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Abstract
Background  Ca2+ and H2O2 are second messengers that regulate a wide range of cellular events in response 
to different environmental and developmental cues. In plants, stress-induced H2O2 has been shown to initiate 
characteristic Ca2+ signatures; however, a clear picture of the molecular connection between H2O2-induced Ca2+ 
signals and H2O2-induced cellular responses is missing, particularly in cereal crops such as barley. Here, we employed 
RNA-seq analyses to identify transcriptome changes in roots and leaves of barley after H2O2 treatment under 
conditions that inhibited the formation of cytosolic Ca2+ transients. To that end, plasma membrane Ca2+ channels 
were blocked by LaCl3 application prior to stimulation of barley tissues with H2O2.

Results  We examined the expression patterns of 4246 genes that had previously been shown to be differentially 
expressed upon H2O2 application. Here, we further compared their expression between H2O2 and LaCl3 + H2O2 
treatment. Genes showing expression patterns different to the previous study were considered to be Ca2+-dependent 
H2O2-responsive genes. These genes, numbering 331 in leaves and 1320 in roots, could be classified in five and 
four clusters, respectively. Expression patterns of several genes from each cluster were confirmed by RT-qPCR. We 
furthermore performed a network analysis to identify potential regulatory paths from known Ca2+-related genes to 
the newly identified Ca2+-dependent H2O2 responsive genes, using the recently described Stress Knowledge Map. 
This analysis indicated several transcription factors as key points of the responses mediated by the cross-talk between 
H2O2 and Ca2+.

Conclusion  Our study indicates that about 70% of the H2O2-responsive genes in barley roots require a transient 
increase in cytosolic Ca2+ concentrations for alteration in their transcript abundance, whereas in leaves, the Ca2+ 
dependency was much lower at about 33%. Targeted gene analysis and pathway modeling identified not only known 
components of the Ca2+ signaling cascade in plants but also genes that are not yet connected to stimuli-associated 
signaling. Potential key transcription factors identified in this study can be further analyzed in barley and other crops 
to ultimately disentangle the underlying mechanisms of H2O2-associated signal transduction mechanisms. This could 
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Introduction
To withstand short-term detrimental conditions, plants 
have evolved complex and efficient molecular machiner-
ies to monitor and respond to environmental cues. An 
early plant response to many forms of stress involves 
reactive oxygen species (ROS) as a purposefully gener-
ated signal to modulate crucial aspects of plant growth, 
development, and stress adaptation [1]. ROS also con-
stitute inevitable by-products of aerobic metabolism 
that under normal physiological conditions are mainly 
produced at a low level; however, disruption of meta-
bolic pathways during stress often results in a dramatic 
increase in their rate of production [2, 3]. Hydrogen 
peroxide (H2O2), a very stable ROS, is generated within 
different cellular compartments such as chloroplasts, 
mitochondria, and peroxisomes, as well as extra-cellu-
larly in the apoplast [4]. H2O2 is generated either pas-
sively by metabolic pathways such as photosynthesis, 
photorespiration and respiration, or produced actively 
by oxidases like the respiratory burst oxidase homologs 
(RBOHs) [3]. Also, H2O2 can be transported between dif-
ferent cellular compartments, cells or even tissues for the 
purpose of removal or accumulation, and is now consid-
ered as an important player in long-distance-signaling [5, 
6].

At low levels, H2O2 can be beneficial for the plant and 
act as a signal transduction molecule to achieve stress 
tolerance; however, it can cause cellular damage and pro-
grammed cell death at higher concentrations [7]. Hence, 
a strict balance between production and scavenging of 
H2O2 is essential to prevent its accumulation to toxic 
levels and to ensure its function as a signaling molecule. 
Plants have thus evolved a complex array of enzymatic 
and non-enzymatic detoxification systems to adjust the 
H2O2 homeostasis in all subcellular compartments [8, 9]. 
As signaling molecule, H2O2 is involved in the regulation 
of various developmental and physiological processes 
such as root system development [10, 11], flowering 
[12], seed germination [13], senescence [14] and stoma-
tal aperture [15]. Additionally, studies have uncovered 
key roles for H2O2 as a second messenger in the signaling 
pathways associated with environmental stress responses 
in Arabidopsis thaliana and crop species such as drought 
[16, 17], salinity [18], heat [19, 20], UV radiation [21], 
ozone [22], chilling [23], heavy metal [24], and pathogens 
[25, 26]. Various stimuli can induce increases of H2O2 
levels, known as the “oxidative burst”, which is subse-
quently sensed and transmitted to activate downstream 
processes including transcriptional reprograming to elicit 

appropriate adaptive stress responses [27]. Moreover, 
H2O2 can activate other signaling cascades involving sec-
ondary messengers such as nitric oxide, phytohormones, 
and Ca2+.

Ca2+ also plays a pivotal role in the regulation of various 
developmental processes and response to environmen-
tal stresses. Changes in cytosolic free Ca2+ concentra-
tions ([Ca2+]cyt) are one of the earliest cellular responses 
observed in plants to almost every biotic and abiotic 
stress that has been investigated, including salt [28, 29], 
cold [30, 31], drought [32–34], heat [35, 36], heavy met-
als [37], and pathogens [38, 39]. The transient changes 
in [Ca2+]cyt are sensed and decoded by a toolkit of Ca2+ 
sensor proteins like calmodulins (CaMs), calmodulin-like 
proteins (CMLs), calcineurin B-like proteins (CBLs), and 
CBL-interacting protein kinases (CIPKs) as well as Ca2+-
dependent protein kinases (CPKs/CDPKs) [40]. Like 
H2O2, Ca2+ signaling affects different cellular processes 
including regulation of gene transcription and associated 
downstream responses [41].

A crosstalk between Ca2+ and H2O2 signaling pathways 
has been shown in response to various abiotic and biotic 
stresses [42, 43]. A number of studies indicated that 
Ca2+ acts as an upstream component in H2O2 signaling 
by regulating H2O2 production. In plants, RBOHs pos-
sess a cytosolic N-terminal regulatory domain containing 
Ca2+-binding EF-hand motifs and Ca2+-dependent phos-
phorylation sites as targets for CPKs that are necessary 
for RBOH activation [44–46]. By contrast, there is also 
evidence that H2O2 acts as an upstream signal by induc-
ing [Ca2+]cyt transients involved in plant responses such 
as stomatal closure, programmed cell death, and other 
stress adaptation [47–49]. H2O2-induced Ca2+ release 
is likely due to the direct regulation of Ca2+-permeable 
channels. Annexins, cyclic nucleotide gated channels 
(CNGCs), and mechanosensitive ion channels (MSLs) 
have been proposed to function as H2O2-activated Ca2+ 
channels that mediate cellular Ca2+ influxes [50, 51]. In 
a recent study a H2O2-sensor in plants, H2O2-INDUCED 
CA2+ INCREASES 1 (HPCA1) was identified that medi-
ates H2O2-induced activation of Ca2+ channels in guard 
cells leading to elevation in [Ca2+]cyt and in turn initiation 
of stomatal closure [52]. Intriguingly, it has been shown 
that HPCA1 is required for systemic ROS- and Ca2+-
mediated cell-to-cell signaling and that this includes the 
Ca2+ permeable channel MSL3 as well as the Ca2+ sen-
sor CBL4 and its interacting protein kinase CIPK26 [51]. 
However, despite the large volume of reports and studies, 
it remains unclear how H2O2 and Ca2+ signals regulate 
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each other, what determines the directionality of the 
crosstalk, and what connects both signaling pathways to 
achieve their synergistic response.

