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Abstract 

Histone deacetylase 11 (HDAC11) is an enzyme that catalyzes the removal of acyl groups from 

acylated lysine residues. It is the most recently discovered isoform and the sole member of class 

IV of HDACs family. Multiple studies provided evidence for the involvement of HDAC11 in 

various biological processes and pathological conditions, thus establishing HDAC11 as an 

interesting target for potential therapeutic intervention. So far, no crystal structure for HDAC11 

has been reported. HDAC11 is less homologous to other HDAC family members as the catalytic 

domain of HDAC11 shares only low sequence identity with these isoforms. This fact makes the 

conventional template-based homology modeling more challenging and less reliable to obtain 

models with high accuracy. AlphaFold2 (AF2) is an AI deep learning approach that was 

reported to predict the 3D structures of proteins with atomic accuracy. One limitation of using 

the models from this approach in SBDD is that it predicts the folding of the proteins in absence 

of small molecules such as cofactors and ligands. This leads to the prediction of collapsed 

binding sites, for which post-modeling refinement is necessary. 

In this work, the HDAC11-AF2 model was optimized by adding the catalytic zinc ion followed 

by minimization in presence of transplanted ligands that were previously reported as HDAC11 

inhibitors. The optimized model was then successfully employed to study the binding mode of 

selective HDAC11 inhibitors described in literature by molecular docking. Docking of the 16-

carbon long alkyl hydrazide SIS17 was performed to explore the foot pocket and to identify the 

tunnel that can accommodate such long alkyl substituents. 

The resulted model from the optimization process was further utilized to execute a comparative 

multistep structure-based virtual screening workflow to identify new selective HDAC11 

inhibitors. In this workflow, multiple computational techniques, such as structure-based 

pharmacophore screening, molecular docking, pose filtering, and prioritization, were 

implemented. The workflow was successful in identifying potential hit that was subsequently 

evaluated by in vitro enzymatic assays. The hit compound exhibited an IC50 of 3.5 µM for 

HDAC11 and was able to selectively inhibit HDAC11 over other HDAC isoforms at 10 µM 

concentration. 

Moreover, the optimized model was used for the structure-based design of selective HDAC11 

inhibitors bearing a novel scaffold. For this purpose, the predicted docking pose of FT895 was 

utilized. The most promising compound showed an IC50 of 365 nM and could inhibit HDAC11 
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selectively. It also demonstrated promising activity on neuroblastoma cell line with an EC50 of 

3.6 µM.  

The model was also used to study the binding mode of alkyl hydrazide inhibitors from the in-

house dataset. Furthermore, a ligand-based virtual screening workflow implementing a 

classification categorical model, developed using the in-house alkyl hydrazide inhibitors 

dataset, was devised and executed to identify new alkyl hydrazide HDAC11 inhibitors that lie 

within the in-house chemistry toolbox. The workflow successfully identified several potential 

hits. The binding mode of the hits of interest was studied using the optimized AF2 model. The 

predicted binding modes of the reported inhibitors, the identified virtual screening hits and the 

designed compounds were further evaluated by molecular dynamics simulation which could 

confirm the initial prediction. 

Keywords: HDAC11, AlphaFold, model optimization, docking, molecular dynamics 

simulation, virtual screening, classification model, selective inhibitor, alkyl hydrazide, anti-

neuroblastoma. 
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Kurzfassung 

Die Histondeacetylase 11 (HDAC11) ist ein Enzym, das die Entfernung von Acylgruppen aus 

acylierten Lysinresten katalysiert. Es ist die zuletzt entdeckte Isoform und das einzige Mitglied 

der Klasse IV der HDAC-Familie. Mehrere Studien lieferten Beweise für die Beteiligung von 

HDAC11 an verschiedenen biologischen Prozessen und pathologischen Zuständen, was 

HDAC11 zu einem interessanten Ziel für potenzielle therapeutische Eingriffe macht. Bisher 

wurde noch keine Kristallstruktur für HDAC11 veröffentlicht. HDAC11 ist weniger homolog 

zu anderen Mitgliedern der HDAC-Familie, da die katalytische Domäne von HDAC11 nur eine 

geringe Sequenzidentität mit diesen Isoformen aufweist. Diese Tatsache macht die 

konventionelle, auf Vorlagen basierende Homologiemodellierung zu einer größeren 

Herausforderung und weniger zuverlässig, um Modelle mit hoher Genauigkeit zu erhalten. 

AlphaFold2 (AF2) ist ein KI-Ansatz für tiefes Lernen, der die 3D-Strukturen von Proteinen mit 

atomarer Genauigkeit vorhersagen kann. Eine Einschränkung bei der Verwendung der Modelle 

dieses Ansatzes in SBDD besteht darin, dass er die Faltung der Proteine ohne kleine Moleküle 

wie Kofaktoren und Liganden vorhersagt. Dies führt zur Vorhersage von kollabierten 

Bindungsstellen, für die eine Verfeinerung der Modellierung erforderlich ist. 

In dieser Arbeit wurde das HDAC11-AF2-Modell durch Hinzufügen des katalytischen Zink-

Ions optimiert, gefolgt von einer Minimierung in Gegenwart von eingefügten Liganden, die 

zuvor als HDAC11-Inhibitoren beschrieben wurden. Das optimierte Modell wurde dann 

erfolgreich eingesetzt, um den Bindungsmodus von selektiven HDAC11-Inhibitoren, die in der 

Literatur beschrieben sind, durch molekulares Docking zu untersuchen. Das Docking des 16-

Kohlenstoff-Langalkylhydrazids SIS17 wurde durchgeführt, um die Fußtasche in HDAC11 zu 

erkunden und den Tunnel zu identifizieren, der solche langen Alkylsubstituenten aufnehmen 

kann. 

Das aus dem Optimierungsprozess hervorgegangene Modell wurde dann zur Durchführung 

eines vergleichenden, mehrstufigen, strukturbasierten virtuellen Screenings verwendet, um 

neue selektive HDAC11-Inhibitoren zu identifizieren. In diesem Arbeitsablauf wurden mehrere 

computergestützte Techniken, wie strukturbasiertes Pharmakophor-Screening, molekulares 

Docking, Pose-Filterung und Priorisierung, eingesetzt. Die gewählte Prozedur war erfolgreich 

bei der Identifizierung eines potenziellen Inhibitors, der anschließend durch in vitro 

enzymatische Assays getestet wurde. Der gefundenen Hit wies einen IC50 von 3,5 µM für 
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HDAC11 auf und war in der Lage, HDAC11 gegenüber anderen HDAC-Isoformen bei einer 

Konzentration von 10 µM selektiv zu hemmen. 

Darüber hinaus wurde das optimierte Modell für das strukturbasierte Design von selektiven 

HDAC11-Inhibitoren mit einem neuartigen Gerüst verwendet. Zu diesem Zweck wurde die 

vorhergesagte Docking-Position von FT895 verwendet. Die vielversprechendste Verbindung 

zeigte einen IC50 von 365 nM und konnte HDAC11 selektiv hemmen. Sie zeigte auch eine 

vielversprechende Aktivität bei Neuroblastom-Zelllinien mit einem EC50 von 3,6 µM.  

Das Modell wurde auch verwendet, um den Bindungsmodus von Alkylhydrazid-Inhibitoren aus 

dem internen Datensatz zu untersuchen. Darüber hinaus wurde ein ligandenbasierter virtueller 

Screening-Workflow unter Verwendung eines kategorialen Klassifizierungsmodells entwickelt 

und ausgeführt, um neue Alkylhydrazid-HDAC11-Inhibitoren zu identifizieren, die in der 

hauseigenen chemischen Toolbox enthalten sind. Der Arbeitsablauf identifizierte erfolgreich 

mehrere potenzielle Treffer. Der Bindungsmodus der Treffer von Interesse wurde mit dem 

optimierten AF2-Modell untersucht. Die vorhergesagten Bindungsmodi der gemeldeten 

Inhibitoren, der identifizierten virtuellen Screening-Treffer und der entworfenen Verbindungen 

wurden durch Molekulardynamiksimulationen weiter evaluiert, die die anfängliche Vorhersage 

bestätigen konnten. 

Schlagwörter: HDAC11, AlphaFold, Modelloptimierung, Docking, virtuelles Screening 

Molekulardynamiksimulationen, , Klassifikationsmodell, selektiver Inhibitor, Alkylhydrazid, 

Anti-Neuroblastom. 
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1.1. Epigenetics 

Epigenetics is the field of study of regulatory mechanisms which result in heritable and 

reversible gene expression alterations that do not involve DNA sequence modification [1]. 

Epigenetic mechanisms can alter the accessibility to genetic material, thus regulating the gene 

expression by promoting or repressing its transcription [2, 3]. Among the identified 

mechanisms to date are DNA methylation and chromatin post-translational modification (PTM) 

[1, 4]. Epigenetic modifications are vital for maintaining biological functions. However, 

aberrations in epigenetic regulatory mechanisms can lead to abnormal activation or repression 

of genes, resulting in pathophysiological conditions, especially cancers [5].  

One of the earliest identified and most stable epigenetic alterations is DNA methylation [6]. In 

humans, it predominantly involves adding a methyl group on the fifth position of cytosine to 

produce 5-methylcytosine, mainly in the cytosine phosphate guanine dinucleotide (CpG) motifs 

that are often clustered to form the CpG islands [7, 8]. DNA methylation is controlled by a 

highly conserved protein family known as DNA methyltransferases (DNMTs) [9]. DNMT1 is 

a maintenance methyltransferase which is required to maintain the methyl mark through the 

methylation of hemi-methylated DNA. On the other hand, DNMT3a and DNMT3b are de novo 

methyltransferases that can produce new methylation pattern to unmodified DNA. DNMT3L is 

catalytically inactive but required for the activation of the de novo DNMT3a [7, 10]. DNA 

methylation represses gene expression by impairing the binding of transcriptional activators or 

recruiting proteins that inhibit the binding of transcription factors to DNA [9]. 

Since chromatin PTM is more relevant for this work, it will be discussed in more details in the 

following section. 

1.2. Chromatin post-translational modification 

The DNA in eukaryotic cells is stored folded inside the nucleus in a packed form within a 

nucleoprotein complex known as chromatin. Chromatin is a polymeric complex that comprises 

histone and non-histone proteins as well as genetic materials. Nucleosomes (Figure 1) are the 

basic building units of chromatin and are further composed of about 146 base pairs wrapped 

around octamers consisting of one pair of each of the core histone proteins H2A, H2B, H3 and 

H4. Nucleosomes are connected by linker H1 histone protein and linker DNA [2, 11]. Histone 

proteins consist of globular structure along with intrinsically disordered regions known as 

histone tails. Histone tails contain lysine and arginine and are highly positively charged [11, 
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12]. In general, histone tails interact with DNA, thus maintaining the compactness of the genetic 

material and limiting its accessibility to the transcription factors leading to transcription 

suppression [13].  

Histone tails are protruding out from the core and represent the usual sites for PTM. Among 

these, the most common are acetylation and methylation of lysine residues [12, 14]. PTM 

reduces the net positive charge of histone proteins, thus weakening the electrostatic interactions 

with the negatively charged DNA. This leads to a less compact and accessible genetic material 

and consequently promotes transcription [15]. Growing evidence demonstrated that PTM of the 

chromatin is involved in regulating several cell functions, such as DNA replication and repair, 

chromatin packaging, gene expression, and chromosome dynamics [16]. 

 

Figure 1. Nucleosome structure (PDB ID: 8YTI) showing the DNA as white cartoon wrapped 
around four core histone proteins: H3, H4, H2A and H2B along with the linker histone protein 
H1. 

Enzymes involved in chromatin PTM can be classified into three classes, referred to as writers, 

reads and erasers [17]. Writers are capable of modifying the histone protein by adding marks. 

One example is the histone lysine methyltransferases (HKMTs) that can add up to three methyl 

groups on a single lysine residue [18]. Another example is the histone acetyltransferases family 

(HATs), which catalyzes the transfer of acetyl group from acetyl-CoA cofactor to the lysine 

residue side chain [19]. Readers are able to recognize specific epigenetic marks. Several protein 

domains have been identified as readers for histone epigenetic marks. Examples include 

bromodomains for the acetylated histone protein, as well as MBT, Tudor and chromo-domains 

for the methylated histones [20, 21].  
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Erasers are enzymes that are catalyzing the removal of epigenetic marks. The lysine-specific 

demethylase LSD1 is an example of eraser enzymes. It acts to eliminate the methyl mark from 

the modified lysine residues of the histone protein [22, 23]. Another example is the histone 

deacetylases family (HDACs), which catalyzes histone deacetylation by removing the ε-amino 

acetyl group from lysine residues [24]. 

1.3. Histone deacetylases (HDACs) 

Mammalian histone deacetylase enzymes are grouped into two main groups (Figure 2) based 

on their catalytic domain and the associated cofactor [17]. The classical HDACs group 

comprises 11 zinc-dependent proteins and is further divided, based on sequence similarity to 

yeast deacetylases, into class I (HDAC1-3 and 8), class IIa (HDAC4, 5, 7, 9), class IIb (HDAC6 

and 10) and class IV (HDAC11) [25]. The non-classical HDACs group constitutes class III, 

which includes seven proteins known as sirtuins (SIRT1-7). Sirtuins depend on nicotinamide 

adenine dinucleotide (NAD) as a cofactor for their deacetylase activity [26].  

 

Figure 2. Classification of histone deacetylase family. 

Class I HDACs are highly homologous to the yeast HDAC Rpd3. They are mainly localized in 

the nucleus and show ubiquitous expression [27]. HDAC1 and HDAC2 form the catalytic core 

in repressive complexes with the transcriptional regulatory protein Sin3A, nucleosome 

remodeling and deacetylase complex (NuRD) and co-repressor of REST (CoREST) [28]. They 

also represent an integral component of the mitotic deacetylase complex (MiDAC) [29]. 
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HDAC3 can form complexes with the silencing mediator for retinoid and thyroid receptors 

(SMRT) and nuclear receptor co-repressor (NCoR) and is catalytically inactive when not 

recruited to these co-repressors [30]. In contrast, HDAC8 represents a unique member of class 

I HDACs as it can function catalytically without forming complexes [31]. Additionally, it 

possesses a defatty-acylase activity that has been demonstrated to be higher than its deacetylase 

activity, thus hypothesized to be of physiological function [32]. 

