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Abstract

The central carbon metabolism is the driving force of cellular processes as it covers the

essential generation of energy and biomass from extracellular substrates. Understand-

ing its capacity and regulation provides an enormous potential to the design of efficient

biotechnological processes as well as to remedy metabolic diseases. Unfortunately, the

complexity and versatility of metabolism conceals the interplay of different regulatory

layers and leaves the field of metabolic research with numerous, partially competing

hypotheses, which calls for an integrated analysis.

This work aims at unraveling the interplay of regulation mechanisms in the central

carbon metabolism of adherent Madin-Darby canine kidney (MDCK) cells for a broad

range of growth conditions and relies on the development of mathematical models for

the quantitative description of experimental measurements.

With the objective to find an initial concept for an integrated modeling approach, this

work characterizes in a first step the growth and metabolism of MDCK cells cultivated

in two different media. Surprisingly, this analysis reveals an identical growth behavior

as well as comparable dynamics in intracellular metabolite concentrations. The data,

thus, implicitly suggests that extracellular substrate levels may have a minor influence

on the metabolic activity. Also the hypothesis of an energy homeostasis is rendered as

less relevant for describing the MDCK cell metabolism. It rather seems that substrate

uptake rates, which change with culture duration, and key enzyme metabolite interac-

tions constitute salient features of intracellular metabolite dynamics.

To fully account for cell growth and uptake of substrates, this work develops in a second

step a segregated model that describes the proliferation of adherent cells in number and

volume by taking into account the mean cell diameter. The process of growth involves

that cells pass through different diameter classes, while consuming substrates and re-

leasing byproducts. In addition to the substrate availability, growth is also limited by

the cell density on the attachment surface. The derived model is simply structured, easy

to compute and recapitulates the data of three independent experiments using a single

parameter set. Apart from evaluating and predicting cell cultivations, the model also
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provides macroscopic functions for complex cellular processes such as substrate uptake,

biosynthesis and change in cell size and is, thus, particularly suited for a growth-related

analysis of the cellular metabolism.

Coupling the segregated cell growth model to simple, biologically relevant descriptions

of the central carbon metabolism supports the analysis of metabolite dynamics for a

variety of growth conditions and time scales. The derived model covers central parts of

glycolysis and glutaminolysis, accounts for links to associated metabolic pathways and

takes into account in vitro measurements of enzyme activities. Based on an advanced

simulation scheme and sequential model fitting, the approach suggests that metabolic

activity is mainly driven by a growth-dependent substrate transport while the distribu-

tion of fluxes to biosynthesis and energy generation is determined by the properties of

the involved enzymes. In case substrates are limiting, the metabolic activity reduces

and enzyme-metabolite-interactions enable the supply of the central carbon metabolism

with intracellular amino acids and biomass precursor, which guarantees a minimum ac-

tivity. Therefore, the shift in metabolic control is an essential property of the cellular

metabolism that consistently describes metabolite dynamics of three cell cultivations,

two substrate limitation experiments and one substrate pulse experiment. Furthermore,

the approach considers the preculture of cells, which explains variations among repli-

cate experiments. Based on the model’s performance in describing the data, its simple

structure and its power to predict the metabolic activity, the model enables a reliable

evaluation of strategies that aim at a faster or more efficient metabolism.

Overall, the modeling approach realizes a combined analysis of growth and metabolism

of MDCK cells that contributes to the field of metabolic research. By placing relevant

hypotheses on the metabolic regulation into the context of various experimental condi-

tions, this work delivers conclusive insights into the mechanisms of metabolic pathways

and illuminates the turnover of metabolites as well as the supply of the cell with energy

and biomass precursors.
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Kurzfassung

Der zentrale Kohlenstoffwechsel einer Zelle wandelt extrazelluläre Substrate zu Ener-

gie und Biomasse um und ist damit die Triebkraft zellulärer Prozesse. Ein umfassendes

Verständnis von Kapazität und Regulation des Stoffwechsels besitzt daher ein enormes

Potential sowohl für die Auslegung effizienter biotechnologischer Prozesse als auch für die

Behandlung metabolischer Erkrankungen. Bedauerlicherweise verdecken seine Komple-

xität und Vielseitigkeit das Zusammenspiel der verschiedenen regulatorischen Ebenen,

was der Metabolismusforschung unzählige, zum Teil konkurrierende Hypothesen ein-

brachte und nach einer ganzheitlichen Analyse verlangt.

Diese Arbeit zielt darauf ab, das Zusammenspiel von Regulationsmechanismen im Zen-

tralstoffwechsel der adhärenten Madin-Darby canine kidney (MDCK) Zelle über einen

weiten Bereich von Wachstumsbedingungen aufzuklären und stützt sich dabei auf die

Entwicklung mathematischer Modelle zur quantitativen Beschreibung experimenteller

Messungen.

Mit dem Ziel, ein initiales Konzept für den ganzheitlichen Modellierungsansatz zu finden,

werden im ersten Schritt dieser Arbeit Wachstum und Stoffwechsel der MDCK Zelle für

zwei unterschiedlichen Kultivierungsmedien charakterisiert. Überraschenderweise zeigen

sich übereinstimmende Wachstumsphasen und vergleichbare Dynamiken in den intrazel-

lulären Metabolitkonzentrationen. Die Daten legen damit implizit nahe, dass der Ein-

fluss der Substrate auf die Stoffwechselaktivität begrenzt ist. Auch die Hypothese einer

Energie-Homeostase ist minder relevant für die Beschreibung des MDCK Zellstoffwech-

sels. Vielmehr scheinen die Substrataufnahmeraten, welche sich mit der Kultivierungs-

dauer ändern, im Zusammenspiel mit entscheidende Enzym-Metabolit-Interaktionen be-

reits wesentliche Dynamiken in den intrazellulären Metaboliten auszumachen.

Um Wachstum und Substratbedarf der Zellen vollständig nach zu bilden, wird ein se-

gregiertes Modell entworfen, welches das adhärente Wachstum in Zahl und Volumen

durch die Berücksichtigung des mittleren Durchmessers beschreibt. Der Wachstumspro-

zess beinhaltet das Durchlaufen verschiedener Zelldurchmesser-Klassen, was Substrate

verbraucht und Nebenprodukte freisetzt. Zusätzlich zur Substratverfügbarkeit ist das
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Wachstum auch durch die Zelldichte auf der Anheftungsoberfläche begrenzt. Dabei be-

sitzt das Modell eine relativ einfache Struktur, ist schnell zu berechnen und gibt die

Daten von drei unabhängigen Experimenten unter Verwendung eines einzigen Parame-

tersatzes wieder. Neben dem Evaluieren und Vorhersagen von Zellkultivierungen kann

das Modell komplexe zelluläre Prozesse wie Substrataufnahme, Biosynthese und Zell-

größenänderung durch einfache, makroskopische Funktionen abbilden und ist damit ide-

al für wachstumsabhängige Analysen des Zellstoffwechsels geeignet.

Die anschließende Kopplung des segregierten Zellwachstumsmodells mit einer einfachen,

biologisch relevanten Beschreibung des Zentralstoffwechsels erlaubt es, Dynamiken in den

Metabolitkonzentrationen über verschiedene Kultivierungsbedingungen und Zeitskalen

hinweg aufzuklären. Hierbei werden zentrale Bestandteile von Glykolyse und Glutamino-

lyse als auch deren Verbindung zu assoziierten metabolischen Wegen berücksichtigt und

in vitro Messungen von Enzymaktivitäten einbezogen. Basierend auf einem erweiter-

ten Simulationsschema und sequentieller Modellanpassung legt der angewandte Ansatz

nahe, dass die Aktivitäten des Stoffwechselnetzwerkes im Wesentlichen durch wachs-

tumsabhängige Substrattransporte bestimmt sind. Die exakte Verteilung der Stoffflüsse

zu Biosynthese oder Energiegenerierung hängt hingegen von den Eigenschaften der invol-

vierten Enzyme ab. Im Falle einer Substratlimitierung verringert sich die metabolische

Aktivität wobei Enzym-Metabolit-Interaktionen eine minimale Versorgung der Stoff-

wechselwege mit intrazellulären Aminosäuren und Biomassevorläufern ermöglichen. Die

Verlagerung der metabolischen Kontrolle ist somit eine essentielle Eigenschaft des zel-

lulären Stoffwechsels, welche Metabolitdynamiken für drei Zellkultivierungen, zwei Sub-

stratlimitierungen und einem Substratpuls Experiment konsistent beschreibt. Weiterhin

berücksichtigt der Ansatz die Vorkultur der Zelle, was experiment-spezifische Unterschie-

de erklärt. Basierend auf der Leistungsfähigkeit im Beschreiben der Daten, der einfachen

Modellstruktur und der erzielten Vorhersagekraft für Kultivierungen ist das entwickelte

Modell auch geeignet, Strategien die auf einen schnelleren oder effizienteren Stoffwechsel

abzielen verlässlich zu evaluieren.

Zusammengefasst realisiert der hier vorgestellte Modellierungsansatz eine kombinierte

Analyse von Wachstum und Metabolismus der MDCK Zelle und trägt zur Erforschung

des Zellstoffwechsels bei. Relevante Hypothesen zur Stoffwechselregulation werden in

den Kontext verschiedenster Kultivierungsbedingungen gesetzt, was Aufschluss über die

Kontrolle der metabolischen Netzwerke gibt und die Metabolitumsetzung als auch die

Versorgung der Zelle mit Energie und Biomassevorläufern beleuchtet.

VIII



Contents

Abstract V

Kurzfassung VII

List of abbreviations XIII

List of symbols XVII

1. Introduction 1

2. Theory 5
2.1. Madin Darby canine kidney cells . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Biotechnological application of MDCK cells . . . . . . . . . . . . 6
2.1.2. Growth phases during cell cultivation . . . . . . . . . . . . . . . . 6

2.2. Metabolism of continuously growing cells . . . . . . . . . . . . . . . . . . 8
2.2.1. Hierarchical control . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2. Extracellular substrates . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3. Transport processes . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4. Glucose metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5. Glutamine metabolism . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.6. Nucleotide metabolism . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3. Systems biology approach to cell growth and metabolism . . . . . . . . . 21
2.3.1. Cell growth models . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2. Dynamic models of metabolism . . . . . . . . . . . . . . . . . . . 23
2.3.3. Model construction and analysis . . . . . . . . . . . . . . . . . . . 25

3. Models and methods 29
3.1. Model definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1. Segregated cell growth model . . . . . . . . . . . . . . . . . . . . 29
3.1.2. Structured central carbon metabolism model . . . . . . . . . . . . 33

Glycolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Glutaminolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Energy metabolism and respiration . . . . . . . . . . . . . . . . . 46

3.1.3. Coupling of models . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2. Model simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1. Considering the preculture of cells . . . . . . . . . . . . . . . . . . 52

IX



3.2.2. Substrate limitations through medium dilution . . . . . . . . . . . 53
3.2.3. Hierarchy of model parts and sequential model fitting . . . . . . . 54

3.3. Theoretical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.1. Algorithms and objective function . . . . . . . . . . . . . . . . . . 55
3.3.2. Model analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3. Limit of quantification . . . . . . . . . . . . . . . . . . . . . . . . 56

4. Results and discussion 57
4.1. Observations for MDCK cell cultivations in different media . . . . . . . . 57

4.1.1. Growth, nutrient supply and byproduct release . . . . . . . . . . 57
4.1.2. Response of metabolism to growth and media . . . . . . . . . . . 60
4.1.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2. A segregated model for cell growth . . . . . . . . . . . . . . . . . . . . . 70
4.2.1. Relation between cell number, diameter and volume changes . . . 70
4.2.2. Extracellular substrate and byproduct dynamics . . . . . . . . . . 73
4.2.3. Substrate uptake rates during cell cultivation . . . . . . . . . . . 74
4.2.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3. Dynamics in central carbon metabolism . . . . . . . . . . . . . . . . . . . 81
4.3.1. Glycolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.2. Pentose phosphate pathway . . . . . . . . . . . . . . . . . . . . . 91
4.3.3. Glycogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.4. Sensitivity analysis for glycolysis . . . . . . . . . . . . . . . . . . 93
4.3.5. Discussion part I . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.6. Glutaminolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.7. Pyruvate metabolism . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.8. Sensitivity analysis for glutaminolysis . . . . . . . . . . . . . . . . 113
4.3.9. Energy metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.10. Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.3.11. Discussion part II . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3.12. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5. Conclusion 127

6. Outlook 131

List of figures 134

List of tables 136

List of publications 137

Bibliography 140

X



A. Supplementary studies 173
A.1. Sedimentation and attachment of MDCK cells to 6-well plate surface . . 173
A.2. Adjusting the segregated cell growth model to growth in DMEM medium 174
A.3. Fit of segregated cell growth model to MDCK.SUS growth . . . . . . . . 177
A.4. Parameter correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . 178

B. Supplementary data 180
B.1. Limits of quantification for metabolite measurements . . . . . . . . . . . 180
B.2. Adenosine pool dynamics during substrate perturbation . . . . . . . . . . 181

C. Local and global model parameters 182

XI





List of abbreviations

13DGP 1,3-Bisphosphoglyceric acid

2PG 2-Phosphoglycerate

3PG 3-Phosphoglycerate

6PGDH 6-Phosphogluconate dehydrogenase

αKG α-Ketoglutarate

AA Amino acid pool

AAex Exchange between AA and αKG

ACCoA Acetyl-CoA

ACO Aconitase

ADK Adenylate kinase

ADP Adenosine diphosphate

AGE1.HN Designer cell developed by ProBioGen

Akt Protein kinase B

ALA Alanine

ALD Aldolase

AMP Adenosine monophosphate

AS30D Tumor ascite

ASP Aspartate

ATA Aspartate/Alanine transaminase

ATP Adenosine triphosphate

ATPase Adenylpyrophosphatase

B0AT Amino acid transporter family

BHK Baby hamster kidney

BPE group Bioprocess engineering group

CAC Cis-aconitate

CDP Cytidine diphosphate

CHO Chinese hamster ovary

CIT Citrate

XIII



List of abbreviations

CL Citrate lyase

CMP Cytidine monophosphate

CS Citrate synthase

CTP Cytidine triphosphate

DAP Dihydroxyacetone phosphate

E4P Erythrose 4-phosphate

EC Energy charge

ENO Enolase

EpiSerf Serum-free cell culture medium

ERK Extracellular-signal-regulated kinases

F16BP Fructose 1,6-bisphosphate

F6P Fructose 6-phosphate

FAD Flavin adenine dinucleotide

FADH2 Reduced flavin adenine dinucleotide

FIM Fisher information matrix

FMA Fumarase

FUM Fumarate

G6P Glucose 6-phosphate

G6PDH Glucose 6-phosphate dehydrogenase

GAP Glyceraldehyde 3-phosphate

GAPDH Glyceraldehyde phosphate dehydrogenase

GDH Glutamate dehydrogenase

GDP Guanosine diphosphate

GLC Intracellular glucose

GLCx Extracellular glucose

GLN Intracellular glutamine

GLNase Glutaminase

GLNT Glutamine transporter

GLNx Extracellular glutamine

GLT Glutamate transporter

GLU Intracellular glutamate

GLUT Glucose transporter

GLUx Extracellular glutamate

GLYS Glycogen synthase

GMEM Glasgow’s MEM (Eagle’s Minimal Essential Medium)

XIV



GMEM-Z Serum-containing cell culture medium

GMP Guanosine monophosphate

GPI Glucose-6-phosphate isomerase

GS Glutamine synthase

GTP Guanosine triphosphate

HEK Human embryonic kidney

HeLa Cells derived from Henrietta Lacks

HIF-1 Hypoxia-inducible factor 1

HK Hexokinase

ICDH Isocitrate dehydrogenase

ICIT Isocitrate

IMP Inosine monophosphate

KDH α-Ketoglutarate dehydrogenase

LAC Intracellular lactate

LACx Extracellular lactate

LDH Lactate dehydrogenase

LOQ Limit of quantification

M Arbitrary metabolite

MAL Malate

MDCK Madin Darby canine kidney

MDH Malate dehydrogenase

ME Malic enzyme

mTOR Mechanistic target of rapamycin

myc Oncogene

NAD Nicotinamide adenine dinucleotide

NADH Reduced nicotinamide adenine dinucleotide

NADP Nicotinamide adenine dinucleotide phosphate

NADPH Reduced nicotinamide adenine dinucleotide phosphate

NH4 Intracellular ammonium

NHx
4 Extracellular ammonium

OAA Oxaloacetate

ODE Ordinary differential equation

P Arbitrary product

p53 Tumor suppressor protein

PBS Phosphate buffered saline

XV



List of abbreviations

PC Pyruvate carboxylase

PDH Pyruvate dehydrogenase

PEP Phosphoenolpyruvate

PEPCK Phosphoenolpyruvat-carboxykinase

PFK Phosphofructokinase

PGK Phosphoglycerate kinase

PGM Phosphoglycerate mutase

PI3K Phosphatidylinositide 3-kinases

PK Pyruvate kinase

PPP Pentose phosphate pathway

PSP Purine salvage pathway

PYR Pyruvate

R5P Ribose 5-phosphate

ras Oncogene

RDPK Ribose 1,5-bisphosphate phosphokinase

Rul5P Ribulose 5-phosphate

S Arbitrary substrate

S7P Seduheptulose 7-phosphate

SDH Succinate dehydrogenase

SNAT3 Transporter family

src Oncogene

SUC Succinate

SUCCoA Succinyl-COA

TATK Transaldolase and transketolase

TPI Triosephosphate isomerase

UDP Uridine diphosphate

UDPGalNAc UDP N-acetylgalactosamine

UDPGlcNAc UDP N-acetylglucosamine

UGLC Uridine diphosphate glucose

UMP Uridine monophosphate

UT Uridyl transferase

UTP Uridine triphosphate

X5P Xylulose 5-phosphate

XVI



List of symbols

Symbol Unit Description

α - scaling factor for transition rate

γGLNT - scaling factor for variable GLNT capacity

γGLUT - scaling factor for variable GLUT capacity

Θ - unit step function

λ - scaling factor that accounts for water evaporation

µ 1/min specific growth rate

µmax 1/min maximum specific growth rate

σ maximum data point

σ̃ maximum simulation point

φ - parameter vector

φ′ - perturbed parameter vector

Φ - matrix of model parameterizations

χ2(φ) - sensitivity coefficients for φ

bsyn - relative biosynthesis activity

bNAD - relative NADH level

d̄ µm mean cell diameter

dc µm critical cell diameter

dm µm minimum cell diameter

Elevel - enzyme level

f - growth inhibition factor

Fevap L/min water evaporation rate constant

FQS - weighted sum of squared residuals

KAAex 1/min specific activity of AAex

KACO 1/min specific activity of ACO

KATA 1/min specific activity of ATA

KATPase 1/min specific activity of ATPase

XVII



List of symbols

Symbol Unit Description

kdGLNx 1/min specific GLNx decomposition rate

kdPY R 1/min specific PYR degradation rate

Ke 1/min specific activity of enzyme e

KENO 1/min specific activity of ENO

KGLT 1/min specific activity of GLT

KGLY S 1/min specific activity of GLYS

KKDH 1/min specific activity of KDH

km/ATP cell/L/min specific ATP consumption rate for cell maintenance

KPSP 1/min specific activity of PSP

KRDPK 1/min specific activity of RDPK

KSDH 1/min specific activity of SDH

ksett 1/min specific sedimentation rate

KTATK3PG 1/min specific activity of TATK3PG

KTATKF6P 1/min specific activity of TATKF6P

kX/ATP 1/min specific ATP consumption rate for growth

kaPK L2 mmol2 activation constant of PK

kaLDH L2 mmol2 activation constant of LDH

keqAAex - equilibrium constant of AAex

keqACO - equilibrium constant of ACO

keqACO2 - equilibrium constant of ACO2

keqADK - equilibrium constant of ADK

keqENO - equilibrium constant of ENO

keqFMA - equilibrium constant of FMA

keqGPI - equilibrium constant of GPI

keqICDH - equilibrium constant of ICDH

keqPSP - equilibrium constant of PSP

keqSDH - equilibrium constant of SDH

keqTATK3PG - equilibrium constant of TATK3PG

keqTATKF6P - equilibrium constant of TATKF6P

kmADK mmol/L affinity constant of ADK

kmALD mmol/L affinity constant of ALD

kmCL mmol/L affinity constant of CL

kmFMA mmol/L affinity constant of FMA

XVIII



Symbol Unit Description

kmG6PDH mmol/L affinity constant of G6PDH

kmGLCx mmol/L Monod constant for GLCx

kmGLNT mmol/L affinity constant of GLNT

kmGLNx mmol/L Monod constant for GLNx

kmGLUT mmol/L affinity constant of GLUT

kmGPI mmol/L affinity constant of GPI

kmHK mmol/L affinity constant of HK

kmICDH mmol/L affinity constant of ICDH

kmLDH mmol/L affinity constant of LDH

kmMDH mmol/L affinity constant of MDH

kmPDH mmol/L affinity constant of PDH

kmeP mmol/L affinity constant of enzyme e for product P

kmPFK mmol/L affinity constant of PFK

kmPK mmol/L affinity constant of PK

kmeS mmol/L affinity constant of enzyme e for substrate S

kmUT mmol/L affinity constant of UT

Kmax
ADK mmol/L/min maximum cell-volume-specific activity of ADK

Kmax
ALD mmol/L/min maximum cell-volume-specific activity of ALD

Kmax
CL mmol/L/min maximum cell-volume-specific activity of CL

Kmax
e mmol/L/min maximum cell-volume-specific activity of enzyme e

Kmax
FMA mmol/L/min maximum cell-volume-specific activity of FMA

Kmax
G6PDH mmol/L/min maximum cell-volume-specific activity of G6PDH

Kmax
GLNT mmol/L/min maximum cell-volume-specific activity of GLNT

Kmax
GLUT mmol/L/min maximum cell-volume-specific activity of GLUT

Kmax
GPI mmol/L/min maximum cell-volume-specific activity of GPI

Kmax
HK mmol/L/min maximum cell-volume-specific activity of HK

Kmax
ICDH mmol/L/min maximum cell-volume-specific activity of ICDH

Kmax
LDH mmol/L/min maximum cell-volume-specific activity of LDH

Kmax
MDH mmol/L/min maximum cell-volume-specific activity of MDH

Kmax
PDH mmol/L/min maximum cell-volume-specific activity of PDH

Kmax
PFK mmol/L/min maximum cell-volume-specific activity of PFK

Kmax
PK mmol/L/min maximum cell-volume-specific activity of PK

Kmax
UT mmol/L/min maximum cell-volume-specific activity of UT

XIX



List of symbols

Symbol Unit Description

LOQM mmol/L volume-specific limit of quantification for

metabolite M

LOQmmol
M mmol limit of quantification for metabolite M

mGLCx mmol/L/µL/min cell-volume-specific uptake rate of GLCx for

maintenance

mGLNx mmol/L/µL/min cell-volume-specific uptake rate of GLNx for

maintenance

mNHx
4

mmol/L/µL/min cell-volume-specific use of NHx
4 for

maintenance

NADbasal - adjustable parameter for influence of NAD/NADH

N c - number of classes

N j
lm - number of measured time points for state variable m

in experiment l

N l - number of experiments

Nm
l - number of state variables measured in experiment l

rAAex mmol/L/min cell-volume-specific reaction rate for AAex

rACO mmol/L/min cell-volume-specific reaction rate for ACO

rACO2 mmol/L/min cell-volume-specific reaction rate for ACO2

rADK mmol/L/min cell-volume-specific reaction rate for ADK

rALD mmol/L/min cell-volume-specific reaction rate for ALD

rATA mmol/L/min cell-volume-specific reaction rate for ATA

rATPase mmol/L/min cell-volume-specific reaction rate for ATPase

rbsyn/PPP mmol/L/min cell-volume-specific efflux from PPP for

biosynthesis

rCCM mmol/L/min cell-volume-specific net ATP production rate by

central carbon metabolism

rCL mmol/L/min cell-volume-specific reaction rate for CL

rdATP mmol/L/min cell-volume-specific ATP consumption rate for

biosynthesis and cell maintenance

rdGLNx mmol/L/min medium-volume-specific GLNx decomposition rate

rENO mmol/L/min cell-volume-specific reaction rate for ENO

rFMA mmol/L/min cell-volume-specific reaction rate for FMA

rG6PDH mmol/L/min cell-volume-specific reaction rate for G6PDH

XX



Symbol Unit Description

rGLCx mmol/L/min cell-volume-specific uptake rate of GLCx

rGLNT mmol/L/min cell-volume-specific transport rate for GLNT

rGLNx mmol/L/min cell-volume-specific uptake rate of GLNx

rGLT mmol/L/min cell-volume-specific transport rate for GLT

rGLUT mmol/L/min cell-volume-specific transport rate for GLUT

rGLUx mmol/L/min cell-volume-specific uptake rate of GLUx

rGLY S mmol/L/min cell-volume-specific reaction rate for GLYS

rGPI mmol/L/min cell-volume-specific reaction rate for GPI

rHK mmol/L/min cell-volume-specific reaction rate for HK

rICDH mmol/L/min cell-volume-specific reaction rate for ICDH

rKDH mmol/L/min cell-volume-specific reaction rate for KDH

rLACx mmol/L/min cell-volume-specific release rate of LACx

rLDH mmol/L/min cell-volume-specific reaction rate for LDH

rm/ATP mmol/L/min cell-volume-specific ATP consumption rate for

cell maintenance

rm/GLCx mmol/L/min medium-volume-specific uptake rate of GLCx for

maintenance

rm/GLNx mmol/L/min medium-volume-specific uptake rate of GLNx for

maintenance

rm/NHx
4

mmol/L/min medium-volume-specific use of NHx
4 for

maintenance

rMDH mmol/L/min cell-volume-specific reaction rate for MDH

rNADH mmol/L/min cell-volume-specific net NADH production rate by

central carbon metabolism

rNHx
4

mmol/L/min cell-volume-specific release rate of NHx
4

rPDH mmol/L/min cell-volume-specific reaction rate for PDH

rPFK mmol/L/min cell-volume-specific reaction rate for PFK

rPK mmol/L/min cell-volume-specific reaction rate for PK

rPSP mmol/L/min cell-volume-specific reaction rate for PSP

rRDPK mmol/L/min cell-volume-specific reaction rate for RDPK

rSDH mmol/L/min cell-volume-specific reaction rate for SDH

rTATK3PG mmol/L/min cell-volume-specific reaction rate for TATK3PG

rTATKF6P mmol/L/min cell-volume-specific reaction rate for TATKF6P

XXI



List of symbols

Symbol Unit Description

rtrans 1/h specific transition rate

rUT mmol/L/min cell-volume-specific reaction rate for UT

rX/ATP mmol/L/min cell-volume-specific ATP consumption rate for

growth

rX/GLCx mmol/L/min medium-volume-specific uptake rate of GLCx for
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1Chapter

Introduction

Cell culture processes represent an advanced technology platform for developing and pro-

ducing diagnostic and therapeutic biologicals that improve human and animal health.

Fundamental to any cell culture-based process is the robust and efficient growth of cells

in an artificial environment to produce, for example, insulin with E. coli [1], antibodies

with CHO or hybridoma cells [2, 3] and viral vaccines with BHK or MDCK cells [4, 5].

To enable growth, division and response to stress, the cell requires a steady supply with

energy and biomass precursors from metabolism to fuel numerous biosynthetic reactions

and physiological functions [6]. Therefore, the metabolic conversion of nutrients is the

driving force of cellular life and organized in cellular reaction pathways. These reaction

pathways consist of enzymes that catalyze the conversion of one metabolic intermediate

to another [7, pp. 90-119] and compose a metabolic network that is supplied by uptake of

substrates via facilitated transports across cellular membranes. Based on the individual

properties of the involved enzymes, the resulting production rates for cellular energy and

biomass precursors are determined by the network properties and adjusted to cellular

needs by sophisticated regulation mechanisms, which together enable biosynthesis in a

changing environment.

The in vitro properties of single enzymes were investigated by biochemists since many

years to unravel the network architecture and regulation mechanisms of metabolic path-

ways. These studies delivered a detailed description of substrate and cofactor use of

enzymatic reactions, while regulation mechanisms and overall dynamics of the in vivo

metabolism remained largely hypothetical [8–10]. Firstly, because in vitro measurements

barely reflect the in vivo behavior [11] and, secondly, many of the identified cofactors

and allosteric effects may not act as regulators of metabolism [12]. In parallel, biotech-

nologists analyzed in empiric studies the cellular need for extracellular nutrients under

various cultivation conditions and achieve appreciable cell growth rates and product

titers [13, 14]. Combined with knowledge of biochemical reaction pathways, the analysis

of substrate uptake and byproduct release rates provides insights into metabolic pathway

activities under (pseudo) steady state conditions and facilitates the design of cell feeding
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1. Introduction

strategies [15, 16]. During standard cultivations, however, cells easily adapt their growth

and substrate uptake rates to environmental conditions, e.g. switch from growth to in-

termediary to stationary phase, with a concomitant adjustment of the metabolic activity

through multiple regulatory mechanisms. For instance, the genomic, translational and

proteomic level influences the abundance of enzymes and transporter as well as their

degree of phosphorylation which, in addition to metabolite, cofactors and allosteric ef-

fector levels, determine the conversion rate within the reaction pathways. Since the

pools and fluxes of the metabolic network represent the functional endpoints through

all these regulatory layers, their quantification is key for a comprehensive systems level

analysis of the cellular metabolism [17, 18]. Together with the measurement of enzyme

activities, such data can illuminate many facets of metabolism and can indirectly unravel

regulatory principles. However, it involves the acquisition of large data sets from differ-

ent analytical methods and for a variety of experiments, which often impedes conclusive

insights unless integrated into a systematic data analysis framework.

Mathematical models can organize information in a comprehensive system description

and offer a predictive rationalization for bioprocesses [19]. Current metabolic models

(e.g. [20]) elegantly explain general phenomenological aspects such as metabolic steady

states, the response of metabolism to substrate, enzyme and effector level perturbations

or the connection between transcriptome and metabolome. These models were largely

developed for yeast or bacteria and deliver conclusive insights into regulatory principles

of the central carbon metabolism. However, for mammalian cells only very few data-

driven models are available and explanations for the metabolic regulation in a broader

physiological context, where cells undergo changes in growth and substrate uptake rates,

are rare. Whilst the correlation between specific growth rate and metabolic activity is

widely accepted, the question of what actually regulates the metabolic activity is still

difficult to answer [21].

Over the past decade, the BPE group from the Max Planck Institute for Dynamics of

Complex Technical Systems in Magdeburg collected a profound data set for adherently

growing MDCK cells that covers enzyme activities [22], metabolite pools [23] and intra-

cellular fluxes [16] for a variety of growth conditions. Although MDCK cells are only

sparsely considered in metabolic research, their adherent nature provides an ideal op-

portunity to study the metabolic activity in dependence of the cellular growth status.

In contrast to suspension cells such as CHO, the growth status of adherent cultures can

exclusively depend on the available attachment surface if well defined media are used,

which ultimately allows to distinguish the influence of growth and extracellular substrate
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levels on metabolism. It is the aim of this work to develop a mathematical model that

incorporates the available data for adherent MDCK cells and that unravels the interplay

of regulatory principles of the cellular metabolism. Provided that the model is capable to

predict the metabolic behavior of MDCK cells, this work also seeks to evaluate strategies

for a faster or more efficient cell growth. The initial step towards these objectives is the

pre-analysis of cell cultivations in GMEM-Z and EpiSerf medium to strengthen or reject

hypotheses on the regulation of metabolism. Based on these observations, the second

step is to develop and evaluate a simple kinetic model for the central carbon metabolism

that explains metabolite pools upon substrate limitations and substrate pulses with the

regulation of single enzymes. In a third step, cell growth dynamics are coupled to the

kinetic model of metabolism to evaluate whether the derived mechanisms of enzyme

regulation also explain metabolite pool dynamics during cell cultivation or if additional,

hierarchical influences need to be considered.

The following theoretical part explains the physiology and metabolism of MDCK

cells and provides an overview on systems biological approaches to cell growth and

metabolism (Chapter 2). Afterwards, the structure of the established mathematical

models, the applied simulation strategies and the required theoretical methods are spec-

ified (Chapter 3). The modeling as well as its implications to the MDCK cell metabolism

start with observations for MDCK cell cultivations and proceed with the analysis of cell

growth, glycolysis and glutaminolysis (Chapter 4). Each part of Chapter 4 is provided

with a separate discussion and summary while the contribution of this work to the field

of metabolic research and the opportunities for future studies are addressed in Chapter 5

and 6, respectively.
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2Chapter

Theory

2.1. Madin Darby canine kidney cells

In 1958, Madin and Darby described a method to obtain continuously growing cells from

domestic animal tissues [24]. The renal tubular cell analyzed in this work is derived from

a cocker spaniel kidney, wherefore it is referenced as MDCK cell, and grows adherently

(Fig. 2.1 A, B). Based on its fast and robust proliferation under standardized conditions

and its high susceptibility for virus infections, the MDCK cell evolved as a host system

for biotechnological virus production processes (see next section). Apart from its role as

host system for virus production, the MDCK cell also finds attention as model system

for studying a variety of biological phenomena such as the drug transport across the

epithelial barrier [25], the regulation of cell-cell adhesion [26], the development of the

cell surface polarity [27] or the localization of sugar transporter ([28], Fig. 2.1C).

A B C 

Figure 2.1.: Madin Darby canine kidney cells (MDCK) attached to a growth sur-
face. (A) MDCK cell cultivation in 6-well plates (picture from BPE group). (B) Magnification
of cell monolayer (picture from BPE group, scale bar: 40 µm). (C) MDCK cells (nucleus in
green) co-transfected with glucose transporter GLUT1 (in green at basolateral membrane) and
GLUT5 (in red at the apical membrane) are shown in d1 while d2 is the same picture as X-Z
slice image, both taken from Takata et al. [28] (scale bar: 10 µm).
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2.1.1. Biotechnological application of MDCK cells

The production of recombinant proteins, such as erythropoetin, insulin and antibodies,

by cultivated mammalian cells is of great medical and industrial relevance as the ex-

traction from animals is less efficient, less stable or simply not possible [29]. A second,

equally important field of application is the production of viral vaccines that prevent

the body from infections by pathogens where causal cures are not yet available. From a

biotechnological point of view, the use of the MDCK cell is almost completely located

and widely recognized in the field of influenza virus production [30] and is licensed for

human vaccine production since 2001 [31]. Any production process relies upon cell culti-

vation in which the cells undergo several growth phases (see section 2.1.2) with changing

substrate uptake and byproduct release rates. Typically, serum-containing (e.g. GMEM

+ fetal calf serum) or serum-free (e.g. EpiSerf) media are used to supply the cells with

nutrients. To better understand the variations of the cultivation process, to optimize cell

growth or the conditions for virus production and to establish new cultivation strate-

gies, a deeper understanding of the growth-related metabolism is of key importance.

Apart from the routine monitoring of the cultivation conditions and the growth status

of the cells, measurements of intracellular metabolites, which are intermediates in the

breakdown of, e.g., glucose in glycolysis or of glutamine in glutaminolysis (see section

2.2), provide an additional dimension for the identification of rate limiting intracellular

reaction steps [32] or of mechanisms important for adaptation of cells to new cultivation

media [33]. For MDCK and other cell lines, the bioprocess engineering group at the Max

Planck Institute in Magdeburg developed an assay platform to gather data on cultiva-

tion conditions, growth status [14], intracellular metabolite levels [34–36] and enzyme

activities [22, 37] to support a systems-level analysis of the MDCK cell metabolism.

2.1.2. Growth phases during cell cultivation

Cultivation processes start with inoculating cells in a bioreactor (e.g 6-well plate,

T-Flask, roller bottle, stirred tank reactor). The subsequent growth of cells can be

divided into the following characteristic phases:

Lag phase: Cultivation of cells starts with a lag phase in which adaption to the

environment occurs prior to the initiation of biomass increase. In case of adherent cells

in non-stirred bioreactors, the lag phase involves sedimentation to a surface, followed by

an active attachment and flatening [38]. Afterwards, cells increase in biomass well before

6



2.1. Madin Darby canine kidney cells

the actual division [39, 40], which is already accompanied by an increased demand for

substrates [41]. Since the cell only divides after a certain size is reached, the cell number

is in many cases a delayed indicator for cell growth ([42], Fig. 2.2).

lag phase 

growth  

phase 

intermediate 

growth phase 

stationary 

growth phase 

cell number biomass 

time 

re
l.
 u

n
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s
 

Figure 2.2.: Schematic representation of growth phases during cell cultivation.

Growth phase: The increase in biomass with a concomitant increase in cell volume

[43] and protein content [44] marks the beginning of the growth phase. When reaching

a certain cell-specific volume, a mother cell divides into two daughter cells, which start

growing again. It is further observed that the relative number of cells in the S-phase of

the cell cycle is increased [45]. On a population level, the amount of biomass increases

in an exponential manner, which is close to the maximum growth rate. On the level of

a single cell, however, the growth process unravels an unexpected degree of complexity.

The cell-specific volume increase in the different cell cycle phases is far different from

being monotonic [46]. Furthermore, larger cells have higher biomass growth rates than

smaller cells which in consequence changes the distribution of the population with each

generation [47]. Since cells still remain in a certain size range, mechanisms exist that

limit the size variations [48]. However, the exponential growth of cells lasts until either

substrates or byproduct levels become limiting. In case of adherent cells, growth can

also be limited by the availability of free growth surface, which is formally defined as

cell density-dependent growth inhibition [49].

Intermediate growth phase: Independent of which resource is limiting, when the

growth rate decreases the cell passes into an intermediate growth phase that is charac-

terized by a decreasing mean cell diameter and protein content [22, 25]. For example, a
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significant reduction in the growth of mammalian cells is typically observed if the main

substrates glucose and glutamine become limiting [50], which is, at least for hybridoma

cells, expected to be at about 0.2 mmol/L [51]. Alternatively, growth inhibition can

occur due to accumulation of byproducts from the breakdown of glucose and glutamine

[52]. The incomplete oxidation of glucose yields lactate, which reduces the pH and im-

pairs cell growth [51]. Also, ammonia, which is either released by thermal decomposition

of glutamine [53] or by uptake and enzymatic conversion of glutamine, can reduce cell

growth in the range of 2.3 – 7 mmol/L [41, 54] as it shifts the amino acid transport across

cell membranes towards unfavorable conditions [55].

Stationary growth and decline phase: Under full growth inhibition, cells remain

in a stationary growth phase which is characterized by maintenance metabolism with

a minimum substrate consumption. A decline phase may follow if main substrates are

depleted or byproducts reach toxic levels and cells start to lyse.

2.2. Metabolism of continuously growing cells

The growth of cells in the environment of both biotechnological processes and living

organisms depends on the ability to convert substrates in a rapid and economic fashion

into cellular energy and biomass precursors. Therefore, the study of cell growth implies

the characterization of metabolism regarding its capacity and regulation. In case of con-

tinuously growing cells, which are cells with a permanent drive for growth, decades of

research delivered deep insights into the enormously complex and versatile metabolism.

The most prominent among these finding was made ninety years ago by Warburg et al.

