is analogously chosen to the case of samples above, but
D~q(~X) is a random variable in R instead of a set of distances. The
mean E as well as the variance V of D~q(~X) can be directly specified
using the distributions G and H. The relative variance is defined ana-
logously to the empirical relative variance:

RV
(

D~q(~X)
)
=
V
(

D~q(~X)
)

E2
(

D~q(~X)
) (2.6)

Also, it is assumed that expectation and variance exist for any distri-
bution discussed in this chapter. Other authors

often require
H(m) = G(m),
but that restriction
is not necessary for
the below developed
theory.

Let G(m) and H(m) be sequences of m-dimensional probability dis-
tribution functions into Rm where the notation (m) specifies the
sequence element counter (increasing the dimensionality for each
element in the sequence by 1). Furthermore, let ~X(m) and ~q(m) be
sequences of independent m-dimensional random variables ~X(m) ∼

G(m) and ~q(m) ∼ H(m) and let d(m) : Rm ×Rm → R>0 be a sequence
of distance functions with the in (2.1) stated properties.

18 the curse of dimensionality

Distance concentration is said to occur, if and only if the relative
variance of distances becomes 0 for increasing dimensionality:

lim
m→∞

RV
(

Dp
~q(m)(~X

(m))
)
= lim
m→∞

V
(

Dp
~q(m)(~X(m))

)
E2
(

Dp
~q(m)(~X(m))

) = 0 (2.7)

Depending on the sequence of distributions G(m), H(m) and dis-
tance functions d(m), it can be very hard to calculate the sequence of
relative variances without simplifications or approximations. It mightOr maybe it is

not that hard for
a mathematician

with a much
higher skill than

me at solving this
type of problems.

be possible to calculate the relative variance for selected sequences of
probability distributions of ~X(m) easily, but the process is in general
very difficult.

2.1.2 Equivalence Theorems

In the past years, several equivalent expressions are found for equa-
tion (2.7). Actually, Beyer at al. described their results in form of Equa-
tion (2.8). The relative variance of distances is equivalent to the vari-
ance of relative distances:

V
(

D~q(~X)
)

E2
(

D~q(~X)
) =

E
(

D~q(~X)2
)
− E2

(
D~q(~X)

)
E2
(

D~q(~X)
)

=
E
(

D~q(~X)2
)

E2
(

D~q(~X)
) −

E
(

D~q(~X)
)

E
(

D~q(~X)
)
2

= E


 D~q(~X)

E
(

D~q(~X)
)
2
− E2

 D~q(~X)

E
(

D~q(~X)
)


= V

 D~q(~X)

E
(

D~q(~X)
)
 (2.8)

Rather than arguing with a sequence of single random variables, let
X(m) be a sequence of sets of m-dimensional random variables with
n elements each: X(m) = {~x(m)

1 , . . . ,~x(m)
n } on Rm. Let d(m)

min and d(m)
max beThe term ’almost

surely’ means, that
the probability that

the event occurs
is 1. This is only

important to exclude
pathological cases

of probability 0.

random variables that are defined as:

d(m)
min = min

~x(m)∈X(m)

(
D~q(m)(~x(m))

)
d(m)

max = max
~x(m)∈X(m)

(
D~q(m)(~x(m))

)
Distance concentration occurs if and only if the ratio of maximum
and minimum distances becomes 1 almost surely:

lim
m→∞

RV
(

D~q(m)(X(m))
)
= 0 ⇔ d(m)

max

d(m)
min

P→ 1 (2.9)

2.2 conditions for distance concentration 19

with d(m)
max

d(m)
min

P→ 1 being the short notation of the convergence in probabil-

ity: for all ε > 0, lim
m→∞

P

(∣∣∣∣d(m)
max

d(m)
min

− 1

∣∣∣∣ > ε) = 0. In other words, distance

concentration occurs if and only if the ratio of distances between the
furthest and nearest data object becomes 1. Note that this statement is
not equal to stating that the distances become equal! It might happen,
that the difference between dmax and dmin is constant or raises much
slower than both distances which approach infinity. However, if there
is no variation in relative distances, the relative difference between
the largest and smallest distance to ~q(m) becomes arbitrarily small. Of
course, the argumentation works in the other direction as well, if the
ratio between minimal and maximal distance to ~q(m) becomes arbit-
rarily close to 1, the variation of relative distances must be arbitrarily
small. In their original work [Beyer et al., 1999] described Equation
(2.9) only in the forward direction. Later [Durrant and Kabán, 2008]
published a converse theorem, reversing the implication hence creat-
ing an equivalence theorem.

Independently of Durrant et al., [Hsu and Chen, 2006, 2009] came
to the same converse theorem, even though they used a different ap-
proach for the proof. They also defined other equivalent theorems
which are now briefly addressed. With the continuous mapping the-
orem, the ratio of dmax and dmin can be reversed:

d(m)
max

d(m)
min

P→ 1 ⇔ d(m)
min

d(m)
max

P→ 1 (2.10)

Also for any pair of random variables ~x(m)
i and ~x(m)

j , ∀i, j ∈ N, 1 6
i 6= j 6 n, it holds for all m:

d(m)
max

d(m)
min

>
d(m)(~x(m)

i ,~q(m))

d(m)(~x(m)
j ,~q(m))

>
d(m)

min

d(m)
max

Since the fractional between d(m)
max and d(m)

min is a special case of each
pair of random variables, it holds:

d(m)
max

d(m)
min

P→ 1 ⇔ ∀i, j : d(m)(~x
(m)
i ,~q(m))

d(m)(~x
(m)
j ,~q(m))

P→ 1 (2.11)

2.2 conditions for distance concentration

The open question, under which circumstances distance concentra-
tion occurs, cannot be finally answered because the necessary and
sufficient conditions for distance concentration remain unknown for
arbitrary distance functions. But it is possible to evaluate the question
if the distance function is induced by a (fractional) p-norm, raised to
the power of p.

20 the curse of dimensionality

Let d be induced by a (fractional) p-norm and raised to the power
of p: ‖ · ‖pp, which means it has the form

d(~x,~y) = ‖~y−~x‖pp =

m∑

k=1

|~yk −~xk|
p (2.12)

The relevance of this choice becomes apparent in the next chapter
(see Chapter 3), as many prototype based clustering algorithms are
restricted to the squared euclidean distance, discussed also in Section
2.7. The restriction to ‖ · ‖pp induced distance functions is necessary
only for technical reasons, it is used to decompose the norm into its
dimensional components, which is heavily used within this section.

Let G and H be m-dimensional probability distributions and ~X ∼ G
and ~q ∼ H as well as ~Z = ~q − ~X be m-dimensional random variables.
Then D~q(~X) = d(~X,~q) = ‖~q − ~X‖pp = ‖~Z‖pp is also a random variable.
If ‖~Z‖pp is decomposed as defined in Equation (2.12), it holds

D~q(~X) = ‖~Z‖pp =

m∑

k=1

|~Zk|p (2.13)

where |~Zk|p are 1-dimensional random variables in R>0. In the fol-
lowing subsections, the here defined symbols are used to show the
occurrence of distance concentration, given further characteristics of
~X and ~q.

Due to rewriting the distance function, the relative variance is ex-
pressed in:

RV
(

D~q(~X)
)
= RV

(
‖~Z‖pp

)
=
V
(
‖~Z‖pp

)
E2
(
‖~Z‖pp

) (2.14)

and distance concentration occurs, if and only if:

lim
m→∞

RV
(
‖~Z(m)‖pp

)
= lim
m→∞

V
(
‖~Z(m)‖pp

)
E2
(
‖~Z(m)‖pp

) = 0 (2.15)

where the superscript (m) is again used to express sequences of ran-
dom variables with the dimensionality m indicating the index in the
sequence.

2.2.1 Independent and Identical Distributed Dimensions

In this first subsection on analysing the conditions for distance con-
centration, it is assumed that all dimensions are independent and
identically distributed. It is shown that under this conditions, dis-
tance concentration occurs whenever the number of dimensions goes
to infinity.

2.2 conditions for distance concentration 21

Let G and H be defined as above, such that ~X and ~q are inde-
pendent random vectors with statistically independent and identic-
ally distributed (i.i.d.) components: ~Xk ∼ G1 and ~qk ∼ H1. Since ~X
and ~q are m-dimensional random variables and all individual dimen-
sions are i.i.d. , all components ~Zk are i.i.d. random variables with
identical expectation µ and variance σ2. Then the expectation of the
normed dimensions µ|·| = E(|~Zk|p) are identical for all components of
~Z. Analogously, the variances of the normed dimensions are identical:
σ2
|·| = V(|

~Zk|p)

E(‖~Z‖pp) = E
(
m∑

k=1

|~Zk|p
)

=

m∑

k=1

E
(
|~Zk|p

)
= mµ|·| and

V(‖~Z‖pp) = V
(
m∑

k=1

|~Zk|p
)

=

m∑

k=1

V
(
|~Zk|p

)
= mσ2|·|

Inserting this into Equation (2.15) yields:

lim
m→∞

V
(
‖~Z(m)‖pp

)
E2
(
‖~Z(m)‖pp

) = lim
m→∞

mσ2

m2µ2
= 0

Therefore, whenever the dimensions are i.i.d. and the number of di-
mensions approaches infinity, the distances concentrate for any ‖ · ‖pp
(fractional-) norm induced distance function. This result is independ- Initially I used the

symbol F for what is
distribution G in the
text. Who thought
that ’F-distribution’
was a good name for
a specific probability
distribution? Next,
I shall define a very
specific ’~x-vector’,
then all algebra
books are screwed.

ent of the data distribution G, the query point distribution H as well
as the parameter p. In reality though, it is highly unlikely that data
sets consist of samples of i.i.d. dimensions.

2.2.2 Independent, Normalised Dimensions

François et al. [François et al., 2007] claim that they found a way to
prove that it is enough for the features to be independent, normalised
and centred in order to induce the concentration of distances with in-
creasing dimensionality. In their paper, they first prove the i.i.d. case
using the strong law of large numbers. Subsequently, they state that
a variation of the strong law of large numbers also hold if the data is
not identically distributed but normalised and centred (expectation
of the data generating random variable is 0 and its variance 1). How-
ever, the prove makes use of distinct values for the expectation of
all dimensions which does only exist in the i.i.d. case. They do this
assumption at the very beginning of their proof which is why I con-
sider it invalid (see Step 1, Section 5.1.1. in their paper). I give here
a prove to a similar problem, which uses the same arguments as the
i.i.d. case in the last subsection. The difference is, that assumptions
about V(|~Zk|p) and E(|~Zk|p) are formulated rather than V(~Zk) and
E(~Zk) as in the paper of François et al.

22 the curse of dimensionality

Let G and H be defined as above, such that ~X and ~q are random vec-
tors with independent (but not necessarily identical distributed) com-
ponents: ~Xk ∼ Gk and ~qk ∼ Hk. Furthermore, let the dimensions be
scaled such that V(|~Zk|p) = 1 and let E(|~Zk|p) > K for a K ∈ R>0. The
first condition ensures that all features are equally important when
applying a data mining algorithm and that the scale at which the
values are stored does not dominate the data mining process.

The second condition is rather technical to prevent pathological
cases like the following: Let ‖X‖11 =

∑m
k=1 |

~Xk| be a random variable
with P(~Xk = 0) = 1− (

√
k3 · (k3 − 1))−1, P(~Xk = k3) = (

√
k3(k3 −

1))−1. Then ~Xk = |~Xk|, V(|~Xk|) = 1 and E(|~Xk|) =
√
k3

k3−1
and the

expectation approaches 0 faster than 1
k . Therefore, with increasing

dimensionality, the relative variance increases (Equation 2.16 would
not approach 0). But the distribution is rather pointless from a data
mining perspective. In a sample of such distribution, all data objects
are either zero or outliers, hence it holds no valuable information that
could be mined. Therefore the property that ∃K ∈ R>0 so that ∀k 6
m ∈N : E(‖~Zk‖d) > K is no constraint for practical applications.

Following the same argument as before and decomposing the d-
norm into its components yields for all m:

E(‖~Z‖pp) = E
(
m∑

k=1

|~Zk|p
)

=

m∑

k=1

E
(
|~Zk|p

)
> m ·K and

V(‖~Z‖pp) = V
(
m∑

k=1

|~Zk|p
)

=

m∑

k=1

V
(
|~Zk|p

)
= m

Which, when inserted into Equation (2.15) yields:

lim
m→∞

V
(
‖~Z(m)‖pp

)
E2
(
‖~Z(m)‖pp

) 6 lim
m→∞

m

m2 ·K2 = 0 (2.16)

The result above shows, that the effect of distance concentration is
not induced by having identical distributions in all dimensions. Also,
even if the ratio between the variance and expectation in all dimen-
sions is optimal (the expectation is equal to K), the relative distance
approaches 0 with the number of dimensions increasing arbitrarily.

2.2.3 Dependent, Normalised Dimensions

For clustering applications, having independent components in the
data distribution holds no real value since data sets like this cannot
hold any interesting group structure. Relaxing the independence re-
quirement makes the statement much more useful, but it also com-
plicates the process of reasoning about the concentration of distances.
Let ~X and ~q be again m-dimensional random variables with features

2.2 conditions for distance concentration 23

~Xk ∼ Gk. Likewise, let ~qk ∼ Hk be random variables that are inde-
pendent to all ~Xk. The difference vector between ~X and ~q is again Only trivial clus-

tering problems can
arise if all dimen-
sions of the feature
space are samples of
independent random
distributions. From
the practical point of
view, this subsection
might contain
the first useful
(mathematical)
statement in this
chapter.

defined as ~Z = ~q − ~X and is also a random variable. Again, let the in-
dividual components of ~Z be scaled in such a way, that V(|~Zk|p) = 1

for all k 6 m and let there be a K ∈ R>0 so that E(|~Zk|p) > K.
This time, the random variables modelling the individual dimen-

sions are not independent and therefore, the variance V(‖~Z‖pp) cannot
be as easily decomposed as in the last subsections. Instead, the cov-
ariances of the individual dimensions have to be taken into account.

As before, the task is to analyse whether or not the relative variance
approaches 0 if the dimensionality approaches infinity, see Equation
(2.15). First, the variance term in the nominator is expressed in its
covariance form, using again the decomposition of the p-norm from
Equation (2.12).

V
(
‖~Z‖pp

)
= V

(
m∑

k=1

|~Zk|p
)

=

m∑

k=1

m∑

l=1

Cov(|~Zk|p, |~Zl|p)

The number of elements in the double sum increases quadratically
with the number of dimensions, so the average covariance σ2|·| can be
defined as:

σ2|·| =
1

m2

m∑

k=1

m∑

l=1

Cov(|~Zk|p, |~Zl|p) (2.17)

The interpretation of the average covariance requires a little thought
because negative covariance values can be present. Due to the normal-
ization V(|~Zk|p) = 1, the covariance values are equal to the pairwise
correlation coefficients:

Cor
(
|~Zk|p, |~Zl|p

)
=

Cov
(
|~Zk|p, |~Zl|p

)
√√√√V (|~Zk|p)︸ ︷︷ ︸

=1

·
√√√√V (|~Zl|p)︸ ︷︷ ︸

=1

= Cov
(
|~Zk|p, |~Zl|p

)
And therefore, the values of the individual covariances are within the
interval [−1, 1]. Also the average covariance σ2|·| is equal to the average
correlation of the dimensions. The question is, how can negative cov-
ariances (correlations) be interpreted? First it is important to realise,
that |~Zk|p are distance values. For the sake of the argument, let the
dimensions k and l have a covariance value / correlation coefficient
of −1: Cov(|~Zk|p, |~Zl|p) = −1. Then a large distance in dimension k
corresponds to a small distance in dimension l and vice versa. This
means the sum of both dimensions is constant: |~Zk|p+ |~Zl|p = const ∈
R>0 and they cannot contribute to the contrast in distance values. As

24 the curse of dimensionality

a consequence, the relative variance of all dimensions reduces the
more negative covariances are present. In this sense, the presence of
negative covariances reduces the relative variance of distances.

Similar to the average covariance, let the average expectation of all
dimensions be defined as:

µ|·| =
1

m

m∑

k=1

E
(
|~Zk|p

)
and since it is possible to exchange the sum and expectation even forThe distributive

property of the
expectation

over addition
originates from∫

f(x) + g(x)dx =∫
f(x)dx+

∫
g(x)dx

and should be
written in any

basic textbook about
probability theory. It

is not necessary
to consider the

German text
book [Irle, 2005].

dependent random variables [Irle, 2005], it holds:

E
(
‖~Z‖pp

)
= E

(
m∑

k=1

|~Zk|p
)

=

m∑

k=1

E
(
|~Zk|p

)
= m · µ|·| (2.18)

Due to construction, ∃K > 0 such that E(|~Zk|p) > K and therefore
m · µ|·| > m ·K.

Inserting Equation (2.18) and (2.17) into Equation (2.14) yields:

RV
(
‖~Z‖pp

)
=
V
(
‖~Z‖pp

)
E2
(
‖~Z‖pp

) =
m2σ2|·|
m2µ2|·|

=
σ2|·|
µ2|·|

6
σ2|·|
K2

(2.19)

And finally, the occurrence of distance concentration can be determ-
ined by inserting the last equation into (2.15):

lim
m→∞

RV
(
‖~Z(m)‖pp

)
= lim
m→∞

(σ
(m)
|·|)2

(µ
(m)
|·|)2

6 lim
m→∞

(σ
(m)
|·|)2

K2
(2.20)

This is a nice result. The reformulation of the equation provides in-
sight into the structure of the distance concentration that was hidden
before. Loosely speaking, the relative variance of distances depends
on the amount of pairwise covariance (correlation) of distances and
is scaled by the squared average expected distance of the individual
features.

Since the first part of Equation (2.20) is achieved with equivalent
transformation, it states a sufficient and necessary condition for dis-
tance concentration. So it would also fit into the list of equivalent
theorems in Section 2.1.2, however is limited to distance functions,
induced by (fractional) p-norms, raised to the power of p. Since K is
a constant, even a sufficient condition for distance concentration can
be stated:

lim
m→∞

(σ
(m)
|·|)2 = 0 =⇒ lim

m→∞
V(‖~Z(m)‖d)
E2(‖~Z(m)‖d)

= 0 (2.21)

Which simply states: if the average pairwise correlation approaches
0, also the relative variance approaches 0 and distance concentration
occurs.

2.2 conditions for distance concentration 25

This result is consistent with many publications on the subject, see
[Aggarwal et al., 2001; François et al., 2007; Hinneburg et al., 2000;
Kabán, 2013, 2012]. In all these publications, the respective authors
agree that distance concentration becomes an issue if the number of
irrelevant features is high. An irrelevant feature implies that its values
are independent to the underlying structure of the data set: it holds
no relevant information. That is a different way of stating, that the
pairwise covariance between the relevant and irrelevant features is
low or even 0. In particular, it means that irrelevant features reduce
the average pairwise covariance. By expressing irrelevant features as
a special case of low pairwise covariance of features (or dimensions),
the theory presented above can be regarded as generalization of the
notion of irrelevant features.

Hsu and Chen propose in [Hsu and Chen, 2006, 2009], to call a se-
quence of distance functions d(m) stable, if it does not lead to distance
concentration, independently of the sequence of distributions G(m). It
might well be, that there is no non-trivial sequence of distance func-
tions that satisfies Hsu and Chen’s definition. Hsu and Chens defin-
ition is also very different to the approach in this work since the oc-
currence of distance concentration depends on the correlation within
the data distribution. It is therefore not clear how the two different
ways of arguing about distance concentration relate to each other. In my opinion,

this approach of
combined data
distribution and
distance function
is the real step
forwards.

The approach of combining distance function and data distribu-
tion is an important difference to the publications, mentioned in the
last paragraphs. Within these papers, the data distributions and dis-
tance functions are treated as separate entities. This is not the case
for the description in this section, as the preconditions are stated for
the distributions of distances of data to a query point. In other words,
the preconditions are stated for a combination of distance function
and data/query distribution. As a result, the theory is more versatile
and can be easier expressed than stating preconditions for distance
functions and data distributions separately. Considering both entities
separately, does not yield much progress because there are always
corner cases where the choice of the norm voids general conclusions
on the data distribution and vice versa. Since the restriction

to ‖ · ‖pp induced
distance functions
is due to technical
reasons, I am sure
that a similar result
is true for arbitrary
distance functions.
I was not able to
prove that statement
though.

This result states that distance concentration of dependent features
only is subject to the pairwise interactions of distances of features. It is
enough to know the pairwise covariance in order to draw conclusions
about the entire high-dimensional distribution. As a consequence, it
is possible to limit distance concentration with the easy to calculate
pairwise correlation of distances. The drawback is that the result is
limited to distance functions that are induced by the family of ‖ · ‖pp
norms.

26 the curse of dimensionality

2.3 distance functions

So far, the influence of the choice of the distance function d on the
distance concentration effect was not considered. In the last section,
the theory is restricted to p-norm induced distance functions because
it is possible to decompose these norms, but the influence of the p
parameter is not analysed. This is done in the first subsection of this
section. The choice of the distance function is in general application
dependent and special distance functions to counter the influence of
distance concentration might not always be an option. Therefore, it
is hard to solve the distance concentration issue on the level of dis-
tance functions. It is still useful to consider the choice of the distance
function as a way to mitigate the influence of distance concentration.
In the next three subsections, strategies to mitigate the influence of
distance concentration are discussed.

2.3.1 The p in ‖ · ‖pp

The choice of using ‖ · ‖pp induced distance functions is well justified
since the family of p-norms is one of the most popular in literature
and practice. It is discussed in almost all papers on the topic of high-
dimensional feature spaces, see for example in [Aggarwal et al., 2001;
Beyer et al., 1999; Donoho, 2000; Durrant and Kabán, 2008; Hsu and
Chen, 2009; Kabán, 2011, 2012].

The parameter p controls the sensitivity of the distance function to
small differences within the individual dimensions. If the parameter
p is large (larger than 2) in ‖~x − ~y‖pp, the total distance between ~x

and ~y is dominated by the largest difference in the individual dimen-
sions: arg maxk |~xk − ~yk|. In the other extreme, p = 1 however, all
dimensions are equally important. Therefore, low values for p create
a stronger contrast in distance values than large values of p.

2.3.2 Fractional Distance Functions

For some applications, maybe even most, not all metric properties
might be necessary or even desirable for a distance function. Relax-
ing one or more of the metric properties might open up some freedom
to increase the resistance of the distance function w.r.t. the curse of
dimensionality. Fractional distance functions, that are distance func-
tions induced by fractional p-norms with 0 < p < 1 have been stud-
ied extensively, for example in [Aggarwal et al., 2001; François et al.,
2007; Kabán, 2013]. The advantage of fractional distances is, that they
value small differences in many dimensions higher than large differ-
ences in just a few dimensions. The effect is a better distance contrast
in high-dimensional feature spaces.

2.3 distance functions 27

p = 1
2

p = 1

p = 2

p = ∞

x

y

Figure 2.1: Several circles, as defined by (fractional) p-norm induced dis-
tance functions. All points on one circle are equally far away
from the centre, as defined by the respective distance function.

A circle is defined by the set of all points, that are equally distant to
a reference point or centre. The choice of the distance function thereby Sometimes, shapes

that do not look
like a circle still are
circles. Please con-
sider the definition
of a circle.

influence the shape of the circle. In Figure 2.1, several circles of a vari-
ety of (fractional) p-norm induced distance functions are presented.
Each line represents the set of points in a 2-dimensional plane that
are equally far away from the centre. The concave curvature of the
fractional distance line suggests, that small points that differ only a
little bit in two dimensions are considered equally far away as points
that differ only in one dimension. Hence, the contrast in distances is
increased for fractional norms if the number of dimensions is high.

Fractional distance functions do not satisfy the triangle inequality
(see Equation (2.2)). Let ~x = (0.5, 0), ~y = (0, 0) and ~z = (0, 0.5) and d
be a fractional norm with p < 1. Then the triangle inequality d(~x,~z) 6
d(~x,~y) + d(~y,~z) is violated because

d(~x,~z) = (0.5p︸︷︷︸
>0.5

+ 0.5p︸︷︷︸
>0.5

)
1
p > 1

d(~x,~y) + d(~y,~z) = (0.5p)
1
p + (0.5p)

1
p = 1

So if an algorithm does not rely on that property, fractional norms
can be used to reduce the influence of distance concentration. Agger-
wal et al. argument in [Aggarwal et al., 2001], that fractional distance
functions should behave better than other p-norm induced distance
functions in high-dimensional applications. However, François et al.
showed in [François et al., 2007] some counter examples where this
is not always the case. Also the theory, presented in Section 2.2.3 is
valid for any value of p, including fractional distances. Therefore, frac-

28 the curse of dimensionality

tional distances cannot be regarded as a general solution to distance
concentration, they can however mitigate the effect.

2.3.3 Rescaling to Increase Distance Value Contrasts

Not only fractional p-norm distance functions are a way of counter-
ing the effect of distance concentration. François et al. discussed in
[François et al., 2007] alternative distance functions that are specific-
ally designed to decrease the influence of distance concentration. Also
Jayaram et al. [Jayaram and Klawonn, 2012] discussed if it is possible
to prevent distance concentration by design of a distance function.
They argue only on the m-dimensional unit cube [0, 1]m, and con-
clude that all distance measures that do not produce infinite distance
values on that restricted space are subject to distance concentration.
However, they do not provide a rigorous proof for that claim. They
also discuss which properties of a distance function can be relaxed to
prevent distance concentration.

2.4 tests for distance concentration

In the last sections, distance concentration is described for a series
of dimension dependent probability distributions G(m), H(m) and dis-
tance functions d(m). This is of course not a realistic scenario because
the distribution of data sets is usually unknown and even worse, the
class of distributions might also be unknown. So the question arises,If the distributions

were known, it
would not be
necessary to

analyse the data.

how to characterise distance concentration, given a data set (sample)
of unknown distribution and a distance function d.

Let X = {~x1, . . . ,~xn} ⊂ Rm be a data set and its data objects are
independently drawn samples from an unknown data distribution G:
~xi ∼ G, i= 1...n. Furthermore, let d : Rm ×Rm → R>0 be a distance
function, as defined at the beginning of this chapter, Equation (2.1).
The question is, how to test the data set X and the distance function
d for distance concentration, given that d and X are no sequences?

The choice of the distance function is usually based upon the ap-
plication and data analysing algorithm that is to be performed. After
such a choice is made, a test for distance concentration can provide
knowledge if the distance function suffers from distance concentra-
tion on this specific data set.

For a sequence of random variables with dimensionality approach-
ing infinity, the Equations (2.7), (2.9), (2.10) and (2.11) are equival-
ent, but not equivalently well suited for testing a real, given data set
of finite dimensionality for a given data mining problem. Equations
(2.9) and (2.10) are very sensitive to local noise and Equation (2.11)
requires to compute the fraction of distances to each pair of data ob-
jects, which is computationally expensive and can only be performed

2.4 tests for distance concentration 29

for small data sets. The relative variance in Equation (2.7) and also
(2.15) on the other hand can be computed in O(n ·m) and are only
sensitive to extreme outliers (local noise is no problem) which can
be detected in advance. In this case, Equation (2.7) is best suited in
order to describe the effects of distance concentration on a given pair
of data set and distance function.

The value of R̂V
(
D
p
~q(X)

)
is larger than 0 for any data set X. A

data mining algorithm that is used to perform an analysis on X by
using d might require a certain minimal relative variance (contrast in
distances) in order to function properly. Let 0 < εA ∈ R be that value
for algorithm A. Some algorithms like Fuzzy c-Means might need
a much higher contrast in distances than others (see the following
chapters).

It is useful to know if the maximal relative variance in distances
εmax is below the specified threshold εA, with

εmax = max
~q∈Rm

R̂V
(
D
p
~q(X)

)
(2.22)

Or in words: if εmax < εA, the distance function d can be safely re-
garded as not useful for analysing data set X with algorithm A and
vice versa. In case the idea of

creating a clustering
algorithm using
the sample relative
variance comes up:
these images show
that this is not a
very promising ap-
proach. The highest
sample relative
variance values
are usually not
achieved near the
centre of the classes.
The situation might
change if weighted
mean and variance
are used.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2.2: Heat map of the sample relative variance of three 2-dimensional
data sets, probed by ~q. Red represents a high relative variance
while green shows a low relative variance.

To prove that distance concentration is not an issue for a given
algorithm is a little bit more useful, but also a little more complicated.
In this case, a lower bound on the minimal relative variance in dis-
tances is necessary. But there is immediately a problem. The value of
R̂V
(
D
p
~q(X)

)
can become arbitrarily small by moving ~q very far away

from all data objects. To get a useful result from a test on the min-
imal relative variance, it is necessary to specify the set of valid values
for ~q: Q ⊂ Rm. That means, if the data analysis algorithm needs a
guaranteed minimal variance in distances on Q:

εmin = min
~q∈Q

R̂V
(
D
p
~q(X)

)
(2.23)

Again in words: if εmin > εA, the combination of distance function d
and algorithm A can be regarded as stable on X.

30 the curse of dimensionality

Calculating either values of the last two equations might be very
expensive (in computer hardware or computation time) because the
geometrical structure of the data set X determines the result just
as much as the distance function d and the data set might be very
large. See Figure 2.2 for three different, 2-dimensional examples. The
sample relative variance is colour coded for any location ~q in the fea-
ture space [0, 1]2 with red showing a high empirical relative variance
and green a low empirical relative variance respectively. The structure
of the data set determines the structure of the relative variance in a
non-trivial way. Non-linear optimisation algorithms are feasible here,
for example gradient ascending methods. To effectively find the local
maxima of relative variance, particle swarm optimization algorithms
[Kennedy and Eberhart, 1995] might be a good option because of the
high number of local minima and maxima. As they mainly require
the gradient as input, it might be helpful to give the derivative of the
gradient w.r.t. the query point ~q.

R̂V
(
D~q(X)

)
=
V̂
(
D~q(X)

)
Ê2
(
D~q(X)

) =
Ê
(
D~q(X)

2
)

Ê2
(
D~q(X)

) − 1
Deriving this equation w.r.t. the query point ~q yields

∇~qR̂V
(
D~q(X)

)
= ∇~q

Ê
(
D~q(X)

2
)

Ê2
(
D~q(X)

) = n · ∇~q

n∑
j=1

(
d(~q,~xj)

)2
(
n∑
j=1

d(~q,~xj)

)2
Within my exper-
iments, presented

in Chapters 4
and 5, I actually

used the gradient
optimization method
to calculate minimal

and maximal
levels of distance

concentration. The
computation process

was however very
slow because the

objective function
was too flat and

the algorithm did
not converge fast

enough to be useful.

= n

n∑
j=1

∇~q

(
d(~q,~xj)

)2
S22

− 2n

S1 ·
(
∇~q

n∑
j=1

d(~q,~xj)

)
S32

=
2n

S22

 n∑

j=1

d(~q,~xj)∇~qd(~q,~xj) −
S1
S2
·
n∑

j=1

∇~qd(~q,~xj)


with S1 =

n∑
j=1

(
d(~q,~xj)

)2 and S2 =
n∑
j=1

d(~q,~xj). It should be noted,

that gradient methods are difficult to apply to evaluate relative vari-
ance in high-dimensional feature spaces because the objective func-
tion is very flat and the gradient is very weak throughout almost
the entire feature space. This implies that the parameter optimiza-
tion step size must be chosen wisely, which is not easy. Maybe, more
complex non-linear optimization algorithms need to be considered to
solve this problem but a comprehensive study in this direction is out
of scope of this work.

2.5 distribution testing 31

2.5 distribution testing

Let again, X be a sample (data set) of unknown distribution and let
G be a guess (null-hypothesis), that X is G distributed, called null-
distribution. To estimate how plausible this hypothesis is, a statistical
test has to be performed. The typical approach [Irle, 2005] is, to com- Again, any basic

book on statistics
will do.

pute a test statistic from X and the probability that the test statistic is
observed. The null-hypothesis is accepted if the computed probability
is higher than a pre-defined significance value. In this case, it is as-
sumed that the data is a sample of G and that the null-hypothesis is in-
deed correct. That is however no prove that X is indeed G-distributed,
it just states that it is very likely to be the case.

A standard approach for calculating a test statistic (see [Irle, 2005])
is to calculate an empirical density function of the data. This approach
works well if the number of dimensions is low, even if the class of
distributions is unknown. The class of distribution refers to the (para- The empirical

density function
can be visualised
using a histogram.

metrised) equation that describes the distribution.
Hinneburg and Keim [Hinneburg and Keim, 1999] argue, it is gen-

erally infeasible to generate an empirical density function in high di-
mensional feature spaces and therefore the standard hypothesis test
cannot be performed. To generate an empirical density function, the
feature space has to be split into an m-dimensional grid and the data
objects populate the cells of this grid. Such a grid necessarily requires
at least one split in each dimension and with m dimensions, there
are at least 2m cells. The number of cells increases exponentially with
m and to provide a sufficient population of the cells, the number of
data objects n needs to increase exponentially w.r.t. m as well. This is
usually not the case, hence the statement of Hinneburg and Keim. My impression of

distribution testing
is, that it requires a
lot of experience as
well as try and error.
Due to the lack of a
direct visualization
of high-dimensional
data, that is not
easy.

The situation changes somewhat, if the class of distributions is
already known and sufficiently simple. In this case, only the para-
meters of the distribution have to be estimated. For example the para-
meters of a single normal distribution with arbitrary covariance mat-
rix can be simple enough. However, if the data is sampled from a
mixture of normal distributions, the situation is already much more
complex and the test might not be possible, even though the class of
distributions is known.

It might also be possible to do hypothesis testing that is not based
on the empirical density function. For example by using easy to cal-
culate statistical properties of the data set like the expectation and
the variance. If more external information about the hypothetical dis-
tribution function is available, it might be possible to test for pieces
of this information. However, that is not a general approach and de-
pends very much on the available additional information.

The inability to test if an assumed distribution actually represents
the data in a high-dimensional feature space can have quite severe
implications for clustering. Imagine a clustering algorithm is applied

32 the curse of dimensionality

on a data set and the result suggests some partitioning of the data
set into smaller subsets. Each of the subsets can be represented by
a simple probability distribution and the distribution of the original
data set can be constructed by a combination of these individual dis-
tributions. If there are no obvious errors in the clustering result and
the recombined distribution function cannot be tested, there is not
much that can be done to verify the result. Simply trusting the clus-
tering result requires a great level of trust in the algorithm which be
ill advised as presented in Section 5.3.2.

2.6 noise , overlapping classes and outliers

Noise is a severe problem for data mining in general and also in
clustering. The term ’noise’ refers to a wide variety of effects thatI use a very generic

definition for the
term ’noise’ that is
not shared among
all authors in data

analysis. Since,
there is no general

agreed definition of
noise, I use one that

fits the contents
of this work.

mask the interesting properties of data. Some aspects of noise are
discussed in the framework of high-dimensional feature spaces in
the subsections below.

Since the topic of this work is clustering, the most common types
of noise in clustering applications and the implications in high-di-
mensional data sets are discussed in this section. A comprehensive
discussion on the topic of noise is out of scope of this work and only
a short discussion is presented.

2.6.1 Imprecise Data

Please note, that
the clustering

community does
not agree on

the definition of
the terms below.

Depending on the
author, various

definitions for the
same term as well as
various terms for the

same definition
can be found.

Imprecise data, as for example defined in [Borgelt, 2000] in Chapter
2.2 means, that the value of a measurement is not precisely known.
This can be expressed for example by stating a validity range or more
generally, the knowledge that the true value of a measurement must
be within a set of possible values. For example all kinds of physical
properties like length, energy levels, brightness, velocities, temper-
ature and many others which are only accurately measured within
some errors that cannot be prevented.

Let the true value of some multidimensional property be ~y ∈ Rm

and the imprecise data object ~X be subject to some random error ~ZI
with ~X = ~y+ ~ZI. ~X and ~ZI are modelled as m-dimensional random
variables while ~y is defined as a real vector. The dimensions of the
random error vector ~ZI are modelled to be independent because the
measurement error of one feature does not influence the measure-
ment error of another feature. Let d be a distance function for the
m-dimensional feature space, than a sample of ~X contains an impre-
cision of magnitude z = d(~y, ~X). With increasing dimensionality, the
magnitude of the error z is also increasing depending on the distance
function d.

2.6 noise , overlapping classes and outliers 33

Let there be several different data generating processes that define
the classes of a data set (which is the typical case for clustering). Let
furthermore the data of one class have a typical value ~yi ∈ Rm but the
measurements of this value are subject to random errors due to impre-
cise measurements. To ensure a meaningful analysis (clustering), the
pairwise distances between the classes ~yi must increase faster than
the magnitude of the error due to imprecision.

In some applications like gene expression data (see Example 1.1.6),
this is not the case which causes great trouble in the data mining
procedure. If the number of dimensions m is very high and only a
subset of the features are relevant for the data mining process, the
irrelevant features increase the imprecision within the data while they
do not contribute to the pairwise distinction of the classes. Since the
individual dimensions of ~ZI are uncorrelated, this problem is covered
by the theoretical discussion in Section 2.2.2.

2.6.2 Class Distribution

The natural distribution of a class within a data set can generate sim-
ilar effects to imprecise data. The uncertainty does not originate from
the measuring method, but from the source that is measured. For
example in the famous Iris data set [Anderson, 1935; Bache and Lich-
man, 2013], the sepal length and width does not (only) vary due to an
imprecise measuring method, but due to different properties of the
plants. The distribution of data is not a ’noise’ in the ordinary sense,
but it has similar (damaging) effects during data analysis, because
it spreads out the data objects and causes classes to overlap. The
difference to imprecise measurements is, that the class distribution
might have correlated features, while the error vector of imprecision
is considered to have independent features which implies that they
are uncorrelated. This is also the

reason why data
analysis in general
and clustering in
particular is interest-
ing in the first place.
Without (sufficient)
variation in the data,
clustering would be
next to trivial and
boring.

Let the idealised representation of a class within a data set be ~y ∈
Rm and the observed data object be modelled by an m-dimensional
random variable ~X in Rm be subjective to some random offset from ~y:
~ZL with ~X = ~y+ ~ZL. Again, ~X and ~ZL are modelled as random vari-
ables while ~y is defined as a real vector, but this time, the individual
features of ~ZL might be correlated.

The class distribution is no problem if the distances between data
objects of the same class are much smaller than the distances of data
objects that belong to different classes. This is in particular important
for clustering and classification applications. If the classes mix too
strongly, it is hard to distinguish between them, hence it is not pos-
sible to decide which data object belongs to which class. Due to the
lack of independence between the dimensions of ~ZL, this particular
source of variation is covered by the theory presented in Section 2.2.3.

34 the curse of dimensionality

Fuzzy clustering methods were developed to model the fact that it
might not be possible to recover the assignment of data objects in the
overlapping regions, see the first publications on clustering: [Bezdek,
1981; Dunn, 1973; Ruspini, 1969]. The fuzzy model is used to assign
data objects partly to multiple clusters. Since overlapping classes are
very common, all but one algorithm that is presented in the next
chapter utilise fuzzy assignment of data objects.

2.6.3 Background Noise

In a data set, background noise manifests itself as data objects, that
are present in the data set but are unrelated to the given problem
[Dave, 1991]. For example, if the task is to cluster papers by their sci-
entific field and within the set of documents, also non-scientific art-
icles are present. Another example would be to cluster aircraft tracks
on an airfield to find the main travel routes while the data base con-
tains tracks that are unusual and cannot be assigned to any of the
main routes.

Let the data set X be G distributed. The cumulative distribution
function has the form of a sum of two functions G = (1 − α)GD +

αGB where GD is the cumulative distribution function of the data
of interest while GB is the cumulative distribution function of the
background noise and is typically unknown. α specifies the amount
of noise that is present in the data and if a sample of G is drawn, a
data object can either be sampled by GD or GB. Background noise
is considered to be damaging and if its proportion is high enough
(large value for α), it has to be dealt with explicitly in the analysis
algorithm.

Without precise knowledge of background noise, it is not a good
idea to remove background noise data objects from the data set be-
cause it is usually not known a-priori whether a data object belongs
to the background or to the effect that should actually be analysed.
This is a huge problem in high-dimensional data analyses, because
as stated in 2.5, it is almost impossible to verify the data distribution.
This lack of knowledge prevents the development of a comprehens-
ive model of the noise which in turn leads to model noise, see Section
2.6.4.

Background noise is a very common problem for clustering applic-
ations. It is explicitly considered within prototype based clustering
algorithms by using the noise cluster, first introduced in [Dave, 1991].
Also this type of noise is explicitly considered for 4 of the 10 algo-
rithms, presented in the next chapter.

2.6 noise , overlapping classes and outliers 35

2.6.4 Model Noise

Model noise is related to the two last discussed kinds of noise and
is mainly driven by the inability to model the data accurately. Model
noise means, that even though the data set is a sample of distribu-
tion class G, the model assumes a distribution class H 6= G. Again,
’distribution class’ refers to the equation describing the distribution
function and H and G differ by more than just some parameters. Of
course, using the wrong model is a bad idea, but this practice is very
common in clustering, if not omnipresent. Many data mining models
are based on a mixture of Normal distributions (or ellipsoidal classes
in case of clustering) while the data is something completely differ-
ent. The reason is simply that the true class of data distribution G is
unknown and the ’educated best guess’ is often a mixture of Normal
distributions for H, that need to be parametrised.

The argument from Section 2.5 holds again: it is computationally
very difficult to test for the class of distributions with sufficient accur-
acy because the number of data objects that are required for that rises
exponentially with the number of dimensions. Additionally, since it
is often known a-priori that the model does not reflect the data, any
statistical test might produce a negative result. The question is then,
how well a flawed model (of clusters) can reproduce the data struc-
ture (of classes).

An approach for clustering is to use adaptive models, that are cap-
able of adjusting the shape of its clusters to complex data distribu-
tions. The number of parameters of such an adaptive model can rise
very fast with the number of dimensions. For an m-dimensional nor-
mal distribution with arbitrary covariance matrix, the number of para-
meters is m+m2 which is the number of variables for the expecta-
tion plus the number of variables in the covariance matrix. If the data
consists of c classes, each modelled in the same way, the number of
parameters is c+ c · (m+m2) which is the class probability plus the
number of classes times the parameters in the distribution function.
Such a huge parameter space can lead to unstable results because
the number of local optima for the model rises with the number of
parameters.

More generally, a clustering algorithm might produce many differ-
ent sensible results when applied on a high-dimensional data set, but
it is intrinsically not possible to decide which of them represents the
data best. This problem is known for a long time and triggered the
invention of cluster quality indices [Davies and Bouldin, 1979; Dunn,
1973], see also Section 4.3 However, the benchmark presented in this
thesis shows that these indices are very unreliable, especially in high-
dimensional feature spaces, see Section 5.3.

36 the curse of dimensionality

2.6.5 Outliers and Missing Values

Outliers are one of the easiest to detect noise characteristics. How-
ever, they pose a rather delicate problem in high-dimensional data
sets. Outliers are data objects that usually contain some errors are
rarely considered useful data. Where and why the corrupted data
values occur is not important, however it is important how often out-
liers occur. Let the data set X ⊂ Rm be a sample of them-dimensional
distribution function G. Let there be mout < m dimensions in which
outliers can occur with a probability p > 0. The probability that at
least one value in a randomly sampled data object contains an out-
lier value increases with the number of dimensions that can produce
outliers mout. For simplicity, let the probability that an outlier occurs
in dimension i be at least pmin, independently of the feature in which
it occurs. If the outlier producing process is independent in the fea-
tures, the probability pout that at least one dimension is corrupted
with an outlier is pout = 1− (1− pmin)

mout . Similarly, (1− pmin)
mout

is the probability that none of the dimensions that potentially can
produce outliers actually produce them. Negating that results in the
probability that at least one outlier occurs. For mout →∞ and a fixed
pmin, the probability that an outlier occurs approaches 1.

If missing values occur independently of the data generation pro-
cess, they are similar to outliers because the probabilistic mechanisms
work in a similar way. In principle, they are equivalent because any
value that is either an outlier or is simply missing does not hold use-
ful information. They are also equivalent if outlier values are deleted
and marked as missing or, if missing values are filled with arbitrary
values that are unreasonable for the given data. If a constant fraction
of the features are likely to contain missing values, the frequency of
data objects with missing values increases with the number of dimen-
sions in the same way as outliers. Therefore, both problems can be
approached in the same way if outliers can be detected with certainty.

Deleting data objects or features is called feature- or data object
marginalization [Cooke et al., 2001]. In a high-dimensional feature
space however, filtering out all data objects which contain outliers
or missing values can reduce the number of samples in the data set
to an unbearable degree. How exactly missing values and outliers
are handled is subject to the data mining problem and cannot be
discussed in general.

Even if the number of missing values does not reduce the amount
of data significantly, it is not always a good option to actually re-
move them. If the missing values are biased in some way, removing
data objects or features might change the cluster structure and vital
information might be lost.

A different way of dealing with a (limited) amount of missing val-
ues is, to estimate the values that are missing prior to the analysis

2.7 clustering in high-dimensional spaces 37

step. This strategy is called imputation [Cooke et al., 2001] and has
similar drawbacks as marginalization. Instead of loosing information
about the cluster structure, it is possible to artificially insert (parts
of) a cluster structure that was previously not present in the data.
Also it is possible to merge clusters due to the imputation process
and to introduce previously not present biases within the data. So
this is generally a bad idea, but might be the only available option
sometimes.

