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ABSTRACT
Diseases caused by viruses are challenging to contain, as their outbreak and spread could be very sudden, compounded by
rapid mutations, making the development of drugs and vaccines a continued endeavour that requires fast discovery and
preparedness. Targeting viral infections with small molecules remains one of the treatment options to reduce transmission
and the disease burden. A lesson learned from the recent coronavirus disease (COVID-19) is to collect ready-to-screen small
molecule libraries in preparation for the next viral outbreak, and potentially find a clinical candidate before it becomes a
pandemic. Public availability of diverse compound libraries, well annotated in terms of chemical structures and scaffolds,
modes of action, and bioactivities are, therefore, crucial to ensure the participation of academic laboratories in these screening
efforts, especially in resource-limited settings where synthesis, testing and computing capacity are scarce. Here, we
demonstrate a low-resource approach to populate the chemical space of naturally occurring and synthetic small molecules
that have shown in vitro and/or in vivo activities against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
and its target proteins. We have manually curated two datasets of small molecules (naturally occurring and synthetically
derived) by reading and collecting (hand-curating) the published literature. Information from the literature reveals that a
majority of the reported SARS-CoV-2 compounds act by inhibiting the main protease, while 25% of the compounds currently
have no known target. Scaffold analysis and principal component analysis revealed that the most common scaffolds in the
datasets are quite distinct. We then expanded the initially manually curated dataset of over 1200 compounds via an ultra-large
scale 2D and 3D similarity search, obtaining an expanded collection of over 150 k purchasable compounds. The spanned
chemical space significantly extends beyond that of a commercially available coronavirus library of more than 20 k small
molecules and constitutes a good starting collection for virtual screening campaigns given its manageable size and proximity
to hand-curated compounds.
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1 | Introduction

Chemical space is a well-known concept in cheminformatics,
often defined simply as the set of molecules in a company’s
chemical inventory or vendor catalogue, and other times
defined as the totality of molecules that can potentially be
constructed using known reactions and building blocks within
a certain range of properties [1,2]. When all possible molecules
that abide by a given set of construction principles are
characterised, their chemical space refers to the properties
spanned by all these compounds [1–12] . With the rise of the
popularity of ultra-large-scale chemical libraries, it becomes
crucial to develop efficient ways to encircle small, manageable
subsets of molecules with desired properties [3–12]. In their
simplest form, chemical spaces are often limited by certain
functional groups, chemotypes, or properties that are easy to
calculate from a chemical structure alone [2]. “Drug-like
chemical space” is used in the context of drug discovery to
reflect the vast number of molecules with physical properties
similar to those of existing small-molecule therapeutics. These
properties are often encapsulated in “rules of thumb” like
Lipinski’s “rule of five” [3,7] and other well-known rules and
metrics adhered to by most approved drugs, e. g. “Ghose rule”
[8], “Veber’s rule“ [9], “Egans’ rule” [10] and the quantitative
estimate of drug-likeness (QED) metric, among others [11,12] .
Even this relatively straightforward set of rules unveils
significant complexity. For example, it has been shown that all
currently known drugs only occupy a very minute portion of
the available and/or explorable “synthetically accessible chem-
ical space” [13–17]. This implies that current molecular
libraries cover only a small fraction of the total possible drug-
like chemical space if one were to enumerate the compounds
resulting from an exhaustive combination of feasible chemical
reactions and rules [18,19]. There have been several attempts
to estimate the size of the realistic drug-like chemical space
[14], including compounds that are directly available to be
purchased and screened in biological assays [17]. A widely-
cited estimate is that the number of possible Lipinski-
compliant (i. e. with MW <500 Da) molecules surpasses 1060,
which is far beyond the chemical space of bioactive compounds
reported in literature-curated datasets like ChEMBL (2·106)
[14,19].

