Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

$D^{1,p}(\mathbb{R}^N)$ versus $C_b(\mathbb{R}^N, 1+|x|^{\frac{N-p}{p-1}\alpha})$ local minimizers

Siegfried Carl^a^{,*}, Hossein Tehrani^b

^a Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany ^b Department of Mathematical Sciences, University of Nevada, Las Vegas Box 454020, USA

ARTICLE INFO

ABSTRACT

MSC: 35B38 35B40 35B45 35B51 35J20 35J92 Keywords. Brezis-Nirenberg type result Beppo-Levi space Quasilinear elliptic equation Local minimizer Pointwise estimate Decay estimate

Let $X = D^{1,p}(\mathbb{R}^N)$ be the Beppo-Levi space (homogeneous Sobolev space) with $2 \le p < N$, and for $\frac{p-1}{p} < \alpha \le 1$ let $V_{\alpha} = X \cap C_b(\mathbb{R}^N, 1+|x|^{\frac{N-p}{p-1}\alpha})$ be the subspace of bounded continuous functions with weight $1 + |x|^{\frac{N-p}{p-1}\alpha}$. In this paper we prove a Brezis-Nirenberg type result for the energy functional $\Phi : X \to \mathbb{R}$ related to the quasilinear elliptic equation in \mathbb{R}^N of the form

Analysis

 $u \in X$: $-\Delta_n u = a(x)g(u)$ in \mathbb{R}^N ,

which states that a local minimizer of Φ in the V_a-topology must be a local minimizer in the "bigger" X-topology.

Global L^{∞} -estimates for solutions of general quasilinear elliptic equations of divergence type in \mathbb{R}^N on the one hand, and decay estimates for solutions of *p*-Laplace equations via nonlinear Wolff potentials as well as comparison theorems for *p*-Laplacian type operators on the other hand play an important role in the proofs.

1. Introduction and main results

Let $X = D^{1,p}(\mathbb{R}^N)$ be the Beppo-Levi space (homogeneous Sobolev space) which is the completion of $C_c^{\infty}(\mathbb{R}^N)$ under the norm

$$\|u\|_X = \left(\int_{\mathbb{R}^N} |\nabla u|^p \, dx\right)^{1/p}$$

and for which we have the continuous embedding $X \hookrightarrow L^{p^*}(\mathbb{R}^N)$, where $p^* = \frac{Np}{N-p}$ denotes the critical Sobolev exponent. Consider the following quasilinear elliptic equation in \mathbb{R}^N

$$u \in X : -\Delta_p u = a(x)g(u), \tag{1.1}$$

where throughout we assume $2 \le p < N$ and that the coefficient *a* and the nonlinearity *g* satisfy the assumptions:

(A0) $a : \mathbb{R}^N \to \mathbb{R}_+$ is measurable and satisfies the following decay condition for some β , $c_a > 0$

$$0 \le a(x) \le c_a w(x), \text{ where } w(x) = \frac{1}{1 + |x|^{N+\beta}}, x \in \mathbb{R}^N.$$
 (1.2)

(G) $g: \mathbb{R} \to \mathbb{R}$ is continuous and satisfies for some positive constant c_g the conditions

Corresponding author. E-mail addresses: siegfried.carl@mathematik.uni-halle.de (S. Carl), tehranih@unlv.nevada.edu (H. Tehrani).

https://doi.org/10.1016/j.nonrwa.2025.104335

Received 22 May 2024; Accepted 6 February 2025

Available online 18 February 2025

*

^{1468-1218/© 2025} The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

- (i) 0 < g(s), for $s \in (0, \infty)$;
- (ii) $|g(s)| \le c_g (1 + |s|^{\gamma 1}), \forall s \in \mathbb{R}$, where $1 \le \gamma < p^*$.

With the following lemma we are able to characterize solutions of (1.1) as critical points of the energy functional Φ given by

$$\boldsymbol{\Phi}(u) = \frac{1}{p} \int_{\mathbb{R}^N} |\nabla u|^p \, dx - \int_{\mathbb{R}^N} a(x) G(u) \, dx, \quad \text{with } G(s) = \int_0^s g(t) \, dt.$$
(1.3)

Lemma 1.1 ([1, Lemma 6.1]). Let $L^q(\mathbb{R}^N, w)$ be the weighted Lebesgue space with weight w given in (1.2). Then the embedding $X \hookrightarrow \hookrightarrow L^q(\mathbb{R}^N, w)$ is compact for $1 < q < p^*$.

Taking into account the weak lower semicontinuity of the norm and the compact embedding due to Lemma 1.1 we have the following result.

Lemma 1.2. Let g satisfy (G)(ii), and let a fulfill (A0). Then $\Phi : X \to \mathbb{R}$ is a well defined C^1 -functional, which is weakly lower semicontinuous. Moreover, critical points of Φ are solutions of (1.1).

Next for $\frac{p-1}{p} < \alpha \le 1$, let $V_{\alpha} = X \cap C_b\left(\mathbb{R}^N, 1 + |x|^{\frac{N-p}{p-1}\alpha}\right)$ be the subspace of bounded continuous functions with weight $1 + |x|^{\frac{N-p}{p-1}\alpha}$ defined by

$$V_{\alpha} := \left\{ v \in X : v \in C(\mathbb{R}^{N}) \text{ with } \sup_{x \in \mathbb{R}^{N}} \left(1 + |x|^{\frac{N-p}{p-1}\alpha} \right) |v(x)| < \infty \right\},$$

which is a closed subspace of X with norm

$$\|v\|_{V_{\alpha}} := \|v\|_{X} + \sup_{x \in \mathbb{R}^{N}} \left(1 + |x|^{\frac{N-p}{p-1}\alpha}\right) |v(x)|, \ v \in V_{\alpha}$$

Our main result is the following X versus V_{α} local minimizer theorem:

Theorem 1.3. Let g satisfy (G), and let $a : \mathbb{R}^N \to \mathbb{R}$ fulfill (A0). In addition assume

(\tilde{G}) lim inf_{$s \to 0^+$} $\frac{g(s)}{sq} > 0$ for some $0 \le q \le (p-1)(1-\alpha)$.