Both approaches, deleting data objects or features respectively and
guessing missing values are only viable if the number of missing
values is very small compared to the number of features and data
objects. If the number of missing values is too large, the influence
of negative effects cannot be neglected which means other strategies
have to be used. Sometimes, an existing data analysis algorithm is
adapted so it can handle missing values naturally, see for example
[Green et al., 2001; Sarkar and Leong, 2001; Wagstaff, 2004], however
that might not always be possible.

Clustering high-dimensional data is not very well understood and
because missing values is a topic of its own, it is out of scope of this
thesis.

2.7 clustering in high-dimensional spaces

There are several good points regarding the notion of distance con-
centration that are important for prototype based clustering. The pro-
totype of a cluster can be regarded as a natural query point ~q because
the distribution of distances of the data objects w.r.t. a prototype is
relevant for clustering algorithms.

Alternatively, ~q can be regarded as a data object and the distances
to all prototypes can be analysed for distance concentration. This last
approach is especially relevant for sampling random initial proto-
type locations which is discussed in Section 3.7.4. This view is crucial
for understanding the problems of dimensionality induced clustering
problems, see Section 5.1.7. I chose to use a quite

unusual notation ◦
here because I find
vector notation
simpler to read
and to understand.
Since I made vectors
obvious with the
arrow above, it
should be clear
that |~x| cannot be
the one-dimensional
absolute value of ~x.

The most famous distance function discussed in this work is the eu-
clidean distance, which is one of the p-norms. Most prototype based
algorithms require the first derivative of the distance function w.r.t.
the prototype, in order to find a direction to optimise its parameters.
If d has the form of d(~q,~x) = ‖~q−~x‖pp, its derivative w.r.t. ~q is

∇~qd
p(~q,~x) = ∇~q

m∑

k=0

|~qk −~xk|
p

= p · (~q−~x) ◦ |~q−~x|p−2

38 the curse of dimensionality

with Rm ◦Rm −→ Rm is an element-wise vector multiplication and
|~q−~x|p−2 is the element-wise absolute value:

|~q−~x|p−2 =


|~q1 −~x1|

p−2

...

|~qm −~xm|p−2


It is very advantageous for the clustering process to set the derivative
to be ~0 and solve for ~q, which is not possible for a general p. The
euclidean norm (p = 2) is the only p-norm where the absolute term
vanishes:

~0 = ∇~qd(~q,~x) = ∇~q

m∑

k=0

(~qk −~xk)
2 = 2 · (~q−~x)

This equation can be solved for ~q. As presented in Section 2.2 and con-
cluded from other authors [Aggarwal et al., 2001; Kabán, 2012], the
Euclidean distance is especially subject to distance concentration. Not
using the Euclidean distance for clustering would mean to abandon
the alternating optimization strategy (discussed in the next chapter)
for clustering and use a gradient descent algorithm instead. A gradi-
ent descend method however is much less stable than alternating op-
timization, see for example Section 5.1.5. in [Borgelt, 2005]. Using a
distance concentration resistant distance function instead of the Euc-
lidean distance is usually not advantageous because of the inherent
instability of gradient descend methods.

So the question arises: is prototype based clustering even a vi-
able data mining method in a high-dimensional feature space? Let
~Zk = ~X − ~q be the difference in the k’th feature (dimension) of the
distribution of a data set ~X and a prototype ~q in an m-dimensional
feature space. Therefore, ‖~Z‖22 is the distribution of distances from
the prototype query point ~q. If the data set contains a clear cluster
structure (i.e. the above discussed noise terms are weak compared to
the separation of the classes), and the query vector ~q is close to the
centre of one of these classes (i.e. it is a prototype, located within a
class), ‖~Z‖22 should produce a clear, positive correlation between a
relevant portion of pairs of dimensions. That is because data objects
of the same class must be close to the query point in multiple dimen-
sions while data objects of a different class are further away. However,
it is still a problem to find the location of the classes in the first place.
A detailed analysis of this problem is necessary for answering thesis
question Q2 and is partly discussed in Section 5.1.7.Even though I

was trying to find
such a model for
quite some time,

I did not succeed.

A different and interesting approach in this context would be to
develop a mathematical test, that takes clustering algorithms as input
and provides a minimal value for the concentration of distances that
is required for the algorithm to function properly. With the result
from Section 2.2, and such a model, it might be possible to estimate

2.7 clustering in high-dimensional spaces 39

for a given data set and clustering algorithm, if the algorithm can
provide a meaningful result on that data set. Something not quite
as sophisticated as such a model is provided in Section 5.1.7, which
might be regarded as an indication into the right direction.

40 the curse of dimensionality

3
P R O T O T Y P E B A S E D C L U S T E R I N G A L G O R I T H M S

In this chapter, the clustering algorithms relevant for this work and
their applications are discussed. All of the algorithms are prototype
based (fuzzy) partitional clustering algorithms [Höppner et al., 1999],
see Sections 3.1.1 and 3.1.2 for details of these terms. The algorithms
were invented with a variety of motivations in mind but are not spe-
cifically designed to handle high-dimensional data sets. Hence, it can-
not be expected that they produce good results. Surprisingly though,
some algorithms perform remarkably well (see Chapter 5). The here
presented specific selection of algorithms becomes more clear when
considering the arguments presented in Section 5.1.7. In simple terms,
they are selected because of the way membership values (see Section
3.1) are calculated and because they have a prototype which lines up
nicely with the theory presented in the last chapter.

There are many clustering algorithms, based on a variety of con-
cepts which are too broad for this work. The selection of prototype I tested DBScan

regardless. It pro-
duced almost perfect
clustering results
on D1 and D2
but it has terrible
performance on D3
and D4, see Chapter
4 for explanation
on data set families
D1, . . . ,D4. In
context of the
concentration of
distances, I might
take a closer look at
DBScan in future
work.

based (fuzzy) clustering algorithms excludes the algorithms which
are mentioned in the following. In high-dimensional feature spaces,
hierarchical clustering algorithms (e.g. [Zhang et al., 1996]) have dif-
ferent problems than partitional algorithms. A combined discussion
would exceed the scope of this work. Similarly, some partitional clus-
tering concepts are not discussed either. For example, the density
based DBScan [Ester et al., 1996] is excluded because the lack of a
prototype makes it hard to compare the algorithm with prototype
based algorithms. Grid based clustering approaches like DENCLUE
[Hinneburg and Keim, 2003] and OptiGrid [Hinneburg and Keim,
1999] are not discussed for the same reason.

Many prototype based clustering algorithms cannot be discussed in
this work either. Kernel based clustering algorithms [Girolami, 2002;
Muller et al., 2001; Schölkopf et al., 1998, 2001; Zhang and Chen,
2003, 2002] are excluded because they are highly adjustable due to
their kernel function. Depending on the kernel function, these algo-
rithms might be very good or very bad at clustering high-dimensio-
nal data, and the difficulty would be to find a well suited kernel
function for a given problem. Considering kernel-based clustering
methods would open up many possibilities and might fill an entire
thesis on its own, which is why they cannot be considered in this

41

42 prototype based clustering algorithms

work. The Gustafson and Kessel clustering algorithm [Gustafson and
Kessel, 1978] is not discussed, because the algorithm considers ellips-
oidal clusters of arbitrary orientation. It utilises a covariance matrix
with m2 entries. With so many parameters for each cluster, the algo-
rithm can become very unstable in high-dimensional feature spaces.
For the same reason, the expectation maximization algorithm, dis-
cussed in Section 3.6, is restricted to spherical covariance matrices.
Similarly, clustering algorithms that increase the complexity of the
FCM algorithm significantly are not discussed, for example the Gath
and Geva algorithm [Gath and Geva, 1989] or competitive agglomer-
ation clustering [Frigui and Krishnapuram, 1997].Experienced readers

might skip over the
remaining part of

this chapter as it is
fairly standard. The

only non-standard
approach is a cool-
down on the noise
distance, described

in Section 3.7.2.

The notation and style of presenting the algorithms is inspired by
the habilitation thesis of Christian Borgelt [Borgelt, 2005]. Especially
the HCM and FCM algorithms in Sections 3.2 and 3.3, the expecta-
tion maximization algorithm in Section 3.6 as well as the evaluation
indices in in the next chapter in Sections 4.2 and 4.3 are presented in
a similar way as in [Borgelt, 2005].

3.1 mathematical framework

All algorithms presented below fall into the same mathematical frame-
work. This framework is presented in the next subsections.

3.1.1 (Fuzzy) Partitional Clustering Algorithms

Partitional clustering algorithms decompose a data set into subgroups
in ’one go’ by either directly producing a final (fuzzy) partitioning or
iteratively improving an initial (fuzzy) partitioning. Let X be a data
set of n data objects in m dimensions, X = {~x1, . . . ,~xn} ⊂ Rm. A de-
composition of X into c disjoint subsets X =

⋃c
i=1Ci, Ci ∩Cj = ∅ is

called a crisp partitioning of X and the subsets C1, . . . ,Cc are called
classes of X. In the fuzzy case, each class is associated with a fuzzy
set on X, which means, each data object ~xj ∈ X has a value of mem-
bership uij ∈ [0, 1] that describes its level of assignment to class Ci.
The set of classes form a fuzzy partitioning of X if and only if for all
data objects ~xj ∈ X holds:

c∑

i=1

uij = 1 (3.1)

The union of fuzzy sets Ci∪k = Ci ∪Ck is then realised by summing
the membership values of all data objects: ui∪k,j = uij + ukj.

For the purpose of clustering, the clustering algorithms divide the
data set X into c (fuzzy) clusters (as opposed to classes) which also
form a (fuzzy) partition of X. As already stated in the introduction in
Section 1.2.1, the term class indicates a property of the data set and

3.1 mathematical framework 43

the term cluster indicates a property of the algorithm, applied on the
data set. These two partitionings of X, (classes and clusters) do not
need to be identical and the difference between the two partitionings
indicate a degree of clustering quality, which is discussed in Sections
4.2 and 4.3.

Please note, that the classes are described to form a crisp partition-
ing of X, it is possible that they form a natural fuzzy partitioning
as well. Fuzzy classes can exist in reality, if an object is in a trans-
ition phase between two distinct states. For example, in a data set
containing weather phenomena, a crisp distinction between the class
of ’hot’ conditions and ’cold’ conditions might not be possible. This
notion of reality in terms of fuzzy sets (i.e. fuzzy classes and fuzzy
clusters) goes back to the fuzzy set modelling of Zadeh [Zadeh, 1965].
For the clustering algorithm, it is not important whether the data set
contains fuzzy classes or crisp classes since the class information is
unavailable to the clustering algorithm. Only the location of a data
object within the feature space is known. Even if the data set con-
tains natural crisp classes, fuzzy clustering algorithms can be applied
because they might have computational advantages over crisp clus-
tering algorithms. After a fuzzy clustering algorithm is applied, the
fuzzy partitioning of the clusters can be transformed into a crisp par-
titioning to match the crisp classes.

The clustering algorithms, discussed in this chapter live all in the
same mathematical framework. They are based on an optimization
strategy, discussed in the next two subsections. In Subsection 3.1.5,
a common visualization scheme is presented, that is applied to all
algorithms.

3.1.2 Prototype-based Clustering Algorithms

Prototype based clustering implies that each cluster is represented by
a prototype. A prototype is similar to a data object, an element of the
feature space Rm and can be seen as a reference point for the cluster
or even its centre. This fact is particularly relevant for this work be-
cause the prototype forms a natural query point for distance calcu-
lations which ties these algorithms to the concentration of distances,
see Section 2.1.1.

Since each algorithm utilises c clusters, the set of all prototypes
Y{~y1, . . . ,~yc} ⊂ Rm of a clustering algorithm contains c = |Y| ele-
ments. Mathematically, a prototype ~yi ∈ Y is an element of the fea-
ture space: ~yi ∈ Rm. In many equations in this chapter, the distance
between a prototype and a data object ~xj ∈ X is addressed. If not

44 prototype based clustering algorithms

otherwise stated, the value dij is defined as the Euclidean distance
between prototype ~yi and data object ~xj:

dij = ‖~yi −~xj‖ =

√√√√ m∑

k=1

(~yi,k −~xj,k)2 (3.2)

where ‖ · ‖ refers to the Euclidean norm. The use of the Euclidean
distance a standard distance function is explained two Subsections
below, in Subsection 3.1.4. The algorithms, discussed here differ in
the interpretation of these distances.

3.1.3 Objective Functions and Alternating Optimization

Prototype based clustering algorithms can be understood as an optim-
ization problem. The clustering algorithm is defined by an objective
function, symbolised by J, which has the data set X and some vari-
able parameters Θ as input and a real value as ouput: J : X×Θ→ R.
The parameter set Θ corresponds to a particular (fuzzy) partition-
ing. A (locally) optimal (either minimal or maximal) value of J(X,Θ)
corresponds to a solution of the clustering problem. In general, it is
impractical to compute a globally optimal combination of paramet-
ers Θ w.r.t. the objective function J. Finding a global optimum is even
for the most simple clustering algorithms NP-hard (see [Aloise et al.,
2009; Mahajan et al., 2009]). As the best alternative, the clustering
algorithm is supposed to deliver a locally optimal solution of the
clustering problem as that is considered to be good enough.

A direct computation of the local minimum is only possible in very
simple cases like if the data contains only one cluster. This is usu-
ally not the case, instead an iterative process is used to find a local
optimum for J. A specific iteration step is indicated by the counter
variable t ∈ N with t = 0 being the initialization. In most equa-
tions, t is left out to simplify the notation, only when dealing with
variables of different iterations (usually when calculating values for
iteration (t+ 1), t is used as an upper index in round braces. Start-
ing for some initial condition Θ(0), the next generation of paramet-
ers Θ(t+1) is computed using Θ(t) until a (locally) optimal solution is
found. Initialization is its own topic of research if done thoroughly. A
short description and further literature can be found at the end of this
chapter in Section 3.7.4. Generally, this iterative optimization process
can be done using a gradient optimization approach [Cauchy, 1847],
see for example [Snyman, 2005]. To apply the gradient optimization
approach, the objective function J must only be differentiable w.r.t. all
members of Θ, which makes it very versatile. However, gradient op-
timization is rather unstable, see for example Section 5.1.5 in [Borgelt,
2005]. A much more robust approach is alternating optimization (see

3.1 mathematical framework 45

for example [Bezdek and Hathaway, 2002]), but it also imposes more
restrictions on J.

Like the gradient optimization approach, alternating optimization
is based on finding local extreme values of J. A necessary condition
for local extreme values of J are zero values of its first derivative. The
additional condition, that the second derivative is not zero is usually
implicitly fulfilled and is not explicitly considered. The idea behind
alternating optimization is, that Θ is decomposed into two (or more)
disjoint subsets: Θ = Θ1 ∪Θ2, such that the following equations can
be solved for any θ1 ∈ Θ1, and θ2 ∈ Θ2 respectively:

0 =
∂

∂θ1
J(X,Θ) = (

∂

∂θ1
J)(X, θ1,Θ2)

0 =
∂

∂θ2
J(X,Θ) = (

∂

∂θ2
J)(X,Θ1, θ2)

Note, that the differentiation parameter θ1 is contained in Θ1, but To my regret, my
publications [Wink-
ler et al., 2010b]
and indirectly
[Winkler et al.,
2010c] contain
algorithms ignoring
these restrictions.
From my current
perspective, I
would rejected these
papers as a referee.
Nevertheless, the
algorithms work as
intended on their
examples.

that the differentiated objective function looses all other members of
Θ1. The equation is then solved for θ1, which means that θ1 can be
expressed solely as a function of X and Θ2 where for the purpose
of calculating θ1, the members of Θ2 are considered to be constants.
That way, all values for Θ(t+1)

1 can be computed by using the values of
Θ

(t)
2 . After that, the same procedure is used to calculate the next itera-

tion values for Θ(t+1)
2 depending on the values of Θ(t)

1 (or alternatively
Θ

(t+1)
1 as presented below in this work). Of course, this way of express-

ing and solving equations is only possible if the original objective
function J permits such calculations. This induces tight restrictions
on the structure of J, but at the same time leaves enough freedom to
construct different clustering algorithms. The here presented general
2-step procedure can be easily extended to 3 or more steps, see for ex-
ample the expectation maximization algorithm, presented in Section
3.6.

3.1.4 Objective Function based Clustering Algorithms

As stated above, the first differentiation of the objective function must
be solvable for the prototype location, which is only possible for
the algorithms below if the distance is measured with the Euclidean
norm (as discussed in Section 2.7) or a similar norm like the Mahalan-
obis distance [De Maesschalck et al., 2000].

Prototype based clustering algorithms essentially optimise the ob-
jective function J by optimizing the positions of a set of c prototypes
Y = {~y1, . . . ,~yc} ⊂ Rm. The set of prototypes Y are part of the para-
meters Θ and can be characterised as data object representatives or
similarly as centres of clusters.

A second set of parameters U is used to assign data objects to
clusters. For a fuzzy clustering algorithm, the assignment is done in

46 prototype based clustering algorithms

a fuzzy way (hence the name) which means that a data object ~xj is
assigned to a cluster i with a degree of membership (or membership
value) uij ∈ [0, 1]. Equation (3.1) must hold for uij, meaning that all
membership values of a data object must add up to 1. A fuzzy parti-The membership

degrees of different
data objects are

often independent.
Therefore, it is usu-

ally not necessary
to hold the entire

membership matrix
in memory during
the execution of a
(fuzzy) clustering

algorithm. See
for example the

implementation of
EDMOAL described

in Appendix B.

tion matrix U ∈ [0, 1]c×n is used to cover the assignments of all data
objects to all clusters. A set of Lagrange multipliers Λ ∈ Rn [Bellman,
1956] are used to ensure that Equation (3.1) holds. The membership
matrix U and the Lagrange multipliers Λ are part of the parameters
Θ of the objective function J.

All algorithms presented in this chapter are optimization problems
and the alternating optimization strategy is utilised to find a solution.
Θ is divided into suitable subsets, including the membership matrix
U ∈ [0, 1]c·n, the set of prototype positions Y ⊂ Rm and other para-
meters. For fuzzy clustering methods, usually two subsets of paramet-
ers are enough, details are described when presenting the individual
algorithms, see Sections 3.2 to 3.6. The general approach is similar
for each algorithm. First the membership values U are considered to
be fix and the objective function J is optimised by recomputing the
prototype locations Y as a function of the non-variable membership
values U. In a second step, the prototype locations Y are considered to
be non-variable and J is optimised by recomputing the membership
vales U as a function of the prototypes.

3.1.5 Visualization

0 2 4 6 8 10 12 14
0

0.5

1

~y1 ~y2 ~y3

feature space

m
em

be
rs

hi
p

va
lu

es u0·
u1·
u2·
u3·

Figure 3.1: Membership value levels of 3 normal clusters u1·, u2· and u3·
as well as the the noise cluster membership levels u0· in a 1-
dimensional feature space with 3 prototypes at ~y1 = 3, ~y2 = 4

and ~y3 = 7.

Understanding
the mathematical
description is im-

portant, but I find it
equally important to
develop an intuitive

understanding of the
algorithms which I

hope to provide with
the visualizations.

Throughout this chapter, the process of clustering is illustrated in
two ways. First, the membership values ui· of three clusters i =

1, 2, 3 (and i = 0 for the noise cluster, see below) are plotted in a
1-dimensional feature space, see Figure 3.1. These membership value
plots give a visual impression of how the relative distances of data
objects to the prototypes are translated into membership values. The

3.1 mathematical framework 47

coloured lines represent the membership values of the true clusters,
the black line (if available) represents the noise cluster. The prototypes
are located at ~y1 = 3, ~y2 = 4 and ~y3 = 7 respectively, indicated by
vertical lines in the plot. The plot can also be interpreted as a classical
representation of the fuzzy sets that cover the entire 1-dimensional
feature space.

The second way the algorithms are illustrated is by applying them
on a small, 2-dimensional example data set, presented in the left-hand
side in Figure 3.2. The data consists of 3, normal distributed classes I hand-picked the

initial prototype
locations to ensure
that all clusters are
found and to have
consistent colours
throughout this
chapter.

with varying variance, 1500 data objects each and 500 uniformly dis-
tributed noise data objects on the unit square [0, 1]2. The data set is
used only for visualization and is not useful to assess the quality of a
clustering algorithms. In the right-hand side of Figure 3.2, the result
of the PNFCM clustering algorithm (see Section 3.4) is shown. The
(mixed) colours of the data objects represent the values of the mem-
bership matrix, with black representing the noise cluster. Coloured
circles with black borders represent prototypes. The ’tail’ of the pro-
totypes show the way they took from their initial position to their
final position, each iteration is represented by a small coloured circle
with black border. Areas that are filled with colour represent member- Technically, the

shaded area is
printed if the
membership values
u·· > 0.9999 instead
of u·· = 1. Oth-
erwise, algorithms
that produce crisp
membership values
asymptotically,
like EMGMM (see
Section 3.6), would
produce undesired
floating point error
effects.

ship values with u·· = 1 for the corresponding cluster. Height-lines
are printed at membership value levels of u·· = 1, u·· = 0.9, u·· = 0.8,
u·· = 0.7, u·· = 0.6 and u·· = 0.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.2: A 2-dimensional data set (left) and the same data set, showing
the prototypes and membership values (right).

In the last chapter, several noise sources are discussed. Clustering it
self is, due to the partitioning aspect, relatively robust w.r.t. imprecise
data (see Section 2.6.1) and distribution noise (see 2.6.2) in a quite na-
tural way. Model noise (see Section 2.6.4) is a serious problem because
the model that is assumed for the shape of clusters is generally not
adopted precisely to the data and the true shape of the classes within
the data is approximated with very simple cluster shapes. There are
some algorithms that try to mitigate this problem by allowing ellips-

48 prototype based clustering algorithms

oidal clusters, like Gustafson-Kessel fuzzy clustering [Gustafson and
Kessel, 1978] or expectation maximization with arbitrarily shaped
Gaussian models. These approaches however are not well suited for
high-dimensional feature spaces because they have too many degrees
of freedom to work properly. Background noise (see Section 2.6.3)
poses another serious problem for clustering algorithms because data
objects that do not contribute to the cluster structure of the data might
obscure the important structure of the data set. Background noise is
approached by introducing an additional noise cluster, which means
that data objects are specifically recognised (clustered) as being noise
which is represented in black colour in the example images above.

3.2 hard c-means

The hard c-means algorithm (HCM), better known as ’hard k-means’
or simply ’k-means’ is the oldest prototype clustering algorithm, first
published in its modern form by [MacQueen, 1967]. HCM is a crispHistorically, HCM

is simply called
’k-means’, but

I chose to use c
instead of k because

I use c for the
number of clusters
and k as a counter
in other occasions.

clustering algorithm, which means it assigns data objects uniquely
to one cluster. Hence, the membership matrix is restricted to U ∈
{0, 1}c×n. The objective function for HCM is defined as:

JHCM(X,U, Y) =
c∑

i=1

n∑

j=1

uijd
2
ij (3.3)

The locally optimal parameters for JHCM are found if JHCM is (locally)
minimised, therefore the task is to find a combination of U and Y

such that no small change in any parameter results in a reduction
of JHCM(X,U, Y). With the restriction of Equation (3.1) and limitation
to crisp membership values, it follows that only one of u1j, . . . ,ucj
can be 1, and the others must be 0. It follows with introducing the
iteration variable t, that

u
(t+1)
ij =




1 if d(t)ij < d

(t)
kj, k = 1 . . . c, k 6= j

0 otherwise
(3.4)

As discussed in Section 3.1.3, it is necessary for minimizing JHCM

that its derivative w.r.t. the prototype locations must be 0:

~0
!
= ∇~yiJHCM(X,U, Y) = ∇~yi

c∑

k=1

n∑

j=1

ukjd
2
kj

=

n∑

j=1

uij∇~yi‖~yi −~xj‖2 = 2 ·
n∑

j=1

uij(~yi −~xj)

3.2 hard c-means 49

0 2 4 6 8 10 12 14
0

0.5

1

~y1 ~y2 ~y3

feature space

m
em

be
rs

hi
p

va
lu

es u1·
u2·
u3·

Figure 3.3: Membership value levels for HCM of 3 normal clusters u1·, u2·
and u3· in a 1-dimensional feature space with 3 prototypes at
~y1 = 3, ~y2 = 4 and ~y3 = 7.

With rearranging, it follows:

~y
(t+1)
i =

n∑
j=1

u
(t+1)
ij ~xj

n∑
j=1

u
(t+1)
ij

(3.5)

Starting from an initialization, equation (3.5) is applied until all pro- Testing floating
point variables
for equality for
terminating the
iteration process
is possible but
error prone and
usually a bad idea.
The termination
threshold can be
implemented by
comparing the
membership value
assignments, which
in case of HCM can
be implemented
as as a list of
integer values
without significant
additional cost, see
the implementation
within EDMOAL.

totype positions stabilise: y(t)i ≈ y
(t+1)
i , ∀i = 1, . . . , c. The runtime

complexity for each iteration of HCM is O(c ·n ·m).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.4: The 2-dimensional example data set, clustered with HCM.

The assignment to the closest prototype is visualised in the mem-
bership values plot in Figure 3.3. Applied on the example data set
produces the result presented in Figure 3.4. Since there are no fuzzy Interestingly, the

cluster areas form
Voronoi cells.

assignments for data objects, the areas of crisply assigned data objects
touch each other, which form the encircled areas.

50 prototype based clustering algorithms

3.3 fuzzy c-means

The fuzzy c-means algorithm (FCM) is the first fuzzy clustering algo-
rithm out of many discussed here. It was first published in [Dunn,
1973; Ruspini, 1969] and later generalised by Bezdek in [Bezdek, 1981]
to its current, final version. In contrast to HCM, FCM is a fuzzy parti-
tional clustering algorithm, hence the partition matrix U is not restric-
ted as for HCM. Also, FCM requires an additional parameter called
fuzzifier:ω ∈ R,ω > 1which is discussed in a moment. The objective
function of FCM is defined as:

JFCM(X,U, Y) =
c∑

i=1

n∑

j=1

uωijd
2
ij (3.6)

JFCM differs from JHCM just in the loosened restriction of membership
values and the exponential fuzzifier ω. ω is called fuzzifier because
it specifies how smooth the membership values change w.r.t. the re-
lative distance among prototypes. A low value of ω means a more
crisp clustering algorithm, and indeed for ω = 1 FCM is equivalent
to HCM. In contrast, a very high value of ω would make the cluster-
ing very fuzzy, and for ω → ∞, all data objects are shared equally
among all clusters.

As JHCM, JFCM has to be minimised in order to find a (locally) op-
timal solution. This time however, the value for uij has to be calcu-
lated by differentiating the objective function. In order to ensure the
restrictions of Equation (3.1), a Lagrange multiplier is added to the
objective function.

JFCM(X,U, Y,Λ) =
c∑

i=1

n∑

j=1

uωijd
2
ij +

n∑

j=1

λj

(
1−

c∑

i=1

uij

)
(3.7)

with n real parameters Λ = {λ1, . . . , λn} ⊂ R. JFCM is first derived
w.r.t. uij:

0
!
=

∂

∂uij
JFCM(X,U, Y,Λ)

=
∂

∂uij

c∑

k=1

n∑

l=1

uωkld
2
kl +

∂

∂uij

n∑

l=1

λl

(
1−

c∑

k=1

ukl

)
= ω · uω−1

ij d2ij − λj

With rearranging, it follows

uij =

(
λj

ω · d2ij

) 1
ω−1

=

(
λj

ω

) 1
ω−1

·
(
1

d2ij

) 1
ω−1

(3.8)

3.3 fuzzy c-means 51

With regard to Equation (3.1), it follows

1 =

c∑

k=1

ukj =

c∑

k=1

(
λj

ω

) 1
ω−1

·
(
1

d2kj

) 1
ω−1

=

(
λj

ω

) 1
ω−1

·
c∑

k=1

(
1

d2kj

) 1
ω−1

and therefore(
λj

ω

)1−ω
=

1

c∑
k=1

(
1
d2kj

) 1
ω−1

Inserting this equation into (3.8) and applying the iteration variable
yields Equations like this

can be simplified by
hiding the fractional
distances in their
respective exponents.
However, they are
easier to understand
the way they are
written here, even
though it takes more
space on paper.

u
(t+1)
ij =

 1(
d
(t)
ij

)2


1
ω−1

c∑

k=1

 1(
d
(t)
kj

)2


1
ω−1

(3.9)

In Figure 3.5, the membership values plot for FCM is presented (see

0 2 4 6 8 10 12 14
0

0.5

1

~y1 ~y2 ~y3

feature space

m
em

be
rs

hi
p

va
lu

es u1·
u2·
u3·

Figure 3.5: Membership value levels u for FCM with fuzzifier ω = 2 in a
1-dimensional scenario with 3 prototypes at x = 3, 4 and 7.

Section 3.1.5 for the description). Data objects near just one of the pro-
totypes y1, y2 and y3 are assigned with higher membership to their
respective prototype than data objects that have similar distances to
multiple prototypes. Updating the prototypes for FCM is very similar
to HCM:

~0
!
= ∇~yiJFCM(X,U, Y,Λ) = ∇~yi

c∑

k=1

n∑

j=1

uωkjd
2
kj

=

n∑

j=1

uωij∇~yi‖~yi −~xj‖2 = 2 ·
n∑

j=1

uωij (~yi −~xj)

52 prototype based clustering algorithms

With rearranging and iteration variable, the prototype update equa-
tion is derived as:

~y
(t+1)
i =

n∑

j=1

(
u
(t+1)
ij

)ω
~xj

n∑

j=1

(
u
(t+1)
ij

)ω (3.10)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.6: The 2-dimensional example data set, clustered with FCM (left)
and NFCM (right) with parameters ω = 2 and dnoise = 0.2.

The iteration process is stopped if a maximum number of iterations
have been reached or if the maximal movement distance of prototypes
drops below a predefined threshold 0 < ε ∈ R, see Section 3.7.5 for
details. The runtime complexity for each iteration of FCM is the sameWhen implementing

FCM, NFCM and
alike, I found it
best to treat the
noise cluster as

a different entity.
When programming
in java, c or similar,

it is incredibly
confusing to count
sometimes from 1

to n and sometimes
from 0 to n (or

from 0 to n − 1

vs. 0 to n). I did
it this way in the

beginning because
it represented the

mathematical
description but

changed the code
later because

the corner cases
became too much

of a problem.

as for HCM: O(c · n ·m). The fuzzy assignment of data objects in
between two prototypes is visualised on the left-hand side in Figure
3.6.

3.3.1 FCM with Additional Noise Cluster

FCM can be very sensitive to noise (outliers) because the model of
prototypes does not apply well to single data objects far away from
’good’ data. The effect can be observed in Figure 3.5. On the outer
edges of the plot, the membership levels of all prototypes approach 1

c ,
which means that all prototypes are pulled towards data objects, that
are far away. Noise FCM (NFCM) [Dave, 1991] adds one additional
cluster (the noise cluster) to FCM which has a constant distance to all
data objects. The noise cluster is not represented as a prototype, but
it still adds factors to the fuzzy partitioning of a data object. If a data
object is very far away from all prototypes, it gets a high member-
ship value to the noise cluster and low membership values to regular
clusters.

3.3 fuzzy c-means 53

Formally, the equations for FCM changes to:

JNFCM(X,U, Y) =
c∑

i=0

n∑

j=1

uωijd
2
ij (3.11)

with cluster index 0 denoting the noise cluster and 0 6 d0j = dnoise ∈
R being the constant distance to the noise cluster. Deriving the up-
date equations for NFCM is analogous to FCM, only the indices are
different. For i = 0, . . . , c and j = 1, . . . ,n:

u
(t+1)
ij =

 1(
d
(t)
ij

)2


1
ω−1

c∑

k=0

 1(
d
(t)
kj

)2


1
ω−1

(3.12)

and for i = 1, . . . , c:

~y
(t+1)
i =

n∑

j=1

(
u
(t+1)
ij

)ω
~xj

n∑

j=1

(
u
(t+1)
ij

)ω (3.13)

The effect of the additional noise cluster is presented in Figure 3.7.
Contrary to FCM without a noise cluster, the membership values of
data objects far away from all prototypes are almost exclusively as-
signed to the noise cluster, hence they do not influence the prototype
locations significantly.

0 2 4 6 8 10 12 14
0

0.5

1

~y1 ~y2 ~y3 dnoise

feature space

m
em

be
rs

hi
p

va
lu

es u0·
u1·
u2·
u3·

Figure 3.7: Membership value levels u for NFCM with fuzzifier ω = 2 and
noise distance dnoise = 1 in a 1-dimensional scenario with 3 pro-
totypes at x = 3, 4 and 7.

A visualization of NFCM is presented on the right-hand side in
Figure 3.6. The noise cluster clearly restricts the outreach of the mem-
bership levels of the other clusters such that they are confined to the

54 prototype based clustering algorithms

spread of the relevant data. This not only prevents outliers of gaining
too much influence on the prototypes, it also creates more localised
clusters, that fit very well for normal distributed data. The down side
is, that it can be hard to find a suitable noise distance dnoise for a
given problem. If the noise distance is set very low compared to the
distances of normal prototypes to data objects, formally dnoise << dij,
an effective clustering is prevented. Also, for dnoise → ∞, the noise
cluster becomes insignificant and thus, NFCM becomes identical to
FCM. For a more detailed discussion on the choice of the noise dis-
tance, see Section 3.7.2.

3.3.2 (N)FCM with dimension dependent fuzzifier

As presented in [Winkler et al., 2011a] and in Section 5.1.2, neither
FCM nor NFCM are particularly well suited for high-dimensional
feature spaces. We have shown in the mentioned paper that this prob-In our original

paper, we proposed
to use ω = 1+ 2

m

because it works
well and it includes

the special case
of standard FCM
for 2 dimensions.

However, during the
extensive testing

for this work, I
found that ω =

1+ 1
m is slightly

more effective.

lem with FCM can be mitigated using the fuzzifier ω. The algorithms
FCMm and NFCMm are formally identical to FCM and NFCM re-
spectively, but their fuzzifier is not free to choose for the user but it
is set to ω = 1+ 1

m . This means, the algorithm becomes more crisp
for higher dimensional feature spaces, approaching HCM for a very
high dimensionality. The reason to use the fuzzifier in this way is
explained in Section 5.1.2.

For clarity, the FCM version with the fuzzifier ω = 2 is referred
to as FCM2 in future. Please note, that FCMm utilizes a more crisp
fuzzifier for m = 2: ω = 1+ 1

2 = 1.5 for FCMm and ω = 2 for FCM2.

3.4 fuzzy c-means with polynomial fuzzifier function

Fuzzy c-means with polynomial fuzzifier function (PFCM) [Klawonn
and Höppner, 2003a], replaces the exponential fuzzifier function in
FCM with a polynomial function of grade 2. This clustering algorithmActually, the name

for this algorithm
was invented by

me because it was
just named ’new
approach’ in the

original publication.

is motivated by addressing some of the weaknesses of FCM. Observe
again the left-hand side of Figure 3.6. The small space between the 0.5
height-lines of each pair of clusters is caused by the respective third
cluster which sits further away. The same effect can be also observed
in Figure 3.5 as the red clusters membership levels create a local max-
imum in-between the blue and green cluster. Logically, there is no
reason that the third, further away cluster should have a local max-
imum of membership values at this location. To avoid this, PFCM is
designed to create crisp membership levels whenever data objects can
be clearly assigned to a certain cluster or if data objects can be clearly
not assigned to a cluster.

3.4 fcm with polynomial fuzzifier function 55

The objective function JPFCM is defined as

JPFCM(X,U, Y) =
c∑

i=1

n∑

j=1

h(uij)d2ij (3.14)

with h(u) = αu2 + (1−α)u and α ∈ [0, 1]. The parameter α functions
as a linear factor to mix FCM with ω = 2 and HCM. When applying
PFCM, α is not very well suited as parameter because it is very unin-
tuitive w.r.t. the behaviour of the algorithm. h(u) can be reformulated
with α = 1−β

1+β , β ∈ [0, 1] or β = 1−α
1+α which produces the fuzzifier

function

h(u) =
(
1−β

1+β
u2 +

2β

1+β
u

)
(3.15)

The effect of the membership function and its parameter β can be
best understood with a very simple example. Consider the 2 proto-
types ~y2 and ~y3 in a 1-dimensional environment and an imaginary
data object ~x0 in between ~y2 and ~y3 that has the distances d20 and d30
to the prototypes, illustrated in Figure 3.8. The parameter β specifies
the location of ~x0 in the feature space at which the membership values
change from crisp to fuzzy or vice versa. This statement is only true
if there is no other prototype nearby that produces non-zero member-

ship values. The membership value is crisp with u20 = 1 ⇔ d220
d230

6 β

or u20 = 0⇔ d220
d230

> 1
β or fuzzy with u20 ∈ (0, 1)⇔ β <

d220
d230

< 1
β .

PFCM produces a (fuzzy) partition of the data set and therefore,
Equation (3.1) must hold which is again enforced by using the Lag-
range extension. The full membership function for optimizing its
parameters is:

JPFCM(X,U, Y,Λ) =
c∑

i=1

n∑

j=1

(
1−β

1+β
u2ij +

2β

1+β
u

)
d2ij

+

n∑

j=1

λj

(
1−

c∑

i=1

uij

)
(3.16)

which has to be minimised. As for FCM, deriving JPFCM w.r.t. the
membership values yields:

0
!
=

∂

∂uij
JPFCM(X,U, Y,Λ) =

(
2
1−β

1+β
uij +

2β

1+β

)
d2ij − λj

and with rearranging follows

uij =
1

1−β

(
1

2

(1+β)λj

d2ij
−β

)
(3.17)

Due to the nature of the membership update equation of FCM, it
is not necessary to create a rule for uij ∈ [0, 1]. That changes with

56 prototype based clustering algorithms

PFCM where it must be ensured explicitly. It is enough however, to
ensure uij > 0 since together with the Lagrange extension implies
uij 6 1. Formally, this could be done using the Karush-Kuhn-Tucker
conditions [Karush, 1939; Kuhn and Tucker, 1951], which are exten-
sions of the Lagrange multipliers for constrains that are formulated
as inequalities instead of equalities.

The resulting objective function is more difficult to process with
alternating optimization because the inequality of uij > 0 must be
ensured explicitly during updating the membership values. A trick is
used to achieve that. Suppose it is known for which clusters Equation
(3.17) produces positive values w.r.t. xj and that the number of such
membership values is čj ∈ N, čj 6 c. Explicitly set all membership
values to 0 for which Equation (3.17) would produce negative values,
then

1 =

c∑

k=1
ukj>0

ukj =

c∑

k=1
ukj>0

1

1−β

(
1

2

(1+β)λj

d2kj
−β

)

=
1+β

1−β

1

2
λj

c∑

k=1
ukj>0

1

d2kj
−
čj ·β
1−β

⇒ λj = 2 ·
1

1+β
·
1+ (čj − 1)β

c∑

k=1
ukj>0

1

d2kj

Inserted into equation (3.17) leads to the update equation for mem-
bership values provided it is known which membership values are
positive:

uij =
1

1−β


1+ (čj − 1)β

c∑

k=1
ukj>0

d2ij

d2kj

−β


(3.18)

The equation seems to contain circular reasoning because the know-
ledge of the value of uij requires the knowledge of its sign. It is how-
ever possible to determine whether or not a membership value will be
positive without calculating its value. For that, it is necessary to sort
the distances d1j, . . . ,dcj regarding one data object xj in ascending
order. Let ϕ be a permutation so that ∀1 6 i < k 6 c: dϕ(i)j 6 dϕ(k)j.
From Equation (3.18) can also be deduced that for any two distances
dij 6 dkj ⇒ uij > ukj and therefore holds ∀1 6 i < k 6 c

3.4 fcm with polynomial fuzzifier function 57

uϕ(i)j > uϕ(k)j. Let c̃ ∈ N, c̃ 6 c, then it is sufficient to know the
smallest index ϕ(c̃) for witch equation (3.18) yields a negative value.

0 6
1

1−β


1+ (c̃j − 1)β
c̃∑

k=1

d2ϕ(c̃)j

d2
ϕ(k)j

−β

 ⇔
c̃∑

k=1

d2ϕ(c̃)j

d2
ϕ(k)j

− c̃ 6
1

β
− 1

The number čj is calculated by gradually increasing c̃ from 1 until
the test fails the first time. Formally: Calculating čj does

not come with a
significant increase
in computation
cost. See the im-
plementation in
EDMOAL.

čj = max

{
c̃ ∈N

∣∣∣∣∣ c̃ 6 c,
c̃∑

k=1

d2ϕ(c̃)j

d2
ϕ(k)j

6
1

β
+ c̃− 1

}
(3.19)

Calculating čj requires to sort the distances of the prototypes w.r.t.
each data object which increases the runtime complexity for each iter-
ation by a factor of ln(c).

Finally, the update equation for the membership values can be de-
clared:

u
(t+1)
ij =





1

1−β


1+ (č

(t)
j − 1)β

č
(t)
j∑

k=1

(
d
(t)
ij

)2
(
d
(t)
ϕ(k)j

)2
−β


if ϕ(i) 6 č(t)j

0 otherwise

(3.20)

0 2 4 6 8 10 12 14
0

0.5

1

~y1 ~y2 ~y3~x0

d20 d30

feature space

m
em

be
rs

hi
p

va
lu

es u1·
u2·
u3·

Figure 3.8: Membership value levels u for PFCM with β = 0.3 in a 1-
dimensional scenario with 3 prototypes at x = 3, 4 and 7.

In Figure 3.8, the result of the effect of the membership function on
the membership values can be observed. In the vicinity of prototypes,
the membership values become crisp, which can have advantages on
the clustering process because it hides the data objects near one pro-
totype from all other prototypes. The result is a better separation and

58 prototype based clustering algorithms

spread as well as a reduced chance that two prototypes share the
same class and divide it into two clusters.

Updating the prototype positions for PFCM is done analogously to
FCM.

~0
!
= ∇~yiJPFCM(X,U, Y,Λ) = ∇~yi

c∑

k=1

n∑

j=1

h(ukj)d2kj

=

n∑

j=1

h(uij)∇~yi‖~yi −~xj‖2 = 2 ·
n∑

j=1

h(uij)(~yi −~xj)

which results into the update equation

~y
(t+1)
i =

n∑

j=1

h
(
u
(t+1)
ij

)
~xj

n∑

j=1

h
(
u
(t+1)
ij

) (3.21)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.9: The 2-dimensional example data set, clustered with PFCM (left)
and PNFCM (right) with parameters β = 0.3 and noise distance
dnoise = 0.2.

Analogously to FCM, the iteration of PFCM is stopped if a maxi-
mum number of iterations have been reached or if the maximal move-
ment distance of prototypes drops below a predefined threshold 0 <
ε ∈ R. The runtime complexity for each iteration of PFCM is not as
good as FCM because it requires a sorting of prototypes according to
the distances for each data object. Therefore, it is in O(c ln(c) ·n ·m).

A visual representation of the applied algorithm is presented in
Figure 3.9. The areas with membership level 1 are represented by
coloured areas. Contrary to FCM, the data objects near a prototype
are crisply assigned which hides these data objects from the other
clusters. This ’hiding’ mechanism works also if a data object is not
crisply assigned to one cluster, but is shared by at least two. It still
may have membership levels of 0 to any cluster where the prototype

3.4 fcm with polynomial fuzzifier function 59

is further away, as for example in between the red and blue cluster
in Figure 3.9. Unlike for FCM, the height-lines for membership levels
of 0.5 of the red and blue cluster touch each other, which indicates
that at no place in between, membership levels above 0 are assigned
to the green cluster.

A similar algorithm to PFCM was proposed in [Klawonn, 2004; Kla-
wonn and Höppner, 2003b] and utilises exponential fuzzifier func-
tions, I call it therefore FCM with exponential fuzzifier functions
(EFCM):

h(u) =
1

eα − 1
(eαu − 1)

EFCM has almost the same properties as PFCM, it also requires a
sorting of prototypes w.r.t. their distance to a data object and it pro-
duces areas of crisp membership values similar to PFCM. Due to its
similarity, it is not further discussed in this work.

3.4.1 PFCM with Additional Noise Cluster

Similar to FCM, PFCM can be equipped with a noise cluster, trans-
forming it into PNFCM. The reason to do that is the same for FCM:
data objects that are located far away from all prototypes receive
membership degrees of roughly 1

c for each cluster, which may have
a negative effect on the clustering quality. The noise distance dnoise is
treated like a normal distance to a prototype when sorting the clusters
w.r.t. their distance to a data object. The noise cluster is also included
in calculating čj which means, that a data object ~xj can have a crisp
assignment to the noise cluster if dnoise < dij and čj = 1. Again, the
equations for PNFCM change only in their indices, with cluster index
0 referring to the noise cluster.