Given the intractable size of the drug-like chemical space, it is
necessary to further constrain it with target- or disease-specific
properties that will make subsequent (virtual) screening
campaigns feasible, especially when resources are limited.
Different ways of evaluating the chemical space include using
molecular assembly trees, scaffold hopping, similarity search
techniques, pharmacophore matching, quantum-based ma-
chine learning, and chemography [16,20–23]. To efficiently
narrow down the drug-like space, datasets of compounds with
desirable properties or bioactivities are frequently used as
starting points. With the advent of artificial intelligence (AI),
(deep) generative models are getting a lot of attention, since
they have the potential to rapidly suggest new chemical matter
in a property-constrained manner, often taking a known
molecule as a seed. At its core, the approach is based on the
idea that similar compounds tend to bind to similar targets,
which is a guiding principle in chemoinformatics [24]. First,
we get a set of starting molecules, and then we explore the

surroundings of this set [25] to identify a much larger
collection of molecules that are still within the space and could
capture the relevant chemical features required for exhibiting
the desired biological activity.

Today, a wide array of computational approaches for exploring
chemical spaces exist, with significant improvements to ensure
the synthetic feasibility of the compounds [26,27], leveraged by
the incorporation of AI techniques to characterise and learn
the plausible structures associated with target properties [27].
The huge improvement of computational power available to
researchers, including cloud computing [27–33], has made it
possible to generate large virtual collections of potentially
interesting compounds, the challenge being now how to choose
which of them to synthesise and test within a design-make-test
cycle [33]. For small laboratories and drug discovery centres
operating under strong resource limitations, as is the case of
many computational drug discovery groups. Moreso, in the
context of Africa where our facilities are located, rapid
synthesis of the compounds is a true limiting factor. In this
scenario, a more practical approach is to limit the search to the
purchasable chemical space, which nowadays is far beyond the
billion-scale. This is particularly relevant in the search for
antiviral drugs, since diseases caused by viruses spread very
quickly and are quite challenging to contain whenever there is
a viral outbreak [34,35]. In many resource-limited countries,
vaccine accessibility, and acceptability, have remained chal-
lenging, implying that the quick discovery of small molecules
that target viral infections remains one of the ways forward,
with computational methods playing a crucial role in the
pipeline [36–38]. Thus, it becomes important to develop diverse
and focused compound libraries that could be readily screened
to keep pace with possible expected viral outbreaks or
mutations.

This work aims to explore the chemical space of potential
antiviral agents, beginning with a manually curated dataset of
synthetically derived and naturally occurring compounds with
activities against known severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) targets or with cell growth
inhibitory properties against the virus. More specifically, we
have analysed the properties of small molecules that have
shown in vitro or in vivo activities against SARS-CoV-2 and its
target proteins, as reported in the literature. We have then
explored the chemical space associated with the starting library
using a rapid search within the purchasable space of the
Enamine REAL [39,40] and ZINC [41] libraries. The expanded
dataset was compared with the Coronavirus Library available
from ChemDiv [42] and drug molecules from DrugBank [43],
to verify if the expanded dataset could be used as a reasonable
sized, easy-to-test starting library for virtual screening efforts to
target the disease, i. e. a library that could be further easily
screened in silico via docking and molecular dynamics,
followed by in vitro screening. With limited conventional
computing capacity, the goal would be to look for a manage-
able dataset that does not require high performance computing,
e. g. 100,000–500,000 compounds.
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2 | Materials and Methods

2.1 | Data Collection

The hand-curated (natural and synthetic) compound libraries
were obtained as follows. The electronic databases employed
for the assortment of relevant information include Scopus,
NISCAIR, SciFinder, PubMed, Springer Link, Science Direct,
Google Scholar, Web of Science, and an exhaustive library
search for keywords and combinations of keywords related to
“COVID-19”, “SARS-CoV-2”, “compounds”, “small molecules”,
etc., and a combination of these terms as previously described
[44]. Each individual term and a sum of them, e.g. “COVID-19
+compound”, “SARS-CoV-2+compound”, “small molecule=-
COVID-19”, etc were used in the search. This was carried out
during the period from January–July 2024. The retrieved
articles were checked and compounds showing activities
against the virus and/or viral targets were selected. The authors
then went ahead and double checked the published papers if
there were reported bioactive compounds against SARS-CoV-2
in the retrieved literature sources. The compounds were
classified into natural products (NPs) and synthetic derivatives
(SDs) according to the information available from the literature
sources. The chemical structures were downloaded from the
PubChem database, when available [45]. Compounds not
available in PubChem were drawn using the ChemDraw Ultra
software (version 19.1). Additionally, PubChem and Chem-
Spider databases were used to check the IUPAC names of the
compounds, as previously described [44]. Figure 1A provides a
workflow of the manual curation procedure. In summary, in
checking through the compounds available in the literature
found from the various search engines, if a compound had
been tested in clinical trials or had been repurposed for the
treatment of COVID-19, it was automatically retained. Com-
pounds that had shown activity in viral assays with >50%
growth inhibition or had shown activity in a target-based assay
were also kept. The retrieved articles were checked and
compounds showing activities against the virus or viral targets
(e. g. Mpro, PLpro, Spike/ACE2, RdRp, etc., see Table 1) were
selected. The selection criteria were based on the phenotypic
and/or target assays (IC50, EC50) reported in the literature, with
compounds with IC50 or EC50 <50 μM retained, while those
not falling in this cutoff and those not repurposed for COVID-
19 treatment were discarded. The mode of action was either
determined from the available experimental in vitro assay
results against specific viral enzyme targets or through
molecular simulations, e. g. by docking and molecular dynam-
ics/binding affinity calculations. Additional information on the