We thus intended to identify the contribution of 
cytosolic Ca2+ signals to H2O2-induced transcriptomic 
changes in leaves and roots of barley. Barley is an impor-
tant global feed and food source and has been widely 
studied as a model for monocot crops due to its diploid 
nature and ease of cross-breeding [53, 54]. The effect of 
H2O2 on the transcriptome was recently elucidated in 
barley leaves and roots [55], revealing common as well as 
tissue-specific changes in transcript abundance of over 
4000 genes including various transcription factors (TFs), 
genes associated with hormone pathways, and other 
vital functions such as photosynthesis, cell wall biogen-
esis, and H2O2 detoxification. It has also been shown that 
barley, as other plants, reacts to H2O2 application with a 
transient elevation in [Ca2+]cyt [56]. For the comparative 
approach carried out in the current study, Ca2+ transients 
were pharmacologically inhibited by the well-known 
plasma membrane Ca2+ channel blocker LaCl3. RNA-seq 
analyses revealed that 1652 of the previously identified 
H2O2 responsive genes were fully or partially dependent 
on Ca2+ signals for their regulation since their differential 
expression was altered when the Ca2+ signal was inhib-
ited by LaCl3. Subsequent network analyses provided 
testable hypotheses on the molecular mechanisms of 
the crosstalk between oxidative stress and Ca2+ signal-
ing. Ultimately, understanding the underlying molecu-
lar processes of this crosstalk might increase our ability 
to improve stress resistance in barley and other crops to 
optimize performance and productivity under increasing 
climate challenges.

Materials and methods
Plant material, growth conditions, and stress treatment
Barley plants (Hordeum vulgare cultivar Golden Promise) 
were grown for five days in pots filled with water-soaked 
vermiculite in a climate-controlled growth chamber 
under long-day conditions with 16 h light at 20 °C and a 
light intensity of 120 µmol photons m− 2 s− 1 (Philips TLD 
18 W of alternating 830/840 light color temperature) and 
8 h darkness at 18 °C. For stress treatments, five-day-old 
barley seedlings were removed from the pots and incu-
bated in ddH2O with or without 10 mM LaCl3 for one 
hour, briefly rinsed and then treated with ddH2O with 
or without 10 mM H2O2 for three hours. Seedlings were 
thoroughly rinsed before subsequent analyses.

H2O2 staining and microscopic analyses
A modified protocol from [57] was used to stain H2O2 
in barley leaves and roots with 2’,7’-dichlorodihydro-
fluorescein diacetate (H2-DCFDA; Thermo Fisher Sci-
entific, USA). After stress treatment as described above, 

the seedlings were washed carefully and treated with 
10 µM H2-DCFDA in 0.25% DMSO in the dark for one 
hour, followed by vacuum infiltration for 1 min in a des-
iccator. Approximately 5  mm segments of both tissues 
were mounted on a slide using tape. The fluorescence of 
2’,7’-Dichlorfluorescein (DCF) was analyzed using a Leica 
SP8 Lightning confocal laser scanning microscope (Leica 
Microsystems, Germany) with an excitation wavelength 
of 488 nm and emission between 517 and 527 nm which 
was detected using a HyD Detector. Fluorescence sig-
nals were quantified in regions of interest (ROIs) using 
the integrated LASX software (Leica Microsystems, 
Germany).

Ca2+ measurements using genetically encoded 
APOAEQUORIN
Effects of LaCl3 on Ca2+ signals were analysed as pre-
viously described [56]. Hv-AEQcyt plants expressing 
APOAEQUORIN were grown for five days on water-
soaked vermiculite as described above, and 5 mm sections 
from the tip of leaves and primary roots were reconsti-
tuted in 2.5 µM coelenterazine (Carl Roth, Germany) in 
ddH2O in 96-well plates for 16 h in the dark. After recon-
stitution, the coelenterazine solution was replaced by 
ddH2O with or without 1 mM LaCl3, and samples were 
placed for one hour in light before measurements. Base-
line luminescence was recorded for 90 s with an integra-
tion time of 1 s in a plate luminometer (Mithras LB940, 
Berthold Technologies, Germany) before injection of an 
equal volume of a 2-fold-concentrated solution of H2O2 
(final concentration 10 mM). Changes in luminescence 
were recorded for another 600 s before the injection of a 
2-fold-concentrated discharge solution (final concentra-
tion 1 M CaCl2 in 10% ethanol) and a subsequent record-
ing of luminescence for 300 s. [Ca2+]cyt was calculated as 
described in [48]. To calculate Δ[Ca2+]cyt, the mean of 
[Ca2+]cyt derived from 10 s of baseline prior to treatment 
was subtracted from the maximum increase of [Ca2+]cyt 
obtained after injection.

RNA-sequencing and data analyses
After stress treatments as described above, plants were 
carefully washed with ddH2O several times before roots 
and leaves were separated and ground into a fine pow-
der under liquid nitrogen using mortar and pestle. Total 
RNA was isolated from the tissues using the Quick-RNA 
miniprep Kit (ZymoResearch, USA) following the manu-
facturer’s instructions. The quality of RNA was assessed 
using a NABI Nanodrop UV/Vis Spectrophotometer 
(MicroDigital, South Korea). Integrity of the extracted 
RNA was confirmed by separation of the 28 S and 18 S 
rRNA bands on a 1% agarose gel.

RNA-seq was performed on three biological replicates 
for each treatment. Each replicate consisted of pooled 
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material from three plants. 3’ mRNA sequencing includ-
ing synthesis, labelling, and hybridization of cDNA was 
performed at the NGS core facility (Medical Faculty at 
the University of Bonn, Germany) using a NovaSeq6000 
(Illumina, USA). cDNA library preparation was done 
using the QuantSeq protocol [58], where oligo dT prim-
ing was followed by complementary strand synthesis 
without any prior removal of ribosomal RNA. All further 
steps of data processing and alignment were performed 
as previously described [55]. Gene counts were approxi-
mated from the aligned files using the FeatureCounts 
function from the Rsubread package [59]. Differential 
expression analyses using the normalized counts were 
carried out using the DeSeq2 package [60], with default 
parameters for variance stabilizing transformations. The 
False Discovery Rate (FDR) cutoff for inclusion of data 
was set to 0.01. Principal Component Analyses (PCA) 
plots were generated with the gene counts for each sam-
ple using the princomp() function, in order to analyze 
and map the different variances obtained in this study. 
The volcano plots were made using ggplot2 and ggre-
pel packages of RStudio. A homology search against the 
genome of the model organism A. thaliana (TAIR 10) 
was performed using the Barley Reference Transcript 
(BaRTv1.0) dataset [61] available at www.ics.hutton.
ac.uk with an E-value cutoff of 1e− 30. K-means clustering 
analyses [62, 63] was carried out using the base k-means 
function on RStudio with the help of pre-defined clusters 
determined with the help of the gap statistic method [64]. 
The clustering analyses were performed separately for 
leaf and root tissues. The clusters were then represented 
as heatmaps using the pheatmap function.

Network analyses
Stress Knowledge Map is a plant molecular interaction 
resource, containing the Comprehensive Knowledge 
Network (CKN), a large, condition agnostic knowledge 
graph of molecular interactions in A. thaliana [65]. CKN 
was used to identify potential upstream regulators of the 
Ca2+-dependent H2O2 responsive genes. The network 
was first filtered to only reliable interactions (rank 0 - 
highest reliability, rank 1, and rank 2 edges), and GoMap-
Man (GMM) [66] annotations used to extract genes 
known to be involved in Ca2+ signaling (171 nodes anno-
tated with GMM terms “30.3 - signaling.calcium”, “34.21 - 
transport.calcium”, or “34.22 - transport.cyclic nucleotide 
or calcium regulated channels”) or know to be involved 
in redox signalling (119 nodes annotated with GMM 
terms “21.1 - redox.thioredoxin”, “21.2 - redox.ascorbate 
and glutathione”, “21.4 - redox.glutaredoxins”, or “21.5 - 
redox.peroxiredoxin”). Shortest paths from the known 
Ca2+ involvement (“source”) set to A. thaliana homologs 
of the newly identified Ca2+-dependent H2O2 respon-
sive genes (“target” set), with a maximum path length of 

three were extracted from CKN. To improve the biologi-
cal plausibility of the extracted paths, we required that 
only a single transcriptional regulatory interaction was 
present in each path, and it directly regulates the target. 
The shortest paths were filtered to the closest source(s) 
per target, and merged. The same approach was taken 
to identify paths from the known redox related (source) 
set to the A. thaliana homologs of the Ca2+-independent 
H2O2 responsive genes. The analysis was performed in 
Python using Stress Knowlegde Map (SKM) tools [65], 
the networkX library [67], and graph-tools [68]. Results 
were visualised in Cytoscape [69] using the py4cytoscape 
library [68, 70]. Code for the network analyses is avail-
able on GitHub (see Availability of data and materials). 
The Cytoscape session file is available as an additional file 
(Additional File 1).