JPNFCM(X,U, Y) =
c∑

i=0

n∑

j=1

h(uij)d2ij (3.22)

For i = 0, . . . , c and j = 1, . . . ,n:

u
(t+1)
ij =





1

1−β


1+ (č

(t)
j − 1)β

č
(t)
j∑

k=0

(
d
(t)
ij

)2
(
d
(t)
ϕ(k)j

)2
−β


if ϕ(i) 6 č(t)j

0 otherwise

(3.23)

60 prototype based clustering algorithms

and for i = 1, . . . , c

~y
(t+1)
i =

n∑

j=1

h
(
u
(t+1)
ij

)
~xj

n∑

j=1

h
(
u
(t+1)
ij

) (3.24)

0 2 4 6 8 10 12 14
0

0.5

1

~y1 ~y2 ~y3 dnoise

feature space

m
em

be
rs

hi
p

va
lu

es u0·
u1·
u2·
u3·

Figure 3.10: Membership value levels u for PNFCM with β = 0.3 in a 1-
dimensional scenario with 3 prototypes at x = 3, 4 and 7.

The effect of the noise cluster on the membership values can be
observed in Figure 3.10 as a contrast to Figure 3.8. The prototypes
have a reduced range of influence and the noise cluster effectively
hides outliers from the prototypes. The reduced range also changes
the shape of the crisply assigned area to be more spherical, as can
be observed at the right-hand side of Figure 3.9. Some data objects
might be crisply assigned to the noise cluster, indicated by the grey
coloured area. The clusters form relatively separated islands without
influencing one another significantly if they are sufficiently far apart.
Also the way the prototypes take from their initial position to their fi-
nal position are different w.r.t. PFCM. The green and blue prototypes
for example are hardly influenced, if at all, by data objects other than
the data objects of the clusters they are covering at the end of the
clustering process.

3.5 rewarding crisp memberships fuzzy c-means

The rewarding crisp memberships fuzzy c-means clustering algorithm
(RCFCM), published by [Höppner and Klawonn, 2001; Höppner and
Klawonn, 2003] provides a different approach to acquire a clustering
algorithm similar to HCM. The difference is again modulated by al-
tering the objective function:

JRCFCM(X,U, Y) =
c∑

i=1

n∑

j=1

u2ijd
2
ij −

n∑

j=1

aj

c∑

i=1

(uij −
1

2
)2 (3.25)

3.5 rewarding crisp memberships fcm 61

The parameters {a1, . . . ,an} are not directly chosen by the user, like
for example ω for FCM, they will be discussed in a moment. Due to
the second term, membership values close to 1 or 0 are more favour-
able than membership values close to 1

2 . Again, the objective function
is minimised using the alternating optimization approach. The Lag-
range multiplier is applied to satisfy the partitioning condition in
equation (3.1) which yields the objective function:

JRCFCM(X,U, Y,Λ) =
c∑

i=1

n∑

j=1

u2ijd
2
ij −

n∑

j=1

aj

c∑

i=1

(uij −
1

2
)2

+

n∑

j=1

λj

(
1−

c∑

i=1

uij

)
(3.26)

Calculating the update equations for RCFCM is similar to FCM.
The necessary condition for a minimum of JRCFCM must be satisfied,
which is again that the derivative must be 0.

0
!
=

∂

∂uij
JRCFCM(X,U, Y,Λ) = 2uijd2ij − 2aj

(
uij −

1

2

)
− λj

= 2uij
(
d2ij − aj

)
+ aj − λj

⇒ uij =
λj − aj

2
(
d2ij − aj

)
Again, with Equation (3.1) follows

1 =

c∑

k=1

ukj =

c∑

k=1

λj − aj

2
(
d2kj − aj

)
⇒ λj − aj = 2

1
c∑

k=1

1

2
(
d2kj − aj

)
With inserting this into the equation above and applying the iteration
constant yields

u
(t+1)
ij =

1(
d
(t)
ij

)2
− a

(t)
j

c∑

k=1

1(
d
(t)
kj

)2
− a

(t)
j

(3.27)

From this equation it is intuitively clear, that aj should not be larger
than d2kj, k=1...c because that would yield negative membership val-
ues. Also, the argument was to encourage crisp values and negative
values of aj would have the opposite effect. Therefore, aj ∈

[
0,d2∗j

]

62 prototype based clustering algorithms

with d2∗j = min
{
d21j, . . . ,d

2
cj

}
. If aj is chosen to be 0, RCFCM is

equivalent to FCM. If aj is set to d2∗j, RCFCM is equivalent to HCM
because for each data object exists at least one prototype with a mod-
ified distance of 0 which yields a membership value of 1 and con-
sequently a membership value of 0 for all others. In their original
papers, Höppner and Klawonn suggest to set aj = d2∗j − η with η be-
ing a constant factor 0 6 η ∈ R chosen by the user. However, such an
approach has two drawbacks. First, it is possible that d2∗j < η which
would yield again a negative value for aj. That can be prevented
with an additional rule like aj = d2∗j − η if d2∗j > η and aj = 0 other-
wise. Second and much more important, a constant additional value
is not invariant for linear coordinate transformation. That means, that
η would have to be chosen depending on the numerical size of values
in X, which makes it difficult to chose a useful value for η. Therefore,
I suggest a multiplicative parameter, setting aj = η ·d2∗j with η ∈ [0, 1]
which solves both issues. That way, η fulfils for RCFCM a similar role
as β for PFCM.

0 2 4 6 8 10 12 14
0

0.5

1

~y1 ~y2 ~y3

feature space

m
em

be
rs

hi
p

va
lu

es u1·
u2·
u3·

Figure 3.11: Membership value levels u for RCFCM with η = 0.8 in a 1-
dimensional scenario with 3 prototypes at x = 3, 4 and 7.

The membership function values of the 1-dimensional example are
presented in Figure 3.11. The membership values of RCFCM are no-
ticeably less fuzzy than in FCM, but they do not form crisp plateaus
like in PFCM.There is always the

option to use the
gradient descend

method. Due to its
instability, I would

strongly advise
against it though.

For updating the prototype positions ~y
(t)
i , there are two strategies

that can be applied. The first (lets name it RCFCMA) one is to treat the
aj = η · d2∗j values as ’adaptable constants’ as it is done by Höppner
and Klawonn in [Höppner and Klawonn, 2001; Höppner and Kla-
wonn, 2003]. They are treated as constants because they are not in-
volved in the updating process, but they are not constant in their val-
ues because their value is recalculated in each iteration. The second
option (RCFCMB) is to treat aj(Y) = η ·min

{
d21j, . . . ,d

2
cj

}
as a func-

tion of the prototypes Y. The second option implies that when deriv-
ing the objective function for the prototype vectors, the equation for
aj as a function of the prototypes is taken into account. Both options
have advantages and disadvantages.

3.5 rewarding crisp memberships fcm 63

Starting with RCFCMA, the second term in RCFCM is added to I consider the update
scheme of RCFCMA
as a major flaw in
the algorithm and
I almost discarded
RCFCM all-together
because of that.
However, RCFCMA
works very well, see
Chapter 5

change the way how membership values are calculated (i.e. to force
a more crisp clustering). It is not intended however that it influences
how prototypes are updated. For updating the prototypes, aj are con-
sidered to be constant, and thus, the update equation is derived ana-
logously to FCM with ω = 2:

~y
(t+1)
i =

n∑

j=1

(
u
(t+1)
ij

)2
~xj

n∑

j=1

(
u
(t+1)
ij

)2 (3.28)

Treating the values of aj as constants has one drawback. They are
not involved in the optimization process, but are still changed every
iteration, so the function that is supposed to be optimised (JRCFCM)
changes every iteration. In this case, it is hard to speak of an op-
timization algorithm for JRCFCM because in each iteration a different
equation is optimised. This option of

treating additional
parameters in
FCM as ’adaptable
constants’ is also
used in Competitive
Agglomeration
Clustering [Frigui
and Krishnapuram,
1997] and its
derivatives which
is equally dirty from
the mathematical
point of view.

The alternative is to treat the aj as functions of prototypes and
adapt the prototype update process accordingly. The derivative of
the update equation for RCFCMB is similar to FCM and results in an
update equation:

~y
(t+1)
i =

n∑

j=1

(
u
(t+1)
ij

)2
~xj − η

n∑

j=1

d
(t)
ij=d

(t)
∗j

~xj ·U(t+1)
1
2 ,j

n∑

j=1

(
u
(t+1)
ij

)2
− η

n∑

j=1

d
(t)
ij=d

(t)
∗j

U
(t+1)
1
2 ,j

(3.29)

with U(t+1)
1
2 ,j

=
c∑
i=1

(
u
(t+1)
ij − 1

2

)2
being the additional term of RCFCM.

With this more elaborate version of the update equation, RCFCM is a
proper optimization algorithm. The drawback is, that it imposes some
unwanted and undesired effects during updating the prototypes. As
the minus sign indicates, there are circumstances that the update vec-
tor w.r.t. one data object points away from the data object. In extreme
cases, this can cause the prototype to leave the convex hull of the data
objects, which should never happen. The update vector of yi w.r.t. xj
points away from xj, if the inequality d2ij · u2ij < η · (uij − 1

2)
2 · d2∗j

holds. This can be the case for all prototypes if the highest mem-
bership (associated with the closest prototype) value is significantly
smaller than 1

4 and the parameter η is chosen to be close to 1. This
means that the objective function would be best minimised if all pro-
totypes are further away from this data object, which is obviously not

64 prototype based clustering algorithms

good if this data object is part of a cluster. In practice, this version of
the update equation does not work quite as well as RCFCMA. Often,
prototypes get pushed away from the majority of the data objects and
are unable to converge on a cloud of data objects.

Despite the fact that RCFCMB is superior to RCFCMA in terms of
mathematical correctness, RCFCMA works better in practice and is
therefore the update equation of choice in the reminder of this work.
A noise cluster does not change that (if at all, it makes it worse) and
therefore, in the next subsection, RCFCMB is not further discussed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.12: The 2-dimensional example data set, clustered with RCFCM
(left) and RCNFCM (right) with parameters η = 0.8 and noise
distance dnoise = 0.2.

As usual, the iteration process is stopped as soon as the maximal
change in prototype location is below a predefined threshold. The
runtime complexity is identical to FCM: each iteration of RCFCM is
in O(c ·n ·m). The computation time for the parameters aj is linear in
the number of prototypes for each data object, which does not effect
the class of computational complexity.

The membership height-lines of RCFCM in Figure 3.12 are smaller
and membership levels are more crisp than for FCM in Figure 3.6,
which means the algorithm works as intended. The effect can easily
be controlled by changing the parameter η, which is similar to adjust-
ing the fuzzifier ω in the interval [1, 2].

3.5.1 RCFCM with Additional Noise Cluster

Similar to FCM and PFCM, RCFCM can be equipped with a noise
cluster, changing the abbreviation to RCNFCM. The equations for
RCNFCM change similar as before only in its indices.

JRCNFCM(X,U, Y) =
c∑

i=0

n∑

j=1

u2ijd
2
ij −

n∑

j=1

aj

c∑

i=1

(uij −
1

2
)2 (3.30)

3.6 expectation maximization 65

For i = 0, . . . , c and j = 1, . . . ,n:

u
(t+1)
ij =

1(
d
(t)
ij

)2
− a

(t)
j

c∑

k=0

1(
d
(t)
kj

)2
− a

(t)
j

(3.31)

and for i = 1, . . . , c

~y
(t+1)
i =

n∑

j=1

(
u
(t+1)
ij

)2
~xj

n∑

j=1

(
u
(t+1)
ij

)2 (3.32)

As for PNFCM, the noise distance dnoise is treated as a normal dis-
tance value and is therefore also included in calculating the paramet-
ers aj. Since dnoise is a constant, the aj parameters become bounded
to aj ∈ [0,η · dnoise].

0 2 4 6 8 10 12 14
0

0.5

1

~y1 ~y2 ~y3 dnoise

feature space

m
em

be
rs

hi
p

va
lu

es u0·
u1·
u2·
u3·

Figure 3.13: Membership value levels u for RCNFCM with η = 0.8 in a 1-
dimensional scenario with 3 prototypes at x = 3, 4 and 7.

The change in membership values due to the noise cluster can
again be observed by comparing Figures 3.11 and 3.13. The crispness
of the noise clustering can be observed by comparing the right-hand
side of Figures 3.6 and 3.12. Not surprisingly, the effect is similar as
in NFCM and PNFCM, stronger than for NFCM and less crisp than
for PNFCM.

3.6 expectation maximization

The expectation maximization algorithm (EM) [Bilmes, 1997; Borgelt,
2005; Dempster et al., 1977; Wu, 1983] is a general algorithm to fit
a statistical model to a data set. It is an iterative algorithm that ad-
justs the model parameters to maximise the likelihood of observing

66 prototype based clustering algorithms

the given data set [Fisher, 1925]. In contrast to the last algorithms dis-
cussed in this chapter, it is based on probability theory rather than
fuzzy sets and also the involved variables are interpreted differently
even though they fulfil similar roles. EM leaves the choice of the stat-
istical model open, hence it defines a large family of algorithms. In
this work, only a special type of model, the Gaussian mixture model
(GMM), is discussed because of its similarity to previous algorithms.
For the GMM model, it is assumed that the data is generated by a
mixture of multidimensional normal distributions. Each normal dis-
tribution is parametrised by an expectation vector and a covariance
matrix Σ of sizem×m. In a high-dimensional environment, a general
covariance matrix can pose problems because the high number of in-
volved parameters create too many possibilities to adapt the model to
the data. To avoid problems related to the number of parameters, the
covariance matrix is limited to be a scaled identity matrix: Σ = σ2 · E
with σ2 ∈ R being the classical variance and E the identity matrix. In
other words, only hyperspherical normal distributions are considered
for EMGMM within this thesis.The explanations

below are following
[Borgelt, 2005],

however the
notations are incom-

patible. I am sorry
for that, but given
the content above,

I could not use the
same notation as

C. Borgelt. Also, I
omitted the tailing

C (or in this case
Θ) in the function

bodies behind
the ’;’ in order to

increase readability.

In various publications, for example in [Bilmes, 1997; Borgelt, 2005],
it is written in detail how to arrive at the equation for the expected
log-likelihood (objective) function stated below. The derivation of the
objective function (Equation (3.41)) from first principles is quite com-
plex which is why some of the tedious equations are omitted in this
work. The idea and general approach however is presented because
the interpretation of the mathematical symbols are different than for
fuzzy clustering algorithms.

The Gaussian mixture model consists of c m-dimensional normal
distributions Ni = N(~yi,σ2i), i = 1...c, one for each class/cluster. The
set of expectation vectors Y = {~y1, . . . ,~yc} for the normal distribu-
tions is analogous to the prototypes from previous algorithms, which
is why the same symbols are used for them. The set of variances
S = {σ21, . . . ,σ2c} state the spread of the normal distribution in the
feature space. Each distribution is defined by its probability density
function fNi : Rm → R>0 and to complete the mixture model the
probability that a (any) data object is sampled from (generated by)
Ni is denoted by ri = P(v = i) with v ∈ {1, . . . , c} being a random
variable that models the relative weight of the clusters. The set of
probabilities/weights R = {r1, . . . , rc}, are a-priori unknown and are
therefore part of the optimization process of EMGMM. The values in
R cover all possible values for the random variable v, therefore the
probabilities must sum up to 1:

1 =

c∑

i=1

ri (3.33)

3.6 expectation maximization 67

and can also be interpreted as the discrete probability density func-
tion of v. The EMGMM model is defined by the probability density
function of GMM:

fGMM(~x) =

c∑

i=1

ri · fNi(~x) (3.34)

Since fGMM is a continuous probability density function, the prob-
ability to find a data object at any specific point ~x in the feature
space is 0. But the probability density at ~x might be larger than 0,
which is expressed by stating that the likelihood to find a data ob-
ject at ~x is equal to the probability density at fGMM(~x). Formally, let
~X be a GMM-distributed random variable that lives in the feature
space Rm. P(~X = ~x) = 0 holds for all ~x ∈ Rm, but the likelihood
L(~X = ~x) = fGMM(~x) is not constantly 0. The likelihood to observe an
entire data set X = {~x1, . . . ,~xn} is the combined likelihood to observe
~x1 and ~x2 and . . . and ~xn simultaneously. Within the frame of probab-
ility theory, this can be expressed by multiplying the individual like-
lihood functions, which results in a likelihood function for the data
set X:

L(X) =

n∏

j=1

fGMM(~xj) =

n∏

j=1

c∑

i=1

ri · fNi(~xj) (3.35)

or equivalently by the log-likelihood function

ln (L(X)) =

n∑

j=1

ln

(
c∑

i=1

ri · fNi(~xj)
)

(3.36)

The task of EMGMM is to optimise the parameters of Y, S and R so
that the likelihood of observing the data set X = {~x1, . . . ,~xn} becomes
maximal. The problem with this equation is the sum inside the logar-
ithm, which prevents an effective optimization of the parameters in
Y, S and R using the alternating optimization strategy.

To make the EM algorithm mathematically feasible, it is necessary
to introduce the additional (unknown) class property of the data ob-
jects. It is assumed that for each data object ~xj ∈ X, a hidden inform-
ation vj ∈ {1, . . . , c} exists that describes to which class (normal distri-
bution) ~xj belongs. The above defined random variable v ∈ {1, . . . ,n} In a sense, it is the

set of assignments
V that any cluster-
ing algorithm is
supposed to detect.

models the same information and P(~X = ~xj, v = vj) describes the
joint probability to observe data object ~xj and that it belongs to class
vj. The extended data set (X,V) with V = {v1, . . . , vn} is defined as a
tuple of the data set and the assignment values.

68 prototype based clustering algorithms

f~X,v(~x, i) denotes the joined probability density of observing the ex-
tended data object (~x, i) ∈ (X,V):

f~X,v(~x, i) = P(v = i)
1

(2πσ2i)
m
2

e
− 1
2

d2
ij

σ2
i

= ri
1

(2πσ2i)
m
2

e
− 1
2

d2
ij

σ2
i

Note again, the
different font of the

set of variables V
and the vector of
random variables

~V. I admit, the
font difference is

subtle, but since the
arrow indicates the
vector notation, the

symbols should
be identifiable.

Let the likelihood to observe the extended data set (X,V) be ex-
pressed by the extended (log-) likelihood function:

L(X,V) =
n∏

j=1

f~X,v(~xj, vj)

ln (L(X,V)) =
n∑

j=1

ln
(

f~X,v(~xj, vj)
)

Note that the sum inside the logarithm (see Equation (3.36)) vanished
at the expense of using the unknown values vj. The trick to solve this
problem is to model the class parameters vj as random variables.

Let ~V = (v1, . . . , vn) be a vector of random variables with vj ∈
{1, . . . , c} that model the unknown class properties of the data objects.
Stating the (log-) likelihood with this set of random variables instead
of the unknown class property converts the result of the (log-) likeli-
hood function into a random variable.

L(X, ~V) =

n∏

j=1

f~X,v(~xj, vj) (3.37)

ln(L(X, ~V)) =

n∑

j=1

ln
(

f~X,v(~xj, vj)
)

(3.38)

The probability that data object j belongs to distribution i, given
the observation of ~xj is expressed using:

uij = P(v = vj | vj = i, ~X = ~xj)

= P(v = i | ~X = ~xj) (3.39)

The value is analogous to the fuzzy values of previous algorithms,
which justifies the identical notation.

It is assumed that the expectation of the extended randomised (log-
) likelihood functions E(L(X, ~V)) and E(ln(L(X, ~V))) exist. The condi-
tional expectation of the extended randomised log-likelihood func-
tion, given the observation of the data set X is treated as objective
function JEMGMM = E(ln(L(X, ~V))|X). The task is to maximise the
(conditional) expectation by adjusting the parameters in Y,S,R and
U, hence the name Expectation Maximization. The objective function
is reformulated to apply the alternating optimization strategy, see

3.6 expectation maximization 69

[Borgelt, 2005], pages 142–144 for the derivation of the step between
the first and second line:

JEMGMM(X,U, Y,S,R) = E(ln(L(X, ~V))|X)

=

c∑

i=1

n∑

j=1

P(v = i | ~X = ~xj) ln
(

f~X,v(~xj, i)
)

=

c∑

i=1

n∑

j=1

uij ln
(

f~X,v(~xj, i)
)

(3.40)

=

c∑

i=1

n∑

j=1

uij ln

ri · 1

(2πσ2i)
m
2

e
− 1
2

d2
ij

σ2
i


=

c∑

i=1

n∑

j=1

uij

(
ln(ri) −

m

2
ln(2πσ2i) −

1

2

d2ij

σ2i

)
(3.41)

The values in R sum up to 1 (see Equation (3.33)) which is achieved
in the alternative optimization algorithm by adding Lagrange mul-
tipliers to JEMGMM, similar to previous algorithms. The Lagrange-
extended objective function is therefore:

JEMGMM(X,U, Y,S,R, λ)

=

c∑

i=1

n∑

j=1

uij

(
ln(ri) −

m

2
ln(2πσ2i) −

1

2

d2ij

σ2i

)

+ λ

(
1−

c∑

i=1

ri

)
(3.42)

Using this objective function, the alternating optimization strategy
(see Section 3.1.3) is applied to maximise the parameters in Θ =

{Y,S,R,U, λ} by using a three step process by combining the para-
meters into groups U, Y, S and {R, λ}.

Computing ∂
∂uij

JEMGMM = 0 to calculate the value of uij does not
make sense, since the derivative of JEMGMM does not depend on uij. It
is however possible to calculate uij using its definition (see Equation
(3.39)).

uij = P(v = i | ~Xj = ~xj) = fv|~X(i | ~xj) =
f~X,v(~xj, i)

f~X(~xj)

=
f~X,v(~xj, i)
c∑

k=1

f~X,v(~xj,k)

=
ri · f~X|v(~xj | i)

c∑

k=1

rk · f~X|v(~xj | k)

With introducing the iteration constant, the variables for the expect-
ation step can be calculated:

u
(t+1)
ij =

r
(t+1)
i · f~X|v(~xj | i)

c∑

k=1

r
(t+1)
k · f~X|v(~xj | k)

(3.43)

70 prototype based clustering algorithms

by using the remaining parameters Y(t), S(t) and R(t). In the maxim-
ization step Y(t+1), S(t+1) and R(t+1) are calculated using U(t+1) and
JEMGMM. The parameter for the maximization step are computed, as
usually, by using the necessary condition of a local maxima of the
objective function: setting the derivative 0.

Starting with the new prototype position:

~0
!
= ∇~yiJEMGMM(X,U, Y,S,R, λ)

=

n∑

j=1

uij∇~yi

(
−
1

2

d2ij

σ2i

)
= −

1

2

1

σ2i

n∑

j=1

uij∇~yid
2
ij

= −
1

2

1

σ2i

n∑

j=1

uij(~yi −~xj) =

n∑

j=1

uij(~yi −~xj)

⇒ ~y
(t+1)
i =

∑n
j=1 u

(t+1)
ij ~xj

∑n
j=1 u

(t+1)
ij

(3.44)

Using the results directly for updating the variances yields:Deriving for σ−2i
instead if σi simpli-

fies the equations
significantly. That

is also the reason
for not simplifying
JEMGMM w.r.t. σ
in Equation 3.41.

0
!
=

∂

∂σ−2i
JEMGMM(X,U, Y,S,R, λ)

=

n∑

j=1

uij
∂

∂σ−2i

(
−
m

2
ln(2πσ2i) −

1

2

d2ij

σ2i

)

=

n∑

j=1

uij
∂

∂σ−2i

(
−
m

2
ln(2π) +

m

2
ln(σ−2i) −

1

2
d2ijσ

−2
i

)

=
1

2

n∑

j=1

uij
∂

∂σ−2i

(
m ln(σ−2i) − d2ijσ

−2
i

)
=
1

2

n∑

j=1

uij
(
mσ2i − d

2
ij

)
= mσ2i

n∑

j=1

uij −

n∑

j=1

uijd
2
ij

from which follows:

(
σ
(t+1)
i

)2
=
1

m

∑n
j=1 u

(t+1)
ij

(
d
(t+1)
ij

)2
∑n
j=1 u

(t+1)
ij

(3.45)

And finally, updating the marginal probabilities:

0
!
=

∂

∂ri
JEMGMM(X,U, Y,S,R, λ)

=
∂

∂ri

n∑

j=1

uij ln(ri) +
∂

∂ri
λ

(
1−

c∑

k=1

rk

)

=

n∑

j=1

uij
1

ri
− λ

⇒ ri =
1

λ

n∑

j=1

uij (3.46)

3.6 expectation maximization 71

Using the property that all ri have to sum up to one yields:

1 =

c∑

k=1

rk =

c∑

k=1

1

λ

n∑

j=1

ukj =
1

λ

c∑

k=1

n∑

j=1

ukj

⇒ λ =

n∑

j=1

c∑

k=1

ukj

︸ ︷︷ ︸
=1

= n (3.47)

Replacing λ in equation (3.46) and adding the iteration variable leads
to

r
(t+1)
i =

1

n

n∑

j=1

u
(t+1)
ij (3.48)

Now, all update equations for the maximization step are complete.
The iteration process is terminated as before, if the prototype loca-
tions in Y, the variances S and marginal probabilities R change less
than a threshold ε > 0. Y, S and R have to be stored anyway, which
contain m · c+ c+ c values which is much less, assuming m << n. In case of EMGMM,

I did not found a
way to implement
the algorithm
without storing
the membership
value matrix. The
computations of
Y, S and R require
the values within
U and they cannot
be computed in
parallel to U because
S depends on the
final values of Y.

The clustering process with EMGMM is quite different from the
above discussed fuzzy approaches. The difference comes from the
ability of EMGMM to adjust to the size as well as the number of data
objects within a cluster. So it is much more adaptive than the fuzzy
approaches, at the same time, it is also more sensitive to get stuck in
a local minima that is not optimal for clustering purposes. As Borgelt
pointed out in [Borgelt, 2005], a globally optimal solution is that all
clusters but one collapse on just one data object while the remaining
cluster covers almost the entire data set. Therefore, the variance of the
clusters must be restricted to a certain interval. Also due to the fact
that exponential values are to be calculated, numerical problems are
likely to arise which is another reason to consider an interval of valid
values for the variances of individual prototypes.

0 2 4 6 8 10 12 14
0

0.5

1

~y1 ~y2 ~y3

feature space

m
em

be
rs

hi
p

va
lu

es u1·
u2·
u3·

Figure 3.14: Conditional probabilities u for EMGMM with a variance σ2 =

0.3 for all prototypes in a 1-dimensional scenario with 3 proto-
types at x = 3, 4 and 7.

There are further differences regarding the conditional probability
values (membership values) w.r.t. FCM and alike. In fuzzy algorithms,

72 prototype based clustering algorithms

the membership value near a prototype always approaches 1 for that
cluster. For EMGMM, this is not necessarily the case as the condi-
tional probability values are calculated in a different way. The effect
can be observed in Figure 3.14, the location of the prototypes might
be quite different than the location of the maximal conditional prob-
ability for one cluster. This effect is partly artificial because with the
EMGMM algorithm, it rarely happens that two prototypes come close
to each other and have the same variance and cluster probability. So
in reality, this situation is less likely to occur.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.15: The 2-dimensional example data set, clustered with EMGMM.

The initialization for EMGMM is also changing slightly, because all
three sets of variables Y, S and R have to be initialised. As before, Y is
initialised randomly. However, there is no reason to initialise S and R
randomly. It is enough to set all values of S to a reasonable value, for
example ∀σ2 ∈ S set σ2 = E(D2

E(X)
(X)). The mean of the data set is

used as query point ~q = E(X) and the mean of the squared distance
to the query point ~q is used for the variance σ2. Finally, the values of
R can be simply set to 1

c which induces no preference for any cluster:
∀r ∈ R set r = 1

c .
Applied on the example data set, EMGMM produces a quite com-

mon effect with expectation maximization and a Gaussian mixture
model. 2 of the 3 clusters correctly cover their respective data objects,
while one cluster becomes huge and covers not only the data objects
of one class, but also the noise data objects of the entire data set. SoTo my knowledge,

there is no version
of the EM algorithm

with the Gaussian
mixture model,

containing a noise
cluster. It might be
possible to develop

one version though.

one of the clusters effectively fulfils the role of the noise cluster, which
is not available for EMGMM. Limiting the diameter of the clusters is
one way of mitigating the effect, if the size of the clusters is known in
advance, alternatively, one additional cluster can be introduced that is
initialised with a larger variance to soak up all the noise data objects.
Another effect on EMGMM can be observed: the iteration process is
not as straight forwards as for the other fuzzy algorithms. It is very
likely that the prototypes change directions and run in loops because

3.7 applying prototype based clustering algorithms 73

the variance of the individual normal distributions is changing over
time.

3.7 applying prototype based clustering algorithms

Applying clustering algorithms is not trivial. There are several para-
meters to consider, most importantly the number of clusters but also
algorithm specific parameters and a suitable termination threshold
for iterative algorithms. In this section, these topics are discussed as
well as: initialization methods, termination detection and cascading
clustering algorithms.

0

0.5

1

~y1 ~y2 ~y3

FCM membership values plot

ω = 2.0
u1·
u2·
u3·

0

0.5

1

~y1 ~y2 ~y3

m
em

be
rs

hi
p

va
lu

es

ω = 1.5
u1·
u2·
u3·

0 2 4 6 8 10 12 14
0

0.5

1

~y1 ~y2 ~y3

feature space

ω = 1.1
u1·
u2·
u3·

Figure 3.16: Membership value levels u for FCM with ω = 1.2, ω = 2 and
ω = 5 in a 1-dimensional scenario with 3 prototypes at x = 3, 4
and 7.

3.7.1 Fuzzifier Parameters

The fuzzifier ω in FCM and NFCM (Section 3.3), the β parameter
in PFCM and PNFCM (Section 3.4) as well as the distance correc-
tion parameter η for RCFCM and RCNFCM (Section 3.5) all serve a

74 prototype based clustering algorithms

similar purpose. With them, it is possible to adjust the level of fuzzi-
ness/crispness. Consider again the 1-dimensional data set to plot the
membership values, presented in Section 3.1.5. In Figures 3.16, 3.17

and 3.18 the membership values for these three clusters are plotted
w.r.t. the spatial location of the prototypes. In a low dimensional data
set, these parameters can be used to adjust the form of clusters, in
particular the parameters control how much clusters should overlap.
In the above mentioned figures, it is easy to see that the parameters
ω, β and η can be used to control the relative size of the clusters.

0

0.5

1

~y1 ~y2 ~y3

PFCM membership values plot

β = 0.1
u1·
u2·
u3·

0

0.5

1

~y1 ~y2 ~y3

m
em

be
rs

hi
p

va
lu

es

β = 0.3
u1·
u2·
u3·

0 2 4 6 8 10 12 14
0

0.5

1

~y1 ~y2 ~y3

feature space

β = 0.7
u1·
u2·
u3·

Figure 3.17: Membership value levels u for PFCM with β = 0.2, β = 0.5 and
β = 0.8 in a 1-dimensional scenario with 3 prototypes at x = 3,
4 and 7.

In a high-dimensional data set, overlap is not clearly defined be-
cause the separation of data objects and the definition of the centre
of a cluster is ambiguous. Since overlap is not a viable concept in
high dimensions, the fuzzifier parameters can be used to counter the
effects of high-dimensional data sets, as it is done for FCMm and
NFCMm, see Section 3.3.2 and Section 5.1.3 for more details.

There is no general best way of selecting of the fuzzifier parameter.
Some times, the best strategy is try and error or using a Monte-Carlo
simulations.

3.7 applying prototype based clustering algorithms 75

0

0.5

1

~y1 ~y2 ~y3

RCFCM membership values plot

η = 0.1
u1·
u2·
u3·

0

0.5

1

~y1 ~y2 ~y3

m
em

be
rs

hi
p

va
lu

es

η = 0.5
u1·
u2·
u3·

0 2 4 6 8 10 12 14
0

0.5

1

~y1 ~y2 ~y3

feature space

η = 0.9
u1·
u2·
u3·

Figure 3.18: Membership value levels u for RCFCM with η = 0.2, η = 0.5
and η = 0.8 in a 1-dimensional scenario with 3 prototypes at
x = 3, 4 and 7.

3.7.2 (Variable) Noise Distance

Another parameter is the noise distance dnoise, relevant for NFCM,
NFCMm, PNFCM and RCNFCM (Sections 3.3.1, 3.3.2, 3.4.1 and 3.5.1).
Originally, the noise distance is used to limit the influence of noise
and outliers during the clustering process [Dave, 1991]. This works
quite well in low dimensions, if the size of the classes can clearly be
specified. However, it is not always possible to determine the size
of the classes or the classes might vary greatly in size and shape in
which case a best estimate has to be sufficient. Using noise clustering
seems in general a good idea because it removes the inconsistent as-
signment of data objects, that are far away from all clusters. A conser-
vative estimation (i.e. larger than the best value) of the noise distance
might often be advisable because underestimating the noise distance
can prevent a successful clustering, see Figure 3.19.

Setting the correct noise distance for a given problem is not easy.
To ensure a good covering of the classes, the noise distance should
be larger than the radius of a class. Otherwise data objects that are
far away from the centre of a class might be assigned to the noise

76 prototype based clustering algorithms

cluster instead of a cluster. Davé proposed in [Dave, 1991] to use a
statistical method of pairwise data object distances to estimate the
noise distance. Such a statistics is in O(n2), which is not practical in
many cases. Alternatives have been proposed for example in [Cimino
et al., 2005] where they redefine the noise distance during the itera-
tion process of the clustering method. The success of their method
greatly depends on how the cluster boundaries are shaped, it only
works well on quite crisp cluster boundaries.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.19: The 2-dimensional example data set, clustered with PNFCM
(left) and RCNFCM (right) with parameters β = 0.3, η = 0.8
and noise distance dnoise = 0.1.

The noise cluster can be quite troublesome in high-dimensional
data sets because the noise distance limits the distance until which
data objects have a noticeable influence on the prototypes of the reg-
ular clusters. In case of PNFCM, this influence on a data object even
drops to 0 if it is far enough away from the prototypes. On the one
hand, this is an intended effect, on the other hand, this can pose a
serious problem. After initialization, it cannot be guaranteed that all
prototypes are located near a class of the data set. It might even be
the case that only some random noise data objects are within the in-
fluence distance of that prototype which is limited due to the noise
cluster. In this case, the prototype is ’lost’ for this clustering process
because it will never find a class. As an example of this case, see
Figure 3.19, where the noise distance is only half of its value in the
right-hand sides of Figures 3.9 and 3.12. As a result, in both cases, the
blue cluster only represents noise data objects.

To avoid such a situation, the noise distance can be set to a very
large value at the beginning of the iteration process, lowering it over
time. Any decreasing function with a lower limit dnoise can be used.
Because the problem has a similar character like finding an optimum
for a very epistatic optimization problem, a function similar to simu-
lated cooling [Kirkpatrick et al., 1983] was chosen. Let d(t)noise denote

3.7 applying prototype based clustering algorithms 77

the noise distance, depending on the number of iterations t and is
defined as

d
(t)
noise = dnoise + (dmaxnoise − dnoise)e

−αt (3.49)

which is visualised in Figure 3.20 and used during the experiments
in the next chapter. The parameter dmaxnoise describes the maximal
noise distance in the first iteration while α describes how fast the
true noise distance dnoise is approached. This way of handling noise
may be combined with a minimal number of iterations, to ensure
that the algorithm terminates when the variable noise distance d(t)noise
is sufficiently low. All these new parameters are quite easy to set for
a clustering algorithm.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

1+ 4e−0.2t

dnoise

t

d
(t

)
no

is
e

Figure 3.20: Variable noise distance, with dnoise = 1, dnoisemax = 5 and α =

0.2.

Unfortunately, the variable noise distance imposes a serious math-
ematical problem. Clustering algorithms as described above are op- I have not seen

any proof of the
principle correctness
of clustering algo-
rithms other than
HCM and FCM.
The clustering
community seems
to be quite sloppy on
this, me included.

timization algorithms. A change in parameters like the variable noise
distances creates a different optimization problem in each iteration.
This is the same problem like in the update equation for RCFCM, see
Section 3.5. It may happen that the objective function value increases,
due to the change in parameter, even though the optimization pro-
cedure is to minimise the objective function. This implies that using
this approach, it is not possible any more to prove that the algorithm
approaches a local minimum over time.

The mathematical problem can be avoided if the algorithm is ap-
plied in two stages. In the first stage, the noise distance is reduced as
described above. In the second stage, the location of the prototypes In retrospect, I

should have done
that to avoid the
mathematical
inconsistencies.

are used to initialise the same algorithm and perform the clustering
process with a fixed noise distance, see also Section 3.7.6.

3.7.3 Number of Clusters

All the clustering algorithms, discussed previously in this chapter re-
quire the number of clusters as input. This number should match the

78 prototype based clustering algorithms

number of classes in the data set, which is often unknown. Determin-
ing the number of classes in a data set is very difficult and many pa-
pers in clustering science are dedicated to that problem, see [Borgelt
and Kruse, 2006; Cuevas et al., 2000; Fraley and Raftery, 1998; Frigui
and Krishnapuram, 1996, 1997; Ray and Turi, 1999; Tibshirani et al.,
2001; Winkler et al., 2010b] just to name a few. Since even the term
’class/cluster’ depends on the problem at hand, finding the number
of classes in a data set cannot be described in general. As a result,
there are many approaches to identify this number. An exhaustive
covering of the topic would be outside the scope of this work, only a
short introduction can be given here.

If a good method is available to estimate the quality of clustering
results, a try and error approach can be used. The data set is clustered
several times with different number of clusters, and the result which
yields the best score is used. Such an approach is used by several
authors, for example in [Borgelt and Kruse, 2006; Gath and Geva,
1989; Ray and Turi, 1999; Tibshirani et al., 2001]. It should be noted
however that most approaches are problematic for high-dimensional
data analysis because quality estimation is unstable and unreliable,
see Section 5.3 for more information.

Other methods, based on the local density of data objects like DB-
Scan [Ester et al., 1996] and in general hierarchical clustering methods
or estimating the number of connected components [Cuevas et al.,
2000] are proposed as well. These methods are not well suited forI made extensive

tests with DBScan
on high-dimensional

data sets. I was
unable to find

any combination
of parameters

for DBScan that
would work for

data sets where the
classes are not very
concentrated. I did

not try OPTICS
(see [Ankerst et al.,

1999]) though,
which is supposedly

should work better.

high-dimensional data sets because the density term is ill defined
for high-dimensional data due to the concentration of distances. For
example, when applied on high-dimensional data sets, DBScan pro-
duces either tiny clusters with lots of data objects in the noise cluster
or one cluster covers the entire data set.

A third way of finding the optimal number of clusters in a data set
is presented in [Frigui and Krishnapuram, 1997] as well as in [Winkler
et al., 2010a]. The idea is, to start with an overestimation of prototypes
which is lowered during the process of an iterative clustering method
until the optimal number of clusters is found. Both ideas have a good
potential, but it should be noted that it is difficult to find good para-
meters for the algorithms to run properly and both seem to be not
well suited for high-dimensional data.

3.7.4 Initialization of Prototypes

If clustering is the
optimization of a set
of parameters to find

a local minimum,
initialization is

the algorithm to
determine the best

local minimum.

Once the number of clusters is determined, initializing the prototypes
(i.e. finding their initial location) can strongly influence the result of
the clustering process. This is especially true for HCM, where pro-
totypes can be stuck without representing a single data object (or
representing only noise data objects) due to an unlucky initialization.
The quality of other algorithms depend on the initialization as well, a

3.7 applying prototype based clustering algorithms 79

bad initialization can basically prevent a successful clustering process,
even if that is unlikely. There are several approaches to mitigate that
risk and to increase the clustering quality and reduce the number of
iterations needed for performing the algorithm.

If the data does not contain much noise or outliers, the maximindist
method [B.G. Batchelor, 1969] can be used, which samples the ini-
tialization positions from the data and maximises the pairwise dis-
tances of the samples. As high-dimensional data sets are seldom en-
countered without noise, this method is usually not a good option.

More sophisticated methods like mountain clustering [Chiu, 1994;
Yager and Filev, 1994] are in the region of complexity as a full clus-
tering method, hence can be treated as one. Other methods based
on density or hierarchical clustering methods are also possible. But
due to the problem that the density is only weakly defined in high-
dimensional data sets, they do not provide helpful alternatives in
high-dimensional data sets. Another alternative, specialised for high-
dimensional data is presented in [Winkler et al., 2013]. The trick in
this approach is, to use an alternative distance function which spe-
cifically counters the effects of distance concentration. Starting with
an overestimation of prototypes that reduces over time can result in
a combined estimation for the number of prototypes and a useful ini-
tial position for them. The drawback of this approach is, much like
the variable noise distance, that it cannot be proven to produce an
optimal result. Therefore, it might be used for initialization purposes
only.

There are also arguments to not use specialised initialization meth-
ods. If a clustering algorithm has to rely on a good initialization to be
able to work properly, its result strongly depends on the initialization.
In that sense, the initialization algorithm determines the clustering
result and therefore, the initialization algorithm is the true clustering
algorithm in this case and must face the same problems as regular
clustering algorithms. Therefore, sophisticated initialization methods
are in truth clustering algorithms, which just shifts the problem from
one part of the computation into another but does not solve the prob-
lem.

The alternative to data driven initialization is randomly initialised
prototypes. The most simple initialization is, sampling the prototype
locations from a uniform random distribution on the feature space.
This method is rather data independent and fast. Since the random
sampling of initial positions influences the clustering result, it is often
helpful to do several runs with different samples of initialization po-
sitions and use the best result. This procedure however can be slower
than using data driven initialization methods.

80 prototype based clustering algorithms

3.7.5 Termination Threshold

The iteration process of the above mentioned clustering algorithms
can be terminated using several methods. Usually, the maximum
number of iterations tmax is limited to avoid arbitrary long execu-
tion times of the algorithm. All of these methods require a thresholdFrom experience,

tmax = 50

iterations is enough
to converge to a
useful solution.

ε ∈ R+, which is user defined.

• It is possible to detect when the membership matrix does not
change significantly any more.
Formally, if maxi=1...cmaxj=1...n |u

(t)
ij − u

(t−1)
ij | < ε holds, the

iteration process is terminated. However, this implies that the
membership matrix must be stored, which is not necessary in
most cases to perform the algorithm. Therefore, especially for
data sets with many data objects and clusters, this is a serious
overhead in storage complexity.

• If the objective function value does not reduce significantly from
one iteration to the next, the iteration process is stopped. Cal-
culating the objective function value J during iteration is pos-
sible with little overhead in the above mentioned clustering
algorithms. So if |J(t) − J(t−1)| < ε, the algorithm is stopped.
There is again a drawback. From a users perspective, it is hard
to understand how much change in objective function value is
significant. For this reason, this approach is not very practical
and seldom used.

• If the change of location of the prototypes is below a certain
threshold, the algorithm is terminated. This approach is both
practical and easy to understand. The algorithm is stopped if
maxi=1...c d(y(t)i,y(t − 1)i) < ε is true. A drawback of this
approach is, that the threshold ε depends on the scale of the
data set, which has to be taken into account by the user.

• Using the euclidean distance in this case seems natural, but is
misleading in high dimensions. Since the prototypes move in m
dimensions, the (euclidean-) distance depends on the number
of dimensions. To avoid this dependency, the maximum norm
dmax instead of the euclidean norm d can be used, taking only
the dimension of maximum movement into account:

dmax(y
(t)
i ,y(t−1)i) = max

k=1...m
|y

(t)
i,k − y

(t−1)
i,k |

Due to its independence w.r.t. the number of dimensions, the last
option is preferred in this work.

3.7 applying prototype based clustering algorithms 81

3.7.6 Cascading Clustering Algorithms

There are many situations, where one application of clustering is not
sufficient. For example, if the data set is composed of many small
classes, which in turn group together to form larger structures. Or if
the spatial size of classes as well as the number of data objects per
class is very divergent. There are countless more examples where it is
useful to apply an algorithm on subsets of the data, based on a previ-
ously gained partitioning. This kind of cluster algorithm application
is out of scope of this work, but it should be noted that in high-di-
mensional data sets, a clear grouping of smaller clusters might not be
detectable.

In a different situation, it might be helpful to use the prototype loc-
ations of one clustering run as initialization for a different algorithm.
This way, it is possible to improve the stability of an otherwise un-
stable clustering algorithm by subjecting to the problems discussed
in Section 3.7.4.

82 prototype based clustering algorithms

4
B E N C H M A R K S

In the last chapter, in Sections 3.2 to 3.6, 10 clustering algorithms have
been presented: HCM, FCM2, NFCM2, FCMm, NFCMm, PFCM, PN-
FCM, RCFCM RCNFCM and EMGMM. Thesis questions Q2, Q3 and
Q4 are approached by applying a benchmark on these 10 algorithms.
Here, a benchmark is understood as a set of tests that can be used
to measure the quality of the mentioned algorithms. Two additional
tools are required to achieve that: suitable benchmark data sets and
measures to determine the quality of the clustering algorithms res-
ults. Both topics are not trivial and are covered within this chapter,
beginning with the generation of high-dimensional data sets.

A benchmark as opposed to a real application is useful because it
provides a controlled testing environment where the result is known
and it is possible to apply the algorithms on a large variety of data
sets. By changing the parameters (e.g. number of dimensions, number
of classes) of the data generation process, it is possible to analyse the
influence of these parameters on the applicability of the algorithms.
The biggest disadvantage w.r.t. a real application is however, that a
benchmark can only cover a limited variety of data sets and any real
data set is likely to be different than any benchmark data set. The
relevance of the benchmark is therefore limited by the variety of data
sets that are used. In this work, four different families of data sets are
utilised, presented in the first section of this chapter, Section 4.1.