modes of action of the compounds were found by searching the
COVID-19 HELP [46] and MedChemExpress [47] databases.
ChemDiv’s Coronavirus Library (containing 21145 small mole-
cule compounds) has been directly retrieved from the ChemDiv
website [42], while the DrugBank dataset used was version
5.1.10 [43]. Both were downloaded in July 2024.

2.2 | Principal Components and Scaffold Diversity
Analysis of Manually Curated Synthetic and
Natural Product Libraries

The molecular descriptors of the compounds in the two
datasets were calculated using the Molecular Operating Envi-
ronment (MOE) software (version 2016.08, 2016) [48]. The
computed descriptors included 40 well-known physicochemical
parameters like molecular weight (MW), the logarithm of the
n-octanol/water partition coefficient (log P), the number of
Lipinski violations (Lip viol), number of atoms (#atom),
synthetic accessibility (SA), the energies of the lowest unoccu-
pied molecular orbitals (LUMO) and of the highest occupied
molecular orbitals (HOMO), the number of rotatable bonds,
the water solubility, the formal charge (Charge), Oprea lead-
likeness score (Oprea Lead), the number of chiral centres
(#chiral), the number of basic (#basic) and acidic atoms
(#acid), the molar refractivity (mr), the total polar surface area
(TPSA), the molecular volume (vol), the dipole moments, the
polarizabilities, the number of H-bond donors and acceptors,
etc. The dimensionality reduction of the computed descriptors
was conducted by principal component analysis (PCA) using
MOE [48]. Scaffold analysis was preceded by the Retrosynthetic
Combinatorial Analysis Procedure (RECAP) [49] implemented
in MOE [48]. This consists in fragmenting each molecule by
breaking the bonds that are estimated to be those that can be
formed when synthesising each molecule from its constituent
building blocks by common synthetic reactions. Thus, a unique
extended SMILES string and the fragment’s name, which
retains the chemical context of the broken bond, was assigned
to each resulting fragment, as described by Weininger [50].
This was applied to both the NPs and SDs datasets to determine
the most frequent chemical scaffolds and the statistics on the
frequency of the individual fragments were generated, while
retaining only scaffolds with at least 10 atoms.

TABLE 1 | Distribution of compounds according to SARS-CoV-2 drug targets reported in the literature.

Compound
type

No.
cpds Mpro[a]

Spike/
ACE2[b] RdRp[c] PLpro[d]

Dual
targets

Multiple
targets

Other
targets[e]