[56] and fits to most fast proliferating cells. It describes tumor cells, which also possess a

permanent drive for growth, to secrete larger amounts of lactate under aerobic glycolysis

than normal cells and is today exploited to mark cancers in surgery [57]. Since then,

many facets of metabolism have been reported that contribute to an overflow metabolism

and reduced mitochondrial respiration but a consistent explanation for these phenom-

ena that fits to all continuously growing cells is still lacking, which could be due to

genomic differences [58]. Perhaps, the efforts of studying metabolism suffer from the

fact that characteristics change with the cell type [59], with the physiological status at

time of measurement [21] and with the cultivation conditions [60]. Even after decades

of research, the link between cell growth and metabolism remains an exciting area of

research [61] with many important questions to be answered. The following sections
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give an overview on how cell growth, cultivation conditions and metabolism influence

each other (Fig. 2.3) and introduce hypotheses on how the central metabolic pathways

glycolysis and glutaminolysis, which convert the largest portion of the overall substrate

uptake [15, 62], are regulated. Particular emphasis is placed on hypotheses that cover

hierarchical aspects, the direct influence of extracellular substrates, transport processes,

supply and demand scenarios and intrinsic pathway properties. As data for the MDCK

cell metabolism is sparse, the following summary relies upon findings for other, preferen-

tially continuously growing cells such as AGE1, BHK, CHO and hybridomas. However,

plausible observations for cancer cells are also taken into account and we refer to normal

cells or even yeast cells if very general observations were made that possibly also apply

to MDCK cells.

Figure 2.3.: Mutual influence of cell growth, metabolism and environment. Well-
known cellular processes/mechanisms that interact with the metabolic activity are placed next
to the arrows (gray, see text for further explanations).

2.2.1. Hierarchical control

A long standing question is whether cell growth controls metabolism or whether the

activity of metabolism modulates the biosynthesis machinery (Fig. 2.3), which Suarez

and Moyes described as ”cart and horse” phenomenon as both influence each other

[21]. In principle, mammalian cells possess sophisticated mechanisms to act on the level

of genomes, transcripts [63, 64], proteins [13], and by enzyme phosphorylation [65] on

the activity of metabolic pathways, which are often recognized as hierarchical control

mechanisms. Several reviews comprehensively discuss, for example, the Mth1 enzyme

to enable the amplification of the glucose transporter (GLUT) in yeast [57]. Also, the

transcription factor HIF-1, oncogenes (myc family), and the PI3K/Akt/mTOR signaling

pathway are involved in the activation of several enzymes and the GLUT in mammalian
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cells [66–68]. In an antagonistic way tumor suppressor genes, such as p53, can be involved

in switching the metabolic activity of cancer cells [69] towards, for example, higher GLUT

expression levels [70]. Some of these factors integrate extracellular stimuli such as Akt

signaling in hepatoma cells, which responds to insulin [71], or HIF-1, which responds

to growth factors and low oxygen levels [67]. Another example is the ERK signaling

cascade, which is involved in cell proliferation and stimulated by glucose sensing through

the glucose transporter (GLUT, [72]). Accordingly, hierarchical mechanisms integrate

different sources of information like a hub and, in response, influence the metabolic

activity to better suit the conditions for cell proliferation. In contrast to such hierarchical

influences, it is suggested that the control over metabolism lies within the properties of

the network itself (see section 2.2.4 and 2.2.5), e.g. a control shared by several enzymes

[73] or a control exerted by mechanisms for flux sensing [74]. In particular, enzymes

are suggested to switch in activity with changing energy and precursors levels ([75],

see section 2.2.6) and also metabolite levels may report back to the transcriptomic and

proteomic level, as reviewed by Grüning et al. [76]. So both, hierarchical mechanisms

as well as intrinsic pathway properties, are discussed to control metabolic activity as

well as biosynthesis (Fig. 2.3). Although the mutual influence is not yet fully resolved,

a correlation between metabolic activity and cell growth seems evident and calls for a

growth-related analysis of metabolism [77], which is a central element of this work.

2.2.2. Extracellular substrates

Glucose and glutamine are main substrates for continuously growing cells and their pres-

ence is fundamental to a normal metabolic activity. Glucose is suggested to provide most

of the cellular energy through the breakdown to pyruvate in the glycolysis pathway [78]

while glutamine is expected to provide essential building blocks for biosynthesis [50],

e.g. as protein and peptide constituent and as nitrogen carrier [79]. However, substrate

labeling experiments of continuously growing cells revealed that glutamine, which is me-

tabolized by glutaminolysis and subsequently by the citric acid cycle, not only supports

protein and nucleotide synthesis but can replace the energy production of glycolysis

such that glucose is solely used for the synthesis of biosynthetic precursors [80], e.g.

macromolecule and lipid synthesis [81]. Other studies reported that glutamine is the

major ATP source [82, 83], which however depends on the assumed ATP yield from

glutamine [84]. Furthermore, the abundance of glutamine can stimulate the uptake of

glucose [85, 86]. The opposite, i.e. an activation of glutamine uptake by increasing

glucose levels, is not observed and minimal glutamine levels are essential to stimulate
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cell growth [87, 88]. In conclusion, both substrates contribute to the cellular energy and

precursor generation and are to a certain degree complementary but cannot necessarily

replace each other [89]. Besides glutamine, a wide range of essential and non-essential

amino acids are metabolized by MDCK cells [15].

Mammalian cells are not only flexible in the use of substrate sources but also in the

efficiency to catabolize glucose. It is shown for many continuous cell lines that the

glucose-specific lactate yield is influenced by the media composition [90, 91], e.g. by

ammonium [85] and pyruvate [14]. Under limiting glucose concentrations, much lower

relative lactate release rates [87, 92] and higher glutamine uptake rates were found [93].

It seems that high glucose levels impair the full oxidation of glucose for ATP produc-

tion [78], which is described as Crabtree effect [94]. Renner et al. [95] concluded that a

high glycolytic flux easily saturates the synthetic and oxidative pathways, which utilize

glucose-derived pyruvate, and, hence, increases the glucose-specific lactate yield. How-

ever, also the depletion of substrates, which may induce a rewiring of metabolic routes

and a reduction in metabolic activity, is an example for the influence of extracellular

substrate levels on the mammalian cell metabolism.

2.2.3. Transport processes

Transport of molecules across membranes is a prerequisite of living cells and is facili-

tated by entire protein families. The hexose transporters of kidney cells that predomi-

nantly transfers glucose and fructose between the medium and the cytosol are GLUT1,

GLUT2 and GLUT5 [96]. In principle, the cell can modulate the influx by changing

the transporter’s affinity for its substrate, translocate GLUT to the plasma membrane

and activate preexisting GLUT [97, 98]. For fibroblasts it is described that modulation

of the influx mainly depends on changes in the maximum activity of GLUT [99], for

example by hierarchical regulation through the transcription factor HIF-1, oncogenes or

extracellular stimuli, while for HEK cells the GLUT1 activity is influenced by the ATP

level [100]. For fibroblasts it was also shown that overexpression of ras or src drives the

glucose uptake [101]. Independent of which mechanisms modulate the influx, the trans-

port of glucose is a potential target for the design of bioprocess and is an often overseen

element that exhibits significant control over glycolysis in well studied systems, such as

yeast, as shown by Reijenga et al. [102] and by Galazzo and Bailey [103]. Even in cases

where the transport may not be rate limiting for the glucose metabolism (e.g. in BHK,

CHO or hybridoma cells [86, 92, 104]), reducing the high glucose uptake rates through

molecular biological tools [105] or by chemical inhibition [106] may yield a more eco-
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nomic breakdown of glucose with lower lactate secretion rates as it potentially interferes

with the Crabtree effect. In cancer cells, it is commonly perceived that the GLUT has

substantial control over glycolysis [107, 108] and is, therefore, studied as potential target

for therapy [109–111]. For example, Matsushita and coworkers inhibited GLUT1 with

3-bromopyruvate acid and found significantly suppressed proliferation rates for tumor

cells with high GLUT1 expression levels [112]. In turn, an increase in GLUT1 expression

levels yields a faster increase in tumor size [113]. Also, cells from the immune system

show higher fluxes in upper glycolysis and the pentose phosphate pathway (PPP) after

activation of GLUT with concanavalin A [114]. In turn, genetic deletion of GLUT1 yields

reduced glucose uptake with concomitantly reduced growth rates and ATP levels [115].

Taken together, the fields of bioprocess, cancer and diabetes research [116] describe the

GLUT as a central element in understanding a highly active metabolism.

In contrast to glucose, there is no mammalian cell transporter that is specific to glu-

tamine [117]. Furthermore, incorporation of glutamine into cellular building blocks is

difficult to track, which complicates direct measurements. Normal kidney cells realize

the glutamine uptake through the B0AT transporter, which has a wide specificity as it

transports also hydrophobic and aromatic neutral amino acids, and through the SNAT3

transporter, which is electrogenic and ion-dependent. For tumor cells, it is reported that

glutamine uptake is facilitated by the ASCT2 transporter [117], and the expression of

ASCT2 transporter is stimulated by oncogenes (myc family) to maintain cellular via-

bility and citric acid cycle anaplerosis1 [117, 118]. For cultured HeLa and hybridoma

cells, it is assumed that glutamine transport is the rate limiting step for glutaminolysis

[82, 104]. Finally, the uptake of glutamate is an electroneutral (ion-dependent) transport

in kidney cells and suggested to be rate-limiting in analogy to the glutamine transport

[119].

2.2.4. Glucose metabolism

The breakdown of intracellular glucose (GLC) to pyruvate (PYR) through several in-

termediate metabolites with the concomitant production of ATP and precursors for

anabolic processes is a well studied metabolic conversion route and denoted as glycol-

ysis (Fig. 2.4). A high activity in glycolysis supports the growth of cells [120] and is,

therefore, often found in cancer or transformed cells but also in cells of the body, e.g.

enterocytes [121] and lymphocytes [114], that show high rates of proliferation. On the

one hand an increase in glycolytic activity readily outpaces the capacity for oxidative

1anaplerosis: reactions that supply the citric acid cycle with precursor.
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phosphorylation or of low flux branches [67] but on the other hand enables a robust

and steady supply with biomass precursors [122]. Curi et al. [123] described the influx

into the citric acid cycle to compete with a highly active lactate dehydrogenase (LDH).

Thus, cytosolic PYR is not accumulating but rather secreted as lactate into the medium

(LACx). It is discussed that the high activity of glycolysis is enabled by overexpression of

enzymes [124, 125] or expression of certain isoenzymes [126, 127] and seems to correlate

with the malignancy of tumor cells [128]. In contrast to these findings, it is hypothesized

that cells rather modulate the specific activity of enzymes than their abundance [129].

For example, an overexpression of single enzymes by molecular biological tools may not

enhance the metabolic activity simply because they have diminishing flux control [130],

which is defined as follows: each pathway consists of a reaction cascade where enzymes

and intermediates interact. The conversion rate of intermediates is determined by the

properties of the involved enzymes. Thus, enzymes exert a certain control over the sub-

strate abundance [131]. On a higher level, some of these substrates also participate in

other reactions or act as allosteric modifier of enzymes such that the control spreads

over several reactions (example given in [122]). Another example are rate limiting steps

that dictate the conversion speed of follow up reactions and can, thus, control the activ-

ity of entire pathways. The more the control is located at a single enzymatic step the

less control have the remaining reactions. In the following, we describe the metabolic

network of upper and lower glycolysis as well as of closely related metabolic pathways

and illuminate whether the involved enzyme-mediated reactions are expected to be flux

controlling.

Upper glycolysis: In the first step of upper glycolysis, hexokinase (HK) phosphory-

lates GLC to glucose 6-phosphate (G6P, Fig. 2.4) and preferentially relies on mitochon-

drial ATP [132]. Depending on the cell, the HK is highly active such that any GLC

is rapidly converted [91, 95] and trapped intracellularly, which would indirectly point

towards the GLUT as rate-limiting step. However, with changing cell growth conditions

the control can shift between the GLUT and HK, for example in rat heart cells [60],

and it is difficult to distinguish the influence of both reactions on the metabolic activity,

as reviewed by Rodŕıguez-Enŕıquez et al. [133] and by Maŕın-Hernández et al. [108]. In

BHK and hybridoma cells, for example, the maximum activity of HK was observed to be

close to the flux through glycolysis and, therefore, assumed to be rate-limiting [86, 104].

With the subsequent phosphoglucose isomerase (GPI) mediated conversion to fructose

6-phosphate (F6P), the hexose can continue to follow the glycolytic pathway where it
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2.2. Metabolism of continuously growing cells

serves as a substrate for the phosphofructokinase (PFK). The PFK catalyzes an essen-

tially irreversible reaction of F6P and ATP to fructose 1,6-bisphosphate (F16BP) and

ADP. It consists of three subunits [134] and is regulated in many ways. Among others,

by adenosine-based nucleotides, fatty acids, citrate and fructose 2,6-bisphosphate [135].

The latter is reversibly generated from F6P and the most potent activator of the PFK

[136]. Although the PFK is observed to be rate limiting in normal cells, as reviewed

by Dunaway [137], it seems that glycolysis of continuously growing cells is not limited

by the PFK activity [86, 104]. Rate limiting or not, an inhibition by, e.g. citrate, can

increase metabolite pools of upper glycolysis and yield higher fluxes into the PPP, which

is shown for endothelial cells by Wu et al. [138], and indicates a certain flux control.

Lower glycolysis: In the lower part of glycolysis, the hexose F16BP is split into 3-

carbon sugars, or trioses, while their subsequent degradation is mostly reversible and

exerts only a minor control over the glycolytic activity in AS-30D [108] and HeLa cells

[139]. In particular, the products of the aldolase (ALD) mediated reaction are di-

hydroxyacetone phosphate (DAP) and glyceraldehyde 3-phosphate (GAP), which can

be interconverted by the triosephosphate isomerase (TPI). GAP is further degraded

by glyceraldehyde phosphate dehydrogenase (GAPDH) to 1,3-bisphosphoglyceric acid

(13DGP), which concomitantly oxidizes NAD to NADH. Afterwards, phosphoglycerate

kinase (PGK) converts 13DGP to 3-phosphoglycerate (3PG) and an equimolar amount

of ADP to ATP. It seems that rapidly growing tumor cells keep 3PG at low levels by

a highly active phosphoglycerate mutase (PGM) as it inhibits the PPP and the serine

production [140]. The PGM reversibly converts 3PG into 2-phosphoglycerate (2PG)

and targeting the PGM with inhibitors arrests cancer cell proliferation [141]. The in-

termediate 2PG is a substrate to enolase (ENO), which produces phosphoenolpyruvate

(PEP). The subsequent conversion of PEP to PYR is mediated by the pyruvate kinase

(PK) and phosphorylates ADP to ATP. It is assumed that fast proliferating cells keep

the PK at low activities to increase upstream metabolite concentrations, which then

fuel nucleic acid synthesis with precursor [120]. The decrease in activity can be achieved

by changing from a tetrameric to a dimeric form of the embryonic PK type M2 [142],

which is assumed to be induced by low F16BP levels [143]. In MDCK cells, PYR is

mainly metabolized to lactate (LAC) by the LDH, which is the natural end product of

glycolysis [144]. Only minor amounts of PYR enter the citric acid cycle by conversion to

citrate (CIT) or oxaloacetate (OAA) [16, 22]. The activity of the LDH converts NADH

to NAD and supports the cell in maintaining a proper redox balance. A high LDH
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activity is often indirectly observed as high lactate secretion rate, e.g. for MDCK [145]

or hybridoma [104] cells. Apart from glycolysis, mammalian cells are also capable to

perform gluconeogensis, which is the synthesis of hexoses from PYR and an important

feature of liver cells [146]. However, gluconeogenesis is not engaged by rhenal epithelial

cells when brought to tissue culture [147] and also not by tumor cells [148].

Pathways fueled by glycolysis: Possible metabolic branches for the glycolytic inter-

mediate G6P are glycogenesis for a possible glycogen storage or the PPP for nucleotide,

nucleic acid and macromolecule synthesis as well as NADPH generation. Glycogen lev-

els are low in kidney cells [149] and glycogenesis is initiated by an isomerization of

G6P to glucose 1-phosphate followed by a reaction with uridine triphosphate (UTP)

to uridine diphosphate glucose (UGLC). Afterwards glycogen is produced and serves

as glucose storage. The first reactions of the PPP are mediated by the glucose 6-

phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH)

yielding ribulose 5-phosphate (Rul5P) with its isomers ribose 5-phosphate (R5P) and

xylulose 5-phosphate (X5P). Both enzymes constitute the oxidative entry point into

the PPP and especially 6PGDH is inhibited by glycolytic intermediates such as F16BP

and 3PG [140]. The metabolites F6P and 3PG are also part of the PPP such that

glycolysis and the PPP overlap to a certain degree. The interconversion of metabo-

lites in the PPP is mediated by the transaldolase and transketolase (TATK) reactions

yielding erythrose 4-phosphate (E4P) and seduheptulose 7-phosphate (S7P). The influx

into the PPP ranges from 4 % to 40 % of the glycolytic flux [150–152] for most con-

tinuously growing cells and even higher contributions are estimated for CHO cells by

metabolic flux analysis [2, 153]. A large fraction of the glucose-derived pentose phos-

phate metabolites are found in nucleic acids and adenosine-based nucleotides and, thus,

their contribution to lactate production is diminishing [13, 82]. In transformed mam-

malian cell lines, the generated NADPH covers 30 – 50 % of the total cellular production

and is predominantly used for lipid synthesis [154]. The glycolytic intermediate F6P

is in addition used for generation of UDP N-acetylhexosamines denoted as hexosamine

biosynthesis pathway [85]. In particular, F6P is used for ammination with intracellular

ammonium (NH4) and linked to UTP under consumption of glutamine (GLN) such that

UDP N-acetylglucosamine (UDPGlcNAc) and its isomer UDP N-acetylgalactosamine

(UDPGalNAc) are derived. Both metabolites are important for oxygen-linked protein

glycosylation and play a role in signal transduction [155] as well as sensor mechanisms

[156]. It is, for example, suggested that hexosamines influence growth factor signalling
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and, thus, indirectly couple glucose with glutamine metabolism [157]. In CHO cell-based

anti-body production processes, it is observed that the glycosylation of products depends

on the UDP N-acetylhexosamine levels, which in turn correlate with extracellular glu-

tamine (GLNx) levels and the glycolytic flux [158]. However, also a dependence of UDP

N-acetylhexosamines on NH4 is described [78]. Finally, lower glycolysis fuels the serine

and glycine production, which is enhanced in tumor cells to support biosynthesis [159]

as well as the ability to reduce osmotic [160] and oxidative stress [154].

2.2.5. Glutamine metabolism

It is frequently observed in mammalian cell cultures that the secreted lactate exceeds

the theoretical maximum of two molecules per molecule of consumed glucose [104, 124].

Although puzzling at first glance, it indicates that cells produce lactate from sources

other than glucose [13]. One reason lies in their permanent drive for growth that builds

upon an alternative use of the citric acid cycle, which comes along with a supply differ-

ent from glycolysis. The role of the citric acid cycle changes in fast proliferating cells

from a highly efficient energy production system (fueled from glucose) towards a hub

that ubiquitously supplies biosynthesis [67]. Thus, intermediates of the citric acid cycle

are only partly used for oxidation in mitochondria and the concomitant reduction in

respiratory activity is misinterpreted as defect [56], which has become a central dogma

of tumor cell research [58]. Neither elevated mitophagy2 nor reduced enzyme activi-

ties, which are perceived as causal explanation, are evidenced [161, 162]. Furthermore,

Barnabé and Butler [78] could show that continuously growing cells engage in respira-

tion and derive most of the cellular energy from the citric acid cycle when glycolysis

is limited in substrates. So, the citric acid cycle can engage in energy production and

replace glycolysis as main energy generating pathway depending on the cell and the

culture conditions, as summarized by Moreno-Sanchez et al. [58]. However, the con-

stant efflux of intermediates for biosynthetic purposes, which is called cataplerosis [67],

is refilled with the uptake and degradation of glutamine, a preferred substrate of cancer

cells [163], and also supported by the uptake of other amino acids [13, 164]. Therefore,

glutamine is one of the largest contributor to biosynthesis in mammalian cell culture

and minimal levels are required to enable cell proliferation [78]. In analogy to glycoly-

sis, glutamine is only partially oxidized and yields PYR as end product, which can be

converted to LAC [121, 150]. Motivated by these observations, McKeehan [89] denoted

the path from glutamine to pyruvate as ”glutaminolysis”. The incomplete oxidation in

2mitophagy: degradation of mitochondria
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the citric acid cycle is described as ”truncation” although the capability for oxidative

phosphorylation is still given [165]. Within this definition, glutaminolysis consists not

of a single reaction sequence but of a network with at least four active routes in kidney

cells ([166], out of eight possible routes [84]) and resides partly in the cytosol and partly

in the mitochondrium. Therefore, the description that follows is condensed to central

reactions.

Glutaminolysis: In the first part of glutaminolysis, glutamate (GLU) is generated

from GLN and serves as a source for the second part known as citric acid cycle. The

transport of both intermediates across the mitochondrial membrane is found to work

near equilibrium and, thus, seems to have almost no flux control [167]. The conversion

of GLN to GLU is mediated by glutaminase (GLNase) and releases NH4. Afterwards,

GLU is converted to α-ketoglutarate (αKG) either by a second release of NH4 through

the glutamate dehydrogenase (GDH) yielding NADH or by transferring the amino group

to PYR or OAA under the production of alanine (ALA) or aspartate (ASP), respectively

[124]. Such a transfer of amino groups is facilitated by transaminases3, which are located

in the cytosol and the mitochondrium. In principle, ALA is a nitrogen acceptor that is

secreted by cancer cells [148] as well as by CHO [32], AGE1.HN [168] and MDCK cells

[15] while ASP is used for biosynthesis. It is reported for tumor cells that glutamate is

mainly degraded by transamination and not by the dehydrogenase route [169]. In line

with these observations, MDCK cells were found to have high transaminases activity

[22, 170]. Therefore, release of NH4 results largely from the conversion of glutamine

and not from glutamate [171], which could be due to the negative inhibition of GDH

by guanosine triphosphate (GTP, [172]). Since extracellular ammonium (NHx
4) impairs

cell growth, cultivation of cells with a sole supply by extracellular glutamate (GLUx) is

suggested as an alternative worth testing [173] but requires the synthesis of GLN via an

active glutamine synthase (GS, a premise that is given for MDCK cells [22]) to continue

purine, pyrimidine [154] and UDP N-acetylhexosamine synthesis.

Lower citric acid cycle and oxidative phosphorylation: Since the use of the citric

acid cycle is changed in continuously growing cells, the descriptions often follows the

reaction paths starting with αKG. In principle, glutamine-derived αKG either takes

the energy producing path in the lower citric acid cycle or the lipid synthesis path

in the upper citric acid cycle [174] and constitutes 50 – 90 % of the metabolite pools

3transaminases: alanine transaminase (AlaTA), aspartate transaminase (AspTA)
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[148]. The other part of the metabolite pools is generated from non-essential amino

acids [13]. However, the lipid generating route is often denoted as reversed citric acid

cycle flux and exhibits a reductive carboxlyation of GLN, which is not found in normal

cells. This route is expected to rely on a reverse functioning of the NADPH-dependent

isocitrate dehydrogenase (ICDH, [175, 176]). In normal cells of the body, the ICDH

converts isocitrate to αKG using either NAD or NADP to produce NADH or NADPH.

However, Yan and coworkers discovered that more than 70 % of gliomas (tumor cells)

harbor a mutation in genes encoding for the ICDH [177]. On the contrary, Moreno-

Sánchez et al. [68] describes the reversibly working ICDH to be thermodynamically

infeasible and casts doubt on this reaction. They propose that an alternative reaction

exists that facilitates a reductive carboxylation of glutamine which is not yet discovered.

However, the degradation of αKG in the lower part of the citric acid cycle is initiated

by the α-ketoglutarate dehydrogenase (KDH) and yields succinyl-CoA (SUCCoA) while

transforming NAD to NADH. Apart from the influence of substrates and products on the

KDH activity [178], ions and adenosine-based nucleotides are also reported to influence

the conversion of αKG by the KDH [179]. In the following reaction steps, SUCCoA

is reversibly converted to succinate (SUC), oxidized to fumarate (FUM) and hydrated

to malate (MAL), and involves, amongst others, the enzymes succinyl-CoA synthase,

succinate dehydrogenase (SDH), fumarase (FMA) and malate dehydrogenase (MDH),

which is in detail described by Nelson and Cox [180, pp. 571-579]. The released energy

from these reactions is stored in GTP (or ATP) as well as NADH and FADH2, which

both drive the oxidative phosphorlyation under mitochondrial respiration [181] using

oxygen. Thus, oxidative phosphorylation links ATP with NADH (1 NADH = 2.5 ATP,

1 FADH2 = 1.5 ATP [6]) and the respiratory chain can exert significant flux control over

the citric acid cycle under physiological conditions [182, 183] by controlling both the

NADH to NAD ratio and the ATP to ADP ratio. Studies for cancer therapy recognized

the oxidative phosphorylation as a potential target to impair cell proliferation [184].

Furthermore, it is hypothesized that alterations in enzymes such as SDH contribute to

the emergance of cancer [185]. However, the control in the citric acid cycle not only

resides in the oxidative phosphorylation but also in metabolites that act allosterically

on enzymes [167, 186]. The end product of the lower citric acid cycle, MAL, is either

converted to mitochondrial OAA or PYR (which are required for AspTA or AlaTA

activity in glutaminolysis) or to cytosolic PYR with synthesis of NADPH, which supports

lipid synthesis.
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Upper citric acid cycle: The upper part of the citric acid cycle involves the reversible

turnover of CIT to isocitrate (ICIT) by aconitase with cis-aconitate (CAC) as an inter-

mediate product. Interestingly, CIT interacts with several branch points of metabolism

(extensively reviewed by [187]) and is produced by the citrate synthase (CS) using OAA

and acetyl-CoA (ACCoA), which is derived from PYR through the pyruvate dehydroge-

nase (PDH). Alternatively, ICIT can be produced from a reductive flux from αKG. It is

shown for melanoma cells that appreciable amounts of CIT are derived from αKG and

used to produce cytosolic acetyl-CoA to support lipid synthesis [148]. The production

of cytosolic acetyl-CoA involves an active transport of CIT into the cytosol [188] and a

subsequent conversion by citrate lyase (CL) under the use of ATP and the formation of

ADP. Disruption of the CL in tumor cells suppresses proliferation [189]. In CHO cells,

Dean and Reddy discovered that 30 % of the CIT is derived from GLN and ASP while

PYR is a negligble source [13]. Icard et al. [187] even anticipate that cytosolic CIT is

converted to PYR, which again enters the citric acid cycle forming a so called vicious

cycle to support cytosolic NADPH synthesis [187]. However, the contribution of PYR to

the citric acid cycle is low and either explained with an impaired mitochondrial uptake

[190] or an inhibition of PDH, for example by HIF-1 induced phosphorylation [191] or

by NADH, ATP and ACCoA [172].

2.2.6. Nucleotide metabolism

Fast proliferating cells need to generate certain levels of energy carriers to fuel biosyn-

thetic reactions and physiological functions. The most famous carriers are the adenosine-

based nucleotides, adenosine triphosphate (ATP), adenosine diphosphate (ADP) and

adenosine monophosphate (AMP), which are partly interconverted by the adenylate ki-

nase (ADK, [192]). Similarly, the cell uses guanosine-based nucleotides (GTP, GDP,

GMP) as energy carriers, which also belong to the purines, and AMP as well as GMP

are generated from the same precursor, i.e. inosine monophosphate (IMP), by the purine

salvage pathway (PSP). Both purines are main energy acceptors during the conversion

of glycolytic as well as citric acid cycle metabolites and the abundance of ATP relative

to ADP is thought to be involved in the regulation of metabolic processes [94]. Simi-

larly, Hofmeyr and Cornish-Bowden [193] describe a supply-demand scenario where the

rate of ATP syntheses is controlled by the demand reactions (biosynthesis) and where

ATP in turn controls the synthesis pathway such that the demand is compensated by

the supply. Atkinson and coworkers even anticipate for rat liver cells that the energy

charge (EC), which is a ratio between ATP, ADP and AMP (see Eq. (2.2.1)), changes
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enzyme activities in favor of energy generation or biosynthesis depending on what is

most required (control by energy charge, [194, 195]).

EC =
[ATP ] + [ADP ]/2

[ATP ] + [ADP ] + [AMP ]
(2.2.1)

In hybridoma and CHO cells the EC and especially the ATP level was found to mainly

depend on the extracellular glucose (GLCx) level [13, 78]. Interestingly, the EC is usually

kept between 0.8 and 1 by vital cells [196], although environmental perturbations can

induce considerable changes in the nucleotide levels. Walther and colleagues unraveled

for yeast cells that large amounts of AMP are transferred to the PSP to maintain a

proper nucleotide balance [197]. For cancer cells, it is further hypothesized that ATP

is never limiting but that the ATP production rate dictates the biosynthesis activity

[61, 198], which is also found for yeast cells [199]. Also, for rat liver cells, it is suggested

that the rate of glycolysis determines the level of ATP and not vice versa [200]. So the

question whether the metabolic activity is mostly independent of the ATP level or fully

determined by the energy status is not yet resolved (addressed later in this work) and

the answer may depend on the cell type [59]. Another group of high energy molecules are

the pyrimidines consisting of uridine-based nucleotides (UTP, UDP, UMP) and cytidine-

based nucleotides (CTP, CDP, CMP). Although their role as energy carriers is limited

compared to the purines, their contribution to biosynthesis is equally important.

2.3. Systems biology approach to cell growth and metabolism

Understanding intrinsically complex biological systems, which typically arise from a

large number of functionally diverse elements that interact symbiotically [201], requires

the integration of experimental and computational approaches in a multidisciplinary

environment. In this regard, systems biology complements molecular biosciences and

addresses the missing link between molecules and physiology with mathematical mod-

els [202]. Such models express hypotheses through the choice and parameterization of

relationships and reach their ultimate sophistication by successfully predicting the bio-

logical process. The actual experience is an iterative cycle of model development and

hypothesis testing that requires multiple rounds of data generation and model adjust-

ment until the predictive power reaches an acceptable agreement with experimental data

[203]. However, succeeding in the development of such models opens up the avenue for a

rational, systematic and efficient design of bioprocesses [204] or of medication strategies
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[205]. In case of dynamic phenomena that involve a sufficiently high number of species

molecules, such models can be composed of ordinary differential equations (ODEs) to

integrate experimental data and structural information of the network. The application

of dynamic mathematical models spans from the analysis of heterogeneous cell popu-

lations (segregated models, cf. [206]) to the investigation of intracellular components

(structured models) and may touch multiple scales (multi-scale model). In the follow-

ing sections, standard models on cell growth and metabolism are introduced regarding

their complexity and field of application. Afterwards, examples for the mathematical

description of enzyme kinetics and methods for the analysis of ODE-based models are

introduced.

2.3.1. Cell growth models

For the understanding of yeast, bacteria or mammalian cell growth, models are desired

that precisely recapitulate the growth process, metabolite consumption and byproduct

release over the course of cultivation. The structure of cell growth models has a mainly

empirical form where the biological system is viewed as a catalyst for the conversion of

substrates into products [19, 207]. This conversion of substrates is directly linked to an

increase and maintenance of cell numbers or biomass.

Cell number-based models: In biotechnology, cell growth models often consist of a

growth function for the cell number that is linked to substrate uptake and byproduct

release rates in order to reflect changes in the culture and to evaluate yield coefficients

[51]. Due to their simple structure and the wide accessibility of data, such models find

application in many studies and were developed for various cells and growth inhibiting

aspects [208–210]. For adherent cells, cell number-based models can reflect the growth

in bioreactors [211] and can take into account the cell number distribution on microcar-

riers [212]. Such models are also used to study growth on flat surfaces [213] and are —

besides ODE-based approaches — also available as stochastic [214] and cell automata

models [215]. The lag phase in cell number growth (see section 2.1.2) is typically real-

ized by implementing delay functions [211] (to account for cell settling, attachment or

size increase until division). Delay functions, however, can fail in rendering the uptake

and release of metabolites experimentally identified during the initial phase of culti-

vation where biomass growth precedes cell division. Towards the end of cultivations,

cell density-dependent growth inhibition can occur and cells enter a stationary growth

phase. If cell density-dependent growth inhibition is calculated on the basis of cell num-
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bers, a distorted view on growth phases may result, as cell numbers can increase while

the biomass remains constant [216]. Furthermore, higher cell concentrations can be

achieved if cells have smaller mean cell diameters [44] and, thus, final cell numbers can

differ among replicate cultivations (e.g. [211]). Therefore, cell number-based models can

explain several aspects of cultivations but only in a very restrictive way.

Biomass-based models: Some of the above-mentioned problems are solved by using

biomass-based models, e.g. by Baltes et al. [217] to support the experimental design of

yeast cultivations or by Dhir et al. [3] as well as Frame and Hu [39] to study hybridoma

cell growth. However, these models can hardly distinguish between cell-specific mass

changes and the cell number increase. Since parameters of intracellular biochemical

processes can correlate with the cell mass (e.g. protein synthesis, membrane composition,

metabolite concentrations) as well as with the cell number (e.g. activities located in

the nucleus, signaling pathways), pure biomass-based models have a limited field of

application when it comes to the analysis of intracellular phenomena. Nevertheless,

cell number-based and biomass-based models are simple and, have without question, a

certain power in analyzing cultivations of mammalian cells.

Cell mass models: Population balance equations are an elegant way to comprehen-

sively characterize the growth in cultivation processes described in section 2.1.2 regarding

the time course of cell mass and cell number changes [218, 219]. Many different ”cell mass

models” for microbial populations in culture have been developed [220–223] and numeri-

cal methods have been established to reduce the computational effort involved [224, 225].

Nevertheless, the validation of the underlying model functions, namely the growth rate

function, the cell division probability function and the partitioning probability function

is still challenging, mainly due to the lack of experimental data. Furthermore, the influ-

ence of substrate depletion, inhibitor accumulation or growth surface limitation on the

respective functions remains to be characterized. Nielsen et al. [42] therefore suggest

for yeast cells a middle course that links the cell number to the biomass using a delay

function to induce an artificial diameter increase.

2.3.2. Dynamic models of metabolism

One of the first computational attempts to simulate the metabolism of tumor cells was

made in 1959 by Chance et al. [226]. Since then, dynamic models for metabolism have

been developed for many pathways and organisms. In the following, we introduce a
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selection of the most insightful models for the cellular metabolism.

Glycolysis models: Since the first computational attempt by Chance et al. [226],

glycolysis became the most intensively modeled metabolic pathway. For erythrocytes,

which have a relatively stable cell composition, a first core model of glycolysis was devel-

oped by Rapoport and colleagues [227] in 1974 and was gradually extended by including

detailed aspects of enzyme kinetics [228, 229] as well as the energy metabolism and ion

transport [230–232]. The last versions integrate also the PPP and steady state metabo-

lite data and are used to predict the impact of enzyme deficiencies [233, 234]. More

recent models of mammalian cell glycolysis where developed for liver cells to analyze the

blood glucose homeostasis [71, 146] and for skeletal muscle cells to illuminate glycogenol-

ysis [235]. However, the largest part of glycolytic models were developed for yeast and

E. coli, perhaps because of the large amount of available data, the ease of experiments

and the wide options for genetic modifications, and cover a broad field of phenomena.

The most advanced models on metabolism describe the response to glucose pulse ex-

periments [20, 236, 237], the link between transcriptome and metabolism [238, 239] or

the emergence of an oscillatory activity under glucose starvation [240, 241]. One of the

best validated models for yeast glycolysis is proposed by Teusink et al. [242] and van

Eunen et al. [20] and considers enzyme kinetics, which were measured under in vivo-like

conditions [11]. It largely agrees with steady state flux and metabolite data, which were

derived from labeling experiments. Although in many of the above cases the existent

experimental data sets do not allow for a full validation of the complex kinetics used

(especially not for a broader physiological context), their benefit lies in the integration

of complex regulatory mechanisms and their explanation for general phenomenological

aspects that are typically found in the respective cell type. However, an apparently

complex metabolic behavior must not result from complex regulatory mechanisms [243].

In case of glycolysis, it seems that few regulatory mechanisms dominate the dynamics

of intracellular pools and readily explain salient features of experimental measurements

[12]. Furthermore, with an increasing number of powerful assays, e.g. to determine

intracellular metabolite concentrations or to measure enzyme activities in yeast and an-

imal cells, changes in glycolytic activity during cell growth or substrate perturbations

can be monitored at an unprecedented level. Integrating such data under considera-

tion of extracellular metabolite changes as well as cell growth dynamics may support

mathematical modeling in the systematic analysis of metabolic pathways under various

cultivation conditions.
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Citric acid cycle models: In a pioneering work, Garfinkel [244] proposed a computer

model for the Krebs cycle and the closely related metabolism. The intention was to

illuminate the control exerted by the different compounds with the use of steady state

metabolite pool data. In the following studies performed with rat heart cells, the kinetic

descriptions of the citric acid cycle were preferentially used to evaluate pathway fluxes

from labeling experiments [245, 246]. Since then, the models were more and more refined

by more detailed enzyme kinetics [167], extended by aspects of electrophysiology [247]

and volume dynamics [248], and transferred to cells other than rat heart and muscle

[249]. The most recent model proposed by Bazil and coworkers [248] incorporates an

impressively large data set that covers in vitro enzyme activities, flux data as well as

metabolite and ion concentrations, which are mostly derived from isolated mitochon-

dria from rat heart and other cells to calibrate the involved kinetics comprising about

400 parameters. However, considerable differences in structure and parameterization of

enzyme kinetics can be observed when using in vitro and in vivo data for model calibra-

tion, as described by Mauch et al. [250, pp. 571-579] and van Eunen et al. [11]. Since

such models are usually too complex for validation with in vivo data, Nazaret et al.

[251] proposed a simplified model for the citric acid cycle and its link to the oxidative

phosphorylation that successfully renders the observed metabolic steady states. It shows

that simple models can also explain salient features of experimental measurements for

the citric acid cycle.

Central carbon metabolism models: With a model for the citric acid cycle at hand,

a connection to glycolysis models seems intuitively attractive since both pathways are

central to the generation of cellular energy and biomass. For E. coli, such models are

validated with knockout mutants [252] and used to evaluate strategies that aim at re-

designing metabolic routes [253], which was similarly done for yeast [237] and relies

on metabolite pool data after a glucose pulse. Although detailed kinetic models of

the central carbon metabolism also exist for CHO cells [254], macroscopic (sometimes

unstructured) descriptions are already sufficient to study process strategies that aim at

higher growth and antibody production rates for hybridoma cells [255, 256].