The quality of a clustering result can be estimated in at least two
ways. In Section 4.2 a method is presented to judge a clustering res-
ult by comparing it with the correct result. This is of course only
possible if the true clustering result is known like in this benchmark
environment. In reality, the true result is not known, so the quality of
clustering results have to be determined using a different approach.
Measures to determine the cluster quality, based on the abstract no-
tion of a good clustering result and in the absence of the knowledge
of the true result, are presented in Section 4.3.

Finally, the execution and how the benchmark results are inter-
preted is presented in Section 4.4. The results and answers to the
thesis-questions Q2, Q3 and Q4, are presented in the next chapter,
Chapter 5.

83

84 benchmarks

4.1 artificially generated data sets

Four different families of data sets are used for the benchmark in
this work. A data set family consists of a collection of data sets that
are generated in a particular way. The first two families are fairly
simple mixtures of normal distributions and might be considered as
the perfect data sets for prototype based clustering. The third data
set is born from the idea to provide a data set where the classes show
complex, non linear dependencies among its dimensions that is likely
to be found in reality. That is to say, the classes should not mimic
reality in the sense that they are simulations of existing data. But
the data set is supposed to have similar features, like extending and
overlapping non-ellipsoidal shapes with strange and unpredictable
geometry. The last family of data sets lives in a boolean environment,
where all dimensions are either 0 or 1.

The 4 families of data sets have several things in common. To an-
swer Q2, Q3 and Q4, all data sets are scalable in the number of di-
mensions m and the number of classes c. The data objects within the
individual classes are always generated independently of any other
class. This property is utilised by generating the classes before assem-
bling the data sets. So for each number of dimensions m and for each
data set family, a set of 250 classes are generated. The data sets within
a data set family are then assembled using a random selection of the
250 pre-generated classes. The data objects live in Rm and are not
strictly bound to the unit hypercube [0, 1]m, but are generated close
to it so that no rescaling prior to applying the clustering algorithms is
necessary. Finally, there are no missing values and no extreme outliers
or invalid values in the data.

The description of how the data sets are generated is necessarily
very technical. Only a short overview of the 4 data set families is
presented below, the details are described in Appendix A. Since the
data sets are assembled from independently generated classes, the
description below focusses on the generation of the classes rather
than the data sets. Only in the first two data set families, an assembled
data set is shown.

4.1.1 D1: Spherical Normal Shaped Classes of Identical Size

The first data set family D1 is deliberately designed to be easy for
clustering algorithms. It can be used as a sanity check whether or notOf course, you know

from my introduc-
tion in the first

chapter, that at least
standard FCM2
fails the ’sanity

check’ for m = 50.

a clustering algorithm produces a sensible result on high-dimensio-
nal data and it can be expected that any clustering algorithm gen-
erates almost perfect results on any data set of the D1 family. The
classes for D1 are sampled from spherical normal distributions with
identical variance σ2 = 0.01 and 1000 data objects per class. The ex-
pectation vectors of the generating normal distributions are sampled

4.1 artificially generated data sets 85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1: Examples of two data sets from families D1 (left) and D2 (right).
Both with 20 classes and in case of D2 with 10% noise.

uniformly from the unit hypercube and therefore do not need to be
parametrised. By placing the expectation vector inside the unit hyper-
cube, the data objects, sampled from the normal distributions might
occasionally be sampled outside the unit hypercube, but they are still
close enough such that no rescaling of the data sets is necessary.

In the left-hand side of Figure 4.1, a 2-dimensional example of D1
is presented where the colour indicates the class information. In 2-
dimensions, it is likely, that some classes overlap and it is quite pos-
sible that some classes are clustered within the same cluster due to
the overlap. However, in dimensions higher than 5 or for a low num-
ber of classes, this data set family should be perfect for prototype
based clustering and any decent clustering algorithm should be able
to find a perfect representation of the classes.

4.1.2 D2: Spherical Normal Shaped Classes of Various Size with Noise

The second family of data sets D2 is similar to the first, but more
challenging. The classes are still sampled from spherical normal dis-
tributions, but with variable variance and number of data objects per
class. The number of data objects is sampled from a uniform distribu-
tion on the interval between 200 and 1800. The variance of the normal
distributions (classes) is also sampled from a uniform distribution on
the interval between 0 and σmax = 0.02, independently of the number
of data objects. Finally, to each data set in D2, a fixed fraction of noise
data objects are added that are sampled from a uniform distribution
on the unit hypercube [0, 1]m. The number of noise data objects is set
to be 1/10th of the total number of data object in a data set. Since the
number of data objects per class is randomly sampled, the number of
noise data objects is determined after the classes for one data set are
selected. The right-hand side of Figure 4.1 shows a 2-dimensional ex-
ample of D2. As in case of D1, data objects might be sampled outside

86 benchmarks

of the unit hypercube, but due to the construction of the classes, the
data objects cannot be sampled far away from it.

4.1.3 D3: Distorted Classes Data Set

Data sets of the families D1 and D2 are very unrealistic. In reality,
data sets do not contain neat and spherical classes, they can have all
kinds of complex shapes. The family of data sets D3 is designed to
mimic such complex dependencies by producing very distorted and
non-ellipsoid shaped classes.

A data set of the D3 family is constructed as before, from c, in-
dependently generated classes in a m-dimensional real vector space,
bound to the unit hypercube. All classes contain a random number
of data objects, again sampled from a uniform distribution on the in-
terval [200, 1800]. The final data sets of D3 also contains noise data
objects, obtained in the same way as for data sets in D2.

The process of building the classes however, is much more com-
plicated as in case of the D2 data set family. The details of the genera-
tion process are described in Appendix A.3, only the general strategy
without too much detail is described here. Each class is generated
individually and the shape of the class is generated iteratively. The
iteration process is started with a sample from simple probability dis-
tributions, a mixture of an m-dimensional normal distribution and a
uniform distribution, bound on the unit hypercube [0, 1]m. After ini-
tialization, unary and binary distortion functions are applied on the
data objects of the class, forging distortions and pairwise dependen-
cies within each iteration. The functions are randomly selected from
a pool of predefined functions. In total, tmax = 2 ·m iterations are
performed, which consist of three individual steps:

1. For all dimensions k ∈ {1, . . . ,m}, randomly select one unary
function f ∈ {u1, . . . ,u6} and apply it on dimension k of each
vector in a class ∀~x(t) ∈ C(t): ~x ′k = f(~x

(t)
k), creating C ′ in the

process.

2. For all dimensions k ∈ {1, . . . ,m}, randomly select one other
dimension r ∈ {1, . . . ,m}, r 6= k and randomly select one binary
function g ∈ {b1, . . . ,b5} and apply it on dimension k of each
vector in the class ∀~x ′ ∈ C ′ : ~x ′′k = g(~x ′k,~x ′r), creating C ′′ in the
process.

3. For all dimensions, k ∈ {1, . . . ,m} normalise the data to keep it
well confined in the unit hypercube, creating the final value of
x
(t+1)
k for this iteration step: ∀~x ′′ ∈ C ′′ : ~x(t+1)k = normalise(~x ′′k),

generating C(t+1)

Each iteration step is applied independently from the previous until
tmax = 2 ·m iterations are reached and the process is stopped. After

4.1 artificially generated data sets 87

the iteration process is finished, the data objects within the class are
pushed in direction of one of the randomly selected corners of the
unit hypercube. For extensive detail on the exact process to generate
the classes, please see Section A.3 within the appendix.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.2: Four examples of 10-dimensional classes of the D3 data set fam-
ily, projected on 2 dimensions.

I use 5000 data
objects for the figure
because the complex
structure of the
classes can be better
visualised with 5000
rather than ≈ 1000
dots.

As an example, in Figure 4.2, four different classes that are gener-
ated in 10 dimensions, with 5000 data objects each are shown. This
process of generating classes works quite well until around m = 1000

dimensions, at which point the 2-dimensional projection of the data
distribution becomes very similar to a projection of a normal distri-
bution. In other words, the distortion becomes so complex, that the
sampling of a few thousand data objects is not enough to recognise
the structure of the class. To cover even higher dimensions, the num-
ber of data objects must increase exponentially with the number of di-
mensions, as already mentioned in Section 2.5. Within the benchmark
for this work, the number of dimensions is limited to 100, which is
well within the range of useful parameters for this method of artificial
data generation.

88 benchmarks

4.1.4 D4: Corner Classes Data Set

The fourth and final data set family D4 for the benchmark consists
of binary data objects that live in the corners of the unit hypercube
{0, 1}m. Of course, there are dedicated approaches to analyse binary
data like for example Frequent Pattern Mining [Aggarwal and Srik-
ant, 1994]. But these approaches are not always best suited for cluster-
ing. In reality, it is very rarely the case that there is a clustering algo-
rithm that is ideal for a given problem. In this context, it is particular
interesting how the prototype based clustering algorithms deal with
data, that is not really suited for prototype based clustering, such as
the family of D4 data sets. The data sets within the D4 data set family
are designed to be similar to Microarray data (see Section 1.1.6) or the
aircraft movement data set, presented in Section 1.1.3.

The generation of classes for data sets within D4 is done by gener-
ating seeds that are then randomly changed in order to generate data
objects of the classes. Again, the number of data objects per class
is sampled from a uniform distribution between 200 and 1800 data
objects. As for D2 and D3, the data sets in D4 have 10% randomly
generated noise data objects.

The seed of one class is sampled from one of the corners of the
unit hypercube, where a random number with expectation

√
m of

the dimensions are sampled with 1 entries and the remaining with 0.
Then, the data objects of that class are generated by randomly altering
some entries of the seed, flipping some of the 1 entries to 0 and some
of the 0 entries to 1. Details of the process are described in Appendix
A.4. As for the data set family D3, the classes in D4 are generated
independently from one another, hence the generation of classes is
done one class at a time and a data set is assembled from previously
generated classes.

For example, a 10-dimensional seed may be used to produce the
following 6 data objects of one cluster:

dimension: 1 2 3 4 5 6 7 8 9 10

seed: 0 1 0 0 0 0 1 0 1 1

data obj. 1: 0 0 0 0 0 0 1 1 1 1

data obj. 2: 0 1 0 1 0 0 1 0 0 0

data obj. 3: 0 1 1 0 0 0 1 0 1 1

data obj. 4: 0 1 0 0 0 0 1 0 0 1

data obj. 5: 0 1 1 1 0 0 1 0 1 1

data obj. 6: 0 1 0 1 0 0 1 0 0 0

The red entries in the data object list show the places where 0 or 1
entries are switched to be the opposite. In this way, the data objects of
one class are reasonably similar to one another and group around the
seed. The noise data objects are sampled in the same way as seeds are
generated, but without changing any of the entries because no group
structure is generated.

4.2 external cluster quality measures 89

4.2 external cluster quality measures

The measurement of the quality of clustering results is based on
comparing two (fuzzy) partitions of the data set X. In particular, the
(fuzzy) membership matrix U (see 3.1.4) that comes out as the result
of a clustering process of one clustering algorithm can be compared
with another (fuzzy) membership matrix that comes from another
algorithm or is known from the class structure of the data. Within
this work, it is not particularly interesting to compute the similarity
of the results of two clustering algorithms. It is however interesting
to compute the similarity of the partitioning as generated by an algo-
rithm, with the true class structure of the data set as it is known from
the generation of the data sets within the benchmark. The term ex-
ternal for clustering quality measures means, that external knowledge
(in this case the class information) is used to measure the quality of
the clustering result. The algorithm that compares two (fuzzy) mem-
bership matrices is described in the next two subsections, starting
with the F1 measure in a two-class problem, followed by an extension
of the F1 measure to the multi-class problem.

4.2.1 F1 Measure for Two-Class Problems

The F1 measure [van Rijsbergen, 1979] was originally designed for
evaluating the quality of two-classes problems. The two-class prob-
lem refers to a partitioning of a data set that consists of one class of
interest and one background class. The concept of precision and re-
call [van Rijsbergen, 1979] is used to quantify the classification quality
for a two-class problem. Let X = {~x1, . . . ,~xn} be a data set, C ⊂ X be
the class of interest and B = X \C be background data objects that do
not belong to the class of interest. An algorithm, that predicts which
object belongs to the class and the background respectively might
determine the cluster C ′ and the background set B ′ = X \C ′.

Precision is defined as the fraction of correctly classified data ob-
jects relative to the number of data objects, identified to be members
of the class of interest.

p =
|C∩C ′|
|C ′|

Similarly, recall is defined as the fraction of correctly classified data
objects relative to the number of data objects, that actually are mem-
bers of the class of interest.

r =
|C∩C ′|

|C|

In other words, precision describes, how many of the data objects
identified as being in the class C ′, are correct but it does not say

90 benchmarks

anything about how many are left out. This is covered by recall, which
counts the number of correctly identified data objects vs. how many
data objects actually are in the class C. Both values take numbers
between 0 and 1, with 1 indicating a good quality and 0 indicating
bad quality.

Precision and recall can easily be adapted for fuzzy classification
values. Let U ′ ∈ [0, 1]2×n be the membership matrix as a result
from a clustering/classification process, which replaces C ′ and let
U ∈ [0, 1]2×n be the membership matrix replacing C. The elements
are subject to the usual restriction uij,u ′ij ∈ [0, 1], i ∈ 1, 2, j = 1, . . . n
and u1j + u2j = 1, u ′1j + u

′
2j = 1. In this context, u1j refers to the

membership value of the cluster of interest and u2j to the member-
ship value of the background. Fuzzy versions of precision and recall
are defined by the next two equations.

p =

n∑
j=1

u1j · u ′1j
n∑
j=1

u ′1j

r =

n∑
j=1

u1j · u ′1j
n∑
j=1

u1j

There is no fundamental difference between fuzzy or crisp preci-
sion and recall measures. If crisp results instead of fuzzy results are
measured, it is enough to restrict one or both fuzzy membership val-
ues uij ∈ [0, 1] (u ′ij ∈ [0, 1]) to crisp membership values uij ∈ {0, 1}
(u ′ij ∈ {0, 1}), so even a mixed comparison is possible.

Precision and recall (whether crisp or fuzzy) taken individually, do
not hold sufficient information to judge the quality of the cluster-
ing/classification. For example in a crisp problem, precision would
be maximal, if there is only one data object classified (|C ′| = 1 and
this one data object is also a member of the class C. Such a classifica-
tion is clearly of no use if C contains many data objects. This situation
is reflected in recall, which has a very low value of 1

|C|
. On the other

hand, assume that all data objects are in the clustered/classified set,
so that C ′ = X. In this case recall is r = 1, but again, such a cluster-
ing/classification is not useful, which is reflected in a relatively low
value in precision: |C|

|X| . As a conclusion, it is always necessary to look
at both values together.

A way of combining precision and recall is the F1 measure, which
takes the harmonic mean of both values.

F1(C,C ′) = 2 · p · r
p+ r

(4.1)

The subscript 1 means, that precision and recall are treated with
equal importance. The measure Fβ produces a weighted result, giving
either precision or recall more importance in the combined value.

Fβ(C,C ′) = (1+β2) · p · r
β2 · p+ r

4.2 external cluster quality measures 91

An adaptive value for β is not utilised within this work, which leaves
1 as only viable value for the parameter β, hence the measure is called
F1 measure.

4.2.2 F1 Measure for Multi-Class Problems

The F1 measure discussed above is only able to measure the sim-
ilarity/quality of a two-class clustering result w.r.t. one class of in-
terest. For general clustering problems, it is necessary to extend this
approach to a multi-class problem (see [Borgelt, 2006]) which is de-
scribed in this subsection. The multi-class problem is similar to the
two-class problem, the difference is that each partitioning consists of
multiple classes (clusters). In this case, it is assumed that there are
an equal amount of classes as there are clusters in both partitionings.
The extension is achieved by finding the best mapping (permutation)
between the two a sets of classes/clusters and averaging the values
of the respective two-class F− 1 measures.

Let there be c ∈ N classes in the data set X with n data objects
and a (fuzzy) partition U ∈ [0, 1]c×n of classes as well as a (fuzzy)
partitioningU ′ ∈ [0, 1]c×n of clusters with the usual restrictions. Then
one particular class with index i is treated as the class of interest and
it is compared to a cluster with index i ′. Let there be a permutation
π that maps all classes to the clusters: i ′ ≡ π(i). The mapping π is
necessary because the ordering of classes is generally not identical to
the ordering of the clusters. Given such a mapping, cluster specific
precision and recall values can be computed.

pii ′ =

n∑
j=1

uij · u ′i ′j
n∑
j=1

uij

rii ′ =

n∑
j=1

uij · u ′i ′j
n∑
j=1

u ′i ′j

The F1-measure of a class-cluster pair i, i ′ is defined as in the two-
class problem, Equation (4.1).

F1(i, i ′) = 2 ·
pii ′ · rii ′
pii ′ + rii ′

For a particular mapping π, the F1-measure is then defined as the
mean of the individual F1-measures.

F1(π) =
1

c

c∑

i=1

F1(i,π(i)) (4.2)

There are also suggestions to use a weighted mean [Sebastiani, 2002],
according to the number of data objects, involved in the individual
F1 measures. Using the weighted mean implies that the influence of
the classes on the final score depends on the size of the classes. This

92 benchmarks

procedure puts a higher importance on larger classes and might be
advantageous in some applications but the opposite can be true as
well. Sometimes the small classes hold the most valuable information
because it is rather easy to find the large classes anyway and the
problem might be to correctly recognise the data objects in the small
classes of a data set. In the context of this benchmark however, all
classes are considered equally important.

To gain a meaningful result in this way, the mapping π must be
chosen so that the F1 measure is maximised because only for a max-
imised value, it can be assumed that the mapping of classes to clusters
is optimal. Being a permutation, there are c! different mappings. Of
course it is not efficient to test all possible permutations to find the
maximal combined F1 value. The so called Hungarian Method [Kuhn,
2005] is an algorithm to find the maximal overall F1 score. The algo-
rithm requires a two-dimensional matrix V ∈ [0, 1]c×c which holds
all pairwise F1 scores: vij = F1(i, j) with i = 1, . . . , c and j = 1, . . . , c.
Computing V is in runtime complexity O(n · c2) while the Hungarian
algorithm produces the best mapping πmax in O(c3), which means an
overall runtime complexity in O(c3+n · c2). With c << n, the overall
runtime complexity for computing F1 is in O(n · c2). The computation
is even faster if at least one of the membership matrices is crisp. In
this case the runtime complexity reduces to O(n · c+ c3) and if both
are crisp, it is in O(n+ c3).

4.2.3 The Importance of the F1 Measure and Alternatives

The F1 measure plays a central role in this work because it is used to
measure the quality of clustering results when comparing them with
the true result. It is used to generate the quality plots, presented in
Appendices D to G. It is also used to answer thesis questions Q2, Q3
and Q4. Therefore, it is vitally important for this work that the meas-
ure is giving useful results. Later in this work, this fact is occasionally
emphasized.

A popular alternative to the F1 approach is the Rand index [Rand,
1971], but it is not well suited for clustering applications with a large
number of classes. Without going into too much detail, imagine two
partitionings, P1 and P2 of the data set X and a pair of clusters/classes
C1 ∈ P1 and C2 ∈ P2, C1,C2 ⊂ X. The Rand index counts the number
of data objects that are in both clusters/classes |C1 ∩ C2| plus the
data objects that are in neither cluster/class: |X \ (C1 ∪C2)|. The data
sets in this benchmark contain many clusters, which means that the
likelihood that two data objects are in neither cluster/class is very
high so that the second term is always very large for any pair of
clusters/classes. Therefore, the algorithm would produce very similar
index values for two partitions, independently of the similarity of the
partitions. There are ways to correct for these biases, see for example

4.3 internal cluster quality measures 93

[Vinh et al., 2009]. I decided to use the F1 index in this work because
it does not suffer from similar difficulties as the rand index and is
optimally suited for the investigation, presented in the next chapter.

4.3 internal cluster quality measures

Internal cluster quality measures are used to estimate the quality of a
(fuzzy) partitioning (cluster algorithm results) without knowing the
true partitioning (class information). The term ’internal’ refers to the
fact that no external information (i.e. class information) is used for the
quality assessment. This situation is very common in reality because
clustering algorithms would not be needed if the result is already
known. Besides visual inspection, internal quality measures provide
one of very few possibilities to determine whether or not a clustering
algorithm was successful in partitioning a data set. The reliability of
these measures in high-dimensional data sets is investigated using
this benchmark. This investigation then concludes the thesis ques-
tions with an answer to Q4.

The first indication for the quality of a partitioning may be provided
by the objective function value of a prototype clustering algorithm.
Since the value of the objective function is to be minimised (or max-
imised in case of EMGMM), the lowest (highest) value for a given
algorithm indicates the best clustering quality if comparing results
from the same algorithm. However, the value of the objective func-
tion is subjective to the algorithm and cannot be used to quantify the
quality of a variety of clustering algorithms, or even the same algo-
rithm with different parameters (e.g. the fuzzifier).

To compare the quality of (fuzzy) partitionings, generated by dif-
ferent clustering algorithms, a clustering algorithm independent ap-
proach is required. Some of the quality measurements listed in the
subsections below are based on the abstract model assumption, that
data objects of one cluster shall be as similar as possible while data
objects of different clusters should be as different as possible. This ab-
stract concept is quantified by using two values: cluster diameter and
cluster separation. A small cluster diameter and a large cluster separ-
ation is considered to be good because this indicates well identified
clusters with little overlap.

The diameter and separation of clusters can be evaluated on data
object level by computing distance values for each pair of data ob-
jects. Alternatively, the locations of the prototypes can be used in-
stead, which is of course only possible if a prototype based clustering
algorithm is used. Both approaches are presented in the next subsec-
tion, even though only the second option is used for benchmarks.

94 benchmarks

4.3.1 Cluster Diameter and Cluster Separation

Let Y = {~x1, . . . ,~xn} ⊂ Rm be a set of data objects, U ∈ [0, 1]c×n be a
(fuzzy) membership matrix with the usual restriction of 1 =

∑c
i=1 uij

and let Y = {~y1, . . . ,~yc} ⊂ Rm be a set of prototypes. For pairwise
data object accessing, the diameter of cluster i is defined by

D2i =
1(

n∑
j=1

uij

)2 n∑

j=1

n∑

l=1

uij · uil · d2(~xj,~xl)

and for prototype centric diameter estimation, the diameter is defined
by

D2i = 4
1

n∑
j=1

uij

n∑

j=1

uij · d2(~xj,~yi) (4.3)

The factor 4 originates from the squared distance from the prototype
to a data object, which corresponds to the radius instead of the dia-
meter: 4r2 = (2r)2 = d2. As can be seen from the definition, in case
of pairwise data object accessing, the runtime complexity to compute
all cluster diameters is in O(n2 · c), which is too expensive for the
benchmark, discussed below. The alternative, prototype centric dia-
meter estimation (Equation (4.3)), is in O(n · c), which is much more
practical. Note that squared distances are used here because most
clustering algorithms minimise the sum of squared distances between
prototypes and data objects.

Determining the cluster separation is again possible for pairwise
data object accessing and for prototype centric estimation. The sep-
aration of cluster i and cluster k is defined for pairwise data object
accession by

S2ik =
1(

n∑
j=1

uij

)
·
(
n∑
l=1

ukl

) n∑

j=1

n∑

l=1

uij · ukl · d2(~xj,~xl)

For prototype centric separation, the value is simply the distance
between prototypes i and k.

S2ik = d2(~yi,~yk)

As can be seen from the definition, in case of pairwise data object
accession, the runtime complexity is in O(n2 · c2), which is again too
expensive for the benchmark. The alternative, prototype centric dia-
meter estimation is in O(c2) and is used instead.

4.3 internal cluster quality measures 95

4.3.2 Bezdek Separation Index

The Bezdek separation index [Bezdek et al., 1997] is a variation of the
the separation index, introduced by Dunn [Dunn, 1973]. The separ-
ation index by Dunn is only applicable on crisp partitions, which is
insufficient for this work. Bezdek extended the index to work with
fuzzy membership values, using the cluster diameter and separation.
Let X, Y, U, D and S be defined as in the last subsection, then the
Bezdek separation index IBS is the ratio of the smallest cluster separ-
ation to the largest cluster diameter.

IBS =

min
i,k=1,...,c

Sik

max
i=1,...,c

Di
(4.4)

The index is viable whether the membership matrix is crisp or fuzzy,
it also is viable for pairwise data object assessing and prototype cent-
ric estimation of distance and separation values. The actual value of
the index however, depends on these factors.

The Bezdek separation index is a direct conclusion from the ab-
stract clustering goal of minimizing the cluster diameter and maxim-
izing the cluster separation. When comparing partitionings with the
Bezdek separation index, larger values for IBS stand for better cluster-
ing quality.

4.3.3 Davies-Bouldin Index

The Davies-Bouldin index IDB [Davies and Bouldin, 1979] is defined
using the same separation and diameter definition as the Bezdek sep-
aration index. The equation however does not only take the absolute
extremes into account but builds an average over all clusters.

IBS =
1

c

c∑

i=1

max
k=1,...,c
k6=i

Di +Dk
2Sik

(4.5)

The index puts the radii (i.e. half their diameter) of two clusters (i
and k) into relation of their separation. The mean of the largest values
of these relationships is the index value. In other words, for each
cluster the Davies-Bouldin index selects the other cluster, that has the
worst relative separation and builds the mean over all clusters.

Again, this index is derived from the abstract notion of clustering.
However in this case, a smaller value indicates a higher clustering
quality.

96 benchmarks

4.3.4 Xie-Beni Index

The Xie-Beni index [Xie and Beni, 1991] is different from the two
indices above.

IXB =

1
n

c∑
i=1

n∑
j=1

uωijd
2(~yi,~xj)

min
i,k=1,...,c

Sik
(4.6)

As can be seen from the equation, it puts the relative objective func-
tion value of FCM into relation to the minimal separation of clusters.
If this index is to be used to compare different prototype based clus-
tering algorithms, a fixed value forω needs to be selected and the pro-
totype location and (fuzzy) membership values of the original cluster-
ing algorithm are used to calculate the value of IXB as described in
Equation (4.6). Whether or not this strategy is successful is analysed
in Section 5.3.

There is however a good reason to consider the Xie-Beni index.
Both, the Bezdek separation index and the Davies-Bouldin index have
a fundamental problem because they do not take into account that
some of the classes might be located close together or might even over-
lap. When determining the quality of a clustering process based on
the model approach alone, an accurate covering of the classes might
result in a lower score than a non-optimal clustering. The Xie-Beni
index does not purely rely on the abstract clustering model approach,
which might give it an advantage in real applications.

For the Xie-Beni index, smaller values indicate a better clustering.

4.3.5 Normalised Partition Coefficient Index

The normalised partition coefficient (NPC) index [Backer and Jain,
1981] is only useful for fuzzy clustering algorithms. For a membership
matrix U, the partition coefficient index is defined by the average of
the sum of squared membership values of the data objects.

IPC =
1

n

n∑

j=1

c∑

i=1

u2ij (4.7)

Due to the definition of membership values 1 =
∑c
i=1 uij, the inner

sum of equation (4.7) is bound to 1
c 6

∑c
i=1 u

2
ij 6 1. The minimum

value is reached for uij = 1
c , as

∑c
i=1 u

2
ij =

∑c
i=1

1
c2

= c
c2

= 1
c

for all data objects j = 1, . . . ,n. This averages to an overall value of
1
n

∑n
j=1

1
c = 1

n · nc = 1
c . To gain a value, independent of the number

of clusters, the index must be normalised, resulting in the normalised
partition coefficient.

INPC = 1−
c

c− 1
(1− IPC) (4.8)

4.3 internal cluster quality measures 97

Higher values indicate a more crisp clustering result for both, the
normalised and the not-normalised partition coefficient. A better clus-
tering result supposedly produces more crisp assignments to clusters
because the algorithm can clearly identify the cluster to which a data
objects belongs. For a perfectly crisp result, the normalised partition
coefficient always yields a value of 1 which means that the index can-
not be used to assess the quality of a crisp clustering algorithm.

4.3.6 Normalised Partition Entropy Index

The normalised partition entropy (NPE) index [Borgelt, 2005] is very
similar to the partition coefficient index. It is related to Shannons
definition of entropy [Shannon, 1948] in information theory. For a
discrete random variable X with strictly positive discrete probability
distribution, defined as ~u = {u1, . . . ,uc}, with 1 =

∑c
i=1 ui, the Shan-

non entropy of ~u is defined as

S(u) = −

c∑

i=1

ui · log2(ui) (4.9)

In information theory, the Shannon entropy defines the amount of in-
formation in a message. In this case, the message that is transmitted
is the cluster index which has an alphabet of c different characters
and the membership values ~u define the probability that they are re-
ceived over a communication channel. The Shannon entropy specifies
how many bits in average have to be transmitted in order to define
the state of X. Please do not

confuse this with
the wrong statement
that fuzzy sets are
the same as probab-
ility distributions.
They are not because
the integral of a
fuzzy set does not
need to be 1.

In case of clustering, consider one data object ~x. Just like for the
expectation maximization clustering algorithm, the membership val-
ues are interpreted as the conditional probabilities of observing the
classes given that ~x was observed. The Shannon entropy then gives
a measure for the predictability of the clustering result. A good pre-
dictability (low Shannon entropy value) is interpreted as a good clus-
tering result.

The partition entropy for clustering is defined as:

IPE = −
1

n

n∑

j=1

c∑

i=1

uij · log2(uij) (4.10)

Similar to the partition coefficient, the partition entropy can be nor-
malized to avoid a dependence on the number of clusters in the data
set.

INPE = −
1

n log2(c)

n∑

j=1

c∑

i=1

uij · log2(uij) (4.11)

The factor 1
log2(c)

is multiplied by Equation (4.10) because the ex-

treme case of all membership values being equal to 1
c yields the

98 benchmarks

maximal value for the partition entropy. The infimum value of the
index is 0, but can not be achieved because it would require crisp
membership values. The crisp clustering case is not covered by the
index directly because the logarithm is not defined for 0. However
for small positive values the value of the term inside the sum ap-
proaches 0 = limx→0 x · log2(x) so that it is easy to extend the index
can to crisp membership values. Like the partition coefficient, the par-
tition entropy index is not useful for evaluating the quality of crisp
clustering algorithms, because its value is always 0.

A small value for normalised partition entropy index indicates more
crisp clustering result, which is again usually considered to be better
than a low crispness.

4.3.7 Internal Indices and the Noise Cluster

The NPC and NPE indices can easily be extended to handle the noise
cluster if it is considered to be a normal cluster. The three other in-
dices however (the BS, DB and XB indices), depend on the location
and size of clusters and cannot easily handle the noise cluster because
it has no location and no natural size. In practice, this can introduce
a bias if a noise clustering algorithm is assessed with these indices.
To avoid such problems, the noise cluster can be considered to have
a constant separation with all clusters: S2i, noise = 2 · dnoise and a dia-
meter of Dnoise = 2 · dnoise as well.

These values are motivated by the notion, that all data objects have
a distance of dnoise to the noise cluster. Therefore, if the noise cluster
had a centre, all data objects would be located on a sphere surface
with radius dnoise around the centre. With the same argument, the
noise cluster can be noted to have a distance of 2 · dnoise to all other
clusters because any data object that is located at a distance of dnoise

from one of the true clusters would have identical membership val-
ues to the real cluster as to the noise cluster. Therefore, the noise
cluster can be considered to be located 2 · dnoise away from all other
clusters. With this rather artificial extension of the indices, all valida-
tion indices can be used to compare the quality of normal and noise
clustering algorithms.

4.4 benchmark setup

The benchmark is based on a statistical analyses of the quality of
(fuzzy) partitionings that are created by the clustering algorithms. A
statistical approach is necessary to prevent dependencies such as ini-
tialization of prototypes, overlapping of classes and others. This is
achieved by repeating a specific set-up configuration (i.e. data set
family, number of dimensions, number of classes) multiple times. The

4.4 benchmark setup 99

construction of the data sets for the data set families is described in
Subsection 4.4.1. The parameters of the algorithms and the initializa-
tion strategy are presented in subsection 4.4.2.

The benchmark is performed using EDMOAL1 which is discussed
in Appendix B in more detail. Even though EDMOAL contains all the
relevant algorithms (i.e. clustering, data generation, quality indices
etc.) for this work, it does not include the routines that are used to
organize their application and generate the output files.

4.4.1 Data Sets, Dimensions and Number of Classes

For the data set families D1, D2 and D3, data sets for 11 different
dimensions m ∈ {2, 3, 5, 7, 10, 15, 20, 30, 504, 70, 100} are generated.
The data set family D4 is not well suited for low dimensions because The total computa-

tion time on a 6-core
Intel i7 (12 logical
cores) was roughly
80 days. This type
of experiment
would simply not
be possible for
algorithms with a
runtime complexity
in O(n2) or worse.

there are simply not enough different data objects possible. Thus only
data sets in m ∈ {10, 15, 20, 30, 50, 70, 100} dimensions are created for
D4. For all data set families and for each dimension number, a pool
of 250 classes are generated, using the mechanism described for the
individual data set families (see Section 4.1). Within each data set
family and for all numbers of dimensions, data sets with 20 different
counts of classes c ∈ {2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 25, 30, 40, 50, 60, 80,
100, 120, 150, 200} are used. To allow for a statistical analysis of the
results, 20 data sets for each combination of data set family, number
of dimensions and number of classes are generated. The quadruple
(Dk,m, c, s) points to a single data set, with Dk ∈ {D1,D2,D3,D4}
denoting the data set family, m and c the number of dimensions and
classes respectively, subject to the above mentioned lists of values
and s ∈ {1, 2, . . . , 20} being the index of the data set. Each individual In fact, 1, 000, 000

experiments are
conducted for a total
of 20, 000 data sets.
I generated data
sets with 7, 17, 35,
70 and 170 classes
but decided later
not to present them
within this work.
I found the incre-
ment between two
succeeding cluster
counts should not
decrease. For ex-
ample the sequence
12, 15, 17, 20 seems
to be inconsistent
because the gaps are
3, 2, 3.

data set is constructed using a random selection of the 250 previously
generated classes, plus the noise data objects.

In total, there are (3 · 11+ 7) · 20 · 20 = 16, 000 different data sets.
Since all algorithms depend on the initialization of their prototypes,
each data set is clustered 5 times by each algorithm with different
initialization values. To each configuration of data sets plus initializa-
tion, all 10 algorithms are applied independently, which results in a
total number of 800, 000 individual experiments for this benchmark.

In Section 2.4, a test for distance concentration was proposed. Dur-
ing generation of all data sets, I executed a gradient descend algo-
rithm to find the maximal relative variance of a data set. I decided
to not include these results in this work because the limitations I im-
posed on the calculations to keep the runtime manageable rendered
the results useless. The imposed limit was, that only one gradient des-
cending run was used. However, the gradients were too flat to allow
for a fast convergence of the algorithm, which lead to long compu-
tation times. As a result, the data was not very useful. It is certainly

1 https://github.com/Roland-Winkler/EDMOAL

https://github.com/Roland-Winkler/EDMOAL

100 benchmarks

possible to find a much better estimate by using a swarm algorithm
[Kennedy and Eberhart, 1995] and a clever step-size for the gradient
method. This might be an interesting project for future investigations.

4.4.2 Clustering Algorithms

All 10 algorithms presented in the last chapter are used in the bench-
mark, that are HCM, FCM2, NFCM2, FCMm, NFCMm, PFCM, PN-
FCM, RCFCM RCNFCM and EMGMM. Since the number of classes
in a data set is known, this parameter does not need to be estim-
ated, always the correct number of clusters is chosen. The noise dis-
tance was estimated by using the classes prior to assembly of the
data sets. Let C1, . . . ,C250 be the classes of one of the data set ranges
(Dk,m, ·, s). The noise distance dnoise for all algorithms, performed
on all data sets of the range (Dk,m, ·, s) is defined by

dnoise = max
i=1...250

max
~x∈Ci

d(~x,~µi) (4.12)

with ~µi being the arithmetic mean of the class: ~µi = 1
|Ci|

∑
~x∈Ci ~x. For

this benchmark, it is better to overestimate the noise distance rather
than to underestimate it, so using the largest value of all these dis-
tances was reasonable. To avoid prototypes getting ’lost’ (see Section
3.7.2), an initial maximal noise distance of dmaxnoise = 10 · dnoise with
a reduction parameter α = 0.2 and a minimal number of iterations of
10 for applying an algorithm is used.

Algorithm Parameters

HCM

FCM2 ω = 2

NFCM2 ω = 2

FCMm ω = 1+ 1
m

NFCMm ω = 1+ 1
m

PFCM β = 1
2

PNFCM β = 1
2

RCFCM η = 1− 1
m

RCNFCM η = 1− 1
m

EMGMM σmin = 0.001 and σmax = 100

Table 4.1: Individual parameters of the algorithms, used in the benchmark.

The number of iterations is bounded to be 30, which is slightly on
the low side, but is sufficient for the benchmark in most cases. A test
showed that after approximately 25 to 30 iterations, improvements
of the clustering quality was negligible, even though the termination
threshold was not yet reached. As described in Section 3.7.5, the max-
imum movement distance is used for terminating the iteration pro-
cess early. The data objects are mainly located in the unit-hypercube,

4.4 benchmark setup 101

Dk ∈ {D1,D2,D3,D4}

m ∈
{

{2, 3, 5, 7, 10, 15, 20, 30, 50, 70, 100} if Dk ∈ {D1,D2,D3}

{10, 15, 20, 30, 50, 70, 100} if Dk = D4

c ∈ {2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 25, 30, 40, 50,

60, 80, 100, 120, 150, 200}

s ∈ {1, . . . , 20}

r ∈ {1, . . . , 5}

A ∈ {HCM, FCM2, NFCM2, FCMm, NFCMm,

PFCM, PNFCM, RCFCM, RCNFCM, EMGMM}

Table 4.2: Setup combinations for data sets in the benchmark.

which makes a threshold value of ε = 0.01 reasonable. The other in-
dividual parameters for applying the algorithms are listed in table
4.1.

With all algorithms, each individual data set was clustered 5 times,
with different randomly sampled initialization positions for the pro-
totypes. To gain comparable results, all 10 algorithms are performed
using the same initial positions in one set-up (data set and initializa-
tion position pair).

In summary, the tuple (Dk,m, c, s, r,A) describes a unique experi-
ment with Dk being the data set family, m the number of dimensions,
c the number of classes, s the data set index, r the index of the initial
condition and A the algorithm. The values are subject to the values,
presented in Table 4.2.

4.4.3 Performing the Experiments

Finally, after an experiment described by the tuple (Dk,m, c, s, r,A)
was performed, the cluster quality indices are applied to measure
the quality of the clustering result. That includes the F1 measure, as
well as the BS index, BD index, XB index, NPC index and NPE in-
dex. Some further information with less relevance is also stored. That
includes the number of iterations the algorithm was running, its ob-
jective function value after clustering and a variant of the F1 measure
that defuzzifies the membership values first before calculating the
index using the winner takes all strategy. I chose to not utilise the
second F1 measure because it did not give more insight.

All diagrams that are presented in the next chapter as well as in
appendix chapters D, E and F are based on the benchmark, described
in this chapter. The data that is used for generating the diagrams is
stored in one large table, see Appendix C.4 for details.

102 benchmarks

5
E X P E R I M E N TA L R E S U LT S

In this chapter, the results of applying the clustering algorithms (see
Chapter 3) on the benchmark data sets (see Section 4.1) are presented.
The results, composed of the internal and external quality index val-
ues are prepared in various different ways to answer thesis questions
Q2, Q3 and Q4.

In the first section of this chapter, Section 5.1, the algorithms are
analysed individually and their behaviour is described as well as in-
terpreted to approach thesis question Q3. To give a complete picture
of how and why the algorithms behave as they do, some additional
thoughts and arguments are necessary which are presented at the
beginning of that section.

A direct comparison of the algorithms is presented in Section 5.2,
which is required for thesis question Q2. The diversity of the result
does not allow a clear ranking of the algorithms, but the benchmark
provides some insightful information on the behaviour of the algo-
rithms in high-dimensional feature spaces. As already indicated in
Section 4.3, it is often necessary to know the quality of a clustering
result, meaning internal cluster quality indices are applied. The per-
formance of these indices in high-dimensional feature spaces is in-
vestigated in Section 5.3, which is done to answer thesis question Q4.

Only a small subset of all results can be presented and discussed
here. A complete graphical representation is presented in Appendices
D, E and F.

5.1 number of dimensions and clusters

In this section, thesis question Q3 is approached: How is the cluster-
ing quality influenced by the number of dimensions and the num-
ber of clusters? Since high dimensional data sets can be very di-
verse, there cannot be an exhaustive answer to the question. Using
the benchmark data sets, a trend for each algorithm is visible, which
may help to understand the effects on other data sets. Each algorithm
is analysed individually and the influences of dimensions and num-
ber of clusters is discussed. Please note, that the number of clusters
always matches the number of classes in a data set. So it is possible

103

104 experimental results

for the algorithm to find a near-perfect solution. As a consequence,
the number of classes and clusters are both addressed by the symbol
c.

The quality of the clustering result is measured using the F1 qual-
ity index, presented in Section 4.2. The F1 measure is applied, using
the prototype centred distance calculations, both for the cluster dia-
meter and the inter-cluster distances. The final prototype positions,
as provided by the algorithms, are used for this purpose. Any conclu-
sion, made in this chapter depends on the fact that the F1 measure
is appropriate to measure the quality of a clustering result w.r.t. the
true result.

It is often useful to apply a clustering algorithm several times on
the same data set and select the best result. This reduces the depend-
ency on the initial conditions and increases the chances of finding the
best possible clustering result. This strategy is done with the results
of the benchmark data sets as well. Let F1(Dk,m, c, s, r,A) refer to the
F1 value of a specific clustering result. Dk ∈ {D1,D2,D3,D4} selects
the data set family, m the number of dimensions, c the number of
classes, s ∈ {1, . . . , 20} the data set index, r ∈ {1, . . . , 5} the initializ-
ation and A the algorithm. Each data set (Dk,m, c, s) is clustered 5
times with algorithm A using different initializations. The F1 index
is calculated for all 5 clustering results and the maximal F1 value is
used to estimate the quality of the clustering result.

F1(Dk,m, c, s,A) = max
r=1,...,5

F1(Dk,m, c, s, r,A) (5.1)

As described in the last chapter, for each combination of data set
family Dk, number of dimensions m and number of classes c, 20 data
sets, indicated by s = 1, . . . 20 are generated. This generates 20 max-I calculated several

more performance
indicators besides
the mean and the

empirical standard
deviation. But the

others like the
median did not

reveal additional
insight, so I chose

not to present them.

imal F1 values for each algorithm A which are used to calculate the

mean F1 and empirical standard deviation
√
V̂(F1) of the 20 values.

F1(Dk,m, c,A) =
1

20

20∑

s=1

F1(Dk,m, c, s,A) (5.2)

V̂(F1(Dk,m, c,A)) =
1

19

20∑

s=1

(F1(Dk,m, c, s,A) − F1(Dk,m, c,A))2

(5.3)

The empirical standard deviation in this case is not a performance
indicator as such, but since 20 values is quite small for a statistical
analysis of the effect, it is necessary to have an indication how reliable
the mean value is. The mean of the maximal F1 values is used to
estimate the clustering quality for a specific setup, which is presented
visually in this section (see for example Figure 5.1) and Appendix D.

The upper image of Figure 5.1 shows in each cell the mean score
of the 20 different experiments for all combinations of numbers of

5.1 number of dimensions and clusters 105

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 NFCMm F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 NFCMm F1 Standard Deviation

0

0.2

0.4

Figure 5.1: Example of the F1 score plot. It shows the F1 mean and stand-
ard deviation of data set family D3, clustered with the NFCMm

clustering algorithm.

dimensions m ∈ {2, 3, 5, 7, 10, 15, 20, 30, 50, 70, 100} and classes
c ∈ {2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 150,
200}. The empirical standard deviation shown in the lower image is
presented in the same fashion to see how much the score varies for
the individual cells. A score of 1 is best for the F1 measure and a score
near 0 corresponds to a very bad clustering result (see Section 4.2.2).
Since the standard deviation is less important, it is not discussed in
this chapter any further, but it is still presented in Appendix D. The
plots hold a lot of information, but most importantly, it presents a
way to understand the limits of an algorithm in terms of dimensions
and classes/prototypes.

The plot in Figure 5.1 is quite peculiar because it presents some
unexpected result. In the upper panel, the clustering quality as meas-
ured by the F1 measure is presented. As indicated by the colour, the

106 experimental results

NFCMm algorithm performs better with more dimensions and more
classes, which is very counter intuitive since the clustering problem
becomes harder the larger these values are. So in this particular case,
the increase in cluster quality w.r.t. the number of dimensions can be
explained with the structure of the D3data set family. The data sets
contain very likely overlapping classes, which can be handled better
by the algorithm if the number of dimensions is higher- and the over-
all class overlapping is lower. The effect is much smaller for the D2
data set family, which produces more compact classes (see Appendix
D.2).