cDNA synthesis and RT-qPCR
Synthesis of cDNA was carried out with 0.5–1 µg of total 
RNA using the ThermoFisher first strand cDNA synthe-
sis kit with oligo-dT18 primers (Thermo Fisher Scientific, 
USA) following the manufacturer’s instructions. The 
cDNA synthesis reaction was terminated by heating at 
70  °C for five minutes. 1:5 dilutions of the cDNAs were 
used for amplification, with 2  µl of the diluted cDNA 
added to a total reaction volume of 10 µl. RT-qPCR was 
carried out on a BioRad CFX 96 real-time PCR detection 
system (Biorad, USA) with a reaction mixture consisting 
of SYBR Green PCR Mix (Thermofisher Scientific, USA), 
forward and reverse primers (Table S1), ddH2O, and 
the template cDNA. Transcript levels were calculated 
using the 2–∆∆Ct method [71] after normalization against 
HvACTIN and HvGAPDH. Data analyses, including prep-
aration of bar graphs followed by ANOVA and Tukey’s 
Post-Hoc multi comparison tests, were performed using 
the tidyverse and agricolae packages, respectively, in 
RStudio. Linear regression analyses were also performed 
for the RT-qPCR. The base lm () function was used for 
the analyses. Correlation analysis was additionally car-
ried out with the Karl Pearson method, using the cor.test 
() function.

Results
Analysis of the transcriptional effects of H2O2 and LaCl3 
treatment in barley leaves and roots
In barley, it has been shown that the application of exog-
enous H2O2 induces increases in [Ca2+]cyt in both leaves 
and roots [56]. To investigate the contribution of Ca2+ 
signaling in the H2O2-induced transcriptomic changes, 
we performed RNA-seq analyses under conditions that 
inhibited H2O2-induced Ca2+ transients. For that end, 
barley seedlings used for RNA-seq were pre-treated 
with the plasma membrane Ca2+ channel blocker LaCl3 
before application of H2O2. Additionally, RNA-seq was 
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also performed on plants treated solely either with LaCl3 
or with ddH2O. H2-DCFDA staining revealed increased 
H2O2 levels inside both leaves and roots of barley com-
pared to control plants and that the pre-treatment with 
LaCl3 had no effect on the H2O2 increase in both tis-
sues (Fig.  1A-C). Furthermore, the inhibitory effect of 
LaCl3 on H2O2-induced changes in [Ca2+]cyt was con-
firmed using transgenic barley reporter lines expressing 
the APOAEQUORIN reporter gene (Fig. 1D) in line with 
already published data [56].

RNA-seq analysis was carried out on three biologi-
cal replicates per tissue and treatment, each compris-
ing the pooled extracted RNA from three different 
plants. Approximately 13–15  million raw reads were 

obtained and aligned against the barley reference genome 
(BaRTv1.0). The total alignment rate averaged from 70 to 
80% across all the samples used in this study (Table  1). 
The aligned reads were used for differential expression 
analyses between the treatments and the ddH2O-treated 
control. The homogeneity of the gene counts along with 
their associated variance across tissues and treatments 
was represented as a principal component analysis (PCA) 
plot (Fig.  2A). The highest percentage of variance was 
associated with the different tissues (PC1, X-axis), with 
slightly lesser variance associated with the treatments 
(PC2, Y-axis).

Differentially expressed genes (DEGs) between treat-
ments and control (ddH2O) were defined through 

Fig. 1  Effects of LaCl3 on the penetration of H2O2 and on H2O2-induced Ca2+ signals in barley. Plants were pre-treated either with or without 1mM LaCl3 
before application of 10mM H2O2. For visualization of H2O2 in (A) leaves and (B) roots of barley, H2DCFDA staining was employed. BF: bright field, Chloro: 
Chlorophyll autofluorescence, DCF: Dichlorofluorescein, scale bar: 50 μm. (C) Quantification of relative DCF fluorescence using the LASX software. Values 
represent means ± SE of three independent replicates with 5 ROIs each (n = 15). n.s.: non-significant changes, a.u.: arbitrary units. (D) Inhibition of H2O2-
induced Ca2+ signals in barley leaf and root tips under the effect of LaCl3. Values represent means ± SE of three biological replicates (n = 3). Significances 
were estimated with one-way ANOVA and Tukey’s Post-Hoc HSD analyses at P < 0.05 cutoff
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filtering with a cut-off of FDR < 0.01, while the other 
genes were considered as genes with unchanged tran-
script levels (UCs) (Table S2). Volcano plot analyses 
showed that combined H2O2 + LaCl3 treatment resulted 
in a quite similar number of up- and down-regulated 
genes in leaves and roots with a total number of 1006 
and 1344 DEGs detected, respectively (Fig.  2B; Table 
S2). From these DEGs we next omitted all the genes that 
showed similar differential expression upon treatment 
with LaCl3 alone (Fig. S1; Table S2). Overall, this analysis 
identified 989 and 1001 DEGs in leaves and roots of bar-
ley, respectively, which are unique for the H2O2 + LaCl3 
treatment (Fig.  2C, Table S2). While the overall num-
ber of DEGs was similar for both tissues, the leaves had 
slightly more down- and the roots considerably more up-
regulated DEGs.

Table 1  Summary of reads and alignment statistics. RNA-
sequencing was carried out with three independent replicates. 
After quality control, reads were aligned against the barley 
reference genome (BaRTv1.0), and alignment files in bam format 
were then used for further processing
Sample Replicate Total Reads Aligned 

Reads
Aligned 
Reads 
(%)

leaf LaCl3 + H2O2 1 13,297,596 10,033,011 75.44
2 13,122,889 10,246,998 78.08
3 13,201,445 10,022,100 75.91

leaf LaCl3 1 12,787,648 9,420,291 73.70
2 12,541,411 9,415,802 75.10
3 14,111,932 10,538,682 74.70

root LaCl3 + H2O2 1 14,455,626 10,715,747 74.12
2 13,699,232 10,435,889 76.17
3 13,599,945 10,166,184 74.75

root LaCl3 1 13,690,522 10,610,155 77.50
2 12,208,414 9,302,812 76.20
3 11,154,444 8,745,084 78.30

Fig. 2  Differentially expressed genes (DEGs) in H2O2 + LaCl3 treated vs. control plants. (A) PCA plot illustrating the homogeneity of the gene counts 
obtained with the various treatments and tissues. PC1 (X-axis) separates the samples by tissue and PC2 (Y-axis) by treatment. (B) Volcano plots depicting 
DEGs obtained in leaves (upper panel) and roots (lower panel). The X-axis shows the fold change (log2FC) and the Y-axis represents the statistical signifi-
cance (-log10FDR). DEGs (FDR < 0.01) are represented as up (magenta dots) and down (green dots) regulated, whereas genes with unchanged levels (UC) 
(FDR > 0.01) are indicated as grey dots. (C) Bubble charts representing the unique DEGs (FDR < 0.01,|log2FC|≥0.5) of leaves and roots, after omitting DEGs 
shared between the H2O2 + LaCl3 and the LaCl3 treatment. Genes found in both tissues are also indicated. Arrows indicate up (↑) and down (↓) regulation. 
O indicates unchanged expression
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Identification of Ca2+-dependent H2O2-responsive genes in 
leaves and roots of barley
A previous transcriptome analysis of barley had shown 
that 1001 and 1883 genes in leaves and roots, respec-
tively, were differentially expressed upon H2O2 treat-
ment [55]. These H2O2-DEGs were selected based on 
log2FC ≥ 0.5 and FDR < 0.01 and were obtained by RNA-
seq of samples obtained under the same experimen-
tal conditions as in the current study. To identify those 
H2O2-DEGs that depend on the H2O2-induced Ca2+ 
signals for their differential regulation, a comparative 
analysis between the transcriptomes in response to H2O2 
[previously published data, 55] and to H2O2 + LaCl3 was 
performed. More precisely, we selected those DEGs from 
the H2O2 treatment that either showed an unchanged 

expression (UCs) under H2O2 + LaCl3 treatment or which 
were DEGs under both treatments but their expression 
level differed significantly (Δlog2FC ≥ 1; correspond-
ing to a fold change difference ≥ 2) when H2O2 treat-
ment was compared to H2O2 + LaCl3 treatment (Fig. 3A). 
Δlog2FC thus represents the difference between log2FCs 
obtained under two conditions, i.e., H2O2 vs. H2O and 
H2O2 + LaCl3 vs. H2O.