Unknown
target

NPs 620 223 18 2 38 152 12 17 158

SDs 618 295 39 46 5 20 2 57 154
[a] Main protease;
[b] Viral spike protein in complex with the human angiotensin-converting enzyme 2;
[c] RNA-dependent-RNA polymerase;
[d] Papain-like protease;
[e] These include the viral methyltransferase, the S-protein, the N-protein, and those preventing the human cathepsin L and serine protease TMPRSS2 from
recognizing and binding with the viral spike protein.
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FIGURE 1 | Overview of the manually curated database of anti-SARS-COV-2 compounds. A. Methodology for the preparation of NP and
SD datasets. B. Proportion of unique synthetic derivatives (SD, 622) and natural products (NP, 618) available in the database. C. Natural product
likeness distribution of SD vs NP (bin size 15). D. Distribution of the Synthetic Bayesian Accessibility (SYBA) score of SD vs NP (bin size 15). E.
Selection of scaffolds over-represented in the SD and NP subsets. F. T-SNE representation of the chemical space of the dataset when compounds are
described by UniMol and WHALES, respectively. Green dots indicate NP and Purple dots indicate SD. G. Top properties contributing to the PCA
components 1 and 2 in the whole dataset, calculated with MOE descriptors (HBD: number of H-bond donors, SA: synthetic accessibility, Acid:
number of acidic atoms, Basic: number of basic atoms, Lip viol: number of Lipinski violations, Opr lead: Oprea’s lead-likeness score, AM1 LUMO:
lowest unoccupied molecular orbital energy computed by the AMI semiempirical method, Charge: total formal charge). H. Distribution of several
ADMET properties in NP (green) vs SD (purple). Data is represented as percentile of Drugbank, calculated by ADMET-AI. Distributions were
obtained with kernel density estimation.
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2.3 | Chemical Properties Calculation and
ADMET Rediction

To visualize chemical spaces, t-SNE plots were generated using
Uni-Mol [51] and WHALES [52] descriptors. Both were
calculated using their implementation in the Ersilia Model
Hub (https://ersilia.io/model-hub) [53], references eos39co and
eos24ur, respectively. The natural product-like score [54–56]
was calculated using the RDKit package via its implementation
in the Ersilia Model Hub (reference eos8ioa). The synthetic
accessibility has been calculated using the SYBA package [57]
(reference eos7pw8). The SARS-CoV-2 predicted activities have
been calculated using the Ersilia implementation of REDIAL-
2020 [58] (reference eos8fth), and ADMET properties have
been calculated using the ADMET-AI package [59] (reference
eos7d58). We used the openTSNE implementation (Python)
with Euclidean distance, perplexity 30 and 500 iterations.

2.4 | Exploration of the Chemical Space of the
Manually Curated Dataset by Ultra-Large Library
Screening

We used the freely available CHEESE API (https://cheese.deep-
medchem.com) to search against the ZINC15 and Enamine
REAL databases. For each query compound, we used four
similarity search modes, namely “2D fingerprint”, “3D shape”,
“3D electrostatic” and “consensus”; 100 nearest-neighbours
using Euclidean distance were retrieved for each search mode
with the “high accuracy” option. All molecules were indexed
with their InChIKeys and optionally flattened (i. e. stereo-
chemistry removed) to obtain a de-duplicated list. The data
aggregation pipeline resulting from this ultra-large-scale search
is fully reproducible from the code repository specified in the
Code availability section.

2.5 | Compound Prioritisation

To prioritise the compounds obtained from the ultra-large scale
similarity search, we developed two criteria. On one hand, we
summed the number of occurrences of each retrieved com-
pound across the four search methods (namely Morgan, 3D
shape, 3D electrostatics, and consensus), multiplied by the
Tanimoto coefficient (Tc) with respect to the query compounds.
On the other hand, we developed an ensemble of binary
classifiers aimed at scoring the probability of a given compound
belonging to the anti-SARS-CoV-2 chemical space. As a
reference chemical space, we used our manually annotated
compounds, and as “negative” (null) sets we used DrugBank
compounds and three subsamples of the ChEMBL database
(v33) with a maximum positive-negative imbalance of 1 : 10.
We also trained a classifier using the ChemDiv Coronavirus
Library as positive, and a 100 k-scale diversity library from the
same vendor as negatives. All classifiers were trained using
Ersilia’s LazyQSAR [37] framework based on Morgan counts
fingerprints (radius 3, 2048 dimensions) and the autoML
framework FLAML (random forests and LGBM) [60] with a
time budget of 60 seconds. Based on five 80 :20 stratified train-
test splits, all classifiers satisfactorily performed within the
range of 0.75–0.85 AUROC. Finally, since the similarity and

the classifier ranks are two genuinely different ranking
approaches, we merged them into a consensus rank using the
rank averages.