The increase in quality in between 5 to 20 classes and dimensions
equal and above 50 can be explained with the influence of the noise
cluster. It seems that the clustering quality is particularly bad be-
cause some classes are completely assigned to the noise cluster. With
more classes in the data set, the relative number of classes that are
assigned to the noise cluster becomes lower, which increases the F1
score. When comparing with the non-noise variant of the algorithm
(see Appendix D.3), the effect vanishes.

The lower panel of the figure shows the empirical standard devi-
ation of the F1 scores, which shows that the F1 score does not vary
much around the mean value. This means that the algorithm per-
forms with a quite constant quality, even though the quality is not
particularly good.

To understand the behaviour of algorithms better on a more fun-
damental level, a simple evaluation procedure is used. As already
presented in the introduction in Figure 1.5, given a high-enough num-
ber of dimensions and a high-enough number of prototypes, all pro-

totypes of FCM2 run into the centre of mass (CoM) 1
n

n∑
j=1

~xj of the

data set X = {~x1, . . . ,~xn}. So it seems the CoM has some special prop-
erties to it. Consider the data set Xm = {~x1, . . . ,~xm} ⊂ Rm consisting
of the n = m unit vectors of m-dimensional Euclidean vector space.

Xm =







1

0

0
...

0

0


,



0

1

0
...

0

0


, · · · ,



0

0

0
...

0

1







The data objects represent classes of equal weight and without anyThe simplex is a geo-
metrical form, not to
be confused with the

linear optimization
simplex algorithm.

spatial expansion, the centre of mass of Xm is ~xCoM = (1m , . . . , 1m).
Note that the data set forms a simplex which is embedded in an
m− 1-dimensional linear subspace of the m-dimensional real vector
space. Therefore, the clustering problem that is analysed with the
simplex data set is related to an m− 1-dimensional feature space. For

5.1 number of dimensions and clusters 107

0

0.2

0.4

0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

~y 1

~y2

~y
3

CoM

~x1

~x2

~x3

Figure 5.2: Path of the prototypes from the centre of mass to their respect-
ive data objects as a 3D plot. The colour indicates the prototype.
All indicated vectors lye in a 2-dimensional plane, defined by
unit vectors of ~x1, ~x2 and ~x3 which form a simplex.

each data object (class), a prototype is placed in the centre of mass,
and than gradually moved to one of the data objects. Let α ∈ [0, 1]
be a variable to control the location of the prototypes ~y1, . . . ,~ym :

[0, 1]→ Rm:

~yi(α) = α ·~xi + (1−α) ·~xCoM

For a prototype based clustering algorithm, the prototypes are gradu-
ally moved from the centre of mass to their respective data objects.
The membership values for the data objects are calculated according
to the update equations while the objective function values are com-
puted and plotted in a graph. In Figure 5.2, the process of moving the
prototypes from the CoM to their respective data objects is visualised
for m = 3. Since the location of the prototypes is determined by the
parameter α, the membership values and the objective function val-
ues of the clustering algorithms from chapter 3 become functions of α
as well. To compare graphs of data sets with different dimensionality
for an objective function J, the graph values are normalised to have
value 1 at α = 0 in all cases:

J(X,α) =
J (X, Y(α),U(α))
J (X, Y(0),U(0))

(5.4)

108 experimental results

See Figure 5.5 which shows the use of the simplex evaluation setup.

5.1.1 Hard C-Means

The clustering quality of the HCM algorithm depends strongly on the
initialization of the prototypes, see for example [Bubeck et al., 2012;
Kuncheva and Vetrov, 2006]. After initialization, it is very likely that
one prototype is closer to multiple classes than any other prototype.
Because a data object is always assigned to the closest prototype, the
data objects from these classes are effectively hidden from all other
prototypes. Once that happened, it is very unlikely that any other pro-
totype gets near enough to reveal one of the hidden classes. Therefore,
the initialization process dominates how the data set is split between
the clusters and often several classes are covered by the same cluster.
The remaining classes are then covered by too many clusters, which
makes it likely that some classes are split into multiple clusters. Also,
it is likely that some clusters cover only noise data objects if the data
set contains them.

This effect depends on the number of clusters/classes and also
slightly on the number of dimensions. Observe Figure 5.3, which
shows the clustering quality of HCM on data set family D1. The qual-
ity of the clustering with HCM is only acceptable for c = 2 clusters.
For more than 2 clusters, the quality is too low to be considered use-
ful. There is also a slight decrease in clustering quality with increasing
number of dimensions but this is only a second order effect. Since the
quality for a small number of dimensions is already low, HCM cannot
be considered to be a good clustering algorithm when using random
initialization, especially because data sets in D1 are supposed to be
very easy to cluster.

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 HCM F1 Mean

0

0.2

0.4

0.6

0.8

1

Figure 5.3: HCM cluster quality on data set family D1.

5.1 number of dimensions and clusters 109

5.1.2 Fuzzy c-Means with ω = 2

Compared to HCM, the situation is very different for FCM2: as long
as a prototypes location is not identical to a data object, the data
object is not hidden from any other prototype. As presented in the in-
troduction in Figure 1.5, FCM2 is almost useless on high-dimensional
data. The effect does not only depend on the number of dimensions,
but also on the number of classes/clusters, as can be observed in Fig-
ure 5.4. The interpretation of this effect however, is quite a bit more I found it very

surprising that
the curse of di-
mensionality effect
produces such a
sharp transition
between FCM2
being useful to being
useless.

difficult than with HCM.

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 FCM2 F1 Mean

0

0.2

0.4

0.6

0.8

1

Figure 5.4: FCM2 cluster quality on data set family D1.

First, the drop in cluster quality on the top-right corner of Figure
5.4 can be explained with overlapping and in general closely packed
classes. Since many classes are located in a very small space, the
classes are not well enough separated.

The drop in clustering quality in the lower-right half of the plot
however is connected to the curse of dimensionality. The interesting
question is, what happens there and why?

As can be seen from Figure 1.5 in the introduction, all prototypes
go into the centre of mass and therefore, the clustering quality is next
to 0. The obvious explanation is, that there must be a (local) minimum
of the objective function JFCM for FCM2 in the centre of mass. This can
be tested by observing the objective function in the simplex data set
test, presented above. In Figure 5.5, the simplex procedure objective
function value plots for dimensions m ∈ {2, 3, 5, 10, 20, 50, 100, 200,
500, 1000} show clearly, that there is a local minimum in the CoM at
α = 0. As the number of dimensions and prototypes increases, the
local minimum at α = 0 expands in spatial direction and becomes
stronger. Or in other words, the maximum becomes higher and moves
further to the right (sits at larger values for α).

110 experimental results

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

α

J F
C

M
(X

,α
)

ω = 2

m = 3
m = 5
m = 10
m = 20
m = 50
m = 100
m = 200
m = 500
m = 1000

Figure 5.5: The objective function value of FCM2 JFCM, plotted depending
on the location variable α within the simplex test-data set, see
Equation (5.4).

Of course in this example, the number of prototypes/clusters is
connected to the number of dimensions. The effect is studied in [Wink-
ler et al., 2011a] in more detail, also for independent number of di-
mensions and clusters/classes. We determined, that the expansion of
the minimum depends largely on the number of dimensions while
the depth of the minimum increases with the number of prototypes.
In other words, with increasing dimensionality, prototypes run into
the centre of mass even if they are initialised far away from it.

A geometric explanation can be given for this effect. The hyper-
volume of the feature space where prototypes would not fall into
the CoM becomes smaller with increasing dimensionality. This hyper-
volume of useful initialization positions is located near the centres of
the classes and becomes very small compared to the hypervolume
of the entire feature space. This in turn means, that the likelihood of
(randomly) initializing prototypes close to the classes becomes tiny,
rendering FCM2 useless in high-dimensional feature spaces. With in-
creasing number of prototypes, the minimum gets deeper with the
consequence that it is less likely that local features of the data set can
counter the curse of dimensionality.

So the next question is: why is there a local minimum in the centre
of mass of high-dimensional data sets for FCM2? The answer to this
question lies in the update equations of FCM2, combined with the
concentration of distances, discussed in Section 2.1. Let the num-
ber of dimensions m be large, say m >> 10 and the number of
classes/clusters c be larger than m, c > m, and let the classes be
not located in a linear subspace of the feature space Rm. Let ~xj be
a data object and ~y1, . . . ,~yc be randomly located prototypes with
independently sampled dimensions. Then from Equation (2.16) fol-
lows, that the distance to all prototypes are approximately equal:
d1j ≈ · · · ≈ dcj ≈ dconst. Or in words, from the point of view of a
data object, all prototypes are approximately equally far away. This

5.1 number of dimensions and clusters 111

implies, that the data object is approximately equally shared between
all clusters.

uij =

(
1

d2ij

) 1
ω−1

c∑

k=1

(
1

d2kj

) 1
ω−1

=

1

d2ij
c∑

k=1

1

d2kj

≈

1

d2const
c∑

k=1

1

d2const

=
1

c
(5.5)

As a consequence, the prototype update equation (3.10) yields roughly
the same result for all prototypes.

~yi =

n∑

j=1

uωij~xj

n∑

j=1

uωij

=

n∑

j=1

u2ij~xj

n∑

j=1

u2ij

≈

n∑

j=1

(
1

c

)2
~xj

n∑

j=1

(
1

c

)2 =

(
1

c

)2 n∑

j=1

~xj(
1

c

)2 n∑

j=1

1

=
1

n

n∑

j=1

~xj (5.6)

Which is by definition the centre of mass of the data set. In this way,
the concentration of distances causes the collapse of FCM2 in high-di-
mensional spaces.

Introducing the noise cluster does not change much of this beha-
viour. If the noise distance dnoise is smaller than dconst, all data objects
are primarily assigned to the noise cluster, while for dnoise > dconst,
the noise cluster has hardly any effect on the clustering process at
all. Therefore, the behaviour of NFCM2 is very similar to FCM2 in
high-dimensional spaces.

Please note, that Equations (5.5) and (5.6) hold true for any value
of ω. However, for ω > 2, the approximation is valid for larger differ-
ences in distances while for ω < 2, the distance approximation must
be more accurate for the effect to occur. This is the reason to consider
FCMm, discussed in the next subsection.

5.1.3 Fuzzy c-Means with ω = 1+ 1
m

In [Winkler et al., 2011a], we determined that the local minimum in
the centre of mass of a data set can vanish if the fuzzifier ω of FCM is
chosen close to 1, depending on the number of dimensions. The idea
led to studying FCMm and its noise related counterpart NFCMm,
with the fuzzifier being defined as ω = 1+ 1

m , which is slightly more
crisp than suggested in our paper. The effect can be observed in Fig-
ure 5.6, where FCMm is studied in the same way as FCM in Figure

112 experimental results

5.5. As it can be seen, the local minimum at the centre of mass van-
ishes, which means, FCMm should not be effected in the same way
as FCM2 in high-dimensional feature spaces. The sharp drop-off of
objective function values for m = 200, m = 500 and m = 1000 in Fig-
ure 5.6 are numerical artefacts that can limit the use of FCMm. Due
to the fuzzifier of ω = 1+ 1

m , the update for the membership values
becomes

uij =

(
1

d2ij

) 1
ω−1

c∑

k=1

(
1

d2kj

) 1
ω−1

=

(
1

d2ij

) 1

1+ 1
m−1

c∑

k=1

(
1

d2kj

) 1

1+ 1
m−1

=

(
1

d2ij

)m
c∑

k=1

(
1

d2kj

)m (5.7)

With m being very large, the value d−2mkj in Equation (5.7) can
become arbitrary close to 0 for distance values below 1. Therefore,
FCMm becomes numerically unstable for a very high number of di-
mensions. A limit of ω to a minimum of 1.01 for double precision
data seems reasonable.

When observing the performance of FCMm in the benchmark data
set D1, the clustering process is quite good, which indicates that the
dimension dependent problem vanished, see Appendix D. Only for
dimensions close to 100 and a high number of classes/clusters, close
to 200, the clustering quality reduces slightly. Even on the more com-
plex data set D3, with the distorted clusters, the algorithm performs
quite well.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

α

J F
C

M
(X

,α
)

ω = 1+ 1
m

m = 3
m = 5
m = 10
m = 20
m = 50
m = 100
m = 200
m = 500
m = 1000

Figure 5.6: The objective function value of FCMm JFCM, plotted depending
on the location variable α and a dimension dependent fuzzifier
ω = 1+ 1

2 within the simplex test-data set.

The interesting question is, why does a fuzzifier approaching 1

prevents the breakdown of FCM for a high number of classes and
dimensions m >> 5? The answer again, can be found in the update

5.1 number of dimensions and clusters 113

equations. This time, let ω = 1 + ε be close to 1, with ε = 1
m and

starting again from Equation (3.9).

uij =

(
1

d2ij

) 1
ω−1

c∑

k=1

(
1

d2kj

) 1
ω−1

=

1

d
2
ε

ij
c∑

k=1

1

d
2
ε

kj

(5.8)

Let again dij ≈ dconst, this time however the exponent is different,
which means the approximation of the entire equation is not possible
in the same way as for ω = 2. Let δij be the residual of the approx-
imation, with dij = dconst + δij, then with the Bernoulli inequality
[Bronstein and Semendjajew, 1979] (page 293) (1+ x)r > 1+ r · x fol-
lows:(

dij

dconst

) 2
ε

=

(
1+

δij

dconst

) 2
ε

> 1+
2

ε
· δij
dconst

(5.9)

The curse of dimensionality for FCM2 is problematic, if (dijdconst
)
2
ε → 1,

but if ε is small enough, so that 2ε ·
δij
dconst

>> 0, the term (
dij
dconst

)
2
ε

cannot approach 1. This way, the approximation of Equation (5.5) is
not valid for ω = 1 + 1

m . Therefore, the membership values give a
sufficient contrast, they do not approach 1

c and the prototypes are
not pulled into the centre of mass. The same argument can be used
to explain, why the prototypes of HCM are not pulled into the centre
of mass: in case of HCM, ε would be 0. This analysis also applies to
NFCMm which is why it does not show significant problems either.

5.1.4 Fuzzy c-Means with Polynomial Fuzzifier Function

PFCM can be seen as a combination of HCM and FCM2. As pointed
out already in Section 3.4, there is an area of crisp data object assign-
ment, close to the prototypes. This crisp assignment hides data objects
that are much closer to the one prototype from all other prototypes,
so that far away prototypes are not effected by these data objects. As
a consequence, if a prototype is close enough to a class in such a way
that all data objects belonging to this class are crisply assigned, no
other prototype is pulled into the direction of this class. This effect-
ively reduces the number of classes in the data set, as seen from the
other prototypes. Assume for a moment, that there are c classes in
the m-dimensional feature space Rm, located at some (random) loca-
tion in the feature space. If c <= m, the class centres are located in a
c− 1-dimensional linear subspace Rc−1 of Rm. So if the prototypes
in PFCM potentially hide classes from the other prototypes, it has the
potential to reduce the intrinsic number of dimensions of the data set.

114 experimental results

0 0.2 0.4 0.6 0.8 1
0

0.5

1

α

J P
FC

M
(X

,α
)

β = 1
2

m = 3
m = 5
m = 10
m = 20
m = 50
m = 100
m = 200
m = 500
m = 1000

Figure 5.7: The objective function value of PFCM JPFCM, plotted depending
on the location variable α within the simplex test-data set.

Given this insight, it is not surprising, that P(N)FCM performs reas-
onably well on high-dimensional data spaces. It does not suffer from
the same difficulties as HCM, because the area of crisp assignment
is often small enough to prevent a covering of multiple classes. At
the same time, because of the crisp assignment, the prototypes are
not drawn into the centre of mass of the data set. As was shown in
[Winkler et al., 2012], the algorithm creates only a very weak local
minimum in the centre of mass, see Figure 5.7. Therefore, it can be
expected to be stable in high-dimensional feature spaces.

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 PNFCM F1 Mean

0

0.2

0.4

0.6

0.8

1

Figure 5.8: PNFCM cluster quality on data set family D2.

As already mentioned at the end of Chapter 3.4.1, the noise version
of this algorithm does not perform well in its canonical form. How-
ever, with the procedure of gradually reducing the noise distance,
described in Section 3.7.2, this problem can be avoided and lead to a
better clustering quality. It also allows the algorithm to be viable in
high-dimensional feature spaces.

5.1 number of dimensions and clusters 115

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 PNFCM F1 Mean

0

0.2

0.4

0.6

0.8

1

Figure 5.9: PNFCM cluster quality on data set family D3.

During the benchmark, PFCM as well as PNFCM performed reas-
onably well, especially on the data set family D2, see Figure 5.8.
PFCM as well as PNFCM did not so well on D3, for m > 50, see Fig-
ure 5.9. The hiding effect of data objects were not sufficient because
the classes are extended too far out in the feature space.

5.1.5 Crisp Rewarding Fuzzy c-Means

Even though RCFCM was originally not invented for countering the
curse of dimensionality of clustering, its update equation (Equation
(3.27)) seems like the algorithm was specifically designed to counter
just that.

uij =

1

d2ij − aj
c∑

k=1

1

d2kj − aj

By subtracting a constant value from the distances, the contrast among
distance values is increased. So even though the distances between
one data object and all prototypes might be similar, after subtracting
the constant term, the relative similarity vanishes. Therefore, the ap-
proximation for FCM2 in Equation (5.5), is not applicable for RCFCM
and the prototypes do not run into the centre of mass.

This is also supported by the CoM analysis with the simplex test-
data set, presented in Figure 5.10. No local minimum near the CoM of
the objective function is visible and when applied on the benchmark
data sets the algorithm does not run into the same problems as FCM2.

Applied on D1 and D2, RCFCM and RCNFCM respectively show
almost perfect performance. See for example RCNFCM onD2, presen-

116 experimental results

0 0.2 0.4 0.6 0.8 1
0

0.5

1

α

J R
C

FC
M
(X

,α
)

η = 0.9
m = 3
m = 5
m = 10
m = 20
m = 50
m = 100
m = 200
m = 500
m = 1000

Figure 5.10: The objective function value of RCFCM JRCFCM, plotted de-
pending on the location variable α within the simplex test-data
set.

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 RCNFCM F1 Mean

0

0.2

0.4

0.6

0.8

1

Figure 5.11: RCNFCM cluster quality on data set family D2.

ted in Figure 5.11. The clustering is, apart from the area of overlap-
ping classes in the top-right, almost perfect and very reliable. If tests
were only made with this kind of idealised data sets, one could think
that RCFCM and RCNFCM is the solution to the curse of dimension-
ality for prototype based clustering. However, D3 and D4 reveal, that
this is not the case. The result on this two last data sets is good, but
not as perfect as in case of D1 and D2, see the corresponding figures
in Sections D.3 and D.4.

5.1.6 Expectation Maximization with Gaussian Mixture Models

The EMGMM algorithm is a quite different case than the other fuzzy
clustering algorithms. Contrary to the others, it can adjust the size
of its clusters in the feature space individually and optimise their
spread. At first, that seems to be a good idea, but it also introduces a

5.1 number of dimensions and clusters 117

new layer of parameters that can corrupt in the process of clustering.
The benchmark actually suggests, that EMGMM is capable of clus-
tering high-dimensional data sets. The specific process of optimizing No unusual beha-

viour is quite a
remarkable result in
itself, even though
its quite boring and
not very insightful.

the normal distributions leads to results where at least one cluster is
very broad, while the other clusters cover only their respective class
nicely. The large cluster actually seems to serve as a noise cluster,
but without the benefit of being a uniform distribution. This does
not seem to have a negative effect in high dimensions though but a
deeper analysis to this effect is necessary to be sure.

Other than that, there was one more case of disturbing behaviour
of EMGMM that is not shown in the plots. With increasing number
of dimensions, the clusters tend to become very narrow, covering
only a very small portion of the data set while one cluster domin-
ated the entire data set, effectively covering all data objects except a
few that are very close to the other prototypes. This effect is already
discussed in [Borgelt, 2005] and the solution was to give boundar-
ies to the variance (spatial expansion) of the clusters. But it seemed
to get worse with higher dimensions and tighter boundaries were
necessary. With more degrees of freedom (non-sphercial clusters for
example), EMGMM would probably have even larger problems in
high-dimensional spaces.

An objective function plot like for the other fuzzy clustering algo-
rithms is not possible for EMGMM. The update process for member-
ship values does not only depend on the location of the prototypes
but also on the cluster variance, which cannot be determined using
the parameter α.

5.1.7 Membership Values and Distance Concentration

There is one more approach to understand the sensitivity of fuzzy
clustering algorithms to the effects of distance concentration. Observe What an irony!

Observed from
a well chosen
perspective, in one
of the most simple
examples with just
a 1-dimensional
feature space lies the
key to understand
the behaviour
of an algorithm
in the complex
circumstances of
a high-dimensional
feature space.

Figure 5.12 which is composed of the lower panels of Figures 3.16,
3.17 and 3.18. At x ≈ 5.5 the distance to ~y2 and ~y3 is approximately
equal and the membership value graphs meet.

This situation is similar to a random initialization at high-dimen-
sional feature spaces, where the distance to all prototypes is approx-
imately equal, see the argumentation in Section 5.1.2. A random ini-
tialization of prototypes is usually done so that the dimensions are
sampled independently from one another, see Section 3.7.4. In other
words, the initial locations of prototypes are a sample of an m-di-
mensional random distribution with independent dimensions. Any
data object ~x can then be regarded as a random query point ~q and as
discussed in Section 2.2, the set of prototypes are then subject to dis-
tance concentration. As a consequence, they are all roughly equally
far away from the data object/query point ~x = ~q, just like in the
1-dimensional example in Figure 5.12.

118 experimental results

0

0.5

1

~y1 ~y2 ~y3

FCMm, PFCM, RCFCM membership values plot

ω = 1.1
u1·
u2·
u3·

0

0.5

1

~y1 ~y2 ~y3

m
em

be
rs

hi
p

va
lu

es
β = 0.7

u1·
u2·
u3·

0 2 4 6 8 10 12 14
0

0.5

1

~y1 ~y2 ~y3

feature space

η = 0.9
u1·
u2·
u3·

Figure 5.12: Membership value plots of FCMm, PFCM and RCFCM with
additional annotations. The circle indicates the intersection
where the gradient is interesting.

If the gradient of membership values is shallow at the crossing
point, a small change in distances to the prototypes induces a small
change in membership degrees, hence a small overall contrast in
membership values. A steep gradient at the crossing point however
means, that a small variation of distances induces a large variation
of membership values, hence a strong contrast. In other words, these
plots indicate how sensitive a clustering algorithm reacts to distance
concentration.

As already mentioned at the end of Section 2.7, I tried to create
a measure that indicates how sensitive a (any) clustering algorithm
is to distance concentration. The gradient of the membership value
plots at the intersection indicated by circles in Figure 5.12 was a good
candidate for such a measure. However, this approach is not available
for EMGMM and HCM as well as competitive agglomeration cluster-
ing [Frigui and Krishnapuram, 1997] and it is also not valid for non-
prototype clustering algorithms like DBScan [Ester et al., 1996] DEN-
CLUE [Hinneburg and Keim, 2003] and OptiGrid [Hinneburg and
Keim, 1999] and hierarchical clustering methods [Zhang et al., 1996].

5.2 comparing clustering algorithms 119

So the usefulness of such a measure would be rather slim, which
defies the intention of giving a general approach.

5.2 comparing clustering algorithms

In the last section, the algorithms were investigated on an individual
level. In this section, their capabilities are compared with each other.
When faced with a task to cluster a data set, it is often interesting
which algorithm performs best under the given circumstances. Thus,
answering thesis question Q2: which algorithm is the best to use in a
high-dimensional clustering task?

Since the success of individual algorithms depends heavily on the
data set family Dk, the number of dimensions m and classes/clusters
c, the benchmark results are presented in a similar fashion as the
individual cluster quality plots (see Appendix D). For a combination
of data set family Dk, number of classes/clusters c and number of
dimensions m, the algorithms are ranked by their mean maximum F1
value F1, see Equation (5.2). The algorithm A∗ with the best (highest)
mean maximum F1 value A 6= A∗ : F1(Dk,m, c,A∗) > F1(Dk,m, c,A)
is presented colour coded in the individual cells of the diagrams. In
some cases multiple algorithms produced a perfect clustering result
in all of the 20 data sets (Dk,m, c, 1, . . . , 20), which means they all
have a F1 value of 1. If there is no clear best algorithm, all candidates
with the same F1 value are grouped in one (Dk,m, c) cell.

5.2.1 Algorithms, applied on D1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

Best algorithm on D1

HCM
FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

Figure 5.13: Map of algorithms that performed best on data set D1.

The first data set family D1, described in detail in Section 4.1.1 is
the simplest data set of the four discussed in this work. In the per-

120 experimental results

formance plot, presented in Figure 5.13, the best algorithm that per-
formed for a combination of number of dimensions m and number
of classes/clusters c is colour coded according to the list on the right-
hand side of the figure. Since the data set family does not contain any
noise, clustering algorithms that expect noise do not perform very
well, compared to the others. The only exception is PNFCM. Since PN-
FCM can assign crisp membership values, it is possible that all data
objects are crisply assigned to one or more clusters, which means that
no data object is (partly) assigned to the noise cluster. This can hap-
pen especially in data sets with a small number of classes/clusters
compared to the number of dimensions, so that the classes are well
separated.

It is somewhat surprising to see that FCM2 performs best in some
cases, where the number of dimensions is low and the number of
classes/clusters is between 5 and 25. This indicates that FCM2 is cap-
able of handling overlapping classes reasonably well, which is the
motivation to use FCM2 in the first place. With the exception of
m = 2 and c = 200, PFCM seems to work best for low number of
classes/clusters. In most of the low-cluster and low-dimension cases,
FCMm seems to be one of the best algorithms. In the vast majority
of cases, RCFCM is the best algorithm. However it seems to lack the
ability to produce perfect results in cases with low number of clusters,
which is why FCMm, PFCM, PNFCM, and EMGMM show a better
performance in the lower left part of the diagram.

5.2.2 Algorithms, applied on D2

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

Best algorithm on D2

HCM
FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

Figure 5.14: Map of algorithms that performed best on data set D2.

Contrary to D1, the second data set family D2 contains noise. It
comes to no surprise, that clustering algorithms that expect noise data
objects perform better than others. However, in low dimensional data

5.2 comparing clustering algorithms 121

sets with overlapping classes, non-noise clustering algorithms like
FCM2 and FCMm seem to be the better choice. For higher dimen-
sional data sets however, PNFCM and RCNFCM dominate the rank-
ing. The pattern however, seems to be quite odd. Both for low number
of clusters and for a high number of clusters, PNFCM performs better
than RCNFCM. When looking at the individual performance maps,
it seems that RCNFCM has difficulties with overlapping classes, at
least more than PNFCM. Also PNFCM is able to produce a perfect
clustering result in data sets with a low number of classes/clusters.
RCNFCM is not able to do that, even though it produces good results.

It is however surprising to see that in cases of high-dimensions and
high number of classes/clusters RCFCM performs better than either
PNFCM or RCNFCM. There is no obvious explanation. It can be spec-
ulated, that for high number of classes/clusters and in a high-dimen-
sional environment, it is very likely that entire classes are clustered
as noise, therefore reducing the F1 value. This seems to out-weight
the inability to detect noise for RCFCM.

5.2.3 Algorithms, applied on D3

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

Best algorithm on D3

HCM
FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

Figure 5.15: Map of algorithms that performed best on data set D3.

After the first two data set families, D3 shows some surprising
results. In none of the previous two data set families, FCMm seems
to be the algorithm of choice, in D3 however, it is the best algorithm
in most of the configurations. Also PFCM performs best in the low-
dimensional area, which was not the case in D1 and D2 either.

It is especially noteworthy that not in a single case, an algorithm
with a noise cluster created the highest F1 value, even though the data
set contains as much noise data objects as D2. That is astonishing be-
cause the noise distance is calculated in the same way as for data sets
in the D2 family where the strategy seemed to work very well, see

122 experimental results

Section 4.4.2. Maybe the choice of the noise distance was inappropri-
ate for the extended shape of the classes in the D3 data set family, so
that the noise distance was either to small or too large. An alternative
explanation would be that the structure of the complex and extended
classes prevents a good clustering when considering a noise cluster,
independently of the true noise distance. A range of experiments with
different noise distances would be necessary to find that out, which
is not feasible any more at this point. A deeper investigation might
be a topic for further research in the future.

5.2.4 Algorithms, applied on D4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

Best algorithm on D4

HCM
FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

Figure 5.16: Map of algorithms that performed best on data set D4. The
white squares indicate an empty cell because the data set
family D4 does not have data sets below 10 dimensions.

Despite the fact that the D3 and D4 families of data sets are very
different, the performance rankings are very similar. In relatively low
dimensionsm = 10 andm = 15, PFCM performs best, while in higher
dimensions FCMm is clearly dominating. It should be noted though,
that the D4 data set family showed some strange performance charac-
teristics, see Appendix D.4. Between m = 10 and m = 15 dimensions,
all algorithms perform less well than in dimensions m = 50, m = 70

and m = 100. Due to the generation process (see Section 4.1.4 and
A.4), the classes in the dimensions 10 and 15 overlap more than on 20
and above, but it is unexpected that this is so apparent in the quality
results.

5.2.5 In summary: which algorithm is best?

In most papers, data sets, similar to the families of data sets D1 and
D2 are tested. Based on these data set families alone, it would be easy

5.3 internal cluster quality index verification 123

to declare that in high-dimensional data sets, RCFCM as well as PN-
FCM and RCNFCM are the best algorithms to solve related problems
in high-dimensional feature spaces. The results from data set families
D3 and D4 suggest, this would be an ill advised conclusion. After ob- It is remarkable that

in not a single case
HCM performed
best, not even in
low dimensions and
for a low number
of classes. Despite
the fact that HCM
has an advantage be-
cause all clustering
problems are crisp.
That is something
I did not expect
when I started my
investigation. HCM
is very popular,
maybe this is not
well deserved.

serving the above presented results, it must be concluded that there
is no single best algorithm for high-dimensional feature spaces. It is
however possible to conclude that some algorithms do not seem to
provide a good clustering result overall. These algorithms are HCM,
EMGMM as well as FCM2 and NFCM2. HCM did not perform best
in any of the test cases, which indicates that there might always be a
better fuzzy algorithm available. EMGMM performed best occasion-
ally, but not consistently enough to consider this algorithm for any
difficult clustering problem. FCM2 and NFCM2 are obviously not a
good choice for high-dimensional feature spaces. But this was clear
from the beginning since it was the motivation to start this work in
the first place, see Figure 1.5 in the introduction. In that sense, the
thesis question Q2 cannot be answered with a satisfying and compre-
hensive advice.

The results from the presented data sets show, that the conclusion
an algorithm is likely to perform best on one kind of data set because it per-
forms best on an other kind of data set is not valid and should be avoided.
Likewise, it is not always clear why some algorithms perform better
than others, especially when comparing (N)FCMm, P(N)FCM and
RC(N)FCM. The interpretation that was given here is very situational
and might not be valid for other data sets. It is not possible to pre-
dict what happens if the algorithms are applied to an unknown data
set, which means its not possible to know a-priori which algorithm
to use.

Since it is clear that there is no single best algorithm and since the
F1 measure cannot be used for a real world data set because it re-
quires the knowledge of the true result, internal indices are required
to detect which algorithm works best in a given situation. This topic
is investigated in the next section.

5.3 internal cluster quality index verification

In this section, thesis question Q4 is approached: are internal index
measures useful to assess the quality of clustering results in high-
dimensional feature spaces? Internal index measures are primarily
used for two tasks: first to rank clustering results to select the best
and second to quantify the quality of the clustering result. As was
seen from the analysis in the last section, this is really necessary as
there does not seem to be a clearly superior algorithm. Both parts can
be tested using the clustering results from the benchmark data sets,

124 experimental results

presented in Chapter 4. The two different parts of the question require
different approaches which are presented in the next two subsections.

For both investigations, the clustering results of HCM are ignored
because HCM produces only crisp clustering results. The exclusively
crisp membership levels would bias the results of the XB index, the PE
index as well as the NPC index (see Section 4.3). As was established
already in Section 5.2.5, HCM does not perform particularly well on
any of the benchmark data sets anyway. Also, as for the F1 index (see
the second paragraph in Section 5.1), the prototype centric cluster
diameter and cluster separation are used to calculate the index values.

5.3.1 Ranking of Clustering Results by Internal Indices

As is apparent from the results of the last chapter, it is a-priori not
clear which clustering algorithm is best suited for an unknown data
set. Usually, the data set is clustered using several different cluster-
ing algorithms and the best result is selected. If the true result is
unknown, internal quality measures are used to estimate the ranking
of the results. Assuming the F1 measure provides the correct ranking,
the quality of the internal cluster quality index induced rankings can
be measured using the benchmarks from this thesis.

As before, the tuple (Dk,m, c, s, r,A) indicates a specific clustering
result. The data set (Dk,m, c, s) does not depend on the algorithm
that is used for the clustering nor on the initialization, which allows
a ranking of all clustering results based on that data set. That means
for a fix data set family Dk, number of dimensions m, number of
classes/clusters c and data set s the ranking is computed by evalu-
ating the clustering results for all initializations r = 1 . . . 5 and all 9
fuzzy clustering algorithms Af ∈ {FCM2, NFCM2, FCMm, NFCMm,
PFCM, PNFCM, RCFCM, RCNFCM, EMGMM}. For the clustering
results of 45 different experiments, specified by the pair (r,A), the
F1 index values and the internal index values are computed. Without
loss of generality, let the pairs be ordered according to the value of the
F1 index, such that F1(Dk,m, c, s, ri,Ai) > F1(Dk,m, c, s, ri+1,Ai+1)
for i ∈ {1, . . . , 44}. For any internal index, I ∈ {IBS, IDB, IXB, INPC, INPE},
the ranking quality is than defined by the F1 quality index induced
ranking position i of the highest I-ranked clustering result:

RI(Dk,m, c, s) =





arg max
i∈{1,...,45}

I(Dk,m, c, s, ri,Ai) : I ∈ {IBS, INPC}

arg min
i∈{1,...,45}

I(Dk,m, c, s, ri,Ai) : otherwise

(5.10)

In words, the ranking quality RI(Dk,m, c, s) ∈ {1, . . . , 45} specifies
the F1 ranking position of the best ranked experiment according to
index I. A maximal value for IBS and INPC and a minimal value for IDB,

5.3 internal cluster quality index verification 125

IXB and INPE indicate the best index-selected clustering result. So the
internal index I identifies experiment (ri,Ai) as the best clustering
result and the counting index i indicates the ’true’ ranking position
of that clustering result as measured by the F1 index. Therefore, the
counting index i in this case is equal to the ranking error of internal
cluster quality index I. It is possible that several (r,A) pairs share
the same F1 value, so that the ranking error indicated by i is higher
due to the arbitrary ordering of equal F1 scores. To prevent this bias,
the position of the best ranked pair with equal F1 value is used to
calculate the ranking error in such cases.

Finally, the mean of ranking quality values is calculated for all s =
1, . . . , 20 different data sets of one data set family Dk, number of
dimensions m, number of classes/clusters c: RI(Dk,m, c).

RI(Dk,m, c) =
1

20

20∑

s=1

RI(Dk,m, c, s) (5.11)

The data is presented (see Figure 5.17) in the same fashion as the
F1 score plots (see in Figures 5.1, 5.3, etc.), but this time the colour
indicates the ranking error, which is quite different to the score plots.
The lower panel shows again the standard deviation of the 20 ranking
error values, which is more relevant this time because it shows how
consistently the internal index can create the ranking quality. A visual
representation of all 5 internal cluster quality indices for the 4 data
set families is presented in Appendix E. I checked the source-

code that produced
the results several
times. It is complex
and I cannot rule
out completely
that the effects are
induced by some
error or bug in the
software. However,
I tested every part
extensively and did
not find any mistake.
Therefore, I assume
the effects are real.
I would like to see
them confirmed
by an independent
analysis.

It cannot be expected that internal quality measures produce per-
fect results and some variation is to be expected as well.

In the example in Figure 5.17, the ranking quality of the BS index
is presented. The colour indicates the ranking error, with darker col-
our meaning less quality. Please note, that this can be interpreted as:
lighter colour is better than darker colour, which is reversed to the
way the F1 score plots are interpreted. In this case, there is a strike of
higher ranking errors from dimension m = 20, classes c = 20 to the
lower right corner. This is accompanied with a increase in the ranking
error standard deviation, which shows that for this example, the BS
index produces less reliable results.

All together, the structures that appear in the ranking performance
plots are quite concerning. Some of the curiosities are:

• As expected from the index definition, the NPC and NPE index
show very similar results, except for data set family D1, where
the NPC index performs better.

• For the data set family D1, the BS-Index seems to predict the
the ranking of the best clustering algorithm very well. The DB
and NPC index seem to work better for fewer classes/clusters,
while the XB index works better for many classes/clusters. The
NPE index on the other hand seems to predict the ranking not

126 experimental results

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 BS Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 BS Index F1 Ranking Error Standard Deviation

0

10

20

Figure 5.17: Ranking quality of the BS index on data set family D3.

so well but still provides better cluster quality indication for
higher number of dimensions.

• Despite the similarity between D1 and D2, the ranking errors
on D2 seem to be completely unrelated to D1, except for the XB
index, which shows a slight decrease of ranking quality. Also
the DB index shows lower indication quality for higher dimen-
sions while the BS, NPC and NPE indices show an increase of
ranking quality for higher number of dimensions.

• Surprisingly, the ranking quality for D3 is better than for D2 for
the BS and DB indices, despite the higher complexity of the data
set. The other 3 indices show a slightly lower ranking quality.

• The BS index seems to perform much better than the other in-
dices on D3 and D4.

5.3 internal cluster quality index verification 127

Without looking too closely at the curiosities, the overall ranking
quality is surprisingly poor throughout all data sets and indices. The
best overall performance was presented by the BS index on the D1
data set family (see Appendix E.1), but that data set family is hardly
realistic. On data set families D3 and D4 none of the indices is par-
ticularly reliable when it comes to the ability to recognise the best
clustering result, see Appendix E. The argumentation

in the text can be
regarded as a rough
interpretation of
the situation. It
is possible to do a
deeper investigation,
but the quality of
the results does not
justify the afford.

Take for example the ranking quality of the BS index on theD3 data
set family, presented in Figure 5.17 which is the best index for data set
families D3 and D4. For most of the dimensions and cluster counts,
the mean ranking error is better than 8 (that is, in 2/3 of the cases).
The standard deviation in the corresponding cells shows a value of
around 5. Assuming the ranking error values follow roughly a nor-
mal distribution, then in 98% of the cases, the clustering result with
the best BS index value is among the best 23 = 8+ 3 · 5 clustering res-
ults, according to the F1 index. This means, the BS index predicts that
the clustering result with the best index value is somewhere among
the best 50% of the clustering results. Despite the visually good per-
formance, this is not good enough to select the ’best’ clustering result
consistently.

As already mentioned in Section 4.2.3, this conclusion is subject to
the proposition that the F1 index reflects the true cluster quality and
induces the correct ranking of the clustering results.

5.3.2 Quantifying Cluster Quality with Internal Indices

From the last subsection, it is obvious that the internal quality meas-
urements cannot reliably reproduce the F1 ranking to a satisfying
degree. Even though the ranking has good practical applications, it is
also interesting how well the internal indices reflect the true cluster-
ing quality as indicated by the F1 measure. To answer this question,
the indices need to be able to predict the true clustering quality. In
other words, the index values need to be correlated with the true
cluster quality. Again, it is assumed that the F1 index represents the
true clustering quality and the correlations are computed w.r.t. the F1
index.

The correlation is measured using Spearmans rank correlation coef-
ficient [Hotelling and Pabst, 1936]. The more popular Pearson correla-
tion coefficient [Irle, 2005] is not a good choice here because it is very
sensitive to outliers (which exist quite regularly in the index data)
and because the internal indices do not necessarily have a linear de-
pendency to the F1 measure. As a result, Spearmans rank correlation
coefficient is much more robust and provides better insight into the
relationship of the internal indices to the external F1 index.

The rank correlation coefficient is defined over the rank of the data.
Let X = {~x1, . . . ,~xn} ⊂ Rm of at least two dimensions m > 2 be

128 experimental results

a data set. Let Xk denote the values of X in dimension k: Xk =

{~x1,k, . . . ,~xn,k} ⊂ R and Xl denote the values of X in dimension l:
Xl = {~x1,l, . . . ,~xn,l} ⊂ R. The natural ordering of the data objects w.r.t.
an attribute is used to compute the rank. To make the equations sim-
pler, let the data objects in X be ordered according to k if the rank for
attribute k is computed and that holds ~x1,k 6 · · · 6 ~xj,k 6 · · · 6 ~xn,k.
The function rankk(~xj) ∈ R of data object ~xj according to dimension
k defines the position of ~xj in the ordered list. If two or more data
objects have the same value in dimension k, the rank of all of these
data objects is equal to the average of the positions:

rank
k

(~xj) =





j if ~xj−1 < ~xj < ~xj+1

1
j+−j−+1

j+∑
t=j−

t if ~xj− = · · · = ~xj = · · · = ~xj+
(5.12)

The list of data objects is sorted two times, one time according to
dimension k and one time w.r.t. dimension l, giving two rank values
for all data objects. These rank values are than used to compute the
Spearman rank correlation coefficient.

Ck,l(X) =
6

n3 −n

n∑

j=1

(
rank
k

(~xj) − rank
l

(~xj)

)2
(5.13)

The value of the rank correlation coefficient shows, how strong the
two dimensions k and l of X are functionally dependent. Any func-
tional dependency can be measured with rank correlation of 1 as long
as the function is monotonously increasing.

The rank correlation coefficient is used to estimate how well an in-
ternal cluster quality index is able to represent the true cluster quality,
measured by the F1 index. Since the F1 index has a positive slope with
the true cluster quality, some of the internal indices are redefined to
also have a positive slope w.r.t. true cluster quality. That means, the
DB, XB and NPE index values are multiplied by −1 prior to calculat-
ing the rank correlation coefficient.

The complete results are again presented in Appendix F. The in-
ternal index values are supposed to be independent on the cluster-
ing algorithm. This time, there is no need to calculate the mean over
the s = 1, . . . , 20 data sets of identical data set family Dk, number
of dimensions m and number of classes/clusters c. So in total, the
rank correlation coefficient of index values for 900 clustering results
(Dk,m, c, ·, ·, ·) are computed. These are index results of s = 1, . . . , 20
different data sets, r = 1, . . . , 5 different initializations per data set
and 9 different clustering algorithms (HCM is left out again because
of its pure crisp clustering).

As discussed at the beginning of this section (see the second para-
graph in Section 5.3, the prototype centric cluster diameter and inter-
cluster distances are used for some of the internal indices. In some

5.3 internal cluster quality index verification 129

cases, two prototypes were identical (they have a distance of 0) or one
cluster was covering only one or no data object, which resulted in a
0 cluster diameter. The BS, DB and XB indices rely on the inverse of
the minimal pairwise distance of two different clusters, see Equations
(4.5) and (4.6) or the inverse of the diameter of the clusters, see Equa-
tion (4.4). In cases where zero values are present for these distances,
a meaningful calculation of the BS, DB and XB indices is not possible.
As a result, some index values could not be taken into account for cal-
culating the rank correlation coefficient. The total number of unused
index values is 3, 909 out of the total number of 2, 160, 000 calculated
index values of the BS, DB and XB indices.

A positive rank correlation coefficient near 1 for an internal index I
indicates a good agreement with F1, which in turn indicates that the
internal index I can be used to assess the cluster quality. A small rank
correlation value, close to 0 indicates that the value of index I is not
connected to the true cluster quality, which means that index I cannot
be used to assess the cluster quality. Even worse, a negative rank
correlation coefficient means that a good value of index I corresponds
to a low true cluster quality and vice versa. The colour scheme of

these plots required
some RGB magic
and took a lot of
time to get right. I
find them not only
very intuitive but
also quite pretty.

The rank correlation coefficient is presented in the same way as the
other performance values before, see for example Figure 5.18. The
colour scale is different to visualize the presence of negative values
in an obvious way. As can be seen in this figure, the rank correlation
coefficient can be influenced by the bad performance of FCM2 and
NFCM2 for a high number of dimensions and classes/clusters. The
reason for that is, that (N)FCM2 performs so bad that it acts like an
outlier which is easily detected by the rank correlation. Also, as can
be seen in Appendix G, the EMGMM algorithm can create a lot of
outliers for some indices. EMGMM tends to create very large and Even though the

spearman correla-
tion coefficient is
quite robust against
this, the indices
still get confused
which limits their
usefulness and
disturbs the result.

broad clusters as well as very narrow, concentrated clusters with al-
most equal prototype locations. That creates an artificial minimum
inter-cluster distance that can get very small and create outliers for
the DB and XB index because both indices contain the inverse of the
separation of clusters, see equations (4.5) and (4.6). This is a compu-
tational artefact from the choice of using prototype distances rather
than pairwise data object distances, discussed in Section 4.3.1. It was
therefore decided to create two versions of each plot, one time with
(N)FCM2 and EMGMM and one time without them, see Appendix
F for more plots. As discussed before, HCM is still missing from all
plots because some of the indices can not measure the cluster quality
due to the crispness of the result.