Class II HDACs demonstrate high homology with yeast HDA1 [33]. Besides their catalytic 

domain, class IIa HDACs possess a long N-terminal region [33]. Within this region, different 

transcriptional partners, such as myocyte enhancer factor 2 (MEF2) [34], serum response factor 

(SRF) [35] and Runx2 [36, 37], can bind. This N-terminal region contains serine residues that 

serve as sites for phosphorylation, thus leading to the binding of 14-3-3 proteins, which in turn 

influence the shuttling of these enzymes between the nucleus and the cytoplasm [27, 38]. While 

members of this class demonstrate very low deacetylase catalytic activity, due to the 

replacement of the conserved catalytic tyrosine residue in the catalytic core region by histidine 

[39], they can form a large complex with SMRT/N-CoR-HDAC3 complex [40]. 

Class IIb comprises HDAC6 and HDAC10, both of which are localized in the cytoplasm. 

HDAC6 possesses tandem deacetylase domains [41] as well as a C-terminal zinc finger 

ubiquitin binding domain [42], while HDAC10 contains a single deacetylase catalytic domain 

besides a C-terminal leucine-rich repeat domain [43]. HDAC6 can also catalyze the 

deacetylation of other substrates than histone proteins [44], such as cortactin [45], α-tubulin 

[46], IFNαR [47] and chaperones [48]. On the other hand, HDAC10 demonstrated a robust 

polyamine deacetylase activity [49].  

Class III HDACs demonstrate homology to the yeast silent information regulator 2 (Sir2). The 

seven members of this class (SIRT1-7) show different subcellular localization and function 

[50]. SIRT1 is localized mainly in the nucleus but can shuttle to the cytoplasm, whereas SIRT2 

is primarily present in the cytoplasm. SIRT3-5 are localized in the mitochondria, while SIRT6 

and SIRT7 are found in the nucleus [17, 51]. Sirtuins have a variety of histone and non-histone 

protein substrates and possess a wide range of enzymatic activities [50]. 

Class IV contains HDAC11, which is homologous to yeast Hos3. HDAC11 is the latest 

identified member of the HDACs family and one of the least studied isoforms [52]. 
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1.4. HDAC11 

HDAC11 is the sole member of the zinc-dependent class IV HDACs with a predominant 

nuclear localization [52]. It contains 347 amino acid residues, making it the smallest member 

of HDACs family identified to date with molecular mass of 39 kDa. The catalytic domain of 

HDAC11 constitutes approximately 80% of the protein sequence, while the short N- and C- 

termini do not indicate for possible protein binding sites [52, 53]. Unlike class I and class II 

HDACs family members, HDAC11 does not form large functional complexes with mSin3A, 

N-CoR, or SMART. However, the co-immunoprecipitation of HDAC6 with HDAC11 suggests 

that HDAC11 can interact with other HDAC isoforms in vivo [52, 54].  

Analysis of the aligned HDAC11 sequence with other HDAC isoforms confirmed the presence 

of the nine conserved sequence motifs, similar to other eukaryotic HDACs [31, 52, 55], which 

are probably important for the deacetylase activity. Additionally, the catalytic core region of 

HDAC11 contains the conserved amino acid residues resembling class I and class II HDACs 

[52]. The 3D structure of HDAC11 is not elucidated so far. HDAC11 shares high similarity 

with class I and class II HDAC members when comparing the catalytic core region [52, 56]. 

However, its overall protein sequence demonstrates slight homology to other HDAC isoforms 

[52]. The expression level of HDAC11 is primarily high in the skeletal muscle, brain, kidney, 

heart, and testis tissues [52]. Moreover, HDAC11 is expressed in pancreatic beta cells and 

regulated by cytokines [57].  

Initially, It was found that the in vitro deacetylase activity of FLAG-tagged HDAC11, when 

expressed in 293 cells, is much lower than other HDAC isoforms [52]. The authors suggested 

that the lower expression level of the FLAG-tagged HDAC11, compared to the other tested 

FLAG-tagged isoforms, along with the utilization of a non-endogenous synthetic peptide 

derived from H4 histone protein as a substrate, might be the reason for the lower observed 

activity. However, more recent studies confirmed that HDAC11 possesses favorable and robust 

defatty-acylase activity, which is > 10,000 fold more efficient than its deacetylase activity. This 

finding suggests the defatty-acylation as a predominant enzymatic activity in vivo [58-61]. 

1.5. Biological relevance of HDAC11 

Several studies have demonstrated that HDAC11 is implicated in various biological functions 

as well as pathophysiological processes. HDAC11 is involved in immune system modulation 

[62] and has been found to act as a repressor for IL-10 transcription in the antigen-presenting 
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cells (APC) [63]. Moreover, HDAC11 interacts with HDAC6 to form a complex through the 

C-terminus of HDAC6 and N-terminus of HDAC11 in the nucleus and cytoplasm of APC to 

regulate IL-10 transcription through playing divergent repression/activation roles [54].  

HDAC11 plays a role in regulating type I IFN signaling, which is responsible for the activation 

of many genes that are crucial for immune response. This regulatory role is mediated through 

defatty-acylation of SHMT2. HDAC11 knockout in mice led to increased IFN signaling, which 

presents HDAC11 as an interesting target to develop therapeutics for diseases in which 

increased IFN signaling is beneficial, such as viral infections and multiple sclerosis [60]. In 

contrast, HDAC11 showed to exhibit antiviral activity against influenza A virus by playing a 

role in the host innate immune response [64]. Additionally, it restricts the replication of the 

hepatitis B virus through inhibiting the covalently closed circular DNA (cccDNA) transcription 

[65]. 

The link between HDAC11 and obesity development has been investigated by multiple studies 

[66-68]. HDAC11 expression levels showed to be higher in the white adipose tissue (WAT) of 

different obese mice models compared to the wild-type mice. Knockout of HDAC11 protected 

high-fat diet mice model from hyperlipidemia and gaining weight. It also could improve glucose 

tolerance, alleviate insulin resistance and reduce hepatic steatosis [69]. Moreover, it augmented 

the metabolic activity by elevating the calorie expenditure and oxygen consumption [70]. 

Additionally, the depletion of HDAC11 stimulated the differentiation of the adipose-derived 

stem cells (ADSCs) into brown adipocyte-like cells [69]. It was also found to enhance the 

function of the metabolically active brown adipose tissue (BAT) as well as the transformation 

of WAT into beige fat [71]. Collectively, these findings suggest HDAC11 as a feasible target 

for the treatment of obesity-related and metabolic diseases [72]. 

Furthermore, a number of studies discussed the involvement of HDAC11 in cancer 

development and progression [73, 74]. It has been reported that HDAC11 messenger RNA 

(mRNA) levels are extremely high in many cancer cells [52]. HDAC11 was found to be 

overexpressed in both squamous cell lung cancer and lung adenocarcinoma. The 

overexpression of HDAC11 in lung cancer is correlated with poor prognosis and low survival 

rate [75]. Another study demonstrated that the high expression level of HDAC11 in liver cancer 

cells is inversely correlated with the expression of tumor suppressor p53. HDAC11 forms a 

complex with the transcription factor Egr1 and induces its deacetylation. This process leads to 

the suppression of p53 gene transcription and the inhibition of cell apoptosis [76]. A similar 
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effect of HDAC11 overexpression was observed in pituitary tumor cells through complex 

formation with HEY1 transcription factor [77]. Moreover, the inhibition of HDAC11 

demonstrated beneficial effects in carcinoma. For example, HDAC11 inhibition induced 

apoptosis and suppressed the proliferation of myeloproliferative neoplasms [78], while its 

depletion caused neuroblastoma cell death via caspase-mediated apoptosis [79]. 

Although not fully elucidated, the biological function of HDAC11 and its role in multiple 

pathological conditions discussed above highlight the potential of HDAC11 as an interesting 

target in therapeutics development for the treatment of various ailments. 

1.6. HDAC11 inhibitors 

1.6.1. General pharmacophore of HDAC inhibitors 

The general pharmacophore of HDACs inhibitors comprises three main substructures: a zinc 

binding group (ZBG) and a capping group that are connected by a linker (Figure 3). The ZBG 

coordinates the zinc cofactor in the depth of the binding site through either a monodentate or a 

bidentate chelation mode. The capping group can act to make further interactions with any of 

the four solvent-exposed surface loops of the binding site rim. Among the known ZBGs, 

hydroxamic acid is the most well-characterized and common functionality [80-82]. Other 

defined ZBGs include 2-aminobenzamide [83, 84], alkyl hydrazide [85-88], thiols [89], alkyl 

ketones [90], aryl ketones [91], trifluoromethyl ketones [92], epoxy ketones [93], 

trifluoromethyloxadiazoles [94] and amino acid/ketone derivatives [95]. Some ZBGs can 

influence selectivity according to their sub-structural attachments that target an internal cavity 

perpendicular to the catalytic binding site known as foot pocket [80]. For example, 2-

aminobenzamides are selective class I HDAC inhibitors over other classes [84], while alkyl 

hydrazide inhibitors can show selectivity for class I over class II, which lacks the foot pocket 

that can accommodate the N`-alkyl attachment to the hydrazide moiety [85]. Isoform selective 

HDAC inhibition can be also targeted by adjusting the structure and position of the linker and 

the capping group to target sub-pockets within the binding site [80]. One example is the 

characteristic lower pocket in class IIa HDACs. This sub-pocket is formed near the zinc ion as 

a result of the flipped-out conformation of the histidine residue in loop 7, which is a replacement 

of the conserved catalytic tyrosine residue in other classic HDACs [96, 97]. Another example 

of HDACs binding site sub-pockets is the proposed side pocket characteristic for HDAC8, 

which is lined by the catalytic tyrosine residue and residues from loop 1 and loop 6 [80, 98]. 
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Figure 3. General pharmacophore of zinc-dependent histone deacetylase inhibitors and 
examples of inhibitors with different zinc binding groups including the aminobenzamide 
derivative chidamide, the hydroxamic acid derivative vorinostat and the alkyl hydrazide 
derivative compound 7d [85]. 

1.6.2. Reported HDAC11 inhibitors 

Several nonselective HDAC ligands of various scaffolds, such as hydroxamic acids, 2-

aminobenzamides and cyclic peptide inhibitors, which were described in literature (Figure 4), 

were also reported to inhibit HDAC11. These compounds demonstrated inhibitory activity in 

the range of sub-nanomolar to sub-micromolar IC50. The hydroxamic acid derivative quisinostat 

(4) [99] and the natural product romidepsin (5), which is a cyclic peptide derivative bearing a 

thiol ZBG [100], showed a sub-nanomolar IC50 for HDAC11. While other hydroxamic acid 

compounds such as dacinostat (6) [101], fimepinostat (7) [102] and trichostatin A (8) [103-106] 

were reported to inhibit HDAC11 at a low nanomolar IC50. For the 2-aminobenzamide analogue 

mocetinostat (9) [99, 107] and the cyclic peptide with epoxy ketone ZBG trapoxin A (10) [59], 

a weaker sub-micromolar IC50 was observed. 

While the inhibitors mentioned above demonstrate promising inhibition for HDAC11, re-

evaluation of their IC50 using a substrate that is structurally closer to the HDAC11 physiological 

substrates showed great variation. Taking into consideration the confirmed robust defatty-

acylase activity of HDAC11 and the less preference of HDAC11 for acetylated substrates, Kutil 

et al. [61] re-assayed these inhibitors using a long alkyl chain acylated peptide (peptide 1) as a 

substrate. The peptide substrate is derived from the tumor necrosis factor (TNFα), in which the 
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in vivo myristoylation site corresponding to the side chain of Lys20 is acylated with fluorescent 

N-anthraniloylated 11-aminoundecanoic acid, while an L-3-nitrotyrosine quencher replaces the 

adjacent naturally occurring threonine residue. Interestingly, in this study, only trapoxin A and 

fimepinostat could retain considerable HDAC11 inhibitory activity, with an IC50 lying 

approximately within the same range that was previously reported in other literature. In 

contrast, all other inhibitors which were re-evaluated in this study showed much less activity 

towards HDAC11, with IC50 lying in the micromolar range. 

 

Figure 4. 2D structures of previously reported non-selective HDAC11 inhibitors. 

Few selective HDAC11 inhibitors have been reported in literature (Figure 5). FT895 (11) is an 

isoindoline derivative with hydroxamic acid ZBG and is one of the first HDAC11 selective 

inhibitors discovered by Forma Therapeutics. FT895 also showed variation in its inhibitory 

activity when changing the substrates utilized in the in vitro assay. When using triflouroacetyl 

lysine peptide as a substrate, IC50 in a nanomolar range was observed (3 nM) [108]. However, 

using the more physiologically relevant myristoyl lysine substrate resulted in IC50 in a sub-

micromolar range (740 nM) [109]. As HDAC11 inhibitor, FT895 was found to be effective in 

the inhibition of enterovirus 71 (ENV-71) replication and was suggested as potential candidate 

for the treatment of the hand, foot and mouth disease (HFMD) caused by such viral infection 

[110]. FT895 could also exert beneficial effects in combating tumors. For example, it showed 

significant inhibition of the self-renewal ability of cancer stem cells (CSCs) from non-small 
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cell lung cancer (NSCLC) and reduced Sox2 transcription factor expression, which is essential 

for CSCs survival [75]. PB94 (12) is a selective HDAC11 hydroxamic acid inhibitor bearing a 

methoxy substitution in the ortho position to the hydroxamic acid functionality. Inhibition of 

HDAC11 using PB94 demonstrated beneficial effect in a neuropathic pain mouse model. Thus 

it is suggested as potential drug candidate for neurological disorders. [111] 

Taking advantage of the ability of HDAC11 to accommodate longer alkyl chain, reflected by 

its confirmed defatty-acylase activity, researchers designed and developed ligands bearing long 

alkyl chains as selective HDAC11 inhibitors. SIS17 (13) is an alkyl hydrazide derivative 

bearing 16-carbon long alkyl chain that showed inhibitory activity for HDAC11 in a sub-

micromolar range (IC50 = 830 nM) [109]. Another example is TD034 (14), which is an analogue 

of trapoxin A with IC50 in a low nanomolar range (5.1 nM) [112].  