All in all, about 33% and 70% of the H2O2-responsive 
genes in leaves and roots, respectively, were considered 
as Ca2+-dependent H2O2-responsive genes in barley 
(Fig. 3B). Of those, 295 genes in leaves and 799 genes in 
roots showed a strict dependency (DEGs-H2O2 vs. UCs-
H2O2 + LaCl3) on Ca2+ signals (Fig. 3B; Table S3 and S4). 
36 genes in leaves and 522 genes in roots were either 

Fig. 3  Identification of Ca2+-dependent H2O2-responsive genes. (A) Schematic representation of the bioinformatic analysis steps to identify Ca2+ depen-
dent H2O2-responsive genes in leaves and roots of barley. UCs: genes with unchanged expression between H2O2 + LaCl3 and control. Δlog2FC represents 
the difference between log2FCs obtained under two conditions, i.e. H2O2 vs. control and H2O2 + LaCl3 vs. control. (B) Egg-shaped representations of the 
comparison between Ca2+-dependent and Ca2+-independent H2O2-responsive genes in leaves and roots of barley. The Ca2+-dependent genes were 
further divided in strict and partial/antagonistic with regards to Ca2+
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partially dependent on Ca2+ signals (altered up- or down-
regulation levels), or even displayed a counter-regulation 
from up to down or vice versa.

GO analyses of Ca2+-dependent H2O2-responsive genes
GO enrichment analyses were performed with the 
obtained Ca2+-dependent H2O2-responsive genes in 
leaves and roots of barley (Fig.  4). In leaves, the top 
biological terms were related to jasmonate (JA) signal-
ing and wounding. Further enrichment was observed 
for terms related to abiotic stresses in general and salt, 
osmotic stress, and temperature in particular. Further 
GO terms were related to hormones and oxygen-con-
taining compounds (Fig. 4A). By contrast, the root gene 
set yielded mostly GO terms associated with ROS/H2O2 
response and metabolism, response to oxidative stress, 

and detoxification but also to cell wall biogenesis and 
organisation (Fig. 4B).

Clustering analysis of Ca2+-dependent H2O2-responsive 
genes
Clustering analysis of the Ca2+-dependent H2O2-respon-
sive genes provided five clusters, L1-L5, for leaves and 
four clusters, R1-R4, for roots (Fig. 5, Fig. S2). In leaves, 
cluster L1 and L2 comprise genes which were up- and 
down-regulated under H2O2, respectively, however, in 
the presence of H2O2 + LaCl3 their expression level was 
unchanged compared to control conditions (Fig.  5A, 
Table S3). This indicates a strict dependence of their 
response to H2O2 on Ca2+ signals. The genes in cluster 
L3 and L4 showed a reduced up- and down-regulation in 
response to H2O2, respectively, when the Ca2+ transient 

Fig. 4  Gene ontology enrichment analysis of Ca2+-dependent H2O2-responsive genes. The diagrams of enriched GO terms indicate total number of 
genes associated with various biological processes and their fold enrichment (relative to their overall occurrence in the genome) in (A) leaves and (B) 
roots of barley
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was blocked by LaCl3, however, transcript levels were 
still significantly higher or lower compared to the con-
trol. Thus, cluster L3 and L4 represent H2O2-respon-
sive genes with partial dependence on Ca2+. Cluster L5 
contains H2O2-responsive genes that went from up- to 
down-regulation upon inhibition of the Ca2+ transient 
but also three genes for which their down-regulation 
was enhanced. Remarkably, in roots cluster R1 and R2 
represent many genes with a strict dependence on the 
Ca2+ transient for their up- or down-regulation, respec-
tively, however, in contrast to leaves, no partial up- and 
down-regulation was observed. Instead, clusters R3 and 
R4 comprise many H2O2-responsive genes which upon 
inhibition of the Ca2+ signal went from up- to down-reg-
ulation and vice versa (Fig. 5B, Table S4).

To verify the accuracy of the RNA-seq data and clus-
tering analysis, the expression levels of two randomly 

selected genes from each cluster were re-evaluated by 
RT-qPCR (Figs. 6 and 7). For all candidate genes tested, 
the transcript levels determined by RT-qPCR showed 
similar trends as observed in the RNA-seq data. Linear 
regression analysis showed a correlation coefficient of 
> 0.7, indicating a positive correlation between RT-qPCR 
and RNA-seq data for all treatments and tissues (Fig. S3).

Cluster L1
Cluster L1 (up-regulation is strictly dependent on a Ca2+ 
signal) has a total of 196 genes, over 20 of which encode 
members of TF families (Table S3). Several of these TFs 
belong to the AP2/ERF (APETALA2/ethylene response 
factor) family, which has been associated with a wide 
variety of environmental stresses including hypoxia, 
cold, oxidative, and flooding stress not only in Arabi-
dopsis but also in other plant species [72, 73]. Originally 

Fig. 5  Clustering analysis of the Ca2+-dependent H2O2-responsive genes. Gene clustering was used to group the Ca2+-dependent H2O2-responsive 
genes with similar expression patterns. The results provided five clusters in leaves (A) and four clusters in roots (B). Left panels of each subpart represent 
the heatmap of the genes in the clusters, and the right panel shows a bar chart representation of the mean ± SE of the log2FC of the genes in each cluster. 
UC: genes with unchanged expression between H2O2 + LaCl3 and control
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associated with ethylene signaling, AP2/ERF TFs have 
also been connected to other hormones like abscisic 
acid (ABA), gibberellic acid (GA), and cytokinin [74]. 
Genes associated with these hormones were also found 
in this cluster. Other important TFs in cluster L1 belong 
to the WRKY, NAC, and F-BOX domain-containing TF 
families. These TF families have been shown to function 

ubiquitously in a variety of abiotic and biotic stimuli by 
intercepting the ROS signaling [75–77]. Cluster L1 fur-
thermore contains several genes related to Ca2+ signaling 
such as orthologs of genes encoding the calmodulin-like 
proteins AtCML11, AtCML25, or OsCML26 (LOC_
Os12g01400.1), as well as AtCIPK1 (CBL-interacting 
protein kinase 1). It furthermore includes genes coding 

Fig. 6  RT-qPCR analyses of transcript levels in leaves. Two Ca2+-dependent H2O2-responsive genes from each leaf cluster were randomly selected. Data 
represent mean ± SE of three independent biological replicates and two technical repeats (n = 3). The transcript levels were normalized to the reference 
genes HvACTIN and HvGAPDH. Statistical significances were obtained using one-way ANOVA and Tukey’s Post-Hoc HSD test (P < 0.05). The letters represent 
different levels of significance. Orthologous genes in Arabidopsis are indicated in brackets
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for members of the MAPK (mitogen activated protein 
kinase) and MAPKKK (MAPK kinase kinase) family. 
With regard to hormone signaling, genes found in clus-
ter L1 encode negative regulators of the JA pathway 
including proteins involved in the degradation of the 
biologically active form of jasmonate, JA-Ile [78, 79]. 
Genes encoding proteins involved in catabolic function 
were also found for GA, cytokinin and ABA. We further-
more identified three auxin responsive genes, only one of 
which has an ortholog in Arabidopsis (AtIAA22).