Suppose $u_0 \in X$ is a nonnegative solution of Eq. (1.1) and a local minimizer in the V_a -topology of the functional $\Phi : X \to \mathbb{R}$, that is, there exists $\varepsilon_0 > 0$ such that

$$\Phi(u_0) \le \Phi(u_0 + h), \quad \forall \ h \in V_a : \|h\|_{V_a} < \varepsilon.$$

Then u_0 is a local minimizer of Φ with respect to the X-topology, that is, there is $\varepsilon_1 > 0$ such that

 $\Phi(u_0) \le \Phi(u_0 + h), \quad \forall \ h \in X : \|h\|_X < \varepsilon_1.$

Theorem 1.3 is in the spirit of and extends the classical result due to Brezis and Nirenberg for a semilinear elliptic equation on bounded domains (see [2]) in two directions. First, unlike in [2] the leading operator is the *p*-Laplacian, and more importantly, second, the unboundedness of the domain. While extensions of the Brezis-Nirenberg result on bounded domains with leading *p*-Laplacian type variational operators have been obtained by several authors (see [3–8]), the literature about extensions to unbounded domains, in particular to the whole \mathbb{R}^N , is much less developed. Extensions to \mathbb{R}^N with the Laplacian or the fractional Laplacian as leading operators within the Beppo-Levi space $D^{1,2}(\mathbb{R}^N)$ or fractional Beppo-Levi space $D^{s,2}(\mathbb{R}^N)$, respectively, can be found in [9–11]. An extension of the Brezis-Nirenberg result to the (unbounded) exterior domain $\mathbb{R}^N \setminus \overline{B(0,1)}$ was obtained in [12] for the *N*-Laplacian equation in the Beppo-Levi space $D_{0,1}^{1,N}(\mathbb{R}^N \setminus \overline{B(0,1)})$, which is based on Kelvin transform. The latter, however, only works for *p*-Laplacian equations with p = 2 or p = N.

Only recently in [13] the authors proved a "*X* versus $X \cap V_{\alpha}$ local minimizers" result for $\alpha = \frac{p-1}{p}$ supposing only the general growth restriction (G)(ii). Assuming additional conditions (G)(i) and (\tilde{G}), Theorem 1.3 provides "*X* versus $X \cap V_{\alpha}$ local minimizers" results for α in the range $\frac{p-1}{p} < \alpha \le 1$, which in a way may be considered as an "interpolation" between the authors' result in [13] under the general growth on *g* and that given by Theorem 1.3 under additional restrictions on *g*. Unlike in [13], here the additional assumptions imposed on *g* enable us to use a different approach to deal with the "better" weights $1 + |x| \frac{N-p}{p-1} \alpha$.

Global L^{∞} -estimates for solutions of general quasilinear elliptic equations of divergence type in \mathbb{R}^N on the one hand, and decay estimates for solutions of *p*-Laplace equations via nonlinear Wolff potentials as well as comparison theorems for *p*-Laplacian type operators on the other hand play an important role in the proofs.

The outline of this paper is as follows: In Section 2 we provide preliminary results which will be used in Section 3 to prove Theorem 1.3. In Section 4 we demonstrate the applicability of our main result to prove the existence of solutions within an interval of sub- and supersolutions that are in fact local minimizer of the associated energy functional Φ .

2. Preliminaries

Before we present our result, first a few words on the notation. For an open set $\Omega \subset \mathbb{R}^N$, the standard norms of the Lebesgue spaces $L^r(\Omega)$ are denoted by $\|\cdot\|_{r,\Omega}$, or whenever it is convenient and not confusing, by $\|\cdot\|_r$. The weighted Lebesgue space $L^r(\mathbb{R}^N, w)$ with weight function w given by (1.2) is defined by

$$L^{r}(\mathbb{R}^{N}, w) = \left\{ u : \mathbb{R}^{N} \to \mathbb{R} \text{ measurable } : \int_{\mathbb{R}^{N}} w |u|^{r} dx < \infty \right\},$$

which is separable and reflexive for $1 < r < \infty$ under the norm

$$\|u\|_{r,w} = \left(\int_{\mathbb{R}^N} w|u|^r \, dx\right)^{\frac{1}{r}}.$$

One readily verifies that the weight function w belongs to $L^q(\mathbb{R}^N)$ for all q with $1 \le q \le \infty$. Thus $a \in L^q(\mathbb{R}^N)$ for all $q \in [1, \infty]$. We use ||m|| defined by $||m|| = ||m||_1 + ||m||_{\infty}$ for any function $m \in L^1(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$. Finally we use C, to denote a constant whose exact value is immaterial and may change from line to line. To indicate the dependence of the constant on the data, we write $C = C(a, b, \cdot, \cdot, \cdot)$ with the understanding that this dependence is increasing in its variables.

We begin by recalling the following lemma.

Lemma 2.1 ([1, Lemma 6.6]). If $a : \mathbb{R}^N \to \mathbb{R}$ satisfies (A0), then a has the following properties:

(a1) $a \in L^{1}(\mathbb{R}^{N}) \cap L^{\infty}(\mathbb{R}^{N})$, (a2) There exists $\sigma > \frac{N}{p}$ and D > 0 such that $|x|^{\frac{N}{\sigma'}} ||a||_{L^{\sigma}(\mathbb{R}^{N} \setminus B(0, |x|))} \leq D, \quad \forall x \in \mathbb{R}^{N},$

where $\frac{1}{\sigma'} + \frac{1}{\sigma} = 1$ and B(0, |x|) is the open ball with radius |x|.

Lemma 2.2. Let (A0) and (G) be satisfied. If $u \in X$ is a nonnegative solution of Eq. (1.1), then $u \in X \cap C_{loc}^{1,\lambda}(\mathbb{R}^N)$, $\lambda \in (0,1)$, and the following decay estimate holds:

$$0 \le u(x) \le \frac{C}{1+|x|^{\frac{N-p}{p-1}}}, \quad \forall x \in \mathbb{R}^N$$

$$(2.1)$$

where $C = C(N, p, \sigma, c_p, ||a||, ||u||_X, D)$ with σ and D as in (a2) above and c_p given in (G)(ii).

Furthermore, if u is not identically zero, then there exists a positive constant C', depending on u, such that:

$$\frac{C}{1+|x|^{\frac{N-p}{p-1}}} \le u(x), \quad \forall x \in \mathbb{R}^N$$
(2.2)

Proof. From [14, Corollary 3.1] we obtain $u \in L^{\infty}(\mathbb{R}^N)$ satisfying the estimate

 $||u||_{\infty} \leq \tilde{C}(N, p, c_g, ||a||, ||u||_{p^*}) \max\{||u||_{p^*}, ||u||_{p^*}^{\theta_0}\}.$

Taking $X \hookrightarrow L^{p^*}(\mathbb{R}^N)$ into account we get

$$\|u\|_{\infty} \leq C,$$

where $C = C(N, p, c_g, ||a||, ||u||_X)$ with $C(N, p, c_g, ||a||, ||u||_X) \to 0$ as $||u||_X \to 0$. Regularity results due to DiBenedetto (see [15]) yield $u \in X \cap C^{1,\lambda}_{loc}(\mathbb{R}^N)$. Therefore, the right-hand side of (1.1) allows for the estimate

$$|a(x)g(u(x))| \le Ca(x) \tag{2.3}$$

where $C = C(N, p, c_a, c_g, ||a||, ||u||_X)$. Consider the equation

$$v \in X : -\Delta_p v = Ca(x). \tag{2.4}$$

Let us show that (2.4) has a unique positive solution $v \in X \cap C^{1,\lambda}_{loc}(\mathbb{R}^N)$ satisfying