2.3.3. Model construction and analysis

Kinetics of enzyme-catalyzed reactions: The detailed in vitro characterization of

glycolytic enzymes, such as HK [10], PFK [8] and PK [9], with respect to their catalytic
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properties in the presence of substrates, products and allosteric effectors4 represents an

important step towards a kinetic description of metabolic phenomena of cells. However,

the most simple description for the conversion of substrates into products is provided

by the law of mass action. Depending on the molecule number of reactants involved,

the reactions have a certain order. For enzyme-mediated conversions the different steps,

e.g. substrate binding, change in conformation and product release, can be individually

represented by mass-action kinetics, which, unfortunately, yields large sets of differential

equations and parameters. Under a few simplifying assumptions, Michaelis and Menten

derived a rate-law that links the product formation with the substrate conversion. Cle-

land [257–259] extended that approach by introducing a nomenclature with full steady-

state rate equations for arbitrary complex reactions by taking into account the number

of reactants and products (e.g. uni-uni, bi-uni,...), the reaction sequence (ordered or

random), the isomerization of the enzyme (iso, ping-pong) and the reversibility. The

laborious mathematical derivation of these kinetics motivated King and Altman [260]

to develop a relatively simple, graph-based method which mostly relies on the chemical

reaction scheme. However, cooperative5 as well as allosteric effects are an important

regulatory function of cells and not adequately covered by this approach. In 1910, Hill

[261] discovered that the aggregation of hemoglobin yields sigmoid binding curves for

oxygen. Motivated by this observation the authors proposed the Hill kinetic, which takes

into account cooperativity and is an important discovery that contributes to the charac-

terization of glycolytic enzymes such as the PK and the PFK. Since glycolytic enzymes

are additionally regulated by many allosteric effectors, Monod et al. [262] proposed the

Monod-Wyman-Changeaux model where the affinity for a substrate is a function of all

the above highlighted influences. Taken together, the conversion of a substrate S into

a product P can be expressed with an arbitrary complexity in corresponding kinetics

depending on which effects are considered as relevant. An example of translating a

reversible reaction into a simple enzyme kinetic is given here:

chemical reaction: S
re−⇀↽− P

rate equation: re = Kmax
e

(
[S]− [P ]

keqe

kmeS + [S] + P
keqe

)
(2.3.1)

4allosteric effector: molecule that binds to the enzyme at an allosteric center, which changes the
catalytic activity without a direct influence on ligands

5cooperative effect: aggregation of single units leading to a modification of the catalytic activity
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The basic equation for the rate equation re of enzyme e stems from the simple Michaelis-

Menten kinetic with a maximum cell-volume-specific activity Kmax
e and an affinity con-

stant for the substrate kmeS. Since the back reaction S ↼ P cannot be neglected (in

contrast to a standard Michaelis-Menten kinetic), the difference between S and P influ-

ences the velocity of the reaction and whether re has a positive or negative sign. Due to

the Haldane relationship, the equilibrium constant keqe between S and P is defined as

keqe =
kmeP
kmeS

=
[P ss]

[Sss]
(ss = steady state). (2.3.2)

Such a kinetic is, among others, used in the structured model of this work. An overview

for more detailed kinetics of enzyme mediated reactions is given in the book of Biss-

wanger [263].

Estimation and identifiability of model parameter: The sparsity of experimental

data in combination with the complex nature of biological observations imposes great

challenges for modeling and analysis of biochemical networks [203]. Models, which by

definition are an abstraction of reality, have a great chance to fail in explaining ob-

servations at first simulation either because experimentally measured parameters were

derived under experiment conditions different than required for the simulation scenario

or are simply not available (which is mostly the case). The gap between observation

and model simulation leads to the parameter estimation problem, as for instance de-

scribed by Bellman and Åström [264]. The estimation of parameters typically requires

non-linear optimization methods where the objective is to find a parameter set that min-

imizes a function quantifying the goodness of fit, usually a least squares function [204].

A large number of algorithms for solving optimization problems are currently available,

either of deterministic or stochastic nature, and designed to find local or even global

minima in the parameter space [265]. However, the ability to estimate parameters is not

only a question of the optimization method but also of the underlying model structure

and the data available for the analysis, which is further known as identifiability prob-

lem [266]. In particular, two formally distinct but functionally redundant mechanism

of a model, which can replace each other in generating a certain response, may impose

”structural” identifiability problems if both mechanisms cannot be distinguished with

the available data (independent of the data quality, [267]). In consequence, the algo-

rithms yield non-unique parameter solutions with strong correlations for the parameter

estimation problem. In contrast, ”practical” identifiability problems result from low
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quality data that leaves parameters with large uncertainties. Practical identifiability

problems can be identified by analyzing the change in model fit upon infinitesimal pa-

rameter perturbations and solved by acquiring data of higher quality. Note that Sontag

[268] once stated that 2r + 1 of highly informative data points are enough to identify

r unknown parameters. However, since a reliable parameter identification is of utmost

importance for the inference of biological meanings as well as for the quality of model

predictions, uncertainty estimates should always be provided together with the param-

eter values [269]. A simple way of obtaining these uncertainty estimates is the Fisher

Information Matrix (FIM) derived from the parameter sensitivities and the measurement

error of the observables. The FIM can be used to support the design of most informa-

tive experiments [270]. However, the inverse of the FIM only yields a lower bound on

the variance of the parameter, which is known as the Cramer Rao bound. More reli-

able parameter confidence intervals are obtained from bootstrap methods, as described

by Efron and Tibshirani [271], the parameter likelihood-function [272] or by using the

Bayesian approach to parameter identification and identifiability analysis [273]. Since

these methods also unravel parameter correlations, model reduction can be facilitated

such that more precise parameter confidence intervals are achieved. Counterintuitively,

also sloppy parameter estimates6 can enable tight quantitative predictions (since highly

sensitive parameters are also fragile sites [203]) and, thus, are not necessarily optional

or removable degrees of freedom, as shown by the work of Brown et al. [274]. As long

as the understanding of the system is tentative and incomplete, the focus should be on

the predictive power of the model rather than on its parameter values [269]. It should

be born in mind that sloppy parameter estimates may be a central feature of biological

systems to achieve robustness against fluctuations in components or the environment,

which is primarily achieved by functionally redundant or insensitive mechanisms [275].

6sloppy parameter estimates: the simulation result is mostly insensitive to changes in the corre-
sponding parameter
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Models and methods

3.1. Model definitions

3.1.1. Segregated cell growth model

The segregated cell growth model established in the scope of this work simulates data

that is obtained with automated cell counting devices, including cell diameters, and

comprises parameters that are typically used for cell number-based models. It describes

cell populations with growth and maintenance metabolism based on a set of ordinary

differential equations.

Cell growth: To account for differences in cell diameter, several classes of cells Xi are

introduced,

dX1

dt
= rtrans(−X1f + 2XNc), (3.1.1)

dX2

dt
= rtrans(X1f −X2), (3.1.2)

dXi

dt
= rtrans(Xi−1 −Xi), for i = 3, . . . , N c, (3.1.3)

f :=

{
0 if V C > V C

∗

f(V C) if V C ≤ V C
∗

. (3.1.4)

The factor f accounts for the cell volume-dependent (V C-dependent) growth inhibition,

which we will discuss in the next paragraph. V C
∗ is the approximate cell volume for

larger times (t ≈ 200 h). The cells pass with a transition rate rtrans through the classes

X1, ..., XNc with linearly increasing diameter until a critical diameter dc is reached and

the cells divide. The transition rate itself is based on Monod‘s equation [276] where

the specific growth rate µ is a function of the maximum specific growth rate µmax, of

the Monod constant kmGLCx and of the GLCx concentration. Alternative growth kinetics

might be appropriate for other cell lines [210], but were not required for fitting of our

experimental data. Multiplication with α transforms the commonly used specific growth
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rate µ into rtrans,

rtrans = µα =
µmax[GLC

x]

kmGLCx + [GLCx]

1

21/Nc − 1
, (3.1.5)

to obtain a cell growth model that is asymptotic in cell growth to ẋ = µx (provided by

D. Flockerzi, see Rehberg et al. [216] for mathematical explanation). Note that µmax is

an effective growth rate that considers the loss of cells due to death [277].

Growth inhibition as a function of cell volume: The transition between the ex-

ponential and the stationary growth phase of adherent MDCK cells can depend on

the availability of free surface. Accordingly, cells will grow with µmax as long as all

essential substrates are available in sufficient amounts and surface is not limiting [211–

213, 278, 279]. In this work, the inhibition is assumed to be a function of the cell volume.

Note that biomass and cell volume are linearly correlated as long as changes in the den-

sity due to osmolality effects can be excluded [42]. The cell volume can be calculated

on the basis of the cell numbers and the cell diameters. The cell number, which is the

sum of cells in all classes Xi corresponds to

Xtot =
Nc∑
i=1

Xi (3.1.6)

and is monotonically increasing over time. Assuming that the class-specific diameters

are equidistant between the minimum diameter dm and the critical diameter dc, the

mean diameter d̄ of all cells can be calculated with

d̄ =
Nc∑
i=1

(dm +
dc − dm
N c − 1

(i− 1))
Xi

Xtot

. (3.1.7)

Note that dm and dc may vary with every experiment. The cell volume V C
model now follows

with summation of all class-specific volumes V C
i , given by V C

model =
∑Nc

i=1 V
C
i . However,

measurement of cells may only yield mean cell diameters and hence only allows to observe

an ’experimental’ cell volume (e.g. Niklas et al. [164]). Therefore, V C is introduced as

an estimator for V C
model and defined as

V C = π
d̄3

6
Xtot10−9, (3.1.8)
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with the unit µL. Note that Eq. (3.1.8) underestimates the true cell volume, V C < V C
model

(Jensen‘s inequality) but allows a larger applicability in the field of biotechnology where

diameter distributions are not available. In cultivation processes monitored using coulter

counters, e.g. for the data published by Frame and Hu [43], a deviation of up to 13 %

can result. However, this is here within the error bars provided for the data of V C . The

cell-specific volume V C
s (unit: L) follows with:

V C
s =

V C

Xtot

10−6 (3.1.9)

To describe an inhibition by cell density, Frame and Hu [278] proposed a nonlinear term,

which is dependent on the cell number concentration. Here, a transformation based on

V C is used on [0, V C
∗ ] to derive a cell volume-dependent growth inhibition factor f :

f = f(V C) = 1− exp

(
(−s)V

C
∗ − V C

V C

)
. (3.1.10)

The adjustable parameter s is cell line-dependent and shapes the sensitivity of the (in

silico) cell to extracellular limitations. Furthermore, we assume that growth inhibition

only affects the initiation of cell proliferation at the first transition X1 → X2 (Eq. (3.1.1)

and (3.1.2)). Hence, cells that are already in the division process have passed the early

checkpoint of cell growth and continue to increase in size.

Metabolic uptake and release rates: Cells consume substrates to sustain or increase

their biomass. Thus, the substrate uptake rates are commonly linked to the cell number

concentration or its increase [211, 212]. Nielsen et al. [42] hypothesized that cells with

larger biomass consume and release more metabolites. Accordingly, we link the medium-

volume-specific uptake rates for maintenance (rm/S) to V C , leading to

rm/S = mSV
CΘ([S])λ with S out of {GLCx, GLNx, NHx

4 }, (3.1.11)

where mS is the cell-volume-specific uptake rate of substrate S for maintenance

metabolism, where S stands for GLCx, extracellular glutamine (GLNx) or NHx
4. Θ

is a unit step function, which is one for [S] > 0 and zero otherwise. Each reaction

is scaled by λ to account for water evaporation (see Eq. (3.1.21)). Furthermore, the

medium-volume-specific uptake rate (rX/S) of substrate S is linked to the number of
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growing cells (as discussed later) by

rX/S = µ

(
X1f +

Nc∑
i=2

Xi

)
YX/Sλ, (3.1.12)

where YX/S is the cell-growth-specific yield coefficient for S. Apart from these com-

monly used definitions, the uptake of extracellular glutamate (GLUx) seems to be best

represented by

rGLT = KGLT [GLUx](1− f), (3.1.13)

according to the results of Maria Wetzel [280], and can be interpreted as a GLUx trans-

porter (GLT) that is inhibited as long as the cell proliferates. Note that rGLT is a

cell-volume-specific rate and, thus, different to rm/S or rX/S. The specific activity KGLT

is further explained in section 3.1.3. The change in extracellular metabolite concentra-

tions is thus given with

d[GLCx]

dt
= −rX/GLCx − rm/GLCx +

Fevap[GLC
x]

V M
, (3.1.14)

d[GLNx]

dt
= −rX/GLNx − rm/GLNx − rdGLNx +

Fevap[GLN
x]

V M
, (3.1.15)

d[GLUx]

dt
= −rGLT

V C
s Xtot

V M
+
Fevap[GLU

x]

V M
, (3.1.16)

d[LACx]

dt
= (rX/GLCx + rm/GLCx)YLACx/GLCx +

Fevap[LAC
x]

V M
, (3.1.17)

d[NHx
4 ]

dt
= 2(rX/GLNx + rm/GLNx) + rdGLNx − rX/NHx

4
− rm/NHx

4
+
Fevap[NH

x
4 ]

V M
.

(3.1.18)

Here, Fevap represents the measured water evaporation in 6-well plates (data not shown)

and V M stands for the medium volume during cultivation, defined by

dV M

dt
= −Fevap, (3.1.19)

and thus by

⇒ V M(t) = V M(0)− Fevapt
!
> 0. (3.1.20)
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Note that V M(0) corresponds to the well volume V W , which allows to define λ with:

λ =
V W

V M
(3.1.21)

According to Ozturk and Palsson [53], glutamine decomposition can occur and was

explicitly taken into account with

rdGLNx = kdGLNx [GLNx], (3.1.22)

where kdGLNx is the specific decomposition rate, estimated for GMEM-Z at 37 ◦C by

Bock et al. [212]. YLACx/GLCx is the glucose-specific lactate yield. Note that the accu-

mulation of NHx
4 depends on a maximum stoichiometric production from GLNx and its

incorporation into biomass during cell growth and maintenance. A release of NHx
4 from

GLUx is not considered in the model (discussed later).

3.1.2. Structured central carbon metabolism model

In order to derive conclusive insights into the regulation of the central carbon metabolism

of adherent MDCK cells, this work seeks a simple kinetic description of the enzyme

catalyzed reactions that agrees with the most basic characteristics reported for the cor-

responding enzymes and pathways. Therefore, differential algebraic equations of the

model, which describe enzyme activities in dependence of metabolite concentrations

and allosteric influences, were composed as far as possible using first order rate laws.

In cases where measurements on maximum enzyme activities are available Michaelis-

Menten and Hill kinetics were used. All metabolite levels and flux rates are related to

the cell-specific volume, which is preferred by many scientists [94, 195, 281], as it allows

an adequate comparison of metabolite pools under varying cell sizes but assumes an

even distribution of metabolites within the intracellular space [44]. In the following we

also assume that the cell population reflects the metabolite pool dynamics of a single

cell.

Glycolysis

The kinetics for glycolysis consider the metabolic conversion of GLC to PYR as well as

the closely related metabolism of PPP and glycogenesis:

d[GLCx]

dt
= −rGLUT

V C
s Xtot

V M
(3.1.23)
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d[GLC]

dt
= rGLUT − rHK − µf [GLC] (3.1.24)

d[G6P ]

dt
= rHK − rGPI − rG6PDH − rUT − µf [G6P ] (3.1.25)

d[F6P ]

dt
= rGPI + rTATKF6P − rPFK − µf [F6P ] (3.1.26)

d[F16BP ]

dt
= rPFK − rALD − µf [F16BP ] (3.1.27)

d[3PG]

dt
= 2rALD + rTATK3PG − rENO − µf [3PG] (3.1.28)

d[PEP ]

dt
= rENO − rPK − µf [PEP ] (3.1.29)

The term µf [M ] expresses the dilution of intracellular metabolite M by the approximate

cell volume growth (µ is here used in 1/min). The dilution by cell volume growth

only occurs during the cell cultivation experiments and not during the perturbation

experiments. The enzyme kinetics for the metabolic conversion rates r are defined as

follows:

Glucose transporter (GLUT): The GLUT diffuses within the cell membrane and

transports glucose between the cytosol and the extracellular medium depending on the

glucose gradient. For yeast cells, a complex kinetic description was developed to reflect

this process mechanistically [282], while the corresponding data is equally well repre-

sented by a simple Michaelis-Menten kinetic that considers G6P inhibition (simulation

not shown). As intracellular GLC could not be detected experimentally (see HK), the

transport across the membrane seems rate limiting and is, according to simulations, in-

sensitive against changes in G6P (simulations not shown). Therefore, and in agreement

to findings for pancreatic β-cells by Luni et al. [116], a simple Michaelis-Menten kinetic

was used and complemented with a variable capacity for the substrate uptake (γGLNT ,

explained in section 3.1.3) for an uni-directional glucose transport rGLUT :

rGLUT = Kmax
GLUTγGLUT

[GLCx]

kmGLUT + [GLCx]
(3.1.30)

Kmax
GLUT is the maximum cell-volume-specific activity of the GLUT with affinity kmGLUT

for GLCx. Because of the multiplication of Kmax
GLUT with γGLUT , structural identifi-

ability problems occurred and a unique estimation of the cell-specific maximum ac-
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tivity of the GLUT (vmaxGLUT ) is not possible. Therefore, vmaxGLUT was chosen to be

1.60× 10−11 mmol/cell/min according to findings for other mammalian cells [104, 107].

Hexokinase, (HK, EC number: 2.7.1.1): GLC could not be detected experimentally

in MDCK cells, which was similarly reported for other cell lines [91, 95, 283]. Therefore,

a possible influence by ATP, as measured by Fromm and Zewe [10] for yeast cells, may

reduce the HK activity but presumably not to a degree sufficient to limit the glycolytic

activity. Due to the lack of appropriate data for GLC and the lack of any indication

regarding a possible regulation by ATP we chose a simple Michaelis-Menten kinetic that

considers the maximum in vitro enzyme activity measured by Janke et al. [22] for MDCK

cells and an affinity constant for glucose of kmHK = 0.02 mmol/L [86], which together yield

a highly active HK and low GLC levels.

rHK = Kmax
HK

[GLC]

kmHK + [GLC]
(3.1.31)

Kmax
HK is the maximum cell-volume-specific activity of the HK with affinity kmHK for GLC.

Glucosephosphate isomerase (GPI, EC number: 5.3.1.9): A reversible kinetic

of Michaelis-Menten type was used to describe the isomerization of G6P and F6P, as

suggested by Richter et al. [241] for yeast cells and with the maximum in vitro activity

measured by Janke et al. [22].

rGPI = Kmax
GPI

(
[G6P ]− F6P

keqGPI

kmGPI + [G6P ] + F6P
keqGPI

)
(3.1.32)

Kmax
GPI is the maximum cell-volume-specific activity of the GPI with affinity kmGPI for G6P

and equilibrium constant keqGPI .

Glucose 6-phosphate dehydrogenase (G6PDH, lumped reaction): The conver-

sion of G6P to R5P involves G6PDH and other enzymes with an accompanying produc-

tion of two NADPH molecules. For cancer cells, a negative regulation of the reaction

sequence by 3PG is reported [140]. Our data, however, does not support a negative

correlation between 3PG and R5P, which indicates that this mechanisms may not have

a significant influence in adherent MDCK cells. Assuming that G6PDH is rate limiting

within the reaction sequence allows the model to use a Michaelis-Menten kinetic with
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the maximum in vitro activity measured by Janke et al. [22]:

rG6PDH = Kmax
G6PDH

[G6P ]

kmG6PDH + [G6P ]
(3.1.33)

Kmax
G6PDH is the maximum cell-volume-specific activity of the G6PDH with affinity kmG6PDH

for G6P.

Uridyl transferase (UT, lumped reaction): In glycogenesis, UT is involved in the

generation of UGLC from G6P. A Michaelis-Menten kinetic close to saturation was

necessary to describe the experimental data of this work:

rUT = Kmax
UT

[G6P ]

kmUT + [G6P ]
(3.1.34)

Kmax
UT is the maximum cell-volume-specific activity of the UT with affinity kmUT for G6P.

Phosphofructo kinase (PFK, EC number: 2.7.1.11): The PFK is a highly regu-

lated enzyme in glycolysis and often assumed to be best represented by kinetics that

consider a certain cooperativity. According to measurements of Otto et al. [228] for ery-

throcytes and a review by Boiteux and Hess [284], a cooperativity of four seems to suit

the PFK and is analogously used in this work. A very potent regulator of the PFK is

fructose 2,6-bisphosphate [135], which is synthesized from F6P by phosphofructokinase-

2. For simplicity, it is assumed that F6P and fructose 2,6-bisphosphate are lin-

early positively correlated in their dynamics through a fast and reversible working

phosphofructokinase-2, which allows us to implement the PFK as a Hill kinetic with

sole activation by F6P. During development of the model, other less efficient regulators

such as ATP, ADP, AMP or CIT [135, 228] were tested, and finally withdrawn as the

model fit was not improved.

rPFK = Kmax
PFK

[F6P ]4

kmPFK
4 + [F6P ]4

(3.1.35)

Kmax
PFK is the maximum cell-volume-specific activity of PFK with affinity kmPFK for F6P.

Transaldolase and transketolase (TATK, EC number: 2.2.1.2 / 2.2.1.1): Both en-

zymes are responsible for the reversible conversion of metabolites of the PPP such as

F6P, R5P and GAP. Because of the unknown flux distribution and unknown concen-

trations of many PPP metabolites, we decided to use individual reversible first order
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rate laws for F6P and GAP formation and degradation (see ”Pentose Phosphate Path-

way” for further constraints). As GAP is not explicitly incorporated in the model, we

assumed a strong correlation to 3PG (see ”Aldolase”) and, hence, coupled the activity

of the TATK to 3PG. The equilibrium between consumption and production depends

on the level of F6P (or 3PG) as well as a threshold defined by the equilibrium constants

keqTATKF6P (or keqTATK3PG) assuming a constant pool size of pentose phosphate metabolites

of about 1 mmol/L:

rTATKF6P = KTATKF6P

(
1− [F6P ]

keqTATKF6P

)
(3.1.36)

rTATK3PG = KTATK3PG

(
1− [3PG]

keqTATK3PG

)
(3.1.37)

KTATK3PG and KTATKF6P are the cell-volume-specific activities of the TATK for F6P

and 3PG conversion.

Aldolase (ALD, lumped reaction): Since DAP, GAP and 13DGP could not be quan-

tified for MDCK cells by Ritter [23], we assume that the enzymes, which are involved in

the generation of 3PG, highly correlate in their activity with ALD. High in vitro enzyme

activities of the TPI and GAPDH were indeed reported by Janke et al. [22] and support

the idea of a diminishing flux control. Furthermore, all reactions are reversible and ex-

pected to have a minor flux control over glycolysis in tumor cells [108]. Therefore, we

chose a Michaelis-Menten kinetic that represents the net flux from F16BP to 3PG using

the in vitro enzyme activity measured by Janke et al. [22]. A larger model that explicitly

integrates additional reaction steps requires seven additional parameters, while showing

only a minor improvement in fitting the data of this work.

rALD = Kmax
ALD

[F16BP ]

kmALD + [F16BP ]
(3.1.38)

Kmax
ALD is the maximum cell-volume-specific activity of ALD with affinity kmALD for F16BP.

Enolase (ENO, lumped reaction): In yeast, reversible Michaelis-Menten kinetics are

used to describe the ENO activity [241]. Under the assumption that the isomerization of

3PG to 2PG is usually a very fast and reversible step, the model describes the generation

of PEP from 3PG using a single reversible kinetic for ENO. A first order rate law
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sufficiently describes the data of this work:

rENO = KENO

(
[3PG]− [PEP ]

keqENO

)
(3.1.39)

KENO is the cell-volume-specific activity of ENO with equilibrium constant keqENO.

Pyruvate kinase (PK, EC number: 2.7.1.40): The PK is another strongly regulated

enzyme in tumor cell glycolysis with four subunits and high affinity for PEP [126].

The most prominent control over the PK activity is exerted by a feedforward activation

through F16BP [69]. Since the cofactors ATP and ADP as well as a higher cooperativity

(e.g. four) could not improve the model fit (simulation not shown), we only considered

a Michaelis-Menten kinetic with an activation by F16BP that considers the in vitro

enzyme activity measured by Janke et al. [22]:

rPK = Kmax
PK

[PEP ]

kmPK + [PEP ] +
kaPK

F16BP

(3.1.40)

Kmax
PK is the maximum cell-volume-specific activity of PK with affinity kmPK for PEP and

activation constant kaPK for F16BP.

Pentose phosphate pathway

The link of glycolysis with the PPP through the G6PDH reaction eventually yields R5P,

which is degraded by TATK or used for biosynthesis, and changes with

d[R5P ]

dt
= rG6PDH − rRDPK − µf [R5P ]. (3.1.41)

Corresponding biosynthetic needs for PPP intermediates (rX/PPP ) are indirectly given

with:

rX/PPP = rG6PDH − rTATKF6P − 0.5rTATK3PG. (3.1.42)

Furthermore, the metabolite exchange between glycolysis and PPP is constrained to be

in a typical biologically feasible range of 0 % to 40 % of the glycolytic activity (here

hexokinase activity, [150–152]):

0 <
rX/PPP
rHK

< 0.4 (3.1.43)
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During glucose limitation, the PPP can fuel glycolysis but presumably at a very low

rate. Therefore, the activity of the pyruvate kinase should be as low as possible (at

6 min) but high enough to satisfy the experimental data (see section 3.3.2).

Ribose 1,5-bisphosphate phosphokinase (RDPK, EC number: 2.7.4.23): The

degradation of R5P by ribose 1,5-bisphosphate phosphokinase (RDPK) is implemented

as first order rate law and is representative for all possible conversion reactions.

rRDPK = KRDPK [R5P ] (3.1.44)

KRDPK is the cell-volume-specific activity of RDPK.

Glycogenesis

The generation of glycogen from UGLC, which is mainly derived from G6P by a UT-

mediated reaction (see Eq. (3.1.34)), is mediated by the glycogen synthase (GLYS):

d[UGLC]

dt
= rUT − rGLY S − µf [UGLC] (3.1.45)

Glycogen synthase (GLYS, EC number: 2.4.1.11): The degradation of UGLC by

GLYS is implemented as first order rate law and is representative for all possible con-

version reactions,

rGLY S = KGLY S[UGLC], (3.1.46)

with the cell-volume-specific activity KGLY S.

Glutaminolysis

The supply of the citric acid cycle relies upon anaplerotic reactions that use amino

acids such as GLN, GLU or PYR as substrate. The conversion of GLN to GLU and

subsequently to αKG are initial reaction steps of glutaminolysis and produce intracellular

ammonium (NH4). A fraction of NH4 remains in the cell, either bound to amino acids

or as O-GlcNAcylation [85], while the other fraction is secreted into the medium, which

the model already covers with Eq. 3.1.18. The uptake of GLUx and GLNx and the

39



3. Models and methods

generation of GLU is described in the model with:

d[GLUx]

dt
= −rGLT

V C
s Xtot

V M
(3.1.47)

d[GLNx]

dt
= −rGLNT

V C
s Xtot

V M
(3.1.48)

d[GLU ]

dt
= rGLT + rGLNT − rATA − µf [GLU ] (3.1.49)

rGLT is described in section 3.1.1 (Eq. 3.1.13), while rGLNT and rATA are defined as

follows:

Glutamine transporter (GLNT): The GLNT is not only important for the nutrient

supply of mammalian cells but also crucial for the survival of tumor cells which over-

express the ASCT2 transporter family [117]. Studies with hepatoma cells suggest a

Michaelis-Menten kinetic [285], which we extend, similarly to GLUT, by a variable ca-

pacity for the substrate uptake (γGLNT , see section 3.1.3):

rGLNT = Kmax
GLNTγGLNT

[GLNx]

kmGLNT + [GLNx]
(3.1.50)

Kmax
GLNT is the maximum cell-volume-specific activity of GLNT with affinity kmGLNT for

GLNx.

Aspartate/Alanine transaminase (ATA, EC number: 2.6.1.1/2.6.1.2): The conver-

sion of GLU to αKG can be exerted by a few enzymes which either release or transfer

an amino group. Modeling the NHx
4 dynamics, however, suggests that mainly transami-

nases are used. As data on GLU and NH4 release is not available, a first order rate law

seems sufficient for this reaction:

rATA = KATA[GLU ] (3.1.51)

KATA is the cell-volume-specific activity of ATA.

Citric acid cycle

The rate equations for the lower citric acid cycle were taken from Wetzel [280], extended

such that they include the upper citric acid cycle and slightly simplified, while yielding

the same (or better) data fits. In principle, both parts of the cycle are fueled by GLU

40



3.1. Model definitions

(through a reversed ICDH activity) and, thus, show independent activities [286]. For

our data, the citric acid cycle seems to be sufficiently represented by:

d[αKG]

dt
= rATA + rAAex + rICDH − rKDH − µf [αKG] (3.1.52)

d[SUC]

dt
= rKDH − rSDH − µf [SUC] (3.1.53)

d[FUM ]

dt
= rSDH − rFMA − µf [FUM ] (3.1.54)

d[MAL]

dt
= rFMA − rMDH − µf [MAL] (3.1.55)

d[ICIT ]

dt
= rACO2 − rICDH − rCL − µf [ICIT ] (3.1.56)

d[CAC]

dt
= +rACO − rACO2 − µf [CAC] (3.1.57)

d[CIT ]

dt
= rPDH − rACO − µf [CIT ] (3.1.58)

The enzyme kinetics underlaying the various reaction rates r are suggested to depend

on many different ions, cofactors, inhibitors and activators [248]. In agreement with a

mathematical analysis of the system by Nazaret et al. [251] and the conceptual direction

of this work, we chose simple kinetic descriptions that suit our data but may fail to cope

with observations made for other cells or isolated mitochondria. Several of the reaction

rates that are introduced on the following pages use the cofactors NAD and NADH, which

are important energy carrier of the mitochondria and link oxidative phosphorylation with

the citric acid cycle. To account for the influence of both carrier on the citric acid cycle,

we assume that NAD levels correlate positively with the relative biosynthesis activity of

the cell bsyn, which is introduced in section 3.1.3 with Eq. (3.1.94). In contrast to bsyn,

NAD levels are not supposed to deplete or to drop below a basal level (NADbasal). So

the virtual, relative NAD level (bNAD) is represented with:

bNAD =
bsyn +NADbasal

1 +NADbasal

. (3.1.59)

In case of very large values for NADbasal, the citric acid cycle is not affected by NAD.

Amino acid exchange (AAex, lumped reaction): Intermediates of the citric acid

cycle are linked to many other amino acids (AA) that are involved in protein synthesis

41



3. Models and methods

and degradation. For MDCK cells, Wahl et al. [15] observed relatively high uptake rates

for the branched chain amino acids leucine, iso-leucine and valine, which are converted

to GLU and αKG [6]. To account for this supply route, we implemented an exchange

between AA (constant pool size: 1 mmol/L) and αKG

rAAex = KAAex

(
1− [αKG]

keqAAex

)
(3.1.60)

KAAex is the cell-volume-specific activity of AAex with equilibrium constant keqAAex.

α-ketoglutarate dehydrogenase (KDH, EC number: 1.2.4.23): The oxidative car-

boxylation of αKG is performed by KDH, a main regulatory enzyme in the citric acid

cycle [248]. But neither activation by ADP nor inhibition by ATP [179] improved the

model fits. So attributed to its dependence on NAD, we chose a first order rate law with

the cell-volume-specific activity KKDH and with an influence by bNAD:

rKDH = KKDH [αKG]bNAD (3.1.61)

KKDH is the cell-volume-specific activity of KDH.

Isocitrate dehydrogenase (ICDH, EC number: 1.1.1.41 / 1.1.1.42 ): According to

Filipp et al. [174], the ICDH is significantly changed in its characteristics in melanoma

and fast proliferating cells compared to all other citric acid cycle enzymes [175]. The

ICDH or another yet unknown enzyme [68] possibly mediate a reductive metabolism

of αKG, which leads to a reversed TCA flux under normoxic conditions and produces

ICIT. Its purpose lies in an enhanced lipid synthesis. Using a reversible Michaelis-

Menten kinetic (used also by Chen and Plaut [287] for bovine heart cells) that depends

on NAD in the forward direction (bNAD) as well as on NADH (1 − bNAD) in the back

reaction suits our data and supports observations about a reversed flux. The kinetic

also takes into account the in vitro activity measured by Janke et al. [22]. Neither an

inhibition by ATP nor an activation by ADP, which is reported by Plaut et al. [288],

improved the fit to a significant degree:

rICDH = Kmax
ICDH

[ICIT ]bNAD − [αKG](1−bNAD)
keqICDH

kmICDH + [ICIT ] + [αKG]
keqICDH

(3.1.62)
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Kmax
ICDH is the maximum cell-volume-specific activity of ICDH with affinity kmICDH for

αKG and with equilibrium constant keqICDH .

Succinate dehydrogenase (SDH, EC number: 1.3.5.1): The conversion of SUC to

FUM is performed by the SDH and yields FADH2, which can be converted to ATP

during oxidative phosphorylation. The enzyme’s activity is reversible with dependence

on the FUM and SUC levels [248]. We used a reversible first order rate law for the SDH:

rSDH = KSDH

(
[SUC]− [FUM ]

keqSDH

)
(3.1.63)

KSDH is the cell-volume-specific activity of SDH with equilibrium constant keqSDH .

Fumarase (FMA, EC number: 4.2.1.2): For isolated cardiac mitochondria, a re-

versible Michaelis-Menten kinetic is proposed for the FMA [167] and here taken for

MDCK cells using the in vitro measured enzyme activity of Janke et al. [22]:

rFMA = Kmax
FMA

[FUM ]− [MAL]
keqFMA

kmFMA + [FUM ] + [Mal]
keqFMA

(3.1.64)

Kmax
FMA is the maximum cell-volume-specific activity of FMA with affinity kmFMA for SUC

and with equilibrium constant keqFMA.

Malate dehydrogenase (MDH, lumped reaction): According to Sidorenko et al.

[16], main routes of MAL conversion are either via the MDH to OAA, which yields

NADH from NAD, or via the malic enzyme (ME) to PYR, which yields NADPH from

NADP. Furthermore, PYR and OAA are linked via the pyruvate carboxylase (PC). Since

data is missing for the intermediates and fluxes, the actual flux distribution cannot be

identified based on the model and both routes are equally likely. To achieve high LACx

secretion rates with a YLACx/GLCx > 2, we assume a net reaction that is influenced by the

abundance of NAD and eventually yields PYR. Therefore, we chose a Michaelis-Menten

kinetic that considers the in vitro measured enzyme activity by Janke et al. [22] and a

dependence on NAD (bNAD):

rMDH = Kmax
MDH

[MAL]

kmMDH + [MAL]
bNAD (3.1.65)

Kmax
MDH is the maximum cell-volume-specific activity of MDH with affinity kmMDH
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Pyruvate dehydrogenase (PDH, lumped reaction): The PDH and the CS fuel the

citric acid cycle by converting PYR to ACCoA and afterwards to CIT using OAA. A

Michaelis-Menten kinetic and the in vitro measured enzyme activity from Janke et al.

[22] for the PDH were used to account for the transfer of PYR into the citric acid cycle.

Additionally, we consider that the reaction converts NAD to NADH and, thus, multiply

the reaction with bNAD. Inhibition by several compounds such as CIT, ATP, ADP and

AMP, which are described for cardiac mitochondria [167], could not improve the model

fit.

rPDH = Kmax
PDH

[PY R]

kmPDH + [PY R]
bNAD (3.1.66)

Kmax
PDH is the maximum cell-volume-specific activity of PDH with affinity kmPDH for PYR.

Aconitase (ACO, EC number: 2.7.1.40): The ACO converts CIT to ICIT in a re-

versible fashion with CAC as intermediate and is suggested to be best represented by

a reversible Michaelis-Menten kinetic [248]. As measurements for the enzyme’s activity

are missing for MDCK cells, we used a reversible first order rate law and assumed that

CAC dissociates from ACO after the release of a water molecule and poses a substrate

for the second reaction that is mediated by the same enzyme:

rACO = KACO

(
[CIT ]− [CAC]

keqACO

)
(3.1.67)

rACO2 = KACO

(
[CAC]− [ICIT ]

keqACO2

)
(3.1.68)

KACO is the cell-volume-specific activity of ACO with equilibrium constants keqACO and

keqACO2 between CIT and CAC and between CAC and ICIT, respectively.

Citrate lyase (CL, lumped): In tumor cells, cytosolic CL reversibly converts CIT to

ACCoA and OAA to meet the high demand for lipids [80]. OAA is then either converted

to PEP or converted to PYR with the accompanying production of NADPH from NADP

and of NAD from NADH (see ”Malate dehydrogenase”). Also in MDCK cells the upper

citric acid cycle is proposed to mainly yield cytosolic CIT [16], which may be attributed

to the large demand in cytosolic ACCoA and NADPH. In agreement with findings by

Metallo et al. [175] for tumor cells, we consider the conversion to PYR as main route

and use a simple Michaelis-Menten kinetic that takes into account the enzyme activity
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measured in vitro by Janke et al. [22] and a dependence on NADH (1− bNAD):

rCL = Kmax
CL

[ICIT ]

kmCL + [ICIT ]
(1− bNAD) (3.1.69)

Kmax
CL is the maximum cell-volume-specific activity of CL with affinity kmCL for ICIT.

Pyruvate metabolism

The glycolytic activity (rPK) generates large amounts of pyruvate, which is mainly

converted to lactate (rLDH) and various amino acids (rdPY R). A smaller portion can

enter the upper part of the citric acid cycle (rPDH) and consumes OAA, which can also

be converted from PYR. Furthermore, PYR is produced by MDH and CL (see above

descriptions) and, thus, connects glycolysis and the citric acid cycle:

d[PY R]

dt
= rPK + rMDH + rCL − rLDH − 2rPDH − rdPY R − µf [PY R] (3.1.70)

with: rdPY R = kdPY R[PY R]. (3.1.71)

Here, kdPY R is the specific PYR degradation rate. The macroscopic description of the

lactate release of Eq. 3.1.17 can now alternatively be described with:

d[LACx]

dt
= rLDH

V C
s Xtot

V M
+
Fevap[LAC

x]

V M
(3.1.72)

Lactate dehydrogenase (LDH, EC number: 1.1.1.27): The LDH converts PYR to

LAC and it is generally accepted that its high activity is essential for fast proliferating

cells to maintain a certain redox balance (recouping of NAD). The accumulation of

intracellular LAC was not quantified by Ritter [23] and the largest fraction is presumably

secreted to the medium. Without measurements for LAC, the model is not extended

by the cytosolic influence of NADH. Taken together, the model considers a Michaelis-

Menten kinetic and the maximum activity measured in vitro by Janke et al. [22], which

shows very high activities.

rLDH = Kmax
LDH

[PY R]

kmLDH + [PY R] +
kaLDH

F16BP

(3.1.73)

Kmax
LDH is the maximum cell-volume-specific activity with affinity kmLDH for PYR and

activation constant kaLDH for F16BP.
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Energy metabolism and respiration

For the production and degradation of adenosine-based nucleotides, we used a reaction

network proposed by Verma and colleagues for yeast cells and adopted it such that it suits

our kinetic description for central carbon metabolism [199]. The model considers the

enzyme-mediated interconversion of adenosine-based nucleotides through the adenylate

kinase (rADK), central carbon metabolism (rCCM) and demands by the cells for growth,

maintenance and futile cycles (rdATP ). Furthermore, the synthesis and degradation of

AMP from and to IMP through the purine salvage pathway (rPSP ), which is in detail

explained by Walther et al. [197], is taken into account:

d[ATP ]

dt
= rCCM +

rADK
2
− rdATP (3.1.74)

with: rCCM = rENO + rPK + 2.5rNADH + 2rFADH

− rHK − rPFK , (3.1.75)

rdATP = rX/ATP + rm/ATP + rATPase

= (kX/ATP bsyn + V C
s kmATP )[ATP ] + rATPase (3.1.76)

d[ADP ]

dt
= −rCCM − rADK + rdATP (3.1.77)

d[AMP ]

dt
=
rADK

2
− rPSP (3.1.78)

d[IMP ]

dt
= +rPSP (3.1.79)

kX/ATP is the specific ATP consumption rate for cell growth, kmATP is the cell-volume-

specific ATP consumption rate for cell maintenance [242]. Here, the production of ATP

by rENO is representative for the PGK mediated reaction, which is not explicitly taken

into account. For convenience, the model assumes that the purine pool is constant (Eq.