Cluster L2
Cluster L2 (down-regulation is strictly dependent on a 
Ca2+ signal) comprises a total of 99 genes. It also includes 
genes coding for various TFs of the AP2/ERF, WRKY, 
OVATE, or F-BOX families (Table S3). The AP2/ERF 
TFs were orthologs of AtERF1 which has been associated 
with both JA and ethylene signaling [80], and AtRAV2 
which has been proposed to be involved in touch stimuli 
induced signaling [81]. Additionally, several genes encod-
ing kinases associated with signal transduction events 
were identified including orthologs of the cysteine recep-
tor kinase 28 (AtCRK28), which was associated with 

ROS-related stress responses [82]. Cluster L2 includes 
three genes encoding class III plant peroxidases, par-
ticularly orthologs of AtPRX52 and AtPRX72 [83]. Inter-
estingly, L2 was the only cluster in leaves that includes 
a group of genes encoding transport proteins, such as 
orthologs of the ABC domain containing JA/JA-Ile trans-
porter AtABCG16/JAT1 [84] and of AZA-RESISTANT 
GUANINE 2 (AtAZG2), a member of the AZG purine 
transporter family that has been shown to function in 
transportation of cytokinin [85]. Additionally, this clus-
ter contains a number of other genes that play important 
roles in different stress pathways in plants such as ortho-
logs of the FLAVIN MONO-OXYGENASE 1 (AtFMO1), 
which is positioned downstream of SA induced Systemic 
Acquired Resistance (SAR) and related signaling path-
ways [86] and has also been associated with AtCDPK5 a 
target of Ca2+ signals [87, 88].

Cluster L3
Cluster L3 (up-regulation is partially dependent on a 
Ca2+ signal) consists of 16 genes, most of which have no 
functional annotation and only six have a clear ortholog 
in Arabidopsis (Table S3). Of these genes, one encodes 

Fig. 7  RT-qPCR analyses of transcript levels in roots. Two Ca2+-dependent H2O2-responsive genes from each root cluster were randomly selected. Data 
represent mean ± SE of three independent biological replicates and two technical repeats (n = 3). The transcript levels were normalized to the reference 
genes HvACTIN and HvGAPDH. Statistical significances were obtained using one-way ANOVA and Tukey’s Post-Hoc HSD test (P < 0.05). The letters represent 
different levels of significance. Orthologous genes in Arabidopsis are indicated in brackets
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an ortholog of the TF AtLBD41, a class IIA LBD protein 
that was previously identified in relation to low-oxygen 
endurance or high-light-induced increase in H2O2 in Ara-
bidopsis [89, 90] as well as flooding response in soybean 
[91]. Another one encodes an ortholog of the 13 S-lipox-
ygenase 3 (AtLOX3), an enzymes that catalyze the first 
step in the biosynthesis of JA [92]. LOX3 was shown to 
play an important role in vegetative growth restriction 
after wounding [93], parasitic nematode infection [94], 
and salt stress [95], responses all of which include H2O2 
and Ca2+ signaling.

Cluster L4
Cluster L4 (down-regulation is partially dependent on 
Ca2+ signal) comprises only 10 genes, Similar to cluster 
L3 many have no assigned function and only three have 
known orthologs in Arabidopsis (Table S4). Three TFs 
were found including HORVU3Hr1G010190, which 
is a different ortholog of AtRAV2 than the one found 
in cluster L2. Thus, RAV2-encoding genes show both 
strict and partial dependence on Ca2+ in their H2O2-
induced down-regulation. In this cluster we also found 
the gene HORVU1Hr1G063780, which is an ortholog 
of AtGA20OX2, which plays an important role in the 
rate-limiting steps of GA biosynthesis [96]. The GA20 
oxidases, AtGA20OX1 and 2 are supposed to have a par-
tially redundant function; however, we found the barley 
ortholog of AtGA20OX1 within the up-regulated genes 
(in cluster L1).

Cluster L5
Cluster L5 combines genes with two different types 
of regulation pattern. Three of the 10 genes showed 
enhanced down-regulation when Ca2+ signals were 
inhibited by LaCl3. The other seven displayed counter-
regulation going from up-regulation by H2O2 to down-
regulation under combined H2O2 + LaCl3 treatment. 
For only five genes an Arabidopsis ortholog and thus a 
potential function was identified (Table S3) and none of 
the genes in cluster L5 have so far been linked to H2O2 or 
Ca2+ signaling. One gene with enhanced down-regulation 
encodes an ortholog of AtMYBR1, also called MYB44, 
a TF that has been shown to negatively regulate ABA 
signaling by interacting with the nuclear ABA receptor 
PYR1-LIKE 8 [97]. It has also been associated with other 
hormone responses, i.e. to JA and SA [98].

Cluster L5 combines genes with two different types 
of regulation pattern. Three of the 10 genes showed 
enhanced down-regulation when Ca2+ signals were 
inhibited by LaCl3. The other seven displayed counter-
regulation going from up-regulation by H2O2 to down-
regulation under combined H2O2 + LaCl3 treatment. 
For only five genes an Arabidopsis ortholog and thus a 
potential function was identified (Table S3) and none of 

the genes in cluster L5 have so far been linked to H2O2 or 
Ca2+ signaling. One gene with enhanced down-regulation 
encodes an ortholog of AtMYBR1, also called MYB44, 
a TF that has been shown to negatively regulate ABA 
signaling by interacting with the nuclear ABA receptor 
PYR1-LIKE 8 [97]. It has also been associated with other 
hormone responses, i.e. to JA and SA [98].

Cluster L5 combines genes with two different types 
of regulation pattern. Three of the 10 genes showed 
enhanced down-regulation when Ca2+ signals were 
inhibited by LaCl3. The other seven displayed counter-
regulation going from up-regulation by H2O2 to down-
regulation under combined H2O2 + LaCl3 treatment. 
For only five genes an Arabidopsis ortholog and thus a 
potential function was identified (Table S3) and none of 
the genes in cluster L5 have so far been linked to H2O2 or 
Ca2+ signaling. One gene with enhanced down-regulation 
encodes an ortholog of AtMYBR1, also called MYB44, 
a TF that has been shown to negatively regulate ABA 
signaling by interacting with the nuclear ABA receptor 
PYR1-LIKE 8 [97]. It has also been associated with other 
hormone responses, i.e. to JA and SA [98].

Cluster R1
Cluster R1 (up-regulation is strictly dependent on a Ca2+ 
signal) contains a total of 389 genes, including several TFs 
mostly belonging to sub-families like AP2/ERF, WRKY, 
MYB, OVATE, bHLH, HOMEOBOX, F-BOX, GATA, 
and LEA (Table S4). Cluster R1 also contains genes 
encoding proteins related to glutathione metabolism and 
other forms of detoxification. By far the largest functional 
group are anti-oxidant enzymes with the majority being 
class III plant type peroxidases. Nine of these encode 
different barley orthologs of AtRCI3 and seven include 
orhtologs to the secretory peroxidase AtPRX39 both of 
which has been associated with cold stress and tolerance 
[99, 100]. Also, genes related to Ca2+ signaling were iden-
tified such as orthologs of AtCAM5 [101] and the Ca2+-
dependent NADPH oxidase RBOHD [45, 102], AtCPK5 
[103], and AtMPK9, a MAP kinase shown to positively 
regulate ROS-mediated ABA signaling downstream of 
Ca2+ signals [104]. Other kinases include orthologs of 
the cytoplasmic histidine kinase AtAHK5, the mutation 
of which leads to reduced stomatal closure in response 
to H2O2 [105] The gene HORVU5Hr1G046020 encodes 
an ortholog of AtPBL8, a member of the subfamily VII of 
receptor-like cytoplasmic kinases (RLCK), other mem-
bers of which were found in all root clusters and in leaf 
clusters L1 and L2. Several RLCKs play a role in pattern-
triggered immune signaling, and the higher order mutant 
atpbl8/16/17 showed increased flg22-triggered H2O2 
generation [106].
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Cluster R2
Cluster R2 (down-regulation is strictly dependent on a 
Ca2+ signal) is the largest cluster with 410 genes (Table 
S4). Again, a number of TFs belonging to different fami-
lies were found in this cluster, including an ortholog of 
AtERF1, albeit a different one to the ortholog found in 
cluster L2. Similar to cluster R1, this cluster also contains 
genes encoding proteins involved in ROS metabolism 
and detoxification, such as another ortholog of AtPRX52. 
The cluster R2 contains several genes coding for proteins 
with Ca2+-binding EF-hand domains, one of them being 
an ortholog of AtCML39. Interestingly in this cluster 
we found six genes related to photosynthesis, encoding 
orthologs of the Arabidopsis chlorophyll-binding pro-
teins of the LHCA and LHCB type as well as AtPSB28 
and AtPSAK. Cluster R2 also comprises orthologs of sev-
eral genes involved in hormonal signaling.