 $0 \le u(x) \le v(x).$

Since $w \in L^r(\mathbb{R}^N)$ for all $r \in [1, \infty]$, it belongs, in particular, to $L^{p^{*'}}(\mathbb{R}^N)$, which is continuously embedded into X^* . It is well known that the operator $T = -\Delta_p$ defines a bounded, continuous, strongly monotone (note $2 \le p < N$) and coercive operator from X into its dual through

$$\langle Tv, \varphi \rangle = \int_{\mathbb{R}^N} |\nabla v|^{p-2} \nabla v \, \nabla \varphi \, dx, \quad \forall \varphi \in X,$$

where $\langle \cdot, \cdot \rangle$ denotes the duality pairing between X and X^{*}. Thus $T : X \to X^*$ is bijective, which yields the existence of a unique solution v of (2.4), which is even $C_{loc}^{1,\lambda}(\mathbb{R}^N)$ -regular due to [15]. Next, we show that $v(x) \ge 0$. As a weak solution v satisfies

$$\int_{\mathbb{R}^N} |\nabla v|^{p-2} \nabla v \, \nabla \varphi \, dx = \int_{\mathbb{R}^N} C a(x) \varphi \, dx$$

Testing this relation with $\varphi = v^- = \max\{-v, 0\}$, we get

$$0 \leq \int_{\mathbb{R}^N} |\nabla v|^{p-2} \nabla v \, \nabla v^- \, dx = - \int_{\mathbb{R}^N} |\nabla v^-|^p \, dx \leq 0,$$

which implies that $||v^-||_X = 0$ and thus $v^- = 0$, that is, $v(x) \ge 0$ for all $x \in \mathbb{R}^N$, and by Harnack's inequality it follows that v(x) > 0 for all $x \in \mathbb{R}^N$.

From (1.1), (2.3), and (2.4) we get by comparison

$$\langle -\Delta_p u - (-\Delta_p v), \varphi \rangle \le 0, \quad \forall \varphi \in X_+, \tag{2.5}$$

where $X_+ = \{ \varphi \in X : \varphi \ge 0 \}$. Taking in (2.5) the test function $\varphi = (u - v)^+$ we get

$$0 \ge \int_{\mathbb{R}^N} \left(|\nabla u|^{p-2} \nabla u - |\nabla v|^{p-2} \nabla v \right) \nabla (u-v)^+ \ge c_p \| (u-v)^+ \|_X^p,$$

and thus $(u - v)^+ = 0$, i.e., $u \le v$. Finally, a pointwise estimate of v from above is provided by an estimate from above of the Wolff potential $W_{1,n}^{\mu}(x,\infty)$, which has been calculated in [16,17]. In particular, by [17, Lemma 2.1, Theorem 2.2] we obtain

$$0 \leq v(x) \leq \frac{C}{1+|x|^{\frac{N-p}{p-1}}}, \quad \forall x \in \mathbb{R}^N$$

where $C = C(N, p, \sigma, c_g, ||a||, ||u||_X, D)$, which completes the proof of (2.1).

Finally to prove (2.2) we note that *u* solves $-\Delta_p u \ge 0$, which allows to make use of a Vázquez type maximum principle (see [1, Theorem 6.4] or [16, Theorem 3.1]) according to which there is some positive constant θ such that

$$u(x) \ge \frac{\theta}{|x|^{\frac{N-p}{p-1}}}, \quad \text{for } |x| \ge 1,$$

which implies

$$u(x) \ge \frac{\theta}{1+|x|^{\frac{N-p}{p-1}}}, \quad \text{for } |x| \ge 1.$$
 (2.6)

Also since $u \in C^1(\mathbb{R}^N)$, and by Harnack's inequality u(x) > 0 in \mathbb{R}^N , we have $\tilde{\theta} = \min_{x \in B(0,1)} u(x) > 0$, which yields

$$u(x) \ge \tilde{\theta} \ge \frac{\theta}{1+|x|^{\frac{N-p}{p-1}}}, \quad \text{for } |x| \le 1.$$

$$(2.7)$$

From (2.6) and (2.7) with $C' = \min\{\theta, \tilde{\theta}\}$ we get (2.2).

For the rest of this section assume that $u_0 \in X$ is a fixed *positive* solution of (1.1). We define operators A_{μ} as follows.

$$\mathcal{A}_{\mu}u = -\operatorname{div} A_{\mu}(x, \nabla u), \quad \mu \ge 0, \tag{2.8}$$

where the function $A_{\mu} : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$ is given by

$$A_{\mu}(x,\xi) = \frac{1}{1+\mu} \left[|\nabla u_0 + \xi|^{p-2} (\nabla u_0 + \xi) - |\nabla u_0|^{p-2} \nabla u_0 + \mu |\xi|^{p-2} \xi \right], \quad \mu \ge 0.$$
(2.9)

Lemma 2.3. $A_{\mu} : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function, which satisfies the following properties uniformly for $\mu \ge 0$.

(A1) $|A_{\mu}(x,\xi)| \le 2^{p-1} |\xi|^{p-1} + 2^p |\nabla u_0(x)|^{p-1};$ (A2) $(A_{\mu}(x,\xi) - A_{\mu}(x,\xi))(\xi - \xi) \ge 2^{2-p} |\xi - \xi|^p;$ (A3) $A_{\mu}(x,\xi)\xi \ge 2^{2-p} |\xi|^p.$

Proof. As $2 \le p < N$ we use the inequality

$$|\xi|^{p-2}\xi - |\hat{\xi}|^{p-2}\hat{\xi}|(\xi - \hat{\xi}) \ge 2^{2-p}|\xi - \hat{\xi}|^{p}, \quad \forall \xi, \hat{\xi} \in \mathbb{R}^{N}$$
(2.10)

in the following estimates.

$$\begin{split} |A_{\mu}(x,\xi)| &\leq \frac{1}{1+\mu} \left[|\nabla u_{0} + \xi|^{p-1} + |\nabla u_{0}|^{p-1} + \mu|\xi|^{p-1} \right] \\ &\leq \frac{1}{1+\mu} \left[2^{p-1} \Big(|\nabla u_{0}|^{p-1} + |\xi|^{p-1} \Big) + |\nabla u_{0}|^{p-1} + \mu|\xi|^{p-1} \Big] \\ &\leq \frac{1}{1+\mu} \left[(2^{p-1} + \mu) |\xi|^{p-1} + (2^{p-1} + 1) |\nabla u_{0}|^{p-1} \right] \end{split}$$

(2.16)

$$\leq 2^{p-1} |\xi|^{p-1} + 2^p |\nabla u_0(x)|^{p-1},$$

which is (A1).

$$\begin{split} (A_{\mu}(x,\xi) - A_{\mu}(x,\hat{\xi}))(\xi - \hat{\xi}) &\geq \frac{1}{1+\mu} \Big[2^{2-p} |\xi - \hat{\xi}|^{p} + \mu 2^{2-p} |\xi - \hat{\xi}|^{p} \Big] \\ &\geq 2^{2-p} |\xi - \hat{\xi}|^{p}, \end{split}$$

which is (A2), and finally,

$$A_{\mu}(x,\xi)\xi \ge \frac{1}{1+\mu} \Big[2^{2-p} |\xi|^{p} + \mu |\xi|^{p} \Big] \ge \frac{2^{2-p} + \mu}{1+\mu} |\xi|^{p} \ge 2^{2-p} |\xi|^{p},$$

which is (A3). \Box

From Lemma 2.3 we immediately get the following result.