3 | Results and Discussion

3.1 | Literature Review Provides a Comprehensive
Curated Anti-SARS-CoV-2 Library

The procedure for gathering literature evidence for the bio-
logical activities of the SARS-CoV-2 compounds has been
summarised in Figure 1A. It was found that the synthetic
compounds belong to quite diverse classes like indoles and
peptidomimetics, well-known for their antiviral activities [61–
65], as well as antimalarials like chloroquine and its analogues.
The naturally occurring compound library was rich in
terpenoids, flavonoids, and alkaloids, including the recently
discovered hits like salvinorin A and deacetylgedunin which
block SARS-CoV-2 viral cell entry by inhibiting the trans-
membrane protease, serine 2, an enzyme that in humans is
encoded by the TMPRSS2 gene [66–68]. Our analysis rendered
a final dataset of 618 unique NPs and 620 unique SDs
(Figure 1B). After data collection, we sought to understand the
characteristics of our dataset. As expected, NPs present a
higher natural product-likeness score and, conversely, a lower
synthetic accessibility when compared to SDs (Figure 1C and
D). Interestingly, a retrosynthetic analysis of the NP library
provided 421 scaffolds, revealing that oxygen-containing rings
like sugars and polyphenol moieties are the most abundant
chemical building blocks in their biosynthesis (Figure 1E). On
the other hand, 793 chemical scaffolds resulted from the
retrosynthetic analysis of the SD library, revealing a higher
diversity in terms of ring types and constituent atoms, with
many halogen-, O-, N- and S-containing chains and rings. A
comparison of the top-ten most abundant scaffolds in each
dataset and not abundant (freq <3) in DrugBank scaffolds,
revealed that the NP fragments contain sugar moieties,
polyphenolic rings, and non-oxygenated aliphatics. In contrast,
the SD fragments contain heterocyclic rings, aromatic rings,
and aliphatic systems, with multiple N-atoms, fewer O-atoms
than in the NP fragments, and some S-atoms and halogens
(supplementary Figure S1).

To visualise the chemical space of our dataset, we chose two
different molecular descriptor techniques. On one hand, Uni-
Mol [69] (a deep-learning embedding technique pre-trained on
over 209 million molecular conformations) has chemical
information in 3D space. On the other hand, WHALES
descriptors are a small set of physicochemical parameters that
capture both molecular 3D shapes and partial charges, making
them suited for scaffold hopping exercises. Figure 1F shows
how NPs and SDs cluster together much better when
represented with WHALES descriptors, indicating that, despite
having dissimilar 3D structures, they may retain similar charge
patterns, an essential characteristic to bind to the pockets of
their targets in SARS-CoV-2. To further inspect the chemical
space of our manually-curated compounds, we used MOE
descriptors to build a 2D PCA and analysed the top contrib-
utors to defining components 1 and 2 (Figure 1G), which
highlighted the descriptors corresponding to Tudor Oprea’s test
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for lead-likeness (Oprea Lead) [70] and synthetic accessibility
(SA) [71], along with the number of basic atoms and the
number of H-bond donors, which are all empirical rules that
generally characterise drugs and lead compounds. The cumu-
lative variances recovered with the two principal components
were 46.72% and 58.33%, respectively. The weights of the
descriptors used in PCA analysis have been included in the
updated Supplementary Data (Data S1). This means that,
within our literature-curated collection, there is wide varia-
bility in terms of drug- and lead-likeness. According to the
second principal component, the number of acidic and basic
atoms, as well as the LUMO features (often associated with
chemical reactivities) contribute to the diversity of the dataset.