Cluster R3
Cluster R3 (counter-regulation from up to down) con-
tains 128 genes. As in most clusters, we found genes 
belonging to major TF families (Table S4). We also found 
two peroxidases, orthologous of Arabidopsis AtPRX71 
and AtRCI3, the ortholog of TPR like thioredoxin 
AtTTL1, and genes associated with various aspects of 
hormone signaling. Additionally, several components of 
Ca2+ signaling pathways were present in this cluster such 
as orthologs of the Ca2+ sensor AtCML25 and the Ca2+ 
associated protein kinases AtCPK13.

Cluster R4
Cluster R4 (counter-regulation from down to up) con-
tains in total 394 genes, again with several members of 
different TF families (Table S4). Interestingly, this clus-
ter contains an ortholog of vascular plant one-zinc fin-
ger 1 (AtVOZ1), which has been implicated in heat stress 
response in plants and acting as a repressor of DREB2C 
[107]. Cluster R4 also encompasses genes related to glu-
tathione metabolism and detoxification, including four 
orthologs of the glutathione transferase AtGSTU18, for 
which orthologs were also found in cluster L2 and R2, 
and three for AtGSTF13. Many genes encoding for phi 
(GSTF) and tau (GSTU) glutathione transferases are 
upregulated under environmental stress and Arabidopsis 
plants overexpressing VvGSTU13 showed enhanced tol-
erance to a variety of abiotic stress conditions like cold 
and salt [108]. This cluster contains further anti-oxidant 
enzymes, including three orthologs of AtPRX52, all of 
them encoded by barley paralogs different from those 
present in clusters L2, R1, and R2. Cluster R4 exhibits the 
largest number of HSPs, most of which were small HSPs 
(SHSPs) as well as HSPs mapping to the Arabidopsis 
orthologs AtHSP81-1, AtHSP101, and AtHSP70. Also in 
this cluster we found 14 genes related to photosynthesis.

Transcription factors as key regulators of Ca2+-dependent 
H2O2-responsive genes in barley
We next modelled potential connections from known 
components of Ca2+signaling networks to the identified 
Ca2+-dependent H2O2-responsive genes (Fig. S4) using 
CKN of the recently described SKM resource [65]. The 
information in the CKN is based on present knowledge 
from Arabidopsis, thus only 192 and 894 Ca2+-dependent 
H2O2-responsive genes found in leaves and roots of bar-
ley, respectively, with identifiable orthologs in Arabidop-
sis were considered for analysis (Tables S3 and S4). We 
extracted the directed shortest paths from known Ca2+ 
signaling related genes (source set) to the Ca2+-depen-
dent H2O2-responsive genes identified in our transcrip-
tomic analysis (target set). We additionally required 
that the final edge regulating the target gene was a tran-
scriptional regulatory interaction. Merging of the results 
revealed several major network hubs connecting multiple 
Ca2+ signaling components to multiple targets in leaves 
and roots (Figs. 8A and 9A). The most dominant of these 
hubs (by number of times they occur in a path as well as 
number of targets) were depicted separately (Figs.  8B-E 
and 9B-E). In both, leaves and roots these hubs were 
defined by the TFs AGL15, HY5, PIF4, and EIN3 as key 
nodes regulating several targets (Figs.  8 and 9, orange 
nodes). The Ca2+ signaling components in these networks 
were mostly CaMs/CMLs and CDPKs/CPKs but also 
CaM-interacting proteins such as IQD6.

Ethylene insensitive 3 (EIN3)
Downstream of EIN3, the targets in both tissues include 
a unique mosaic of genes from different signaling path-
ways (Figs. 8B and 9B), with a greater prevalence of genes 
from cluster L1 in leaves (strict positive dependence on 
cytosolic Ca2+ signals) whereas in roots the target genes 
were interspersed from all the clusters. Noteworthy is 
the ERF1 gene, encoding an AP2/ERF transcription fac-
tor, which is present in our data as a down-stream target 
of EIN3 in both tissues (Figs. 8B and 9B). This is in line 
with a previous study that identified ERF1 as a down-
stream component of the ethylene signaling pathway, 
whose expression is regulated by EIN3 binding to the 
ERF1 promoter in vivo [109]. ERF1 was shown to inte-
grate JA and ethylene signalling pathways in a synergis-
tic manner during plant defense [80] This crosstalk fits to 
other EIN3-regulated targets found in our dataset such 
as the JA catabolic protein CYP94C1 and the ethylene 
biosynthetic protein 1-aminocyclopropane 1-carboxylate 
oxidase 5 (ACO5), which is known to have EIN3 binding 
sites [110].

Hypocotyl 5 (HY5)
All downstream targets of HY5 in leaves belong to clus-
ter L1 (Fig. 8C), thereby suggesting a pre-dominant strict 
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Fig. 8  Network analyses of Arabidopsis orthologs of the Ca2+-dependent H2O2-responsive genes found in barley leaves. (A) All shortest paths identi-
fied in CKN starting from known Ca2+-related genes (sources, pink-bordered nodes) to Ca2+-dependent H2O2-responsive genes identified by RNA-seq 
(targets, green-filled nodes) merged into a single network. Sub-networks were extracted from the merged network with focus on (B) EIN3, (C) HY5, (D) 
AGL15 and (E) PIF4. Ca2+-related components identified in a previous proteomic study as H2O2-regulated in Arabidopsis leaves [65] are presented by a 
light blue-filling. Nodes are labelled with their short names, when available. The targets are ordered by corresponding clusters (L). PTM: post-translational 
modification, TF: transcription factor. Complete networks are provided in additional file 1
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Fig. 9  Network analyses of Arabidopsis orthologs of the Ca2+-dependent H2O2-responsive genes found in barley roots. (A) All shortest paths identified in 
CKN starting from known Ca2+-related genes. (sources, pink-bordered nodes) to Ca2+-dependent H2O2-responsive genes identified by RNA-seq (targets, 
green-filled nodes) merged into a single network. Sub-networks were extracted from the merged network with focus on (B) EIN3, (C) HY5, (D) AGL15 
and (E) PIF4. Nodes are labelled with their short names, when available. The targets are ordered by corresponding clusters (R). PTM: post-translational 
modification, TF: transcription factor. Complete networks are provided in in additional file 1
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dependency on Ca2+ signals for up-regulation, while in 
roots this TF again had downstream targets in all clus-
ters (Fig. 9C). The targets in leaves include genes like the 
MAPKK kinase MAPKKK17, involved in plant herbivory 
responses [111], the phosphatase PP2C49, a negative 
regulator of salt stress tolerance in Arabidopsis [112], 
the ceQORH protein, a long-chain fatty acid reductase 
whose allocation between cytosol and chloroplasts is 
depending on CaM-binding [113], and the TF MYB59 
already established in negative regulation of Ca2+ signal-
ing and homeostasis [114]. HY5 is known to play a role 
in plant thermomorphogenesis in coordination with 
another TF, PIF4 [115], which is also present in our net-
work as a nodal hub (see below).

Agamous like 15 (AGL15)
Again, the largest group of AGL15 downstream targets 
in leaves include genes from cluster L1 and L2 (Fig. 8C), 
representing a strict dependence on Ca2+ signals. In 
roots, the targets of AGL15 include mostly genes from 
cluster R2 (Fig.  9C), thereby also showing strict depen-
dency on Ca2+. Common between leaf and root targets is 
the TF MYB4, which has an established role in protection 
against oxidative stress during cadmium stress [116] and 
flavonoid biosynthesis [117]. The targets also include an 
ortholog of the peroxidase PRX52, which has a number 
of orthologs in barley and is present in different clusters.