MIR002 is a hydroxamic acid dual inhibitor bearing a bulky adamantine group. It could inhibit 

HDAC11 and DNA polymerase alpha 1 (POLA1) simultaneously and showed selective 

inhibition of HDAC11 over other isoforms. MIR002 (15) demonstrated promising wide 

spectrum antitumor activity. However, it is worth noting that it exhibited only weak inhibition 

for HDAC11 (IC50 = 6.09 µM) [113].  

 

Figure 5. 2D structures of previously reported selective HDAC11 inhibitors. 
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1.7. Computer-aided drug design 

Computer-aided drug design (CADD) combines and utilizes various computational techniques 

of molecular modeling to design or discover novel molecules possessing biological activity as 

therapeutics against diseases [114]. CADD significantly reduces the cost and time required for 

novel drug hits identification [115]. There is a steady growth in commercial drugs discovered 

through CADD. One or more computational methods played a significant role in the discovery 

and development process of around 70 commercially available drugs. However, it is worth 

noting that the initial lead, rather than the final commercial product, was discovered through 

CADD [116].  

CADD techniques include molecular docking, virtual screening (VS), pharmacophore 

modeling, quantitative structure-activity relationship (QSAR) studies and molecular dynamics 

(MD) simulation [117]. In general, CADD methods can be classified into two categories. 

Structure-based methods are used whenever the 3D structure of the target protein is known 

[118]. Otherwise, ligand-based methods are of benefit. In structure-based drug design (SBDD), 

important information regarding the binding site of the macromolecule, in addition to the 

binding mode of ligands to the target protein and their key interactions, can be extracted from 

the 3D structure. This information is then utilized to guide the design of new molecules 

possessing the necessary features for activity [118]. 

In absence of the experimental 3D structure of the target, SBDD becomes challenging. To solve 

this challenge, homology modeling (HM) can be used. HM is a computational method for the 

prediction of the 3D structure of protein based on its amino acid sequence and utilizing a protein 

template with known 3D structure to guide the folding. Template identification and selection is 

a critical step in HM and can significantly affect the accuracy of the folding [119]. The accuracy 

of the folding prediction is dependent on the extent of identity or similarity between the query 

sequence and the selected template sequence. Therefore, a high accuracy of the homology 

model is expected when the query and template sequences share adequate similarity. In general, 

more than 80% of C-α atoms are expected to lie within 3.5 Å of their actual positions if the 

sequence identity ranges between 30% and 50%. Using a template structure with sequence 

identity of less than 30% will likely lead to significant errors and consequently will affect the 

quality of the predicted model [120]. Recently, AI-driven methods, such as AlphaFold, were 

developed to predict the protein 3D structure and could demonstrate high accuracy even when 

there is no available homologous structures [121]. 
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1.8. AlphaFold 

AlphaFold2 (AF2) is a computational approach utilizing neural network machine learning 

model to predict the 3D structures of proteins from their amino acid sequences. It demonstrated 

superior performance compared to other methods in the 14th Critical Assessment of Protein 

Structure Prediction (CASP14) and showed to predict protein structures with near experimental 

atomic accuracy even in absence of similar template structures. The improvement in the 

accuracy of protein structure prediction introduced by AF2 comes from incorporating biological 

and physical knowledge, including evolutionary, geometric and physical constraints of protein 

structures, as training procedures within novel neural network architectures [121]. The 3D 

structures of the whole human proteome were predicted by AF2 and were made available for 

public [122, 123]. 

In general, AF2 models provide enhanced accuracy compared to the conventional template-

based homology models. However, one limitation to utilizing these models in drug design and 

discovery is that they are predicted in absence of biologically relevant small molecules such as 

cofactors, ligands, as well as water molecules [123, 124]. Several studies have assessed the 

usability of AF2-predicted structures in drug design and discovery studies by evaluating the 

performance of the output models as targets for docking of small ligands relative to their 

experimental structures. While most of the reported studies focused on a certain protein class, 

such as G-protein coupled receptor (GPCR) [125-128], another study [129] used an expanded 

dataset of 2474 human protein structures obtained from PDBbind database [130]. Despite the 

high accuracy of AF2 predictions, the results from these studies were not in favor of AF2 

models, as they demonstrated worse performance compared to their corresponding crystal 

structures. Consequently, these results suggested that AF2 models are not suitable for direct use 

in real-world docking-based virtual screening campaigns [126, 131, 132].  

The disappointing performance of AF2 models in docking studies may be attributed to 

inaccuracies in the binding site predictions. These inaccuracies can arise from minor variations 

in the side chain conformation or even more pronounced variations at the backbone level as 

well as regions with low confidence that interfere with the binding site. This indicates that post-

modeling refinement or optimization, such as addressing the flexibility of binding site residues 

and handling the low-confidence regions, is necessary to obtain more suitable models for 

docking [125-127, 129, 131-133]. 
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Ren et al. [134] demonstrated a successful case in which AF2 model was used in combination 

with AI-driven molecular generation methods to develop a potent inhibitor for cyclin-dependent 

kinase 20 (CDK20). However, it is worth noting that the direct utilization of the AF2 model 

was not possible, as the low-confidence predicted C-terminal exhibited a conformation that was 

interfering with the solvent-exposed region of the protein. Moreover, residue Arg305 was 

blocking the ATP binding pocket. A post-modeling refinement, involving the removal of the 

C-terminal, was mandatory to make the model usable for the design of inhibitors that can bind 

to the ATP pocket. It is also important to highlight here that these novel inhibitors were 

discovered using a pocket-based molecular generation method, wherein the modified model 

was employed as input structure, rather than conventional docking approaches.  

In an attempt to overcome the limitation of using AF2 models in SBDD, AlphaFill [135] aimed 

to tackle the challenge of AlphaFold predicting protein structures in the apo form and without 

cofactors by introducing an automated enrichment approach for the output models. AlphaFill 

is an algorithm that utilizes structure and sequence similarity in query for homologous protein 

templates to transplant ions and small molecules, such as ligands and cofactors, into AF2 

models from experimentally determined protein structures.  

RoseTTAFold (RF) [136] is a deep learning approach for the prediction of 3D structure of 

proteins with accuracy approaching that of AF2. Taking into consideration the problem of 

biomolecular complexes that contain proteins associated with metals, small molecules and 

nucleic acids, RF was first extended to RoseTTAFoldNA (RFNA) [137]. In RFNA, the amino 

acid alphabet, consisting of 20 natural amino acids, was expanded to 28 by adding four DNA 

bases and four RNA bases. Through this modification, RFNA enabled the accurate modeling 

of proteins and nucleic acids in complex biomolecular systems. Recently, a new extension of 

RF named RoseTTAFold All-Atom (RFAA) [138] was introduced. The RFAA scope goes 

beyond proteins and nucleic acids to incorporate metal ions, small molecules such as ligands 

and cofactors, as well as protein covalent modifications. This was achieved by integrating an 

atomic graph representation of small molecules and a sequence-based description of proteins 

and nucleic acids. Very recently, Google DeepMind and Isomorphic Labs have reported their 

next generation AlphaFold3 (AF3) which is also capable of predicting protein structures in 

complex with ions, small molecules and nucleic acids. AF3 demonstrated higher accuracy in 

predicting protein-ligand complexes compared to conventional docking protocols. However, it 

is worth noting that the full version of AF3 (esp. including small molecule ligands) is not yet 

publicly available [139]. 
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The implication of HDAC11 in various biological functions, including immune system 

modulation, and its involvement in multiple pathophysiological processes, such as cancer and 

metabolic diseases, has identified it as a promising target for therapeutic intervention. However, 

to date, only a limited number of HDAC11 inhibitors have been developed. 

The main aim of this work is the molecular modeling, design and development of novel 

selective HDAC11 inhibitors. One challenge for this objective is the lack of structural 

information of HDAC11 as no x-ray crystal structures for HDAC11 have been reported so far. 

While HDAC11 shares similarity within the catalytic core region with other isoforms from the 

HDAC family, the overall sequence comparison indicates that HDAC11 is less homologous to 

other family members. This complicates the process of conventional template-based HM and 

results in decreased reliability for predicting a high-quality model. 

The utilization of AF2 was proposed as a solution for modeling HDAC11, thanks to its atomic 

accuracy and public availability. However, the lack of coordinates for the catalytic zinc cofactor 

and ligands during the protein folding prediction leads to a collapsed binding site and hinders 

the direct use of the “as is” model. For this reason, adjustments to HDAC11-AF2 model, 

including adding the zinc ion and optimizing the binding site, are necessary. 

Following the model optimization and in order to get more insight into the binding mode of 

HDAC11 inhibitors, docking of the few reported hydroxamic acid selective inhibitors in the 

modified model will be performed. As a preferential defatty-acylase activity of HDAC11 was 

identified, docking of the previously reported alkyl hydrazide selective inhibitor SIS17, which 

bears a 16-carbon long alkyl chain, will also be performed in an attempt to explore the foot 

pocket and identify the tunnel that can accommodate such long alkyl chain. MD simulation will 

be utilized to assess the predicted binding mode of the docked ligands and investigate the 

stability of the optimized model. 

The optimized model will be further utilized to study the binding mode of the synthesized 

inhibitors from our in-house database. It will also be used to identify new HDAC11 inhibitors 

along with targeting selectivity over other HDAC isoforms by employing various 

computational techniques. For this purpose, multistep structure-based and ligand-based virtual 

screening workflows will be applied. Moreover, the docking poses of the reported selective 

ligands will be analyzed as a first step for the structure-based design and development of novel 

selective inhibitors with the aim of maximizing potency and maintaining selectivity. 
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3. Results 

The results of the work in this dissertation are published in the following scientific articles. 

Additionally more unpublished results are discussed in chapter 4. 
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Abstract 

Histone deacetylase 11 (HDAC11), an enzyme that cleaves acyl groups from acylated lysine 

residues, is the sole member of class IV of HDAC family with no reported crystal structure so 

far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms 

which complicates the conventional template-based homology modeling. AlphaFold is a neural 

network machine learning approach for predicting the 3D structures of proteins with atomic 

accuracy even in absence of similar structures. However, the structures predicted by AlphaFold 

are missing small molecules as ligands and cofactors. In our study, we first optimized the 

HDAC11 AlphaFold model by adding the catalytic zinc ion followed by assessment of the 

usability of the model by docking of the selective inhibitor FT895. Minimization of the 

optimized model in presence of transplanted inhibitors, which have been described as HDAC11 

inhibitors, was performed. Four complexes were generated and proved to be stable using three 

replicas of 50 ns MD simulations and were successfully utilized for docking of the selective 

inhibitors FT895, MIR002 and SIS17. For SIS17, the most reasonable pose was selected based 

on structural comparison between HDAC6, HDAC8 and the HDAC11 optimized AlphaFold 

model. The manually optimized HDAC11 model is thus able to explain the binding behavior 

of known HDAC11 inhibitors and can be used for further structure-based optimization. 
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A B S T R A C T   

Histone deacetylase 11 (HDAC11), an enzyme that cleaves acyl groups from acylated lysine residues, is the sole 
member of class IV of HDAC family with no reported crystal structure so far. The catalytic domain of HDAC11 
shares low sequence identity with other HDAC isoforms which complicates the conventional template-based 
homology modeling. AlphaFold is a neural network machine learning approach for predicting the 3D struc
tures of proteins with atomic accuracy even in absence of similar structures. However, the structures predicted by 
AlphaFold are missing small molecules as ligands and cofactors. In our study, we first optimized the HDAC11 
AlphaFold model by adding the catalytic zinc ion followed by assessment of the usability of the model by docking 
of the selective inhibitor FT895. Minimization of the optimized model in presence of transplanted inhibitors, 
which have been described as HDAC11 inhibitors, was performed. Four complexes were generated and proved to 
be stable using three replicas of 50 ns MD simulations and were successfully utilized for docking of the selective 
inhibitors FT895, MIR002 and SIS17. For SIS17, The most reasonable pose was selected based on structural 
comparison between HDAC6, HDAC8 and the HDAC11 optimized AlphaFold model. The manually optimized 
HDAC11 model is thus able to explain the binding behavior of known HDAC11 inhibitors and can be used for 
further structure-based optimization.   

1. Introduction 

HDAC11 is the smallest member of the histone deacetylase family 
and it is the sole member of class IV and one of the least studied HDAC 
isoforms [1]. It is mainly expressed in the skeletal muscle, heart, kidney, 
and brain tissues [2] with potential preferential expression in the gall 
bladder [3]. Additionally, HDAC11 can be secreted by pancreatic beta 
cells [4] and interacts with other members of histone deacetylase family 
to regulate the expression of a number of cytokines [5]. 

Evidence has demonstrated that HDAC11 is involved in various 
physiological and pathological processes. HDAC11 is involved in 
modulating the immune system [6–8] and is a potential target for the 
treatment of some diseases including multiple sclerosis and viral infec
tion [9]. Moreover, studies showed that HDAC11 knock-out can protect 
mice from high-fat diet-induced obesity and metabolic syndrome sug
gesting HDAC11 as an interesting target for the treatment of 
obesity-related diseases [10,11]. 

HDAC11 was found to be involved in the modulation of cancer 
growth and is overexpressed in many cancers, including hepatocellular 

[12–15], prostate [16], pituitary [17] and myeloma [18,19]. Addition
ally, inhibition of HDAC11 showed beneficial effects in neuroblastoma 
cells [20] indicating that HDAC11 can be considered as a target for the 
treatment of cancer. 

Robust and preferential defatty-acylase activity for HDAC11 was 
identified. The defatty-acylase activity is > 10,000 times more efficient 
than its deacetylase activity, concluding that it may represent the major 
enzymatic activity in vivo [9,21–23]. 