Judging from the previous subsection (Section 5.3.1), it can be ex-
pected that in some occasions, the internal indices and the cluster
do not correlate very well. Still, the plots show unexpected features,
especially the amount of negative correlation is troublesome. See for
example Figure 5.19. They show both the correlation coefficients for

130 experimental results

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 NPCI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 NPCI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

Figure 5.18: Top: Rank correlation of the NPC index with the F1 index on
the D2 data set family. Bottom: Rank correlation of the NPC
index with the F1 index on the D2 data set family, without
clustering results from the FCM2 and NFCM2 algorithms.

data set family D3, in the upper panel between the DB index and F1
and in the lower panel between the XB index and the F1 measure. The
huge area of the negative correlation coefficients for the XB index is
unexpected, especially that it is present for a low number of dimen-
sions but not for a high number of dimensions. Please observe the full
list of plots in Appendix F, where the left column of plots show the
correlation coefficients including (N)FCM2 and EMGMM while in the
right column, the index values for clustering results from (N)FCM2

and EMGMM are excluded.
The traditional notion of a good clustering of a data set: ’data objects

of the same cluster are closely together while data objects of different clusters
are far apart’ breaks down in high-dimensional feature spaces because
the distances are not very meaningful due to the concentration effect.

5.3 internal cluster quality index verification 131

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 DBI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 XBI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

Figure 5.19: Top: Correlation of the DB index with the F1 index on the
D3 data set family. Bottom: Correlation of the XB index with
the F1 index on the D3 data set family. Both panels show the
correlation coefficient without clustering results from the
(N)FCM2 and EMGMM algorithms.

Since the internal indices are invented to measure this abstract notion
of a good clustering, it should be expected that the quality of the
indices depends on the number of dimensions and classes/clusters
in a similar way as the clustering result itself. The effect of the Curse
of Dimensionality should be most present for the BS, DB and XB
indices. However, that is not what is observed. The patterns are

very interesting and
even though they are
not the core topic in
this thesis, I decided
to investigate.

The structure that is visible is very diverse. There is no clear gradi-
ent dependency on the number of dimensions, it seems that some
other effect dominates the correlation coefficient. The remaining part
of this subsection is devoted to understand what is going on.

In Figure 5.20, two example plots of the internal quality index val-
ues versus the F1 index value for some of the extreme negative correl-

132 experimental results

ation spots are plotted. The plots show the value of an internal index
in relation to the F1 index for data sets from the D2 data set family
with m = 3 dimensions and c = 40 classes/clusters. In the upper
plot, the BS index is presented, in the lower plot the NPC index. Each
plot here is a visualization of the data that is used in one cell in the
rank correlation coefficient plots, shown for example in Figure 5.18.
To eliminate that the number of dimensions is a significant factor, a
case was chosen where the number of dimensions is low, 3 in this
case. Each dot in a plot corresponds to one clustering result and the
clustering algorithms that were used to generate the clustering res-
ults are colour coded, as presented in the legend. It seems that the
correlation coefficient is dominated by the selection of the algorithm
rather than any other factor in this case. Especially in the lower plot,
it seems that the NPC index is positively correlated with the F1 in-
dex for any individual clustering algorithm, but the index value is
negatively correlated when taking all clustering algorithms together.In case additional

plots are required,
they can be gener-
ated by using the

provided data tables.
The necessary LATEX

and TikZ source
code snippets can

be found in the
download section

for this thesis.

In case of a positive correlation of the BS and NPC index for data set
family D3, at dimensionality of m = 7 and c = 120 classes/clusters
a similar effect can be observed, see Figure 5.21. In both images, the
now positive correlation coefficient is dominated by the selection of
algorithms.

To investigate the influence of the clustering algorithm selection on
the internal index measures, a range of plots of the correlation coef-
ficient defining data are presented in Appendix G. These plots show
that the correlation coefficient is in many cases dominated by the se-
lection of algorithms. The separation of results with a noise cluster
(results from NFCM2, NFCMm, PNFCM and RCNFCM) from the
results without a noise cluster (results from FCM2, FCMm, PFCM,
RCFCM and EMGMM) can be an artefact of the definition of in-
ternal indices when a noise cluster is present, see Section 4.3.7. But
also within the subgroups of purely non-noise clustering algorithms
as well as purely noise clustering algorithms, the selection of algo-
rithms often dominated the correlation coefficient between the in-
ternal indices and the F1 measure. Also a trend is visible when ob-
serving the plots in Appendix G. On data sets with higher number
of classes/clusters, the separation of clustering algorithms becomes
more dominant, as the plots of c = 50 and c = 150 show, contrary to
the other plots of c = 5 and c = 20.

But not only the selection of algorithms is relevant, also the indices
directly contradict each other. Observe again Figure 5.19. The correl-
ation coefficient maps for the D3 data set family of the DB and XB
index are presented. In the upper right half of the images, the correla-
tion coefficients are reversed, meaning that both indices indicate that
clustering results that are measured well by one index and bad by the
other and vice versa. In this particular case, the XB index evaluated
the results of the RC(N)FCM algorithm to be very good compared to

5.3 internal cluster quality index verification 133

the other results while the DB index and the F1 index evaluated the
RC(N)FCM algorithm as bad compared to the others, hence the ob-
served correlation coefficient, see Appendix-Section G.2.3 for a plot
of the situation. I am quite shocked

by this results. It is
one thing to have a
diffuse knowledge
that internal quality
indices are not
trustworthy and
quite another to
see the bias that
the indices induce.
At this point, I
might go as far to
say that internal
indices cannot be
trusted in general
unless proven
trustworthy in a
specific situation.
Independently
of the number of
dimensions.

In summary, the relationship of the internal cluster quality indices
to the true clustering quality is dominated by the selection of clus-
tering algorithms. This defies the purpose of applying the internal
cluster quality indices since they are mainly used to compare differ-
ent clustering algorithms. This also answers thesis question Q4 in a
rather unsatisfying way. The clustering quality in high-dimensional
feature spaces cannot be determined by internal indices BS, DB, XB,
NPC and NPE because the predictive power of these index measures
is dominated by the selection of clustering algorithms and not by the
quality of the clustering algorithm results. On a data set where the
true clustering result is unknown, there is no way to know whether
an internal index is positively correlated with the true clustering res-
ult, not correlated at all, or even negatively correlated. Without this
knowledge however, the internal index values are meaningless. Of
course this conclusion is again based on the assumption that the F1
measure reflects the true clustering quality well.

134 experimental results

0.5 0.6 0.7 0.8

0

0.2

0.4

0.6

0.8

1

1.2

F1 Index

BS
I

D2, m = 3 c = 40: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.5 0.6 0.7 0.8

0.7

0.8

0.9

1

F1 Index

N
PC

I

D2, m = 3 c = 40: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

Figure 5.20: Correlation plots of the D2 data set family of m = 3 dimen-
sions, c = 40 classes using the BS (top) and NPC (bottom)
indices on the y-axis and the score of the F1 index on the x-
axis. The index values are centred on the mean and scaled by
the standard deviation.

5.3 internal cluster quality index verification 135

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

F1 Index

BS
I

D3, m = 7 c = 120: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

F1 Index

N
PC

I

D3, m = 7 c = 120: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

Figure 5.21: Correlation plots of the D3 data set family of m = 7 dimen-
sions, c = 120 classes/clusters using the BS (top) and NPC
(bottom) indices on the y-axis and the score of the F1 index
on the x-axis. The index values are centred on the mean and
scaled by the standard deviation.

136 experimental results

6
C O N C L U S I O N S A N D F U T U R E R E S E A R C H

The purpose of data mining in general and clustering in particular is
to transform raw data into knowledge. In high-dimensional feature
spaces, this task is particularly difficult. The structure of high-dimen-
sional feature spaces prevent an easy, direct application of clustering
algorithms that work well on low dimensional feature spaces. An
example is FCM2 as can be seen in the introduction, see Figure 1.5.

In the past chapters, a lot of the relevant information for a suc-
cessful clustering in a high-dimensional feature space have been dis-
cussed. A short and informative summary is presented in this chapter,
beginning with the thesis questions that are introduced in Section
1.3. All four questions and their answers are presented, followed by
Section 6.2 which holds a discussion of open questions and further
research topics that came up throughout this thesis. This work closes
with the conclusions in Section 6.3.

6.1 thesis questions : discussion

The thesis questions, introduced at the very beginning in Section 1.3
have been guiding the development and contents of this work. The
questions and their respective answers are summarised within this
section in the order of the question numbers.

6.1.1 What is the Curse of Dimensionality?

The first question Q1: ”What is the ’curse of dimensionality’ in the frame-
work of clustering and under which circumstances does it occur?” is a ques-
tion for describing the mathematical background of the problems,
that arise within high-dimensional feature spaces. The ’curse of di-
mensionality’ is described by the occurrence of distance concentra-
tion in high-dimensional feature spaces. As defined in Equation (2.7),
distance concentration occurs, if and only if the relative variance of
distances becomes 0 for increasing dimensionality:

lim
m→∞

RV
(

Dp
~q(m)(~X

(m))
)
= 0

137

138 conclusions and future research

A similar definition, can be given for real data sets, based on estimat-
ors for variance and expectation. Note that distance concentration is
described in terms of the distribution of distances w.r.t. a query point.
It is not based directly on the (marginal) distribution of the data set
which makes predictions based on the data distribution difficult.

This step is overcome partly by the analysis in Subsection 2.2.3.
From Equation (2.20), it is concluded, that

lim
m→∞

RV
(
‖~q(m) − ~X(m)‖pp

)
= lim
m→∞

(σ(m))2

(µ(m))2

where σ2 is the average pairwise correlation of the distances of two
distinct features and µ2 is the mean expected value of the distances
of all dimensions, centred to a query point ~q and scaled to a variance
of 1. In other words, distance concentration basically depends on the
amount of pairwise correlation of the data generating marginal dis-
tributions. The more positive correlations are present, the less likely
it is that distance concentration occurs. This might be explained with
the notion, that positively correlated dimensions lead to a lower in-
trinsically dimensionality because the data is located in or close to a
lower-dimensional linear subspace.

With this result, it is for example easy to understand why mean-
ingless features lead to distance concentration. They do not correlate
to the actual data or to each other, thus the average pairwise correl-
ation approaches 0 faster than the average marginal distances. This
result also answers the first part of the thesis question in a satisfying
way: the conditions for the curse of dimensionality can be described
in terms of pairwise correlations among the absolute values of indi-
vidual dimensions, centred on a query point ~q.

The second part of this question, the curse of dimensionality in the
framework of clustering is a bit more ambiguous. A clear description
of the tolerance of clustering algorithms to distance concentration is
still missing. What is needed is a consistent mathematical description
of the influence of distance concentration on prototype based cluster-
ing algorithms. One way of describing this influence is presented in
the approximation in Equations (5.5) and (5.6). If the approximation
is possible, this might be an indicator that the algorithm is sensible to
distance concentration.

Another description of the influence of distance concentration are
the objective function plots (see Figures 5.5, 5.6, 5.7 and 5.10), gen-
erated using the simplex data set (see Figure 5.2). A local minimum
at the centre of gravity in these plots indicate a tendency that the
prototypes will run into the centre of mass of the data set.

6.1 thesis questions : discussion 139

6.1.2 Which Clustering Algorithm?

The second thesis question Q2: ”Which prototype based clustering algo-
rithms can be used for high-dimensional data sets?” can be answered by
stating that FCMm, PFCM and RCFCM are good candidates for real
applications. As became clear already in the introduction, FCM2 is
not a good choice since it was part of the motivation to start this
thesis in the first place. During the tests, EMGMM was less effective
than the other algorithms that are analysed, which makes a use of
EMGMM less promising in high-dimensional feature spaces. HCM
seems to be a bad choice for any clustering problem with more than
2 classes, independently of the number of dimensions and shape of
the classes. Very surprisingly, noise variations of all algorithms per-
formed less well than the basic variants of the algorithms in many
tests where noise was present. This result puts a big question-mark
on the use of noise sensitive algorithms in high-dimensional cluster-
ing algorithms, a deeper analysis might be necessary here. Maybe a
better way to estimate the noise distance might solve the issue within
this thesis.

Among FCMm, PFCM and RCFCM however, the question which
algorithm is best cannot be answered independently from the data
set that is supposed to be clustered. All three algorithms seem to be
useful, though it is not a-priori clear, which is best in a given situation.
FCMm is a bit harder to set up because the cluster quality depends
on the correct value of the fuzzifier parameter and it is hard to anti-
cipate the correct fuzzifier value. For PFCM and RCFCM, the choice
is easier because the clustering is more robust w.r.t. the fuzzifier para-
meter. However, the performance of FCMm seems to be better for
more complex data sets, see the results for data set families D3 and
D4. This indicates that tests based on simple data set structures like
Gaussian shaped classes are not indicative for the performance of a
clustering algorithm in high-dimensional feature spaces. In practice,
any of the three algorithms might be tried.

A more general advice can be given at the end of the next subsec-
tion.

6.1.3 Influence of Dimensionality and Cluster Count

The third thesis question Q3: ”How is the clustering quality influenced
by the number of dimensions and the number of clusters?” can only be
answered clearly for FCM2. The FCM2 algorithm has a strong de-
pendency on the number of dimensions and the number of clusters
under distance concentration, see for example in Figure 5.4. This is
also supported by the deeper analysis presented in Section 5.1.2. The
other algorithms seem to be less sensitive to the number of dimen-
sions and classes/clusters. All algorithms perform less well for low

140 conclusions and future research

number of dimensions and high number of classes, as can be expec-
ted because the classes overlap and are not distinguishable. The over-
lapping is especially strong for data set family D3, which uses the
distorted classes and is designed to cause this problem.

The number of clusters seem to have a stronger influence on the
clustering quality than the number of dimensions for FCMm, PFCM,
RCFCM, their noise clustering variations as well as EMGMM. In fact,
with sufficiently high number of classes/clusters, the performance
of the algorithms increase with the number of dimensions due to
the problem of overlapping. So contrary to the effect for (N)FCM2,
it is worth increasing the number of useful features in a data set if
the number of classes is very high. HCM provides a constant, low
clustering quality, independently of the number of dimensions and
clusters as long as the number of clusters is larger than three.

The membership value plots (see Figure 5.12), presented in Section
5.1.7 give a good indication on the performance of a fuzzy cluster-
ing algorithm in a high-dimensional environment. From Chapter 2,
it is known that in a high-dimensional feature space, distance con-
centration is likely to be a problem. The membership values form
a mathematical way of interpreting the relative distances between
query points (prototypes) and data objects. The problems of distance
concentration can be mitigated by interpreting small differences in
relative distances with strong changes in membership. Or in more ab-
stract terms, a fuzzifier function that magnifies the small differences
in distances is better suited for high-dimensional feature spaces than
a fuzzifier function without that magnification effect.

In this way, the question of how the number of dimensions influ-
ences the clustering process can be answered quite clearly: the con-
centration of distances causes the problems and is mitigated by an
appropriate choice of the clustering algorithm. The influence of the
number of classes/clusters is more subtle, but it does not seem to
have a big influence on distance concentration resistant algorithms
other than the problem of overlapping classes. However, such a solu-
tion to the thesis question is not well defined for all algorithms. For
example the membership value plots method does not work well for
EMGMM because the width parameter for clusters can alter the shape
of the plots. For crisp clustering methods like HCM, the method is
completely useless because the fuzzifier function is not continuous.

In the introduction, it was stated that the answer to this thesis ques-
tion might give insight into the development of clustering algorithms
that are resistant to distance concentration (see Section 1.3). This is in-
deed the case here, at least for fuzzy clustering algorithms. If a mem-
bership value plot like it is shown in Figure 5.12 can be produced
for a new fuzzy clustering algorithm, its derivation in the middle
between two prototypes indicates how well the algorithm can resist
the concentration of distances.

6.2 critique and future research 141

6.1.4 Cluster Quality Indices

The last thesis question Q4: ”Are internal cluster quality index measures
useful to assess the quality of clustering results in high-dimensional fea-
ture spaces?” can be answered quite clearly with ’no’. At least, if one
or a combination of the most popular and widely used indices are
considered: BS, DB, XB, NPC or NPE (see Section 4.3). The analysis
presented in Section 5.3 as well as the data presented in Appendix
G indicate, that internal indices can not be trusted. As has been dis-
cussed at the end of Section 5.3, the problem is not strongly connected
to the number of dimensions or number of classes/clusters.

The indices can not be used reliably for ranking of clustering res-
ults (see Section 5.3.1 and Appendix E). Likewise, the true cluster
quality indices are in too many cases negatively correlated to the true
cluster quality, as measured by the external F1 index (see Section 5.3.2
and Appendix F). Even worse, the values of the internal indices are
often dominated by the selection of clustering algorithms that are
compared (see Appendix G). All this together means, that the use of
the BS, DB, XB, NPC and NPE indices are questionable and should
be avoided in practice.

6.2 critique and future research

In this section, the limitations of this work as well as unanswered
questions and topics for future research are discussed. Some of the
points that are listed below might contribute to the results in this
work and have good potential for further research. A good scientific
practice would be to challenge the results of this work, some of the
points below indicate where such a challenge can best lead to new
insight.

6.2.1 Limitation of the theoretical result on the Euclidean Distance

The results in the sections 2.2 of Chapter 2 are limited to distance func-
tions, induced by a p-norm, raised to the power of p. These distance
function are by far the most common distance functions in practical
applications. The squared Euclidian distances is one of these distance
functions and it is also required by the clustering algorithms, so the
choice is well justified. However, if the results presented in Chapter 2

are as fundamental as they seem, it might be possible to extend the
results to general distance functions and use the triangle inequality in-
stead of the exact decomposition into its individual components. The
potential to extend the assumptions to a more general level would
be very welcome. If the results of Chapter 2 were proven for general
distance functions, an extension to more general feature spaces (that

142 conclusions and future research

are not vector spaces for instance) might be possible. Therefore, the
distance concentration argument would not require a transformation
into Rm, which opens up a far wider field of applications.

6.2.2 F1 measure

One of the most influential decision for the answering of thesis ques-
tions Q2, Q3 and Q4 was to use the F1 measure (presented in Section
4.2.2) as external quality index. The F1 index values are interpreted asI cannot find any

argument why
the F1 should

be questionable
but that does not

mean the decision is
without drawbacks.

the true clustering quality. If, for any reason, this assumption is false,
the results in Chapter 5 become questionable at best. If anyone has
doubts in the results that are presented in this work, this might be
the point to start an investigation. An independent confirmation of
the presented results using a different external index measure would
be also very useful.

6.2.3 Selection of Clustering Algorithms

The selection of clustering algorithms (see Chapter 3) is somewhat
limited. There are so many clustering algorithms, that it would easily
be possible to find 5 to 10more prototype based clustering algorithms
which would fill in the current scheme. So the selection of clustering
algorithms might not be optimal, and for sure is not complete. How-
ever, the line has to be drawn somewhere. At the time when the se-
lection of the 10 algorithms was made, I thought that kernel based
clustering algorithms are not well suited for clustering high-dimen-
sional data. Kernel based clustering algorithms transform the already
high-dimensional feature space into an even higher-dimensional fea-
ture space which does not seem to be a good idea. In retrospect, this
might not have been a valid assessment. Kernel based clustering algo-
rithms might be a way of limiting the curse of dimensionality by se-
lecting a suitable kernel function. The trick would be to find a good
kernel function, which might be a topic for another research project.

Also other types of clustering algorithms are completely neglected,
like hierarchical methods, density based algorithms like DBScan [Es-
ter et al., 1996] or grid based clustering algorithms like OptiGrid
[Hinneburg and Keim, 1999]. These algorithms are not easily compar-
able to prototype based clustering approaches because they do not
provide a prototype or another natural centre of the clusters. Without
this centre, the relative variance is not as naturally defined for these
algorithms because they miss the necessary query point for the con-
centration of distances. Still, a comparative analysis of these methods
with prototype based clustering methods might be very interesting.

6.2 critique and future research 143

For extending the number of algorithms and performing similar ex-
periments, the data mining tool EDMOAL can be used, see Appendix
B.

6.2.4 Selection of Data Set Families

As with the selection of algorithms, only a small selection of data set
families could be considered in this work, see Chapter 4. There are
good reasons to choose them. First, it was important to have a very
easy data set family D1, which can work as a sanity check. If a clus-
tering algorithm fails to cluster a data set from this family, there is
not much hope in applying it on any other, more complex data set.
D2 was chosen because instances from this data set family are often
discussed in papers to prove the usefulness of clustering algorithms.
It was expected that algorithms, performing well on this data set fam-
ily do not perform well on more complex ones. This expectation is
satisfied as was shown by the comparison with data set family D3.
D3 was chosen because it simulates complex functional connections
between dimensions within one cluster. In reality, no cluster is nicely
normal distributed. The idea behind D3 was, to produce a data set
family that is a challenge for the clustering algorithms by producing
classes that live in complex lower dimensional manifolds that over-
lap and are in general unpredictable. D4 is used because the data set
family is similar to the aircraft movement of the data set presented in
Section 1.1.3 and to test how algorithms work in an environment that
they are not directly designed for.

This selection of data set families are by no means complete and
in reality, data sets have far more complex and unique properties. A
wider range of data set families is on top of the wish-list if the results
of this work should be extended in some way. Performing all the
experiments took several months of computing time on 12 cores in
parallel, more data set families would require even more computing
time, which I simply did not decide to invest.

Again, for extending the data set families and performing similar
experiments, the data mining tool EDMOAL can be used, see Ap-
pendix B.

6.2.5 Missing Real World Data Set

In this work, no real world data set is discussed. This has one negat-
ive and one positive aspect. First the negative aspect: the observations
of this work do not have a strong link to the real world. This work
could be improved by addressing multiple real world high-dimen-
sional data sets and observe the effects that are discussed theoretic-

144 conclusions and future research

ally. Such an analysis however would require substantial work, maybe
enough for an additional thesis.

The positive aspect is, that it was possible to create such a huge
range of artificial experiments and present them in a useful way. The
artificial data sets presented in Chapter 5, turned out to be quite use-
ful because of the surprising results, especially related to the internal
cluster quality index values. In fact if I had discussed one or more
real world data sets, the investigation presented in this work would
likely not have happened in this way. I might have missed the deeper
problems of the internal indices for instance. Even worse, I probably
would have used internal indices to determine the best way of clus-
tering the real data set because I believed prior to this work that the
internal indices can be trusted enough. As can be learned from the
answer to thesis question Q4, this trust is not well founded.

6.2.6 Development of Reliable Internal Quality Indices

As already mentioned in the last subsection, one of the surprises of
this work is the insight how the internal quality indices can be biased.
Especially the fact that the selection of clustering algorithms has such
a strong influence on the usefulness of the index (see the correlation
plots in Appendix F and the detailed plots in Appendix G). Even
though the problem of the indices is only weakly connected to the
number of dimensions, the problems are more apparent for a high
number of dimensions. So the canonical task would be to develop an
internal index measure, which does not introduce the observed bias.
Due to time and space limitations however, I chose not to do this, so
it remains an open research target.

Reliable internal indices can be regarded at least as important as
the clustering algorithms themselves. Clustering algorithms almost
never produce an optimal result because the objective function often
falls into a local optimum. Without a way to test their results and
compare different clustering algorithms, it is not possible to know
how reliable any clustering result is. A good internal cluster quality
index is therefore needed just as much as a reliable clustering algo-
rithm.

An alternative to internal quality indices is to create a Monte-Carlo
simulation [Irle, 2005] of the data set that should be clustered. Such a
simulation can then be used to benchmark the clustering algorithms,
similarly to the approach in Chapter 4. This approach is of course
very time consuming and requires a lot of knowledge about the data
set. It is therefore not likely to be used in practice. With the lack of
a reliable internal index measure however, a Monte-Carlo approach
might be the only option if the clustering result cannot be trusted.

6.2 critique and future research 145

6.2.7 Distance Concentration Resistance of Clustering Algorithms

A mathematical connection between the theory of distance concen-
tration and the application of clustering algorithms is currently not
well developed. As already indicated in the second half of Section
2.4 and again in the answers to the thesis questions Q1 and Q2 in
Sections 6.1.1 and 6.1.2 the knowledge of the tolerance of a clustering
algorithm to distance concentration is very limited. With the suffi-
cient condition for distance concentration, described in Section 2.2.3,
it is desirable to decide if distance concentration is a problem for a
given algorithm. This requires the knowledge of how much distance
concentration an algorithm can tolerate. I worked on several ideas in
this direction, but unfortunately, I did not find a well defined metric.
As mentioned above, the simplex analysis (see Section 5.1) and also
by the membership value plots (see Section 5.1.7) might give a first
indication on the tolerance of an algorithm to distance concentration,
but this topic is worth further investigations.

6.2.8 Distance Concentration Index for a Data Set

In Section 2.4, a test for distance concentration is outlined. A gradient
ascending algorithm was implemented to find the maximum relative
variance in all test data sets, discussed in Chapter 4. Unfortunately,
the standard gradient ascending algorithm did not deliver useful res-
ults, despite multiple reinitializations of the starting point. I chose
not to include these results in Chapter 5, because they were not use-
ful. The reason was, that the optimization algorithm converged too
slowly due to a very weak gradient. It would probably be better to
use some more sophisticated (e.g. swarm optimization) algorithm to
find the maximal relative variance. A priori, it is not possible to know
which algorithm would be best suited for this task, so the only true
solution would be to implement and execute several different algo-
rithms. Due to the already high execution time (several months) of
the experiments in this work and the additional workload to imple-
ment such algorithms, I decided against it. An important factor for
this decision is also the missing metric for the tolerance of distance
concentration for prototype based clustering algorithms, discussed in
the last subsection Section 6.2.7. Without the metric, a deeper ana-
lysis of the relative variance of a given data set would be only half
the information that is needed.

6.2.9 Critique on Publication Practice

I want to address one more general topic related to the scientific prac-
tice in data mining. Many researchers that I talked to were very sur-

146 conclusions and future research

prised to see FCM2 fail in high-dimensional feature spaces. In this
work, I analysed in great detail why that happens, but this is not the
point I want to make. The problem I see is that the failure of FCM2

came as a surprise to many. It reveals an issue within the data mining
community that is apparent in many papers that claim to have found
new algorithms to solve a problem. In these papers, it is seldom writ-
ten what the limitations of the new algorithm are, the focus is always
on its capabilities. Often, new algorithms are introduced by showing
how they can solve a problem better than other algorithms. In that
sense, the limitations are discussed only if there is another algorithm
that overcomes these limitations. I do not exclude myself from this
practice, in fact, all papers that I contributed to and that announce
new algorithms follow the same scheme, see [Rehm et al., 2010; Wink-
ler et al., 2010a,b, 2011b,c, 2013]. The culture of only presenting posit-
ive results has lead to the situation that researchers can be surprised
by limitations of standard algorithms like FCM2 and HCM. This is
not good because the usefulness of an algorithm in practice depends
on its limitations and the knowledge thereof.

6.3 conclusions

By answering the thesis questions Q1, Q2, Q3 and Q4 (see Section
6.1), many major difficulties of clustering in high-dimensional feature
spaces are addressed. In Chapter 2, it is proven that distance concen-
tration can be expressed by the two-dimensional marginal distribu-
tions for any high-dimensional probability distribution if a p-norm
induced distance function is used. The approach of combining dis-
tance function and data distribution is new and was not published
in this fashion before. It increases the understanding in effects re-
lated to the curse of dimensionality and made the proof of distance
concentration for dependent features possible, which was also never
accomplished before.

So far, the performance of clustering algorithms are almost exclus-
ively compared based on small number of selected data sets. In con-
trast, a large number and variety of simulated data sets and cluster-
ing results have been produced for this work. This survey allows the
comparison of some of the standard prototype based clustering algo-
rithms with more specialized clustering algorithms in a meaningful
way. The results of the simulated data sets align nicely with the idea
that a steep gradient in membership values is advantageous for clus-
tering in high-dimensional feature spaces.

The large amount of simulated data allowed furthermore an invest-
igation on the performance of commonly used internal cluster quality
measures. Until now, nobody has done such a survey. I show in this
work that the values of the indices are biased by the selection of clus-

6.3 conclusions 147

tering algorithms. In some cases, the indices are even negatively cor-
related with the true cluster quality which negates their usefulness.
This result is not restricted to high-dimensional feature spaces and
poses a serious problem for the clustering community.

The source code that was used to create the data sets and gener-
ate the results within this work is available as open source project
EDMOAL. Similarly, the data is published under a creative commons
licence which allows anyone to recreate, expand and challenge the
results.

148 conclusions and future research

Appendix

149

A
A RT I F I C I A L LY G E N E R AT E D D ATA S E T S

In this appendix, a description of the randomly generated data objects
is provided. The random generation of data objects utilizes pseudo
random numbers, generated by the virtual machine in JAVA, utiliz-
ing the random number generating algorithm, described in [Knuth,
2005] Volume 2, Chapter 3: Seminumerical Algorithms, Section 3.2.1..
Since the generation of random numbers is still a deterministic pro-
cess, a chance of a hidden structure in the data can not be eliminated.
However, the probability of this happening is marginally low and is
ignored.

The 4 families of data sets have several things in common. To an-
swer Q2, Q3 and Q4, all data sets are scalable in the number of di-
mensions m and the number of classes c. The data objects within the
individual classes are always generated independently of any other
class. This property is utilized by generating the classes before assem-
bling the data sets. So for each number of dimensions m and for each
data set family, a set of 250 classes are generated. The data sets within
a data set family are then assembled using a random selection of the
250 pre-generated classes. The data objects live in Rm and are not
strictly bound to the unit hypercube [0, 1]m, but are generated close
to it so that no rescaling prior to applying the clustering algorithms
is necessary. There are no missing values and no extreme outliers or
invalid values in the data.

a.1 spherical normal shaped classes of identical size

The first data set family D1 is deliberately designed to be easy for
clustering algorithms. It can be used as a sanity check whether or not Of course, you

know from my
introduction in the
first chapter, that at
least standard FCM
fails the ’sanity
check’ for m > 10.

a clustering algorithm produces a sensible result on high-dimensional
data and it can be expected that any clustering algorithm generates al-
most perfect results on any data set of the D1 family. The classes for
D1 are sampled from spherical normal distributions with identical
variance σ2 = 0.01 and 1000 of data objects per class. The expectation
vector of the generating normal distribution are sampled uniformly
from the unit hypercube and therefore does not need to be paramet-
rized. By placing the expectation vector inside the unit hypercube, the

151

152 artificially generated data sets

data objects, sampled from the normal distributions might occasion-
ally be sampled outside the unit hypercube, but they are still close
enough such that no rescaling of the data sets is necessary.

The left-hand side of Figure 4.1 in page 85 shows a 2-dimensional
example of D1, with colour indicating the class information. In 2-
dimensions, it is likely, that some classes overlap and it is quite pos-
sible that some classes are clustered within the same cluster due to
the overlap. However, in dimensions higher than 5 or for a low num-
ber of classes, this data set family should be perfect for prototype
based clustering and any decent clustering algorithm should be able
to find a perfect representation of the classes.

a.2 spherical normal shaped classes of various sizes

The second family of data sets D2 is similar to the first, but more
challenging. The classes are still sampled from spherical normal dis-
tributions, but with variable variance and number of data objects per
class. The number of data objects is sampled from a uniform distribu-
tion on the interval between 200 and 1800. The variance of the normal
distributions (classes) is also sampled from a uniform distribution on
the interval between 0 and σmax = 0.02, independently of the number
of data objects. Finally, to each data set in D2, a fixed fraction of noise
data objects are added that are sampled from a uniform distribution
on the unit hypercube [0, 1]m. The number of noise data objects is set
to be 1/10th of the total number of data object in a data set. Since the
number of data objects per class is randomly sampled, the number of
noise data objects is determined after the classes for one data set are
selected. The right-hand side of Figure 4.1 shows a 2-dimensional ex-
ample of D2. As in case of D1, data objects might be sampled outside
of the unit hypercube, but due to the construction of the classes, the
data objects can not be sampled far away from it.

a.3 distorted classes data set

Data sets of the families D1 and D2 are very unrealistic. In reality,
data sets do not contain neat and spherical classes, they can have all
kinds of complex shapes. The family of data sets D3 is designed to
mimic such complex dependencies by producing very distorted and
strangely shaped classes.

A data set of the D3 family is constructed as before, from c, in-
dependently generated classes in a m-dimensional real vector space,
bound to the unit hypercube. All classes contain a random number
of data objects, again sampled from a uniform distribution on the in-

A.3 distorted classes data set 153

terval [200, 1800]. The final data sets of D3 also contains noise data
objects, obtained in the same way as for data sets in D2.

The process of building the classes however, is much more com-
plicated as in case of the D2 data set family. Each class is generated
individually and the shape of the class is generated iteratively. The
iteration process is started with a sample from simple probability dis-
tributions, a mixture of an m-dimensional gaussian distribution and
a normal distribution, bound on the unit hypercube [0, 1]m. After ini-
tialization, unary and binary distortion functions are applied on the
data objects of the class, forging distortions and pairwise dependen-
cies within each iteration. The functions are randomly selected from
a pool of predefined functions. In total, tmax = 2 ·m iterations are
performed, which consist of three individual steps:

1. For all dimensions k ∈ {1, . . . ,m}, randomly select one unary
function f ∈ {u1, . . . ,u6} and apply it on dimension k of each
vector in a class ∀~x(t) ∈ C(t): ~x ′k = f(~x

(t)
k), creating C ′ in the

process.

2. For all dimensions k ∈ {1, . . . ,m}, randomly select one other
dimension r ∈ {1, . . . ,m}, r 6= k and randomly select one binary
function g ∈ {b1, . . . ,b5} and apply it on dimension k of each
vector in the class ∀~x ′ ∈ C ′ : ~x ′′k = g(~x ′k,~x ′r), creating C ′′ in the
process.

3. For all dimensions, k ∈ {1, . . . ,m} normalize the data to keep it
well confined in the unit hypercube, creating the final value of
x
(t+1)
k for this iteration step: ∀~x ′′ ∈ C ′′ : ~x(t+1)k = normalize(~x ′′k),

generating C(t+1)

Each iteration step is applied independently from the previous until
tmax = 2 ·m iterations are reached and the process is stopped. After
the iteration process is finished, the data objects within the class are
pushed in direction of one of the randomly selected corners of the
unit hypercube.

a.3.1 Initialization

The data is initialized using two different distributions. The first half
of the initial cluster data objects ~x(0)1 , . . . ,~x(0)bn2 c ∼ U([0, 1]

m) is sampled

independently from a uniform distribution on the unit hypercube.
The second half ~x ′bn2 c+1, . . . ,~x ′n ∼ N([0]m, 1) is sampled from a spher-

ical m-dimensional normal distribution. To map it to the unit hy-
percube, it is normalized by a linear normalization function fnorm :

Rm → [0, 1]m: for all normal distribution sampled data objects j =

154 artificially generated data sets

⌊
n
2

⌋
+ 1 . . . n, apply the normalization function for all dimensions

k = 1 . . .m individually:

~x
(0)
jk = fnorm(~x ′jk) =

~x ′jk −~x ′mink

~x ′maxk −~x ′mink
(A.1)

where ~x ′jk is the k’th dimension of the j’th data object and ~x ′mink
(~x ′maxk) is the minimal (maximal) entry of the k’th dimension of all
the data objects that are sampled from the normal distribution j =⌊
n
2

⌋
+ 1 . . . n. The initial cluster is C(0) = {~x

(0)
1 , . . . ,~x(0)n }. Figure A.1

shows the initial condition C(0) of the cluster as a projection on 2

dimensions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure A.1: Example distribution of the initialization of distorted classes. A
sample of a combined uniform and normal distribution.

a.3.2 Unary Functions

It is very confusing
to deal with corner

cases like division by
0. This is effectively

avoided by using
functions on the

unit interval only.

To keep the functions simple and avoid an uncontrolled spread of
the values, all functions live in the unit interval. There are 6 different
unary functions u1, . . . ,u6 : [0, 1]→ [0, 1].

u1 : The first function is the identity u1(x) = x.

u2 : The second function reverses the values, u2(x) = 1 − x.

u3 : u3 concentrates the values in the lower end of the [0 , 1] inter-
val. The function takes a parameter a that controls the level of
concentration.

u3(x) =
(x + a)2 − a2

(1 + a)2 − a2

If a would be set to 0, the slope of u3 in 0 would be 0 as
well, which would result in a strong concentration of values
near 0. This is prevented by the parameter a. It is used to select

A.3 distorted classes data set 155

a specific section from a parable x2 . Due to the scaling between
[0 , 1], the parameter basically defines how strong the concen-
tration effect shall be. A small value for parameter a means a
strong concentration effect, a large value means a small effect.
With a = 0 .2, good results were accomplished.

u4 : The opposite effect is accomplished with u4(x) =
√
x. Being

the square root, the function spreads the lower end of the unit
interval. Here, no damaging over-concentration of values can
occur, so no parameter is used.

u5 : The fifth function u5 projects the data values in direction of the
centre of the unit interval.

u5(x) =
1 +
√
x −
√
1 − x

2

u6 : The last function is somewhat special because it takes all current
values of cluster C for a specific dimension k into account. It
is used to give an opposite pole for the concentration effects
of values by spreading them over the the entire interval. Let
µk be the truncated mean of all values of the k’th dimension
{~yk | ∀~y ∈ C(t) } and σk be the corresponding sample standard
deviation.

u6(x) =
1

1 + e
−
x−µk
σk

u6 is part of the family of logistic functions.
I experimented with
many variation of
functions and also
random selection of
parameters, not only
in f2. In the end, it
turned out that this
is not necessary and
makes everything
more complex than
needed. If you look
into the source code
of EDMOAL, a
process of randomly
choose parameters is
still present, but it
is not used.

The unary functions, u3 to u6 and their effects on the data are visu-
alized in Figures A.2 and A.3. The u3, u4 and u5 are pretty easy
to grasp and they bring a certain random element into play whet
it comes to producing dependencies by applying binary functions. u6
is special in the sense, that it counteracts the concentration effects,
introduced by the binary functions. In Figure A.3 in the left panel, a
randomly generated and distorted cluster is presented. The distortion
process was tweaked to generate a condensed cluster, which is then
analysed and spread out by applying u6, in x and y dimensions suc-
cessively. The process is visualized by plotting the distortion function
of u6 over the data objects.

a.3.3 Binary Functions

The binary functions are defined analogously to the unary functions.
There are 5 different binary functions b1, . . . ,b5 : [0, 1]× [0, 1]→ [0, 1].
The binary functions are there to create dependencies among the ini-
tially uncorrelated dimensions of a cluster.

156 artificially generated data sets

u3

u4

u5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure A.2: Uniform distribution of data (top left), distorted on the x-axis
by u3 (top right), u4 (bottom left) and u5 (bottom right). The
functions that were used to distort the x-axis indicate how the
values were changed in order to achieve the distortion of the
data.

b1 : The first function is again, the identity for the first parameter,
b1(x , y) = x This function is needed for technical reasons and
testing. it is not used during the distortion process of the classes.

b2 : b2(x , y) = x+y
2 defines a addition between two values, scaled

on the unit interval.

b3 : The third function provides a similar effect as b2 , utilizing the
multiplication: b3(x , y) =

√
x · y.

b4 : The fourth function is not commutative, as the others before.

b4(x , y) = x · ey−1

b5 : The last binary function simulates the shape of a part of a circle.

b5(x , y) =
x

2
+

√(
1

2

)2
−

(
y −

1

2

)2

A.3 distorted classes data set 157

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Figure A.3: Distortion function u6 that spreads data objects, applied on both
dimensions. The data (left panel) is distorted first on the x-
axis (middle): u6(x) = 1

1+e
− x−0.62708

0.03385
and then the y-axis (right):

u6(y) = 1

1+e
−
y−0.46507
0.04941

. The overlay printed functions indicate

the respective distortion function, adjusted to fit the data.

It is derived from circle formula in 2 dimensions, r2 = x2 + y2

with radius r = 1
2 and centred on 1

2 , the centre of the unit
interval.

In the image series of Figure A.4 the binary functions b2 to b5 are
visualized.

a.3.4 Normalization

Unfortunately, I
did not find a way
to create distortion
functions that do
not require this arti-
ficial normalization
process.

Many successive applications of the above discussed functions can
lead to a contraction of values, condensing most data objects close to
a single point. To prevent this, all data objects of a cluster are normal-
ized on the unit interval by applying fnorm from Equation (A.1). As a
result of the normalization, in all dimensions k = 1, . . . ,m at least 2
data objects exist, with xk = 0 or xk = 1. Over time, this can render
the normalization useless, because once, a value is set to 0 or 1, it is
unlikely to change because both, unary and binary functions tend to
keep extreme values intact. This effectively produces outliers, which
is not intended by this procedure. To avoid this unwanted behaviour,
extreme values of 0 and 1 are replaced in a random fashion. The
new value is sampled from a normal distribution with expectation
value and variance being the mean and sample variance of the cur-
rent cluster data objects in the given dimension. Formally, let ~x ∈ C(t)

be a data object in cluster C of the t’th iteration and let the k’th value
of ~x be in an extreme state ~xk = 0 or ~xk = 1. Then ~xk is replaced
with ~x ′k ∼ N(µk,σ2k), with µk being the mean of all values of the k’th
dimension {~yk | ∀~y ∈ C(t)} as well as σ2k being the sample variance of
all values of the k’th dimension {~yk | ∀~y ∈ C(t)}.

158 artificially generated data sets

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure A.4: Visualization of the binary distortion functions, applied on a
uniform distribution, from top to bottom: b2, b3, b4 and b5. The
left panels always show the binary functions applied on the x
axis, with input form the y axis: x ′ = b·(x,y). The right panels
show the the reversed order, applied on the already distorted
data: y ′ = b·(y, x ′).

A.3 distorted classes data set 159

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Figure A.5: Series of iterative distortion.

160 artificially generated data sets

a.3.5 Iteration

Each iteration of the distortion process is independent of the previ-
ous ones. For each dimension, a unary function is randomly selected
and applied on all data objects, thus altering the data values without
introducing any correlations. The same is done with the binary func-
tions, using 2 input dimensions and altering only one of them in-
troduces correlations and in general dependencies among a pair of
dimensions.

Formally, let F(t) = {f (t)1 , . . . , f (t)m }, f (t)k : [0, 1] → [0, 1] be a set of m,
randomly selected unary functions for the t’th iteration. Likewise, let
G(t) = {g(t)1 , . . . , g(t)m}, g(t)k : [0, 1]× [0, 1]→ [0, 1] be a set of m, randomly
selected, binary functions for the t’th iteration. Additionally, let the
randomly generated permutation π of 1, . . . ,m with π(k) 6= k define
the index of the second argument of the binary functions.

To get from C(t), the class of data objects at its (t)’th iteration to
its (t+1)’th iteration C(t+1), three steps are taken. First, the unary
functions are applied, second the binary and last the normalization.
Applying the unary functions on all data objects yields C ′(t) with:
~x ′jk = f (t)k (~xjk), j = 1, . . . ,n k = 1, . . . ,m. Applying the binary func-

tions yields C ′′(t) with: ~x ′′jk = g(t)k (~x ′jk,~x ′jπ(k)), j = 1, . . . ,n k = 1, . . . ,m.
Finally, normalizing the result yields the next level in the iteration
steps C(t+1) with: ~x(t+1)jk = fnorm(~x ′′jk), j = 1, . . . ,n k = 1, . . . ,m.

The quality of the result is very sensitive to the random selection
process of the unary and binary functions. There are probably many
more useful combinations than the presented, but since only one solu-
tion is sufficient, a detailed analysis of the influence of each parameter
is not necessary. Let PF (PG) denote the discrete probability distribu-
tion for selecting the unary (binary) functions. For all dimensions,
k = 1, . . . ,m, and all iterations t > 0, the unary (binary) distortion
functions are sampled identical and independently from PF (PG). The
probabilities of occurrence are in case of the unary functions:

PF(f (t)k = u1) = m
m+41.7 ,

PF(f (t)k = u2) = 0.5
m+41.7 ,

PF(f (t)k = u3) = 20
m+41.7 ,

PF(f (t)k = u4) = 10
m+41.7 ,

PF(f (t)k = u5) = 10
m+41.7 ,

PF(f (t)k = u6) = 1.2
m+41.7

and in case of the binary functions:

PG(g(t)k = b1) = 0,

A.3 distorted classes data set 161

PG(g(t)k = b2) = 0.1m
1+0.2m+ln(m) ,

PG(g(t)k = b3) = 0.1m
1+0.2m+ln(m) ,

PG(g(t)k = b4) = 1
1+0.2m+ln(m) ,

PG(g(t)k = b5) =
ln(m)

1+0.2m+ln(m) .

The number of iterations tmax that are performed influences the
result in an interesting way. The goal with the distorted data sets
is, to generate data where the individual features (dimensions) are
highly dependent (not necessarily correlated). In each iteration, each
dimensions becomes dependent to at least one other dimension. The
iterative nature of the algorithms provides an easy way to control the
overall level of dependency. A value of tmax = 2 ·m has been chosen
to ensure a very high level of interdependent dimensions.

The series of images in Figure A.5 shows the distortion process
on one cluster, applied on the initialization data, shown in A.1. Over
time, the cluster is shaped in a way that is hard to reproduce using
sampling of combinations of probability distributions.

a.3.6 Finalization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure A.6: Scaled and shuffled distorted cluster.