Finally, we aimed to compare our hand-curated dataset with
the chemical space of approved drugs available from Drug-
Bank. To that end, we leveraged a recently published AI/ML
model, ADMET-AI [72], which has been trained on reference
datasets from the Therapeutics Data Commons [73]. In
Figure 1H, we show results from the ADMET-AI predictions as
percentiles with respect to approved drugs. Thus, a percentile
of 50 means that a given value corresponds to the median value
of those observed in the drug space, while extremely high
(~100) and low (~0) percentiles indicate deviations from the
properties observed in approved drugs. When comparing SD
and NP compounds, there was no apparent clear distinction
between the two datasets for MW, log P, solubility, inhibition
of the cytochrome CYP2 C9, NR-PPAR-γ, and SR-ARE. How-
ever, for the descriptors BBB, NR-AR-LBD, and skin toxicity,
the NP dataset seems to have a higher proportion of
compounds above the 50th percentile, whereas this was the
contrary for computed descriptors related to drug absorption
(e. g. intestinal absorption and bioavailability), distribution, e.g.
ability to cross the blood-brain barrier (BBB), metabolism, e.g.
the ability to interact with CYP3 A4 enzymes and toxicity e.g.
drug-induced liver injury (DILI), carcinogenesis, and inhibition
of the human ether-a-go-go-related gene (hERG). It must be
mentioned that the dysfunction of hERG often causes cardiac
arrhythmia and sudden death, implying that compounds that
block hERG channels are considered toxic. Collectively, and as
expected, this indicates that natural product compounds tend
to present more liabilities, which is why they are often
considered as starting points that require further optimization
from an ADMET perspective. Both NPs and SDs are skewed
towards relatively high MW and low solubility with respect to
approved drugs, and, as expected in compounds not yet
progressed to the clinics, there is an enrichment of potential
CYP liabilities and toxicity pathways, reinforcing the notion
that this set of compounds should be used as a starting
collection to identify a larger set of optimised compounds.

3.2 | Distribution of Compounds by Drug Target
Based on Literature Information

In addition, we carefully annotated our curated collection with
target information, when possible. A summary of the various
targets identified in the literature from in vitro assays and
putative targets predicted by molecular simulations is given in
Table 1. It was observed that the main protease (Mpro) is the
most represented target in the two datasets (36% and 48% for

NPs and SDs, respectively). Besides, several compounds have
more than one target, including dual protease inhibitors like
those that inhibit both Mpro and the papain-like protease (PLpro),
as well as those that inhibit both Mpro and the RNA-dependent-
RNA polymerase (RdRp), and those that inhibit both Mpro and
the viral spike in complex with the human angiotensin-
converting enzyme 2 (spike/ACE2) and other protein targets.
In both the NP and SD datasets, a small number of the
compounds inhibit more than two targets and are classified as
multi-target compounds, while a significant number have no
known target. This last category corresponds to 25% of both
NPs and SDs (supplementary Figure S2).

3.3 | Ultra-Large Library Screening Around the
Anti-SARS-CoV-2 Chemical Space

Having defined and characterised the chemical space of
manually-curated compounds, we carried out a systematic
similarity search against two of the most widely used
compound libraries for virtual screening, namely ZINC15 [41]
and Enamine REAL [39,40]. ZINC is a compendium of
commercially available molecules, and Enamine REAL offers
an enumerated billion-scale library of make-on-demand mole-
cules based on a large collection of building blocks. Even the
most basic chemoinformatics operations such as similarity
search can become prohibitive at such scales, more so in
resource-limited settings where computing capacity is low.
Thus, we used the online server CHEESE which leverages an
embedding-based method to index compounds and speed up
the similarity search. The approach capitalises on recent
advances in AI embedding techniques initially developed for
image and text data, which require fast queries over extremely
large databases. In particular, it uses “semantic similarity”
search techniques over small molecule embedding vectors,
returning the k-neighbors of the seed compound. An advantage
of the CHEESE methodology is that it allows performing 3D-
based searches, which can be advantageous when the query
molecule is IP-protected or difficult to synthesise, as is the case
of NP compounds.

We successfully carried out a search of 1231 compounds and
obtained, in total, a set of unique 225,774 hits, of which
152,901 remained after flattening out stereochemistry informa-
tion to remove redundancy. The results of the search
correspond to four queries (namely, Morgan (2D) similarity,
3D-shape and 3D-electrostatics, and a consensus measure)
against both ZINC15 and Enamine REAL. We retrieved 100
nearest neighbours per search request, obtaining a relatively
balanced set of structurally similar compounds, with Tanimoto
similarity (Tc>0.7) and more distant ones (Figure 2A). The
rankings from the classifier and the similarity search were
significantly different and, therefore, we argue that they can be
combined in a blended measure that captures both magnitudes.
Generally, amongst the top-100 list, ZINC compounds were
more abundant than those from Enamine REAL, albeit with
more redundancy when the stereochemistry was removed.
Enamine REAL is a make-on-demand library based on a
predefined set of building blocks and, by definition, it
enumerates easily synthesizable compounds. Thus, as expected,
natural products were generally less similar to Enamine REAL
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compounds than ZINC compounds from a 2D structure
perspective (Figure 2B), and hits from 3D-electrostatics and
3D-shape searches tended to give more distal compounds,
which may be helpful for scaffold hopping. Generally, the
consensus CHEESE score captures structural similarity while
providing a slightly better balance between Enamine REAL
and ZINC hits than a mere Morgan fingerprints search
(Figure 2B).