Several HDAC11 inhibitors were described in the literature, however 
demonstrating variation in IC50 values when varying the substrate 
(acetyl/trifluoroacetyl vs. myristoyl peptides from different proteins) 
used in the enzymatic assay. For example, Kutil et al. re-evaluated the 
inhibitory activity of reported HDAC11 inhibitors utilizing a myristoy
lated peptide (peptide 1), which is structurally closer to the myristoy
lated in vivo substrates [23]. This substrate was derived from the known 
myristoylation site TNFα-Lys20 in which the naturally occurring thre
onine residue is replaced by the quencher L-3-nitrotyrosine and the 
lysine side chain corresponding to Lys20 of TNFα is acylated with 
fluorescent N-anthraniloylated 11-aminoundecanoic acid. 
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In this study Trapoxin A showed an IC50 in the nanomolar range 
(IC50 = 10 nM) vs. an IC50 of 170 nM using a myristoylated peptide 
substrate [22]. Fimepinostat, another reported HDAC11 inhibitor could 
retain an IC50 in the nanomolar range when assayed using peptide 1 
(IC50 = 23 nM) and a trifluoroacetylated substrate (IC50 = 5.4 nM) [24]. 
Meanwhile, Quisinostat activity dropped from the nanomolar range to 
single digit micromolar IC50 when using myristoylated peptide 1 (IC50 =

3270 nM) [23] as a substrate rather than an acetylated peptide (IC50 =

0.37 nM) [25]. For the pan-HDAC inhibitor TSA, higher drop in activity 
was observed when using myristoylated peptide 1 (IC50 = 22000 nM) 
instead of the acetylated flurogenic pentapeptide (IC50 = 17.3 nM) 
substrate [26], which show agreement with obtained IC50 using myr
istoylated substrate (IC50 = 32000 nM) [22]. Several inhibitors that 
were reported in literature were also re-tested for their inhibitory ac
tivity of HDAC11 using the substrates considered in the current study 
and showed different activities [23]. 

While Trapoxin A, Quisinostat and TSA are non-selective inhibitors 
of HDAC11, there are few selective inhibitors that were described in 
literature. FT895 showed same variation as discussed above as it 
exhibited activity in a low nanomolar range (IC50 = 3 nM) [27] when 
assayed using a triflouroacetyl lysine peptide, while when assayed using 
the physiological myristoyl lysine substrate, activity of sub-micromolar 
range was observed (IC50 = 740 nM) [28]. The alkyl hydrazide inhibitor 
SIS17 [28] inhibited HDAC11 at a sub-micromolar range (IC50 = 830 
nM). Recently Trapoxin A analogues bearing long alkyl chains were 
developed as potent and selective HDAC11 inhibitors with the most 
active compound TD034 showing activity in low nanomolar range using 
myristoylated H3K9 peptide as substrate (IC50 = 5.1 nM) [29]. MIR002 
[30] showed inhibition of HDAC11 in micromolar range (IC50 = 6090 
nM) using triflouroacetyl lysine substrate indicating for weak inhibition. 
Therefore, for modeling studies it is recommended to use and compare 
only inhibitors and in vitro values that have been tested in the same 
assay/laboratory. 

Computer aided drug design (CADD) combines various molecular 
modeling techniques that are used to design and discover new molecules 
bearing bio-molecular activities [31,32]. The combination of molecular 
docking, molecular dynamics simulations and de novo design ap
proaches have significantly contributed to the conventional drug dis
covery processes by reducing time and resources required for hit 
identification and lead optimization phases [33]. Sabe and coauthors in 
their review [32] listed around 70 approved drugs for which the 
development process included one or several computational methods 
including molecular docking, structure-based design, structure-based 
virtual screening, ligand-based pharmacophore screening, homology 
modeling, quantitative structure activity relationship studies and mo
lecular dynamics simulations. In most of these discoveries, the initial hit 
or lead was identified using CADD [32]. One limitation to the structure 
based drug design is the shortage of structural data for the target protein, 
a challenge that can be solved with the aid of homology modeling 
technique [34]. 

So far no crystal structure of HDAC11 has been reported. The cata
lytic core region of HDAC11 shares sequence similarity to class I and 
class II HDAC members, however, comparison over the full length of the 
protein shows that HDAC11 is only slightly homologues to other HDAC 
family members [1,2]. Calculating the sequence identity for HDAC11 
with the primary sequences of the catalytic domains available in the PDB 
databank for other human HDAC isoforms, shows low sequence identity 
percent ranging between 16 % and 22 %. This lowers the probability to 
get a reliable homology model via template based folding and suggests 
that applying a different approach for the prediction of the 3D structure 
of HDAC11 as AlphaFold is of advantage. 

AlphaFold is a neural network machine learning approach for pre
dicting the 3D structures of proteins and it was shown to predict protein 
structures with atomic accuracy even in absence of known similar 
structures [35]. 

The database of the 3D structures of the whole human proteome was 

constructed by AlphaFold and it includes HDAC11 model. While the 
AlphaFold predictions in general provide improved accuracy when 
compared to template based homology modeling [36], the models from 
AlphaFold should be carefully considered when used for docking or drug 
design studies because the folding is predicted in absence of ligands and 
cofactors as zinc ion in the case of HDAC11. 

Trying to solve this problem, AlphaFill [37] introduced an algorithm 
for enrichment of the models in the AlphaFold database by transplanting 
such small molecules and ions utilizing structure and sequence simi
larity with experimentally determined protein structures. 

In order to assess the usability of the AlphaFold HDAC11 model for 
the aim of drug discovery, the available AlphaFill results for HDAC11 
were analyzed. Since the findings from this analysis were not satisfac
tory, we considered the optimization of the AlphaFold model of HDAC11 
by adding the zinc ion and minimization of model-ligand complexes 
obtained by merging three selected, previously described potent 
HDAC11 inhibitors for which X-ray structures with the related HDAC8 
are available, namely, Trapoxin A (PDB 5VI6) [38], Quisinostat (PDB 
6HSK and 6HSH) [39] and TSA (PDB 5D1B) [40] (Fig. 1). While the 
selected ligands show variation in the inhibitory activity for HDAC11 as 
discussed above, scaffold diversity of the selection was meant to expand 
the chances of obtaining an optimized complex that can further be used 
for drug discovery. The obtained HDAC11-ligand complexes were 
further utilized for docking of HDAC11 selective inhibitors, FT895 and 
MIR002. The obtained HDAC11-ligand complexes as well as the poses 
obtained from the docking study were subjected to classical molecular 
dynamics simulation to access the stability of the optimized model as 
well as the obtained ligand poses. As the defatty-acylase activity pref
erence of HDAC11 is confirmed, the presence of the so called foot pocket 
that theoretically accommodates the longer alkyl chain was explored. 
For this purpose stepwise docking and minimization of the reported 
selective HDAC11 ligand SIS17 which bears a 16 carbon alkyl chain as 
well as docking in loop 1 remodeled AlphaFold model were performed. 

2. Materials and methods 

Schrodinger Suite 2019 was used for all modeling work except zinc 
ion docking into the homology model. Maestro [41] was utilized for 
visualization. 

The AlphaFold HDAC11 model was obtained from the AlphaFold 
website (https://alphafold.ebi.ac.uk/entry/Q96DB2/). 

2.1. Protein preparation 

All protein structures were preprocessed using Protein Preparation 
Wizard [42,43] by adding hydrogens and assigning bond orders. Zero 
order bonds to metals were created and water beyond 5 Å from the li
gands was deleted. Ionization states of the ligands were generated using 
Epik [44–46] at pH 7.0 ± 2.0. For crystal structures with hydroxamic 
acid inhibitors (PDB 6HSK, 6HSH and 5D1B), the hydroxamate form was 
selected for further hydrogen bond optimization and minimization. 
Hydrogen bond optimization was assigned automatically with sampling 
water orientation and using PROPKA at pH 7.0. Restrained minimiza
tion was performed with RMSD cutoff of 0.3 Å for heavy atoms using the 
OPLS3e force field [47–50]. 

2.2. Ligand preparation 

Ligands including the original ligands were prepared utilizing Lig
Prep [51] panel with OPLS3e force fields. Hydroxamic acid ligands were 
prepared in the deprotonated form, while other ligands were prepared in 
the neutral from. No further ionization states, tautomers or isomers were 
generated. 
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2.3. Model optimization 

2.3.1. Zinc ion docking 
The zinc ion was docked using the Metal Ion-Binding Site Prediction 

and Docking Server (MIB) (http://bioinfo.cmu.edu.tw/MIB/) and the 
top scored model was selected for further optimization. 

2.3.2. Coordination distance optimization 
The obtained model was then prepared using the protein preparation 

settings mentioned above. Protonation states of titratable residues in the 
catalytic pocket were assigned. To adjust the coordination distance, 
refinement of loop 4 was performed. Loop 4 (residues: 180–185) was 
refined using Prime Refine Loops panel [52–54], with extended loop 
sampling and generating 10 structures. The structure with the lowest 
potential energy was then selected for further utilization. Preparation 
and restrained minimization were performed for the selected refined 
model using the settings stated above. 

2.4. Site mapping 

Site mapping of the AlphaFold HDAC11 with the zinc ion was per
formed using SiteMap [55–57] panel and by identifying top ranked 
potential receptor binding sites. The site mapping was performed for 
two models with different Phe152 rotamers with reporting up to five 
sites and requiring at least 15 site points per reported site. The top 
ranked site map for each model was used to generate grid for docking. 

2.5. Binding site optimization 

2.5.1. Placing ligands 
The prepared and minimized crystal structures were aligned to the 

refined AlphaFold model using Protein Structure Alignment panel and 
selecting all residues as reference residues. The ligand from the crystal 
structure was then placed into the AlphaFold model by merging. 

2.5.2. Unrestrained minimization 
All model-ligand complexes were solvated in SPC water model using 

an orthorhombic box and 10 Å distance between the solute structures 
and the simulation box boundary. The box volume was then minimized. 

The system was neutralized by adding chloride ions that were placed 4 Å 
away from the ligand. 

The complexes were then minimized using Minimization panel from 
Desmond [58,59], each for 100 ps without restraints. 

2.6. Remodeling loop 1 

Loop 1 (residues 21–40) of the TSA-HDAC11 AlphaFold model was 
remodeled using HDAC6 (PDB 5EDU) as template and by utilizing the 
Build Homology Model Panel in the Multiple sequence viewer. A 
knowledge based model was generated utilizing the composite/chimera 
option in presence of TSA as ligand. The generated homology model was 
then preprocessed and restrained minimization was further applied 
using the same settings as mentioned above to resolve overlapping 
atoms. 

2.7. Grid generation 

Receptor grids were generated using the Receptor Grid Generation 
panel. In case of the apoform receptor, the site map was used to generate 
the grids. While for the optimized complexes, the centroid of the com
plexed ligand was used. For the apoform and each of the optimized 
complexes, two grids were generated utilizing the original and the 
flipped-out Phe152 rotamers (lowest energy rotamer). For docking of 
the hydroxamic acid ligands, FT895 and MIR002, grids were generated 
with the protonated His142 in HIP state, while for SIS17, grids with the 
HID state were generated. For SIS17, dock ligands with length ≥ 20 Å 
option was selected. 

For the docking of SIS17 in the TSA-HDAC11- AlphaFold model with 
remodeled loop 1 the inner box (ligand diameter midpoint box) length 
were set to be 15 Å for each side. 

2.8. Docking 

2.8.1. Docking of hydroxamic acid inhibitors 
All hydroxamic acid inhibitors were docked in the hydroxamate 

form. Initially, FT895 was docked in the two grids obtained from the site 
mapping of the apoform and as these results were not satisfactory the 
docking was further tried with the 8 grids generated from the optimized 

Fig. 1. Structures of HDAC inhibitors included in this study.  
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complexes. For all trials, docking was performed using Glide [60–63] 
with standard precision mode and flexible ligand sampling utilizing 
OPLS3e force field. 

For MIR002, docking was performed in the grid obtained from TSA- 
HDAC11 AlphaFold model complex with flipped-out Phe152 as it 
showed the best performance regarding the docking of FT895. Different 
settings were applied for each ligand regarding the output. For FT895 
and MIR002, top-ranked docking poses were subjected to post-docking 
minimization. 

2.8.2. Docking of alkyl hydrazide inhibitors 
Initial docking of SIS17 was performed in the 8 grids using standard 

precision mode and flexible ligand sampling utilizing OPLS3e force field 
and specifying 5 poses to be subjected to post-docking minimization and 
reporting a single top scored pose. 

For the stepwise docking and minimization process, docking of SIS17 
was performed using two grids, obtained from TSA-HDAC11 AlphaFold 
complex, one grid with the original Phe152 rotamer and the other with 
the flipped-out rotamer. A series of 16 SIS17 derivatives were generated 
virtually, starting with a single carbon as alkyl chain substitution to the 
hydrazide moiety and increasing one carbon atom at a time till reaching 
the original ligand SIS17 with 16 carbon alkyl chain. 

For each grid the series was docked with standard precision mode 
and flexible ligand sampling utilizing OPLS3e force field and specifying 
100 poses to be subjected to post-docking minimization and reporting a 
single top scored pose. For each grid the pose of the ligand with the 
maximum alkyl chain length (1 carbon alkyl chain ligand for the grid 
with original Phe152 rotamer and 5 carbon alkyl chain ligand for the 
flipped lowest energy Phe152 rotamer) that could show a bidentate 
chelation mode (distance to zinc ion less than 2.6 Å) was selected as core 
containing molecule to be utilized as reference pose for restricted 
docking of ligands with longer alkyl chains using maximum common 
substructure and same output settings as mentioned above. 

The ligands poses with maximum alkyl chain length that could fit 
with a bidentate chelation mode using the core restricted method in 
complex with the HDAC11 AlphaFold model (13 carbon alkyl chain 
ligand for the grid with original Phe152 rotamer and 11 carbon alkyl 
chain ligand for the flipped-out Phe152 rotamer) were then subjected to 
minimization using Desmond Minimization panel and same settings as 
reported above. 

The obtained poses from the Desmond minimization step were 
further used for core restricted docking of the ligands that could not fit in 
the first core restricted docking step. While this was successful to place 
the SIS17 for the grid with the original Phe152 rotamer, further align
ment of SIS17 to the longest alkyl chain virtual derivative that could fit 
(14 alkyl chain ligand) was performed for the grid with flipped-out 
Phe152 rotamer using Flexible Ligand Alignment panel. The obtained 
poses were then subjected again to Desmond minimization. 

SIS17 was also docked in the TSA-HDAC11- AlphaFold model with 
remodeled loop 1 using standard precision mode and flexible ligand 
sampling utilizing OPLS3e force field and specifying 100 poses to be 
subjected to post-docking minimization and reporting a single top 
scored pose. 