(3.1.74) – (3.1.79)) and, thus, also neglects dilution by growth. The remaining enzyme

reaction rates are described below:

Respiration (NADH / FADH, lumped): Parts of the energy that is produced by re-

actions of the central carbon metabolism are indirectly transfered to ATP through the

hydrogen carriers NAD and FAD. The exact stoichiometry of reactions that produce or

consume NADH and FADH is, however, unclear as many of the mitochondrial reaction

paths have alternatives that may not phosphorylate these hydrogen carriers or use it for

purposes other than oxidative phosphorylation. Therefore, we rather calculate a max-
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imum NADH and FADH production rate based on the reactions defined for glycolysis

and the citric acid cycle:

rNADH = rENO + rKDH + rMDH + rPDH + 2rAAex + rICDH

− rLDH − rCL (3.1.80)

rFADH = rSDH + rAAex (3.1.81)

Note that the conversion of NADH to NAD by rCL is representative for an implicitly

considered cytosolic MDH reaction. Furthermore, metabolism of branched chain amino

acids by rAAex allow for the production of 2 NADH molecules from NAD [6]. The

oxidation of NADH yields 2.5 molecules ATP, while the oxidation of FADH yields 2

molecules of ATP ([6], cf. Eq. (3.1.75)). To enable a consistency check with experimental

data, the cell-number-specific oxygen demand is calculated from the production rates of

rNADH and rFADH (unit: fmol/cell/h):

rO2 =
rNADH + rFADH

2
× V C

s × 60× 1012 (3.1.82)

If further data becomes available, it seems reasonable to integrate a simple model for the

oxidative phosphorylation which considers a membrane potential that couples NADH

to the ATP pool (e.g. Nazaret et al. [251]). The model was already tested in this work

but too many parameters were not identifiable and several difficulties with the resulting

regulation pattern remained.

Adenylpyrophosphatase (ATPase, EC number: 3.6.1.3): Although the model al-

ready considers ATP consumption for growth and maintenance, the MDCK cell is ex-

pected to have a large overproduction in ATP that is simply converted to ADP in futile

cycles [15]. To account for this hypothesis, we implemented a degradation rate that is

based on a first order rate law:

rATPase = KATPase[ATP ]. (3.1.83)

KATPase is the cell-volume-specific activity of the ATPase.

Adenylate kinase (ADK, EC number: 2.7.4.3): The ADK reversibly converts ATP

and AMP into two molecules of ADP and maintains a certain ratio between the three

adenosine nucleotides. In most cases, the ADK is realized with simple conversion kinetics
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that enable a fast equilibrium [199, 242]:

rADK = Kmax
ADK

ADP − AMP
keqADK

kmADK + ADP + AMP
keqADK

. (3.1.84)

Kmax
ADK is the maximum cell-volume-specific activity with affinity kmADK for ADP and with

equilibrium constant keqADK .

Purine salvage pathway (PSP, lumped reactions): In yeast cells, it is observed that

the sum of adenosines drops in response to a glucose pulse [289]. Presumably because of

a conversion of AMP to IMP, which is part of the PSP [197]. As the overall adenosine

pool also drops in MDCK cells in response to a sudden start of cell growth, we assume

a similar mechanism and implemented a first order rate law for the exchange with the

PSP:

rPSP = KPSP

(
AMP − IMP

keqPSP

)
. (3.1.85)

KPSP is the cell-volume-specific activity with equilibrium constant keqPSP between AMP

and IMP.

3.1.3. Coupling of models

For simulation of the cell cultivation experiments, we couple the kinetic description of

the central carbon metabolism with the segregated cell growth model. In particular, we

track the actual growth status and culture condition of the cell population during batch

cultivation and apply the resulting properties of a mean cell to the structured central

carbon metabolism model. What follows is an influence of the cell growth regime7 on

the concentration of extracellular substances, their uptake and release, dilution of intra-

cellular metabolites, consumption of cellular energy and biomass precursors as well as on

the cell-volume-specific enzyme activities (Fig. 3.1). In the following, we describe mod-

ifications and additional definitions necessary for a consistent coupling of both models.

Transport kinetics of the structured model: During a cell cultivation, the uptake

of GLCx and GLNx is solely defined by the macroscopic, growth-dependent functions.

7growth regime: an intracellular signal processing network that decides over cell growth phases
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Glycolysis 

Citric acid cycle 

Population level 

Cellular level 

Segregated cell growth model 

Structured central carbon metabolism model 

Glycolysis 

Citric acid cycle 

Segregated cell growth model 

Structured central carbon metabolism model 

(1) (2) (3) (4) 

Figure 3.1.: Coupling of segregated cell growth and structured central carbon
metabolism model. The segregated cell growth model influences: (1) the cell-specific vol-
ume (V C

s ) and, concomitantly, the cell-volume-specific enzyme activities (Kmax
e , Ke); (2) the

dilution of intracellular metabolite pools by cell growth; (3) the change in extracellular sub-
strate levels; (4) the time-dependent uptake rates (rGLUT , rGLNT , rGLT ).

Therefore, the transport rate by GLUT and GLNT needs to fulfill the relation:

rGLUT = (rX/GLCx + rm/GLCx)
V M

V C
s Xtot

(3.1.86)

rGLNT = (rX/GLNx + rm/GLNx)
V M

V C
s Xtot

(3.1.87)

Note that rX/S and rm/S are here used with unit mmol/L/min. Furthermore, this relation

only holds for the cellular uptake of substrates during cell cultivation experiments under

excess of substrates. In scenarios characterized with low substrate concentrations (e.g.
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3. Models and methods

< 0.2 mmol/L for hybridoma [51] or < 0.4 for BHK cells [290]) the uptake rates may

strongly depend on the substrate affinity of the transporter and can differ significantly

from the macroscopic descriptions given with Eq. 3.1.86 and 3.1.87. To simultaneously

enable the use of a macroscopic description during cell cultivation and a mechanistic

description during the perturbation experiments, we implemented variable capacities

for the substrate transports (γGLUT and γGLNT ), which are defined as follows:

γGLUT =
(rX/GLCx + rm/GLCx) VM

V C
s Xtot

Kmax
GLUT

[GLCx]
kmGLUT+[GLCx]

(3.1.88)

γGLNT =
(rX/GLNx + rm/GLNx) VM

V C
s Xtot

Kmax
GLNT

[GLNx]
kmGLNT+[GLNx]

(3.1.89)

Thus, multiplication of the mechanistic uptake rates with γ (Eq. (3.1.30) and (3.1.50))

adjusts their activity to the macroscopic description given by the segregated cell growth

model. From a biological point of view, the GLUT and the GLNT have a variable

transport capacity that is regulated by the cellular growth regime through a change

in the transporter affinity, translocation of transporter to the membrane or molecule-

based activation [97]. When it comes to the limitation experiments, γ remains constant

(the cellular demand is still the same) and the depletion dynamics solely depend on the

transporter kinetics. Therefore, γ is time-dependent for Cult1 – 3 simulations, where

the growth of cells changes, and constant, experiment-specific for Lim1, Lim2 and Pulse

simulations.

Calculation of specific enzyme activities: For a large portion of enzymes e, the cell-

specific maximum activity vmaxe was measured in vitro by Janke et al. [22] for adherent

MDCK cells cultivated in GMEM-Z. The transformation to Kmax
e follows with

Kmax
e =

vmaxe Elevel
V C
s

, (3.1.90)

where Elevel is the experiment-specific, relative enzyme level of the cell population. So,

we take into account that cell cultures, which can already differ in dm and dc, may

also show concerted variations in vmaxe . However, the variation in maximum enzyme

activities is presumably limited. On the basis of the enzyme activity measurements by

Janke et al. [22], we calculated a mean standard deviation for all enzyme activities of

about ± 8 %. Note that the Kmax
e also change with V C

s and are, hence, time-dependent.
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3.2. Model simulation

The cell-volume-specific activity Ke similarly results from the cell-specific activity ve:

Ke =
veElevel
V C
S

. (3.1.91)

Growth phases and biosynthesis activity of cells: Based on the segregated cell

growth model, theoretical growth phases for a mean cell can be calculated and are

important for the depiction of metabolite pool dynamics. The lag phase of V C and Xtot

is here the time span required by half of the cells to double in cell-specific volume or

number, respectively. Afterwards, the growth phase follows and ends with the onset of

the intermediate growth phase. The intermediate growth-phase for V C is supposed to

be in the time interval where

0.95 > f > 0.05 (3.1.92)

holds. In case of Xtot, we use the relative growth rate of the cell number in the interval

0.95 ·µmax >
X5(t)rtrans(t)

Xtot(t)
> 0.05 ·µmax, with: t > 20 h. (3.1.93)

Afterwards, a stationary growth phase forXtot and V C follows. However, the degradation

of citric acid cycle intermediates and ATP may not directly correlate with the increase

of Xt or V C but with the propagation of cells through the different classes Xi, which we

define as relative biosynthesis activity (bsyn) that is

bsyn =
X1f +

∑5
i=2Xi

Xtot

. (3.1.94)

The intermediate growth phase for bsyn shall be the time span that satisfies

0.95 > bsyn > 0.05. (3.1.95)

3.2. Model simulation

Apart from the definition of the model structure, ODE-based models require the set-

ting of initial conditions for each experimental scenario. In this work three cultivation

experiments (Cult1 – 3) and three perturbation experiments (Lim1, Lim2, Pulse) are an-

alyzed. For the sake of a clear overview, the initial conditions are divided into cultivation

conditions, growth status and metabolic status.
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3. Models and methods

3.2.1. Considering the preculture of cells

Cell cultivation experiments rely on the transfer of cells from a preculture into a new well

or at least on changes in cultivation conditions, e.g. addition or removal of substrates.

In both cases, the initial growth status (such as cell diameter, cell number, growth

inhibition etc.) and metabolic status (intracellular metabolite concentrations) of the

cells are pre-defined by the cultivation prior to the actual experiment (see Table C.1 and

C.2). For a consistent simulation of the cellular behavior, the experiments conducted by

Ritter [23] are set into the chronology shown in Figure 3.2. In particular, the simulation

of the cultivation experiment (e.g. Cult1) provides (at individual time points t∗) the

growth and metabolic status for the limitation experiments (Lim1 – 3), which in turn

provide initial conditions and experiment-specific parameters for the pulse experiment.

The corresponding culture conditions are given by Ritter [23] or estimated in the next

section 3.2.2. For the inoculation of the cultivation experiments, however, the initial

conditions were derived from different sources: The growth status and culture condition

were determined with the segregated cell growth model during parameter estimation

Figure 3.2.: Flow of information and link to experimental data. (1) Use of growth
status and cultivation condition of Cult1 at 200 h to determine the metabolic status by steady
state simulation. (2) Transfer of the metabolic steady state to the simulation of the Cult1 – 3
and the Pred. simulation. (3) At individual time points t∗, the metabolic and growth status of
Cult1 is transferred to the respective simulation of the Lim1 – 3 experiments. (4) Simulation of
pulse response with initial conditions determined with the Lim3 simulation. Green background:
Coupling of segregated cell growth model and structured metabolism model; red background:
coupling of adjusted segregated cell growth model, which renders cell growth under limited
GLCx concentrations, to the structured metabolism model.
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3.2. Model simulation

and vary due to differences in the preculture device and the precultivation time [23].

The metabolic status was derived from a steady state simulation with the structured

metabolism model using the culture conditions as well as the growth status present

in Cult1 at t = 200 h. This, however, implies the assumption that cells achieve a

reproducible metabolic status in the stationary growth phase of the precultures and

that batch-to-batch variations during this growth phase are small and have a negligible

impact on the metabolite pool levels. Both can be observed in the cultivation data (e.g.

Fig. 4.11).

3.2.2. Substrate limitations through medium dilution

For the limitation experiments, the medium was discarded and replaced by phosphate

buffered saline (PBS) [23]. At that time point of cultivation, e.g. 48 h, the activ-

ity of glycolysis is about 2.7 mmol/L/min which would deplete the G6P pool within

seconds. Inspection of the corresponding G6P dynamics reveals high levels for about

0.3 min and a depletion of G6P after 0.6 min of cultivation (Figure 3.3A). Based on

V C(t = 48 h) = 5.9 µL, about 4.8×10−6 mmol GLCx is required to satisfy the gly-

colytic activity for 0.3 min. Assuming that medium remains on the cellular surface

and the intercelluar space with a GLCx concentration of 25 mmol/L (at 48 h) yields a

V M = 4.8× 10−6/25 = 1.9× 10−7 L. Simulation studies with the structured metabolism

model yield 3 × 10−7 L (simulation not shown). So instead of inducing the limitation

with GLCx(t=0)=0 mmol/L we simply set V M = 3 × 10−7 L, which corresponds to a

PBS 

Cell Cell 

Well surface 
Medium 

0.3 µm 

14.0 µm 

A B 

Figure 3.3.: A priori estimations for the substrate limitation experiments. (A) G6P
time series (◦) during the Lim1 experiment with mean and standard deviation of three wells
(data taken from [23]). Red lines were derived by regression analysis and used to assess the
time span of high G6P levels. Dashed gray line is the limit of quantification. (B) Illustration
of remaining medium in the 6-well plate after medium depletion and addition of PBS.
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3. Models and methods

height of 0.3 µm in the well for a surface of 10 cm2 (cell layer height ≈ 14.0 µm, Fig.

3.3B). Note that dilution of the medium by PBS is likely and may yield a V M higher

than 3 × 10−7 and a reduced GLCx level, which, however, can be equally well realized

with the model in case more detailed data becomes available.

To keep the simulations as simple as possible, we assume that cells remain constant in

their initial growth status for the duration of the perturbation experiments (Table C.2).

3.2.3. Hierarchy of model parts and sequential model fitting

A reliable parameter estimation and an in-depth analysis of causal relationships is key

to a proper model development but greatly hampered by a high model complexity. As

a direct solution to that problem, we only considered simple enzyme kinetics (section

3.1.2) and used the cell’s cultivation history (section 3.2.1) to both minimize the degree

of freedom and focus on mechanisms that are essential to describe the data. However,

the analysis of the full model (segregated growth + structured metabolism) was still

difficult and we splitted the model into smaller, manageable parts (defined in section

3.1.2) and conducted a piecewise analysis. In particular, the macroscopic segregated

cell growth model is by definition independent from intracellular changes. Glycolysis

and glutaminolysis depend on the segregated cell growth model, while metabolites and

nucleotides of the PPP, glycogenesis, pyruvate metabolism and energy metabolism de-

pend on glycolysis and glutaminolysis but not on each other. The proposed hierarchy is

illustrated in Figure 3.4. Using the hierarchy of model parts enables a sequential model

fitting where only the actual model part is subject to parameter estimation. Model parts

of lower hierarchy are disregarded, while model parts of higher hierarchy are not part

of the parameter estimation as they already possess a final structure and parameteriza-

tion. Note that the estimation of parameter confidence intervals takes into account the

parameter uncertainty of model parts with higher hierarchy except of the segregated cell

growth model. So the uncertainties in the segregated cell growth model and the overall

Segregated 
cell growth  

Glycolysis 

Glutaminolysis and pyruvate 

Pentose Phosphate Pathway 
Glyocogenesis 

Energy metabolism 

Figure 3.4.: Hierarchy of model parts. Blue lines indicate an unidirectional influence of
a model part on another (from left to right).
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kinetic description of central carbon metabolism are separately analyzed.

3.3. Theoretical tools

3.3.1. Algorithms and objective function

For model fitting, estimation of parameter confidence intervals, and visualization of re-

sults MATLABr (Version R2012b, The MathWorks, Inc.) was used. Models and data

were handled with the Systems Biology Toolbox 2 developed by Schmidt and Jirstrand

[291]; integrations of the ordinary differential equations were performed with the CVODE

from SUNDIALS [292]. The algorithm SSm [293] was used for stochastic global opti-

mization of the parameters and experiment settings. All simulations were carried out

on a Linux-based system (partly by using the Linux-Cluster ”Otto” of the Max Planck

Institute for Dynamics of Complex Technical Systems Magdeburg). By using this setup,

a model simulation required less than 0.1 s.

3.3.2. Model analysis

Objective function: The fitness of the model trajectories ỹlmj to the data ylmj was

evaluated based on a weighted sum of squared residuals (FQS), defined with

FQS =
N l∑
l=1

Nm
l∑

m=1

Nj
lm∑

j=1

(
ylmj − ỹlmj

σ

)2

, (3.3.1)

comprising the experiments l = 1, ..., N l, the states m = 1, ..., Nm
l measured in ex-

periment l and the time points j = 1, ..., N j
lm for state m in experiment l, while

σ = maxlm([ylm1, ..., ylmNt
lm

]) is a weighting to the maximum data point for state m

in experiment l. A violation of the constraint given in Eq. 3.1.43 increases FQS by a

penalty value of 0.5. For low PK activities during the limitation experiments, rPK(6min)
10

of the Lim1 experiment was added to the FQS value.

Parameter confidence intervals: For assessment of the parameter confidence inter-

vals a bootstrap method with at least 2000 runs was used [271, 294]. A total of 2000

runs is presumably sufficient for the parameter optimization problems of this work, espe-

cially when considering a sequential model fitting. Convergence of the parameter bounds

was observed. The bootstrap method in short: 2000 in silico data sets were generated

from the normal distribution of each ylmj (defined by mean and standard deviation of
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3. Models and methods

the measurement) and fitted with SSm yielding 2000 model parameterizations Φ. From

these parameterizations, each parameter was sorted by value and the 0.025 and 0.975

quantile constitute the bounds of the 95 % confidence interval.

Local sensitivity analysis: According to Gutenkunst et al. [269], the change in model

behavior χ2 in response to a change in the parameter set φ is described with:

χ2(φ) =
1

2

N l∑
l=1

Nm
l∑

m=1

Nj
lm∑

j=1

1

Nm
l N

t
lm

(
ỹlmj(φ)− ỹlmj(φ′)

σ̃

)2

(3.3.2)

where σ̃ = maxlm([ỹlm1(φ), ..., ỹlmNj
lm

(φ)]) is a weighting with the maximum simulation

point for state m in experiment l. In this work, a 1 % change in a single parameter

value of φ was used (φ′). Note that only time points at which data points exist were

considered for the sensitivity analysis.

3.3.3. Limit of quantification

The limit of quantification (LOQ) of the assays to determine the concentration of intra-

cellular metabolites M is given in molar units in the Appendix B.1 (Table B.1) and here

denoted as LOQmmol
M . As all adherent cells of a 6-well plate are quenched and analyzed,

the LOQ used in the figures is related to V C (taken from Cult1):

LOQM =
LOQmmol

M

V C
(3.3.3)
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4Chapter

Results and discussion

4.1. Observations for MDCK cell cultivations in different media

Current experimental approaches to the analysis of the MDCK cell metabolism comprise

the quantification of extracellular and intracellular metabolites [23], the inferences of

flux rates from flux balance analysis [15, 16], and the measurement of in vitro enzyme

activities [22]. In this first part, we pre-analyze the data from all four sources to extract a

working hypothesis for the integrated modeling approach of the following sections. Since

a multitude of factors can influence metabolism, we concentrate in the pre-analysis on

cell cultivation experiments where MDCK cells from the same preculture are seeded

into a new well with either the serum-containing medium GMEM-Z or the serum-free

medium EpiSerf to highlight similarities or dissimilarities. In particular, we examine

the growth of the cells together with the uptake and release of metabolites, followed by

the analysis of intracellular metabolite time series in glycolysis, glutaminolysis, and the

closely related pathways as well as the level of purines. Finally, we discuss to which

extent metabolism is influenced by the corresponding medium and the change in cell

growth phase. Note that parts of the following analysis are taken from our original

research article Rehberg et al. [295]. Copyright of these passages lies with the Journal

of Applied Microbiology and Biotechnology (Springer-Verlag GmbH, Heidelberg).

4.1.1. Growth, nutrient supply and byproduct release

Cell number, diameter and volume: The time course of cell numbers of the two cul-

tures (Fig. 4.1A) showed in mean a maximum specific growth rate for GMEM-Z cultures

of 0.040 h−1 in the time interval of 21 – 54 h and for EpiSerf cultures of 0.035 h−1 in the

time interval of 27 – 54 h, based on a logarithmic regression for the three experiments

(∆, 2, ◦, performed by Ritter [23]). The mean diameter of cells was similar for both

media starting with 14 – 17 µm, increased to 17 – 21 µm after one day of cultivation,

and afterwards decreased to its initial level (t = 0 h). However, for EpiSerf cultures

the mean cell diameter was initially lower and the maximum is slightly later achieved
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Figure 4.1.: Growth of adherent MDCK cells in 6-well plates with either GMEM-
Z (black) medium or EpiSerf (red) medium. Time series of cell number (A), mean
cell diameter (B), total cell volume (C, with splines used by Ritter [23] for calculation of
intracellular metabolite concentrations), and extracellular metabolites glucose (D), glutamine
(E), glutamate (F), lactate (G), and ammonium (H) were measured in three independent
experiments by Ritter [23] marked with symbols ∆, 2 and ◦ (mean and standard deviation
of three wells). The energy charge (I) is calculated from intracellular concentrations of ATP,
ADP and AMP (Eq. (2.2.1)). Light gray field between 30 – 58 h illustrates the intermediate
growth phase of the total cell volume (V C in Table 4.2).

(Fig. 4.1B). In contrast to the increase in cell numbers, growth in total cell volume

(Fig. 4.1C) occurred at a similar time interval for both media (6 – 46 h) with nearly

the same maximum specific growth rate (0.040 h−1 in GMEM-Z; 0.039 h−1 in EpiSerf

based on a logarithmic regression performed by Ritter [23]). Note that the time interval

of the regression analysis of Ritter [23] overlaps with the gray fields of Fig. 4.1, which

illustrate the intermediate growth phase and are derived from simulating the GMEM-Z

cultivations with the model of section 4.2. After 58 h of cultivation, the cell volumes

in the EpiSerf cultures reached higher levels of about 10 – 11 µL (GMEM-Z: 7 µL) due

to slightly higher mean cell diameters and apparently higher cell numbers with 4×106 –
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4.1. Observations for MDCK cell cultivations in different media

5×106 cells per well (GMEM-Z: 3×106 – 4×106).

Substrate uptake and byproduct release: Both media differ significantly in the

initial concentration of GLCx, GLNx and GLUx (Fig. 4.1D – F). Nevertheless, the total

cell-volume-specific uptakes of GLCx (rGLCx) and GLNx (rGLNx) are similar (Table 4.1)

and the decrease in GLCx and GLNx correlates with the increase in cell volume until 58 h

of cultivation. Afterwards, the GLCx concentration decreased more or less linearly in

GMEM-Z indicating cell maintenance (stationary growth phase, 58 – 200 h, Fig. 4.1D).

According to Baggetto [50], cancer cells require no or only marginal amounts of GLNx

during stationary growth phase and the linear decrease of GLNx after 58 h fits exactly

to the spontaneous decomposition present in GMEM-Z medium (0.0036 h−1, Fig. 4.1E,

[51, 212]) and loss of water (water evaporation rate constant: 2.75×10−6 L/h, [23]). In

EpiSerf cultures, however, GLCx was depleted after cells reached the stationary growth

phase (72 h, Fig. 4.1D) while the GLNx concentration was constant during stationary

growth phase (Fig. 4.1E). Obviously, spontaneous decomposition of GLNx does not play

a role in EpiSerf medium. The uptake of GLUx (Fig. 4.1F) started shortly after onset

of cell growth inhibition (gray field) and lasted until GLUx was depleted (GMEM-Z:

58 h, EpiSerf: 96 h). The corresponding uptake rate of GLUx (rGLUx) was slightly lower

in EpiSerf cultures compared to GMEM-Z (Table 4.1) and the uptake lasted longer

due to higher initial GLUx levels. The accumulation of LACx correlates with the drop

in GLCx (Fig. 4.1G) and, therefore, ceased after about 58 h of cultivation in EpiSerf

medium while in GMEM-Z a linear increase until the end of the cultivation was observed.

Extracellular ammonia (NHx
4) levels showed a linear increase during cultivation, even at

late time points where GLNx and GLUx were not consumed. In GMEM-Z cultures, the

spontaneous decomposition of GLNx may explain this increase in NHx
4 after 58 h. In

EpiSerf cultures, however, the increase in NHx
4 most likely reflects the consumption of

Table 4.1.: Total cell-volume-specific uptake rate of substrates and release rate of byproducts
in two different media, derived by polynomial regression analysis of three independent cultiva-
tions (units: mmol/L/min). Depicted are mean and standard deviation of the three regression
analyzes.

rGLCx
a rGLNx

a rGLUx
b rLACx

a rNHx
4

a

GMEM-Z 3.12± 1.17 0.27± 0.10 0.20± 0.02 6.82± 1.22 0.13± 0.02
EpiSerf 2.78± 0.33 0.12± 0.08 0.13± 0.03 6.42± 0.35 0.20± 0.02
acalculated for the time interval 0 – 48 h
bcalculated for the time interval 35 – 62 hour (GMEM-Z), 61 – 132 hour (EpiSerf)
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4. Results and discussion

other amino acids. The EC showed values above 0.8 over the complete time course of

cultivations (Fig. 4.1I), which is within the typical limits found for mammalian cells

[192].

4.1.2. Response of metabolism to growth and media

Glycolysis and associated pathways: During cultivation in GMEM-Z and EpiS-

erf, the intermediates G6P, F6P and F16BP (Fig. 4.2A – C) of upper glycolysis showed

a strong increase for the first 24 h of cultivations. With the onset of the intermediate

growth phase (gray field) all three intermediates decreased in concentration and remained

in the subsequent stationary growth phase at more or less constant levels. Interestingly,

Sellick et al. [32] similarly observed for CHO cells that levels of glycolytic intermediates

decrease during the transition to the stationary growth phase. With depletion of GLCx

in EpiSerf medium, the measured levels of G6P and F16BP were lower than the limit of

quantification and, thus, slightly different to that of the GMEM-Z culture. In the lower

part of glycolysis, 3PG as well as PEP showed an increase in concentration until 48 h,

which corresponded to the cease of cell volume growth (end of gray field, Fig. 4.2D, E).
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Figure 4.2.: Dynamics of glycolytic intermediates during cultivation of adherently
growing MDCK cells in GMEM-Z and EpiSerf. The upper part of glycolysis with
glucose 6-phosphate (A), fructose 6-phosphate (B), fructose 1,6-bisphosphate (C) and the
lower part of glycolysis with glyceraldehyde 3-phosphate (D), phosphoenolpyruvate (E) and
pyruvate (F) are shown in the color code of Figure 4.1 (data taken from Ritter [23]). The limit
of quantification is shown as dashed black line. Light gray field between 30 – 58 h illustrates
the intermediate growth phase of V C (Table 4.2).
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4.1. Observations for MDCK cell cultivations in different media

In the EpiSerf culture, the time courses of PEP seemed to follow the peak behavior of

3PG concentrations. In GMEM-Z, the time series of PEP were rather similar to PYR as

both increased to their maximum concentrations at about 48 h and remained constant

afterwards (Fig. 4.2E, F). Albeit the fact that cells of both cultures originated from the

same pre-culture, intracellular PYR concentrations of the cells in EpiSerf cultures were

initially significantly higher with a fast drop to concentrations lower than in GMEM-Z

cultures. Possible metabolic branches for the glycolytic intermediate G6P are glycogen-

esis or the PPP comprising UGLC and R5P, respectively. Interestingly, R5P and UGLC

seem to correlate with intermediates of upper glycolysis, which is presumably attributed

to the close linkage of these pathways (Fig. 4.3A, B). Both metabolites increased ini-

tially, achieved a maximum at 24 h and decreased with onset of cell growth inhibition

(gray field) to a stationary level. In the EpiSerf culture, the level of UGLC was mostly

below that of the GMEM-Z cultures (similarly to the intracellular metabolites of the

upper glycolytic pathway). UDPGlcNAc and its sterioisomer UDPGalNAc (not shown

since it is identical in its dynamics) are linked to F6P but showed a totally different time

course. It seems that both metabolite pools performed a nearly inverse dynamic with a

maximum for GMEM-Z medium and a minimum for EpiSerf medium at day three (Fig.

4.3C, D). Note that Ryll et al. [85] found the highest level of these hexosamines at the

end of the growth phase for various other cell lines. Their results are, thus, in line with

the GMEM-Z cultivation but not with the EpiSerf cultivation.
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Figure 4.3.: Dynamics of intermediates of glycogenesis, pentose phosphate path-
way and hexosamine biosynthesis pathway during cultivation of adherently grow-
ing MDCK cells in GMEM-Z and EpiSerf. Uridine diphosphate glucose (A), ribose
5-phosphate (B), and uridine diphosphate N-acetylglucosamine (C) are shown in the color
code of Figure 4.1 (data taken from Ritter [23]). The limit of quantification is shown as
dashed black line. Light gray field between 1 – 2.5 days illustrates the intermediate growth
phase of V C (Table 4.2).
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4. Results and discussion

Citric acid cycle: In MDCK cells, PYR is mainly metabolized to lactate and only

minor amounts enter the citric acid cycle, according to the analysis of fluxes [16] and

of enzyme activities [22]. Therefore, it is not surprising to find no correlations between

metabolite pool dynamics of the citric acid cycle and glycolysis. The most prominent

observation is the peak formation of αKG , SUC, FUM and MAL at about 24 h of culti-

vation (Fig. 4.4A – D). It appears that the peak coincides with the cease of cell volume

growth (end of gray bar). Thus, the drop of metabolite pools may be related to the stop

in GLNx and GLUx uptake. At least in case of the EpiSerf culture, the second drop at

96 h can be explained with the depletion of GLUx. Thus, the intracellular concentrations

of metabolites differ between both media after 96 h of cultivation. Unexpectedly, final

levels of αKG in experiment ◦ and ◦ were generally higher compared to the other exper-

iments. These high levels were not found for other metabolites of both experiments (Fig.

4.4A). SUC showed slightly lower levels for cells grown in EpiSerf, which indicates small

differences among both media (Fig. 4.4B). In the upper part of the citric acid cycle, CIT

and ICIT are highly correlated in their dynamics and showed decreasing concentrations

over time (Fig. 4.4E, F). The concentrations in EpiSerf cultures were initially higher

than that of GMEM-Z cultures. However, with increasing cultivation time CIT and
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Figure 4.4.: Dynamics of citric acid cycle intermediates during cultivation of ad-
herently growing MDCK cells in GMEM-Z and EpiSerf. The lower part of the citric
acid cycle with α-ketoglutarate (A), succinate (B), fumarate (C), malate (D) and the upper
part with citrate (E) and isocitrate (F) are shown in the color code of Figure 4.1 (data taken
from Ritter [23]). The limit of quantification is shown as dashed black line. Light gray field
between 1 – 2.5 days illustrates the intermediate growth phase of V C (Table 4.2).
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4.1. Observations for MDCK cell cultivations in different media

ICIT of EpiSerf cultures approached the same levels found in GMEM-Z cultures. With

depletion of GLCx in the EpiSerf culture after 72 h, it seems that concentration of both

metabolites dropped again.

Purines: The nucleotides ATP, ADP and AMP showed significant changes in con-

centrations during the time course of cultivations (Fig. 4.5A – C). With the start of

cultivations, concentrations of ATP increased roughly from 2 mmol/L to 4 mmol/L al-

though large experiment-specific differences were observed. Experiment ◦, for example,

showed the highest ATP levels at initial times of cultivation. For the other cultiva-

tions, however, the ATP level was highest when cells approach the stationary growth

phase. In case of EpiSerf cultures, ATP concentrations dropped slightly after about 96 h

while in GMEM-Z cultivations a minor increase towards later time points was measured.

ADP and AMP concentrations were low in general (0.4 mmol/L; 0.1 mmol/L) with time

courses more or less inverted to the ATP dynamics. Interestingly, neither a constant

behavior of ATP nor a constant sum of adenosine-based nucleotides can be observed

(the change in ATP is much larger than in AMP and ADP). In particular, the difference
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Figure 4.5.: Dynamics of purines during cultivation of adherently growing MDCK
cells in GMEM-Z and EpiSerf. The adenosine-based nucleotides with adenosine triphos-
phate (A), adenosine diphosphate (B), and adenosine monophosphate (C) as well as the
guanosine-based nucleotides with guanosine triphosphate (D), guanosine diphosphate (E) and
guanosine monophosphate (F) are shown in the color code of Figure 4.1 (data taken from
Ritter [23]). The limit of quantification is shown as dashed black line. Light gray field between
1 – 2.5 days illustrates the intermediate growth phase of V C (Table 4.2).
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4. Results and discussion

in ATP levels reach up to 2 mmol/L, which cannot be fully explained with variations

in ADP and AMP. The time series of the guanosines (Fig. 4.5D – F) were very similar

to those of the adenosines but with much lower intracellular concentrations. In case of

GMP (Fig. 4.5F), the concentration was mostly below the quantification limit but with

a trend that might be similar to the AMP dynamics. The description of the pyrimidines

is given elsewhere [295].

4.1.3. Discussion

Ritter [23] seeded MDCK cells from identical GMEM-Z precultures into 6-well plates to

grow either in GMEM-Z or in EpiSerf medium. Thus, cells inoculated in EpiSerf medium

grew without preliminary adaptation and faced substantial differences in the abundance

of substrates and amino acids. In particular, the EpiSerf medium is serum-free. There-

fore, the first aspect considered is to which extent the growth of cells cultivated in EpiSerf

differs from cultivations with GMEM-Z. Next, it is discussed to which extent growth and

substrate supply in both media can be linked to changes in the cellular metabolism and

whether a robust regulation regime is present.

Cell growth and substrate uptake in two different media: In accordance to lit-

erature, we expected the cells to show clear differences in their growth behavior

[4, 78, 168, 296], e.g. in lag phase, in specific growth rate or in time point of growth lim-

itation by substrates or inhibitors with largely unknown effects on intracellular metabo-

lite pool dynamics. Interestingly, however, the general growth behavior is very similar

in both media. Minor differences are found in a slightly extended delay in cell num-

ber increase (about 6 h) and in a higher final cell volume of EpiSerf cultures, which

may be attributed to differences in the osmolality (EpiSerf: 375 mOsm/kg; GMEM-Z:

320 mOsm/kg, measured by the group of Y. Genzel, Bioprocess Engineering Group, MPI

Magdeburg, Germany) and missing factors for cell attachment in the serum-free EpiSerf

medium. Also, the uptake of substrates appears to be qualitatively and quantitatively

similar (Table 4.1), at least until GLCx depletion occurs in the EpiSerf medium. In

conclusion, a reduced cellular uptake or a more efficient breakdown of GLCx, which is

reported as Crabtree effect for many other cells [82, 87, 92, 95], is not observed in our

data, although concentrations of substrates are far different. Therefore, the influence

of the medium on cell growth and uptake rates is rather small, as long as substrate

concentrations are not at limiting levels (< 0.2 mmol/L [51, 87]). However, an effect on

intracellular metabolite pools can be expected at later stages of cultivation where either
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4.1. Observations for MDCK cell cultivations in different media

GLCx or GLUx drop to very low levels.

Response of glycolysis to growth and media: Major amounts of G6P are con-

verted in glycogenesis, the PPP and glycolysis to UDPGlc, R5P and F6P, respectively.

Whilst these metabolites show fundamental changes in their pool size over time, differ-

ences between GMEM-Z and EpiSerf cultures are surprisingly small. All metabolites

show a strongly correlated dynamic even though the involved enzyme-mediated reac-

tions have different requirements for cofactors. A concerted regulation of these enzymes

through cofactors, such as ATP or NADP, appears therefore unlikely. The peak-like re-

sponse in several metabolites is, thus, rather a result of a reduction in the overall enzyme

level or of rate limiting reactions, such as the HK or the GLUT facilitated transport,

which is suggested for cancer cells by Rodŕıguez-Enŕıquez et al. [133]. For example, if

none of the enzymes involved in G6P conversion are saturated or inhibited in their cat-

alytic activity an increase in G6P levels should increase the production rate of UDPGlc,

R5P and F6P. A rate limiting GLUT or HK may then exert flux control over this part of

the network. Comparison of rGLCx (Table 4.1) with in vitro measured enzyme activities

(e.g. of G6PDH and GPI, [22]) indicates a very high remaining capacity for G6P conver-

sion and, thus, enzymes downstream of HK are presumably not rate limiting (and also

not flux controlling). In line with this hypothesis, we recognized slightly lower GLCx

uptake rates in EpiSerf medium (Table 4.1) and found slightly lower metabolite pools

in upper glycolysis and associated pathways, which also points towards a rate limiting

GLUT or HK. Such a correlation between metabolite levels and fluxes, at least in the

upper part of glycolysis, is also described by Munger et al. [297]. Taking into account

that intracellular amounts of GLC were always below the detection limit, similarly de-

scribed for other cell lines by Renner et al. [95] and Schmid and Blanch [91], renders the

HK to be very active and the GLUT as rate limiting step. However, changes in intra-

cellular metabolite levels can also be explained with concerted changes in the enzyme

level. Nonetheless, the medium has only little influence and a rate limiting GLUT may

represent a starting point for modeling. Interestingly, the strong influence of GLUT on

the glycolytic activity was already shown for tumor cells [107, 108, 298]. In yeast cells,

the GLUT transport is identified as a major effector of dynamics in glycolysis [102].

In the lower part of glycolysis, where the hexoses are split into trioses, the general pic-

ture of the metabolite dynamics is not as clear. The first measured component 3PG

shows a broader peak than metabolites of upper glycolysis but is apparently decoupled

from PEP dynamics (especially for GMEM-Z). It is established that F16BP is a po-
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4. Results and discussion

tent allosteric activator of the PK [142, 143]. Therefore, one explanation is that the

decrease in F16BP reduces the PK activity and leads to higher PEP levels, which occurs

in both media. Another explanation for differences in the PEP dynamics may lie in

the linkage to the serine and glycine production, which can be responsible for medium-

specific differences (a peak for PEP can be anticipated in the larger variations found

for the EpiSerf cultures). A more pronounced medium-specific difference was observed

for PYR, which started initially high in the EpiSerf culture and afterwards decreased to

levels of the GMEM-Z culture. Amino acids such as alanine, glycine, serine and threo-

nine are typically involved in the production or degradation of PYR in MDCK cells [15].

The conversion of these amino acids to cytosolic PYR, which results in the production

of NHx
4, may take place in the stationary growth phase of EpiSerf cultures when other

substrates such as GLCx and GLUx were already depleted, and GLNx was not taken up.

Furthermore, providing an alternative source for intracellular PYR allows sustaining the

glycolytic intermediates in the EpiSerf cultures under depletion of extracellular GLCx.

Therefore, in these cultures, the flux through glycolysis towards PYR may be compar-

atively low in the stationary growth phase, and even gluconeogenesis seems possible.

Finally, also the hexosamines UDPGlcNAc and UDPGalNAc showed an inverse behav-

ior in EpiSerf medium compared to GMEM-Z. However, almost no correlation was found

with time series of other metabolites especially not to glycolytic intermediates, which

is in agreement with observations of Barnabé and Butler [78]. Nonetheless, main parts

of the glycolytic pathway as well as glycogenesis and the PPP show a similar behavior

in both cultures. Differences in the lower glycolysis may be linked to differences in the

amino acid metabolism, which may change with the media. Overall, it seems reasonable

to assume that intracellular metabolite pools are mainly regulated by the GLUT activity

and by an feed-forward activation of the PK by F16BP.