Lemma 2.4. The operator $A_{\mu}: X \to X^*$ is bounded, continuous, strongly monotone, and thus coercive.

Next for given $\sigma > \frac{N}{p}$ and D > 0, let us denote

 $C_{\sigma,D} = \Big\{ a : \mathbb{R}^N \to \mathbb{R} : a \text{ satisfies } (a1) - (a2) \text{ of Lemma } 2.1 \Big\}.$

Given $\hat{a} \in C_{\sigma,D}$ let us consider the equations

$$v \in X : \mathcal{A}_{\mu}v = \hat{a}(x) \tag{2.11}$$

and

$$w \in X : \mathcal{A}_{\mu}w = -\hat{a}(x). \tag{2.12}$$

Lemma 2.5. The Eq. (2.11) has a unique positive solution $v \in X \cap L^{\infty} \cap C^{1}(\mathbb{R}^{N})$, and (2.12) has a unique negative solution $w \in X \cap L^{\infty} \cap C^{1}(\mathbb{R}^{N})$.

Proof. The right-hand side \hat{a} of (2.11) belongs to $L^r(\mathbb{R}^N)$ for all $r \in [1, \infty]$, and thus, in particular, $\hat{a} \in L^{p^{*'}}(\mathbb{R}^N) \hookrightarrow X^*$. From Lemma 2.4 it follows that $\mathcal{A}_{\mu} : X \to X^*$ is bijective, which yields the unique solvability. Since $\hat{a}(x) \ge 0$, the unique solution v must be nonnegative. By regularity results due to DiBenedetto we get $v \in X \cap C^{1+\lambda}_{loc}(\mathbb{R}^N)$, and thus, in particular, $v \in X \cap C^1(\mathbb{R}^N)$. Moreover, by Harnack's inequality we obtain v(x) > 0 for all $x \in \mathbb{R}^N$.

Multiplying (2.12) by -1, and setting $\hat{w} = -w$, (2.12) becomes

$$\hat{w} \in X : -\operatorname{div}\left(-A_{\mu}(x, -\nabla\hat{w})\right) = \hat{a}(x).$$
(2.13)

Set $\hat{A}_{\mu}(x,\xi) = -A_{\mu}(x,-\xi)$, then one readily observes that $\hat{A}_{\mu} : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$ satisfies (A1)–(A3), and thus $\hat{w} \in X \cap C^1(\mathbb{R}^N)$ is the unique positive solution of (2.13), which implies that $w = -\hat{w}$ is the unique negative solution of (2.12). Finally the boundedness of v and w follows from [14, Corollary 3.1], which completes the proof. \Box

Next we consider the equation

$$u \in X : \mathcal{A}_u u = a(x)f(x, u), \tag{2.14}$$

where

(F) $f : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ is a Carthéodory function satisfying, for some positive constant c_f , the conditions

(i) $|f(x,s)| \le c_f (1+|s|^{\gamma-1}), \forall s \in \mathbb{R}$, a.e. $x \in \mathbb{R}^N$, and $1 \le \gamma < p^*$; (ii) $\lim_{s \to 0} |f(x,s)| = 0$ uniformly in $x \in \mathbb{R}^N$.

Lemma 2.6. Assume (A0), and (F). If $u \in X$ is a solution of (2.14) then u is bounded and satisfies an L^{∞} -estimate of the form

$$\|u\|_{L^{\infty}(\mathbb{R}^N)} \le C\phi(\|u\|_X),\tag{2.15}$$

where ϕ : $\mathbb{R}_+ \to \mathbb{R}_+$ is a data independent function satisfying $\phi(s) \to 0$ as $s \to 0$ and $C = C(c_f, ||a||, ||u||_{\chi})$.

Proof. As for the proof we refer to [14, Section 3].

Taking (F)(ii) into account we clearly get

$$|a(x)f(x,u(x))| \le Ca(x)$$

where $C = C(||u||_X) \to 0$ as $||u||_X \to 0$. We can now state the following crucial result:

Proposition 2.7. Assume (A0), (F), (G) and (\tilde{G}). If u is a solution of (2.14) then $w(x) \le u(x) \le v(x)$, where v and w are unique positive and negative solutions of (2.11) and (2.12), respectively, with $\hat{a}(x) = Ca(x)$, and $C = C(||u||_X)$ as in (2.16) above. Moreover, the following estimate holds true

$$|u(x)| \le \frac{\hat{C}}{1+|x|^{\frac{N-p}{p-1}\alpha}}, \quad \forall x \in \mathbb{R}^N, \ \hat{C} = \hat{C}(||u||_X),$$
(2.17)

where $\hat{C}(||u||_X) \rightarrow 0$ as $||u||_X \rightarrow 0$.

The proof of this proposition, and in particular estimate (2.17), is based on construction of a special super-subsolution pair of (2.11), respectively, (2.12), that depends on the positive solution u_0 of (1.1). This will be accomplished in the next few lemmas. But first recall that by Lemma 2.2, there exists c_1 , $c_2 > 0$ such that

$$\frac{c_1}{1+|x|^{\frac{N-p}{p-1}}} \leq u_0(x) \leq \frac{c_1}{1+|x|^{\frac{N-p}{p-1}}}, \ \forall x \in \mathbb{R}^N,$$

and also, in view of [17, Theorem 2.6], we have

$$|\nabla u_0(x)| \leq \frac{c_3}{1+|x|^{\frac{N-1}{p-1}}}, \quad \forall x \in \mathbb{R}^N,$$

for some constant $c_3 > 0$.