2.9. Molecular dynamics simulation 

The optimized apoform before further optimization of the binding 
site as well as the four optimized complexes and the selected docking 
poses were subjected to molecular dynamics simulation using Desmond. 
Each pose was simulated for 50 ns and the simulation was repeated three 
times for each pose applying different random seeds. The poses of the 
selective ligands FT895 and MIR002 as well as the vertical pose of SIS17 
were further subjected to 500 ns molecular dynamics simulations. For 
SIS17 poses, zero order bonds to the metal were created using Protein 
Preparation Panel before submitting to system preparation. The system 
was solvated in SPC water model using an orthorhombic box and 10 Å 

distance between the solute structures and the simulation box boundary. 
The box volume was then minimized. The system was neutralized by 
adding chloride ions that were placed 4 Å away from the ligand. 

The prepared system was relaxed using the default Desmond relax
ation protocol for NPT ensemble followed by a production run utilizing 
the NPT ensemble at the temperature of 300 K using a Nose–Hoover 
chain thermostat and pressure of 1.01325 bar using Martyna-Tobias- 
Klein barostat. The progress of the simulation was recorded every 100 
ps. 

For analysis, the Simulation Event Analysis panel was used for RMSD 
and distance calculations. The RMSD of the protein was calculated using 
the backbone atoms while the ligand and zinc ion RMSD was calculated 
by fitting to the protein backbone. The Simulation Interaction Diagram 
panel was used for analyzing the RMSF and the interaction persistence 
(also known as occupancy) of the ligands. RMSD and RMSF of the pro
tein were calculated excluding the termini (residues: 1–14 and 
321–347). 

3. Results and discussion 

3.1. AlphaFill results analysis 

As a first step, the quality of the automated approach of AlphaFill in 
transplanting missing ligands and cofactors was assessed. To this end, 
the AlphaFill results for HDAC11 AlphaFold model containing com
pounds transplanted from structures with percent identity up to 25 % 
were analyzed. While for the catalytic zinc ion, the transplant clash score 
(TCS) is low as would be expected for a single atom ion but the local 
RMSd score for two transplants is high showing 2.48 and 6.43 indicating 
for medium to low confidence for these transplants. Visual inspection of 
the zinc ion that is transplanted into the binding pocket shows that it is 
not ideally placed into the binding pocket and subsequently the ex
pected metal ion-coordination by the neighboring residues (Asp181, 
Asp261 and His183) is partially missing. Distances of 1.42 Å, 3.45 Å and 
2.95 Å between the zinc ion and Asp181-OD1, Asp261-OD1 and His183- 
ND1, respectively, were observed. 

Additionally, AlphaFill transplanted four ligands, namely the 
nonselective inhibitors SAHA, Quisinostat, MS-344 and Trichostatin A 
(TSA), into the AlphaFold model. All transplants showed medium to low 
confidence with either local RMSd or the TCS values except for TSA 
which was transplanted from the HDAC6 crystal structure (PDB ID: 
5EDU) [64] and MS-344 which was obtained from the HDAC8 crystal 
structure (PDB ID 1T67) [65]. While it can be easily understandable why 
such ligands with alkyl linkers are showing low TCS, the visual inspec
tion (Fig. 2) of the transplanted ligands in the model shows that both are 
suffering from severe clashes with neighboring residues (His142, 
Leu268 and Tyr304 for MS-344 and His142, Glu94, Leu268 and Tyr304 
for TSA). Furthermore, the zinc ion coordination by the hydroxamic acid 
moiety of both ligands is not optimal as would be expected due to the 
misplacement of the zinc ion. 

3.2. Alphafold model optimization 

3.2.1. Zinc ion docking and coordination optimization 
Since the automated approach using AlphaFill results for HDAC11 

were not satisfactory, we adapted another approach for the optimization 
of the original AlphaFold model. As a first step, the catalytic zinc ion was 
docked into the AlphaFold model using the MIB server. The top scored 
model showed that the zinc ion was properly placed at the depth of the 
lysine-binding pocket and the expected metal coordination pattern by 
neighboring residues could be observed. The distances between the zinc 
ion and the coordinating residues were 2.04 Å, 1.55 Å and 2.00 Å for 
Asp181-OD1, His183-ND1 and Asp261-OD1, respectively (Fig. 3). While 
the distance between the zinc ion and both Asp181 and Asp261 is within 
the range observed in crystal structures of other histone deacetylase 
isoforms from class I and II, the distance to His183 of 1.55 Å is lower 
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than the expected value. By refinement of loop 4 (residues: 180–185) 
(Methods section 3.2), a model with reasonably coordinated zinc ion 
(2.05 Å, 2.07 Å and 2.03 Å for Asp181, His183 and Asp261, respec
tively) was obtained. 

Three runs of molecular dynamics simulation each of 50 ns were 
performed in order to assess the stability of the protein and the docked 
zinc ion which was confirmed as the RMSD for both the protein and zinc 
ion is stabilizing below 2 Å (Fig. S1). 

RMSF plot of the three runs shows the fluctuations of the surface- 
exposed loops with RMSF for loop 1 and 2 reaching up to 2 Å whereas 
for loops 5 and 6, RMSF between 2 Å and 2.5 Å was observed. While such 
values can be expected for long loops that are solvent-exposed, other 
regions of the protein show RMSF-values almost below 1 Å confirming 
the protein stability (Fig. S2). 

Docking of the selective HDAC11 inhibitor FT895 into the optimized 
AlphaFold model containing the zinc ion, however, failed and no poses 
could be generated, a result that goes in agreement with previous studies 
evaluating the usability of AlphaFold models for docking. In one study, 
docking of the original ligands was used to compare the performance of 
2474 AlphaFold predictions and their corresponding crystal structures. 
Re-docking in crystal structures showed success rate of 41 % compared 
to 17 % for AlphaFold predictions taking 2 Å as threshold for RMSD 

considering the top ranked poses [66]. In another study four docking 
software were used to assess the accuracy and usefulness of AlphaFold 
models for docking and drug discovery utilizing a set of 22 targets form 
diverse protein families. While results demonstrated a worse perfor
mance for AlphaFold models when compared to crystal structures, the 
authors suggested this could be due to large variation in the binding site 
backbone leading to its distortion or small variations at the backbone or 
even the side chain levels within the binding site [67]. In agreement 
with this, it was demonstrated that manipulation of the binding site in 
terms of inducing flexibility or manual modification of the low confi
dence regions could enhance the docking results [66]. 

Analyzing the results of the MD simulation revealed that the side 
chain of Phe152 shows high fluctuation and can adopt two conforma
tions (Fig. S3); a flipped-in and flipped-out conformation. It’s worth 
noting that the flipping of this conserved Phe residue in the lysine 
binding pocket was also observed in HDAC8 crystal structures (6ODC, 
6ODB and 6ODA). Hence, in subsequent docking studies we considered 
both rotameric forms of Phe152. Docking of FT895 in the generated grid 
with the Phe152 rotamer flipped-out of the pocket, resulted in a pose 
that could not reach the zinc ion in the depth of the binding site and none 
of the expected interactions were observed (Fig. 4). It hence appeared 
that the binding site in the AlphaFold model needs further optimization 

Fig. 2. AlphaFill transplants showing non-optimal zinc ion coordination and clashes between the ligands and the protein. The protein backbone is represented as 
white cartoon, the zinc ion as orange sphere, the binding site residues as grey sticks and the ligands as green sticks. Coordination bonds are represented as yellow 
dashed lines and clashes as red dashed lines. A and B are MS-344 and TSA respectively. 

Fig. 3. Zinc ion coordination optimization. A, the top scored model from zinc ion docking using MIB server showing shorter distance to His183 than that observed in 
crystal structures from other HDAC family members. B, the optimized model showing coordination distances in agreement with the experimentally 
observed distances. 
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in presence of active ligands prior docking studies. 

3.2.2. Binding site optimization 
Since docking of the selective HDAC11 inhibitor FT895 in the opti

mized AlphaFold model was not successful, further optimization of the 
binding site was considered mandatory. To this end, we transplanted 
(Methods section 5.1) three nonselective inhibitors, namely Trapoxin 
A, Quisinostat and TSA from HDAC8 crystal structures co-crystallized 
with the respective inhibitor into the model. Subsequently, the protein 
structure was optimized by minimization of the model in the presence of 
these different ligands using Desmond minimization. 

It’s worth noting, that the initial protein-ligand complexes obtained 
by transplanting Trapoxin A, TSA and Quisinostat into the zinc con
taining AlphaFold model suffered from severe clashes with the side 

chains of some residues lining the binding site, especially Glu94, 
Phe152, His183, Leu268, and Tyr304. These complexes also suffered 
from non-optimal chelation of the zinc ion that the hydroxamate moiety 
of the ligands showed a monodentate chelation of the zinc ion only 
through the oxygen of the hydroxyl group while for all ligands only a 
single hydrogen bond was observed to either His142 or His143. 

Minimization of these protein-ligand complexes in Desmond 
(Methods section 5.2) resulted in the removal of the clashes with 
neighboring residues and optimization of the interactions of the Zn- 
binding moiety (Figs. 5 and 6). The expected bidentate chelation 
mode to the catalytic zinc ion was observed for the four HDAC11 
AlphaFold protein-ligand complexes with distances between the zinc ion 
and the chelator ligand atoms ranging between 2.03 Å and 2.16 Å. The 
hydrogen bonding pattern for the complexed ligands resembles what is 
commonly observed in HDAC crystal structures. The hydroxamate 
moiety is showing the three main interactions namely a salt bridge to 
His142 and hydrogen bond interactions to His143 and Tyr304. For 
Trapoxin A, the gemdiol zinc binding group forms two hydrogen bond 
interactions with the side chains of His142 or His143 and Tyr304. 

Additional salt bridge and hydrogen bond interactions between each 
of the protonated-NH group in the linker of Quisinostat from the first 
pose (transplanted from 6HSH) and the three amide-NH groups in the 
macrocycle capping group of Trapoxin A, respectively, and the Glu94 
side chain were observed. These interactions are missing for TSA, while 
in the second pose of Quisinostat (transplanted from 6HSK), the methyl 
indole capping group is aligned towards loop 5 leading to a higher 
distance allowing only for ionic interactions, compared to the first pose 
in which the capping group is directed towards loop 2. Pi-Pi interactions 
are observed in the second pose of Quisinostat between the indole and 
pyrimidine rings and Tyr209 and Phe152 respectively. 

3.3. Docking 

3.3.1. Docking of hydroxamic acid inhibitors 

3.3.1.1. FT895. In order to examine the usability of the optimized 
models, docking of the selective ligand FT895 was performed in all eight 
grids. For the docking, 2 grids for each complex obtained from the 
previous step were generated with different Phe152 rotamers. 

Docking of FT895 was considered successful in three grids as the 
ligand was placed in the binding site and showing the expected in
teractions. The best pose in terms of bidentate chelation, hydrogen bond 
interactions and docking score (Table 1), was obtained by docking in 
TSA-HDAC11 grid with the flipped-out Phe152 rotamer (Fig. 7A). The 

Fig. 4. Docked pose of FT895 in the model with the optimized coordination of 
the zinc ion and flipped-out Phe152 without further binding site optimization. 
The inhibitor is not able to coordinate to the zinc ion. The protein backbone is 
represented as white cartoon, the interacting binding site residues as grey 
sticks, zinc ion as orange sphere and the ligands as green sticks. 

Fig. 5. Desmond minimized poses of ligands used to optimize the HDAC11 AlphaFold model. A, Trapoxin A, B, TSA. The protein backbone is represented as white 
cartoon, the interacting binding site residues as grey sticks, zinc ion as orange sphere and the ligands as green sticks. Hydrogen bonds and coordination bonds are 
represented as yellow dashed lines and the ionic interactions as magenta dashed lines. 
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ligand is showing bidentate chelation of the zinc ion with distances of 
2.47 Å and 2.16 Å to the carbonyl and hydroxyl oxygens, respectively. 
The common salt bridge as well as the two hydrogen bond interactions 
between the zinc binding group of FT895 and His142, His143 and 
Tyr304, respectively, were also observed. The linear structure of the 
ligand is sandwiched between the side chains of Leu268 and Tyr209 
with which it forms hydrophobic interactions. 

3.3.1.2. MIR002. The HDAC11 selective inhibitor MIR002 was also 
successfully docked in the optimized AlphaFold model using the TSA- 
HDAC11 grid with the flipped-out Phe152 rotamer. The obtained pose 
shows monodendate chelation of the zinc ion with distances of 2.84 Å 
and 2.07 Å between the zinc ion and the carbonyl and hydroxyl oxygens, 
respectively. The zinc binding group of the ligand could fulfill the salt 
bridge and the two hydrogen bond interactions to His142, His143 and 
Tyr304, respectively (Fig. 7B). In the obtained pose the linear biphenyl 

Fig. 6. Desmond minimized poses of ligands used to optimize the HDAC11 AlphaFold model. A and B, are the first and the second poses of Quisinostat, respectively. 
The protein backbone is represented as white cartoon, the interacting binding site residues as grey sticks, zinc ion as orange sphere and the ligands as green sticks. 
Hydrogen bonds and coordination bonds are represented as yellow dashed lines, the ionic interactions as magenta dashed lines and the pi-pi interactions as cyan 
dashed lines. 

Table 1 
Docking results of FT895 into the 8 grids generated using the optimized complexes.   