We then scored the list of compounds based on (a) their
similarity to query compounds and (b) their probability of
being associated with the SARS-CoV-2 chemical space. These
are two simple and indicative measures that can be used to

navigate the relatively large collection (>150 k) when screen-
ing capacity is limited. To assign a score to the latter, we built
an ensemble of binary classifiers capable of discriminating
between compounds in our manually curated dataset from
randomly sampled compounds in the medicinal chemistry
space, as well as between compounds from ChemDiv’s
Coronavirus Library and a diverse, agnostic collection from the
same vendor. As expected, ZINC compounds were ranked
higher in the similarity score (Mann-Whitney statistic 2·109, P-
value~0), while we could still find 6,066 compounds from the
Enamine-REAL database that were dissimilar (Tc<0.5) to any
compound in the query list but still ranked in the top 20% of
the classifier list. In Figure 2C, a few examples are shown

FIGURE 2 | CHEESE Search of the chemical space around anti SARS-COV-2 compounds. A. Number of CHEESE hits in the top 100
(nearest neighbours) using the ‘consensus’ search. In red, we show the number of hits from ZINC and, in blue, the hits from Enamine REAL. The
line indicates the number of hits found at a given similarity score and above. Solid lines indicate the raw results from CHEESE, and dashed lines
correspond to the flattened results (i. e. stereochemistry removed). B. Average Tanimoto similarity of search hits from SD manually-annotated
compounds (x-axis) and NP compounds (y-axis). Size of the dot is proportional to the number of molecules obtained from ZINC (blue) and Enamine
REAL (red). Coloured lines denote the type of similarity search. C. Example results from the search. On the left, manually annotated NPs are
shown. On the right, retrieved compounds Enamine REAL are shown. D. 2D projections (t-SNE) plots based on Uni-Mol embeddings, highlighting
the ChemDiv Coronavirus Library (yellow), DrugBank molecules (blue) and the top 25% compounds from the virtual library based on the average
rank between the similarity score and the classifier score. E. Distribution of several ADMET properties in ZINC (blue) vs Enamine REAL (red)
compounds. Data is represented as percentile of Drugbank, calculated by ADMET-AI.
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where starting from a natural product compound with high
natural product-likeness (>2), it was possible to find make-on-
demand hits from Enamine REAL (some of them only
retrievable via a 3D search in the CHEESE embedding space)
that appear to have a high probability of being interpolated in
the chemical space associated with SARS-CoV-2. All the scores
are annotated in an easy-to-navigate table as specified in the
Data Availability section. When we inspected the ADMET
properties of the expanded collection (Figure 2E), we observed
that especially for Enamine REAL compounds, properties like
MW, logP, solubility, BBB penetration and bioavailability were
quite centred or well distributed with respect to approved
drugs, and certainly much better than those of NPs
(Figure 1H). While, generally, some ADMET liabilities re-
mained (e. g. CYPs), in some cases such as the toxicity pathway
NR-AR-LBD the profile was much improved with respect to
hand-curated compounds.

Interestingly, when we mapped the abovementioned ChemDiv
Coronavirus Library along with DrugBank compounds and our
set of >150 k molecules, we observed that the ChemDiv set
was focused on a relatively well-defined region (Figure 2E)
with respect to our set of compounds and the DrugBank
collection. This suggests that our expanded library can be a
good starting point for screening purposes against SARS-CoV-2
generally. Since this set has been generated with a ligand-
centred approach using a diverse set of mechanisms of action,
and including both natural and synthetic compounds, the
library is expected to have broad applicability within this field
of research.