Two different parts of the citric acid cycle: The citric acid cycle is fed by

anaplerotic reactions from the precursors GLN and PYR, which are produced by glu-

taminolysis and glycolysis with about 0.3 mmol/L/min and 3.0 mmol/L/min, respec-

tively (Table 4.1). This large difference in glucose and glutamine conversion is a common

feature of cancer cells [50, 58], hybridoma cells [104], BHK cells [86], and AGE1.HN cells

[168]. Although PYR might be the main precursor for fueling the upper citric acid cycle

in normal cells, the enzyme that is involved in this step (PDH) shows only an activity

of 0.1 mmol/L/min in MDCK cells ([22], assuming a cell-specific volume of 3×10−12 L),

and can limit the transfer speed, which is a phenomenon described by Warburg et al.
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4.1. Observations for MDCK cell cultivations in different media

[56]. Moreover, a glucose-specific lactate yield coefficient above two was found, similarly

reported by Genzel et al. [299] for MDCK cells in GMEM-Z, indicating that only low

amounts of PYR are transferred to the citric acid cycle. Accordingly, we assume that

fluxes in both parts of the citric acid cycle are relatively low compared to glycolysis and

mainly fed from GLN, which agrees with the analysis of Sidorenko et al. [16].

In the lower part of the citric acid cycle, we again observed concerted changes in metabo-

lite pools, which on the one hand excludes an influence by the medium and on the other

points towards a robust regulation regime that either controls the transport steps or the

enzyme level. Accordingly, we speculate that the observed peak behavior in αKG, SUC,

FUM and MAL is linked to changes in GLNx and especially in GLUx consumption.

The increase in metabolite pools started with beginning of GLUx uptake (beginning of

gray field), while depletion of GLUx coincided with low intracellular metabolite pools.

Interestingly, the EpiSerf cultures showed a clear drop in FUM and MAL pools with

depletion of GLUx (t > 4 days) that may further support its role as main substrate.

In the stationary growth phase, constant levels of citric acid cycle intermediates were

observed, although GLUx is depleted and GLNx is not taken up by the cell. To maintain

constant levels, the cell may reduce the pathway activity, as the demand for biosynthe-

sis is low, and may engage in the consumption of other substrates to compensate any

cataplerotic effects, which presumably prevents apoptosis induced by depletion of these

intermediates [300]. Either, pyruvate is used to compensate cataplerosis, which seems

counterintuitive considering a lactate yield from glucose above two, or other amino acids

are converted to GLN, which explains the NHx
4 release in EpiSerf cultures.

In the upper part, the pools of CIT and ICIT dropped more strongly in the EpiSerf

culture, which might be linked to high PYR levels. However, it is established that ICIT

is also generated from αKG to support lipid synthesis [175, 176]. Being produced from

both pathways, CIT is presumably withdrawn from the mitochondrium such that the

upper and lower part are uncoupled and that the citric acid cycle is truncated, which

explains completely different metabolite dynamics in both parts. In the cytosol, CIT is

transferred into glycolysis and may allow for a glucose-specific lactate yield coefficient

that is above the theoretical maximum of two [121, 150].

The mutual influence of metabolism and purines: For the purines, significant

changes were observed over the time course of cultivation. ATP and GTP, which are

mostly identical in their dynamics, showed a negative correlation to their diphosphatic

and monophosphatic counterparts and a adenosine (or guanosine) conservation seems
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to be a rational explanation. Similar observations where also made for yeast cells after

a GLCx pulse [199, 289, 301]. The dynamics in ATP after inoculating cells in a new

well may represent an interesting analogy to the GLCx pulses in starved yeast cells. In

both cases, the main growth inhibitor is suddenly removed. However, calculations re-

vealed that the increase in ATP concentration is 66 % higher than the decrease in ADP

and AMP. Thus, the total adenosine pool is not constant and apparently influenced by

the purine salvage pathway [197] and by the usage of nucleosides for nucleic acid syn-

thesis [302]. Regarding the dynamics in ATP, this raises the question to what extent

the metabolism is subject to adenylate control [195] or whether energy-rich nucleotides

serve as a mediator that adjusts biosynthesis depending on supply reactions [61, 198],

e.g. glycolysis and oxidative phosphorylation. As an example for the first hypothesis,

the PFK as well as the CL enzyme are both assumed to be controlled by the ATP/AMP

ratio, a regulatory mechanism that is comprehensively described by Atkinson and Wal-

ton [194]. In this scenario, low levels in ATP during the growth phase may stimulate

the PFK, which would yield reduced F6P levels but higher F16BP levels. Inspecting our

data reveals a strong correlation in both metabolite pools with a prominent peak during

the cell growth phase. Hence, adenylate control over the PFK may be superimposed

by the large, GLUT-mediated carbon flux through glycolysis with generally elevated

metabolite levels in upper glycolysis. Furthermore, with the depletion of GLCx and

GLUx in the supernatant of EpiSerf cultures and a negligible GLNx uptake the pools of

ATP and GTP decreased slightly. In particular, dynamics of ATP seemed to correlate

with the drop of citric acid cycle intermediates of the lower branch (> 72 h). However,

the remaining citric acid cycle metabolites were not fully consumed to increase the ATP

level and, hence, adenylate control was also not obvious during GLCx and GLUx de-

pletion. Furthermore, a full control by adenosines implies rather constant ATP levels,

which were not observed during during cell growth. Therefore, it appears reasonable to

assume that the importance of biomass growth as well as a cellular response to substrate

depletions may overcome the necessity to maintain a constant nucleotide pool, at least

on the time scale of days. Perhaps adenosines influence the biosynthesis activity but a

strong influence on dynamics in metabolism seems unlikely for MDCK cells, which is an

important observation for the development of a mathematical model.

4.1.4. Summary

By using two very different cultivation media, we expected cells from the same preculture

to show significant changes in their growth behavior and metabolism. Firstly, because
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cells that are passaged in different media adapt their physiology regarding enzyme ac-

tivities and intracellular metabolite pools [33]. Secondly, because limitation in main

substrates may occur at different time points of cultivation, which inevitably influences

cell growth and metabolism. However, apart from minor differences in growth, which

may be attributed to the osmolality or the lack of factors for cell attachment, and a few

changes in metabolite pools, which indicate a slightly changed amino acid metabolism,

the behavior of the cells is quite the same. Obviously, the media of this study provide

sufficient amounts of main substrates such that limitations only occur at late stages of

cultivation. As medium components have only a minor influence on intracellular metabo-

lites, we, thus, anticipate that the metabolism of MDCK cells is robustly regulated by

pathway properties, transport mechanisms or hierarchical processes that allow for a con-

certed change in metabolite pools. In particular, the growth phase-dependent substrate

uptake rates together with few enzyme metabolite interactions may explain most of the

experimental observations. Interestingly, we could neither observe a nucleotide balance

nor a central role of purines for the regulation of central carbon metabolism. To which

extent these hypotheses can cover the measured metabolite pool dynamics and whether

they fit into a consistent picture of the metabolic regulation is part of the model-based

analyzes in the following sections.
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4.2. A segregated model for cell growth

From the observations made in the last chapter, the analysis of intracellular metabo-

lite pools on the background of the cell’s growth status is a line of investigation worth

pursuing. It, however, calls for a model that precisely captures the growth of cells in

number and volume over different phases of cultivation and that explains the uptake

of substrates. Furthermore, a certain simplicity for fast and stable simulation results is

required to enable the coupling with more complex structured models describing intra-

cellular reaction processes. Since such a model has not yet been addressed for growth

of adherent cells (see also section 2.3.1), we developed in section 3.1.1 a segregated

model that can describe the growth of cultivated MDCK cells in diameter and num-

ber. The model assumes that the cell passes from one diameter class to the next with

the concomitant consumption of substrates and release of byproducts (Fig. 4.6). After

reaching the highest diameter class, the cell divides into two daughter cells of equal size.

Growth inhibition can either occur due to limitation in GLCx or due to the cell-volume

dependent growth inhibition (f). Cells that pass the first transition proceed without

this limitation. Note that parts of the segregated cell growth model are taken from our

original research article Rehberg et al. [216]. Copyright of these passages lies with the

Journal of Biotechnology (Elsevier).
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Figure 4.6.: Scheme of segregated cell growth model. Cells proceed through Nc = 5
classes with increasing diameter until they reach dc and divide into two cells with diameter dm.
The transition from the minimum diameter dm to the second class (X1 → X2) is controlled by
the cell volume-dependent growth inhibition factor f .

4.2.1. Relation between cell number, diameter and volume changes

In the following, experimental results of the GMEM-Z cultivations of section 4.1 were

simulated with the model using the initial conditions of Table C.3 and a single set of
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4.2. A segregated model for cell growth

cell growth parameters of Table C.4. In the model simulation, the cell numbers per

well show a lag phase of about 20 h in which cells attach to the growth surface and

start to proliferate (Fig. 4.7A inset). Interestingly, the attachment of cells was found

to be fast, as 50 % of cells were attached after 3 h and 80 % were attached after 6 h

of cultivation, and, thus, constitutes only a small part of the 20 h delay (half of cells

sedimented at: 2.4 h; mean duration of attachment process: 0.8 h; see Appendix A.1).

Consequently, the remaining 17 h are more or less attributed to the cell size increase

until division. According to the model simulations, exponential growth follows the lag

phase with a maximum specific growth rate of µmax = 0.039 h−1 (Table C.4) until about

45 h of cultivation (Fig. 4.7A). The cell numbers reach their maximum in average after

82 h in the range of 3 × 106 – 4 × 106 per well. The model can take into account that

cultivations with higher final cell numbers show smaller mean cell diameters towards

the end of cultivation (Fig. 4.7B). Another aspect of cell growth is the increase in cell

volume (calculated with Eq. 3.1.8), which reaches similar levels of about 7 µL in all three

experiments (Fig. 4.7C). Note that the cell volume dynamics in the experiments and

in the model simulations show a very reproducible time course. The maximum specific

growth rate of the cell volume is expected to (largely) correspond to that of the cell

number. However, compared to the cell number the growth phases are different (already

described in section 2.1.2), which will be important for later discussions. The increase in

the cell volume starts immediately in the model simulation (5 h) and was also observed

experimentally to start at 6 h of cultivation or even before, which is much earlier than
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Figure 4.7.: MDCK cell growth in six-well plates with GMEM-Z medium. (A) Cell
numbers (inset: first 20 h). (B) Mean cell diameter. (C) Volume of all cells calculated from
the mean cell diameter and the cell number. Data of three independent experiments (∆, 2,
◦) were taken from Ritter [23]. Error bars represent mean and standard deviation of three
wells (in case of V C error bars were calculated according to the error propagation law). Lines
represent the corresponding model simulation (parameters of Table 1-2).
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the increase in cell number. The exact delay between cell volume and cell number varies

with cultivation time. Therefore, a summary of the obtained growth phases for Xtot,

V C and bsyn is given in Table 4.2 (for definitions see section 3.1.3). Taken together,

the developed model is in good agreement with both, the time courses of cell numbers

and of the cell volumes (Fig. 4.7A, 4.7C). In particular, it fits the delayed cell number

increase and different final cell numbers using a single parameterization. Measurements

of the mean cell diameters showed an increase from approximately 14 µm to 21 µm at

30 h of cultivation for all experiments (Fig. 4.7B). With onset of growth inhibition (after

30 h), the measured mean cell diameters decreased to their initial values. Preculturing

in T-flasks (Cult1 (∆), Cult2 (2)) and roller bottles (Cult3 (◦)) as well as different du-

rations of the preculture (Cult1 (∆): 6 days, Cult2 (2): 3 days, Cult3 (◦): 4 days) may

have caused the systematic difference in the experimentally found mean cell diameters.

Thus, the dm and dc of the cells division process vary with experiment and preculture

and require estimation for every experiment (Table C.3). The step-like increase of the

mean cell diameter at the end of experiment Cult3 (◦) resulted presumably from an

error during sample preparation (Fig. 4.7B, t > 132 h). The simulations show some

disagreement to the measured mean cell diameter at the beginning of cultivations. The

trajectories increase faster with a slight overshoot at about 12 h. Extending the model

by cell sedimentation and attachment to the well surface may improve the model fit but

Table 4.2.: Calculated growth phases of cell number (Xtot), cell volume (V C) and relative
biosynthesis activity (bsyn).

Laga Exponential Intermediateb Stationary
phase growth phase growth phase growth phase

Xtot Cult1 ∆ 0 – 18 h 18 – 45 h 45 – 82 h 82 – 200 h
Cult2 2 0 – 18 h 18 – 43 h 43 – 98 h 98 – 200 h
Cult3 ◦ 0 – 18 h 18 – 47 h 47 – 84 h 84 – 200 h

V C Cult1 ∆ 0 – 5 h 5 – 30 h 30 – 56 h 56 – 200 h
Cult2 2 0 – 5 h 5 – 27 h 27 – 59 h 59 – 200 h
Cult3 ◦ 0 – 5 h 5 – 32 h 32 – 58 h 58 – 200 h

bsyn Cult1 ∆ - 0 – 37 h 37 – 76 h 76 – 200 h
Cult2 2 - 0 – 34 h 34 – 86 h 86 – 200 h
Cult3 ◦ - 0 – 39 h 39 – 78 h 78 – 200 h

athe lag phase is the time required for half of the cells to double in Xtot or V C

bintermediate phase is defined for V C with Eq. 3.1.92; for Xtot with Eq. 3.1.92; for bsyn

with Eq. 3.1.95
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4.2. A segregated model for cell growth

is not considered in this work as differences are small. Nevertheless, the model captures

the maximum mean cell diameter and the decrease of the mean cell diameter towards

constant values in the stationary growth phase.

4.2.2. Extracellular substrate and byproduct dynamics

The most essential substrates for cell growth are GLCx and GLNx. Until 30 h of culti-

vation, the model suggests a fast decrease in both substrates based on an exponentially

increasing demand by the cells (Fig. 4.8A and 4.8B). Between 30 h and 58 h, the con-

sumption of both substrates reduces, which coincides with the intermediate growth phase

in V C (Fig. 4.7C, Table 4.2). After 58 h the consumption of GLCx reaches constantly

low levels and is the demand for cellular maintenance. In contrast, the reduction in

GLNx is fully explained with water evaporation and spontaneous decomposition, which

renders the maintenance metabolism of adherent MDCK cells to be independent from

GLNx. Final concentrations of 11 mmol/L for GLCx and of 0.5 mmol/L for GLNx were

measured and not growth limiting in the model. Another substrate source for the citric
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Figure 4.8.: Concentrations of extracellular substrates and byproducts. Glucose
(A), glutamine (B), glutamate (C), lactate (D) and ammonia (E) during MDCK cell growth
in six-well plate with cell growth medium (GMEM-Z). Data (∆, 2, ◦) and error bars, which
represent mean and standard deviation of three wells, were taken from Ritter [23]. (F) Cell
volume-dependent growth inhibition (f , line) and relative biosynthesis activity (bsyn, dashed
line) of the cells. Data and corresponding model simulations (based on parameters of Table
C.3 and Table C.4) are shown in the color code of Fig. 4.7. Grey dashed lines are the limit of
quantification (LOQ; data below LOQ marked in gray).
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acid cycle is GLUx. In contrast to GLCx and GLNx, the uptake of GLUx is in the

model dependent on a transporter activity that increases when cells are inhibited by f

(Eq. 3.1.13, analyzed in Wetzel [280]). Therefore, GLUx concentrations even increase

slightly due to water evaporation until 30 h of cultivation and then sharply decrease to

very low levels (below LOQ, Fig.4.8C). The model resembles the GLUx data for the

three cultivations with a single parameter value for the transporter activity (Table C.4).

Simulations for LACx show initially low concentrations and an exponential increase due

to the conversion of GLCx (Fig. 4.8C). Between 30 h and 58 h, the formation of LACx

ceases and reaches a final concentration of 52 mmol/L with a lactate yield from glucose

of YLACx/GLCx = 2.14. Experiment Cult3 (◦) shows a LACx accumulation exceeding the

simulation results. In case of NHx
4, levels increase until 30 h of cultivation (Fig. 4.8D)

and depend exclusively on the GLNx consumption with a yield of roughly 0.8 molecules

(cf. Fig. 4.8B, E). An additional contribution from GLUx produces a peak in NHx
4

release at 48 h that is not observed experimentally and is, therefore, not implemented

in the model. In the stationary growth phase, NHx
4 accumulates linearly until the end

of cultivation due to spontaneous decomposition of GLNx and water evaporation. Final

levels of NHx
4 reach 2 mmol/L and are below growth limiting levels of about 2.4 mmol/L

reported for MDCK cells by Butler et al. [54]. Thus, cell volume growth depends in the

model simulations almost completely on the cell volume-dependent growth inhibition

factor f , which is also used to control the GLUx uptake. At the beginning of the culti-

vation, f is one and has thus no effect on cell volume growth (Fig. 4.8F). Surprisingly,

growth inhibition starts early at about 30 h and f drops to zero within a day. The rela-

tive biosynthesis rate bsyn (explained in section 3.1.3) follows f although slightly delayed

in time because cells can divide while the cell volume remains constant (Fig. 4.8F), e.g.

a mother cell divides into two daughter cells that immediately stop proliferating.

Overall, the model reflects the growth and metabolite dynamics of all three experiments

with an intermediate phase that fits experimental observations. Experiment-specific dif-

ferences are explained with variations in the initial conditions and experiment-specific

parameters (Table C.3). Key growth parameters and metabolic parameters for adherent

MDCK cells are within the range reported in literature (Table 4.3).

4.2.3. Substrate uptake rates during cell cultivation

In principle, uptake rates of cell growth models are based on causal relationships that

hold for the entire course of cultivation and are, thus, more consistent and more pre-

cise compared to the polynomial regression analysis of Table 4.1 (section 4.1.1). The
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4.2. A segregated model for cell growth

Table 4.3.: Estimated parameters of adherent MDCK cell growth model compared to values
given in literature

Parameter Our model Literaturea Unit

µmax 0.039 0.029− 0.082 1/h
YX/GLCx

b (1.23− 1.43)× 10−8 (1.11− 2.00)× 10−8 mmol/cell
YX/GLNx

b (0.93− 1.08)× 10−8 (0.61− 1.81)× 10−9 mmol/cell
mGLCx

c (0.69− 1.69)× 10−10 (0.02− 2.18)× 10−10 mmol/cell/h
mGLNx

c ≈ 0 (0.02− 1.13)× 10−10 mmol/cell/h
aGlacken et al. [41], Butler et al. [54], Möhler et al. [211], Bock et al. [212]
binterval results from multiplication of the optimal value with medium volume for all time points

and cultivations
cinterval results from multiplication of the optimal value with cell volume and medium volume and division

by cell number for all time points and cultivations

derived cell-volume-specific uptake rates are main inputs to the structured model of

central carbon metabolism and derived from a model that fits data for growth, interme-

diate and stationary phases. The cell-volume-specific uptake rates of GLCx and GLNx

(rGLUT and rGLNT , respectively) are highest at the beginning of cultivation with ap-

proximately 5.8 mmol/L/min for GLCx and 0.3 mmol/L/min for GLNx (Fig. 4.9A – B).

Afterwards, a two step decrease follows: technically, the first decrease is a result of an

increasing cell-specific volume under a constant substrate uptake (cf. Eq. 3.1.12), which

reaches a plateau at 24 h that represents the actual consumption for growth with about

3.5 mmol/L/min for GLCx and 0.2 mmol/L/min for GLNx; the second decrease results

from the cell volume-dependent growth inhibition f and ends in cellular maintenance,

which requires about 0.7 mmol/L/min of GLCx and no GLNx. In contrast to GLCx and

GLNx, the uptake of GLUx (rGLT ) occurs only when cells are inhibited by f and drops as

soon as the pool is depleted (Fig. 4.9C). In consequence, the corresponding cell-volume-

specific uptake rate of GLUx has a peak-like shape. Its maximum can reach similar

values than the uptake rate for GLNx. Some biotechnological studies use cell-specific

substrate uptake rates to compare cell lines, which are also shown in Fig. 4.9D – F.

Main features of the above described cell-volume-specific uptake rates are also observed

for the cell-number-specific ones, i.e.: high uptake of GLCx and GLNx during growth,

low or zero uptake of GLCx and GLNx during cell maintenance, and a peak-like uptake

of GLUx. Differences to the cell-volume-specific rates are the lack of the first, artificial

decrease and smaller experiment-specific variations.
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Figure 4.9.: Simulated substrate uptake rates during MDCK cell cultivation. Simu-
lated cell-volume-specific uptake rates of glucose (A), glutamine (B) and glutamate (C). Sim-
ulated cell-number-specific uptake of glucose (D), glutamine (E) and glutamate (F). Model
simulations (based on parameters of Table C.3 and Table C.4) are shown in the color code of
Fig. 4.7.

4.2.4. Discussion

Model structure and possible modifications: We developed a model that accounts

for different cell classes with varying cell diameters. The propagation through the classes

depends on the density of cells on the attachment surface and the extracellular glucose

concentration. However, none of the measured substrates or byproducts reached growth-

limiting concentrations. Ammonia, for example, most likely does not inhibit MDCK cell

growth below concentrations of 2.3 mmol/L [54] while GLCx and GLNx are available

in sufficient amounts. The kmGLCx parameter of the Monod kinetic, which describes the

influence of the glucose concentration on the specific growth rate, has a very low relative

local sensitivity (Table C.4). Thus, the cell density is the major effector of growth

under the cultivation conditions considered in this work. The underlying equation for

f (Eq. 3.1.4) is based on an exponential function originally proposed by Frame and

Hu [278] and allows the model to fit the experimental data. It relies on the adjustable

parameter s, which is estimated with a large confidence interval (2.14 < s < 4.15) and

low relative local sensitivity (Table C.4). A linear term for f , as proposed by Möhler

et al. [211], results in a too slow transition from zero to maximum growth inhibition

and was not able to describe our data (simulation not shown). Although the proposed
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4.2. A segregated model for cell growth

model is focused on adherently growing cells, which show a distinct growth inhibition

by cell volume density, an application of the model to other adherent cells (MDBK cells,

tested with data from IDT Biologika GmbH, results not shown) and even suspension

cells seems possible (AGE1.HN cells, tested with data of Rath et al. [283] in Klassen

[303]; MDCK.SUS cells, see appendix A.3). Note that the variable f might alternatively

be, for example, a function of a metabolite, of another resource or of a limiting factor and

can be applied to any of the N c classes. Therefore, the model is a promising candidate

for future applications considering growth dynamics of cultivated cells. Dynamics for

cell attachment were not explicitly incorporated in the model but may be of interest

if cell growth and metabolite uptake during the first hours of cultivation are under

investigation [212]. However, the resulting delay of 3 h due to cell sedimentation and

attachment (see appendix A.1) has only little influence on the simulation results and is

partly covered by the intrinsic delay of 5 h for cell volume growth (see Table 4.2). The

chosen number of classes N c = 5 affects in combination with µ the delay between cell

volume increase and cell number increase (for explanation see mathematical analysis

provided by D. Flockerzi [216]). However, the dimension N c of the model can be used to

generate a set of nested models. All N c > 1 dimensional models capture the qualitative

behavior observed during cell growth. Considering the parameters of Table C.3 and C.4,

the inspection of the model results suggests the use of low numbers for N c. Low numbers

for N c yield a sufficient strong distribution in the growth rate of cells and, therefore,

introduce some heterogeneity. With high values for N c, cell growth becomes more and

more synchronized leading to a step-like increase in cell number, which is not observed

experimentally. Furthermore, N c determines also a fraction of the growth cycle that

is affected by f (Fig. 4.6). This has the following biological implication: Once cells

have passed the first transition the subsequent growth process remains unaffected by

cell volume density. Overall, model fits to the experimental data yielded N c = 5 as best

solution.

Metabolic parameters and uptake rates: the estimated parameters for MDCK cell

growth are within the range published in literature. The cell-growth-specific yield co-

efficients YX/GLCx and YX/GLNx as well as the specific GLCx uptake for maintenance

mGLCx , for example, mirror values for MDCK cells grown in bioreactor systems (Table

4.3). The specific GLNx uptake for maintenance mGLNx , is very small and therefore

negligible. In particular, the drop in GLNx in the stationary growth phase can be fully

explained with spontaneous decomposition and water evaporation [23, 53]. Results ob-
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tained in bioreactor cultivations show higher mGLNx , which can result from residual cell

growth to compensate cell death by shear forces and other stressful conditions. However,

a very small mGLNx suggests that glutamine is only required during cell growth as it is

typically used for biosynthesis purposes [50, 87]. The YLACx/GLCx is found to be high

with 2.14. This may indicate, as discussed in the previous section 4.1.3, that GLCx is

primarily converted to LACx [16] and that glutaminolysis, which relies on GLNx and

GLUx [58], increases the YLACx/GLCx to values above 2. Overall, taking into account that

simulations are based on a single set of parameters for all three cultivations, the model

is in good agreement with the measured metabolite dynamics and is capable to predict

each of the three cultivation processes if the other two are used for validation (shown in

Rehberg et al. [216]). Furthermore, the applied bootstrap method yields narrow confi-

dence intervals for most of the parameters (Table C.4), which indicates identifiability.

For the uptake of GLUx, we defined a transport kinetic that is activated by f , which

may appear atypical for standard growth models. However, it is also recognized by Gen-

zel et al. [14] that GLUx uptake starts with growth inhibition. Together with the good

fitting of the measured data, a kinetic that is inhibited by cell growth seems justified.

Assuming that the transport is indeed inhibited by growth in turn validates the shape f

with measurements for GLUx. However, the model also takes into account the release of

NHx
4 from the conversion of GLNx. Based on the high transaminase activities in MDCK

cells [22], which is also observed by Gstraunthaler et al. [170], and the accumulation

dynamics of NHx
4 a contribution from GLUx is presumably negligible.

Dynamics in cell growth: The model estimates a doubling time of 17.7 h (µmax =

0.039 h−1), which lies within the interval reported in literature [41, 54, 211, 212]. Note

that differences in the doubling time, e.g. to the 24 h reported by Butler et al. [54], may

result from differences in the cultivation conditions compared to 6-well plates, which have

low shear stress and no risk of cell disruption by bubble bursting. Direct determinations

of µmax by logarithmic transformation for the exponential growth phase showed a similar

average value of 17.3 h (µmax = 0.040 h−1, section 4.1.1). Based on the model, 80 % of

cells are already inhibited by f within the regression interval chosen for the experimental

determination of µmax by Ritter [23] (20 h to 52 h). Nonetheless, the µmax determined

by regression analysis corresponds to the model-based estimation since the cell number

is delayed and shows growth inhibition later than the cell volume. Before increase in cell

number starts, a lag phase of roughly 20 h was observed, which is similarly described for

MDCK cells in microcarrier cultivations [211], and presumably involves about 2.4 h for
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4.2. A segregated model for cell growth

sedimentation and 0.8 h for cell attachment (see Appendix A.1). Thus, about 17 h of

the 20 h remain left for cell size increase and division, which corresponds to the 17.7 h

estimated above. Nielsen et al. [42] developed a mathematical model that accounts for a

time difference between the start of cell volume and cell number growth by using delay

differential equations. In our data, however, the time shift between the growth phases of

Xtot and V C is not constant (cf. Table 4.2). The intermediate growth phase starts 15 h

earlier and the stationary growth phase starts 30 h earlier for cell volume growth than

for cell number growth. Thus, differences in growth phases may not be caused by a fixed

delay and the dependencies may be time varying in a more general sense. Although a

delay model, which requires the same number of parameters, yields seemingly similar

fits (akaike information criterion evaluted in [216]: Rehberg model: 6.47× 103; Nielsen

model: 6.59 × 103), we prefer a finite (N c) dimensional model. Another benefit lies in

a much faster computation time (four magnitudes), which not only allows for a reliable

and comprehensive parameter study but also for coupling with more complex structured

models of metabolism. Moreover, it can take into account general class-specific effects,

as shown by the implementation of f . In this regard, the proposed model has a better

transferability and generality to incorporate diameter changes during cell growth.

Diameter changes during cultivation: To simulate the mean cell diameter during

cultivation, we assume that all cells exhibit an identical linear increase from the minimum

(dm) to the critical diameter (dc). Thus, heterogeneity in dm or dc as well as in rtrans is not

considered but is typically observed in mammalian cells [47]. Ramirez and Mutharasan

[45] as well as Boucrot and Kirchhausen [46] found that changes in cell size are correlated

with the propagation through the cell cycle. Furthermore, dm and dc as well as the

intermediate diameters do not change with each generation of cells but rather represent

upper and lower limits. In consequence, the cell-specific volume of class N c is more

than the double of the cell-specific volume of the first class. The model pays indirectly

tribute to a so called cell-sizing effect reported by Tzur et al. [48]. These discrepancies

easily explain differences between model simulation and experimental data, especially

until 12 h of cultivation. Nevertheless, the requirement for simulating mean cell diameter

dynamics with a coarse-grained model is adequately met. It fits the measurements of all

three cultivations and the observations of Rothen-Rutishauser et al. [25] of a decreasing

cell diameter when cells pass into the stationary growth phase. For a more precise and

deeper analysis of cell diameter dynamics, the use of mass distribution population-based

models is an option worth considering [220, 223]. However, the information required
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for such an analysis is currently not available for MDCK cells. Furthermore, to our

knowledge none of the mass distribution population-based models were yet validated for

batch cultivations of adherent cells.

4.2.5. Summary

From analyzing, in a previous section, MDCK cell cultivations in two different media,

we derived the hypothesis of a growth-dependent regulation of intracellular metabolite

pools. To support further investigations in this direction, we developed in this section

a segregated model that describes cell growth in numbers and volume by considering

the mean cell diameter. The model takes into account cell volume-dependent growth

inhibition as well as the consumption of GLCx, GLNx and GLUx for the progression

through different diameter classes. The structure of the developed model is slightly

more complex than conventional cell number-based models since additional information

about the mean cell diameter are considered, which are, however, easily obtained from

cell counting devices. For the three independent MDCK cell cultivations in GMEM-Z

medium, the model successfully fits the experimental data using a single set of parame-

ters. It also considers that cells may differ in their maximum and minimum diameter in

dependence of their preculture. Analysis of the extracellular metabolite pool dynamics

unraveled that substrates are not growth limiting under the chosen cultivation conditions

and that cell growth ceases due to the limited availability of free surface for cell attach-

ment. Furthermore, the model possesses a certain power in predicting cell cultivations

and is applicable to other cell lines and cultivation systems. Therefore, it fills the gap

between standard cell growth models and mass distribution population-based models

with a certain generality and applicability that can support both the understanding of

cell growth and the analysis of biotechnological processes. More importantly for this

work, however, dynamics in cell growth can now be coupled to structured metabolic

models, which facilitates studying the regulation of central carbon metabolism during

cell cultivation.
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4.3. Dynamics in central carbon metabolism

Analysis of MDCK cells indicated that many intracellular metabolite pools show the

same dynamics, although cells are grown in two different media (see section 4.1). We

hypothesized that the dynamics in metabolism depend on the uptake of substrates and

on a few mechanisms for enzyme regulation. In the previous section 4.2, we developed

a segregated model that describes adherent MDCK cell growth in volume and number

and explains the uptake of main substrates. We now seek to evaluate whether the

structured model for the central carbon metabolism, established in section 3.1.2, is able

to explain intracellular metabolite pools when coupled to a segregated cell growth model

(see section 3.1.3). To realize a proper balance between a detailed description of results

and a conclusive discussion, the analysis is divided into two parts: first, we evaluate

the simulation results for glycolysis and the closely related metabolic pathways and,

afterwards, analyze to which extent the derived regulatory principles are also capable

to explain metabolite dynamics in glutaminolysis, which includes the citric acid cycle,

and the energy metabolism. In the following, parts of the structured glycolysis model

published in PLoS Computational Biology [304] (open source) and of the structured

glutaminolysis model published in the IFAC proceedings [305] (copyrights are with the

International Federation of Automation and Control) are used.

4.3.1. Glycolysis

Due to its highly active and robust nature, glycolysis is an ideal candidate pathway to

start evaluating general principles of metabolic regulation. The scenarios considered in

the following sections cover a broad range of operation conditions including cell culti-

vation, substrate limitation and substrate pulse experiments. Afterwards, we estimate

the capacity of the glycolytic pathway to unravel potential targets for the design of

bioprocesses, e.g. higher growth rates or more efficient substrate use, and evaluate the

predictive power of the model based on a cultivation in a second medium. The underly-

ing model focuses on intermediates that were measured experimentally and is composed

of a concise set of enzyme kinetics with few regulatory mechanisms, while taking into

account the link to PPP and glycogenesis. A schematic overview of the considered en-

zyme reactions, metabolite pools and maximum in vitro enzyme activities is given in

Fig. 4.10.
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Figure 4.10.: Scheme of glycolysis model with calculated fluxes. Green boxes repre-
sent metabolite pools that were quantified experimentally, while white ones were not quanti-
fied. Enzymes are shown as ellipses with blue background if the maximum enzyme activity
was measured in vitro and with white background otherwise. Reactions and their directions
are shown as arrows. Dashed arrows represent allosteric regulation of enzymes by metabo-
lites. Colored bars are attached to each reaction and express the relative flux compared
to the largest flux in glycolysis (see legend, blue: cell growth at 24 h of Cult1; green: cell
maintenance at 100 h of Cult1; orange: limitation after 6 min). Absolute flux rates (unit:
mmol/L/min) are given next to the bars. Abbreviations are: GLCx extracellular glucose; GLC
glucose; G6P glucose 6-phosphate; UGLC uridyl diphosphate glucose; R5P ribose 5-phosphate;
PPP pentose phosphate pathway; F6P fructose 6-phosphate; F16BP fructose 1,6-bisphosphate;
3PG 3-phosphoglyceric acid; PEP phosphoenol pyruvate; HK hexokinase; UT UTP-glucose-1-
phosphate uridylyltransferase; G6PDH glucose 6-phosphate dehydrogenase; GPI glucose phos-
phate isomerase; ALD aldolase; ENO enolase; PK pyruvate kinase.

Metabolite pool dynamics and fluxes during cell cultivation: In three indepen-

dent experiments, adherent MDCK cells were grown in 6-well plates with the serum-
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containing medium GMEM-Z. The cells used for inoculation of Cult1 (∆), Cult2 (2)

and Cult3 (◦) originate from a preculture that has reached the stationary growth phase.

According to the findings of previous section 4.2, the medium provides sufficient amounts

of extracellular substrates over the chosen cultivation time and inhibition of cell growth

is mainly induced by the cell density on the surface, which ultimately applies to the

preculture. Assuming that the cells robustly achieve a certain metabolic status in the

stationary growth phase of the preculture allows us to infer the metabolic starting con-

ditions for the cultivation experiments by simulating the conditions at that time point

of preculture (see also section 3.2.1). This simulation of starting conditions allows us

to limit model fitting to 19 unknown parameters (as discussed later). The resulting

metabolic status of the preculture is depicted in the time interval from −20 h to 0 h

(Figure 4.11, Table C.1).

With the onset of cell growth, the simulation of the three experiments exhibits a peak-

like behavior for G6P, F6P and F16BP concentrations that agrees well with the data

for each cultivation (Fig. 4.11A – I). The maximum is reached at around 24 h and fol-

lowed by a decrease during the intermediate biosynthesis phase where the growth rate

of cells reduces, which is indicated by a gray bar (based on bsyn, Eq. (3.1.94), Table

4.2). In the model, the peak results from high cell-volume-specific glucose uptake rates

and low maximum cell-volume-specific enzyme activities. The peak and the subsequent

decrease of the metabolite pools is slightly different among the cultivations, although

all three metabolites drop to the same final level that mostly corresponds to the initial

level at 0 h (Fig. 4.11A – I). Due to the tight coupling of cell growth to glycolysis, the

model considers experiment-specific differences, such as Xtot(t=0) used for inoculation

as well as dm and dc, which have a considerable influence on time point and height of

the peak. Also, small differences in the relative enzyme level (Elevel; Table C.2) affect

the maximum catalytic activity of every enzyme in the model (Eq. 3.1.90 and 3.1.91)

and required estimation during data fitting for every cultivation. The Elevel vary by

±8 % for the three cultivations, which corresponds to the mean standard deviation for

all enzyme activities based on the assay of Janke et al. [22]. Interestingly, cells with the

lowest diameter also had the lowest enzyme level (Table C.2). Besides variations due

to assay noise, the experiment-specific differences in Xtot, d and Elevel explain batch-to-

batch variations such as the lower peak height for Cult1 (∆), a medium peak height for

Cult2 (2) and an increased peak height for Cult3 (◦), which is most prominent for F6P.

An exemplary intracellular flux from glycolysis into associated pathways is shown for

Cult1 in Fig. 4.10. During cell growth the activity of HK (3.28 mmol/L/min) is roughly
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Figure 4.11.: Metabolite pools of glycolysis during adherent MDCK cell cultiva-
tion. Glucose 6-phosphate (A – C), fructose 6-phosphate (D – F), fructose 1,6-bisphosphate
(G – I), 3-phosphoglyceric acid (J – L) and phosphoenolpyruvate (M – O) concentrations in
three independent MDCK cell cultivations (∆, 2, ◦) in 6-well plates and GMEM-Z. Data and
error bars represent mean and standard deviation of three wells and were taken from Ritter
[23]. Dashed lines are the limit of quantification (LOQ; data below LOQ marked in gray).
Lines represent the respective simulation result based on the experiment-specific parameters
in Table C.2 and parameters in Table C.5. The intermediate biosynthesis phase of the cells is
indicated as gray bar for the respective cultivation (bsyn in Table 4.2).

five times higher than during stationary growth (0.7 mmol/L/min). The metabolite flux

into the PPP is primarily mediated by the G6PDH route, which enables a net supply
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Figure 4.12.: Estimated fluxes into pentose phosphate pathway and glycogenesis
during adherent MDCK cell cultivation. (A) Net flux into pentose phosphate pathway
(PPP) relative to glucose transport activity and (B) net flux into glycogenesis relative to
glucose transport activity are simulated for the three cultivations (Cult1 – 3) and shown in the
color code of Fig. 4.11

(rX/PPP ) that reaches 13 – 16 % of the glycolytic flux during cell growth and 0 – 3 % of

the glycolytic flux during cell maintenance (Fig. 4.12A) and fulfills the constraint to

be in the range of 0 % to 40 % (section 3.1.2). During cell growth, the TATK reactions

transfer only a minor portion of PPP metabolites back to glycolysis. However, during

the stationary growth phase the flux through the G6PDH route is completely compen-

sated by the TATK reactions, which transfer all metabolites generated by this route

back to glycolysis. It may indicate that the demand of biosynthesis for PPP metabolites

is low and that GLC is completely converted to PYR. In comparison to the PPP, the

relative net flux branched off from glycolysis for glycogenesis is low and reaches less than

0.1 % during cell growth with an increase to 0.4 % during cell maintenance (Fig. 4.12B).