Lemma 2.8. Let $\frac{p-1}{p} < \alpha \le 1$. Suppose $h \in C^1(0, \infty)$ is a positive function with $h'(s) \ge 0$ for $s \in (0, L]$, where $L = ||u_0||_{\infty}$. Furthermore, assume

$$\limsup_{s \to 0^+} h'(s)s^{1-\alpha} < \infty.$$
(2.18)

Let $\overline{v}(x) = h(u_0(x))$. Then

- (i) \overline{v} belongs to the space $D^{1,p}(\mathbb{R}^N)$.
- (ii) If in addition we assume that $h \in C^2(0, \infty)$ and $h''(s) \le 0$, for $s \in (0, L]$, then

$$\mathcal{A}_{\mu}(\overline{v}) \ge \frac{1}{1+\mu} \Big[\Big(1+h'(u_0) \Big)^{p-1} - 1 + \mu h'(u_0)^{p-1} \Big] \Big(-\Delta_p u_0 \Big)$$
(2.19)

Proof. Note that $\nabla \overline{v} = h'(u_0) \nabla u_0$. Now using the above growth estimates on u_0 and $|\nabla u_0|$, (2.18) and the fact that $\frac{p-1}{p} < \alpha \le 1$, we have, for *R* sufficiently large

$$\begin{split} \int_{|x|>R} |h'(u_0) \nabla u_0|^p dx &\leq C \int_{|x|>R} |u_0^{(\alpha-1)} \nabla u_0|^p dx \\ &\leq C \int_R^\infty \left(r^{\frac{N-p}{p-1}(1-\alpha)} r^{-\frac{N-1}{p-1}} \right)^p r^{N-1} dr < \infty \end{split}$$

from which (i) follows directly. Finally, a straight forward calculation implies:

$$\begin{split} \mathcal{A}_{\mu}(\overline{v}) &= \frac{1}{1+\mu} \Big[\Big(1+h'(u_0) \Big)^{p-1} - 1 + \mu h'(u_0)^{p-1} \Big] \Big(-\Delta_p u_0 \Big) \\ &- \frac{p-1}{1+\mu} h''(u_0) \Big[\Big(1+h'(u_0) \Big)^{p-2} + \mu h'(u_0)^{p-2} \Big] |\nabla u_0|^p \end{split}$$

which, taking into account the sign of h'', yields (ii), that is (2.19).

Using this result we can now prove:

Lemma 2.9. Suppose g satisfies (G) and (\tilde{G}) for some $\frac{p-1}{p} < \alpha \le 1$. There exists M > 0 such that $\overline{v} = MC^{\frac{1}{p-1}}u_0^{\alpha}$ is a supersolution of (2.11) with $\hat{a}(x) = Ca(x)$ and C as in (2.16) above. Furthermore one can take

$$M = M(\alpha, m) = \frac{1}{\alpha} m^{\frac{-1}{p-1}},$$

where

$$m = \inf \left\{ \frac{g(s)}{s^{(p-1)(1-\alpha)}} : 0 < s \le ||u_0||_{\infty} \right\}.$$

Proof. As *g* satisfies (G)(i) and (\tilde{G}), we have m > 0. Next let $h(s) := MC^{\frac{1}{p-1}}s^{\alpha}$, which clearly satisfies the assumptions of the previous lemma, and in particular (2.18), and take $\bar{v} = h(u_0)$. By Lemma 2.8 and taking into account that u_0 is a positive solution of (1.1) we have

$$\begin{aligned} \mathcal{A}_{\mu}(\overline{v}) &\geq \frac{1}{1+\mu} \Big[\big(1+h'(u_0)\big)^{p-1} - 1 + \mu h'(u_0)^{p-1} \Big] a(x)g(u_0) \\ &\geq \big(h'(u_0)^{p-1}g(u_0)\big) a(x) = (\alpha M)^{p-1} \big[u_0^{(p-1)(\alpha-1)}g(u_0) \big] Ca(x). \end{aligned}$$

Hence

$$\mathcal{A}_{\mu}(\overline{v}) \ge (\alpha M)^{p-1} m C a(x) = C a(x) = \hat{a}(x),$$

which proves the result. \Box

In a similar manner one can prove

Lemma 2.10. Suppose g satisfies (G) and (\tilde{G}) for some $\frac{p-1}{p} < \alpha \le 1$. There exists $\tilde{M} = \tilde{M}(\alpha, m) > 0$ such that $\overline{w} = -\tilde{M}C^{\frac{1}{p-1}}u_0^{\alpha}$ is a subsolution of (2.12) with $\hat{a}(x) = Ca(x)$ and C as in (2.16) above, i.e.

$$\mathcal{A}_{\mu}(\overline{w}) \leq -Ca(x) = -\hat{a}(x),$$

We are now ready to complete

Proof of Proposition 2.7. Using (2.16), the inequality $w(x) \le u(x) \le v(x)$ is shown by applying arguments as in the proof of Lemma 2.2. In order to prove the decay estimate (2.17), we are going to show that

$$|w(x)|, v(x) \le \frac{C}{1+|x|^{\frac{N-p}{p-1}\alpha}}, \quad \forall x \in \mathbb{R}^N, \ \hat{C} = \hat{C}(||u||_X).$$
(2.20)

To this end we note that by Lemma 2.9 the function $\overline{v} = MC^{\frac{1}{p-1}}u_0^{\alpha}$ is a supersolution of (2.11), with $C = C(||u||_X)$ as in (2.16) above. Thus by comparison arguments it follows $v(x) \le MC^{\frac{1}{p-1}}u_0^{\alpha}(x)$. Taking Lemma 2.2 into account we obtain

$$v(x) \le MC^{\frac{1}{p-1}}C_2(N, p, \sigma, c_g, \|a\|, \|u_0\|_X, D) \frac{1}{1 + |x|^{\frac{N-p}{p-1}\alpha}}, \quad \forall x \in \mathbb{R}^N$$

which proves half of the estimate (2.20) with

$$\hat{C}_1(\|u\|_X) := MC^{\frac{1}{p-1}}C_2(N, p, \sigma, c_g, \|a\|, \|u_0\|_X, D).$$

Similarly, using \overline{w} the subsolution constructed in Lemma 2.10, one shows that $|w(x)| \leq \tilde{M}C^{\frac{1}{p-1}}u_{\alpha}^{\alpha}(x)$ from which we conclude

$$|w(x)| \leq \hat{C}_2(||u||_X) \frac{1}{1+|x|^{\frac{N-p}{p-1}\alpha}}, \quad \forall x \in \mathbb{R}^N,$$

with $\hat{C}_2(\|u\|_X) = \tilde{M}C^{\frac{1}{p-1}}C_2(N, p, \sigma, c_g, \|u\|, \|u_0\|_X, D)$. This provides the other half of estimate (2.20). Finally (2.20) follows with $\hat{C} = \max\{\hat{C}_1(\|u\|_X), \hat{C}_2(\|u\|_X)\}$, and the proof of proposition is complete. \Box