Phytochrome interacting factor 4(PIF4)
The downstream targets of PIF4, also called SRL2, in 
leaves include mostly genes from cluster L1 (strict depen-
dence on Ca2+ signals for H2O2 induced up-regulation), 
most of them without a direct relationship to ROS, 
Ca2+ signalling or stress. In roots, downstream targets 
were found in all clusters and included genes encod-
ing for the Ca2+ channel OSCA1.8 involved in osmotic 
stress induced Ca2+ signatures [118], the RAB GTPase 
RABA1f involved in salt stress response [119], and the 
TF NAC042 previously shown to be involved in salt and 
drought stress [120, 121]. Furthermore, targets of PIF4 
include genes coding for proteins involved in detoxifica-
tion of ROS.

Discussion
Our comparative analysis between the already published 
transcriptome changes induced by H2O2 [55] and those 
observed under a combined application of H2O2 + LaCl3 
(this study) showed that the H2O2-induced Ca2+ sig-
nals affected the transcript abundance of many H2O2-
responsive genes. The transcriptome changes were not 
due to an interference with Ca2+ homeostasis per se, 
since only those genes from the H2O2 + LaCl3 set that 
displayed changes under H2O2 alone but no changes 
with LaCl3 alone were considered. Overall, in roots more 

H2O2-responsive genes showed a dependency on the 
H2O2-induced Ca2+ signals compared to those in leaves 
(Fig. 3). This is in line with the higher number of genes for 
which transcriptional changes were observed after H2O2 
treatment alone in roots [55]. However, even considering 
these differences in total numbers, expression of only 33% 
of the H2O2-responsive genes in leaves, but about 70% 
of those in roots, was affected by LaCl3-sensitive Ca2+ 
signals (Fig. 3B). Moreover, most of the identified Ca2+-
dependent H2O2-responsive genes were found only in 
one of the two tissues, indicating a clear tissue specificity 
of the response. H2O2 is not only generated in response 
to biotic attacks but also by imbalances in energy metab-
olism. Obviously, photosynthesis is a process generat-
ing a large amount of ROS and thus, leaf tissue simply 
might have a higher prevalence of detoxification systems 
already in place while they need to be induced upon the 
accumulation of H2O2 in roots. This would be in line 
with the observation that many genes related to oxidative 
stress and detoxification were observed in response to 
H2O2 in roots [55]. We also observed minor differences 
in H2O2 penetration (Fig. 1B) and a slightly stronger inhi-
bition of the Ca2+ signal (Fig. 1C) by LaCl3 in roots which 
might further affect the transcriptome changes.

The issues discussed above notwithstanding, strict 
and partial/antagonistic Ca2+ dependency of the H2O2-
responsive transcriptome was observed in both tis-
sues (Figs.  3 and 5). Strict dependency (clusters L1, L2, 
R1, and R2) means that genes with significant changes 
in transcript level upon H2O2 application no longer 
showed significant changes after LaCl3 pre-incubation 
when compared to the control. The most likely scenario 
for these genes is that a Ca2+ signal evoked by H2O2 is 
required to activate a transcription activator or repres-
sor (Fig. 10, strictly). This can occur either more directly, 
e.g., by proteins such as Ca2+-dependent TFs or CAM-
TAs [122], or as the consequence of a longer signalling 
cascade that involves Ca2+ activated proteins such as 
CDPKs, CaMs, or CBLs [123, 124]. Such strictly Ca2+-
dependent H2O2-responsive genes were strongly domi-
nant in leaves (~ 90%) and also the majority in roots 
(~ 60%). Partially dependent genes showed a difference in 
transcript abundance between control and H2O2 + LaCl3 
treatment; however, the abundance was significantly dif-
ferent from H2O2 treatment alone. Of these cases, genes 
in cluster L3 showed a reduced up-regulation in the 
absence of an H2O2-induced Ca2+ transient, while genes 
in cluster L4 show reduced down-regulation (Fig.  10, 
additive). Interestingly, this kind of additive regulation 
of H2O2 and Ca2+ was completely absent in roots. For 
genes in these clusters H2O2 affects changes in transcript 
abundance both independently and via a Ca2+ signal, and 
both regulations occur in the same direction. Even in the 
absence of the H2O2-induced Ca2+ transient, the direct 
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regulation by H2O2 remains. More complex is the regula-
tion of those genes from cluster L5, R3, and R4, for which 
inhibition of the H2O2-induced Ca2+ transient results in 
changes of transcript abundance from up to down and 
vice versa. The regulation of these genes can be explained 
by an antagonistic model (Fig.  10, antagonistic), where 
Ca2+-dependent and independent pathways act in the 
opposite direction and Ca2+ signaling in addition inhibits 
or attenuates the Ca2+-independent H2O2 induced activa-
tion/repression. Similarly, three genes in cluster L5 that 
show an increased reduction in transcript abundance in 
the absence of the Ca2+ transient could be regulated by 
multiple pathways in a Ca2+-dependent and -indepen-
dent manner; however, in this case Ca2+ signaling attenu-
ates the H2O2 response, so that it becomes stronger in its 
absence (Fig. S5). It should be noted that for all clusters 
more complex models can be envisioned. Also, transcript 
abundance is not necessarily defined by gene expression, 
however, the models can easily be adapted for changes in 
transcript stability or degradation.

Indeed, our results reinforce the notion of complex, 
interacting pathways that define the ultimate response to 
a certain stimulus. While the responses are specific with 
regards to many factors such as type of stimulus, timing, 
tissue or developmental stage, they are variances of very 
similar patterns. After stimuli perception, the informa-
tion is forwarded through the cell by signaling cascades 
involving components such as secondary metabolites, 
ions like Ca2+, hormones, kinases, etc., to ultimately affect 
gene transcription, translation and/or protein activity. 
The latter is either due to novel synthesis, degradation or 

alteration of activity that catalyses the molecular changes 
required. This cascade of event allows for multiple points 
of regulation and ensures a cross-talk of signals coming 
from different internal and external stimuli. Many of the 
intermediate players will be ready and in place to receive 
a stimulus; nevertheless, stimulus-induced transcrip-
tional regulation of sensors, signaling kinases or TFs can 
occur to enhance the response or to initiate priming and 
long-term adaptation. Thus, it is not surprising, that TFs 
were found in all clusters. It is not uncommon to have 
TF cascades, in which an initially activated TF affects 
the transcription of multiple other TFs [125]. Also, dif-
ferent stresses can lead to binding of the target from TFs 
of different gene families to induce or repress the expres-
sion, e.g. the redox‑related LEA protein SAG21 binding 
to ERF (pathogen stress), WRKY (H2O2 stress), and NAC 
(wounding stress) TF [126].

Phytohormones have been repeatedly demonstrated 
to interact with each other at various points through 
versatile TF families, thereby eliciting a common, syn-
chronized, and holistic change in the molecular and bio-
chemical landscape of the plant in response to diverse 
stimuli [127]. Moreover, the study of interactions 
between phytohormones and secondary messengers like 
Ca2+ has gained momentum over the years; particularly 
the CDPKs have been closely linked to phytohormones 
such as GA, ABA, or JA in regulating crucial plant pro-
cesses related to growth and development, flowering, and 
also responses and acclimation to a variety of biotic and 
abiotic stresses [128]. Other kinases, such as RLKs, were 
proposed to play crucial roles during growth-defense 

Fig. 10  Representative models of Ca2+-dependent H2O2-responses. Strict Ca2+-dependency means that Ca2+ signaling operates down-stream of H2O2 to 
induce either activation or repression of gene expression. Partial dependency is seen when H2O2 and Ca2+ signals modulate gene expression in an addi-
tive way. In that case, the H2O2 activation/repression of gene expression is not fully dependent on the H2O2-induced Ca2+ transient, but Ca2+ amplifies this 
regulation. In the antagonistic model, the H2O2-induced Ca2+ transient inhibits the H2O2-induced activation/repression while at the same time inducing 
an opposite response. Lack of the H2O2-induced Ca2+ transient thus results in a changes of transcript abundance from up to down and vice versa. The 
arrowheads indicate activation (green) or repression (red) and the red T-headed arrows indicate inhibition
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trade-off, i.e. by intermingling with different phytohor-
mone signal transduction pathways [129]. The presence 
of these kinases in different clusters is thus in line with a 
differential regulation through Ca2+ signals, but also sug-
gest them as potential hubs which have the potential to 
transduce downstream signals crucial to the H2O2-Ca2+ 
crosstalk by interacting with other major signaling path-
ways like phytohormones.