In the lower part of glycolysis, the level of 3PG follows the peak-like behavior of upper

glycolysis albeit with a two-fold increase in concentration only, which is quite simi-

lar among the three cultivations (Fig. 4.11J – L). The data of Cult1 (∆) have larger

standard deviations and a peak-like behavior is not as obvious as for the other two

cultivations (Cult2 (2), Cult3 (◦)). Assuming that the peak is also present in Cult1

(∆) renders the model to be in general agreement with the 3PG dynamics for all three

cultivations. The data for PEP are below the limit of quantification (LOQ) until 48 h of

cultivation (indicated by gray symbols) but still support the hypothesis of a fast drop at

the beginning of cultivation with a slow but steady increase until the stationary growth

phase begins (Fig. 4.11M – O, 50 – 200 h). Under consideration of these data points,

the model similarly suggests a decrease and increase in PEP levels due to an allosteric

feed-forward activation of PK by F16BP. If data points below the LOQ are neglected,

a straight line would be sufficient to describe the data. In the stationary growth phase,
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the simulation result is slightly above the data points as higher levels of PEP in the

cultivation simulations facilitates a more precise fitting of the perturbation experiments

(see next section). In the model, the lower part of glycolysis shows a four-fold higher

activity during cell growth (5.7 mmol/L/min) compared to the stationary growth phase

(1.39 mmol/L/min).

Response of glycolysis to substrate limitations and a substrate pulse: At dis-

tinct time points of cultivation the medium was replaced by PBS, which removes sub-

strates and byproducts. The model assumes that 3×10−7 L medium (0.008 % of original

medium volume) remain on the cell’s surface and the intercellular space (see section

3.2.2). If no medium remains, an activity of 3.28 mmol/L/min in glycolysis (Fig. 4.10)

would, for example, deplete the G6P pool of 0.06 mmol/L within a second, which is not

the case (Fig. 4.13A).

The intracellular metabolite pools of upper glycolysis, i.e. G6P, F6P and F16BP, show

different starting concentrations in the first (Lim1; Fig. 4.13A, D, G) and the second

limitation experiment (Lim2; Fig. 4.13B, E, H). The model, however, can readily explain

the observed differences in the initial values for Lim1 and Lim2 by assuming that the

cells originate from different time points (t*) of Cult1 (Lim1: 48 h, Lim2: 60 h, see Table

C.2, for explanation see section 3.2.1). Choosing Cult2 or Cult3 as a starting point for

simulation of Lim1 and Lim2 would yield similar results (simulation not shown). Within

one minute, the corresponding metabolite pools drop below the limit of quantification.

Interestingly, traces of F6P and G6P are still detected by the assay, while the pool of

F16BP seems to be empty. According to the model, a flux from PPP to F6P of about

0.013 mmol/L/min is sufficient to maintain the F6P and G6P pool under a reversed

activity of the GPI (Fig. 4.10). However, G6PDH transfers metabolites back to the

PPP and a cycle of metabolite exchange is created that is also described by Sengupta

et al. [62]. The conversion of F6P by PFK is reduced due to a lack of an F6P-mediated

activation and the remaining activity slowly generates 3PG (Fig. 4.10). Overall, we

conclude that the model is in good agreement with experimental data for cells under

glucose limitation, especially for the data above the limit of quantification.

In the lower part of glycolysis, 3PG and PEP remain comparatively constant or even

increase in concentration until reaching a steady state after 3 min (Fig. 4.13J, K, M, N).

In the model, the increase in PEP results from a reduction in the PK activity due to

decreasing F16BP levels (Fig. 4.10). The initial concentration of PEP measured in both

limitation experiments is higher than in the model simulations but also higher than the
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Figure 4.13.: Response of glycolytic metabolite pools to substrate limitations and
a substrate pulse. Glucose 6-phosphate (A – C), fructose 6-phosphate (D – F), fructose 1,6-
bisphosphate (G – I), 3-phosphoglyceric acid (J – L) and phosphoenolpyruvate (M – O) con-
centrations of three independent perturbation experiments with MDCK cells in 6-well plates.
Cells, originating from a cultivation experiment (see Table C.2), were deprived of extracellu-
lar nutrients by removal of medium and addition of phosphate buffered saline (PBS), shown
in the first (Lim1) and second column (Lim2). In a similar experiment, cells were exposed
to a 2 h limitation and afterwards PBS was exchanged by fresh medium, shown in the third
column (Pulse). Data (◦) and error bars represent mean and standard deviation of three
wells and were taken from Ritter [23]. Dashed lines are the limit of quantification (LOQ; data
below LOQ marked in gray). Lines represent the respective simulation result based on the
experiment-specific parameters in Table C.2 and parameters in Table C.5.
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levels found in the cultivation experiment (Fig. 4.11M – O). To improve the fitting of

the Lim1 and Lim2 experiments, the model realized slightly higher final PEP levels in

the cultivation experiments than measured experimentally, which is a common problem

in multi-experiment fitting that may indicate data inconsistencies. The simulation of

3PG showed a negative peak at 1 min of glucose limitation, which may also be present

in the data although to a lesser extent.

The pulse experiment followed a limitation experiment conducted at 32 h of Cult1 (not

shown). After two hours of limitation PBS was replaced with fresh medium, which pro-

vided the cells with glucose and other substrates. The model suggests that glycolysis

almost immediately starts with the conversion of GLC to PYR (1.4 s until PK activ-

ity is 5 % of full operation) and returns to the cell status of Cult1 at 32 h. After one

to two minutes, the metabolite pools reach the corresponding metabolic steady state

(Fig. 4.13C, F, I, L, O). Such a fast increase in several glycolytic intermediates was

also observed for tumor ascites [94]. As a result, the dynamic is mirroring the limita-

tion experiment with increasing metabolite levels in upper glycolysis (Fig. 4.13C, F, I)

and a decreasing PEP pool (Fig. 4.13O) due to the feed-forward activation of PK by

F16BP. However, the slight, continuous increase measured for G6P and F6P pools is not

reflected by the model and also the simulated dynamics in 3PG, which remains more

or less constant in the simulation with a small drop at 0.5 min, is somewhat different

compared to the experimental data (Fig. 4.13L). However, the model simulation simply

returns to the metabolic status that was present in Cult1 at 32 h of cultivation, which

fits most of the data of the pulse experiment.

In silico modulation of GLUT activity: Up to this point, our model suggests that

the GLUT controls the glycolytic activity during cell cultivation in GMEM-Z, which we

exploit to assess the capacity of glycolysis. Modulation of the GLUT is not only recog-

nized as a target for the improvement of production cell lines but also as an approach

for cancer treatment with the intention to interfere with the high metabolic activity of

cells, and eventually with tumor growth. For the subsequent analysis of glycolysis by

in silico modulation of the GLUT activity, we chose cells from Cult1 at 24 h of cultiva-

tion. We also consider the impact of the parameter uncertainty by using the 2000 model

parameterizations derived from the bootstrap method8 (section 3.3.2). All parameter-

izations are eligible to describe the data. The modulation of the GLUT activity in all

these model parameterizations was chosen to range from 0 – 10 mmol/L/min, which ex-

8excluding the upper and lower 2.5 % of the results leaves a total of 1900 simulations for analysis

88



4.3. Dynamics in central carbon metabolism

ceeds the typical uptake rates determined for Cult1 (0.7 – 3 mmol/L/min, Fig. 4.9A).

The resulting steady state production rates of ATP and PPP metabolites were sorted in

increasing ATP production rates and are shown in Fig. 4.14. Interestingly, an increase

in GLUT activity until about 4 mmol/L/min enhances the production of ATP and PPP

metabolites, depending on the model parameterization. A further increase in GLUT ac-

tivity to 6 mmol/L/min saturates the PFK (for cells of Cult1 at 24 h). In consequence,

the metabolic flux is directed into the PPP, which further increases the synthesis of

metabolites but impairs the glycolytic ATP production. Note that the increase in PPP

metabolite production results exclusively from an enhanced G6PDH activity, which, in

cooperation with other enzymes, also yields NADPH. As a result, the PPP-based pro-

duction of NAPDH correlates linearly with the PPP metabolite production, which are

both essential for biosynthesis. However, for a GLUT activity above 6 mmol/L/min, the

HK becomes saturated as well and a further increase in GLUT activity is suggested to

yield an accumulation of GLC.
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Figure 4.14.: Impact of in silico GLUT activity changes on energy and precursor
production rates. ATP (A) and pentose phosphate pathway (PPP) metabolite production
rates (B) in 1900 model parameterizations for the status of cells in Cult1 at 24 h. The model
parameterizations were derived from the optimal result of each bootstrap run, which were
also used to infer the parameter confidence intervals of Table C.5. The results were arranged
from minimum to maximum ATP production rates (0.025-quantile to 0.975-quantile) and the
colored bars on the right hand show the respective production rate, respectively; the vertical
black line represents the original GLUT activity of cells of Cult1 at 24 h.
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4. Results and discussion

Predictions for DMEM cultivation: Validating the above made estimations for higher

ATP or PPP metabolite production rates involves a considerable experimental effort,

for instance by overexpression of GLUT or HIF-1 [97, 306] in combination with the

measurement of ATP, NADPH and PPP metabolite production rates. To still evaluate

the predictive power of the developed model, we simulate a cultivation with a second

medium that has low initial GLCx concentrations. This implies that neither initial con-

ditions nor kinetic parameter of the structured glycolysis model were changed. Only the

cell growth model was adjusted to reflect growth of cells in a GLCx-limited culture (fur-

ther information is given in the appendix A.2). Although initial conditions and kinetic

parameter of the structured glycolysis model were not changed, the model resembles the

shortened peaks in the metabolite pools and a transient shift into a limitation scenario

(Fig. 4.15). In particular, the increase in metabolite pools and the time point of the

maximum is correctly predicted. The subsequent decrease in metabolite levels cannot be

attributed to the intermediate growth phase (gray bar) but to the limitation in GLCx.

However, the maximum peak height measured for F6P and F16BP exceeds that of the

model prediction (Fig. 4.15B, C). Both peaks are also higher than those of the Cult1 – 3
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Figure 4.15.: Prediction for glycolytic metabolite pools during cultivation of adher-
ent MDCK cells in DMEM with reduced glucose supplementation (2.5 mmol/L).
Data on glucose 6-phosphate (A), fructose 6-phosphate (B), fructose 1,6-bisphosphate (C),
3-phosphoglyceric acid (D) and phosphoenolpyruvate (E) concentrations (3) are depicted as
mean and standard deviation of three wells and were taken from Ritter [23]. Dashed lines
are the limit of quantification (LOQ; data below LOQ marked in gray). Lines represent the
model prediction based on the modifications of the cell growth model described in the appendix
(section A.2) and the parameters in Table C.2 and Table C.5. The intermediate biosynthesis
phase of the cells is indicated as gray bar for the respective cultivation (bsyn).
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cultivations and may point towards a reduction in the PFK activity. At later times of

cultivation, the levels of G6P, F6P and F16BP are very low, which is similarly predicted

by the model. Interestingly, the model prediction also supports the negative peak of

3PG at 48 h as well as the relatively high final level of PEP (Fig. 4.15D, E).

4.3.2. Pentose phosphate pathway

Apart from glycolysis, G6P can also be converted by G6PDH and enter the PPP such

that it eventually fuels the R5P pool. The use of an additional model parameter for the

RDPK-mediated degradation reaction (Eq. 3.1.44), which represents only one possible

route in the PPP, enables the model to reflect the dynamics of R5P during cell cultivation

(Fig. 4.16A – C). R5P mainly follows the peak-like behavior of G6P (cf. Fig. 4.11A –

C) with similar experiment-specific variations. During the limitation experiments, the

decrease of R5P is delayed in time (Fig. 4.16D, E) but still similar in its shape to G6P (cf.

Fig. 4.13A, B). Although the model cannot render this delay, the shape of the decrease

is reflected. After addition of fresh medium in the pulse experiment (Fig. 4.16F), the
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Figure 4.16.: Ribose 5-phosphate levels during adherent MDCK cell cultivation,
substrate limitations and a substrate pulse. Each single plot illustrates an independent
experiment. (A – C) Cultivation of MDCK cells in 6-well plates and GMEM-Z. (D, E) Sub-
strate limitation. (F) Substrate pulse. Data (∆, 2, ◦, ◦), which are depicted as mean and
standard deviation of three wells, were taken from Ritter [23]. Dashed lines are the limit of
quantification (LOQ; data below LOQ marked in gray). Lines represent the model simulation
based on the parameters in Table C.1, Table C.2 and Table C.5. The intermediate biosynthesis
rate of the cells in (A – C) is indicated as gray bar for the respective cultivation (bsyn in Table
4.2).

91



4. Results and discussion

measured level of R5P increases rapidly to values above the LOQ but remains lower than

suggested by the model. In all three cases, the differences between data and simulation

results might by due to specific properties of the PPP, which were not considered by the

model so far (for instance, the high number of reversible reactions, and the linkage of

its intermediates to the biosynthesis machinery).

4.3.3. Glycogenesis

Another route for G6P is its transfer into glycogenesis through UT. Similar to the PPP,

the use of an additional model parameter for a GLYS-mediated degradation reaction

(Eq. 3.1.46), which lumps all possible degradation routes, enables the model to reflect

the dynamics of UGLC during cell cultivation (Fig. 4.17A – C). Note that in contrast

to other intracellular metabolites, UGLC is diluted by cell growth to a visible extent,

which reduces the typical peak-like behavior compared to other metabolites. In other

words, the synthesis and degradation rate for UGLC is such low that cell volume growth

has an influence on its abundance. During substrate limitation and substrate pulse, the
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Figure 4.17.: UDP-glucose levels during adherent cell cultivation, substrate lim-
itations and a substrate pulse. Each single plot illustrates an independent experiment.
(A – C) Cultivation of MDCK cells in 6-well plates and GMEM-Z. (D, E) Substrate limitation.
(F) Substrate pulse. Data (∆, 2, ◦, ◦) are depicted as mean and standard deviation of three
wells and were taken from Ritter [23]. Dashed lines are the limit of quantification (LOQ; data
below LOQ marked in gray). Lines represent the model simulation based on the parameters in
Table C.1, Table C.2 and Table C.5. The intermediate biosynthesis rate of the cells in (A – C)
is indicated as gray bar for the respective cultivation (bsyn in Table 4.2).
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data for UGLC show only a minor decrease and a minor increase, respectively, which is

sufficiently described by the model (Fig. 4.17D – F) and attributed to the low pathway

activity (Fig. 4.10).

4.3.4. Sensitivity analysis for glycolysis

To assess how the model behavior depends on the different model parameters and initial

conditions, we performed a relative local sensitivity analysis by perturbing each param-

eter by 1 %. In particular, we analyzed parameters of the structured model of glycolysis

(Table C.5), parameters of the segregated cell growth model (Table C.4) and initial

conditions regarding culture condition, the growth status, and the metabolic status (Ta-

ble C.2, Fig. 4.18A). The subsequent interpretation of the sensitivity analysis is based

on the height of values relative to each other and not on absolute numbers. For the

cultivation experiments, the model simulations are sensitive to growth and metabolic

parameters but mostly insensitive to the initial metabolic status or initial culture con-

ditions (for perturbations of 1 %). Also, the initial growth status has a certain influence

on the simulation trajectories. The surprisingly low influence of the initial metabolic

status on the metabolite pool dynamics can be explained with a high glycolytic activity

and low metabolite pool sizes. Thus, any initial metabolic status is easily adjusted by

the high flux rates. The reason for a low sensitivity regarding initial culture conditions

is that a perturbation of 1 % is insuifficient for obtaining substrate levels that limit cell

growth or metabolism (see section 4.1). However, when it comes to the simulation of

substrate perturbation experiments, the model behavior becomes sensitive to perturba-

tions in the initial metabolic and growth status of the cells. Therefore, the preculture

of cells affects the Lim1 and Lim2 experiment (Fig. 4.13). The growth parameters

have, by definition, no influence on the model behavior. In contrast, parameters of the

metabolic network rearrange the flux distribution towards a new steady state and, thus,

also have a larger influence. Taken together, the sensitivity analysis illustrates that the

sensitivity of glycolysis shifts with the experimental scenario. An in-depth analysis of

glycolysis parameters reveals that the PFK has the largest influence on metabolite pool

degradation (Fig. 4.18B). However, a certain sensitivity is also given for the remaining

parameters, while parameter correlations are in general low (Fig. A.6), which together

indicates parameter identifiability. The few exeptions of HK, TATK and GLUT are

discussed in section 3.1.2.
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Figure 4.18.: Parameter sensitivity analysis of the structured model of glycolysis.
(A) Relative local sensitivity of model simulations (for cultivation and perturbation experi-
ments) to a 1 % perturbation in glycolysis parameters (Table C.5), parameters of the segregated
cell growth model (Table C.4), culture conditions, growth status and metabolic status (Table
C.2). (B) Relative local sensitivity of model simulations (for cultivation and perturbation
experiments) to a 1 % perturbation of single glycolysis parameter.

4.3.5. Discussion part I

Glycolysis model structure: In this work, a kinetic description of glycolysis is devel-

oped that, coupled to a segregated cell growth model, enables describing and analyzing

roughly 600 intracellular metabolite pool data points of Ritter [23] by using a single

set of parameters for the enzyme kinetics. The description of dynamics in metabolite

conversion can, however, rely on many different types of enzyme kinetics with arbitrary

complexity [257, 260]. As a starting point and for simplicity, the model considers basic

kinetics which only take into account basic regulatory mechanisms of glycolytic enzymes

to reflect the dynamics of metabolite pools found during cultivation and perturbation

experiments. In particular, the kinetics for TATK as well as for ENO represent lumped
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reactions and were realized with reversible mass-action kinetics instead of using more

complex kinetics (e.g. Monod-Wyman-Changeaux models [262]). The enzymes HK,

GPI, G6PDH, UT, and ALD as well as the GLUT were defined as Michaelis-Menten

kinetics, as they provide an upper activity bound that was measured in vitro by Janke

et al. [22] (except for GLUT), and appear either as reversible or irreversible reaction.

In analogy to mass action kinetics, only one or two parameters of the Michaelis-Menten

kinetics required estimation. Only the PFK and PK, which are known to be strongly

regulated enzymes, were considered to be influenced by allosteric effectors. For the

PFK, a Hill-Kinetic with four subunits [234, 284], which takes a direct activation by

F6P [12] and an indirect activation via F26BP into account [58, 135], was sufficient to

fit all data. For the PK, the well-known F16BP-mediated activation [69, 143] was used.

However, the chosen simplifications in enzyme kinetics render the used parameters to be

more abstract, such that, for example, the affinity of an enzyme for its substrate rather

represents a time invariant sum of influences than an explicit dependence on cofactors,

ions or the degree of phosphorylation [65]. The benefit lies in obtaining a comparatively

simple model that describes the experimental data with enzyme kinetics comprising only

19 unmeasured parameters (Table C.5). Thus, the resulting model features the identi-

fication of mechanisms that are involved in certain dynamics through an efficient and

reliable estimation of parameters and a comprehensive model analysis. Furthermore,

extension by additional reaction mechanisms is relatively easy in case further experi-

mental data is available or other cellular functions are of interest, e.g. the response of

primary metabolism to osmotic stress [160], and hypoxia [307] or its influence on the gly-

cosylation of proteins [308]. Note that other models of glycolysis that take into account

further, unmeasured metabolites or more complex enzyme reactions than used here may

equally well describe the dynamics of the intracellular metabolite pools of this study.

Model coupling and simulation: The derived kinetic description of glycolysis con-

siders data of three independent cell cultivation experiments, two limitation experiments

and one pulse experiment and, therefore, required coupling to a model that takes explic-

itly into account the process of cell growth. Because of the many different experimental

settings (6 experiments), simulations would normally require a large set of initial con-

ditions about the cell status, which comprises the metabolic status (6×8 degrees of

freedom) and growth status (6×7 degrees of freedom), and culture conditions (6×7 de-

grees of freedom) as listed in Table C.1 and Table C.2. Considering that the perturbation

experiments were performed at a certain time point of cultivation and that cultivations
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in turn were inoculated with cells from a defined preculture introduces a dependency of

the cell status on the cultivation history. Accordingly, we transfer the required informa-

tion from one simulation to another (Fig. 3.2 of section 3.2.1). First, the intracellular

metabolite levels of the preculture were derived from a steady state simulation and, thus,

depend only on the intrinsic pathway properties and the growth status. Second, the cul-

tivations Cult1 – 3 provide the cell status for the limitation experiments, which in turn

deliver the cell status for the pulse experiments. This modeling scheme not only reduced

the number of kinetic parameters but also the total number of initial conditions that

require estimation. Thus, modeling only involves a total of 21 degrees of freedom (not

considering the parameters used in the segregated cell growth model and the structured

model of glutaminolysis). In addition, using a certain cell cultivation history not only

eliminates the search for adequate initial conditions but also supports consistent data

simulation and can be used to evaluate biological variations [309]. However, inconsistent

data sets or an unknown cell status (e.g. cell status different to those of Cult1 – 3) may

pose a serious challenge for model fitting. For such scenarios, the individual selection

or fitting of initial conditions might be a better option. In this work, however, the

estimation of two experiment-specific parameters, which are the Elevel for the respec-

tive cultivation and t∗ as starting point for the perturbation experiments, as well as a

consistent consideration of all data sets outweighed a perfect data fitting and greatly

supported our systems-level analysis of glycolysis.

Enzymes control glycolysis during substrate limitation: The simulation of the

limitation experiments was started with a growth status and a metabolic status that

corresponded to a time point t∗ of the Cult1 experiment. The selection of different time

points t∗ readily explains variations in the initial concentration of intracellular metabo-

lite pools that were found between the Lim1 and Lim2 experiment. The actual limitation

was induced in the simulations by reducing the medium volume to 3× 10−7 L, which is

estimated as liquid volume that remains on the cellular surface or in the intercellular

space. In comparison, the volume of all cells is roughly 6 × 10−6 L. In principle, a

dilution of the remaining medium with PBS can be realized by choosing lower GLCx

concentrations and a higher medium volume (V M). The affinity of GLUT for GLCx

(kmGLUT ) was found to have a large confidence interval (Table C.5) and, hence, lower

concentrations of GLCx under a higher V M are likewise possible.

The consideration of preculture conditions and of a remaining medium volume enables

the model to reflect the data measured for the limitation experiments. It suggests that

96



4.3. Dynamics in central carbon metabolism

with the limitation of glycolysis in substrates, the feed-forward regulations of PFK and

PK stop the metabolite pool degradation, while the TATK reactions partially reverse

and fuel glycolysis with 0.03 mmol/L/min, which leads to a new steady state within

minutes. Thus, the control of the glycolytic activity shifts from the growth regime that

regulates the GLUT activity (see next part of discussion) towards an inherent regula-

tion of enzymes by substrates and products in the glycolytic pathway, which is further

supported by the sensitivity analysis. Without the implementations for the TATK reac-

tions, the remaining glycolytic activity eventually depletes the metabolite pools unless

fueled from sources other than GLC. As the limitation applies to all possible extracellular

substrates, the use of intracellular carbon sources from PPP, glycogenolysis or gluconeo-

genesis seems likely. The PPP shares already three metabolites with glycolysis (G6P,

F6P, and GAP) which are most likely not depleted during the limitation experiments

and may pose the most promising and simplest option among the aforementioned intra-

cellular carbon sources. Also, the late decrease in R5P during the limitation experiment

and its lower level during the pulse experiment may support a scenario in which the

PPP fuels glycolysis under substrate limitation and, thus, can have a large influence on

glycolytic intermediates, which is similarly found for hepatoma cells [73]. In turn, after

addition of fresh medium, the PPP metabolite pools may be replenished by glycolysis

and we hypothesize a certain buffering capacity of the PPP as it is composed of many

reversible reactions and intermediates that participate in the biosynthesis machinery.

In the model, the implemented reversible mass action kinetics allow for such a switch

from metabolite consumption to metabolite production by the PPP under the lack of

alternative sources for glycolysis. However, the flux rates as well as the parameters of

the PPP cannot be uniquely identified on the basis of our experimental data (Table

C.5). Therefore, we have used the additional constrain that the flux from the PPP into

glycolysis is low (section 3.1.2). Although the implemented mechanisms may not defi-

nitely be attributed to the PPP, all parameterizations of Table C.5 support the finding

that metabolite pools can be maintained (or increased) under limited substrate avail-

ability. To this end, the model suggests that the allosteric regulation of PFK and PK as

well as the reversibility of GPI and TATK modulate the glycolytic activity in scenarios

characterized by limited substrate availability. This is consistent with findings that flux

control in glycolysis can rely on a combination of many enzymatic steps [73] and can

vary depending on experimental conditions [60]. Counter-intuitively, adenosine-based

nucleotides, which are also considered to control the metabolic activity in general [194],

are constant during our limitation and pulse experiments (appendix Fig. B.1). Similar

97



4. Results and discussion

observations were made for yeast and HeLa cells [12, 82]. Therefore, regulation of gly-

colytic enzymes of MDCK cells by adenosine-based nucleotides seems unlikely under the

conditions investigated, which is similarly suggested for rat hepatoma cells by Renner

et al. [95]. Furthermore, an activation of glycolysis by a possibly decreasing ATP/ADP

ratio stands in contrast to the metabolite pool preservation and renders its influence

to be limited (see also discussion section 4.3.11). However, the general purpose of an

enzyme-mediated control of the glycolytic activity through PFK, PK, TATK and GPI

might lie in the prevention of unnecessary dissipation of valuable biomass precursors

and may also guarantee a metabolic status that enables a fast reactivation of glycoly-

sis and other cellular functions when new substrates become available after starvation

conditions (Fig. 4.13C, F, I, L, O).

GLUT controls glycolysis during cell cultivation: Over the full course of culti-

vation cells pass through several growth-phases with varying cell-specific volumes and

glucose uptake rates that strongly influence the metabolite pool dynamics. In addition,

abundance of enzymes, their covalent modifications as well as the level of allosteric reg-

ulators may change over time which can additionally affect metabolite fluxes and pools

[65, 310]. However, to our surprise most of the experimental observations were captured

by the model under a parameterization that simultaneously explained the perturba-

tion experiments. Obviously, other hierarchical control mechanisms besides the growth

regime, for example on the genomic or proteomic level, were not essential for describ-

ing the observed metabolite pool dynamics, which is similarly expected by Schaub and

Reuss [77]. It seems that the used cultivation conditions and media composition are

already tailored to MDCK cells such that an adaptation of the cellular physiology or

an influence of other hierarchical control mechanisms is not necessary. Nevertheless, the

consideration of other levels of hierarchical control, in addition to the growth regime of

this work, may contribute to aspects of the observed dynamics and a greater compli-

ance of the model with the data. However, the enzyme kinetics and the influence by

the growth regime through GLUT are in the following considered as the sole source of

regulatory principles that control glycolysis during MDCK cell cultivation.

First, the peak in the metabolite pools can be explained with a high GLUT-mediated

flux rate in combination with lowered cell-volume-specific enzyme activities, which is

caused by an increase in the mean cell-specific volume. Section 4.1.3 already suggested

a reduction in enzyme activity to be an explanation for the peak in metabolite pools.

However, this effect can only account for smaller metabolite pool changes and, thus,
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the GLUT-mediated flux determines the metabolite pool dynamics to a large extent.

The purpose of high metabolite pools during growth is, presumably, to induce higher

net fluxes into the PPP and other biosynthetic pathways, which is similarly described

by Wu et al. [138] for bovine venular endothelial cells after addition of CIT in order

to inhibit the PFK activity. In another study, activation of GLUT in rat thymus lym-

phocytes with concanavalin A resulted in higher fluxes in glycolysis and into the PPP

[114]. Eventually, higher fluxes into the PPP enable an enhanced nucleotide, macro-

molecule, and lipid synthesis [311], as reviewed by Mazurek et al. [312]. According to

our simulations, the maximum net flux is between 13 % and 15 % of the glycolytic flux,

which is in the range reported for continuously growing mammalian cells in the expo-

nential growth phase [82, 151]. However, a much lower contribution, e.g. 5.8 % and

3.6 %, can be found in the late intermediate growth phase, which corresponds to find-

ings for other transformed mammalian cells [15, 67, 150]. The lower part of glycolysis

is controlled by a feed-forward activation of the PK by F16BP and yields a negative

correlation between PEP and upper glycolysis, similarly observed by Schaub and Reuss

[77]. Therefore, the regulation of enzymes by substrates, products and allosteric effectors

can change concentrations of intracellular metabolite pools, and reorganize the pathway

fluxes, especially under limiting conditions (see previous part of the discussion). How-

ever, during MDCK cell cultivation the control over the glycolytic activity is exerted

by the growth regime through modulation of the GLUT activity. For many mammalian

cells, the GLUT is described as the rate limiting step that can control the glycolytic flux

[95, 102, 108, 313, 314]. Adenosine-based nucleotides are another source of regulation

and reported to play a major role in the control of the glycolytic activity (e.g. HK or

PFK) in rat liver cells [194] or E. coli [59]. According to our observation of MDCK cell

growth in two different media, we already anticipated that the influence of adenosine-

based nucleotides on glycolysis is, however, rather low. Furthermore, neither during cell

growth nor during substrate perturbation the adenosine-based nucleotides contribute in

their role as cofactors to the simulated dynamics (see section 3.1.2). Therefore, we as-

sumed during model construction that the considered glycolytic enzymes are insensitive

against changes in the adenosine-based nucleotide levels, which is also anticipated by

Soboll et al. [200] for rat liver cells.

Snoep and co-workers hypothesized that GLUT controls cell growth [315]. This, how-

ever, raises the question, whether metabolism regulates cell growth or vice versa [21]. In

case of adherent MDCK cell growth with sufficient substrate supply, the growth status

is changed by internal signaling processes that integrate information on the availability
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of free space on the well surface. Eventually, space becomes limiting and cells reduce

the glycolytic activity although high extracellular glucose concentrations are present.

Therefore, we hypothesize that the growth regime of exponentially growing MDCK cells

controls the GLUT activity to realize a higher metabolic activity yielding in turn higher

metabolite pools that meet the energy and precursor demands of the biosynthesis ma-

chinery. On a lower level of regulation, the properties of the involved enzymes shape

metabolism by influencing flux distributions. Under substrate limitation, however, reg-

ulation of enzymes has full control over the glycolytic activity since no GLCx is available

for the GLUT-mediated uptake (see previous discussion ”Glycolytic activity during cell

cultivation”). Thus, the model considers that the regulation of the glycolytic activity

changes with the status of the cell [21] and sheds light on the regulatory principles that

are essential to simultaneously explain various experimental scenarios. Although regu-

lation of glycolysis can change with the microorganism [59] and the culture condition

[103], we are convinced that the derived principles can be applied to other mammalian

cell lines relevant for production of biologicals, e.g. the AGE1.HN.AAT (see [283, 303]).

Tuning the ATP and biomass precursors generation: Within a GLUT activity

of 0 – 4 mmol/L/min, the model for glycolysis is validated with cultivation, limitation

and pulse experiments. It already shows a good predictive power for an experiment

were MDCK cells were grown in DMEM medium with low GLCx levels, which further

strengthens the confidence in the model structure and its parameterization. Although

the model prediction for the DMEM cultivation would benefit from a lower enzyme

level (Elevel) to describe all maximum peak-heights, it still confirms the close linkage of

GLUT activity and intracellular metabolite dynamics. Based on the finding that the

GLUT modulates the glycolytic activity during cell cultivation (under sufficient substrate

availability) it seemed desirable to explore the maximum capacity of glycolysis and

the corresponding ATP and PPP metabolite production. However, such a maximum

capacity clearly depends on the Elevel and the cell-specific volume (V C
S ). Therefore,

we exemplary analyzed cells from the Cult1 experiment at 24 h of cultivation with an

actual uptake of 3.3 mmol/L. For these cells, in silico modulation of the GLUT activity

revealed that an uptake of up to 3.8 mmol/L/min can be realized until the glycolytic flux

saturates the PFK capacity, which slightly enhances the ATP production on average to

105 %, and the PPP metabolite and NADPH production to surprising 153 % for cells

of Cult1 at 24 h. According to the model, a further increase in ATP production would

require the simultaneous overexpression of the PFK, which illustrates the difficulty in
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fast up-regulation of metabolic activity while keeping a certain balance between ATP

and PPP metabolite production. Note that Janke et al. [22] measured higher maximum

in vitro PFK activities than estimated in this study such that glycolysis of MDCK

cells may have higher capacities than suggested by the model. However, an increased

biomass precursor and ATP production can support higher growth rates as shown for

tumor and yeast cells with up-regulation of the GLUT activity [57, 113]. Furthermore,

Schmidt et al. [198] described a correlation between the growth of tumor cells and the

ATP production rate. Potentially, an increase in the ATP production to 105 % may

not or only slightly support higher growth rates for MDCK cells, especially as they are

described to have a large overproduction in ATP [15, 16]. But due to the importance

of PPP metabolites to pyrimidine production [120, 312] or purine production [302] and

NAPDH to lipid synthesis, we believe that an increase to 153 % positively affects the

growth of cells. A glycolytic activity above 5 mmol/L/min drastically enhances the

production of PPP metabolites (433 %) at the expense of the ATP production (77 %) and

seems to be an interesting scenario for future experiments. However, also the reduction

in the glucose uptake, as done by Liebl et al. [106], poses an interesting strategy to

design a more economic breakdown of glucose [87]. For instance, reducing the GLUT

activity with a concomitant reduction in PFK may yield lower glycolytic activities but

similar biomass precursor production rates. Currently, the reduction of the glucose

uptake by interference with the GLUT is also studied as a potential target for cancer

treatment [57, 112] and may benefit from the use of mathematical models to evaluate

corresponding dynamics in metabolism. Taken together, the model can greatly support

the development of strategies that aim either at a faster or a more efficient cell growth,

and is also an aid in the design of new experiments.
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4.3.6. Glutaminolysis

For glycolysis, we found in the last section that metabolite pool dynamics are to a

large degree determined by the facilitated substrate transmembrane transport into the

cytoplasm and a few key mechanisms for enzyme regulation. The citric acid cycle of glu-

taminolysis is, however, located in the mitochondria, which is a separate compartment,

is much more complex in its network structure and is influenced by the respiratory chain,

ion fluxes and amino acid metabolism. Models for in vitro mitochondria are therefore

enormously complex and cannot yet be validated with in vivo data. The emerging ques-

tion is whether a straight forward realization of regulation mechanisms discovered for

glycolysis is also capable to explain salient features observed for the citric acid cycle or

whether additional aspects need to be considered. As before, modeling covers cell culti-

vation, substrate limitation and substrate pulse experiments and analyzes the predictive

power by simulating a cultivation in a second medium (DMEM). The model structure

(described in section 3.1.2) focuses on intermediates that were measured experimen-

tally and is composed of a concise set of enzyme kinetics with only few, key regulatory

mechanisms. It is coupled to the segregated cell growth model, links glycolysis with

the citric acid cycle through modeling of the pyruvate metabolism, and also takes into

account the conversion of branched chain amino acids. A schematic overview of the

considered enzyme reactions, metabolite pools and maximum in vitro enzyme activities

of glutaminolysis is given in Fig. 4.19.

Metabolite pool dynamics and fluxes during cell cultivation: For the simulation

of the cell cultivation experiments, we already explained that the cells used for inocu-

lation of a new well originate from a preculture that has reached the stationary growth

phase (see section 3.2.1 and section 4.3.1). In consequence, we expect the metabolite

pools at the beginning and at the end of the cultivation experiment to be identical.

However, inspecting the data reveals that metabolite levels of the lower citric acid cycle

are already higher or lower in the first measurement time point (t = 6 h) compared to

the stationary growth phase (t > 76 h, Fig. 4.20). Obviously, a change in the citric

acid cycle activity took place between inoculation and 6 h of cultivation, which can be

attributed to the onset of cell growth. The model suggests a fast drop in αKG and

MAL as well as a fast increase in SUC and FUM short after inoculation (around 0 h,

Fig. 4.20). The reason for the fast change in metabolite pools lies in the GLNx uptake,

which is not existent in the stationary growth phase (Fig. 4.9E) and, therefore, also

not in the preculture. A drop in half of the metabolite pools and a decrease in the
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Figure 4.19.: Scheme of glutaminolysis model with calculated fluxes. Green boxes
represent metabolite pools that were quantified experimentally, while white ones were not
quantified. Enzymes are shown as ellipses with blue background if the maximum enzyme
activity was measured in vitro and with white background otherwise. Reactions and their
directions are shown as arrows. Dashed arrows represent allosteric regulation of enzymes by
metabolites. Colored bars are attached to each reaction and express the relative flux compared
to the largest flux in glutaminolysis (see legend, blue: cell growth at 24 h of Cult1; green: cell
maintenance at 100 h of Cult1; orange: limitation after 6 min). Absolute flux rates (unit:
mmol/L/min) are given next to the bars. Fluxes for LDH: 6.03/1.59/0.06 mmol/L/min. Ab-
breviations are: GLNx extracellular glutamine; GLUx extracellular glutamate; GLU glutamate;
AA other amino acids; αKG α-ketoglutarate; SUC succinate; FUM fumarate; MAL malate;
PYR pyruvate; F16BP fructose 1,6-bisphosphate; LAC lactate; LACx extracellular lactate;
CIT citrate; CAC cis-aconitate; ICIT isocitrate; ATA asparatate/alanine transaminase; AAex
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Figure 4.20.: Metabolite pools of lower citric acid cycle during adherent MDCK
cell cultivation. α-Ketoglutarate (A – C), succinate (D – F), fumarate (G – I) and malate
(J – L) concentrations in three independent MDCK cell cultivations (∆, 2, ◦) in 6-well plates
and GMEM-Z. Data and error bars represent mean and standard deviation of three wells and
were taken from Ritter [23]. Dashed lines are the limit of quantification (LOQ; data below LOQ
marked in gray). Lines represent the respective simulation result based on the experiment-
specific parameters of Table C.1 and parameters of Table C.6. The intermediate growth phase
of the cells is indicated as gray bar for the respective cultivation (bsyn in Table 4.2). Cells, orig-
inating from a cultivation experiment (see Table C.2) were deprived of extracellular nutrients
by removal of medium and addition of phosphate buffered saline, shown in the first column
(Lim1) and second column (Lim2).

remaining ones indicates two groups of differentially regulated enzymes. However, after

one day of cultivation, all four metabolite pools exhibited a peak-like behavior during

cell cultivation with a maximum around 48 h of cultivation, which is roughly one day

later compared to the peak of glycolytic intermediates. The model suggests the peak to

result from the onset of cell growth inhibition and the accompanying uptake of GLUx
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until depletion. The peak in metabolites is, thus, strongly correlated to the uptake rates

shown in Fig. 4.9F. Differences in peak height and peak width can be observed among

Cult1 – 3 experiments and are largely captured by the model (except for αKG). In the

stationary growth phase, all four metabolite pools are constant although the uptake of

GLNx and GLUx ceases. In the model, degradation of metabolite pools is reduced by

inhibition (or lack of activation) of the enzyme group that converts αKG and MAL,

which are KDH and MDH. The remaining cataplerotic activity in the lower citric acid

cycle is compensated by the consumption of AA, which is representative for any other

amino acid such as the branched chain amino acids leucine, isoleucine and valine.