3.4 | Proposed Libraries Retain SARS-CoV-2
Predicted Activity

The goal of this study is not to provide a short list of anti-
SARS-CoV-2 molecules with strong confidence. Rather, we
wanted to offer a virtual screening library that can be used as a

go-to option in this disease area, ensuring that compounds are
purchasable and inspired by compounds with reported evi-
dence in the literature. As an exploratory assessment of the
potential of our collection across a broad range of virtual
screening tasks related to COVID-19, we chose to use REDIAL-
2020, a compendium of open-source machine learning (ML)
models containing QSAR predictors for in vitro endpoints of
viral load reduction. In Figure 3 we can see that, compared to
DrugBank compounds (mimicking an unbiased drug repurpos-
ing exercise), both our manual collection and the ChemDiv
Coronavirus Library tend to perform better in several tasks,
most notably in the AlphaLISA screen testing the spike/ACE2
interaction. Differences were observed between NPs and SDs,
with NPs having, for example, higher scores in the 3CL and
AlphaLISA predictions, and lower in the TruHit counterscreen.
Our expanded library was also enriched in high AlphaLISA
scores, although, as in the case of the ChemDiv Coronavirus
Library and the SD hand-curated compounds, it would be
advisable to control for TruHit counterscreen hits. Other
enriched predictions are ACE2 blocking and pseudotyped
particle entry (PPE) both for SARS-CoV and MERS, suggesting
a broad applicability of our collection. We did not obtain
particularly high scores in the 3CL predictions, which means
that the library is probably not particularly enriched in this
class of compounds. However, note that at a classification score
above 0.6 (approximately the median for the manually
annotated molecules), we still have 26,440 candidates for this
activity.

4 | Conclusions

In an attempt to understand the chemical space of potential
lead compounds for drug discovery against COVID-19, we have
characterised the chemical space of naturally occurring and
synthetically derived small molecules that inhibit the growth of
the SARS-CoV-2 virus. We have compared the two datasets of
compounds hand-curated from the literature by descriptor

FIGURE 3 | Predicted activity against SARS-COV-2. A. Prediction of the activity of the compounds in DrugBank, ChemDiv, CHEESE and
the manually curated Natural and Synthetic libraries against several endpoints related to SARS-COV-2 Activity, calculated with REDIAL-2020.
Results are presented as probability of 1 (Active).
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calculation, principal component analysis and scaffold analysis.
It was observed that most of the compounds act by inhibiting
the main protease, while several compounds could also be dual
and multiple inhibitors. We then derived an expanded chem-
ical space of over 150 k purchasable compounds with either 2D
or 3D relatedness to the manually-curated collection. It is
planned that, in follow-up studies, these compounds will be
virtually screened through pharmacophore modelling and
protein-ligand interactions with the view of identifying a small
subset of ligands that could putatively bind to the targets
reported in the literature. These will then be screened in vitro
to identify novel antivirals which were not originally reported
in the literature.

With make-on-demand libraries growing at an exponential
rate, it is important to devise ways to efficiently exploit these
libraries and use them to develop custom and smaller virtual
collections [74] like our African Natural Products Database
(ANPDB) [75,76]. Searching across billion-scale libraries is still
computationally intensive and becomes prohibitive in resource-
limited settings such as laboratories in Africa, as is our case.
Here, we have demonstrated how a well-defined methodology
for literature curation, coupled with a simple and fast method-
ology to search ultra-large chemical spaces, can yield a
manageable number of molecules to be used in subsequent
virtual screening tasks. We have proved the concept for SARS-
CoV-2, a pathogen for which we have invested efforts in our
group, but the approach is disease-agnostic and could be
applied to any other area for which some compounds are
annotated in the literature. Given the infrastructural limita-
tions of chemistry laboratories in our setting, we chose to use
purchasable compounds from either ZINC or Enamine REAL
databases. The size of the current library (150 k) is amenable
for low-resource computing and we expect it to be useful to
other researchers pursuing COVID-19 treatments based on
small molecules and in a cost-effective manner. Indeed, our
overarching plan is to apply this pipeline to other disease areas
and targets of interest to our team, including neglected tropical
diseases that disproportionately affect people living in the
global South.

Code Availability

All code used in the study is available for download at https://
github.com/ersilia-os/sars-cov-2-chemspace.
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