Distance to Zn HB/salt bridge 

Grid docking score glide gscore glide emodel C––O NO− His142 His143 Tyr304 

Q1 − 5.389 − 5.389 − 48.833 4.14 2.08  + +

Q1-flipped − 4.906 − 4.906 − 55.088 3.83 2.15    
Q2 − 5.325 − 5.325 − 55.041 4.08 2.11  + +

Q2-flipped − 6.967 − 6.967 − 63.957 2.54 2.16 + + +

Trapoxin − 4.171 − 4.171 − 44.526 Wrong orientation-Hydroxamic acid facing the solvent 
Trapoxin-flipped − 5.161 − 5.161 − 52.861 4.17 2.06   +

TSA − 6.989 − 6.989 − 70.085 2.97 2.03 + + +

TSA-flipped − 7.979 − 7.979 − 80.866 2.47 2.16 + + +

Fig. 7. Docked poses of ligands in the HDAC11 AlphaFold model after binding site optimization. A and B are FT895 and MIR002, respectively. The protein backbone 
is represented as white cartoon, the interacting binding site residues as grey sticks, zinc ion as orange sphere and the ligands as green sticks. Hydrogen bonds and 
coordination bonds are represented as yellow dashed lines, the ionic interactions as magenta dashed lines and the pi-pi interactions as cyan dashed lines. 
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system is accommodated between the side chains of Tyr209 and Leu268 
of loop 5 and loop 6, respectively, while the bulky adamantine moiety is 
directed towards loop 1 and forming hydrophobic interactions with 
Pro36. Other hydrophobic interactions can also be observed between the 
biphenyl ring system and Tyr304 and Leu268. Pi-Pi interactions be
tween one of the phenyl rings and Tyr209 can be observed. 

3.3.2. Docking of alkyl hydrazide inhibitors 
In order to explore the so called foot pocket, docking of the selective 

ligand SIS17 was performed in all eight generated grids, however the 
docking was not successful since no reasonable pose could be obtained. 
In all poses the long 16 carbon alkyl chain was placed out of the pocket 
and exposed to the solvent (Fig. S4 and S5). For this reason, two 
different approaches for further optimization of the model were 
considered, namely, remodeling loop1 and using a stepwise docking and 
minimization process. 

3.3.2.1. Loop 1 remodeling. For the evaluation of the predicted models, 
AlphaFold uses two methods. The first is per residue confidence score, 
called predicted local distance difference test (pLDDT), which applies a 
scale from 0 to 100, and the second score is the predicted aligned error 
which is useful in assessment of the domain accuracy with expected 
position error scale in angstrom. 

For the HDAC11 model, some residues in loop 1 show low model 
confidence score (70 > pLDDT >50) while the whole loop shows ex
pected position error between 25 Å and 30 Å approximately (Fig. 8). 
While the structural heterogeneity due to loop flexibility can be 
considered as significant factor, shortage in sequence coverage can also 
account for such lowered scores [68]. 

Taking into consideration the AlphaFold scoring, the remodeling of 
loop 1 of the AlphaFold HDAC11 model was considered. Using HDAC6 
as template, a knowledge based hybrid model was generated as 
described in the Methods section. The model was built in presence of 
TSA that was previously transplanted into HDAC11 (Fig. 9A). 

Docking of SIS17 directly into the grid generated from this model 
resulted in a pose that is fulfilling the three hydrogen bond interactions 
with Tyr304, His142 and His143. The bidentate chelation mode was also 
observed with distances of 2.27 Å and 2.57 Å between the zinc and each 
of the carbonyl oxygen and the nitrogen of the hydrazide group 
respectively (Fig. 9B). Interestingly remodeling of loop 1 allowed 
enough room for the long alkyl chain of SIS17 to be accommodated 
between loop 1 and loop 7. 

3.3.2.2. Docking and refinement by minimization. For the second 
approach, the final poses of the alkyl hydrazide inhibitor SIS17 obtained 

by docking and minimization (Methods section 8.2) of the virtually 
generated ligand series with varying the alkyl chain length, showed 
different orientation of the alkyl chain in the two different grids 
(Fig. 10). The determinant of the direction of the alkyl chain is the 
rotamer of Phe152. Superposing both poses shows that the stem of the 
alkyl chain (first five carbons) is accommodated in the same space that is 
lined with residues Phe37, Gly140, Phe141, His142, His143, Gly151, 
Phe152, Cys153, Ser301, Gly302 and Tyr304. The branching of the alkyl 
chain then starts at carbon 6. The original flipped-in Phe152 allows 
enough space for the alkyl chain to be directed horizontally and 
accommodated between loop 1 and loop 2. In the second grid, in which 
the Phe152 is flipped-out of the binding pocket, this direction is blocked 
and the alkyl chain of SIS17 is directed more deeply into the binding 
pocket along loop 3 and loop 7. 

For both final poses the chelation mode is bidentate through the 
carbonyl oxygen and the nitrogen of the hydrazide zinc binding group 
with distances ranging between 2.29 Å and 2.4 Å respectively. The three 
hydrogen bonds to Tyr304, His142 and His143 are observed in both 
poses. 

While the optimization of the binding site was mandatory for dock
ing in our study. It is worth to note that in recent work by Ren et al. [69], 
modification to the original CDK20 AlphaFold model was necessary to 
be useable for the aim of drug discovery, for example the removal of the 
C terminus that was blocking the solvent exposed region of the protein 
and occupying the ATP binding pocket through Arg305. However, the 
reliable identity percentage between CDK20 and related structures from 
the cyclin dependent kinase family reaching up to around 40 % [70] 
with multiple crystal structures available in the protein data bank sug
gests that the template based homology model might has been a more 
convenient methodology, which is not the case for HDAC11 (Table S1). 

3.4. Molecular dynamics simulations 

One limitation of the docking approach is ignoring the protein 
flexibility by treating the protein as rigid body, which limits the ability 
to guarantee the stability of the observed interactions of a ligand docked 
pose and rightly predict the binding mode. On the other hand, molecular 
dynamics (MD) simulation techniques can account for the flexibility of 
the protein along with solvent effects thus allowing for deeper insight 
and investigation of the behavior of the ligand and its stability in a 
dynamic environment. Such information, provides chances for structure 
based design of better performing ligands. Common objective measures 
for the analysis of the MD simulation results are root mean square de
viation (RMSD), root mean square fluctuation (RMSF) and interactions 
persistence/occupancy. These measures are used to evaluate protein- 

Fig. 8. HDAC11 AlphaFold model scoring. A, model cartoon colored according to the per residue confidence score, showing residues of lower scores in loop 1 
(70>pLDDT>50). B, expected position error score showing distance of approximately 25 Å to 30 Å for loop 1. Pictures acquired from AlphaFold website (https://alph 
afold.ebi.ac.uk/entry/Q96DB2). 
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ligand complex stability and the reliability of the predicted docking 
poses [34,71]. The initially obtained ligand HDAC11 model complexes 
which were obtained by transplanting the respective ligand coordinates 
from HDAC8 crystal structures as well as the selected docked poses were 
subjected to molecular dynamics simulation to examine the stability of 
the model after performing the optimization as well as the stability of 
the obtained ligand poses. 

For all the molecular dynamics simulations the RMSD plots shows 
that the protein is stabilizing between 1 Å and 2 Å, while the zinc ion is 
stabilizing at around or below 1 Å (Fig. S6, S7, S20, S21, S31 and S36). 

3.4.1. Minimized complexes 
The bidentate chelation mode was monitored through the stability of 

the distances between the zinc ion and chelator atoms in the zinc 
binding group during the molecular dynamics simulations and could be 
confirmed for the four protein-ligand complexes (Figs. S9 and S10). 

Ligand RMSD shows that Trapoxin A and TSA are both stabilizing at 
about 3 Å (Fig. 11A and B) but with few extreme fluctuations for TSA 
especially in the first and third run. The RMSD of the first pose of Qui
sinostat is high reaching up to 6 Å (Fig. 11C) and less repeatable between 
the three runs with fluctuations over simulation time, while the second 
pose is showing different behavior in which the ligand is stabilizing at 

around 2 Å and repeatability could be observed for the three runs 
(Fig. 11D). 

Trapoxin A hydrogen bonding to His142 or His143 showed moderate 
to high stability with occupancy ranging between 44 % and 75 % for the 
three runs (Table S2, Figs. S14 and S15). The occupancy percent of the 
hydrogen bond to Tyr304 is repeatable for two runs with almost 100 % 
for the second and third runs, while for the first run the occupancy is as 
low as 46 %. Hydrogen bonds between the three NH groups of the 
macrocycle of Trapoxin A and the side chain oxygens of Glu94 are highly 
stable and showing persistence above 83 % almost for all the three bonds 
in the three runs. 

The salt bridge and the hydrogen bond to His142 and His143, 
respectively, for both poses of Quisinostat are stable with persistence 
ranging between 76 and 100 % (Tables S3 and S4, Fig. S11, S12 and 
S13). For the first pose the hydrogen bond to Tyr304 is showing week 
stability or almost completely lost, while in the second pose, the first and 
third runs demonstrate good stability of hydrogen bond to Tyr304 with 
occupancy of 80 and 70 % respectively, but almost completely lost for 
the second run. For the first pose of Quisinostat the overall persistence of 
the salt bridge to Glu94 is average with occupancy between 50 % and 75 
% considering both side chain and backbone interactions. In the second 
pose and during the simulation, a salt bridge which was not observed in 

Fig. 9. Remodeling loop 1. A, cartoon representation of the superposition of the original and the modified model, loop 1 colored cyan and green respectively. B, 
docked pose of SIS17 in the modified loop 1 HDAC11 model. The protein backbone is represented as white cartoon, the interacting binding site residues as grey sticks, 
zinc ion as orange sphere and the ligands as green sticks. Hydrogen bonds and coordination bonds are represented as yellow dashed lines. 

Fig. 10. Docked poses of SIS17. A and B, are poses with the vertical and horizontal orientation of the alkyl chain, respectively. The protein backbone is represented 
as white cartoon, the interacting binding site residues as grey sticks, zinc ion as orange sphere and the ligands as green sticks. Hydrogen bonds and coordination 
bonds are represented as yellow dashed lines. 
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the initial merged and minimized pose between the NH group of the 
linker and Glu94 was established and showing high stability between 80 
% and 91 % for the three runs. 

For TSA, the salt bridge to His142 is highly persistent with almost 

100 % for all three runs while for the hydrogen bond to His143, week to 
average persistence between 27 % and 55 % is observed (Table S5, 
Figs. S14 and S16). The persistence percent of hydrogen bond to Tyr304 
is varied strongly between the three runs between high and average 

Fig. 11. RMSD plots of ligand heavy atoms for 3 repeated MD runs each for 50 ns. A, minimized pose of Trapoxin A. B, minimized pose of TSA. C, first minimized 
pose of Quisinostat. D, second minimized pose of Quisinostat. 

Fig. 12. Selected snapshots from the first MD run of the first pose of Quisinostat showing the fluctuation of the methyl indole capping group. A, frame 1. B, frame 
125. C, frame 250. D, frame 500. The protein backbone is represented as white cartoon, the interacting binding site residues as grey sticks, zinc ion as orange sphere 
and the ligands as green sticks. Hydrogen bonds and coordination bonds are represented as yellow dashed lines and the ionic interactions as magenta dashed lines. 
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persistence or even almost lost completely. 
Analyzing the RMSF plots for Trapoxin A shows that the most fluc

tuating part of the ligand is a terminal phenyl ring that is exposed to the 
solvent (Figs. S8A and S18). For Quisinostat pose 1, the methyl indole 
capping group is the most fluctuating substructure of the ligand while in 
pose 2 the fluctuation of the ligand is below 2 Å (Fig. 12, S8C, S8D and 
S17). While this fluctuation disturbs the salt bridge to Glu94 that was 
initially observed in the first pose leading to the demonstrated lower 
stability, the slight movement of the capping group allows for the for
mation of the same salt bridge in the second pose during the simulation. 
The high fluctuation of this part of the ligand reaching up to 6 Å, is 
responsible mostly for the high RMSD observed in the first pose. The 
capping group of TSA also show higher RMSF value (Figs. S8B and S19) 
indicating that it is responsible for the few fluctuations in the RMSD 
observed in runs one and three. 

Analysis of the results of the hydrogen bond persistence of the zinc 
binding group presented above, shows that the hydrogen bond inter
action to Tyr304 is less stable or almost completely lost in some MD runs 
especially for TSA and both poses of quisinostat. It is worth noting that 
this conserved tyrosine residue can adopt different conformations in 
HDACs crystal structures (HDAC8 PDB: 3SFF and 3SFH, HDAC2 PDB: 
7KBH) [72,73] which reflects its flexibility. We observed this flexibily 
alsoin previously reported MD simulations of available HDAC X-ray 
structures [74]. 

3.4.2. Docked hydroxamic acid inhibitors 

3.4.2.1. FT895. Examining the results obtained from the short time 
scale molecular dynamics simulations (50 ns) demonstrates that the 
RMSD of the docked pose of FT895 is stabilizing at 2 Å (Fig. 13A). 
Furthermore, the interaction persistence results reveal that the salt 
bridge stability to His142 is very high with persistence of almost 100 % 
for all the runs (Table S6, Fig. S26 and S29). The Hydrogen bond to 
His143 shows moderate to good persistence between 59 % and 88 %, 
and the stability of the hydrogen bond to Tyr304 was not confirmed. 

Extra hydrogen bond between one nitrogen atom in the pyrazine ring 
in the capping group of FT895 and His183 that was not observed in the 
initial docked pose was established during the simulation and showed 
persistence between 63 % and 78 % in the three runs. 

The RMSF plot for the ligand shows that all FT895 atoms are fluc
tuating at around 1 Å (Fig. S22A) thus indicating for the high stability 
observed in the RMSD. The bidentate chelation was confirmed by 
monitoring the stability of the distances between the zinc ion and the 
chelator atoms of the hydroxamate moiety except for few sharp fluctu
ations for the distance between the zinc ion and the carbonyl oxygen. 
(Figs. S23A and S24A). 

The RMSD resulted from the longer molecular dynamics simulation 
(500 ns) shows that FT895 is stabilizing at around 2 Å for about 250 ns 
after which a slight shift in the pose causing the RMSD to reach 4 Å was 
observed (Fig. 13B and S27B). Analyzing the RMSF of the ligand atoms 
revealed that only the trifluoromethylpyrazine shows slight fluctua
tions, however the RMSF values still remain below 2.2 Å (Fig. 14 and 

S22A), indicating that no major shifts occurred during the MD- 
simulation. Additionally, the observed ligand-protein interactions 
remained stable throughout the simulation; the bidentate chelation 
mode of the zinc ion was maintained (Fig. S25A), and the salt bridge and 
hydrogen bond interactions to His142, His143 and His183 remained 
stable with persistence of 99 %, 80 % and 58 %, respectively (Figs. S27A 
and S29). 