For the upper part of the citric acid cycle, Fig. 4.21 shows measured concentration
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Figure 4.21.: Metabolite pools of upper citric acid cycle during adherent MDCK
cell cultivation. Citrate (A – C), cis-aconitate (D – F) and isocitrate (G – I) concentrations
in three independent MDCK cell cultivations (∆, 2, ◦) in 6-well plates and GMEM-Z. Data
and error bars represent mean and standard deviation of three wells and were taken from
Ritter [23].Cells, originating from a cultivation experiment (see Table C.2) were deprived of
extracellular nutrients by removal of medium and addition of phosphate buffered saline, shown
in the first column (Lim1) and second column (Lim2). Dashed lines are the limit of quantifica-
tion (LOQ; data below LOQ marked in gray). Lines represent the respective simulation result
based on the experiment-specific parameters of Table C.1 and parameters of Table C.6. The
intermediate growth phase of the cells is indicated as gray bar for the respective cultivation
(bsyn in Table 4.2).
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time courses of CIT, CAC and ICIT that are initially high and increase until 24 h of

cultivation (Fig. 4.21). The model suggests an increase in metabolite pools of the upper

citric acid cycle until 24 h that largely fits the data. Thus, the upper and lower part

of the citric acid cycle show different metabolite dynamics. Afterwards CIT, CAC and

ICIT decrease and reach, in the stationary growth phase, the levels that were presum-

ably present at the beginning of cultivation. Among the three cultivations, substantial

experiment-specific differences can be observed (especially for experiment Cult2 (2)).

The model suggests that the increase in metabolite levels results from a reversed ICDH

activity, which is described as an essential feature of fast proliferating cells to support

cytosolic lipid synthesis [174] (Fig. 4.22). Interestingly, only model variants that incor-

porate a regulation of PDH, CL and ICDH by NAD or NADH were capable to reproduce

the observed dynamics. The fact that neither PYR nor αKG, which are the two main

substrates for the upper citric acid cycle, show dynamics that correspond to CIT or

ICIT further strengthens the idea that the this part of the cycle is influenced by other

metabolites or cofactors, for example NAD and NADH.

Analysis of the simulated flux rates reveals an activity in the lower citric acid cycle during

cell growth of about 0.37 mmol/L/min and in the upper part of 1.10×10−3 mmol/L/min

(at 48 h, Fig. 4.19). At this stage of cultivation αKG, generated from glutaminolysis

(rATA) and AA (rAAex, Fig. 4.22A), takes mainly the lower citric acid cycle route (Fig.

4.22B). The upper citric acid cycle is, thus, solely fueled by small amounts of PYR (Fig.

4.22C) and its endproduct, CIT, is transfered to the cytosole. With onset of the cell

growth inhibition the substrate supply of the citric acid cycle changes. Due to a lacking

activation by NAD, the activity of the lower part reduces to 0.06 mmol/L/min and αKG
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Figure 4.22.: Estimated supply and fluxes of the citric acid cycle during adherent
MDCK cell cultivation. (A) Relative supply of citric acid cycle by GLNx and GLUx (rATA)
and by other amino acids (rAAex). (B) Relative use of αKG by ICDH and KDH. (C) Relative
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generated from AA is transferred to the upper citric acid cycle under a reversed ICDH

activity (0.21 mmol/L/min, 4.22B, C). The increasing contribution of αKG (rICDH)

to the upper citric acid cycle exceeds the contribution of PYR (rPDH) very early dur-

ing cultivation (Fig. 4.22C). Taken together, the model suggests a flexible supply of

the citric acid cycle depending on the growth phase and the availability of substrates.

Furthermore, its operation is truncated as both parts are mostly independent of each

other.

Response of citric acid cycle to substrate limitations and a substrate pulse:
The removal of medium and addition of PBS, which was realized in the model by set-

ting the medium volume to 3× 10−7 L (section 3.2.2), also limits the cell in GLNx and

GLUx supply, which affects intermediates of glutaminolysis. We expected the corre-

sponding metabolite pools to decrease over time but in a slower fashion compared to

glycolysis. Inspecting the metabolite pool dynamics of the Lim1 experiment indeed

shows a moderate overall decrease in metabolite pools but also unravels a peak shortly

after the limitation in αKG, FUM and MAL that appears at different time of cultivation

(Fig. 4.23A, G, J). In the Lim2 experiment, the peak is not observed and αKG, FUM

and MAL simply decrease but more slowly than in the Lim1 experiment (Fig. 4.23B,

H, K). The time series of SUC, however, differs from the other three metabolites as its

level decreases until 2 min followed by an increase that is only observed for the Lim1

experiment (Fig. 4.23D – E). Furthermore, we again observe differences in the initial

metabolite levels for the Lim1 and Lim2 experiment. The experimental data are, thus,

to a certain degree unexpected, different between metabolites and specific for the actual

experiments. Nonetheless, by considering that cells are taken from a certain time point

t∗ of cultivation explains most initial conditions. In addition, the model renders the

experiment-specific decrease in metabolite pools, which is similarly affected by t∗ (see

Table C.2) and underlines the importance of considering the preculture of cells for anal-

ysis of metabolism. In the model, the supply of the lower citric acid cycle relies during

substrate limitation upon the consumption of AA (0.15 mmol/L/min) and the degrada-

tion of remaining citric acid cycle intermediates (Fig. 4.19). In the pulse experiments,

many data points are below the LOQ but a slow and steady increase in concentrations

might be present and is also suggested by the model (Fig. 4.23C, F, I, L). In sum, the

derived model may not appropriately resemble all features of the experimental data,

especially for Lim1, but describes the main response of the lower citric acid cycle to

substrate perturbations adequately, especially with respect to Lim2. The upper part of
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Figure 4.23.: Response of metabolite pools of lower citric acid cycle to substrate
limitations and a substrate pulse. α-Ketoglutarate (A – C), succinate (D – F), fumarate
(G – I) and malate (J – L) concentrations of three independent perturbation experiments with
MDCK cells in 6-well plates. Cells, originating from a cultivation experiment (see Table C.2)
were deprived of extracellular nutrients by removal of medium and addition of phosphate
buffered saline, shown in the first column (Lim1) and second column (Lim2). In a similar
experiment, cells were exposed to a 2 h limitation and afterwards PBS was exchanged by fresh
medium, shown in the third column (Pulse). Data (◦) and error bars represent mean and
standard deviation of three wells and were taken from Ritter [23]. Dashed lines are the limit
of quantification (LOQ; data below LOQ marked in gray). Lines represent the respective
simulation result based on the experiment-specific parameters in Table C.2 and parameters in
Table C.6.

the citric acid cycle is not directly dependent on the supply from extracellular substrates

and shows a low activity in CL of about 0.06 mmol/L/min at 6 min after onset of the

limitation (Fig. 4.19). It is, therefore, not surprising to find the simulation result of

the corresponding metabolite pools to be less sensitive against a substrate depletion or
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4.3. Dynamics in central carbon metabolism

pulse (Fig. 4.24). After 3 min of substrate limitation, the concentrations for CIT, CAC

and ICIT of the Lim1 experiment decrease, which is not captured by the model. In the

Lim2 experiment, however, this decrease is less obvious and may equally well support a

constant behavior if considering the error bars of the data and the LOQ (Fig. 4.24A, B,

D, E, G, H). In contrast, a substrate pulse yields a significant increase in intracellular

metabolite pools (Fig. 4.24C, F, I), which is also not captured by the model, to levels

that are measured during cell cultivation. Taken together, the dynamics of the citric acid

cycle are only partly resolved by the model when it comes either to a substrate limitation

or a substrate pulse. Under both experimental conditions, the closely related metabolic

pathways for conversion of amino acids may have a pronounced influence on the citric
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Figure 4.24.: Response of intracellular metabolite pools of upper citric acid cycle to
substrate limitations and a substrate pulse. Citrate (A – C), cis-aconitate (D – F) and
isocitrate (G – I) concentrations of three independent perturbation experiments with MDCK
cells in 6-well plates. Cells, originating from a cultivation experiment (see Table C.2) were
deprived of extracellular nutrients by removal of medium and addition of phosphate buffered
saline, shown in the first column (Lim1) and second column (Lim2). After a 2 h limitation,
PBS was exchanged by fresh medium, shown in the third column (Pulse). Data (◦) and error
bars represent mean and standard deviation of three wells and were taken from Ritter [23].
Dashed lines are the limit of quantification (LOQ; data below LOQ marked in gray). Red
lines represent the respective simulation result based on the experiment-specific parameters in
Table C.2 and parameters in Table C.6.
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4. Results and discussion

acid cycle. Especially the fast increase during the pulse experiment is unexpected.

Prediction for DMEM cultivation: For the prediction of a cultivation in DMEM

medium with low initial GLCx levels, we expected larger discrepancies between model

simulation and data as the citric acid cycle is influenced by many source that are not con-

sidered by the model, especially, when it comes to a substrate limitation. After adjusting

the segregated cell growth model (section A.2), the model prediction suggests generally

higher metabolite pools than measured experimentally (Fig 4.25) and, thus, shows a

certain error in quantitative aspects. However, the qualitative behavior is surprisingly

consistent with the data (except of αKG). It seems that the simulated metabolite pool

levels of SUC, FUM and MAL are simply by a factor of two higher than the measure-

ments and than previous simulations for Cult1 – 3. The reason is that cells cultivated in

the DMEM medium exhibited a doubled GLNx consumption compared to the GMEM-Z

medium (YX/GLNx = 5.92 × 10−7, section A.2), while the intracellular metabolite pools

are similar to Cult1 – 3. Either, the cells respond to the growth on GLUx with a con-

certed increase in enzyme levels (e.g. Elevel = 2) or the GLUx decrease was measured
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Figure 4.25.: Prediction for metabolite pools of the citric acid cycle during culti-
vation of adherent MDCK cells in DMEM with 2.5 mmol/L extracellular glucose.
Data on α-ketoglutarate (A), succinate (B), fumarate (C), malate (D), citrate (E) and cis-
aconitate (F) concentrations (3) is depicted as mean and standard deviation of three wells and
were taken from Ritter [23]. Dashed gray line is the limit of quantification (LOQ; data below
LOQ marked in gray). Solid lines represent the model prediction based on the modifications
of the cell growth model described in the appendix (section A.2) and the parameters in Table
C.1 and Table C.6. The intermediate growth phase of the cells is indicated as gray bar for the
respective cultivation (bsyn).
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4.3. Dynamics in central carbon metabolism

incorrectly (data inconsistencies). Both adjustments would allow the model to also pre-

dict the metabolite pools of the citric acid cycle quantitatively (simulation not shown).

CIT and ICIT are predicted to show a two step decrease that partially fits the data

although with a broader peak and higher levels during the stationary growth phase.

4.3.7. Pyruvate metabolism

The endproduct of glycolysis and glutaminolysis is PYR. It can also fuel the citric

acid cycle and is linked to the amino acid metabolism. Thus, PYR connects these

two main metabolic pathways. In the model, however, PYR is mainly degraded by an

LDH-mediated reaction and only minor amounts enter the citric acid cycle. The flux

through the LDH is activated by F16BP, which is a similar mechanisms as for the PK.

Therefore, the substrates of both enzymes PYR and PEP show strong similarities in

their dynamics during cell cultivation (Fig. 4.26A – C). During the substrate limita-

tion, however, the measured dynamics in PYR levels decrease and are, thus, different

to dynamics in PEP levels although the same regulatory principles are assumed for the
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Figure 4.26.: Pyruvate levels during cell cultivation, substrate limitation and sub-
strate pulse. Each single plot illustrates an independent experiment. (A – C) Cultivation of
MDCK cells in 6-well plates and GMEM-Z. (D, E) Substrate limitation. (F) Substrate pulse.
Data (∆, 2, ◦, ◦), which are depicted as mean and standard deviation of three wells, were
taken from Ritter [23]. Dashed lines are the limit of quantification (LOQ; data below LOQ
marked in gray). Lines represent the model simulation based on the parameters in Table C.1,
Table C.2, and Table C.6. The intermediate growth phase of the cells in (A – C) is indicated
as gray bar for the respective cultivation (bsyn in Table 4.2).
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model. Thus, the model cannot explain the PYR dynamics during the substrate limi-

tation experiments. During the pulse experiment, the levels of PYR remain below the

limit of quantification, which is also different compared to PEP and not captured by the

model. It may indicate that PYR is also part of other metabolic pathways that are not

considered by the model, for example the amino acid metabolism for which data is not

yet available. Nonetheless, the flux through the LDH satisfies the measured LACx ac-

cumulation (Fig. 4.27A) indicating a basic agreement of the model with the actual flux

rate from PYR to LAC. The accumulation fits the data and is also similar to the release

inferred from the segregated cell growth model (Fig. 4.8D). Thus, the LDH is the main

PYR degrading enzyme. Furthermore, metabolic fluxes from glycolysis into the PPP

and glycogenesis are compensated by the production of PYR from glutaminolysis via a

truncated citric acid cycle. The resulting, time-dependent YLACx/GLCx is close to the the-

oretical maximum of 2.0 during the growth phase and increases to surprising 2.4 for the

stationary growth phase (Fig. 4.27B). Note that YLACx/GLCx is only slightly influenced

by changes in the PDH activity (Fig. 4.27C). Thus, the time-dependent YLACx/GLCx

is rather shaped by a flexible use of amino acids in the citric acid cycle and of sugar

metabolites in the PPP than by the PDH activity. In consequence, the YLACx/GLCx may

not be an adequate measure for cellular ”efficiency” in converting GLC to ATP, although

widely used in literature.
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Figure 4.27.: Use of pyruvate during MDCK cell cultivation. (A) Accumulation
of extracellular lactate during MDCK cell growth in 6-well plates with cell growth medium
(GMEM-Z). Data (∆, 2, ◦) and error bars, which represent mean and standard deviation of
three wells, were taken from Fig. 4.8. Grey dashed line is the limit of quantification (LOQ;
data below LOQ marked in gray). (B) Dynamic glucose-specific lactate yield based on the
structured central carbon metabolism model. (C) Relative pyruvate dehydrogenase activity.
Model simulations (based on parameters of Table C.1, Table C.5 and Table C.6) are shown in
the color code of Figure 4.26.
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4.3. Dynamics in central carbon metabolism

4.3.8. Sensitivity analysis for glutaminolysis

In analogy to glycolysis, we also evaluated the impact of model parameters (Table C.6,

C.4) and initial conditions, which take into account culture condition, the growth sta-

tus, and the metabolic status (Table C.2), on the model behavior. The relative local

sensitivity analysis, shown in Fig. 4.28, has many similarities to Fig. 4.18 and its in-

terpretation is, as before, based on the height of values relative to each other and not

on absolute numbers. Again, the model behavior during the cultivation experiments is

mainly determined by the parameters for growth and metabolism and to a certain extent

by the initial growth status of the cells used for inoculation. However, when it comes

Cult. Pert.
0

1

2

3

4

5
x 10

−3

re
l.
 l
o

c
a

l 
s
e

n
s
it
iv

it
y

 

 

A

Metabolic parameters

Growth parameters

Metabolic status

Growth status

Culture condition
0 0.2 0.4 0.6 0.8 1 1.2

x 10
−4

km_GLNT

vmax_GLNT

v_ACO

v_SDH

NAD_basal

km_FMA

km_ICDH

keq_ICDH

v_ATA

k_dPYR

keq_FMA

ka_LDH

keq_AAex

v_KDH

km_PDH

keq_SDH

km_CL

keq_ACO2

km_LDH

keq_ACO

km_MDH

v_AAex

rel. local sensitivity

 

 

B

Cult.

Pert.

Figure 4.28.: Parameter sensitivity analysis of the structured model of glutaminol-
ysis. (A) Relative local sensitivity of model simulations (for cultivation and perturbation
experiments) to a 1 % perturbation in glutaminolysis parameters (Table C.6), parameters of
the segregated cell growth model (Table C.4), culture conditions, growth status and metabolic
status (Table C.2). (B) Relative local sensitivity of model simulations (for cultivation and
perturbation experiments) to a 1 % perturbation of single glutaminolysis parameter.
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4. Results and discussion

to a limitation in substrates the behavior of the model strongly depends on the actual

metabolic status and growth status that was present at time of perturbation. The first

implication is that the preculture of cells has a large impact on intracellular metabolite

pool dynamics. The second is that the sensitivity of glutaminolysis shifts, similarly to

glycolysis, with the experimental scenario. Analysis of glutaminolysis parameters reveals

that, apart from the GLNT, all enzyme kinetics have a certain influence on the overall

network activity. The GLNT is unidentifiable due to multiplication with γGLNT (Eq.

(3.1.89)).

4.3.9. Energy metabolism

Several reaction steps of the central carbon metabolism fulfill the essential function to

provide the cell with energy, which is stored as ATP. To our surprise, none of these

reactions in the model needed an influence by ADP or ATP. We consequently assumed

that the energy state of the cell is rather a result than a regulator of the metabolic

activity, at least for the scenarios analyzed in this work. Thus, our modeling implies that

biosynthetic processes control the level of ATP, similarly to enzymes that control the level
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Figure 4.29.: Scheme of energy metabolism model with calculated fluxes. Green
boxes represent metabolite pools that were quantified experimentally, while white ones were
not measured. Enzymes are shown as ellipses. Reactions and their directions are shown as
arrows. Colored bars are attached to each reaction and express the relative flux compared to
the largest activity in the energy metabolism (see legend, blue: cell growth at 24 h of Cult1;
green: cell maintenance at 100 h of Cult1; orange: limitation after 6 min). Absolute flux
rates (unit: mmol/L/min) are given next to the bars. ATP adenosine triphosphate; ADP
adenosine diphosphate; AMP adenosine monophosphate; IMP inosine monophosphate; rdATP
degradation of ATP by growth and maintenance; rCCM generation of ATP by glycolysis and
citric acid cycle; ADK adenylate kinase; PSP purine salvage pathway.
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of their substrates [131]. To test whether this hypothesis explains the measured dynamics

in adenosine-based nucleotides, we combined the central carbon metabolism model with

a macroscopic biosynthetic process that consumes ATP. In the following, we evaluate

whether the dynamics of adenosine-based nucleotides can be reproduced during batch

cultivation and afterwards conclude on the energy production of the cell. The model also

considers the interconversion of the adenosine-based nucleotides as well as the exchange

of AMP with the PSP [197]. A schematic overview of considered enzyme reactions,

metabolite pools and maximum in vitro enzyme activities of the energy metabolism is

given in Fig. 4.29.

Nucleotide pool dynamics and fluxes during cell cultivation: As already ob-

served at the beginning of this work (section 4.1), the ATP levels show a negative peak

during cell growth and remains constantly high during the stationary growth phase,

which is similarly described by the model (Fig. 4.30A – C). In experiment Cult3 (◦), a

slight overshoot in the intermediate growth phase is observed and also rendered by the

model. The pool dynamics of ADP and AMP are negatively correlated to ATP, while

the overall decrease in ATP levels exceeds the increase in ADP and AMP levels (the

energy charge is depicted in Fig. 4.1I). The model is capable to explain these dynamics

by considering that AMP is converted to IMP, which is part of the PSP. For ADP, we

observe a rather noisy time course compared to ATP and not all data points are covered

by the model (Fig. 4.30D – F). In case of AMP the model shows a reduced peak height

compared to the data (Fig. 4.30G – I). The corresponding production rates for ATP by

glycolysis and the citric acid cycle are shown in Figure 4.31A. The model suggests, that

MDCK cells generate 7 – 10 mmol/L/min ATP during the growth phase with a signif-

icantly larger contribution by glycolysis compared to the citric acid cycle. Note that

the time course of the ATP generation mainly follows the uptake rate of GLCx in case

of glycolytic ATP production, and of GLNx and GLUx in case of mitochondrial ATP

production (cf. Fig. 4.9). In the intermediate growth phase, the ATP generation by

glycolysis decreases while the generation by the mitochondrium peaks such that both

reach an almost equal contribution. In the stationary growth phase, the central car-

bon metabolism delivers a total ATP production rate of 2 mmol/L/min where glycolysis

is again the main source. The consumption of ATP is not separately shown but the

model suggests that ATP is mainly consumed by the macroscopic biosynthetic process

(rX/ATP ) and by futile cycles (rATPase), which is in line with the analysis of Wahl et al.

[15]. The generation of ATP from ADP by oxidative phosphorylation is driven by a
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Figure 4.30.: Adenosine-based nucleotide pools during adherent MDCK cell cul-
tivation. ATP (A – C), ADP (D – F) and AMP (G – I) concentrations in three independent
MDCK cell cultivations (Cult1 ∆, Cult2 2, Cult3 ◦) in 6-well plates and GMEM-Z. Data and
error bars represent mean and standard deviation of three wells and were taken from Ritter
[23]. Dashed lines are the limit of quantification (LOQ; data below LOQ marked in gray).
Lines represent the respective simulation result based on the experiment-specific parameters
in Table C.2 and parameters in Table C.6. The intermediate growth phase of the cells is
indicated as gray bar for the respective cultivation (bsyn in Table 4.2).

proton gradient, which is established by oxidation of NADH with O2. The resulting

mitochondrial consumption of O2 varies with time (Fig. 4.31B) and follows the time

course of the mitochondrial ATP production rate shown in Fig. 4.31A (dashed line).

The cell-number-specific consumption of 22 – 168 fmol/cell/h covers the values reported

by Wahl et al. [15] (48 fmol/cell/h) and by Bock [316] (70 fmol/cell/h).

4.3.10. Model performance

In the former sections, we comprehensively analyzed simulated and measured metabolite

pool dynamics and inferred regulation principles for the central carbon metabolism. Al-

though a systems-level analysis provides valuable insights into the interplay of biological

mechanisms, the resulting complexity in data fits may not reveal the actual model per-

formance. Therefore, we analyzed the correlation between simulations and experimental
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Figure 4.31.: Production of ATP and demand for O2 during adherent MDCK
cell cultivation. (A) Theoretical production rates of ATP by glycolysis (solid lines) and by
the citric acid cycle (dashed lines). (B) Theoretical specific oxygen consumption rate (Eq.
(3.1.82)). Lines are shown in the color code of Fig. 4.30.

measurements for all model fits (Fig. 4.32A), which is an accepted way to evaluate a

model performance [252], and determined a linear correlation coefficient of 0.95 for the

glycolysis model and of 0.77 for the glutaminolysis model. For both models, a deviation
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Figure 4.32.: Statistical analysis of structured model performance. (A) Correlation
between simulated and measured metabolite concentrations of this chapter. The glycolysis
model is marked in green, the glutaminolysis model is marked in yellow. Black line represents
ideal correlation and dashed black lines contain 95 % of the dots. (B) Relative distance between
simulation and data. Dashed lines show mean relative error. (C) Overview of fitted (light blue,
simulation within 95 % confidence interval of data), not fitted (light red, simulation outside
95 % confidence interval of data) and omitted data (gray) for cultivation and perturbation
experiments.
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of about 0.5-fold to 2.0-fold from the nominal simulation value covers 95 % of the data

points (dashed lines Fig. 4.32A; glycolysis: 0.4 – 1.9; glutaminolysis: 0.6 – 2.6). The

relative error is homogeneously distributed and in mean ± 21 % between both models

and the data (Fig. 4.32B). Under consideration of the data error, which is exceptionally

small for many measurements, 70 % of the data is covered by the model when consid-

ering two times the standard deviation (Fig. 4.32C). Note that data points below the

LOQ were excluded from the analysis.

4.3.11. Discussion part II

Glutaminolysis model structure: Similarly to glycolysis, we coupled the segregated

model for cell growth to a kinetic description of glutaminolysis to reflect intracellular

metabolite pool dynamics during cell cultivation, medium depletion and medium pulse

involving a total of 600 data points. The simulation of the different experiments consid-

ers the preculture of cells (already discussed for the structured model of glycolysis) and,

thus, initial conditions were not estimated but calculated by the model leading to only

20 unknown parameters (Table C.6). Another feature of the model is the consideration

of the relative biosynthesis rate bsyn, which reflects the demand of the cell for energy

and precursors. In particular, bsyn influences the degradation of citric acid cycle inter-

mediates and ATP. Using such macroscopic functions enables the model to consider the

influence of complex cellular processes on metabolic pathways. In case of the citric acid

cycle, the enzymatic reactions that required regulation by bsyn or (1 − bsyn) use NAD

or NADH as cofactors, respectively. Thus, the model implicitly suggests that oxidative

phosphorylation has substantial control over the citric acid cycle, which is also proposed

by Dalmonte et al. [183] and Rodŕıguez-Enŕıquez et al. [182]. However, the coupling

to the segregated cell growth model allowed dealing with many more mechanisms that

are not explicitly considered such as the control of the glutamate transporter by cell

growth inhibition or the NH4 metabolism (see next section). Furthermore, modeling cell

growth and the cell-specific volume V C
S introduces the option to calculate the dilution

of metabolites and enzymes, which can influence the conversion rate within the reac-

tion pathways (see section 3.1.3). For the structured model of glutaminolysis, we chose

relatively simple, compartment-unspecific enzyme kinetics to derive a reasonable set of

differential equations that focus on key regulatory mechanisms of that pathway. Simi-

larly to the kinetic description of glycolysis, the model for glutaminolysis features the

identification of mechanisms that are involved in metabolite pool dynamics and provides

a basis for the extension by additional mechanisms, e.g. the oxidative phosphorylation

118



4.3. Dynamics in central carbon metabolism

[251], the influence of cofactors such as GTP and FAD or the compartmentalization of

the cell [248], in case further data is available. Models that take into account further,

unmeasured metabolites or more complex enzyme reactions than used here may equally

well describe the dynamics of the intracellular metabolite pools of this study.

Ammonia release from glutamine and glutamate: The release of NHx
4 was de-

scribed by a maximum stoichiometric production from GLNx and GLUx minus a certain

amount that is bound in molecules and used for biosynthesis. We already highlighted

that the yield of NHx
4 from GLNx is roughly 0.8 and that GLUx does not contribute

to the NHx
4 release (section 4.2.2). The metabolic explanation is that GLU is primar-

ily processed via the transamination route without production of free NH4. A high

transaminase activity is indeed found in MDCK cells [22, 170] and supports our hy-

pothesis. Since accumulation of NHx
4 in the medium can have a negative impact on

cell growth and product formation [54], cultivation processes with high NHx
4 levels may

benefit from medium adaptation [54, 173] or a modulation of the cellular transporters

in favor of GLUx uptake. However, it requires the cell to have a certain glutaminase

activity. For MDCK cells, a sufficient glutaminase activity is indeed present [22] and a

switch to GLNx-free medium was successfully tested as cultivation strategy [14].

Amino acid uptake controls glutaminolysis during cell growth: Since cells from

stationary growth phase were used for inoculation of a new well, we hypothesized that

initial metabolite levels (t = 0) are identical to levels of the stationary growth phase.

With the start of cultivation, the model suggests for SUC and FUM a fast increase in

concentration that is attributed to the uptake of GLNx and AA. For MDCK cells, the

uptake of branched chain amino acids is commonly observed [15] and a contribution of

AA to citric acid cycle intermediates of 40 % (Fig 4.19) is in the range reported for cancer

cells [148]. The uptake of GLNx (perhaps also in AA) yields early (t > 6 min) intracellu-

lar levels of SUC and FUM that are higher than levels during stationary growth phase.

For αKG and MAL the opposite is observed and indicates that the degrading enzymes

KDH and MDH are activated between 0 h and 6 h of cultivation. The model suggests

that the inhibition of both enzymes by bNAD is released with onset of growth, which may

imply a certain influence by NAD. With beginning of the indermediate growth phase,

a peak-like behavior is observed for αKG, SUC, FUM and MAL and is, in the model,

driven by a high GLUx uptake. Thus, metabolite pools of the lower citric acid cycle

are largely controlled by the growth-dependent uptake of GLNx, GLUx, and presumably
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AA. To illustrate the link the between uptake of extracellular substrates and intracel-

lular metabolite dynamics, which was also found for glycolysis (see section 4.3.5), Fig.

4.33 provides a schematic overview on main central carbon metabolism dynamics, on

their linkage and on uptake of substrates (GLCx, GLNx, GLUx) as well as release of

byproducts (LACx). With onset of the stationary growth phase and a limited supply by

GLNx and GLUx, the control changes towards mechanisms that maintain intracellular

metabolite pools and avoid unnecessary dissipation of biomass precursors. Firstly the

GLNx uptake rate 

Upper citric acid cycle 

Lower citric acid cycle 

Upper glycolysis & 3PG 

GLCx uptake rate 

GLUx uptake rate 

LACx release rate 

PEP & PYR metabolism 

PPP and Glycogenesis 

Membrane 

CELL 

Figure 4.33.: Scheme of central carbon metabolism dynamics during cell cultiva-
tion. Arrows and thickness of arrows indicate the relative flux distribution. Metabolite pool
dynamics in different parts of the metabolic network are depicted by representative, schematic
figures and grouped by color code. Light gray bar illustrates the intermediate growth phase.
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inhibition of key enzymes by bNAD becomes significant and, secondly, the breakdown

of AA seems to compensate for cataplerotic effects. We, therefore, anticipate that the

regulation of enzymes through NAD can reduce the citric acid cycle activity and may

pose an intrinsic mechanism to stabilize intracellular concentrations of metabolic inter-

mediates when specific substrates are depleted to critical levels. It seems that seeding of

cells into a new well with sufficient growth surface and high substrate levels releases this

inhibition to support biosynthesis and cellular energy generation. Yuneva and coworker

[300] found a reduction in citric acid cycle intermediates upon limitation in GLNx, which

indicates its role as main substrate, and, most interestingly, reported on MYC-mediated

apoptosis if citric acid cycle metabolite drop to low levels. The regulation of the citric

acid cycle by NAD is also well documented [182, 183] and an inhibition of the lower citric

acid cycle by low NAD levels at late stages of cultivation seems reasonable since ATP

levels are at maximum (see section 4.3.9). High ATP levels presumably block oxidative

phosphorylation [251] and can yield high intracellular NADH and low NAD levels.

Applying the influence of bNAD consistently to the upper citric acid cycle allowed the

model explaining the measured pool dynamics in CIT, CAC and ICIT. A regulation of

the upper citric acid cycle is also supported by the observation that metabolite levels

differ significantly from PYR and αKG, which are the main substrates for this part of

the cycle. However, the actual dynamics show larger variations between the cultiva-

tions, which, according to the model, are attributed to differences in cell growth in the

presence of low pathway activities. Furthermore, the supply of the upper citric acid

cycle seems to change from PYR to αKG with progression in cultivation time indicat-

ing a certain flexibility in pathway operation. The products of both citric acid cycle

branches eventually fuel the PYR pool under the production of either cytosolic NADPH

or cellular energy and, thus, the model reflects a truncation in the cycle [121, 150]. The

subsequent degradation of PYR by LDH is activated by F16BP, which yields dynamics

that are similar to PEP and that largely suit the cultivation data. We subsequently

analyzed whether the activity of glutaminolysis and glycolysis constitute the measured

LACx production. The simulation is in good agreement for all three cultivations and,

thus, strengthens our confidence in the estimated flux distributions. At this point, we

can infer the dynamic efficiency in glucose conversion that was previously defined as

YLACx/GLCx . In contrast to the segregated cell growth model, YLACx/GLCx now varies

with cultivation time (also found by Dean and Reddy [13]) between 1.8 and 2.4 and is

not a result of a varying contribution of PYR to the citric acid cycle (< 1 h) but rather

of glutaminolysis to PYR production, which is an aspect that is frequently overseen in
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the analysis of mammalian cell cultures.

Glutaminolysis during substrate perturbation: At distinct time points t∗ of culti-

vation, the medium was replaced by PBS and decreasing metabolite pools were measured

in the citric acid cycle. For glycolysis, choosing a distinct t∗ for each perturbation ex-

periment explains differences in the initial metabolite levels. Using the same t∗ as for

glycolysis allows the model to also successfully render the starting concentrations of the

citric acid cycle (no adjustments necessary). It seems that considering the preculture of

cells consistently reproduced the initial metabolic status of glycolysis and glutaminolysis

at the beginning of the perturbation experiments.

During the time course of the limitation experiments, however, metabolite pools of the

lower part of the cycle show a peak that emerges at different times of cultivation, which

cannot be explained with a regulation of the connecting enzymes. Rather, each metabo-

lite is influenced by separate metabolic pathways and by the involved amino acid pools.

In line with this hypothesis, the model suggests a significant supply from AA during

the substrate limitation scenario. Taken together, the data and the model indicate that

the associated metabolism exerts a significant influence on the lower citric acid cycle if

its activity is low, which is similarly found for the PPP during the limitation experi-

ments. Nonetheless, the model describes the overall degradation of αKG, SUC, FUM,

and MAL sufficiently well, especially for the Lim2 experiment. Further measurements on

the closely related metabolic pathways may help to also clarify the reason for the mea-

sured peaks. With the addition of fresh medium, a pulse in GLNx and GLUx is applied

that leads in the model to slow but steady reactivation of the lower citric acid cycle. The

data, however, shows very low levels for all four metabolites at all time points. Since

cells are capable of growth after the limitation and pulse experiments, the citric acid

cycle might be activated at later times or in a different mode, which the model cannot

yet explain. Currently, the model simply suggests that the citric acid cycle returns to

the metabolic status that was present before the perturbation experiments.

In the upper part of the cycle, the measured metabolite pools are mainly constant dur-

ing the limitation experiments, perhaps with a slight decrease towards later time points.

The model suggests very low activities and the resulting straight line captures most

of the data. During the pulse experiment, the concentrations for the metabolite pools

increase significantly from these low levels, which is in contrast to the lower part of the

cycle. Obviously, a substrate pulse to the citric acid cycle offers a puzzle that cannot

yet be solved by the developed model. The discrepancy to the data is perhaps linked
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to the difficulties in fitting PYR during the pulse experiments. We defined the LDH to

be the main degrading enzyme for PYR, which is activated by F16BP. Instead of an

increase in concentration due to decreasing F16BP levels, PYR drops fast to low levels,

which the model cannot explain. It may indicate that the closely related metabolic

pathways have a certain influence on PYR under these experimental conditions. Taken

together, during the pulse experiment and especially when the pathway activities are

low, parts of the metabolism, which are not considered in this work, play a pronounced

role, such as metabolism of amino acids, compartmentalization and ion fluxes across the

compartment membrane. When the citric acid cycle is operated with higher flux rates,

the metabolite pools are robustly controlled by a few key mechanisms [122] and can,

thus, be described with a facilitated amino acid uptake and an NAD-based regulation

of enzymes.

Estimations and predictions for the operation of glutaminolysis: Since the func-

tioning of glutaminolysis is only partly understood when it comes to short term responses

upon substrate perturbations, the model-based estimations of this work focus only on

standard cell cultivation conditions. The predictive power of the model for these con-

ditions is appreciable considering that the two-fold higher levels in citric acid cycle

metabolites may result from data inconsistencies or changes in the enzyme level. For

bioprocessing, we anticipate that increasing the GLUx uptake may enhance ATP pro-

duction but, more importantly, may also enhance the lipid-synthesis from MAL-derived

NADPH, which might effect µmax in a positive way. Furthermore, a shift towards higher

lipid synthesis might be important for the production of enveloped viruses [297]. Mea-

surements for the maximum in vitro enzyme activities of FMA and MDH indicate a

significant additional capacity for metabolite conversion [22] such that an enhanced glu-

taminolysis activity is not limited by these enzymes.

The control of the energy metabolism: The kinetic description for the citric acid

cycle uses a combination of enzyme metabolite interactions and growth-dependent func-

tions to describe the degradation of metabolite pools. Such macroscopic functions rep-

resent hierarchical regulation mechanisms and can influence the metabolic activity in-

dependent from the abundance of intracellular metabolites. For modeling the energy

metabolism, we again used growth-dependent functions to account for the use of ATP

in biosynthetic reactions. Together with enzyme metabolite interactions, the model suc-

cessfully describes the pool dynamics in ATP, ADP, and AMP during cell cultivation
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using 10 parameters and 3 initial conditions. Since the model for glutaminolysis strug-

gled with describing all dynamics observed during the perturbation experiments, the

model for the energy metabolism is not fitted to corresponding data and not used for

predictions. Nonetheless, it contributes to the analysis of in vivo nucleotide pool dy-

namics of mammalian cells and offers a fit that is similar or better than for yeast cells

[199]. The estimated flux rates through glycolysis and the citric acid cycle constitute

a maximum production rate of 10 mmol/L/min. The model suggests that glycolysis

provides the majority of ATP in adherent MDCK cells, which fits to our observations

of a partial oxidation of glutamine and high lactate secretion rates, and is also reported

in literature [58, 89, 121, 150]. A higher ATP production by glycolysis compared to

the citric acid cycle is also proposed by Wahl et al. [15] using metabolic flux analysis.

Another question is how metabolism, biosynthesis and the energy level influence each

other. Since the energy producing steps are found in the last sections to be independent

of the actual energy level, hypotheses on a demand-driven energy metabolism [193] or

on the control of enzymes by ATP levels [194, 195] are not supported by the model. The

explanation is that a control of enzymes by ATP on the one hand interrupts concerted

changes in metabolite pools, e.g. upper glycolysis, and on the other yields a constant

time course for ATP, which both is not observed in our data (Fig. 4.34A). In a demand-

driven control, intracellular metabolite pools decrease in response to cell growth and

eventually induce the uptake of substrates. However, decreasing metabolite pools for

the cell growth phase are neither observed for glycolysis nor for the citric acid cycle

(Fig. 4.34B). Also a control by extracellular nutrient levels, which is suggested by Dean

and Reddy [13] and Barnabé and Butler [78], is not observed during cell cultivation and

may only occur under substrate limiting conditions. Furthermore, the ATP levels can

sustain a substrate limitation for at least 2 h of medium depletion (see Appendix B.2

Fig. B.1 and [23]). Thus, the only hypothesis remaining and supported by the model is

that metabolism generates ATP irrespective of its actual level, which is also suggested

by Soboll et al. [200], while the level of ATP is shaped by the biosynthesis activity. Note

that continuously proliferating cells may never be limited in the ATP supply, which is

implicitly found for tumor cells by Schmidt et al. [198] and reviewed by Vander Heiden

et al. [61]. Furthermore, the observation of a decreasing ATP level in the presence of

increasing metabolite pools indicates that biosynthesis is rather driven by the precursor

supply, which may initially consume more ATP than provided by metabolism. At later

stages of cultivation, cells are more and more inhibited in cell growth and the overpro-

duction in ATP by metabolism slowly restores the pool. Taken together, our hypothesis
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Figure 4.34.: Role of ATP in the control of the central carbon metabolism and
observations of this study. Light arrows indicate reactions for metabolite M, which may
stand for e.g. M1: F6P and M2:F16BP, large arrows indicate a supply and dashed arrows
indicate regulation.

is that biosynthesis is induced by high precursor levels and, because of the increasing

demand, simultaneously reduces ATP levels (Fig. 4.34C).

Model performance: Current models for yeast and bacteria metabolism that con-

sider in vivo dynamics in metabolite pools focus mainly on glucose pulse experiments

[20, 237, 242, 317]. The model of this work describes data of pulse experiments equally

well (or even better) and captures additional measurements from two independent lim-

itation experiments. Although perturbation experiments are ideal to study pathway

dynamics they depict extreme scenarios in which the substrate levels have a pronounced

influence. The advantage of our model is that it explains metabolite pool dynamics of

several perturbation experiments and, at the same time, for cell cultivation experiments,

while using the same parameterization. Differences between replicate experiments are

reflected by considering the preculture of cells and also circumvents the estimation of

individual initial conditions. Based on the comprehensive validation with data from a

broad operation range of metabolism, the model is capable to predict the metabolism
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for a cultivation in a second medium. In sum, the model describes about 70 % of the

1200 data points from a variety of experiments and time scale (Cult1 – 3, Lim1, Lim2,

Pulse), while beeing relatively simple, biologically relevant and predictive.