3. Proof of Theorem 1.3

Let u_0 be a nonnegative solution of (1.1) and a local minimizer of the functional

$$\mathcal{P}(u) = \frac{1}{p} \int_{\mathbb{R}^N} |\nabla u|^p \, dx - \int_{\mathbb{R}^N} a(x) G(u) \, dx, \quad \text{with } G(s) = \int_0^s g(t) \, dx$$

in the V_{α} -topology. Consider the functional $h \mapsto \Phi(u_0 + h)$, and let $h_n : ||h_n||_X \leq \frac{1}{n}$ be such that

$$\mathcal{P}(u_0 + h_n) = \inf_{h \in B_n} \mathcal{P}(u_0 + h), \quad \text{where } B_n = \left\{ h \in X : \|h\|_X \le \frac{1}{n} \right\}$$

The existence of a minimizer h_n is guaranteed, since $\Phi : X \to \mathbb{R}$ is C^1 and weakly lower semicontinuous and B_n is weakly compact in *X*. Set $u_n = u_0 + h_n$, that is,

$$\Phi(u_n) = \inf_{u \in B_n} \Phi(u), \quad \text{where } B_n = \left\{ u \in X : \|u - u_0\|_X \le \frac{1}{n} \right\}$$

For $u_n \in B_n$ we have either $||u_n - u_0||_X < \frac{1}{n}$ or else $||u_n - u_0||_X = \frac{1}{n}$. In case $||u_n - u_0|| < \frac{1}{n}$, u_n is a critical point of Φ , and thus u_n is a weak solution of (1.1), i.e., $-\Delta_p u_n = a(x)g(u_n)$, that is,

$$\int_{\mathbb{R}^N} \left(|\nabla u_n|^{p-2} \nabla u_n \nabla \varphi - a(x)g(u_n)\varphi \right) dx = 0, \quad \forall \varphi \in X.$$

In case $||u_n - u_0|| = \frac{1}{n}$, there exists a Lagrange multiplier $\lambda_n \leq 0$ such that

$$\int_{\mathbb{R}^N} \left(|\nabla u_n|^{p-2} \nabla u_n \nabla \varphi - a(x) g(u_n) \varphi \right) dx = \lambda_n \int_{\mathbb{R}^N} |\nabla (u_n - u_0)|^{p-2} \nabla (u_n - u_0) \varphi \, dx,$$

for all $\varphi \in X$, which (in a distributional sense) can be written as

$-\Delta_p u_n - a(x)g(u_n) = -\lambda_n \Delta_p (u_n - u_0).$	(3.1)

Taking into account that u_0 is a solution of (1.1) and using (3.1), we get

$$-(\Delta_{p}u_{n} - \Delta_{p}u_{0}) + \lambda_{n}\Delta_{p}(u_{n} - u_{0}) = a(x)(g(u_{n}) - g(u_{0})).$$
(3.2)

Set $\mu_n = -\lambda_n \ge 0$. Thus $h_n = u_n - u_0$ satisfies the equation

$$-(\Delta_p(u_0+h_n)-\Delta_p u_0)-\mu_n \Delta_p h_n = a(x)(g(u_0+h_n)-g(u_0)).$$
(3.3)

Dividing (3.3) by $1 + \mu_n$ and taking into account (2.8), (2.9), (2.14) and (2.15) yields

$$\mathcal{A}_{\mu_n} h_n = a(x) f(x, h_n), \tag{3.4}$$

where we set

$$f(x,s) = \frac{1}{1+\mu_n} (g(u_0(x)+s) - g(u_0(x))),$$

which clearly satisfies (F). Since $||h_n||_X \to 0$ as $n \to \infty$, by Lemma 2.6 it follows

$$\|h_n\|_{\infty} \le C\phi(\|h_n\|_X) \to 0. \tag{3.5}$$

From (3.5), the fact that $u_0(x)$ is bounded and g is continuous, we get

$$a(x)|f(x,h_n)| \le C(||h_n||_X)a(x),$$
(3.6)

where $C(||h_n||_X) \to 0$ as $n \to \infty$. Next recall that by Proposition 2.7 we have

$$w_n \le h_n \le v_n,$$

where v_n and w_n solve (2.11) and (2.12), respectively, with

$$\hat{a}(x) = C(\|h_n\|_X)a(x),$$

from which it follows

$$|h_n(x)| \le \hat{C} \frac{1}{1+|x|^{\frac{N-p}{p-1}\alpha}}, \quad \forall x \in \mathbb{R}^N, \ \hat{C} = \hat{C}(\|h_n\|_X),$$
(3.7)

where $\hat{C}(\|h_n\|_X) \to 0$ as $\|h_n\|_X \to 0$. In view of (3.7) and $\|h_n\|_X \to 0$ it follows that $\|h_n\|_{V_a} \to 0$. Finally, since u_0 is a local minimizer of Φ in the V_a -topology we get with $h_n \to 0$ in V_a for n large

$$\Phi(u_0) \le \Phi(u_0 + h_n) = \Phi(u_n) = \inf_{h \in B_n} \Phi(u_0 + h),$$

where

$$B_n = \left\{ u \in X : \|u - u_0\|_X \le \frac{1}{n} \right\},\$$

which proves that u_0 must be a local minimizer of Φ in the *X*-topology completing the proof of Theorem 1.3.

4. Existence of a positive local minimizer

In this section we present a useful application of Theorem 1.3. In fact we are going to prove the existence of a positive solution u_0 of (1.1) such that, in addition, u_0 is a local minimizer of the functional Φ in *X*.

We assume throughout this section hypotheses (A0) with $\beta \ge \frac{N}{p-1}$, (G), and (\tilde{G}) with $\alpha = 1$. In other words as far as g is concerned we assume

 $(\hat{G}) g : \mathbb{R} \to \mathbb{R}$ is continuous and satisfies for some positive constants δ, c_g the conditions

(i) $\delta \leq g(s)$, for $s \in [0, \infty)$; (ii) $|g(s)| \leq c_g (1 + |s|^{\gamma-1}), \forall s \in \mathbb{R}$, where $1 \leq \gamma < p^*$.

Lemma 4.1. The function u(x) = 0 is a subsolution of (1.1) and \overline{u} given by

$$\overline{u}(x) = \left[1 + |x|^{\frac{p}{p-1}}\right]^{\frac{p-N}{p}}$$
(4.1)

is a supersolution of (1.1) provided $2c_a c_g \leq \frac{N}{2^{N+1}} \left(\frac{N-p}{p-1}\right)^{p-1}$. Moreover, $\overline{u} \in V_1$.