Overall, the predicted binding mode of FT895 in HDAC11 showed 
good stability during the long MD simulation and the key interactions 
were preserved, despite the slight shift in the position of the capping 
group. 

3.4.2.2. MIR002. For MIR002, the RMSD plot shows that the ligand is 
stabilizing at about 3 Å (Fig. 15A) and the salt bridge stability to His142 
was confirmed showing almost 100 % persistence for all three runs 
(Table S7, Fig. S26 and S30). More fluctuation of the persistence percent 
between the three runs for the hydrogen bond to His143 and Tyr304 was 
observed ranging between 34 % to 71 % and 50 %–81 %, respectively. 

For MIR002 the most fluctuating part is the cinnamic acid capping 
group that is exposed to the solvent reaching up to 3 Å (Fig. S22B). The 
starting distance between the carbonyl oxygen and the zinc ion observed 
in the docked pose of 2.84 Å was adjusted during the simulation to 
below the threshold of 2.6 Å. The stability of the bidentate chelation 
mode can be confirmed as the distances between the zinc ion and the 
chelator atoms of the zinc binding group are stable, however, few sharp 
fluctuations can also be observed for the carbonyl oxygen (Figs. S23B 
and S24B). 

Long molecular dynamics simulation on the predicted binding mode 
of MIR002 showed similar behavior as compared to the shorter runs 
with the RMSD of the ligand stabilizing at around 3 Å (Fig. 15B). The 
highest fluctuations were observed for the cinnamic acid moiety of the 
capping group with RMSF reaching 3 Å (Fig. 16, S22B and S28B). 

Analysis of the protein ligand interactions shows that the salt bridge 
and hydrogen bond interactions to His142 and His143, respectively, are 
maintained with persistence of 99 % and 62 %, respectively. (Figs. S28A 
and S30). Additionally, the bidentate chelation of the zinc is majorly 
preserved as confirmed by monitoring the distance between the zinc ion 
and the chelator atoms of the hydroxamate moiety (Fig. S25B). 

3.4.3. Docked alkyl hydrazide inhibitors 

3.4.3.1. Loop1-remodeled pose. Inspecting the results from the molecu
lar dynamics simulation for the docked pose of SIS17 in the loop 1 
remodeled HDAC11, shows that SIS17 is stabilizing between 2 Å and 3 Å 
all over the simulation and for the three replica except for the third 
simulation as a raise of the RMSD reaching 5 Å can be observed by the 
end of the simulation (Fig. 17). Repeating this third run starting from the 
same seed but for longer duration of 100 ns could confirm the obser
vation that there is a shift in the initially obtained pose leading the 
RMSD to fluctuate to such higher values of 5 Å to 7 Å starting from 
around 50 ns till the end of the simulation. 

The hydrogen bonds stability to His142 and His143 was confirmed 

Fig. 13. FT895 RMSD. A, RMSD plots of ligand heavy atoms for 3 repeated MD simulation each for 50 ns. B, RMSD plot of protein backbone heavy atoms, zinc ion 
and ligand heavy atoms for 500 ns MD simulation. 
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with persistence ranging between 73 % and 100 % (Table S10, Fig. S33, 
S34 and S35) indicating that this shift in the pose observed is not 
affecting interactions of the zinc binding group. The RMSF of the 
repeated longer run indicates that the most fluctuating part of the ligand 
is the distal part of the long alkyl chain (Fig. S32). By inspecting the 
trajectory frames, a shift of the alkyl chain from its initial docked pose 
that is accommodated between loop 1 and loop 7 to a different direction 
ending up resting between loop 1 and loop 2 was observed. 

3.4.3.2. Stepwise docking and minimization poses. The RMSD and the 
RMSF plots of SIS17 in both the horizontal and the vertical poses indi
cate stable poses that reflects the probability of the long alkyl chain 
being conveniently accommodated within either direction (Fig. 18 and 

S37). The ligand in both poses is stabilizing below 3 Å. The ligand RMSF 
in the vertical pose is less than 2 Å for all ligand atoms, while the ter
minal part of the alkyl chain is showing slightly higher fluctuation for 
the horizontal pose. 

The hydrogen bond stability is comparable between both poses. The 
hydrogen bond persistence to His142 and His143 is above 90 % for all 
runs, while for Tyr304 the hydrogen bond is almost completely lost 
(Tables S8 and S9, Figs. S38–S40 and S42). 

Superposing the structures of HDAC11 AlphaFold model, HDAC6 
and HDAC8 shows that the folding of loop 3 is more homologues to 
HDAC8 than to HDAC6 which can be expected due to higher similarity 
of this region to HDAC8 than to HDAC6 (Fig. 19). In HDAC8 and the 
AlphaFold model of HDAC11 three similar residues of Gly139, Gly140 

Fig. 14. Selected snapshots from the long MD run (500 ns) of FT895 showing the fluctuation of the trifluoromethylpyrazine capping group and the slight shift in the 
pose. A, frame 1. B, frame 1250. C, frame 2500. D, frame 5000. The protein backbone is represented as white cartoon, the interacting binding site residues as grey 
sticks, zinc ion as orange sphere and the ligands as green sticks. Hydrogen bonds and coordination bonds are represented as yellow dashed lines and the ionic 
interactions as magenta dashed lines. 

Fig. 15. MIR002 RMSD. A, RMSD plots of ligand heavy atoms for 3 repeated MD simulation each for 50 ns. B, RMSD plot of protein backbone heavy atoms, zinc ion 
and ligand heavy atoms for 500 ns MD simulation. 

F. Baselious et al.                                                                                                                                                                                                                               



Computers in Biology and Medicine 167 (2023) 107700

13

Fig. 16. Selected snapshots from the long MD run (500 ns) of MIR002 showing the fluctuation of the cinnamic acid capping group. A, frame 1. B, frame 1250. C, 
frame 2500. D, frame 5000. The protein backbone is represented as white cartoon, the interacting binding site residues as grey sticks, zinc ion as orange sphere and 
the ligands as green sticks. Hydrogen bonds and coordination bonds are represented as yellow dashed lines and the ionic interactions as magenta dashed lines. 

Fig. 17. RMSD plots of ligand heavy atoms for SIS17 in the loop 1 remodeled HDAC11. A, 3 repeated MD runs each for 50 ns. B, repeated third run for 100 ns.  

Fig. 18. RMSD plots of ligand heavy atoms for 3 repeated MD runs each for 50 ns. A and B, the horizontal and vertical poses of SIS17, respectively.  
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and Trp141 in HDAC8 and Phe141 in HDAC11 are shaping the entrance 
of what so called foot pocket and the flexible Trp141 and Phe141 side 
chains are acting as the gate keeper residues. These three residues are 
replaced by Arg606, Pro607 and Pro608 in HDAC6. The bulkier non- 
flexible side chains of Pro607 and Pro608 along with the bulky side 
chain of Arg606 that is directed towards loop 1 to form polar in
teractions with Glu502 [21] are causing this part of the loop to fold into 
the opposite direction thus blocking the space required for the formation 

of the foot pocket. 
Since HDAC8 is also well known for the deacylase activity [75] this 

observed similarity can suggest the pose of SIS17 with its alkyl chain 
directed vertically into the binding pocket along loop 3 and loop 7 to be 
the most reasonable pose for SIS17. 

As the vertical pose was considered the most reasonable pose 
regarding the orientation of the alkyl chain of SIS17, longer molecular 
dynamics simulation run of 500 ns was also performed. The RMSD of the 

Fig. 19. Loop 3 comparison between HDAC6, HDAC8 and HDAC 11 AlphaFold model. Protein backbone is represented as white cartoon and zinc as orange sphere. 
A, Superposition of HDAC6 PDB 5EDU, HDAC8 PDB 5FCW and HDAC11 AlphaFold model. Loop 3 colored as magenta, yellow and cyan for HDAC6, HDAC8 and 
HDAC11 respectively. B, HDAC6 PDB 5EDU, loop 3 residues represented as magenta sticks. C, Superposition of 2 HDAC8 crystal structures showing the flexibility of 
the gate keeper Trp141. Loop 3 residues are colored yellow and orange for 5FCW and 6ODC, respectively. D, HDAC11 AlphaFold model, loop 3 residues represented 
as cyan sticks. 

Fig. 20. SIS17 vertical pose RMSD plot of protein backbone heavy atoms, zinc ion and ligand heavy atoms for 500 ns MD simulation.  
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ligand is stabilizing between 2 Å and 3 Å (Fig. 20) and the hydrogen 
bond stability to His142 and His143 was confirmed with persistence of 
about 99 % and 92 %, respectively (Figs. S41A and S42). 

The RMSF of the ligand showed that the long alkyl chain is fluctu
ating more than observed in the shorter runs however, still below 2 Å 
(Fig. 21, S37A and S41B). 

4. Conclusion 

In this study, the HDAC11 AlphaFold model was successfully opti
mized by adding and adjusting the coordination of the zinc ion. 
Furthermore the binding site was optimized by minimizations in pres
ence of different inhibitors resulting in four protein ligand complexes. 
The stability of the protein and the binding mode in terms of the 
hydrogen bond pattern and metal chelation observed after the minimi
zation was confirmed by molecular dynamics simulation for these four 
complexes which reflects the validity of the optimization process and 
usability of the obtained optimized complexes for the next step. 

Utilization of the obtained complexes of the optimized model to 
generate grids for docking of selective inhibitors was successful and 
supported by molecular dynamics simulation that confirmed the sta
bility of the obtained poses and their initial observed interactions. 

Furthermore, the selective HDAC11 inhibitor SIS17 was used to 
explore the foot pocket using different approaches including a stepwise 
docking and minimization process as well as direct docking in loop 1 
modified model. The two approaches resulted in docked poses of SIS17 
with three different orientations, identifying three different tunnels as 
possible foot pocket that can accommodate such long alkyl chain, 

however the docking solution that is placing the alkyl chain deeper into 
the protein along loop 3 and loop 7 was considered the most reasonable. 

Considering the results obtained from this study along with 
inspecting the transplants from AlphaFill indicate that the AlphaFill 
approach was not successful in obtaining optimal complexes in terms of 
zinc coordination and clash free inhibitor poses. This can be under
standable knowing that AlphaFill is using a sequence and structure 
similarity approach for searching for homologous templates for align
ment and small molecule transplantation and suggesting that AlphaFill 
would be more successful with protein sequence showing higher simi
larity and identity percent with crystal structures available in the protein 
data bank which is not observed for HDAC11. 

As a conclusion, for the aim of drug design and inhibitor optimiza
tion, whenever there is reliable identity and similarity percent for the 
protein sequence of interest with available experimentally determined 
structures, the conventional template based homology modeling in 
presence of ligands and cofactors is recommended. The current study 
also showed that the models obtained from the AlphaFold approach can 
still be utilized but with caution. The main aim of our study was to 
develop a suitable 3D model of the studied target protein (HDAC11) 
using previously reported inhibitors and assessing its usability for drug 
design studies. Nevertheless, some limitations of the herein used in silico 
drug design methodologies have to be put into consideration. The 
nanoscale time scale of classical MD simulation limits the possibility to 
study several biological events including larger conformational changes 
observed for ligand binding and unbinding processes. Moreover, since 
classical MD simulations uses molecular mechanics force fields, only 
potential energies are considered whereas entropic contributions are 

Fig. 21. Selected snapshots from the long MD run (500 ns) of SIS17 showing the fluctuation of the long alkyl chain. A, frame 1. B, frame 1250. C, frame 2500. D, 
frame 5000. The protein backbone is represented as white cartoon, the interacting binding site residues as grey sticks, zinc ion as orange sphere and the ligands as 
green sticks. Hydrogen bonds and coordination bonds are represented as yellow dashed lines. 
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neglected. Therefore, only the enthalpic part of the ligand binding is 
calculated usually. Another general limitation of the working with ho
mology models is the lacking of water molecules that might affect the 
ligand and the stability of the interactions during the simulation. Veri
fication through experimental 3D structure determination or design and 
evaluation of ligands based on the presented model is still required for 
further confirmation of the generated models. 
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Abstract: HDAC11 is a class IV histone deacylase with no crystal structure reported so far. The
catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes
conventional homology modeling less reliable. AlphaFold is a machine learning approach that can
predict the 3D structure of proteins with high accuracy even in absence of similar structures. However,
the fact that AlphaFold models are predicted in the absence of small molecules and ions/cofactors
complicates their utilization for drug design. Previously, we optimized an HDAC11 AlphaFold
model by adding the catalytic zinc ion and minimization in the presence of reported HDAC11
inhibitors. In the current study, we implement a comparative structure-based virtual screening
approach utilizing the previously optimized HDAC11 AlphaFold model to identify novel and
selective HDAC11 inhibitors. The stepwise virtual screening approach was successful in identifying
a hit that was subsequently tested using an in vitro enzymatic assay. The hit compound showed an
IC50 value of 3.5 µM for HDAC11 and could selectively inhibit HDAC11 over other HDAC subtypes
at 10 µM concentration. In addition, we carried out molecular dynamics simulations to further
confirm the binding hypothesis obtained by the docking study. These results reinforce the previously
presented AlphaFold optimization approach and confirm the applicability of AlphaFold models in
the search for novel inhibitors for drug discovery.

Keywords: AlphaFold; HDAC11; virtual screening; modelling; in vitro assay; pharmacophore;
docking; molecular dynamics simulation

1. Introduction

Histone deacetylases (HDACs) form a protein family responsible for catalyzing the
elimination of acetyl groups from lysine residue of histone proteins as well as other sub-
strates [1]. The histone deacetylase family is classified into four main classes, three of which
are constituted by eleven zinc-dependent HDACs, namely, class I (HDAC1, 2, 3 and 8),
class IIa (HDAC4, 5, 7 and 9), class IIb (HDAC6 and 10), and class IV (HDAC11) [2].

HDAC11, the sole member of class IV of the HDAC family, is the smallest member of
the family and one of the least studied HDAC subtypes [3,4]. It is expressed in multiple
organs, including the heart, kidney, brain tissues, skeletal muscles, and gall bladder [4,5].
Evidence has demonstrated that HDAC11 is involved in various physiological processes
such as modulation of the immune system [6,7] and maintaining genomic integrity [8]. It
was also evident that HDAC11 is connected to some pathological processes and represents
a potential target for the treatment of several diseases, including multiple sclerosis, viral
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infections, and obesity-related diseases [9–11]. HDAC11 was also found to be involved in
the modulation of cancer growth and is overexpressed in different cancer forms [12–19]. For
example, inhibition of HDAC11 showed beneficial effects in neuroblastoma cells [20], sug-
gesting that HDAC11 represents a promising target for the treatment of some cancer forms.