4.3.12. Summary

In this part, we coupled the segregated cell growth model to a structured model that

incorporates the two main metabolic pathways, glycolysis and glutaminolysis, as well as

their links to the associated metabolism of PPP, glycogenesis, pyruvate metabolism and

to the energy metabolism. To unravel mechanisms that are involved in the metabolite

pool dynamics, the model structure is composed of relatively simple enzyme kinetics

that focus on a few well-known enzyme metabolite interactions. By using macroscopic

growth functions, the model can realize growth-dependent substrate transports as well

as consumption of metabolites and cellular energy for biosynthesis. Furthermore, the

model considers the preculture of cells as well as different intracellular enzyme levels

and explains most experimental observations for cultivation, limitation and pulse ex-

periments under a single parameterization. Thus, the model not only provides a good

performance in describing the experimental data but also delivers a systems level under-

standing of the metabolic regulation for a variety of experimental conditions and time

scales. In particular, the model suggests that the metabolic activity is regulated by

growth-dependent transports of GLCx, GLNx and GLUx, while the resulting production

rates of biomass precursors and cellular energy are influenced by intrinsic pathway prop-

erties. When limited in substrates, the control over the metabolic activity shifts from

the growth regime towards an inherent one that is shared by several enzyme metabo-

lite interactions. Furthermore, the model suggests that oxidative phosphorylation has a

pronounced control over the activity of the citric acid cycle that prevents the dissipation

of valuable biomass precursors and eventually apoptosis. We also successfully tested the

predictive power of the model for the glycolysis and glutaminolysis pathways by simu-

lating a cultivation in a second medium (DMEM), which strengthened our confidence

in the model structure and its parameterization. Based on the model, we hypothesize

that a faster or a more efficient cell growth can be achieved by tuning the substrate

uptake rates of the cell, which has great relevance to the design of bioprocesses and of

new experiments.
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Conclusion

When this work was conceptually formulated, it was not clear whether the overall dy-

namics in the central carbon metabolism of adherent MDCK cells can be explained

by mathematical models. Existing models for metabolism largely focus on yeast and

E. coli or on isolated mitochondria. Furthermore, these models often focus on rather

special scenarios, such as pulse experiments, than on basic metabolic functions relevant

for cell cultivation and production of biologicals. Fortunately, numerous concepts for

the regulation of the cellular metabolism are available and cover the influence by ex-

tracellular substances, transport mechanisms, hierarchical control and intrinsic pathway

properties. The contribution of this work to the field of metabolic research is, thus, the

reasonable combination of the most promising theories such that a mathematical model

is derived that consistently explains intracellular metabolite pool dynamics found for

adherent MDCK cells under various experimental conditions.

The first challenge was to identify regulatory principles that are likely involved in the

control of the MDCK cell metabolism. Although it is clear that the metabolic activity

correlates with cell growth, studies on the interplay of metabolic regulation mecha-

nisms through analysis of metabolite pools under different growth conditions are barely

available, especially not for a broader systems-level analysis. The first part of this

work, therefore, analyzes growth and metabolism of MDCK cells that were cultivated

in two different media using biological and technical replicate measurements for both

media. Surprisingly, the metabolic behavior is quite the same and fundamental changes

in metabolite pools are highly correlated to changes in the growth behavior. These

observations not only imply that the influence of extracellular substrates is limited but

also unravel a robust regulation of the metabolic activity by simple cellular mechanisms,

such as key enzyme-metabolite interactions and transport reactions.

Based on the recognition of these first principles, we aimed for an analysis of metabolite

pool dynamics that specifically takes into account the growth rate, nutrient uptake and

size change of cells. Conventional cell growth models, however, can often not distin-

guish between cell size and cell number increase, while mass population-based models
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are difficult to calibrate with experimental data. Therefore, we developed a segregated

cell growth model where cells pass through different cell diameter classes, thereby con-

suming substrates and releasing byproducts, until a critical size is reached and the cells

divide. Cell volume-dependent growth inhibition occurs at the first transition and allows

the model to recapitulate the observed mean cell diameter dynamics. When applied to

three independent cultivations, the model shows a convincing performance in capturing

cell growth in numbers and volume while it also precisely explains the cellular uptake of

substrates and the release of byproducts. Furthermore, it possesses a simple structure

and is easy to compute. In comparison to conventional approaches, the model proved

advantageous for the simultaneous description of different cultivations with a single pa-

rameterization and is, thus, particularly suited for coupling with structured models of

metabolism. The successful prediction of cultivation experiments as well as the analysis

of other cell lines and cultivation conditions indicate applicability and generality. Hence,

the model fills the gap between existent approaches and represents a promising alterna-

tive to mammalian cell growth models that are typically used to design and optimize

bioprocesses.

The second challenge in the analysis of metabolism lied in its enormous variability, even

for experiments that were seemingly performed as replicates. It is hypothesized by other

groups that variations in the metabolic state can be a result of the cultivation history of

cells. Changes in the cell size as well as in genomic, transcriptomic or proteomic proper-

ties are typically found. Following this idea, we designed a simulation scheme that links

the initial cell status of the actual experiments with the preculture of cells, which differ

in cell diameters and the intracellular enzyme level. For example, simulating the dynam-

ics during cell cultivation delivered all aspects of cell growth, metabolism and culture

condition for the simulation of substrate limitations and finally pulse experiments. An-

other benefit of this concept is that it enables the model to explain experiment-specific

variations in metabolite pool dynamics with differences in the preculture, which other-

wise introduce large uncertainties to the analysis of metabolism.

With a solution for both challenges, we finally developed a structured model for the cen-

tral carbon metabolism and its associated pathways. To illuminate central regulatory

principles, the model focuses on simple, yet biologically relevant descriptions that fea-

ture the identification of mechanisms that are involved in main intracellular metabolite

dynamics. Interestingly, a few key enzyme-metabolite interactions together with macro-

scopic growth functions already explain metabolite pool changes from a comprehensive

data set that covers a variety of experiments and time scales. The quality and relia-
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bility of the model is further emphasized by the successful prediction of a cultivation

in second medium (DMEM) and allows us to infer with greater confidence how differ-

ent regulatory mechanisms interact to realize a broad range of pathway operations. In

particular, the model suggests that glycolysis and glutaminolysis are both controlled by

a cellular growth regime through modulation of the glucose, glutamine and glutamate

transporter activity. On a lower regulatory layer, enzyme-metabolite interactions influ-

ence the flux distribution to suit the cellular demand for energy and biomass precursors.

In extreme cases, where cells are limited in their substrates, the control shifts from the

transporter through the limiting substrates to a control that is shared by key enzymes.

The frequent expectation, however, that enzyme-metabolite interactions constitute a

demand-driven control that shapes metabolism for various growth conditions fails in

explaining metabolite pool dynamics observed for MDCK cells. Therefore, the shift

in control is an essential property of the cellular metabolism that is unraveled in this

work by the systematic integration of various experimental conditions into a coherent

modeling framework. Furthermore, the substrate transport is an often overseen element

that can exert significant control over metabolism but might not become obvious from

substrate pulse experiments or steady state data. Since the transport is regulated by

macroscopic growth functions, it seems that the growth regime ultimately controls the

generation of biomass precursors and cellular energy with rates that are encoded in the

network architecture. Nonetheless, the influence of extracellular substrate concentra-

tions and intracellular enzyme levels (proteomic level) are a necessary part of the model

and contribute already to the metabolite pool dynamics. Furthermore, other hierarchi-

cal aspects, such as enzyme phosphorylation and transcriptional regulation may improve

the current interpretations and can, thus, not be excluded as sources of regulation. In-

terestingly, the hypothesis of a control by energy charge is neither supported by the

model nor by the experimental data. Although the contribution of all of these addi-

tional mechanisms is not essential for describing the metabolite pool data of this work,

they may play a role in very specific and stressful situations, for example when cells are

adapted to a new medium. For the understanding of the cellular metabolism, however,

it seems intuitive that the driving force of cellular life relies on simple mechanisms, i.e.

ordinary enzyme-metabolite interactions and the rate limiting activity of transporters,

as they facilitate a robust functioning in a changing environment.

Overall, we successfully combined the analysis of cell growth dynamics with relatively

simple enzyme-metabolite interactions to study the capacity and regulation of the mam-

malian cell metabolism. Based on a mathematical model, we inferred principles of
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metabolic regulation and their interplay by describing dynamics in metabolism for a

variety of experiments. The insights into metabolism and the predictions for the cell

significantly contribute to the field of metabolic research and support the design of more

efficient cell cultivations.
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Outlook

With the successful development of a mathematical model that consistently explains

data of a complex metabolic network, a promising systems biotechnology framework is

created that supports the analysis of further metabolic phenomenons. Within the vision

of an iterative cycle of model development and data generation, we here draw an outlook

on experiments that possess the greatest potential for improvement of the model and

for discoveries in the fields of metabolic research and bioprocessing.

Importance of labeling experiments: For the central carbon metabolism of MDCK

cells, the exchange of metabolites with associated pathways is only partially validated by

substrate uptake and byproduct release rates. Flux data from labeling experiments can

provide insights into the metabolic flux distribution and reduce the degree of freedom in

the current interpretation of the metabolic activity. The citric acid cycle, for example,

showed a peak-like response in metabolite levels when it comes to a substrate limitation.

Application of labeling experiments may address the source of these peaks as well as the

surprising observations of constant ATP levels during these experiments. Currently, the

model suggests that AA are converted by the citric acid cycle under the production of

ATP but cannot explain constant ATP levels or peaks in metabolite pools. Furthermore,

it remains to be elucidated for how long the cell can sustain limiting conditions and how

active the different parts of metabolism are. In principle, labeling experiments are an

important element in the analysis of metabolism, even though the method is time and

cost expensive.

Complement existing data sets: Experiments in which single substrates are re-

moved from the medium represent a reasonable strategy to further validate the exchange

of metabolites among pathways with the convenient side effect that current measure-

ment methods are exploited in an economic fashion. Since the model already showed a

good performance in predicting a cultivation with reduced GLCx levels, additional culti-

vations with limitations in GLNx and GLUx not only complement the set of experiments
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and simulations but can also illuminate the conversion routes in glutaminolysis and the

citric acid cycle. Currently, the model suggests a relatively low supply of the citric

acid cycle with PYR and a substantial contribution from GLN and AA. In addition,

the quantification of extracellular amino acid concentrations may clarify the dynamics

in the substrate supply of the citric acid cycle. Another open question is the role of

NADH in the regulation of the citric acid cycle activity. Methods for the quantification

of intracellular NAD and NADH can be adopted for MDCK cells to prove or reject the

hypothesis that high NADH levels limit the activity of the citric acid cycle.

Enzyme activity and content: For the cultivation experiments, we observed that cells

with different cultivation histories varied in dm and dc and anticipated a concomitant

change in the Elevel. The assumption readily explains experiment-specific variations in

metabolite pool dynamics. However, it remains to be shown whether and, if so, to

which extent the enzyme content changes with the cell size. The use of a proteomic

approach, in addition to enzyme activity measurements, provides independent data on

protein level and specific activity. Corresponding studies may unravel principles for

the link between enzyme content and cell diameter, which can potentially refine the

current model. In a preliminary study, S. Kluge analyzed the adaptation of MDCK

cells to suspension growth and we found a reduction in the glycolytic activity equal to

the reduction in enzyme activity. The use of enzyme activity measurements and relative

protein quantifications indicated that changes in the enzymes activity are correlated with

the reduction in protein content. As suspension cells are much smaller than adherent

cells, this finding may support the idea that the enzyme level correlates in general with

the size of cells.

Perturbation of intrinsic pathway properties: Next to the acquisition of data on

further metabolic components, it seems worth to also perturb cellular components and

track the metabolic response. Based on the model, the modulation of the GLUT has

a certain potential for enhancing or decreasing the biomass precursor production rates.

Also an increase of the NADPH production rate by the PPP seems possible and may

support lipid synthesis, which may have great relevance for the cell-based production of

viruses. Therefore, experiments dealing with the overexpression or inhibition of GLUT

can be used to validate its control over glycolysis and to clarify effects on the biosynthesis

activity. Alternatively, GLUT and many enzymes of the glycolytic pathway can be

perturbed by activation or suppression of HIF-1, which is currently tested as a strategy
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to interfere with the Crabtree effect by a member of the BPT group.

Extension of the model: In its current version, the model neglects any compartmen-

talization of the cell as it is designed to comply with the data. In addition, extending the

model by distinct reactions for mitochondria and cytosol will cause identifiability prob-

lems unless compartment-specific data are taken into account. Methods for gathering

compartment-specific data are currently available but an even distribution of metabolites

within the compartments cannot be expected. It seems that metabolites are converted

in enzyme complexes [318] and resolving these metabolic processes may introduce enor-

mous challenges for both experimental methods and modeling. Nonetheless, metabolism

is linked to most cellular processes and, thus, many more cellular functions can be ad-

dressed by model extensions such as the osmotic stress, hypoxia or glycosylation of

proteins. Also the lipid metabolism, as mentioned above, poses a promising extension

to the model if corresponding data becomes available.

Transfer of model to other cell lines: Preliminary studies by Klassen [303] indicate

that central principles for the regulation of metabolism in adherent MDCK cell also

apply to suspension AGE1.HN.AAT cells. Although some mechanisms may require

adjustments, i.e. influence of growth inhibitors and the kinetics for enzyme-mediated

reactions, a direct comparison to MDCK cells seems interesting and would contribute

to a more general understanding of the mammalian cell metabolism. Also, CHO cells,

which are the best studied mammalian cells and widely used for the production of

recombinant proteins, can be considered as field of application for the presented modeling

approach if data on intracellular metabolites and enzyme activities become available.

Both cell lines can also be used to study the link between glycolytic activity and protein

glycosylation and are, thus, highly attractive research objects with great relevance for

a larger biotechnological community. In the field of virus production, the design of

highly productive cells can be supported by the presented modeling approach through

identification of metabolic bottlenecks and of optimal cultivation strategies.
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André B Canelas, Femke I C Mensonides, Rick Orij, Isil Tuzun, Joost van den
Brink, Gertien J Smits, Walter M van Gulik, Stanley Brul, Joseph J Heijnen,
Johannes H de Winde, M. Joost Teixeira de Mattos, Carsten Kettner, Jens Nielsen,
Hans V Westerhoff, and Barbara M Bakker. Measuring enzyme activities under
standardized in vivo-like conditions for systems biology. FEBS J, 277(3):749–760,
Feb 2010. URL http://dx.doi.org/10.1111/j.1742-4658.2009.07524.x.

[12] Hannes Link, Karl Kochanowski, and Uwe Sauer. Systematic identification of
allosteric protein-metabolite interactions that control enzyme activity in vivo. Nat
Biotechnol, 31(4):357–361, Apr 2013. URL http://dx.doi.org/10.1038/nbt.

2489.

[13] Jason Dean and Pranhitha Reddy. Metabolic analysis of antibody producing cho
cells in fed-batch production. Biotechnol Bioeng, 110(6):1735–1747, Jun 2013.
URL http://dx.doi.org/10.1002/bit.24826.

[14] Yvonne Genzel, Joachim B Ritter, Susanne König, Rüdiger Alt, and Udo Reichl.
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[20] Karen van Eunen, José A L Kiewiet, Hans V Westerhoff, and Barbara M Bakker.
Testing biochemistry revisited: how in vivo metabolism can be understood from
in vitro enzyme kinetics. PLoS Comput Biol, 8(4):e1002483, 2012. URL http:

//dx.doi.org/10.1371/journal.pcbi.1002483.

[21] Raul K Suarez and Christopher D Moyes. Metabolism in the age of ’omes’. J Exp
Biol, 215(Pt 14):2351–2357, Jul 2012. URL http://dx.doi.org/10.1242/jeb.

059725.

[22] R. Janke, Y. Genzel, N. nd A. Wahl, and U. Reichl. Metabolic adaptation of
mdck cells to different growth conditions: effects on catalytic activities of central
metabolic enzymes. Biotechnol Bioeng, 108(11):2691–2704, Nov 2011. URL http:

//dx.doi.org/10.1002/bit.23215.

[23] Joachim Ritter. Charakterisierung tierischer Zellkulturen anhand einer Quan-
tifizierung intrazellulaerer Metaboliten aus dem Zentralstoffwechsel. PhD thesis,
Otto-von-Guericke Universitaet Magdeburg, 2010.

[24] S. H. Madin and NB Darby, Jr. Established kidney cell lines of normal adult
bovine and ovine origin. Proc Soc Exp Biol Med, 98(3):574–576, Jul 1958. URL
http://dx.doi.org/10.3181/00379727-98-24111.
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[92] L. Häggström, J. Ljunggren, and L. Ohman. Metabolic engineering of animal cells.
Ann N Y Acad Sci, 782:40–52, May 1996. URL http://dx.doi.org/10.1111/j.

1749-6632.1996.tb40545.x.
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Albert de Graaf, and Konstantin Konstantinov. Metabolic flux analysis of cho
cells in perfusion culture by metabolite balancing and 2d [13c, 1h] cosy nmr spec-
troscopy. Metab Eng, 12(2):138–149, Mar 2010. URL http://dx.doi.org/10.

1016/j.ymben.2009.10.007.

[153] Averina Nicolae, Judith Wahrheit, Janina Bahnemann, An-Ping Zeng, and Elmar
Heinzle. Non-stationary 13c metabolic flux analysis of chinese hamster ovary cells
in batch culture using extracellular labeling highlights metabolic reversibility and
compartmentation. BMC Syst Biol, 8:50, 2014. URL http://dx.doi.org/10.

1186/1752-0509-8-50.

[154] Jing Fan, Jiangbin Ye, Jurre J. Kamphorst, Tomer Shlomi, Craig B. Thompson,
and Joshua D. Rabinowitz. Quantitative flux analysis reveals folate-dependent
nadph production. Nature, 510(7504):298–302, Jun 2014. URL http://dx.doi.

org/10.1038/nature13236.

[155] U. Valley, M. Nimtz, H. S. Conradt, and R. Wagner. Incorporation of
ammonium into intracellular udp-activated n-acetylhexosamines and into car-
bohydrate structures in glycoproteins. Biotechnol Bioeng, 64(4):401–417,
Aug 1999. URL http://dx.doi.org/10.1002/(SICI)1097-0290(19990820)64:

4<401::AID-BIT3>3.0.CO;2-M.

[156] Ana C. Donadio, Carolina Lobo, Marta Tosina, Vanessa de la Rosa, Mercedes
Mart́ın-Rufián, José A. Campos-Sandoval, José M. Matés, Javier Márquez, Fran-
cisco J. Alonso, and Juan A. Segura. Antisense glutaminase inhibition modifies
the o-glcnac pattern and flux through the hexosamine pathway in breast cancer
cells. J Cell Biochem, 103(3):800–811, Feb 2008. URL http://dx.doi.org/10.

1002/jcb.21449.

[157] Kathryn E. Wellen, Chao Lu, Anthony Mancuso, Johanna M S. Lemons, Michael
Ryczko, James W. Dennis, Joshua D. Rabinowitz, Hilary A. Coller, and Craig B.
Thompson. The hexosamine biosynthetic pathway couples growth factor-induced

155

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201705/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201705/
http://dx.doi.org/10.1002/jcp.1041610110
http://dx.doi.org/10.1002/bit.1145
http://dx.doi.org/10.1016/j.ymben.2009.10.007
http://dx.doi.org/10.1016/j.ymben.2009.10.007
http://dx.doi.org/10.1186/1752-0509-8-50
http://dx.doi.org/10.1186/1752-0509-8-50
http://dx.doi.org/10.1038/nature13236
http://dx.doi.org/10.1038/nature13236
http://dx.doi.org/10.1002/(SICI)1097-0290(19990820)64:4<401::AID-BIT3>3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1097-0290(19990820)64:4<401::AID-BIT3>3.0.CO;2-M
http://dx.doi.org/10.1002/jcb.21449
http://dx.doi.org/10.1002/jcb.21449


Bibliography

glutamine uptake to glucose metabolism. Genes Dev, 24(24):2784–2799, Dec 2010.
URL http://dx.doi.org/10.1101/gad.1985910.

[158] Susan C. Burleigh, Teun van de Laar, Corné J M. Stroop, Wout M J. van Grunsven,
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AAppendix

Supplementary studies

A.1. Sedimentation and attachment of MDCK cells to 6-well plate
surface

The lag phase in cell growth can be decomposed in case of adherent MDCK cells into

sedimentation, attachment and increase in cell size until first division. To further clarify

the first two steps, i.e. speed of sedimentation and attachment, we inoculated cells in

6-well plates with GMEM-Z medium and quantified the cell concentration in suspen-

sion (Fig. A.1A), known as suspension depletion [319], and of cells attached to the well

surface (Fig. A.1B, we thank C. Best from the Max Planck Institute for Dynamics of

Complex Technical Systems Magdeburg for conducting the experiments and for mea-

surement of the cell numbers). Polynomial regression of the supernatant cell number

with exponential functions yielded a cell number decrease of ksett = 0.28± 0.02 h−1 (◦:

0.27 h−1; ∆: 0.27 h−1; 2: 0.31 h−1). Afterwards we used a simple first order kinetic with
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Figure A.1.: Attachment of MDCK cells to the surface of a 6-well plate. (A) Concen-
tration of cells in suspension determined in three technical replicates (◦, ∆, 2). Experiments
∆, 2 were shaken before sampling. Lines represent regression of an exponential function (see
text). (B) Concentration of adherent cells in experiment 2. Line represents prediction for
adherent cell concentration based on a specific attachment rate of 0.28 h−1 and an initial cell
concentration in the supernatant of 2.5 × 105 and was shifted by 0.8 h. Data was taken by
Claudia Best and is shown as mean and standard deviation of three wells.
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an initial suspension cell concentration of 2.5 × 105 cells/mL and compared the time

integral of the sedimentation rate with the increase in adherent cell number (model not

shown, Fig. A.1B). The integral in Fig. A.1B recapitulates the data as long as the onset

of the cell attachment is shifted towards later times by about 0.8 h. Therefore, we antic-

ipate that cells require 0.8 h for the actual attachment process while the sedimentation

requires 2.4 h for half of the cells according to ksett. The sum of both renders the mean

cell to potentially start growing in size as early as 3.2 h after inoculation.

A.2. Adjusting the segregated cell growth model to growth in
DMEM medium

The model for cell growth was comprehensively validated with data from three inde-

pendent cultivations in GMEM-Z medium. The well-surface was identified as the main

limiting factor of growth. However, for MDCK cell growth in DMEM medium, the

model of section 3.1.1 requires modifications such that it reflects cell growth under low

GLCx levels.

Changes to the model structure

By fitting the model to the experimental data, we found that the total cell volume

reached by the cells is lower at the end of cultivation (V C
∗ = 5.20 µL) than for GMEM-Z

cultivations. Furthermore, the specific growth rate µ of the cells now depends on the

extracellular glutamine concentration (GLNx) instead of the glucose (GLCx) concentra-

tion, as cells grew for a certain time span under low GLCx levels:

µ =
µmax[GLN

x]

kmGLNx + [GLNx]
(A.2.1)

with kmGLNx = 0.04 mmol/L as the Monod constant for GLNx. Under low concentrations

of GLCx, the uptake may also depend on the affinity of the glucose transporter, which

can yield smoother depletion dynamics. To account for such an effect, both uptake rates

for GLCx were extended by a Michaelis-Menten kinetic [320]:

rX/GLCx = µ(X1f +
Nc∑
i=2

Xi)YX/GLCx

[GLCx]

kmGLCx + [GLCx]
(A.2.2)

rm/GLCx = mGLCxV C [GLCx]

kmGLCx + [GLCx]
(A.2.3)
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where kmGLCx = 0.24 mmol/L is the new affinity constant for glucose. Except of YX/GLNx

which increases to 5.92× 10−7 mmol/L/cell, all other parameter values were taken from

the original model (Table C.4) while initial conditions were derived during model fitting

(Table C.3).

Cell number, diameter and volume dynamics

These minor changes allow capturing the growth dynamics of adherent MDCK cells

in numbers and mean cell diameter (Fig. A.2). Similarly to the growth of MDCK

cells in GMEM-Z, the growth phases were identified based on the relative number of

growing cells (bsyn, Eq. 3.1.94) with: growth phase 0 – 40 h (0 – 5 % growth inhibition),

intermediate growth phase 40 – 75 h (5 – 95 % growth inhibition), and stationary growth

phase 75 – 200 h (95 – 100 % growth inhibition). A total cell number of 2.80 × 106 is

reached towards the end of cultivation, which is lower compared to the GMEM-Z cultures

(Fig. 4.7A). The mean cell diameter starts with 15 µm and reaches a maximum of

19 microm at 24 h of cultivation, which is within the range we described for MDCK cells

for cultivations in GMEM-Z medium (Fig. 4.7).
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Figure A.2.: MDCK cell growth with DMEM (2 mmol/L GLCx) in six-well plates.
(A) cell number. (B) mean cell diameter. (C) the volume of all cells calculated from the mean
cell diameter and the cell number. Data was taken from [23] and indicated as diamond (3).
Error bars represent mean and standard deviation of three wells (in case of V C error bars were
calculated according to the error propagation law). Lines represent the corresponding model
simulation (parameters of Table C.3 and Table C.4 with modifications described in the text).

Extracellular metabolite pool dynamics

The level of GLCx starts at low levels (2.3 mmol/L) and decreases fast due to an ex-

ponentially increasing demand by the cells (Fig. A.3A). The original data for GLCx is
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Figure A.3.: Concentrations of extracellular substrates and by-products during
MDCK cell cultivation in DMEM (2 mmol/L GLCx). Extracellular glucose (A), glu-
tamine (B), glutamate (C), lactate (D) and ammonia (E) concentration. Data (3) and error
bars, which represent mean and standard deviation of three wells, were taken from [23]. The
extracellular glucose concentration was shifted by -1.41 mmol/L to achieve a real depletion and
to properly fit the model. F: cell volume-dependent growth inhibition f and relative biosynthe-
sis activity bsyn of the cells. Data and corresponding model simulations (based on parameters
of Table C.3 and C.4 and modifications described in the text) are shown in the color code of
Figure A.2. Grey dashed lines are the limit of quantification (LOQ; data below LOQ marked
in gray)

.

about 1.41 mmol/L higher (but still below the LOQ) and thus constantly high between

40 – 200 h of cultivation. As this neither fits to the observation that MDCK cells require

GLCx nor that V C still increases after 40 h of cultivation we decided to shift the GLCx

concentration such that it depletes during cultivation. However, in both cases GLCx

levels remain constant after 40 h of cultivation while the total cell volume still increases

(until 58 h of cultivation, Fig. 4.7C). Presumably, the cells use stored internal precursors

and take up more GLNx to meet their demands in biomass precursor. So the reduction

in the final level of V C may thus either be explained with the differences between media

or be attributed to a delayed effect of the glucose limitation. The increased uptake of

GLNx is captured by the model (Fig. A.3B) and also agrees with the NHx
4 release (Fig.

A.3E). The uptake of GLUx depends on the growth inhibition of the cells and are similar

to cell growth in GMEM-Z (Fig. A.3C, A.3F).
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A.3. Fit of segregated cell growth model to MDCK.SUS growth

Figure A.4.: MDCK suspension cell growth in stirred tank bioreactors with SMIF08 medium.
(A) Cell concentration. (B) Mean cell diameter. (C) Volume concentration of all cells calcu-
lated from the mean cell diameter and the cell number. Data of three independent experiments
are indicated as triangle (∆), rectangle (2) and circle (◦). Error bars represent mean and stan-
dard deviation of three technical replicates (in case of V C error bars were calculated according
to the error propagation law). Lines represent the corresponding model simulation.

.

Figure A.5.: Concentration of extracellular substrates and byproducts. Glucose (A), glu-
tamine (B), glutamate (C), lactate (D) and ammonia (E) during MDCK suspension growth
in stirred tank bioreactors with SMIF08 medium. Data (∆, 2, ◦) and error bars represent
mean and standard deviation of three technical replicates. F: cell volume-dependent growth
inhibition. Data and corresponding model simulations are shown in the color code of Fig. A.4.
Grey dashed lines are the limit of quantification (LOQ; data below LOQ marked in gray).

.
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A.4. Parameter correlation analysis
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Figure A.6.: Pairwise linear correlation coefficient of model parameters for glycolysis that
were estimated in this study (Cult1 – 3, Lim1, Lim2, Pulse). The coefficient coefficient is
determined from 2000 parameter sets (Θ), which were generated by the bootstrap method (see
section 3.3.2), and given as color code.
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Figure A.7.: Pairwise linear correlation coefficient of model parameters for glutaminolysis
that were estimated in this study (Cult1 – 3, Lim1, Lim2, Pulse). The coefficient coefficient
is determined from 2000 parameter sets (Θ), which were generated by the bootstrap method
(see section 3.3.2), and given as color code.
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BAppendix

Supplementary data

B.1. Limits of quantification for metabolite measurements

Table B.1.: Limit of quantification for intracellular and extracellular metabolites (Max Planck
Institute for Dynamics of Complex Technical Systems Magdeburg, not published)

Metabolite LOQ Unit Metabolite LOQ Unit

2PG 3.75E-008 mmol GLUx 0.29 mmol/L
3PG 3.75E-008 mmol GMP 3.75E-008 mmol
αKG 1.50E-007 mmol GTP 1.19E-007 mmol
ADP 3.00E-007 mmol ICIT 3.75E-008 mmol
AMP 1.50E-007 mmol LACx 8.4 mmol/L
ATP 6.00E-007 mmol MAL 3.00E-007 mmol
CDP 3.75E-008 mmol NHx

4 0.15 mmol/L
CAC 3.75E-008 mmol PEP 3.75E-008 mmol
CIT 5.78E-007 mmol PYR 3.00E-007 mmol
CMP 3.75E-008 mmol R5P 3.75E-008 mmol
CTP 6.00E-008 mmol SUC 3.00E-007 mmol
F16BP 3.42E-007 mmol UDP 3.75E-008 mmol
F6P 5.25E-008 mmol UDP-GalNAc 9.00E-008 mmol
FUM 7.50E-008 mmol UDP-GlcNAc 3.00E-007 mmol
GDP 6.00E-008 mmol UGLC 1.05E-007 mmol
G6P 5.25E-008 mmol UMP 3.75E-008 mmol
GLCx 3.9 mmol/L UTP 3.00E-007 mmol
GLNx 0.25 mmol/L
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B.2. Adenosine pool dynamics during substrate perturbation
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Figure B.1.: Adenosine-based nucleotide pools during during substrate limitation
and substrate pulse. ATP (A – C), ADP (D – F) and AMP (G – I) concentrations of three
independent perturbation experiments with MDCK cells in 6-well plates. Cells, originating
from a cultivation experiment (see Table C.2) were deprived of extracellular nutrients by re-
moval of medium and addition of phosphate buffered saline (PBS), shown in the first column
(Lim1) and second column (Lim2). After a 2 h limitation, PBS was exchanged by fresh
medium, shown in the third column (Pulse). Data (◦) and error bars represent mean and
standard deviation of three wells and were taken from Ritter [23]. Dashed lines are the limit
of quantification (LOQ).

181



CAppendix

Local and global model parameters

Table C.1.: Initial conditions and experiment-specific parameters for the structured model
comprising the metabolic status, growth status and culture conditions relevant for simulation
of the cultivation experiments (Cult1 – 3, Pred.). The metabolic status is derived by steady
state simulation (see section 3.2).

Cult1 (∆) Cult2 (2) Cult3 (◦) Pred. (3) Unit

Initial metabolic status

[αKG] 3.26× 10−1 mmol/L

[3PG] 5.12× 10−2 mmol/L

[ATP ] 3.48 mmol/L

[ADP ] 2.94× 10−1 mmol/L

[AMP ] 5.09× 10−2 mmol/L

[CAC] 5.54× 10−3 mmol/L

[CIT ] 5.71× 10−1 mmol/L

[F16BP ] 9.88× 10−2 mmol/L

[F6P ] 6.66× 10−3 mmol/L

[FUM ] 5.76× 10−2 mmol/L

[G6P ] 1.46× 10−2 mmol/L

[GLC] 1.18× 10−4 mmol/L

[GLU ] 0 mmol/L

[ICIT ] 1.83× 10−2 mmol/L

[IMP ] 1.81 mmol/L

[MAL] 4.59× 10−1 mmol/L

[PEP ] 1.49× 10−2 mmol/L

[PY R] 5.81× 10−1 mmol/L

[R5P ] 5.74× 10−3 mmol/L

[SUC] 1.53× 10−1 mmol/L

[UGLC] 2.54× 10−1 mmol/L

(continued on next page)
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Initial growth status

γGLNT -

γGLUT -

µa (calculated by 1/min

bsyn segregated cell growth model) -

f -

V C
S L/cell

Xtot cells

Initial culture condition

[GLCx] mmol/L

[GLNx] mmol/L

[GLUx] (see Table C.3) mmol/L

[LACx] mmol/L

[NHx
4 ] mmol/L

V M L

Elevel -

a note that µ is here used in minutes to be consistent with intracellular reaction rates

Table C.2.: Initial conditions and experiment-specific parameters for the structured model
comprising the metabolic status, growth status and culture conditions relevant for simulation
of the perturbation experiments derived from the cell’s cultivation history.

Lim1 (◦) Lim2 (◦) Pulse (◦) Unit

history: Cult1 at t∗= 52 h Cult1 at t∗= 61 h Cult1 at t∗= 34 ha

Initial metabolic status

[3PG] 7.95× 10−2 6.10× 10−2 9.03× 10−2 mmol/L

[αKG] 5.28× 10−1 3.58× 10−1 1.29× 10−1 mmol/L

[ATP ] 3.15 3.36 7.21× 10−1 mmol/L

[ADP ] 3.32× 10−1 3.01× 10−1 1.13 mmol/L

[AMP ] 5.87× 10−2 5.39× 10−2 1.03× 10−1 mmol/L

[CAC] 5.61× 10−3 5.56× 10−3 9.78× 10−3 mmol/L

[CIT ] 5.79× 10−1 5.73× 10−1 1.01 mmol/L

[F16BP ] 5.91× 10−1 2.66× 10−1 1.54× 10−3 mmol/L

(continued on next page)
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[F6P ] 1.19× 10−2 8.86× 10−3 2.31× 10−3 mmol/L

[FUM ] 1.29× 10−1 7.24× 10−2 3.65× 10−2 mmol/L

[G6P ] 6.02× 10−2 3.24× 10−2 1.15× 10−3 mmol/L

[GLC] 7.96× 10−4 3.30× 10−4 0.00 mmol/L

[GLU ] 4.50× 10−1 1.03× 10−1 0.00 mmol/L

[ICIT ] 1.65× 10−2 1.75× 10−2 2.63× 10−2 mmol/L

[IMP ] 2.09 1.92 3.68 mmol/L

[MAL] 7.46× 10−1 5.06× 10−1 1.81× 10−1 mmol/L

[PEP ] 1.09× 10−2 1.28× 10−2 3.42× 10−2 mmol/L

[PY R] 4.79× 10−1 5.07× 10−1 1.66 mmol/L

[R5P ] 2.35× 10−2 1.27× 10−2 4.53× 10−4 mmol/L

[SUC] 4.23× 10−1 2.15× 10−1 1.29× 10−1 mmol/L

[UGLC] 3.63× 10−1 3.38× 10−1 1.96× 10−1 mmol/L

Initial growth status

γGLNT 3.69× 10−2 1.44× 10−2 6.19× 10−2 -

γGLUT 5.36× 10−1 2.84× 10−1 7.92× 10−1 -

bsyn 6.02× 10−1 2.71× 10−1 9.69× 10−1 -

f 1.62× 10−1 4.37× 10−4 8.82× 10−1 -

Xtot 2.10× 106 2.69× 106 1.11× 106 cells

V C
S 3.04× 10−12 2.53× 10−12 3.46× 10−12 L/cell

Initial culture condition

[GLCx] 2.42× 101 2.26× 101 b3.00× 101 mmol/L

[GLNx] 9.53× 10−1 8.43× 10−1 b1.61 mmol/L

[GLUx] 1.45× 10−1 1.85× 10−2 b5.80× 10−1 mmol/L

[LACx] 1.85× 101 2.22× 101 b0.00 mmol/L

[NHx
4 ] 1.36 1.46 b0.00 mmol/L

Elevel 1.08 1.08 1.08 -

V M 3.00× 10−7 3.00× 10−7 b4.00× 10−3 L

a followed by 2 h substrate limitation

b manually adjusted
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Table C.3.: Estimated initial conditions and experiment-specific parameters of the segregated
cell growth model and enzyme level (Elevel) for simulation adherent MDCK cell growth in 6-well
plates with GMEM-Z medium.

Local parameter Cult1 ∆ Cult2 2 Cult3 ◦ Pred. 3 Unit

[GLCx](t = 0) 31.04 29.25 31.95 2.31 mmol/L
[GLNx](t = 0) 1.61 1.78 1.82 1.86 mmol/L
[GLUx](t = 0) 0.58a 0.54a 0.48a 0.40 mmol/L
[LACx](t = 0) 3.25 3.74 1.25 3.42 mmol/L
[NHx

4 ](t = 0) 0.76a 0.74a 0.74a 0.00 mmol/L
dc 22.93 24.86 20.98 21.12 µm
dm 15.68 15.31 14.34 15.48 µm
Elevel 1.08 1.04 0.92 1.00 -
V M 0.004b 0.004b 0.004b 0.004b L
X1(t = 0) 0.40× 106 0.41× 106 0.48× 106 0.30× 106 cells
X2,...,Nc(t = 0) 0 0 0 0 cells

Precult. system T-flask T-flask Roller bottle T-flask
Precult. duration 3 days 6 days 4 days -
a taken from Wetzel [280]
b manually adjusted
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Table C.4.: Estimated global parameters of the segregated cell growth model (for adherent
MDCK cells cultivated in 6-well plates with GMEM-Z medium) on the basis of three cultiva-
tion experiments with confidence intervals between 0.025-quantile (Q0.025) and 0.975-quantile
(Q0.975) and respective relative local sensitivities χ2(φ). Note that parameter values are used
in minute units during simulation

Global param. Value Q0.025 – Q0.975 χ2(φ) Unit

µmax 0.039 0.036 – 0.051 0.74 1/h
Fevap

a2.75× 10−6 - - L/h
kdGLNx

a3.60× 10−3 - - 1/h
kmGLCx 0.923 0.000c – 9.974c 0.03 mmol/L
mGLCx 1.06× 10−2 (0.92 – 1.19)× 10−2 0.05 mmol/L/µL/h
mGLNx 5.29× 10−9 (0.00c – 2.83)× 10−6 ≈ 0 mmol/L/µL/h
mNHx

4
3.33× 10−12 (0.00c – 1.00c)× 10−10 ≈ 0 mmol/L/µL/h

N c b5 - - -
s 2.752 2.140 – 4.145 0.26 -
vGLT 3.33× 10−10 (2.53 – 3.83)× 10−10) 0.22 L/cell/h
V C
∗ 6.804 6.568 – 6.969 0.36 µL
YLACx/GLCx 2.140 2.034 – 2.283 0.08 -
YX/GLCx 3.57× 10−6 (3.18 – 3.96)× 10−6 0.09 mmol/L/cell
YX/GLNx 0.27× 10−6 (0.25 – 0.28)× 10−6 0.10 mmol/L/cell
YX/NHx

4
3.5× 10−7 (3.09 – 3.72)× 10−7 0.04 mmol/L/cell

a estimated experimentally (Fevap by Ritter [23], kdGLNx by Bock et al. [212])
b estimated in separate simulation studies
c value at parameter bound
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