Proof. Clearly, as g(0) > 0, $\underline{u}(x) = 0$ is a subsolution. Let us show that \overline{u} is a supersolution. Elementary calculation yields

$$|\nabla \overline{u}(x)|^{p} = \left(\frac{N-p}{p-1}\right)^{p} \left(1+|x|^{\frac{p}{p-1}}\right)^{-N} |x|^{\frac{p}{p-1}}.$$

By using spherical coordinates one obtains

$$\begin{split} \int_{\mathbb{R}^N} \left| \nabla \overline{u}(x) \right|^p dx &= \int_{B(0,1)} \left| \nabla \overline{u}(x) \right|^p dx + \int_{\mathbb{R}^N \setminus B(0,1)} \left| \nabla \overline{u}(x) \right|^p dx \\ &\le c_1 + c_2 \int_1^\infty \rho^{(-N+1)\frac{p}{p-1} + N - 1} d\rho < \infty, \end{split}$$

since $(-N+1)\frac{p}{p-1} + N < 0$, which shows that $\overline{u} \in X$. Further, again by elementary calculation we obtain

$$-\Delta_{p}\overline{u}(x) = N\left(\frac{N-p}{p-1}\right)^{p-1} \frac{1}{\left(1+|x|^{\frac{p}{p-1}}\right)^{N}} \left(1+|x|^{\frac{p}{p-1}}\right)^{\frac{N-p}{p}}.$$
(4.2)

We estimate

$$\left(1+|x|^{\frac{p}{p-1}}\right)^{N} \le 2^{N}\left(1+|x|^{N\frac{p}{p-1}}\right) \le 2^{N+1}\left(1+|x|^{N+\beta}\right), \quad \text{as } \beta \ge \frac{N}{p-1}.$$
(4.3)

From (4.2) and (4.3) we get

$$-\Delta_{p}\overline{u}(x) \ge \frac{N}{2^{N+1}} \left(\frac{N-p}{p-1}\right)^{p-1} \frac{1}{\left(1+|x|^{N+\beta}\right)} \left(1+|x|^{\frac{p}{p-1}}\right)^{\frac{N-p}{p}}.$$
(4.4)

As $0 < \overline{u}(x) \le 1$, we have $g(\overline{u}(x)) \le 2c_g$, and thus from (4.4) it follows that

$$-\Delta_p \overline{u}(x) \ge a(x)g(\overline{u}(x)),$$

that is, \overline{u} is a supersolution provided that the following inequality

$$2c_a c_g \le \frac{N}{2^{N+1}} \left(\frac{N-p}{p-1}\right)^{p-1}$$

is fulfilled. Moreover, we have the estimate

$$\overline{u}(x) = \left[1 + |x|^{\frac{p}{p-1}}\right]^{\frac{p-N}{p}} \le \frac{2}{1 + |x|^{\frac{N-p}{p-1}}},$$

hence $\overline{u} \in V_1$, which completes the proof. \Box

We introduce the truncated function $\hat{g} : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ defined by

$$\hat{g}(x,s) = \begin{cases}
g(0) & \text{if } s \le 0, \\
g(s) & \text{if } 0 \le s \le \overline{u}(x), \\
g(\overline{u}(x)) & \text{if } s \ge \overline{u}(x),
\end{cases}$$
(4.5)

and define the following functional $\hat{\Phi}$

1

$$\hat{\boldsymbol{\Phi}}(u) = \frac{1}{p} \int_{\mathbb{R}^N} |\nabla u|^p \, dx - \int_{\mathbb{R}^N} a(x) \hat{\boldsymbol{G}}(u) \, dx \quad \text{with } \hat{\boldsymbol{G}}(s) = \int_0^s \hat{\boldsymbol{g}}(x,s) \, ds.$$

$$\tag{4.6}$$

Lemma 4.2. The functional $\hat{\Phi}$: $X \to \mathbb{R}$ is a well defined C^1 -functional, which is bounded below, coercive, and weakly lower semicontinuous. Therefore, a global minimizer $\hat{u} \in X$ exists, which is a solution of (1.1) satisfying $0 < \hat{u}(x) \le \overline{u}(x)$. Moreover, $\hat{u} \in V_1 \cap C^1(\mathbb{R}^N)$.

Proof. The proof for $\hat{\phi}$ being C^1 and weakly lower semicontinuous is similar to Lemma 1.2. By definition \hat{g} is uniformly bounded, that is, $|\hat{g}(x,s)| \leq 2c_g$, since $0 < \overline{u} \leq 1$. Thus

$$\int_{\mathbb{R}^N} a(x)\hat{G}(u) \, dx \, \Big| \le \int_{\mathbb{R}^N} a(x)2c_g |u(x)| \, dx \le 2c_g c_a ||u||_{1,w} \le c ||w||_{p^{*'}} ||u||_X$$

where c is some positive constant, and thus

$$\hat{\Phi}(u) \ge \frac{1}{n} \|u\|_X^p - c\|w\|_{p^{*'}} \|u\|_X,$$

which shows that $\hat{\Phi}$ is coercive and bounded below. Let \hat{u} be a global minimizer of $\hat{\Phi}$, which is a critical point satisfying the equation

$$-\Delta_p \hat{u} = a(x)\hat{g}(x,\hat{u}(x)).$$
 (4.7)

,

Since $\hat{g}(x, \hat{u}(x)) > 0$, by Harnack's inequality we obtain $\hat{u}(x) > 0$ for all $x \in \mathbb{R}^N$, and due to regularity results of [15], $\hat{u} \in X \cap C^1(\mathbb{R}^N)$. As the supersolution \overline{u} satisfies the inequality

$$-\Delta_p \overline{u} \ge a(x)g(\overline{u}(x))$$

we obtain by comparison with (4.7) the inequality

$$\int_{\mathbb{R}^N} \left(|\nabla \hat{u}|^{p-2} \nabla \hat{u} - |\nabla \overline{u}|^{p-2} \nabla \overline{u} \right) \nabla \varphi \, dx \le \int_{\mathbb{R}^N} a(x) \left(\hat{g}(x, \hat{u}(x)) - g(\overline{u}(x)) \right) \varphi \, dx,$$

for all $\varphi \in X$ with $\varphi \ge 0$. Testing the last inequality with $\varphi = (\hat{u} - \overline{u})^+$ yields

$$2^{2-p} \| (\hat{u} - \overline{u})^+ \|_X^p \le \int_{\{\hat{u} \ge \overline{u}\}} a(x) \big(\hat{g}(x, \hat{u}(x)) - g(\overline{u}(x)) \big) (\hat{u}(x) - \overline{u}(x)) \, dx = 0$$

thus $(\hat{u} - \overline{u})^+ = 0$, that is, $\hat{u}(x) \le \overline{u}(x)$. Since $\overline{u} \in V_1$, it follows that $\hat{u} \in V_1$ as well, which completes the proof. \Box

Lemma 4.3. The global minimizer \hat{u} of the functional $\hat{\Phi}$ satisfies the following inequality

$$\hat{u}(x) \ge \frac{\varepsilon}{1 + |x|^{\frac{N-p}{p-1}}},$$
(4.8)

for some positive constant ϵ .