After a distorted classes are generated, several classes are compiled
to form one data set. Due to nature of the distortion process, the
centre of most classes are near the centre of the unit hypercube, which
is not desirable. A finalization step is applied to spread the classes
better and make there centres more distinct. The first step is to apply
u6 to all dimensions of a distorted cluster C = C(tmax). This creates
a cluster with a centre roughly in the centre of the unit hypercube.
In a second step, the cluster is randomly pushed in direction of the
(1, . . . , 1) corner by iterating 6 times unary functions with probability

162 artificially generated data sets

distribution PF(f (t)k = u1) = 0.7 and PF(f (t)k = u4) = 0.3. Since all
dimensions are independently altered, this gives a somewhat random
concentration. Finally, one more iteration with PF(f (t)k = u1) = 0.5
and PF(f (t)k = u1) = 0.5 is applied, which gives a 50% chance of
reversing a dimension. This last step randomizes the corner in which
the class is pushed by the finalization step. In Figure A.6, the series
of Figure A.5 is continued, first by applying u6 (left-hand side) and
then by shuffling the location of the cluster (right-hand side). More
examples of clusters are shown in Figure A.7. The clusters come in so
many different shapes an varieties, that it is impossible to cover them
all, but at least, these examples give a good impression on what is
possible.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure A.7: Some more examples of distorted clusters.

This process of generating classes works quite well until around
m = 1000 dimensions, at which point the 2-dimensional projection of
the data distribution becomes very similar to a projection of a normal
distribution. In other words, the distortion becomes so complex, that
the sampling of a few thousand data objects is not enough to recog-
nize the structure of the class. To cover even higher dimensions, the
number of data objects must increase exponentially with the num-
ber of dimensions, as already mentioned in Section 2.5. Within the
benchmark for this work, the number of dimensions is limited to 100,

A.4 corner classes data set 163

which is well within the range of useful parameters for this method
of artificial data generation.

a.4 corner classes data set

The fourth and final data set family D4 for the benchmark consists
of binary data objects that live in the corners of the unit hypercube
{0, 1}m. Of course, there are dedicated approaches to analyse binary
data like for example Frequent Pattern Mining [Aggarwal and Srik-
ant, 1994]. But these approaches are not always best suited for cluster-
ing. In reality, it is very rarely the case that there is a clustering algo-
rithm that is ideal for a given problem. In this context, it is particular
interesting how the prototype based clustering algorithms deal with
data, that is not really suited for prototype based clustering, such as
the family of D4 data sets. The data sets within the D4 data set family
are designed to be similar to Microarray data (see Section 1.1.6) or the
aircraft movement data set, presented in Section 1.1.3.

The generation of classes for data sets within D4 is done by gener-
ating seeds that are then randomly changed in order to generate data
objects of the classes. Again, the number of data objects per class
is sampled from a uniform distribution between 200 and 1800 data
objects. As for D2 and D3, the data sets in D4 have 10% randomly
generated noise data objects.

The seed of one class is sampled from one of the corners of the unit
hypercube, where a random number with expectation value

√
m of

the dimensions are sampled with 1 entries and the remaining with 0.
Then, the data objects of that class are generated by randomly altering
some entries of the seed, flipping some of the 1 entries to 0 and some
of the 0 entries to 1. As for the data set family D3, the classes in D4
are generated independently from one another, hence the generation
of classes is done one class at a time and a data set is assembled from
previously generated classes.

a.4.1 Cluster Seed Generation

The clusters in D4 are designed in such a way, that the number of
0-entries is (much) larger than the number of 1-entries. A seed ~xseed ∈
{0, 1}m, is used to generate the data objects that are relatively similar,
but not necessarily identical for cluster C. So the number of 1-entries
is sampled from a Poisson distribution with expectation value µs as
long as the sampled value does not exceed m

2 . Let 0 < s 6 m
2 ∈

N be the number of 1-entries of the seed, with s ′ ∼ Poiss(µs) and
s = min s ′, m2 . Let π ∼ U(Poly({1, . . . ,m})) be a randomly generated
permutation, which is sampled from a uniform distribution on the
set of all permutations Poly on the set of {1, . . . ,m}. The set of 1-

164 artificially generated data sets

entries for the seed is defined by the first s values of the permutation
π. ~xseed = {~xseed1 , . . . ,~xseed

m } with for k = 1, . . . , s: ~xseed
π(k) = 1 and for

k = s+ 1, . . . ,m: ~xseed
π(k) = 0.

For example, a 10-dimensional seed with s = 4 1-entries and a
random permutation
π =< 2, 7, 10, 9, 4, 6, 5, 8, 3, 1 > may be represented a string of values.

dimension: 1 2 3 4 5 6 7 8 9 10

seed: 0 1 0 0 0 0 1 0 1 1

a.4.2 Cluster Data Generation

The data is generated, using the seed as starting point and changing
the entries slightly. Let the cluster C = {~x1, . . . ,~xn} be a set of data
object objects, ~xj ∈ {0, 1}m, j = 1, . . . ,n. Each data object is generated
independently from the others.

Let r ′1j ∼ Poiss(µ0), r1j = min r ′1j , s and r ′0j ∼ Poiss(µ1), r0j =

min r ′0j ,m− s define two numbers r1j , r0j ∈ N for the data object ~xj.
The number r1j describes how many elements of value 1 in the seed
are set to be 0 in the data object ~xj, while r0j defines the opposite,
the number of 0-entries in the seed, that are set to be 1 when gener-
ating ~xj. Let π1j ∼ U(Poly({π(1), . . . ,π(s)})) be a randomly sampled
permutation of the dimensions that are selected to have 1-entries in
the seed. Likewise, let π0j ∼ U(Poly({π(s + 1), . . . ,π(m)})) be a ran-
domly sampled permutation of the dimensions that are selected to
have 0-entries in the seed.
~xj is defined as follows:

∀k = 1, . . . , r1: ~xjπ(π1(k)) = 0

∀k = r1 + 1, . . . , s: ~xjπ(π1(k)) = 1Data object 2 and
6 are identical.

In set theory
something like

that would cause
trouble because the

elements of a set
must be uniquely

defined. Therefore, I
consider the index
of a data object as

being part of its
identity, even if that

is not reflected in
its mathematical

description. Double
entries are possible

in reality as well
and have no negat-

ive influence on the
clustering process.

∀k = s+ 1, . . . , s+ r0: ~xjπ(π0(k)) = 1

∀k = s+ r0 + 1, . . . ,m: ~xjπ(π0(k)) = 0

From the above mentioned 10-dimensional example seed, the fol-
lowing data objects might have been produced.

dimension: 1 2 3 4 5 6 7 8 9 10

seed: 0 1 0 0 0 0 1 0 1 1

data obj. 1: 0 0 0 0 0 0 1 1 1 1

data obj. 2: 0 1 0 1 0 0 1 0 0 0

data obj. 3: 0 1 1 0 0 0 1 0 1 1

data obj. 4: 0 1 0 0 0 0 1 0 0 1

data obj. 5: 0 1 1 1 0 0 1 0 1 1

data obj. 6: 0 1 0 1 0 0 1 0 0 0

A.4 corner classes data set 165

a.4.3 Finalization

The D4 data set family contains noise, however due to the binary
nature of the data objects, the noise data objects is different than for
D2 and D3. The data objects for the noise cluster N ⊂ {0, 1}m are
generated in exactly the same way as the seeds for the real clusters.
In other words, the noise-seeds are treated as data objects and N is
the set of all data objects, generated this way.

B
E D M O A L

EDMOAL is an acronym for ’Efficient Data Mining on Algebraic Lim-
its’. It is the data mining tool that was used in order to generate the
results in this work and is published with an open source license and
hosted at github1. Anybody interested in the source code can find
it there, the use of the distributed revision control software GIT is
advised but not necessary.

EDMOAL contains all the clustering algorithms (and some more),
discussed in this work (see Chapter 3). It also contains the internal
and external cluster quality indices (see Sections 4.2 and 4.3) as well
as the algorithms for generating the artificial data sets (see Section 4.1
and Appendix A). It does not however, include the execution of the
benchmark experiments (see Section 4.4) nor the code for organizing
and analysing the results (see Chapter 5). The setup of the experi-
ments have no place in an API (see below) and also, the source code
is not well documented and also not very readable.2

b.1 motivation for edmoal

b.1.1 Why yet an other data mining tool?

Many algorithms in data mining tools are implemented based on ar-
rays or lists of floating point values. Data that can not be expressed by
such an array, standard implementations of data mining algorithms
often can not be used or an inaccurate transformation to floating
point values has to be found. On the other hand, most algorithms
only require a certain algebraic structure on the data objects, which is
not necessarily limited to tuples of real numbers. So the limitation to
floating point numbers is not a requirement of the algorithm, but it is
imposed by its implementation. The same is true for data structures, Also it was great

fun developing it.
I learned a lot and
it is very satisfying
that it runs so well.

which sometimes require a certain algebraic structure rather than a
specific form like a floating point array.

EDMOAL is build to apply algorithms and data structures to their
full potential, limited only by the algebraic structure underlying the

1 https://github.com/Roland-Winkler/EDMOAL

2 I can send it via eMail if required, please contact me: roland.winkler@gmail.com

167

https://github.com/Roland-Winkler/EDMOAL
roland.winkler@gmail.com

168 edmoal

data. For example if a data mining algorithm only examines the dis-
tances between data objects, it is not necessary to have a vector space
algebra. DBScan is an example for such an algorithm. However, all
the clustering algorithms using prototypes as cluster representatives
need a vector space on the data in order to compute the locations
of the prototypes. For alternating optimization clustering algorithms,
even an Euclidean vector space is required. But some algorithms only
require the algebraic structure for what ever data that should be ana-
lysed. In case of data structures, a k-d-tree for example needs an m-
dimensional vector structure while a ball-tree requires only a norm
and a centred ball tree requires a normed vector space.

Keeping only the algebraic limits in mind for all algorithms and
data structures, enables it to design one algorithm for all kinds of
data, provided an algebraic structure is available for the algorithm.
Most other data mining tools to my knowledge are not capable of
that or only very limited. Therefore, I created EDMOAL in order to
provide an algorithm and algebraic base that is not limited by floating
point numbers.

b.1.2 The efficient E in EDMOAL

The algorithms in EDMOAL are designed to save first and foremost
computation time where possible without obfuscating the code too
much. Also they are designed to use as little memory as possible. For
example for Fuzzy-c Means, it is not required to store the membership
matrix during the clustering process, so it is not done.

In most other data mining tools, algorithms do not utilize a data
structure in order to speed up data mining processes. For example
DBScan implemented naively is in the runtime complexity class O(n2)
with n being the number of data objects. Implemented on a ball-tree
requires only O(n · k · log2(n)) with k being the minimal number of
data objects for clusters, which is much faster for large data sets.

The algorithms in EDMOAL are designed to utilize a data structure
if that is necessary for the algorithm. In most cases however, the data
structure is not always determined by the algorithm, it just requires
some functionality like for example a nearest neighbour query. How
that query is implemented is not always important for the algorithm,
hence it is abstracted into the data structure interface.

b.1.3 EDMOAL as an API

EDMOAL is not intended to be used as a stand alone tool. Providing
a GUI for the general purpose user requires a tremendous amount
of work, which I can not provide. Also EDMOAL should provide
functionality for as many projects and scientists as possible. Adding

B.2 the basic structure 169

a GUI limits its use more than it extends it. Therefore, there will be
no GUI like in Weka, Knime or RapidMiner for EDMOAL. EDMOAL
is not intended to be an alternative or competitor to these tools. It
can however be used as an API within such tools and might be an
enrichment to them at one day.

The implemented graphical representation of some algorithms is
intended to be used for debugging purposes only. It might be used
for screenshots in scientific papers, but it needs to be adjusted by the
user if he wants more functionality than it currently has. There might
be an other project in the future to provide suitable graphical output
for EDMOAL algorithms, but it is not on the TODO list and I will
certainly not provide one.

EDMOAL is intended to be an API and should be used as such.
For a quick start, the package "dataMiningTestTrack" contains some
examples how to use the algorithms on some artificially generated
data.

b.2 the basic structure

b.2.1 Indexed Data Set

The core of all algorithms are the classes IndexedDataSet and In-
dexedDataObject which fix the order of the data objects. There are
no algorithms yet that can deal with dynamic data sets (that is, data
sets that change during the analysis process). The IndexedDataSet,
once build and sealed, can not be changed any more, hence provid-
ing a 1 : 1 linked relationship between index and data object, which
provides an O(1) access to the index of a given data object. It also
makes sure the results of the algorithms are interpreted properly be-
cause the index can be used to store membership values, etc. in a
separate indexed list.

The IndexedDataObject is therefore a container for any class that
may hold an data object without restricting the data object in any way.
This provides maximal freedom to other developers that want to util-
ize their existing class structure and apply EDMOAL on them. Data
mining algorithms and data structures within EDMOAL are build on
IndexedDataSets and IndexedDataObjects.

b.2.2 Data Structures

All data structures are required to implement an interface that masks
their functionalities. If algorithms use data structures, they should
only use the functionality interfaces unless they require a specific im-
plementation of a data structure. This way, a user may implement

170 edmoal

additional data structures and use them within already existing algo-
rithms.

b.2.3 Data Mining Algorithms

Similarly to data structures, data mining algorithms are embedded
in a interface hierarchy describing its capabilities. The interface is
named "DataMiningAlgorithm" and requires an algorithm to provide
a function that is called to apply it. All algorithm classes implement
that interface as well as any other interface that support additional
functionality.

C
D ATA A N D R E S U LT S

As described in Section 4.4 and Appendix A, a lot of data is generated
and stored for this work. Likewise, all clustering results and corres-
ponding cluster quality index values are stored. In this chapter, the
structure of the folders and an interpretation of the files is given.

c.1 data repository

The data and the results are available at:

https://escience.aip.de/vis/simulated-clustering-data/

The data is available in data/ and the clustering results as well as
the cluster quality index values are stored in results/. A preview for
both data and results is available in previews/. The previews contain
1
20 th of a data set family and results respectively. Both data set and
results contain a lot of individual files which are compressed using
the zip format. The data is compressed to roughly 40% of its original
size, except the data of the corner data set family which is compressed
to roughly 5% its original size. Please download all parts of sequence
of zip files and unpack using a suitable program. The zip files are
created in such a way, that all data and result files should be put in
the same main folder, the necessary sub-folders are generated when
unzipping. All zip files together require approximately 65 GB space
on the hard disk. Unpacked, the total amount of data and result files
require around 155 GB.

The naming of the data family and result files is a bit different
to the notation used in the text of this work so far. Data set family
MixNormal refers to D1, MixNormalNoise is a name for D2, Distorted
specifies D3 and Corner refers to D4. The folder structure and content
of the data files are described in the following sections.

c.2 data files

The data files for the data set families are stored in folder data/ using
the following directory structure:

171

https://escience.aip.de/vis/simulated-clustering-data/

172 data and results

data/

<family>/

002D...100D/

000...020/

cluster_000.csv

...

cluster_249.csv

init.csv

meta.ini

noise.csv

properties.csv

statistics.ini

Where <family> stands for the four data set families D1 to D4, which
are addressed as: MixNormal, MixNormalNoise, Distorted and Corner.
The folders 002D to 100D refer to data of the specified dimensionality
(usually attributed as symbol m in this work) and the subdirectories
000 to 020 specify the data set index (symbol s in Section 4.4.2). The
preview data set family files, only contain files for data set index 000

but the folder structure is kept in tact.At the time I gen-
erated these files, I

did not differentiate
between classes

and clusters. I can
not change the file

names because
it would brake

the source code
analysing the data.

The files in one of the data set folders consist of 250 files for classes
and some files with additional information. The files holding the
classes are called cluster_000.csv to cluster_249.csv. The data sets
are constructed using between 2 to 200 classes, randomly selected
from the pool of 250 classes stored in the directory. 2, 500 possible
initial positions for prototypes are stored in the file init.csv while
the file noise.csv contains 50, 000 noise data objects.

The properties.csv file contains information about the shape of
the classes, including the maximal radius of the class. The maximal
radius is the maximal distance between a data object of the class and
the center of gravity of the class. From that file, some statistics are
are calculated and stored in statistics.ini, only the maximum of
the maximal radius is used later for estimating the noise distance, see
Section 4.4.2. Finally, the meta.ini file contains some general inform-
ation about the data that is stored in the folder.

c.3 result files

The result files have a deeper structured directory tree than the data
files because there are multiple data sets generated from the classes
and multiple clustering runs per data set. The files are stored in the
folder called clusterResults/ which is located at the same level as
the data/ folder if the zip files are extracted as described above. The
clustering results contain only the prototype positions of the respect-
ive clustering algorithms (and in case of EMGMM the variance for
each prototype) because storing the membership values on a per data

C.3 result files 173

object basis would require too much space. The membership values
can be reconstructed using the prototype information and the know-
ledge of the clustering algorithm.

The directory structure of clusterResults/ is as follows:
clusterResults/

<family>/

002D...100D/

000...020/

C002...C200/

R000...R005/

convergence.ini

dataSetup.ini

EMGMM_clusterVariance.csv

<algorithm>_protoPos.csv

score.ini

Where <family> stands again for the four data set families D1 to
D4, addressed as: MixNormal, MixNormalNoise, Distorted and Corner.
<algorithm> stands for EMGMM, FCM2, FCMdim, HCM, NFCM2,
NFCMdim, PFCM, PNFCM, RCFCM and RCNFCM which refer to
the clustering algorithms that were used to find the prototype posi-
tions. The folders 002D to 100D refer to data of the specified dimen-
sionality (usually attributed as symbol m in this work) and the sub-
directories 000 to 020 specify the data set index (symbol s in Sec-
tion 4.4.2). Further subdirectories C002 to C200 refer to the number of
classes/clusters (symbol c) that were used to generate the clustering
results and R000 to R005 refer to the clustering run with initial proto-
type positions 1 to 5, addressed with symbol r in Section 4.4.2. The
preview clustering results again only contain files for data set index
000 but the folder structure is kept in tact.

The file dataSetup.ini contains the information which classes, noise
data objects and prototype initial positions were used for this cluster-
ing run. The convergence.ini file contains for each clustering algo-
rithm the maximal distance that a prototype travelled between two
iteration steps. It can be used to verify that the clustering process in-
deed converged with only tiny steps left at the end of the clustering
process. The final positions of the prototypes are stored in the files
<algorithm>_protoPos.csv, for each clustering algorithm individu-
ally. Only for EMGMM, additional information about the variance
of individual classes were necessary to have complete information,
which is stored in EMGMM_clusterVariance.csv.

Finally, the file score.ini contains the information about the clus-
tering result. In this file, for each clustering algorithm the following
information is stored:

iterations : The number of iterations the clustering algorithm was
running before it was terminated.

174 data and results

objfunc value : The objective function value after the clustering
process finished.

f1 : The F1 index value of the clustering result, indicating the true
clustering quality (see Section 4.2)

f1 defuzz : The F1 index after defuzzifying the membership values
with the winner takes all strategy: a data object is assigned
crisply to that cluster, that has the highest membership value.

bsi , dbi , xbi , npci , pei : The values for the internal cluster quality
indices, see Section 4.3.

The subdirectory perfectProto/ that sits on the same levels as R000
to R005 contains artificial clustering results. These results were cre-
ated using the centre of mass of a class as the initial location for the
prototypes. No iterations of the clustering algorithms were done so
that the initial prototype positions were also the final prototype posi-
tions and the score values were calculated using this clustering result
as input. This can be seen as an approximation of the best result a
clustering algorithm could produce on the given data set. This data
is not evaluated within this work and is also not contained in the
scoreList, discussed in the next section.

c.4 score list

The file scores.zip contains all the score files, described in the last
Section while retaining the clusterResult directory structure. Since
this is a lot of small files that is somewhat cumbersome to use, all
that data is also available in one large list, containing also the relevant
meta information, see Table C.1. The score list is contained in the zipPlease be careful

when opening the
file with a text
editor or table

calculation program.
Due to its size not

all programs are able
to open it properly.

file scoreList.zip and has a size of about 125 MB. The table contains
1, 000, 000 rows (800, 000 of which are used within this work) and
15 columns, see Table C.1. Each row contains the meta information
and scores for one individual experiment, but not the position of the
prototypes. The contents of this list are used to generate the plots,
seen in Appendices D, E and F as well as in many images shown in
Chapters 5.

C.4 score list 175

Column
name

Description Value Range

DataSet Data set family 0, . . . , 3

Experiment
Repetition

Index of the repetition of an
experiment

0, . . . , 19

Dim Number of dimensions of the
data set

2, . . . , 100

Cluster
Count

Number of classes in the data
set

2, . . . , 200

Algorithm Algorithm index 0, . . . , 9

Initialization Initialization index 0, . . . , 4

Iterations Number of iterations before
terminating the algorithm

10, . . . , 30

ObjFunc
Value

Objective function value after
clustering

> 0

F1 F1 external index value [0, 1]

F1 defuzzi-
fied

F1 external index value if
fuzzy membership values
are defuzzified with winner
takes all strategy

[0, 1]

BSI Bezdec Separation Index
value

> 0

DBI Davies-Bouldin Index value > 0

XBI Xie-Beni Index value > 0

NPCI Normalised Partition Coeffi-
cient Index value

[0, 1]

PEI Normalised Partition En-
tropy Index value

[0, 1]

Table C.1: Columns of the scoreList data file.

D
Q U A L I T Y O F C L U S T E R I N G A L G O R I T H M S

In this appendix, the quality of the 10 clustering algorithms (see
Chapter 3) are visualized for the 4 different data set families (see Sec-
tion 4.1). The plots show the mean F1 values that can be interpreted
as clustering performance as well as the standard deviation to indi-
cate the spread of the mean. For each cell in a diagram 20 different
data sets of a data set family with corresponding number of dimen-
sions and classes are considered. Each of the 20 data sets is clustered
5 times with different initializations. The best clustering results of
these 5 clustering runs is used. The mean of the 20 best F1 values are
shown colour coded in the left-hand side panels. The corresponding
standard deviation is shown on the right-hand side panels with two
different colour sets to make the difference visually easy to distin-
guish. The procedure is also described at the beginning of Section 5.1
in the main text.

There are 4 groups of panels, one group for each data set family
and two panels for each of the 10 algorithms in a group. On the mean
panels on the left-hand side of the pages, the darker the colour, the
higher is the mean cluster quality. On the standard deviation panels
on the right-hand side of the pages, a dark colour represents a high
standard deviation which means that the mean value in the corres-
ponding plot on the left has a large spread. The first 4 rows of the
panels for data sets of the D4 data set family are left empty because
no data was generated for these tiles (dimensions 2, 3, 5 and 7). To
keep the visual representation consistent, these rows are left in the
diagram but do not hold any information.

The raw data is stored in a table and is available online, see Ap-
pendix C.4.

177

178 quality of clustering algorithms

d.1 data set family D1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 HCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 HCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 FCM2 F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 FCM2 F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 NFCM2 F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 NFCM2 F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 FCMm F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 FCMm F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 NFCMm F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 NFCMm F1 Standard Deviation

0

0.2

0.4

D.1 data set family D1 179

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 PFCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 PFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 PNFCM F1 Mean

0

0.2

0.4

0.6

0.8

1
2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 PNFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 RCFCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 RCFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 RCNFCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 RCNFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 EMGMM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 EMGMM F1 Standard Deviation

0

0.2

0.4

180 quality of clustering algorithms

d.2 data set family D2

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 HCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 HCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 FCM2 F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 FCM2 F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 NFCM2 F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 NFCM2 F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 FCMm F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 FCMm F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 NFCMm F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 NFCMm F1 Standard Deviation

0

0.2

0.4

D.2 data set family D2 181

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 PFCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 PFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 PNFCM F1 Mean

0

0.2

0.4

0.6

0.8

1
2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 PNFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 RCFCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 RCFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 RCNFCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 RCNFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 EMGMM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 EMGMM F1 Standard Deviation

0

0.2

0.4

182 quality of clustering algorithms

d.3 data set family D3

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 HCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 HCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 FCM2 F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 FCM2 F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 NFCM2 F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 NFCM2 F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 FCMm F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 FCMm F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 NFCMm F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 NFCMm F1 Standard Deviation

0

0.2

0.4

D.3 data set family D3 183

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 PFCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 PFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 PNFCM F1 Mean

0

0.2

0.4

0.6

0.8

1
2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 PNFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 RCFCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 RCFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 RCNFCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 RCNFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 EMGMM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 EMGMM F1 Standard Deviation

0

0.2

0.4

184 quality of clustering algorithms

d.4 data set family D4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 HCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 HCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 FCM2 F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 FCM2 F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 NFCM2 F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 NFCM2 F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 FCMm F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 FCMm F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 NFCMm F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 NFCMm F1 Standard Deviation

0

0.2

0.4

D.4 data set family D4 185

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 PFCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 PFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 PNFCM F1 Mean

0

0.2

0.4

0.6

0.8

1
2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 PNFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 RCFCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 RCFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 RCNFCM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 RCNFCM F1 Standard Deviation

0

0.2

0.4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 EMGMM F1 Mean

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 EMGMM F1 Standard Deviation

0

0.2

0.4

E
R A N K I N G C A PA B I L I T Y O F I N T E R N A L I N D I C E S

In this Appendix, the ability to correctly rank the results of the clus-
tering algorithms is visualized for 5 different internal cluster quality
indices (see Section 4.3). The plots show the mean ranking error on
the left-hand side panels and the corresponding standard deviation
on the right-hand side panels.

Each cell in a diagram, represents the performance of an index for
clustering results of one data set family and a particular combination
of dimensios and classes/clusters. There are 20 data sets per cell and
each data set is clustered 5 times with different initializations by 9
clustering algorithms (HCM is excluded because it does only generate
crisp clustering results). The ranking error of an index is measured
as the ranking position of the best clustering result according to the
F1 measure (see Section 4.2). From these 20 ranking error values, the
mean and standard deviation is calculated, please see Section 5.3.1
for more information on the procedure. Note that contrary to the
panels in the last appendix, a dark colour in the left-hand side panels
indicate bad ranking performance.

There are 4 groups of panels, one group for each data set family
and two panels for each of the 5 cluster quality indices (see Section
4.3) in a group. On the mean panels on the left-hand side of the pages,
the darker the colour, the higher is the mean ranking error. On the
standard deviation panels on the right-hand side of the pages, a dark
colour represents a high standard deviation which means that the
mean value in the corresponding plot on the left has a large spread.
The first 4 rows of the panels for data sets of theD4 data set family are
left empty because no data was generated for these tiles (dimensions
2, 3, 5 and 7). To keep the visual representation consistent, these rows
are left in the diagram but do not hold any information.

The raw data is stored in a table and is available online, see Ap-
pendix C.4.

187

188 ranking capability of internal indices

e.1 data set family D1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 BS Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 BS Index F1 Ranking Error Standard Deviation

0

10

20
2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 DB Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 DB Index F1 Ranking Error Standard Deviation

0

10

20

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 XB Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 XB Index F1 Ranking Error Standard Deviation

0

10

20

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 NPC Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 NPC Index F1 Ranking Error Standard Deviation

0

10

20

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 NPE Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 NPE Index F1 Ranking Error Standard Deviation

0

10

20

E.2 data set family D2 189

e.2 data set family D2

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 BS Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 BS Index F1 Ranking Error Standard Deviation

0

10

20

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 DB Index F1 Ranking Error Mean

0

20

40
2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 DB Index F1 Ranking Error Standard Deviation

0

10

20

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 XB Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 XB Index F1 Ranking Error Standard Deviation

0

10

20

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 NPC Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 NPC Index F1 Ranking Error Standard Deviation

0

10

20

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 NPE Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 NPE Index F1 Ranking Error Standard Deviation

0

10

20

190 ranking capability of internal indices

e.3 data set family D3

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 BS Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 BS Index F1 Ranking Error Standard Deviation

0

10

20
2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 DB Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 DB Index F1 Ranking Error Standard Deviation

0

10

20

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 XB Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 XB Index F1 Ranking Error Standard Deviation

0

10

20

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 NPC Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 NPC Index F1 Ranking Error Standard Deviation

0

10

20

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 NPE Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 NPE Index F1 Ranking Error Standard Deviation

0

10

20

E.4 data set family D4 191

e.4 data set family D4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 BS Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 BS Index F1 Ranking Error Standard Deviation

0

10

20

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 DB Index F1 Ranking Error Mean

0

20

40
2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 DB Index F1 Ranking Error Standard Deviation

0

10

20

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 XB Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 XB Index F1 Ranking Error Standard Deviation

0

10

20

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 NPC Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 NPC Index F1 Ranking Error Standard Deviation

0

10

20

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 NPE Index F1 Ranking Error Mean

0

20

40

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 NPE Index F1 Ranking Error Standard Deviation

0

10

20

F
I N T E R N A L A N D T H E F 1 I N D E X C O R R E L AT I O N S

In this Appendix, the performance of the cluster quality indices (see
Section 4.3) are visualized further by presenting the Spearman rank
correlation coefficients of the index values with the F 1 measure (see
Section 4.2).

Each cell in a diagram, represents the correlation performance of
an index for clustering results of one data set family and a particu-
lar combination of dimensios and classes/clusters. There are 2 0 data
sets per cell and each data set is clustered 5 times with different
initializations by 9 clustering algorithms on the left-hand side pan-
els (HCM is excluded because it does only generate crisp clustering
results) and 6 different clustering algorithms on the right-hand side
panels (HCM, FCM, NFCM and EMGMM are left out). The spearman
rank correlation is computed for all clustering results corresponding
to one cell combined, that are 2 0 · 5 · 9 = 9 0 0 on the left-hand side
and 2 0 · 5 · 6 = 6 0 0 on the right hand side. See Section 5.3.2 for
more details on the procedure

Since the correlation coefficient between an index and the F 1 meas-
ure can be both, positive and negative, the colour scale is very differ-
ent to the previous panels. A positive correlation is good, represented
in orange colours and no correlation is bad, which is represented in
white. Negative correlation basically means that the internal index
predicts the opposite of what it should do this is worse than bad and
is coloured in blue. There are 4 groups of panels, one group for each
data set family and two panels for each of the 5 cluster quality in-
dices (see Section 4.3) in a group. The first 4 rows of the panels for
data sets of the D 4 data set family are left empty because no data
was generated for these tiles (dimensions 2 , 3 , 5 and 7). To keep the
visual representation consistent, these rows are left in the diagram
but do not hold any information.

The raw data is stored in a table and is available online, see Ap-
pendix C.4.

193

194 internal and the f1 index correlations

f.1 data set family D1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 BSI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 BSI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1
2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 DBI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 DBI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 XBI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 XBI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 NPCI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 NPCI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 NPEI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D1 NPEI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

F.2 data set family D2 195

f.2 data set family D2

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 BSI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters
D

im
en

si
on

s

D2 BSI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 DBI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 DBI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 XBI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 XBI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 NPCI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 NPCI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 NPEI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 NPEI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

196 internal and the f1 index correlations

f.3 data set family D3

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 BSI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 BSI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1
2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 DBI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 DBI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 XBI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 XBI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 NPCI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 NPCI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 NPEI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D3 NPEI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

F.4 data set family D4 197

f.4 data set family D4

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 BSI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters
D

im
en

si
on

s

D4 BSI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 DBI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D2 DBI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 XBI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 XBI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 NPCI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 NPCI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 NPEI to F1 Rank Corr.

−1

−0.5

0

0.5

1

2 3 4 5 6 8
1
0
1
2
1
5
2
0
2
5
3
0
4
0
5
0
6
0
8
0

1
0
0

1
2
0

1
5
0

2
0
0

2
3
5
7

10
15
20
30
50
70
100

Clusters

D
im

en
si

on
s

D4 NPEI to F1 Rank Corr., no (N)FCM, EMGMM

−1

−0.5

0

0.5

1

G
I N T E R N A L V S . T H E F 1 I N D E X P L O T S

The plots in this appendix visualize the data behind the correlation
plots, presented in Appendix F. The plots are used to find an explan-
ation for the performance of the internal indices, presented in the last
appendix. Each individual plot shows the F 1 index on the x-achsis
and the value of an index on the y-achsis, see the end of Section 5.3.2
for more information.

Similar to the rank correlation panels in the last appendix, the
left-hand side plots in this appendix show the index values for all
clustering algorithms but HCM and the right-hand side plots show
also leave HCM, FCM, NFCM and EMGMM away. Each plot in this
appendix visualized the data for calculating the rank correlation in
one cell of one plot in the last appendix. The cells (addressed as
tuple (m , c)) are for all 4 data set families and all 5 indices: (3 , 5) ,
(1 0 , 1 0 0) , (1 5 , 2 0) and (5 0 , 1 5 0) . The plots on the left-hand side
contains 9 0 0 clustering results and 6 0 0 on the right-hand side. Each
dot in a plot corresponds to one clustering result and the clustering
algorithms that were used to generate the clustering results are colour
coded, as presented in the legend. The plots are grouped in 4 times 4
groups, sorted first according to the cell and second according to the
data set family.

The raw data is stored in a table and is available online, see Ap-
pendix C.4.

199

200 internal vs . the f1 index plots

g.1 plots for m = 3 and c = 5

g.1.1 Data Set Family D1

0.2 0.4 0.6 0.8 1

0

10

20

30

F1 Index

BS
I

D1, m = 3 c = 5: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.2 0.4 0.6 0.8 1

0

10

20

30

F1 Index

BS
I

D1, m = 3 c = 5: F1 index vs. BS index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0.2 0.4 0.6 0.8 1

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

·1010

F1 Index

D
BI

D1, m = 3 c = 5: F1 index vs. DB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0

F1 Index

D
BI

D1, m = 3 c = 5: F1 index vs. DB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0.2 0.4 0.6 0.8 1

−2

−1.5

−1

−0.5

0

·1023

F1 Index

X
BI

D1, m = 3 c = 5: F1 index vs. XB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.2 0.4 0.6 0.8 1

−200

−150

−100

−50

0

F1 Index

X
BI

D1, m = 3 c = 5: F1 index vs. XB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0.2 0.4 0.6 0.8 1

0.6

0.7

0.8

0.9

1

F1 Index

N
PC

I

D1, m = 3 c = 5: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.2 0.4 0.6 0.8 1

0.7

0.75

0.8

0.85

0.9

0.95

1

F1 Index

N
PC

I

D1, m = 3 c = 5: F1 index vs. NPC index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0.2 0.4 0.6 0.8 1

−0.3

−0.25

−0.2

−0.15

−0.1

−5 · 10−2

0

F1 Index

N
PE

I

D1, m = 3 c = 5: F1 index vs. NPE index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.2 0.4 0.6 0.8 1
−0.25

−0.2

−0.15

−0.1

−5 · 10−2

0

F1 Index

N
PE

I

D1, m = 3 c = 5: F1 index vs. NPE index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

G.1 plots for m = 3 and c = 5 201

g.1.2 Data Set Family D2

0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

F1 Index

BS
I

D2, m = 3 c = 5: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

F1 Index

BS
I

D2, m = 3 c = 5: F1 index vs. BS index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0.4 0.5 0.6 0.7 0.8 0.9 1

−1.5

−1

−0.5

0

·1012

F1 Index

D
BI

D2, m = 3 c = 5: F1 index vs. DB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.4 0.5 0.6 0.7 0.8 0.9 1

−1.5

−1

−0.5

0

F1 Index

D
BI

D2, m = 3 c = 5: F1 index vs. DB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0.4 0.5 0.6 0.7 0.8 0.9 1

−8

−6

−4

−2

0

·1027

F1 Index

X
BI

D2, m = 3 c = 5: F1 index vs. XB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.4 0.5 0.6 0.7 0.8 0.9 1

−6

−5

−4

−3

−2

−1

0

F1 Index

X
BI

D2, m = 3 c = 5: F1 index vs. XB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

0.7

0.8

0.9

1

F1 Index

N
PC

I

D2, m = 3 c = 5: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.4 0.5 0.6 0.7 0.8 0.9 1

0.7

0.75

0.8

0.85

0.9

0.95

1

F1 Index

N
PC

I

D2, m = 3 c = 5: F1 index vs. NPC index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0.4 0.5 0.6 0.7 0.8 0.9 1

−0.4

−0.3

−0.2

−0.1

0

F1 Index

N
PE

I

D2, m = 3 c = 5: F1 index vs. NPE index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.4 0.5 0.6 0.7 0.8 0.9 1

−0.25

−0.2

−0.15

−0.1

−5 · 10−2

0

F1 Index

N
PE

I

D2, m = 3 c = 5: F1 index vs. NPE index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

202 internal vs . the f1 index plots

g.1.3 Data Set Family D3

0.3 0.4 0.5 0.6 0.7

0

0.5

1

1.5

2

F1 Index

BS
I

D3, m = 3 c = 5: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.3 0.4 0.5 0.6 0.7

0

0.5

1

1.5

2

F1 Index

BS
I

D3, m = 3 c = 5: F1 index vs. BS index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0.3 0.4 0.5 0.6 0.7

−2.5

−2

−1.5

−1

−0.5

F1 Index

D
BI

D3, m = 3 c = 5: F1 index vs. DB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.3 0.4 0.5 0.6 0.7

−1.2

−1

−0.8

−0.6

F1 Index

D
BI

D3, m = 3 c = 5: F1 index vs. DB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0.3 0.4 0.5 0.6 0.7

−10

−8

−6

−4

−2

0

F1 Index

X
BI

D3, m = 3 c = 5: F1 index vs. XB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.3 0.4 0.5 0.6 0.7
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

F1 Index

X
BI

D3, m = 3 c = 5: F1 index vs. XB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0.3 0.4 0.5 0.6 0.7
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F1 Index

N
PC

I

D3, m = 3 c = 5: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.3 0.4 0.5 0.6 0.7

0.6

0.7

0.8

0.9

F1 Index

N
PC

I

D3, m = 3 c = 5: F1 index vs. NPC index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0.3 0.4 0.5 0.6 0.7
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

F1 Index

N
PE

I

D3, m = 3 c = 5: F1 index vs. NPE index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.3 0.4 0.5 0.6 0.7

−0.4

−0.3

−0.2

−0.1

0

F1 Index

N
PE

I

D3, m = 3 c = 5: F1 index vs. NPE index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

G.1 plots for m = 3 and c = 5 203

g.1.4 Data Set Family D4

There are no data sets in data set family D4, with m = 3 dimensions.

204 internal vs . the f1 index plots

g.2 plots for m = 10 and c = 100

g.2.1 Data Set Family D1

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

F1 Index

BS
I

D1, m = 10 c = 100: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.75 0.8 0.85 0.9 0.95 1

0

1

2

3

4

5

F1 Index

BS
I

D1, m = 10 c = 100: F1 index vs. BS index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−2

−1.5

−1

−0.5

0

·109

F1 Index

D
BI

D1, m = 10 c = 100: F1 index vs. DB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.75 0.8 0.85 0.9 0.95 1

−400

−300

−200

−100

0

F1 Index

D
BI

D1, m = 10 c = 100: F1 index vs. DB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

·1023

F1 Index

X
BI

D1, m = 10 c = 100: F1 index vs. XB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.75 0.8 0.85 0.9 0.95 1

−2

−1.5

−1

−0.5

0

·109

F1 Index

X
BI

D1, m = 10 c = 100: F1 index vs. XB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

F1 Index

N
PC

I

D1, m = 10 c = 100: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.75 0.8 0.85 0.9 0.95 1
0.94

0.95

0.96

0.97

0.98

0.99

1

F1 Index

N
PC

I

D1, m = 10 c = 100: F1 index vs. NPC index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

F1 Index

N
PE

I

D1, m = 10 c = 100: F1 index vs. NPE index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.75 0.8 0.85 0.9 0.95 1

−4

−3

−2

−1

0

·10−2

F1 Index

N
PE

I

D1, m = 10 c = 100: F1 index vs. NPE index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

G.2 plots for m = 10 and c = 100 205

g.2.2 Data Set Family D2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

F1 Index

BS
I

D2, m = 10 c = 100: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.7 0.75 0.8 0.85 0.9 0.95

0

0.2

0.4

0.6

0.8

1

F1 Index

BS
I

D2, m = 10 c = 100: F1 index vs. BS index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

·1012

F1 Index

D
BI

D2, m = 10 c = 100: F1 index vs. DB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.7 0.75 0.8 0.85 0.9 0.95

−2.5

−2

−1.5

−1

−0.5

0

·104

F1 Index

D
BI

D2, m = 10 c = 100: F1 index vs. DB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−6

−5

−4

−3

−2

−1

0

·1028

F1 Index

X
BI

D2, m = 10 c = 100: F1 index vs. XB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.7 0.75 0.8 0.85 0.9 0.95
−8

−6

−4

−2

0

·109

F1 Index

X
BI

D2, m = 10 c = 100: F1 index vs. XB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

F1 Index

N
PC

I

D2, m = 10 c = 100: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.7 0.75 0.8 0.85 0.9 0.95

0.85

0.9

0.95

1

F1 Index

N
PC

I

D2, m = 10 c = 100: F1 index vs. NPC index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

F1 Index

N
PE

I

D2, m = 10 c = 100: F1 index vs. NPE index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.7 0.75 0.8 0.85 0.9 0.95

−0.14

−0.12

−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

F1 Index

N
PE

I

D2, m = 10 c = 100: F1 index vs. NPE index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

206 internal vs . the f1 index plots

g.2.3 Data Set Family D3

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

1

F1 Index

BS
I

D3, m = 10 c = 100: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.3 0.35 0.4 0.45 0.5 0.55 0.6

0

0.2

0.4

0.6

0.8

1

F1 Index

BS
I

D3, m = 10 c = 100: F1 index vs. BS index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.1 0.2 0.3 0.4 0.5 0.6

−1.5

−1

−0.5

0

·104

F1 Index

D
BI

D3, m = 10 c = 100: F1 index vs. DB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.3 0.35 0.4 0.45 0.5 0.55 0.6

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

F1 Index

D
BI

D3, m = 10 c = 100: F1 index vs. DB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.1 0.2 0.3 0.4 0.5 0.6

−2

−1.5

−1

−0.5

0

·107

F1 Index

X
BI

D3, m = 10 c = 100: F1 index vs. XB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.3 0.35 0.4 0.45 0.5 0.55 0.6

−1

−0.8

−0.6

−0.4

−0.2

F1 Index

X
BI

D3, m = 10 c = 100: F1 index vs. XB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

F1 Index

N
PC

I

D3, m = 10 c = 100: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.3 0.35 0.4 0.45 0.5 0.55 0.6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1 Index

N
PC

I

D3, m = 10 c = 100: F1 index vs. NPC index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.1 0.2 0.3 0.4 0.5 0.6

−1

−0.8

−0.6

−0.4

−0.2

0

F1 Index

N
PE

I

D3, m = 10 c = 100: F1 index vs. NPE index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.3 0.35 0.4 0.45 0.5 0.55 0.6

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

F1 Index

N
PE

I

D3, m = 10 c = 100: F1 index vs. NPE index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

G.2 plots for m = 10 and c = 100 207

g.2.4 Data Set Family D4

0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

F1 Index

BS
I

D4, m = 10 c = 100: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

0

0.2

0.4

0.6

0.8

F1 Index

BS
I

D4, m = 10 c = 100: F1 index vs. BS index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.1 0.2 0.3 0.4

−6

−5

−4

−3

−2

−1

0

·104

F1 Index

D
BI

D4, m = 10 c = 100: F1 index vs. DB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

−8

−6

−4

−2

F1 Index

D
BI

D4, m = 10 c = 100: F1 index vs. DB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.1 0.2 0.3 0.4

−2.5

−2

−1.5

−1

−0.5

0

·1031

F1 Index

X
BI

D4, m = 10 c = 100: F1 index vs. XB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

−4,000

−3,000

−2,000

−1,000

0

F1 Index

X
BI

D4, m = 10 c = 100: F1 index vs. XB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

F1 Index

N
PC

I

D4, m = 10 c = 100: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42
0.7

0.75

0.8

0.85

0.9

0.95

1

F1 Index

N
PC

I

D4, m = 10 c = 100: F1 index vs. NPC index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.1 0.2 0.3 0.4

−1

−0.8

−0.6

−0.4

−0.2

0

F1 Index

N
PE

I

D4, m = 10 c = 100: F1 index vs. NPE index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

−0.25

−0.2

−0.15

−0.1

−5 · 10−2

0

F1 Index

N
PE

I

D4, m = 10 c = 100: F1 index vs. NPE index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

208 internal vs . the f1 index plots

g.3 plots for m = 15 and c = 20

g.3.1 Data Set Family D1

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

F1 Index

BS
I

D1, m = 15 c = 20: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

20

25

F1 Index

BS
I

D1, m = 15 c = 20: F1 index vs. BS index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

·108

F1 Index

D
BI

D1, m = 15 c = 20: F1 index vs. DB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.5 0.6 0.7 0.8 0.9 1

−6,000

−4,000

−2,000

0

F1 Index

D
BI

D1, m = 15 c = 20: F1 index vs. DB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

·1021

F1 Index

X
BI

D1, m = 15 c = 20: F1 index vs. XB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.5 0.6 0.7 0.8 0.9 1

−1.5

−1

−0.5

0

·1011

F1 Index

X
BI

D1, m = 15 c = 20: F1 index vs. XB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

F1 Index

N
PC

I

D1, m = 15 c = 20: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.5 0.6 0.7 0.8 0.9 1