There are several remarkable differences between the 
response of leaves and roots. In general, the roots show a 
higher variety of GO terms compared to leaves (Tables S3 
and S4). As mentioned above, roots show more changes 
in genes related to oxidative stress and detoxification. 
This is marked by a strong Ca2+-dependent regulation of 
class III peroxidases with a total of 42 peroxidases pres-
ent across all clusters. Also genes belonging to the GO 
term cell wall are more abundant in roots compared to 
leaves. Cell wall metabolism plays important roles in 
shaping plant responses to stress acclimation [130]. Sev-
eral reactions associated with crosslinking of cell wall 
components, like hemicellulose and xyloglucans, along 
with crucial processes, like polymerization and depo-
lymerization of cell walls, have previously been related 
to ROS production and anti-oxidant enzyme activities, 
which is a characteristic feature when plants are chal-
lenged with abiotic stress conditions [131]. For instance, 
the transcription factor short root (SHR) is involved in 
plant organogenesis including periclinal division in the 
root cortex that depends on an optimal H2O2 balance. On 
one hand, SHR activates H2O2 production by RBOHs and 
on the other hand induces SA signaling that increases 
H2O2 levels by repressing CATALASE 2 [132].

In roots, we also found a much larger and diverse group 
of membrane transporters as in leaves, i.e. the wall-
associated-transporter-1-like (WAT1) and SWEET-type 
transporters, but also aquaporins. Aquaporins have been 
shown to be involved in dynamic ROS changes under 
stresses [133] and WAT1 was identified as a downstream 
target of RBOH-mediated ROS generation during para-
sitic infections [134]. More surprisingly, we could iden-
tify 20 genes involved in photosynthesis including LHC 
proteins and photosystems components to be regulated 
by H2O2-induced Ca2+ signals in roots. The presence of 
photosynthesis-related genes in roots might seem a con-
troversial result, but it could be hypothesized that the 
exposure of the roots to light for five days lead to such 
a phenomenon. Moreover, it was also proposed that root 
plastids might be involved in the process of anti-oxidative 
damage control under stress conditions which generate 
oxidative bursts [135, 136]. This has also been suggested 
in another study based on fluorescence spectra of Ara-
bidopsis roots that showed a capacity of root plastids to 
form larger antenna complexes [137]. Our results there-
fore might point to a crucial and “less-known” role played 

by the H2O2-Ca2+ crosstalk in the induction of LHC-
encoding genes and other genes related to photosynthesis 
in roots.

In an attempt to decipher the molecular basis of the 
Ca2+-dependency of the H2O2-induced transcriptional 
responses, we modelled potential connections between 
known components of the Ca2+-signaling network and 
the Ca2+-dependent H2O2-responsive genes identified in 
this study. The Ca2+-signaling components in this net-
work included many CaMs, CMLs, and CDPKs, several 
of which, had been shown in a recent study in Arabidop-
sis leaves to undergo Ca2+-dependent changes in pro-
tein level upon H2O2 application [65] (Fig.  8, light blue 
nodes). Moreover, the network analyses showed TFs, 
especially EIN3, AGL15, PIF4, and HY5, down-stream 
of the Ca2+ components as hubs/nodal points regulating 
multiple Ca2+-dependent H2O2-responsive genes in dif-
ferent clusters in leaves and roots of barley (Figs. 8 and 
9). These TFs are known from Arabidopsis to be involved 
in different physiological and developmental processes 
including phytohormone signaling and catabolism, pho-
tosynthesis, detoxification, cell wall metabolism, and cel-
lular transport. EIN3 is a positive downstream regulator 
of the ethylene signalling pathway that affects various 
facets of plant development, several stress responses, and 
phytohormone pathways [138]. So far, ethylene signaling 
involving EIN3 has been related to Ca2+ and H2O2 dur-
ing salt stress response in Arabidopsis [139]. According 
to our model, this H2O2-Ca2+ regulation might be medi-
ated by the CaM-binding protein IQD6 (IQ67 Domain 
Containing 6) (Figs. 8B and 9B), which is known to play 
a crucial role in plant growth and development [140]. 
HY5 is a bZIP type master transcriptional regulator of 
photomorphogenesis, also shown to be involved in other 
processes such as response to abiotic stresses [141]. It 
was also shown that HY5 participates in ROS homeo-
stasis [142, 143] and to interact with CAM7 to regulate 
Ca2+-dependent photomorphogenesis in plants [144]. 
Indeed, in our network CAM7 is connected to HY5 via 
the G-box-binding factor GBF1(Figs. 8C and 9C), which 
was shown to play a role in plant defense upstream of SA 
[145]. We also obtained a connection with CDPK7 and 
MPK7, which possibly regulate HY5 expression through 
post-translational modifications. H2O2 was also shown to 
directly increase kinase activity of MPK7, underscoring 
the complexity of the signaling cross-talk [146]. AGL15 
is a member of the MADS box TF family and was shown 
in vitro to bind CaM [147]. This is in line with our net-
work analyses suggesting connections between AGL15 
and multiple CaMs as well as CML10 (Figs. 8D and 9D). 
As for HY5, AGL15 regulation might also be controlled 
by CAM7.

PIF4, a member of the bHLH TFs family, has so far very 
little association with Ca2+ and ROS signaling, although 
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a recent report showed a connection to RBOHD-medi-
ated up-regulation under salt stress [148]. RBOH is not 
present in our model since it was only shown that PIF4 
expression is attenuated in a rboh mutant. However, 
our model suggests regulation of PIF4 by CAM5 and 
CPK1, which have never been shown to be involved in 
any stress signaling pathways. Downstream, CAM5 and 
CPK1 were connected to RGL2 (RGA-Like2), which is a 
member of the DELLA protein family and has previously 
been shown to be involved in ROS generation and phy-
tohormonal signaling [149–151]. GRF2 is a member of 
the 14-3-3 protein family. Although specific data linking 
GRF2 to signaling or stress pathways is missing, 14-3-3 
proteins have been previously linked to plant stress, Ca2+ 
signaling, and hormone signal transduction [152, 153].

However, it should be noted that the information in 
CKN used for our network modelling is based on cur-
rent knowledge from Arabidopsis, so only those barley 
Ca2+-dependent H2O2-responsive genes with identifiable 
orthologs in Arabidopsis were considered for analyses. 
Thus, of the 331 and 1334 Ca2+-dependent H2O2-respon-
sive genes in leaves and roots of barley, respectively, 
only 192 and 894 genes were used in CKN analyses. This 
clearly reinforces that there is an urgent need for more 
experimental data to be obtained from barley and other 
crops to close this vast knowledge gap. While multiple 
responses are conserved between different land plants, 
others are more specific. We will need to know the spe-
cific responses of crops for accurate stress for modeling 
and to use this information for improved crop breeding.

Conclusion
H2O2 is an indispensable ROS, which is generated as a 
toxic by-product of biological metabolic processes, but 
also functions as a signaling molecule that can influ-
ence plant growth and development. Moreover, it has an 
established potential to intermingle with signaling cas-
cades associated with second messengers like Ca2+. In 
this study, using transcriptomic analysis, the molecular 
landscape behind the tissue-wide H2O2-Ca2+ crosstalk in 
the crop species barley was elucidated. Our data expands 
the knowledge on stress response in barley but also 
strengthen the relevance of findings in model plants such 
as Arabidopsis for barley. They reveal genes which have 
never been implicated in any canonical stress response 
pathway, and therefore may be used as candidates in 
future studies to further expand our understanding of 
this crosstalk. Similarly, network analyses suggested 
nodal TFs which in turn regulate the expression of genes 
involved in phytohormone pathways including ethylene, 
JA, ABA, SA, brassinosteroids, GA, and auxin, as well 
as in MAPK signaling cascades. Several studies have 
reported that both, biotic and abiotic stress, can lead to 
the accumulation of H2O2 and fluctuations in Ca2+ levels 

which imply an enhancement in the vitality of plants to 
withstand those environmental stress. Hence, decipher-
ing the molecular mechanisms underlying the H2O2-Ca2+ 
crosstalk will ultimately provide more understanding of 
stress acclimation not only in barley but also in other 
crop species.
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