Proof. The global minimizer \hat{u} solves (4.7), and thus $-\Delta_{p}\hat{u} \ge 0$. The result now follows as in the proof of Lemma 2.2.

Lemma 4.4. The positive global minimizer \hat{u} of the functional $\hat{\Phi}$ in the X-topology is a local minimizer of the original functional Φ with respect to the V_1 -topology.

Proof. We need to show that a ϵ -ball with center \hat{u} in the V_1 -topology belongs to the interval $[0, \bar{u}]$. In view of Lemma 4.3 it remains to show that

$$\hat{u}(x) + \frac{\varepsilon}{1 + |x|^{\frac{N-p}{p-1}}} \le \bar{u}(x) \quad \text{for some } \varepsilon > 0.$$
(4.9)

The right-hand side of Eq. (4.7) is positive and bounded, that is,

$$a(x)\hat{g}(x,\hat{u}(x)) \le 2c_a c_g w(x),$$

where c_a and c_e are the constants in (A0) and (G), respectively, and w given by (1.2). Consider the equation

$$v \in X : -\Delta_p v = 2c_a c_x w(x). \tag{4.10}$$

By arguments already used before, Eq. (4.10) has a unique positive solution $v \in X \cap C^1(\mathbb{R}^N)$. Based on Wolff potential estimates (see [18, Theorem 1.6, Corollary 4.13]), we get from [1, Theorem 6.5] the following estimate for v

$$v(x) \le C \frac{1}{1+|x|^{\frac{N-p}{p-1}}}, \quad x \in \mathbb{R}^N,$$

where $C = C(c_a, c_g)$ with $C(c_a, c_g) \to 0$ as $c_a c_g \to 0$. By comparison from Eqs. (4.7) and (4.10), we obtain

$$\hat{u}(x) \le v(x) \le C(c_a, c_g) \frac{1}{1 + |x|^{\frac{N-p}{p-1}}}.$$
(4.11)

On the other hand the function \overline{u} given by (4.1) can be estimated below as follows

$$\overline{u}(x) = \left[1 + |x|^{\frac{p}{p-1}}\right]^{\frac{p-N}{p}} \ge \frac{1}{2^{\frac{N-p}{p}}} \frac{1}{1 + |x|^{\frac{N-p}{p-1}}}.$$
(4.12)

Thus, if $c_a c_g$ small such that $C(c_a, c_g) < \frac{1}{2^{\frac{N-p}{p}}}$, then from (4.11) and (4.12) it follows that there is a $\varepsilon > 0$ such that (4.9) is fulfilled, which completes the proof.

Finally be means of the preceding Lemmata we are in the position to prove the following main result of this section.

Theorem 4.5. Assume (A0) with $\beta \ge \frac{N}{p-1}$ and let g satisfies (\hat{G}) . There exists m > 0 so that if $c_a c_g < m$ then Eq. (1.1) has a positive solution which is a local minimizer in the X-topology of the functional Φ given by (1.3).

Proof. By Lemma 4.2 the global minimizer \hat{u} of the functional $\hat{\Phi}$ is a solution of (1.1), and by Lemma 4.4, \hat{u} is a local minimizer of the original functional Φ with respect to the V_1 -topology. Thus, we may apply our main result Theorem 1.3, which completes the proof.

References

- [1] S. Carl, Vy K. Le, Multi-Valued Variational Inequalities and Inclusions, in: Springer Monographs in Mathematics, Springer, Cham, 2021.
- [2] H. Brézis, L. Nirenberg, H^1 versus C^1 minimizers, C. R. Acad. Sci. Paris 317 (1993) 465–472.
- [3] Y. Bai, L. Gasiński, P. Winkert, S. Zeng, $W^{1,p}$ versus C^1 : the nonsmooth case involving critical growth, Bull. Math. Sci. 10 (3) (2020) 2050009, 15.
- [4] J.P. García Azorero, I. Peral Alonso, I. J.P., J.J. Manfredi, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (3) (2000) 385–404.
- [5] J. Giacomoni, I. Schindler, P. Takáč, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (1) (2007) 117–158.
- [6] Z. Guo, Zhitao Zhang, W^{1,p} versus C¹ local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 286 (1) (2003) 32–50.
- [7] A. Iannizzotto, S. Mosconi, M. Squassina, H³ versus C⁰-weighted minimizers, NoDEA Nonlinear Differential Equations Appl. 22 (3) (2015) 477–497.
- [8] K. Sreenadh, S. Tiwari, On W^{1,p(x)} versus C¹ local minimizers of functionals related to p(x)-Laplacian, Appl. Anal. 92 (6) (2013) 1271–1282.
- [9] V. Ambrosio, $D^{s,2}(\mathbb{R}^N)$ versus $C(\mathbb{R}^N)$ local minimizers, Asymptot. Anal. 134 (1–2) (2023) 227–239.
- [10] S. Carl, David G. Costa, H. Tehrani, $D^{1,2}(\mathbb{R}^N)$ versus $C(\mathbb{R}^N)$ local minimizer and a Hopf-type maximum principle, J. Differential Equations 261 (3) (2016) 2006–2025.
- [11] S. Carl, David G. Costa, H. Tehrani, $\mathcal{D}^{1,2}(\mathbb{R}^N)$ versus $C(\mathbb{R}^N)$ local minimizer on manifolds and multiple solutions for zero-mass equations in \mathbb{R}^N , Adv. Calc. Var. 11 (3) (2018) 257–272.
- [12] S. Carl, N-Laplacian elliptic equations in exterior domains via Kelvin transform, Pure Appl. Funct. Anal. 5 (4) (2020) 869-890.
- [13] S. Carl, H. Tehrani, Decay estimates for quasilinear elliptic equations and a Brezis–Nirenberg result in $D^{1,p}(\mathbb{R}^N)$, J. Elliptic Parabol. Equ. 10 (1) (2024) 303–328.
- [14] S. Carl, H. Tehrani, Global L^{∞} -estimate for general quasilinear elliptic equations in arbitrary domains of \mathbb{R}^{N} , Partial. Differ. Equ. Appl. 5 (3) (2024).
- [15] E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (8) (1983) 827–850.
- [16] S. Carl, Extremal solutions of *p*-Laplacian problems in $D^{1,p}(\mathbb{R}^N)$ via Wolff potential estimates, J. Differential Equations 263 (6) (2017) 3370–3395.
- [17] S. Carl, Decay estimates for Wolff potentials in \mathbb{R}^N and gradient-dependent quasilinear elliptic equations, J. Differential Equations 265 (8) (2018) 3685–3708.
- [18] T. Kilpelainen, J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994) 137–161.