0.92

0.94

0.96

0.98

1

F1 Index

N
PC

I

D1, m = 15 c = 20: F1 index vs. NPC index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

F1 Index

N
PE

I

D1, m = 15 c = 20: F1 index vs. NPE index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.5 0.6 0.7 0.8 0.9 1

−5

−4

−3

−2

−1

0

·10−2

F1 Index

N
PE

I

D1, m = 15 c = 20: F1 index vs. NPE index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

G.3 plots for m = 15 and c = 20 209

g.3.2 Data Set Family D2

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

F1 Index

BS
I

D2, m = 15 c = 20: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.7 0.8 0.9 1

0

0.5

1

1.5

2

F1 Index

BS
I

D2, m = 15 c = 20: F1 index vs. BS index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

·1012

F1 Index

D
BI

D2, m = 15 c = 20: F1 index vs. DB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.7 0.8 0.9 1

−200

−150

−100

−50

0

F1 Index

D
BI

D2, m = 15 c = 20: F1 index vs. DB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

·1028

F1 Index

X
BI

D2, m = 15 c = 20: F1 index vs. XB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.7 0.8 0.9 1
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

·107

F1 Index

X
BI

D2, m = 15 c = 20: F1 index vs. XB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

F1 Index

N
PC

I

D2, m = 15 c = 20: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.7 0.8 0.9 1

0.85

0.9

0.95

1

F1 Index

N
PC

I

D2, m = 15 c = 20: F1 index vs. NPC index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

F1 Index

N
PE

I

D2, m = 15 c = 20: F1 index vs. NPE index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.7 0.8 0.9 1

−0.15

−0.1

−5 · 10−2

0

F1 Index

N
PE

I

D2, m = 15 c = 20: F1 index vs. NPE index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

210 internal vs . the f1 index plots

g.3.3 Data Set Family D3

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

F1 Index

BS
I

D3, m = 15 c = 20: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.4 0.5 0.6 0.7 0.8

0

0.2

0.4

0.6

0.8

1

F1 Index

BS
I

D3, m = 15 c = 20: F1 index vs. BS index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8

−8

−6

−4

−2

0

·104

F1 Index

D
BI

D3, m = 15 c = 20: F1 index vs. DB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.4 0.5 0.6 0.7 0.8

−1.8

−1.6

−1.4

−1.2

F1 Index

D
BI

D3, m = 15 c = 20: F1 index vs. DB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8

−8

−6

−4

−2

0

·108

F1 Index

X
BI

D3, m = 15 c = 20: F1 index vs. XB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.4 0.5 0.6 0.7 0.8

−6

−5

−4

−3

−2

−1

0

F1 Index

X
BI

D3, m = 15 c = 20: F1 index vs. XB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

F1 Index

N
PC

I

D3, m = 15 c = 20: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

F1 Index

N
PC

I

D3, m = 15 c = 20: F1 index vs. NPC index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

F1 Index

N
PE

I

D3, m = 15 c = 20: F1 index vs. NPE index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.4 0.5 0.6 0.7 0.8

−0.4

−0.3

−0.2

−0.1

0

F1 Index

N
PE

I

D3, m = 15 c = 20: F1 index vs. NPE index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

G.3 plots for m = 15 and c = 20 211

g.3.4 Data Set Family D4

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

F1 Index

BS
I

D4, m = 15 c = 20: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.4 0.5 0.6 0.7

0.2

0.4

0.6

0.8

1

F1 Index

BS
I

D4, m = 15 c = 20: F1 index vs. BS index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8

−1.5

−1

−0.5

0

·105

F1 Index

D
BI

D4, m = 15 c = 20: F1 index vs. DB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.4 0.5 0.6 0.7
−1.8

−1.6

−1.4

−1.2

−1

F1 Index

D
BI

D4, m = 15 c = 20: F1 index vs. DB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8
−4

−3

−2

−1

0

·1010

F1 Index

X
BI

D4, m = 15 c = 20: F1 index vs. XB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.4 0.5 0.6 0.7

−1.5

−1

−0.5

0

F1 Index

X
BI

D4, m = 15 c = 20: F1 index vs. XB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

F1 Index

N
PC

I

D4, m = 15 c = 20: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.4 0.5 0.6 0.7

0.7

0.8

0.9

1

F1 Index

N
PC

I

D4, m = 15 c = 20: F1 index vs. NPC index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

F1 Index

N
PE

I

D4, m = 15 c = 20: F1 index vs. NPE index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.4 0.5 0.6 0.7

−0.3

−0.2

−0.1

0

F1 Index

N
PE

I

D4, m = 15 c = 20: F1 index vs. NPE index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

212 internal vs . the f1 index plots

g.4 plots for m = 50 and c = 150

g.4.1 Data Set Family D1

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

14

F1 Index

BS
I

D1, m = 50 c = 150: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.75 0.8 0.85 0.9 0.95 1

0

2

4

6

8

10

12

14

F1 Index

BS
I

D1, m = 50 c = 150: F1 index vs. BS index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

·109

F1 Index

D
BI

D1, m = 50 c = 150: F1 index vs. DB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.75 0.8 0.85 0.9 0.95 1

−6

−4

−2

0

·109

F1 Index

D
BI

D1, m = 50 c = 150: F1 index vs. DB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−5

−4

−3

−2

−1

0

·1024

F1 Index

X
BI

D1, m = 50 c = 150: F1 index vs. XB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.75 0.8 0.85 0.9 0.95 1

−5

−4

−3

−2

−1

0

·1024

F1 Index

X
BI

D1, m = 50 c = 150: F1 index vs. XB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

F1 Index

N
PC

I

D1, m = 50 c = 150: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.75 0.8 0.85 0.9 0.95 1

0.97

0.98

0.98

0.99

0.99

1

F1 Index

N
PC

I

D1, m = 50 c = 150: F1 index vs. NPC index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

F1 Index

N
PE

I

D1, m = 50 c = 150: F1 index vs. NPE index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.75 0.8 0.85 0.9 0.95 1

−1.5

−1

−0.5

0

·10−2

F1 Index

N
PE

I

D1, m = 50 c = 150: F1 index vs. NPE index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

G.4 plots for m = 50 and c = 150 213

g.4.2 Data Set Family D2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

F1 Index

BS
I

D2, m = 50 c = 150: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.7 0.75 0.8 0.85 0.9 0.95

0

0.2

0.4

0.6

0.8

1

F1 Index

BS
I

D2, m = 50 c = 150: F1 index vs. BS index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

·1012

F1 Index

D
BI

D2, m = 50 c = 150: F1 index vs. DB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.7 0.75 0.8 0.85 0.9 0.95

−1

−0.8

−0.6

−0.4

−0.2

0

·1012

F1 Index

D
BI

D2, m = 50 c = 150: F1 index vs. DB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−3

−2.5

−2

−1.5

−1

−0.5

0

·1030

F1 Index

X
BI

D2, m = 50 c = 150: F1 index vs. XB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.7 0.75 0.8 0.85 0.9 0.95

−2.5

−2

−1.5

−1

−0.5

0

·1029

F1 Index

X
BI

D2, m = 50 c = 150: F1 index vs. XB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

F1 Index

N
PC

I

D2, m = 50 c = 150: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.7 0.75 0.8 0.85 0.9 0.95
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

F1 Index

N
PC

I

D2, m = 50 c = 150: F1 index vs. NPC index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

F1 Index

N
PE

I

D2, m = 50 c = 150: F1 index vs. NPE index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.7 0.75 0.8 0.85 0.9 0.95

−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

F1 Index

N
PE

I

D2, m = 50 c = 150: F1 index vs. NPE index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

214 internal vs . the f1 index plots

g.4.3 Data Set Family D3

0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

F1 Index

BS
I

D3, m = 50 c = 150: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

F1 Index

BS
I

D3, m = 50 c = 150: F1 index vs. BS index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8
−5

−4

−3

−2

−1

0

·109

F1 Index

D
BI

D3, m = 50 c = 150: F1 index vs. DB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.5 0.6 0.7 0.8 0.9

−1,000

−800

−600

−400

−200

0

F1 Index

D
BI

D3, m = 50 c = 150: F1 index vs. DB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8

−3

−2.5

−2

−1.5

−1

−0.5

0

·1017

F1 Index

X
BI

D3, m = 50 c = 150: F1 index vs. XB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.5 0.6 0.7 0.8 0.9

−3

−2.5

−2

−1.5

−1

−0.5

0

·108

F1 Index

X
BI

D3, m = 50 c = 150: F1 index vs. XB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

F1 Index

N
PC

I

D3, m = 50 c = 150: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

1

F1 Index

N
PC

I

D3, m = 50 c = 150: F1 index vs. NPC index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

F1 Index

N
PE

I

D3, m = 50 c = 150: F1 index vs. NPE index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.5 0.6 0.7 0.8 0.9

−0.4

−0.3

−0.2

−0.1

0

F1 Index

N
PE

I

D3, m = 50 c = 150: F1 index vs. NPE index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

G.4 plots for m = 50 and c = 150 215

g.4.4 Data Set Family D4

0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

F1 Index

BS
I

D4, m = 50 c = 150: F1 index vs. BS index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.3 0.4 0.5 0.6 0.7 0.8

0

0.1

0.2

0.3

0.4

0.5

F1 Index

BS
I

D4, m = 50 c = 150: F1 index vs. BS index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8

−2

−1.5

−1

−0.5

0

·1010

F1 Index

D
BI

D4, m = 50 c = 150: F1 index vs. DB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.3 0.4 0.5 0.6 0.7 0.8

−3

−2.5

−2

−1.5

−1

−0.5

0

·106

F1 Index

D
BI

D4, m = 50 c = 150: F1 index vs. DB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8

−1.5

−1

−0.5

0

·1031

F1 Index

X
BI

D4, m = 50 c = 150: F1 index vs. XB index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.3 0.4 0.5 0.6 0.7 0.8
−2

−1.5

−1

−0.5

0

·1016

F1 Index

X
BI

D4, m = 50 c = 150: F1 index vs. XB index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

F1 Index

N
PC

I

D4, m = 50 c = 150: F1 index vs. NPC index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.4

0.6

0.8

1

F1 Index

N
PC

I

D4, m = 50 c = 150: F1 index vs. NPC index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

F1 Index

N
PE

I

D4, m = 50 c = 150: F1 index vs. NPE index

FCM2

NFCM2

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM
EMGMM

0.3 0.4 0.5 0.6 0.7 0.8

−0.6

−0.4

−0.2

0

F1 Index

N
PE

I

D4, m = 50 c = 150: F1 index vs. NPE index

FCMm

NFCMm

PFCM
PNFCM
RCFCM

RCNFCM

B I B L I O G R A P H Y

Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On
the surprising behavior of distance metrics in high dimensional
space. In Lecture Notes in Computer Science, pages 420–434. Springer,
2001.

CharuC. Aggarwal and ChengXiang Zhai. A survey of text clustering
algorithms. In Charu C. Aggarwal and ChengXiang Zhai, editors,
Mining Text Data, pages 77–128. Springer US, 2012. ISBN 978-1-
4614-3222-7. doi: 10.1007/978-1-4614-3223-4_4. URL http://dx.

doi.org/10.1007/978-1-4614-3223-4_4.

Rakesh Aggarwal and Ramakrishnan Srikant. Fast algorithms for
mining association rules in large databases. In Proceedings of the 20th
International Conference on Very Large Data Bases, VLDB ’94, pages
487–499, San Francisco, CA, USA, 1994. Morgan Kaufmann Pub-
lishers Inc. ISBN 1-55860-153-8.

Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat.
Np-hardness of euclidean sum-of-squares clustering. Machine
Learning, 75:245–248, 2009. ISSN 0885-6125. URL http://dx.doi.

org/10.1007/s10994-009-5103-0. 10.1007/s10994-009-5103-0.

E. Anderson. The irises of the gaspe peninsula. Bulletin of the American
Iris Society, 59:2–5, 1935.

Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg
Sander. Optics: ordering points to identify the clustering structure.
SIGMOD Rec., 28(2):49–60, 1999. ISSN 0163-5808. doi: http://doi.
acm.org/10.1145/304181.304187.

Sitaram Asur, Duygu Ucar, and Srinivasan Parthasarathy. An en-
semble framework for clustering protein–protein interaction net-
works. Bioinformatics, 23(13):i29–i40, 2007.

K. Bache and M. Lichman. UCI machine learning repository, 2013.
URL http://archive.ics.uci.edu/ml.

Eric Backer and Anil K. Jain. A clustering performance measure
based on fuzzy set decomposition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, PAMI-3(1):66–75, Jan. 1981. ISSN
0162-8828. doi: 10.1109/TPAMI.1981.4767051.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In Advances in Neural
Information Processing Systems 14, pages 585–591. MIT Press, 2001.

217

http://dx.doi.org/10.1007/978-1-4614-3223-4_4
http://dx.doi.org/10.1007/978-1-4614-3223-4_4
http://dx.doi.org/10.1007/s10994-009-5103-0
http://dx.doi.org/10.1007/s10994-009-5103-0
http://archive.ics.uci.edu/ml

218 bibliography

R.E. Bellman. Dynamic Programming. Dover Books on Mathematics.
Dover Publications, 2003. ISBN 9780486428093. URL http://books.

google.com/books?id=fyVtp3EMxasC.

Richard Bellman. Dynamic programming and lagrange multipliers.
Proceedings of the National Academy of Sciences of the United States of
America, 42(10):767, 1956.

Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.
When is nearest neighbor meaningful? In Database Theory - ICDT’99,
volume 1540 of Lecture Notes in Computer Science, pages 217–235.
Springer Berlin / Heidelberg, 1999. ISBN 978-3-540-65452-0. doi:
10.1007/3-540-49257-7_15. URL http://www.springerlink.com/

content/04p94cqnbge862kh.

James C. Bezdek. Pattern Recognition with Fuzzy Objective Function
Algorithms. Plenum Press, New York, 1981.

James C Bezdek and Richard J Hathaway. Some notes on alternating
optimization. In Advances in Soft Computing–AFSS 2002, pages 288–
300. Springer, 2002.

JC Bezdek, WQ Li, Y Attikiouzel, and M Windham. A geometric
approach to cluster validity for normal mixtures. Soft Computing, 1

(4):166–179, 1997.

B.R. Wilkins B.G. Batchelor. Method for location of clusters of pat-
terns to initialise a learning machine. Electronics Letters, 5:481–
483(2), October 1969. ISSN 0013-5194.

J. Bilmes. A gentle tutorial on the em algorithm and its application
to parameter estimation for gaussian mixture and hidden markov
models. Technical report, University of California, Berkeley, 1997.

Christian Borgelt. Data Mining with Graphical Models. PhD thesis,
Otto-von-Guericke University Magdeburg, 2000.

Christian Borgelt. Prototype-based Classification and Clustering (Habilit-
ationsschrift). PhD thesis, Otto-von-Guericke-University of Magde-
burg, Germany, 2005. http://www.borgelt.net/habil.html.

Christian Borgelt. Resampling for fuzzy clustering. In Proc. Sym-
posium on Fuzzy Systems in Computer Science (FSCS 2006, Magde-
burg, Germany), Magdeburg, Germany, 2006. Otto-von-Guericke-
University of Magdeburg.

Christian Borgelt and Rudolf Kruse. Finding the number of fuzzy
clusters by resampling. In Proc. 16th IEEE Int. Conf. on Fuzzy Sys-
tems (FUZZ-IEEE’06, Vancouver, Canada), Piscataway, NJ, USA, 2006.
IEEE Press.

http://books.google.com/books?id=fyVtp3EMxasC
http://books.google.com/books?id=fyVtp3EMxasC
http://www.springerlink.com/content/04p94cqnbge862kh
http://www.springerlink.com/content/04p94cqnbge862kh

bibliography 219

Ilja Bronstein and Konstantin Semendjajew. Taschenbuch der Math-
ematik. Nauka, Moskau und Teubner, Leipzig, 19. komplett über-
arbeitete auflage edition, 1979.

Sébastien Bubeck, Marina Meilă, and Ulrike von Luxburg. How the
initialization affects the stability of the k-means algorithm. ESAIM:
Probability and Statistics, 16:436–452, 2012.

Augustin Cauchy. Méthode générale pour la résolution des systemes
d’équations simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538,
1847.

Kaushik Chakrabarti and Sharad Mehrotra. Local dimensionality re-
duction: A new approach to indexing high dimensional spaces. In
Proceedings of the 26th International Conference on Very Large Data
Bases, VLDB ’00, pages 89–100, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc. ISBN 1-55860-715-3. URL
http://dl.acm.org/citation.cfm?id=645926.671852.

Stephen L Chiu. Fuzzy model identification based on cluster estima-
tion. Journal of intelligent and Fuzzy systems, 2(3):267–278, 1994.

MGCA Cimino, G Frosini, Beatrice Lazzerini, and Francesco Marcel-
loni. On the noise distance in robust fuzzy c-means. In Proceeding of
world academy of science, Engineering and Technology, volume 1, pages
361–364. Citeseer, 2005.

Pierre Comon. Independent component analysis, a new concept?
Signal Process., 36(3):287–314, April 1994. ISSN 0165-1684. doi:
10.1016/0165-1684(94)90029-9. URL http://dx.doi.org/10.1016/

0165-1684(94)90029-9.

Martin Cooke, Phil Green, Ljubomir Josifovski, and Ascension Viz-
inho. Robust automatic speech recognition with missing and unre-
liable acoustic data. Speech communication, 34(3):267–285, 2001.

Antonio Cuevas, Manuel Febrero, and Ricardo Fraiman. Estimating
the number of clusters. Canadian Journal of Statistics, 28(2):367–382,
2000.

Rajesh N. Dave. Characterization and detection of noise in clustering.
Pattern Recogn. Lett., 12(11):657–664, 1991. ISSN 0167-8655.

David L Davies and Donald W Bouldin. A cluster separation measure.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 4(2):
224–227, 1979.

Roy De Maesschalck, Delphine Jouan-Rimbaud, and Désiré L Massart.
The mahalanobis distance. Chemometrics and intelligent laboratory
systems, 50(1):1–18, 2000.

http://dl.acm.org/citation.cfm?id=645926.671852
http://dx.doi.org/10.1016/0165-1684(94)90029-9
http://dx.doi.org/10.1016/0165-1684(94)90029-9

220 bibliography

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Rozal
Statistical Society, Ser. B, 39(1):1–38, 1977.

D. Donoho. High-dimensional data analysis: The curses and bless-
ings of dimensionality. Lecture delivered at the conference "Math
Challenges of the 21st Century" held by the American Math. Soci-
ety organised in Los Angeles, August 6-11, August 2000.

J.C. Dunn. A fuzzy relative of the isodata process and its use
in detecting compact well-separated clusters. Cybernetics and
Systems: An International Journal, 3(3):32–57, 1973. doi: 10.1080/
01969727308546046. URL http://www.informaworld.com/10.1080/

01969727308546046.

Robert J. Durrant and Ata Kabán. When is ’nearest neighbour’ mean-
ingful: A converse theorem and implications. Journal of Complexity,
25(4):385 – 397, 2008. ISSN 0885-064X. doi: DOI:10.1016/j.jco.2009.
02.011. URL http://www.sciencedirect.com/science/article/

B6WHX-4VXB8V2-1/2/9e931f06c677abeb1a1589a8e759197c.

Martin Ester, Hans-Peter Kriegel, S. Jörg, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases
with noise. In 2nd International Conference on Knowledge Discovery
and Data Mining, pages 226–231. AAAI Press, 1996. URL http://

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.1980.

Usama M Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and
Ramasamy Uthurusamy. Advances in knowledge discovery and
data mining. The MIT Press, 2 1996.

Fisher. Theory of statistical estimation. In Proc. Cambridge Philosoph-
ical Society, volume 22, pages 700–725. Cambridge University Press,
Cambridge, 1925.

C. Fraley and A. E. Raftery. How many clusters? which clustering
method? answers via model-based cluster analysis. The Computer
Journal, 41(8):578–588, August 1998. doi: 10.1093/comjnl/41.8.578.
URL http://dx.doi.org/10.1093/comjnl/41.8.578.

Damien François, Vincent Wertz, and Michel Verleysen. The con-
centration of fractional distances. Knowledge and Data Engineering,
IEEE Transactions on, 19(7):873 –886, 7 2007. ISSN 1041-4347. doi:
10.1109/TKDE.2007.1037.

William J Frawley, Gregory Piatetsky-Shapiro, and Christopher J
Matheus. Knowledge discovery in databases: An overview. AI
magazine, 13(3):57, 1992.

Hichem Frigui and Raghu Krishnapuram. A robust algorithm
for automatic extraction of an unknown number of clusters

http://www.informaworld.com/10.1080/01969727308546046
http://www.informaworld.com/10.1080/01969727308546046
http://www.sciencedirect.com/science/article/B6WHX-4VXB8V2-1/2/9e931f06c677abeb1a1589a8e759197c
http://www.sciencedirect.com/science/article/B6WHX-4VXB8V2-1/2/9e931f06c677abeb1a1589a8e759197c
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.1980
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.1980
http://dx.doi.org/10.1093/comjnl/41.8.578

bibliography 221

from noisy data. Pattern Recognition Letters, 17(12):1223 –
1232, 1996. ISSN 0167-8655. doi: DOI:10.1016/0167-8655(96)
00080-3. URL http://www.sciencedirect.com/science/article/

B6V15-3WP2DPP-S/2/9cf46c6a0875ff2051d8d42cb25653fc.

Hichem Frigui and Raghu Krishnapuram. Clustering by com-
petitive agglomeration. Pattern Recognition, 30(7):1109 – 1119,
1997. ISSN 0031-3203. doi: DOI:10.1016/S0031-3203(96)
00140-9. URL http://www.sciencedirect.com/science/article/

B6V14-3SNVHWM-M/2/3c5ec045f0a0662d00ab583aab028f9f.

Isak Gath and Amir B. Geva. Unsupervised optimal fuzzy clustering.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 11(7):
773–780, 1989.

Mark Girolami. Mercer kernel-based clustering in feature space.
Neural Networks, IEEE Transactions on, 13(3):780–784, 2002.

Phil Green, Jon Barker, Martin Cooke, and Ljubomir Josifovski. Hand-
ling missing and unreliable information in speech recognition. In
AISTATS 2001, Florida, 2001.

Donald E. Gustafson and William C. Kessel. Fuzzy clustering with a
fuzzy covariance matrix. In IEEE, volume 17, pages 761–766, Jan.
1978. doi: 10.1109/CDC.1978.268028.

Isabelle Guyon. An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157–1182, 2003. URL http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.8934.

Isabelle Guyon. Feature extraction: foundations and applications.
Studies in fuzziness and soft computing. Springer-Verlag, 2006.
ISBN 9783540354871. URL http://books.google.com/books?id=

x5hdbK8bIG0C.

Mark A. Hall. Correlation-based Feature Selection for Machine Learning.
PhD thesis, University of Waikato, 1999.

Alexander Hinneburg and Daniel A. Keim. Optimal grid-clustering:
Towards breaking the curse of dimensionality in high-dimensional
clustering. In Malcolm P. Atkinson, Maria E. Orlowska, Patrick Val-
duriez, Stanley B. Zdonik, and Michael L. Brodie, editors, VLDB’99,
Proceedings of 25th International Conference on Very Large Data Bases,
September 7-10, 1999, Edinburgh, Scotland, UK, pages 506–517. Mor-
gan Kaufmann, 1999. ISBN 1-55860-615-7.

Alexander Hinneburg and Daniel A. Keim. A general approach to
clustering in large databases with noise. Knowledge and Information
Systems, 5(4):387–415, November 2003. ISSN 0219-1377 (Print) 0219-
3116 (Online). doi: 10.1007/s10115-003-0086-9. URL http://www.

springerlink.com/content/cde7exf7u79fdfjl.

http://www.sciencedirect.com/science/article/B6V15-3WP2DPP-S/2/9cf46c6a0875ff2051d8d42cb25653fc
http://www.sciencedirect.com/science/article/B6V15-3WP2DPP-S/2/9cf46c6a0875ff2051d8d42cb25653fc
http://www.sciencedirect.com/science/article/B6V14-3SNVHWM-M/2/3c5ec045f0a0662d00ab583aab028f9f
http://www.sciencedirect.com/science/article/B6V14-3SNVHWM-M/2/3c5ec045f0a0662d00ab583aab028f9f
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.8934
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.8934
http://books.google.com/books?id=x5hdbK8bIG0C
http://books.google.com/books?id=x5hdbK8bIG0C
http://www.springerlink.com/content/cde7exf7u79fdfjl
http://www.springerlink.com/content/cde7exf7u79fdfjl

222 bibliography

Alexander Hinneburg, Charu C. Aggarwal, and Daniel A. Keim.
What is the nearest neighbor in high dimensional spaces? In
VLDB ’00: Proceedings of the 26th International Conference on Very
Large Data Bases, pages 506–515, San Francisco, CA, USA, 2000. Mor-
gan Kaufmann Publishers Inc. ISBN 1-55860-715-3.

F. Höppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Ana-
lysis. John Wiley & Sons, Chichester, England, 1999.

Frank Höppner and Frank Klawonn. A new approach to fuzzy par-
titioning. In In Proc. of the Joint 9th IFSA World Congress and 20th
NAFIPS Int. Conf, pages 1419–1424, 2001.

Frank Höppner and Frank Klawonn. Improved fuzzy partitions for
fuzzy regression models. Int. J. Approx. Reasoning, 32(2-3):85–102,
2003.

Harold Hotelling and Margaret Richards Pabst. Rank correlation and
tests of significance involving no assumption of normality. The An-
nals of Mathematical Statistics, 7(1):29–43, 1936.

A. Hotho, S. Staab, and A. Maedche. Ontology-based text clustering.
In In Proceedings of the IJCAI-2001 Workshop Text Learning: Beyond
Supervision, 2001.

Chih-Ming Hsu and Ming-Syan Chen. On the necessary and suffi-
cient conditions of a meaningful distance function for high dimen-
sional data space. In SDM, 2006.

Chih-Ming Hsu and Ming-Syan Chen. On the design and applicabil-
ity of distance functions in high-dimensional data space. Knowledge
and Data Engineering, IEEE Transactions on, 21(4):523 –536, 4 2009.
ISSN 1041-4347. doi: 10.1109/TKDE.2008.178.

A. Irle. Wahrscheinlichkeitstheorie und Statistik: Grundlagen - Res-
ultate - Anwendungen. Lehrbuch Mathematik. Teubner, 2005.
ISBN 9783322871992. URL http://books.google.de/books?id=

-mGRLA9w6VYC.

Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering:
a review. ACM computing surveys (CSUR), 31(3):264–323, 1999.

B. Jayaram and F. Klawonn. Can unbounded distance measures mit-
igate the curse of dimensionality? Int. J. Data Mining, Modelling and
Management, x(x):xxx–xxx., x 2012. (accepted paper).

I. T. Jolliffe. Principal Component Analysis. Springer, second edition,
October 2002. ISBN 0387954422. URL http://www.worldcat.org/

isbn/0387954422.

http://books.google.de/books?id=-mGRLA9w6VYC
http://books.google.de/books?id=-mGRLA9w6VYC
http://www.worldcat.org/isbn/0387954422
http://www.worldcat.org/isbn/0387954422

bibliography 223

A. Kabán. Fractional norm regularization: Learning with very few
relevant features. Neural Networks and Learning Systems, IEEE
Transactions on, 24(6):953–963, June 2013. ISSN 2162-237X. doi:
10.1109/TNNLS.2013.2247417.

Ata Kabán. On the distance concentration awareness of cer-
tain data reduction techniques. Pattern Recognition, 44(2):265

– 277, 2011. ISSN 0031-3203. doi: DOI:10.1016/j.patcog.2010.
08.018. URL http://www.sciencedirect.com/science/article/

B6V14-50T41D8-1/2/ad372c0fe81d9b0e19fc39673348d5a6.

Ata Kabán. Non-parametric detection of meaningless distances in
high dimensional data. Statistics and Computing, 22(2):375–385,
2012.

William Karush. Minima of functions of several variables with in-
equalities as side constraints. Master’s thesis, Masters thesis, Dept.
of Mathematics, Univ. of Chicago, 1939.

Slava Katz. Estimation of probabilities from sparse data for the lan-
guage model component of a speech recognizer. Acoustics, Speech
and Signal Processing, IEEE Transactions on, 35(3):400–401, 1987.

J. Kennedy and R. Eberhart. Particle swarm optimization. In
Neural Networks, 1995. Proceedings., IEEE International Conference on,
volume 4, pages 1942–1948 vol.4, Nov 1995. doi: 10.1109/ICNN.
1995.488968.

Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, et al. Optimization
by simmulated annealing. science, 220(4598):671–680, 1983.

Frank Klawonn. Fuzzy clustering: insights and a new approach. Math-
ware and Soft Computing, 11:125–142, 2004. URL http://hdl.handle.

net/2099/3642.

Frank Klawonn and Frank Höppner. What is fuzzy about fuzzy
clustering? understanding and improving the concept of the fuzzi-
fier. In Michael R. Berthold, Hans-Joachim Lenz, Elizabeth Bradley,
Rudolf Kruse, and Christian Borgelt, editors, Advances in Intelligent
Data Analysis V, volume 2810 of Lecture Notes in Computer Science,
pages 254–264. Springer Berlin / Heidelberg, 2003a.

Frank Klawonn and Frank Höppner. An alternative approach to the
fuzzifier in fuzzy clustering to obtain better clustering. In EUSFLAT
Conf., pages 730–734, 2003b.

Donald Ervin Knuth. The art of computer programming. Pearson Edu-
cation, 2005.

T. Kohonen. Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 43:59–69, 1982.

http://www.sciencedirect.com/science/article/B6V14-50T41D8-1/2/ad372c0fe81d9b0e19fc39673348d5a6
http://www.sciencedirect.com/science/article/B6V14-50T41D8-1/2/ad372c0fe81d9b0e19fc39673348d5a6
http://hdl.handle.net/2099/3642
http://hdl.handle.net/2099/3642

224 bibliography

T. Kohonen. Self-organizing maps. Springer series in information sci-
ences. Springer, 2001. ISBN 9783540679219. URL http://books.

google.de/books?id=e4igHzyfO78C.

H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proceed-
ings of the Second Berkeley Symposium on Mathematical Statistics and
Probability, pages 481–492, Berkeley, Calif., 1951. University of Cali-
fornia Press.

HW Kuhn. The hungarian method for the assignment problem. Naval
Research Logistics (NRL), 52(1):7–21, 2005.

S. Kullback and R. A. Leibler. On information and sufficiency. Annals
of Mathematical Statistics, 22:49–86, 1951.

Ludmila I Kuncheva and Dmitry P Vetrov. Evaluation of stability
of k-means cluster ensembles with respect to random initialization.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(11):
1798–1808, 2006.

Deval A Lashkari, Joseph L DeRisi, John H McCusker, Allen F
Namath, Cristl Gentile, Seung Y Hwang, Patrick O Brown, and Ron-
ald W Davis. Yeast microarrays for genome wide parallel genetic
and gene expression analysis. Proceedings of the National Academy of
Sciences, 94(24):13057–13062, 1997.

Zhongping Lee, Kendall L Carder, Curtis D Mobley, Robert G Stew-
ard, and Jennifer S Patch. Hyperspectral remote sensing for shallow
waters. 2. deriving bottom depths and water properties by optimiz-
ation. Applied Optics, 38(18):3831–3843, 1999.

Xiaoke Ma, Lin Gao, Xuerong Yong, and Lidong Fu. Semi-supervised
clustering algorithm for community structure detection in complex
networks. Physica A: Statistical Mechanics and its Applications, 389(1):
187–197, 2010.

J. B. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. In Proc. of the fifth Berkeley Symposium on
Mathematical Statistics and Probability, volume 1, pages 281–297. Uni-
versity of California Press, 1967.

Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The
planar k-means problem is np-hard. In Sandip Das and Ryuhei Ue-
hara, editors, WALCOM: Algorithms and Computation, volume 5431

of Lecture Notes in Computer Science, pages 274–285. Springer Berlin
/ Heidelberg, 2009. ISBN 978-3-642-00201-4.

Farid Melgani and Lorenzo Bruzzone. Classification of hyperspectral
remote sensing images with support vector machines. Geoscience
and Remote Sensing, IEEE Transactions on, 42(8):1778–1790, 2004.

http://books.google.de/books?id=e4igHzyfO78C
http://books.google.de/books?id=e4igHzyfO78C

bibliography 225

K Muller, Sebastian Mika, Gunnar Ratsch, Koji Tsuda, and Bernhard
Scholkopf. An introduction to kernel-based learning algorithms.
Neural Networks, IEEE Transactions on, 12(2):181–201, 2001.

Scott A Ness. Basic microarray analysis. In Bioinformatics and Drug
Discovery, pages 13–33. Springer, 2006.

Dale A Ostlie and Bradley W Carroll. An introduction to modern astro-
physics. Addison-Wesley, 2006.

K. Pearson. On lines and planes of closest fit to systems of points in
space. Philosophical Magazine, 2(6):559–572, 1901.

William M Rand. Objective criteria for the evaluation of clustering
methods. Journal of the American Statistical association, 66(336):846–
850, 1971.

Siddheswar Ray and Rose H Turi. Determination of number of
clusters in k-means clustering and application in colour image
segmentation. In Proceedings of the 4th international conference on
advances in pattern recognition and digital techniques, pages 137–143,
1999.

Frank Rehm, Roland Winkler, and Rudolf Kruse. Fuzzy clustering
with repulsive prototypes. Scalable Fuzzy Algorithms for Data Man-
agement and Analysis: Methods and Design, pages 332–336, 2010.

Enrique H. Ruspini. A new approach to clustering. Information
and Control, 15(1):22 – 32, 1969. ISSN 0019-9958. doi: DOI:
10.1016/S0019-9958(69)90591-9. URL http://www.sciencedirect.

com/science/article/pii/S0019995869905919.

Tanwistha Saha, Carlotta Domeniconi, and Huzefa Rangwala. De-
tection of communities and bridges in weighted networks. In Ma-
chine Learning and Data Mining in Pattern Recognition, pages 584–598.
Springer, 2011.

J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE
Trans. Comput., 18:401–409, May 1969. ISSN 0018-9340. doi: http:
//dx.doi.org/10.1109/T-C.1969.222678. URL http://dx.doi.org/

10.1109/T-C.1969.222678.

M Sarkar and T Y Leong. Fuzzy k-means clustering with missing
values. Proceedings of the AMIA Symposium, pages 588–592, 2001.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Ker-
nel principal component analysis. In Wulfram Gerstner, Alain
Germond, Martin Hasler, and Jean-Daniel Nicoud, editors, Arti-
ficial Neural Networks - ICANN’97, volume 1327 of Lecture Notes
in Computer Science, pages 583–588. Springer Berlin / Heidelberg,
1997. ISBN 978-3-540-63631-1. URL http://dx.doi.org/10.1007/

BFb0020217. 10.1007/BFb0020217.

http://www.sciencedirect.com/science/article/pii/S0019995869905919
http://www.sciencedirect.com/science/article/pii/S0019995869905919
http://dx.doi.org/10.1109/T-C.1969.222678
http://dx.doi.org/10.1109/T-C.1969.222678
http://dx.doi.org/10.1007/BFb0020217
http://dx.doi.org/10.1007/BFb0020217

226 bibliography

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller.
Nonlinear component analysis as a kernel eigenvalue problem.
Neural computation, 10(5):1299–1319, 1998.

Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola,
and Robert C Williamson. Estimating the support of a high-
dimensional distribution. Neural computation, 13(7):1443–1471, 2001.

Fabrizio Sebastiani. Machine learning in automated text categoriza-
tion. ACM computing surveys (CSUR), 34(1):1–47, 2002.

M. Shafiei, Singer Wang, R. Zhang, E. Milios, Bin Tang, J. Tou-
gas, and R. Spiteri. Document representation and dimension re-
duction for text clustering. In Data Engineering Workshop, 2007
IEEE 23rd International Conference on, pages 770–779, 2007. doi:
10.1109/ICDEW.2007.4401066.

Claude E. Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27:379–423, 1948.

Vin D Silva and Joshua B Tenenbaum. Global versus local methods
in nonlinear dimensionality reduction. In Advances in neural inform-
ation processing systems, pages 705–712, 2002.

Jan Snyman. Practical mathematical optimization: an introduction to ba-
sic optimization theory and classical and new gradient-based algorithms,
volume 97. Springer, 2005.

Joshua B. Tenenbaum, Vin Silva, and John C. Langford. A global
geometric framework for nonlinear dimensionality reduction. Sci-
ence, 290(5500):2319–2323, December 2000. ISSN 00368075. doi:
10.1126/science.290.5500.2319. URL http://dx.doi.org/10.1126/

science.290.5500.2319.

Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating
the number of clusters in a data set via the gap statistic. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 63(2):
411–423, 2001.

C.J. van Rijsbergen. Information Retrieval. Butterworths, London,
United Kingdom, second edition, 1979.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theor-
etic measures for clusterings comparison: is a correction for chance
necessary? In Proceedings of the 26th Annual International Conference
on Machine Learning, pages 1073–1080. ACM, 2009.

Kiri Wagstaff. Clustering with missing values: No imputation re-
quired. In Clustering, and Data Mining Applications (Proceedings of the
Meeting of the International Federation of Classification Societies, pages
649–658. Springer, 2004.

http://dx.doi.org/10.1126/science.290.5500.2319
http://dx.doi.org/10.1126/science.290.5500.2319

bibliography 227

Roland Winkler, Frank Klawonn, Frank Höppner, and Rudolf Kruse.
Fuzzy cluster analysis of larger data sets. In M.-J. Lesot A. Laurent,
editor, Scalable Fuzzy Algorithms for Data Management and Analysis:
Methods and Design, pages 302–331. IGI Global: Information Science
Reference, 2010a. ISBN 9781605668581.

Roland Winkler, Frank Rehm, and Rudolf Kruse. Clustering with
repulsive prototypes. In Advances in data analysis, data handling and
business intelligence, number 2 in Studies in Classification, Data Ana-
lysis and Knowledge Organization, pages 207–215. Springer, 2010b.
ISBN 978-3-642-01043-9.

Roland Winkler, Annette Temme, Chrisoph Bösel, and Rudolf Kruse.
Clustering radar tracks to evaluate efficiency indicators. In Proceed-
ings of the second ENRI Workshop on ATM and CNS, pages 71–94,
Tokyo, Japan, 11 2010c. ENRI.

Roland Winkler, Frank Klawonn, and Rudolf Kruse. Fuzzy c-means
in high dimensional spaces. IJFSA, 1(1):1–16, 2011a.

Roland Winkler, Frank Klawonn, and Rudolf Kruse. M-estimator in-
duced fuzzy clustering algorithms. In Advances in Intelligent Sys-
tems Research, volume 1 of EUSFLAT, pages 298–304. Atlantis Press,
7 2011b.

Roland Winkler, Frank Klawonn, and Rudolf Kruse. Fuzzy clustering
with polynomial fuzzifier function in connection with m-estimators.
In Zeitschrift: Applied and Computational Mathematics, volume 10 of
Special Issue on Fuzzy Set Theory and Applications, pages 146–163.
Azerbaijan National Academy of Sciences, 2011c.

Roland Winkler, Frank Klawonn, and Rudolf Kruse. Problems of
fuzzy c-means clustering and similar algorithms with high dimen-
sional data sets. In Wolfgang A. Gaul, Andreas Geyer-Schulz, Lars
Schmidt-Thieme, and Jonas Kunze, editors, Challenges at the Inter-
face of Data Analysis, Computer Science, and Optimization, Studies in
Classification, Data Analysis, and Knowledge Organization, pages
79–87. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-24465-0.

Roland Winkler, Frank Klawonn, and Rudolf Kruse. A new distance
function for prototype based clustering algorithms in high dimen-
sional spaces. In Paolo Giudici, Salvatore Ingrassia, and Maurizio
Vichi, editors, Statistical Models for Data Analysis, Studies in Classific-
ation, Data Analysis, and Knowledge Organization, pages 371–378.
Springer International Publishing, 2013. ISBN 978-3-319-00031-2.

C. F. Wu. On the convergence properties of the em algorithm. Ann.
Stat., 11(1):95–103, 1983.

228 bibliography

Xuanli Lisa Xie and Gerardo Beni. A validity measure for fuzzy clus-
tering. IEEE Transactions on pattern analysis and machine intelligence,
13(8):841–847, 1991.

R Yager and D Filev. Generation of fuzzy rules by mountain cluster-
ing. Journal of Intelligent and Fuzzy Systems, 2(3):209–219, 1994.

L.A. Zadeh. Fuzzy sets. Information and Control, 8(3):338 –
353, 1965. ISSN 0019-9958. doi: DOI:10.1016/S0019-9958(65)
90241-X. URL http://www.sciencedirect.com/science/article/

B7MFM-4DX43MN-W3/2/f244f7a33f31015e819042700cd83047.

Dao-Qiang Zhang and Song-Can Chen. Clustering incomplete data
using kernel-based fuzzy c-means algorithm. Neural Processing Let-
ters, 18(3):155–162, 2003.

Daoqiang Zhang and Songcan Chen. Fuzzy clustering using kernel
method. In The 2002 International Conference on Control and Automa-
tion, 2002. ICCA, 2002. Citeseer, 2002.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an ef-
ficient data clustering method for very large databases. In ACM
SIGMOD Record, volume 25, pages 103–114. ACM, 1996.

http://www.sciencedirect.com/science/article/B7MFM-4DX43MN-W3/2/f244f7a33f31015e819042700cd83047
http://www.sciencedirect.com/science/article/B7MFM-4DX43MN-W3/2/f244f7a33f31015e819042700cd83047

E H R E N E R K L Ä R U N G

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzuläs-
sige Hilfe Dritter und ohne Benutzung anderer als der angegebenen
Hilfsmittel angefertigt habe; verwendete fremde und eigene Quellen
sind als solche kenntlich gemacht. Insbesondere habe ich nicht die
Hilfe eines kommerziellen Promotionsberaters in Anspruch genom-
men. Dritte haben von mir weder unmittelbar noch mittelbar geld-
werte Leistungen für Arbeiten erhalten, die im Zusammenhang mit
dem Inhalt der vorgelegten Dissertation stehen. Ich habe insbesonde-
re nicht wissentlich:

- Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwie-
gen,

- statistische Verfahren absichtlich missbraucht, um Daten in unge-
rechtfertigter Weise zu interpretieren,

- fremde Ergebnisse oder Veröffentlichungen plagiiert,

- fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs-
und Schadensersatzansprüche des Urhebers sowie eine strafrechtli-
che Ahndung durch die Strafverfolgungsbehörden begründen kann.
Die Arbeit wurde bisher weder im Inland noch im Ausland in glei-
cher oder ähnlicher Form als Dissertation eingereicht und ist als Gan-
zes auch noch nicht veröffentlicht.

Magdeburg, den 11.12.2015

Roland Winkler

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Examples
	1.2 Data Mining
	1.3 Motivation, Thesis Questions and Outline

	2 The Curse of Dimensionality
	2.1 Distance Concentration
	2.2 Conditions for Distance Concentration
	2.3 Distance Functions
	2.4 Tests for Distance Concentration
	2.5 Distribution Testing
	2.6 Noise, Overlapping Classes and Outliers
	2.7 Clustering in High-Dimensional Spaces

	3 Prototype Based Clustering Algorithms
	3.1 Mathematical Framework
	3.2 Hard c-Means
	3.3 Fuzzy c-Means
	3.4 FCM with Polynomial Fuzzifier Function
	3.5 Rewarding Crisp Memberships FCM
	3.6 Expectation Maximization
	3.7 Applying Prototype based Clustering Algorithms

	4 Benchmarks
	4.1 Artificially Generated Data Sets
	4.2 External Cluster Quality Measures
	4.3 Internal Cluster Quality Measures
	4.4 Benchmark Setup

	5 Experimental Results
	5.1 Number of Dimensions and Clusters
	5.2 Comparing Clustering Algorithms
	5.3 Internal Cluster Quality Index Verification

	6 Conclusions and Future Research
	6.1 Thesis Questions: Discussion
	6.2 Critique and Future Research
	6.3 Conclusions

	A Artificially Generated Data Sets
	A.1 Spherical Normal Shaped Classes of Identical Size
	A.2 Spherical Normal Shaped Classes of Various Sizes
	A.3 Distorted Classes Data Set
	A.4 Corner Classes Data Set

	B EDMOAL
	B.1 Motivation for EDMOAL
	B.2 The Basic Structure

	C Data and Results
	C.1 Data Repository
	C.2 Data Files
	C.3 Result Files
	C.4 Score List

	D Quality of Clustering Algorithms
	D.1 Data Set Family D1
	D.2 Data Set Family D2
	D.3 Data Set Family D3
	D.4 Data Set Family D4

	E Ranking Capability of Internal Indices
	E.1 Data Set Family D1
	E.2 Data Set Family D2
	E.3 Data Set Family D3
	E.4 Data Set Family D4

	F Internal and the F1 Index Correlations
	F.1 Data Set Family D1
	F.2 Data Set Family D2
	F.3 Data Set Family D3
	F.4 Data Set Family D4

	G Internal vs. the F1 Index Plots
	G.1 Plots for m=3 and c=5
	G.2 Plots for m=10 and c=100
	G.3 Plots for m=15 and c=20
	G.4 Plots for m=50 and c=150

	Bibliography
	Declaration