HDAC11 has been found to have robust fatty acid deacylase activity. This activity
is more than 10,000-fold more efficient than the deacetylase activity, suggesting that this
activity may be the major activity of the enzyme in vivo [21–23].

To date, only a few selective HDAC11 inhibitors have been reported. Hydroxamic
acid-based inhibitors include FT895 [24], the only weakly active MIR002 [25], and the
recently developed inhibitor BP94 [26]. FT895 showed beneficial effects in reducing non-
small cell lung cancer cells’ viability [27], while BP94 was able to ameliorate neuropathic
pain in mouse model [26]. Due to its preference to remove long-chain fatty acyl groups, it
has been postulated that HDAC11 contains a hydrophobic pocket near its catalytic Zn2+

center. Therefore, inhibitors containing long alkyl chains have been described, such as
SIS17 [28], which contains an alkyl hydrazide moiety and inhibits HDAC11 in vitro in
the submicromolar range. Alkyl hydrazides have also recently been described for other
HDACs, such as HDAC3 and HDAC8, as novel zinc binding groups. [29,30]. Similarly, the
trapoxin A analog TD034 [31] possesses a long alkyl chain that might be the reason for the
observed HDAC11 selectivity [31].

No crystal structure of HDAC11 has been reported, and its catalytic domain shows low
sequence identity (<30%) when compared to the primary sequences of the catalytic domains
available in the PDB databank for other human HDAC isoforms. This fact complicates the
conventional template-based homology modeling [32].

AlphaFold is a machine learning approach for predicting the 3D structures of pro-
teins with atomic accuracy even in absence of known similar structures [33]. A database
containing the 3D structures of the whole human proteome was built by AlphaFold [34].
The models from AlphaFold should be carefully considered when used for structure-based
drug design studies because the folding is predicted in absence of small molecules like
water molecules, ligands, and cofactors.

In a recent study by Ren et al. [35], AI-driven molecular generation was combined
with utilization of the AlphaFold model for the aim of drug discovery for cyclin-dependent
kinase 20 (CDK20). In this study, modification of the AlphaFold model by removing the
C-terminus which was blocking the solvent-exposed region of the protein and occupying
the ATP binding pocket through Arg305 was performed in order to make the model usable.
In another study, Zhu et al. [36] utilized a similar approach to successfully design new
inhibitors for salt-inducible kinase 2 (SIK2).

The two studies discussed above used AlphaFold models for protein targets sharing
reliable sequence identity with other proteins within the same family for which crystal
structures are available and utilized AI-driven molecular generation techniques rather
than docking. Several other studies addressed the usability of AlphaFold models for
docking [37–41] and real-world virtual screening scenarios [39,42,43]. One of these stud-
ies assessed the usability of AlphaFold structures predicted while excluding structural
templates with more than 30% identity, thus imitating a virtual screening process with a
model based on low prior structural information. Results from these studies demonstrated
a worse performance of the AlphaFold models compared to crystal structures, suggesting
that using unmodified AlphaFold models is not an ideal scenario. This poorer performance
could be due to incorrect binding site geometry, resulting from minor variation at the
side-chain level or larger variation of the backbone, suggesting that post-modeling or
optimization is required to obtain more realistic holo models [38–43].

In agreement with these results, it was demonstrated that optimization of the binding
site by inducing flexibility or manually modifying of the low confidence regions could
enhance the docking results [37,39,40,44]. In our recent work, we showed that binding
site optimization of the HDAC11 AlphaFold model by adding the catalytic zinc ion and
performing minimization in the presence of inserted ligands resulted in a model that
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could be used for docking of the known selective HDAC11 inhibitors FT895, MIR002, and
SIS17 [32].

In the current study, we present an application of an optimized AlphaFold model for
virtual screening while addressing HDAC subtype selectivity [45]. We demonstrate herein
that our previously optimized HDAC11 AlphaFold model was successfully utilized for
picking a selective hit through a comparative virtual screening approach. In the developed
multistep screening, various approaches, including structure-based pharmacophore screen-
ing as pre-filtering of large databases, ligand docking, pose filtering, and prioritization,
were applied as described in Section 3. To experimentally confirm the virtual screening
results, the most promising hit was synthesized and tested in vitro using different HDAC
subtypes. In addition, we analyzed the predicted binding mode from docking by means of
molecular dynamics (MDs) and MetaDynamics simulations.

2. Results and Discussion
2.1. Dataset Selection and Curation

Hydroxamates comprise a well-defined and characterized pharmacophore for HDAC
inhibitors and are considered the most commonly used zinc binding group in HDAC in-
hibitors [46,47]. Some of the inhibitors bearing the hydroxamate scaffold, such as vorinostat
(SAHA), belinostat (PXD-101), and panobinostat (LBH589), have been approved by the
FDA in the past for the treatment of hematological malignancies [48]. Benzohydroxamates
constitute an important class of HDAC inhibitors, and their development entails an active
field within inhibitor design for several HDAC subtypes [47]. ZINC20 is a publicly avail-
able database that includes nearly two billion compounds, in 2D and 3D downloadable
formats, through a website that allows for rapid analogue searching [49]. Initially, a focused
database of 407,834 benzohydroxamates was acquired from the ZINC20 database. The
library was further prepared by generating possible ionization states at physiological pH
7.0 ± 2.0. The preparation step resulted in a library that contained 510,529 ligands with
various ionization states; this library was then subjected to filtration to select the ligands
with a hydroxamate state only. The Lipinski rule of five is an important early measure for
identifying bioavailable drug-like candidates. According to this rule, a compound must
possess the following properties: molecular weight < 500 Da, logP < 5, H-bond donors < 5,
and H-bond acceptors < 10. To further select drug-like molecules, the prepared library
was filtered to remove any molecule that violated Lipinski’s rule of five [50,51]. The initial
curation resulted in a library of 18,113 ligands. The multistep virtual screening process was
then performed as presented in the workflow (Figure 1).

2.2. Virtual Screening

The E-pharmacophore module implemented in Schrödinger’s PHASE automatically
generates a pharmacophore hypothesis that is based on the complementarity of the protein
and ligand features from a protein–ligand complex. This involves using Glide XP scoring
terms to determine which features contribute the most to the binding. The hypothesis
obtained from using the previously optimized complex of TSA and the HDAC11 AlphaFold
model exhibited four features (Figure 2), namely, a hydrogen bond acceptor feature assigned
for the carbonyl-O, a hydrogen bond donor assigned to the NH, a negative feature for the
deprotonated hydroxyl group of the hydroxamate zinc binding group, and an aromatic
feature for the phenyl capping group. Excluded volumes that are based on the occupation
of space by protein atoms were also added. Pharmacophore screening was performed to
select the ligands that matched the four features, with the aim of filtering out very small
ligands/fragments as well as compounds larger than what could be accommodated in
the HDAC11 pocket. Thus, the pharmacophore formed by the excluded volumes was
primarily used to reduce the very large number of compounds for the subsequent and
more computationally demanding docking method.
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Figure 1. Workflow of the stepwise virtual screening.

The pharmacophore screening step was effective and could filter out 5959 compounds.
Docking-based virtual screening of the remaining 12,154 structures was then performed
using the grid generated from the HDAC11-TSA-optimized AlphaFold model. In our
previous study, we successfully obtained four optimized complexes by minimization of
the HDAC11 AlphaFold model with previously reported active ligands of HDAC11, for
which X-ray crystal structures with HDAC8 are available in the protein databank (PDB).
The selection of the TSA-HDAC11 complex for the virtual screening was based on the
results obtained from the previous study, since it showed the best performance regarding
the docking of the selective inhibitor FT895 (Figure 3) and was further utilized in docking
of other selective inhibitors such as MIR002 and SIS17. Almost all of the hits from the
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pharmacophore screening step were able to pass the docking-based screening. Furthermore,
filtration of the obtained docking poses was performed to select the ligands that can show
a bidentate chelation mode to the catalytic zinc ion. Pose filtration was performed utilizing
the distances between the chelator carbonyl and hydroxyl oxygen atoms of the hydroxamate
moiety to the zinc ion. Compounds showing distances more than a cut off of 2.6 Å between
any of the chelator atoms and the zinc ion were removed.
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Figure 3. (A) Minimized pose of TSA in HDAC11-optimized AlphaFold model. (B) Docked pose of
FT895 in the optimized HDAC11 AlphaFold model. The protein backbone is represented as yellow
cartoon, the interacting binding site residues as yellow sticks, zinc ion as orange sphere, and the
ligands as sticks (cyan = carbon, blue = nitrogen, red = oxygen, grey = polar hydrogens). Hydrogen
bonds and coordination bonds are represented as grey dashed lines and ionic interactions as magenta
dashed lines.
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With the aim of searching for selective HDAC11 ligands, a comparative docking-
based virtual screening approach was then applied. The hits obtained from the docking
in HDAC11 which could pass the pose filtration step were then screened by docking into
HDAC1, HDAC6, and HDAC8 crystal structures. The obtained hits from every screening
were further subjected to pose filter screening. Ligands which could show correct docking
pose with bidentate chelation of the catalytic zinc ion in any of HDAC1, HDAC6, and
HDAC8 were removed from the HDAC11 hit list. For HDAC6, ligands which could chelate
the zinc ion in a monodentate fashion were also removed. This step was very effective
and could filter out most of the compounds, leaving only seven compounds (Table S1,
Supplementary Materials) that could show a correct chelation mode in HDAC11 but not in
any of the other isoforms.

Rapid elimination of swill (REOS) [52,53] filter was then applied to remove compounds
containing reactive or toxic moieties which might also interfere with biological assays. Two
compounds containing nitro groups were removed by using this filter. Interestingly, the
final five hits (Table 1) all bear a methoxy, ethoxy, or chloro substituent on the ortho
position of the hydroxamate moiety, which indicates that substitution at this position might
represent a selectivity determinant for HDAC11 inhibition.

Table 1. Final hits and MM-GBSA dG binding values (black = carbon, blue = nitrogen, red = oxygen,
chlor = green).

Title Structure MM-GBSA dG Bind

ZINC000028464438 (9)
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Table 1. Cont.

Title Structure MM-GBSA dG Bind
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In the last step of the virtual screening workflow, the five final hits were prioritized
through MM-GBSA calculations. MM-GBSA calculations showed that the top-ranked
molecule is ZINC000028464438 (9), which bears a methoxy group as ortho substitution
to the hydroxamate moiety and an amide linker in the meta-position. It is worth noting
that a selective HDAC11 inhibitor (PB94) was recently presented by Bai et al. [26]. Based
on the structure–activity relationship, the authors reported that a methoxy group in the
ortho position of their developed benzohydroxamate inhibitors is a key factor for HDAC11
selectivity, which is in agreement with our results from the virtual screening.

2.3. In Vitro Enzymatic Evaluation

Due to the unavailability of the top-ranked hit ZINC000028464438, we decided to
resynthesize the compound (9) as reported [54]. We purified it, confirmed the structure by
NMR and MS, and tested it at a concentration of 10 µM against HDAC11 as well as all other
HDAC subtypes (HDAC1–10) to determine the selectivity. The synthesis and analytical
characterization are described in detail in Section 3. Compound 9 showed inhibition of
around 85% in the enzymatic activity for HDAC11, almost no inhibition for nearly all
HDAC subtypes, and only around 20% inhibition of HDAC6 (Figure 4A). Interestingly, the
findings from the in vitro screening confirm the results obtained from the theoretical study,
as the hit compound was not able to adopt reasonable poses in any of HDAC1, HDAC6,
and HDAC8. On the other hand, a perfect pose with a bidentate chelation mode that also
demonstrates the expected interactions of a benzohydroxamate-based HDAC inhibitor was
observed in HDAC11 and proved to be stable during MD simulations. These results further
confirm that HDAC11 can accommodate such bulkier substitutions in the ortho position of
the benzohydroxamate moiety of the inhibitor, providing a unique feature that can be used
to target isoform selectivity when designing new inhibitors.
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Furthermore, the IC50 for HDAC11 was determined to be about 3.5 µM (Figure 4B).
While this virtual screening hit showed only moderate HDAC11 inhibitory activity, it
still can be considered a promising hit compound due to the good selectivity. Further
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chemical optimization is required that might include manipulation of the size and structure
of the ortho substituent at the benzohydroxamate moiety, changing the position and
structure of the amide linker, or changing the structure and decorations of the capping
group. The obtained results can be assessed in the light of capabilities of virtual screening
and the role it plays for hit identification and finding new scaffold leads by screening
large compound libraries, a process that is commonly followed by lead optimization. We
included the well-characterized HDAC11 inhibitor SIS17 as a reference compound in our
enzyme inhibition assay, and it showed IC50 of 0.17 µM, which is in line with reported
data [28] (Figures 4A and S6).

2.4. Analysis of the Docked Poses

Analyzing the docked poses of the confirmed hit revealed that the obtained pose of the
hit compound in the optimized HDAC11 AlphaFold model (Figure 5) showed bidentate
chelation, with distances of 2.41 Å and 2.17 Å between the zinc ion and the carbonyl and
hydroxyl oxygen atoms of the hydroxamate moiety, respectively. A salt bridge to His142
as well as hydrogen bond interactions with His143 and Tyr304 were observed. The ligand
also demonstrated π–π interactions between the phenyl ring of the benzohydroxamate and
His183. The phenoxymethyl capping group adopts a bent conformation and is directed
towards loop1. For HDAC1, the hit ligand showed a pose in which no metal chelation
was observed, as the hydroxamate moiety could not reach the zinc ion in the depth of the
binding pocket, barely reaching His178, with which the ligand forms a hydrogen bond
through the hydroxyl oxygen of the hydroxamate moiety. Another hydrogen bond was
observed between the NH of the amide linker and Asp99 side chain. In HDAC6, the
docking resulted in a flipped orientation, with the hydroxamate moiety facing the solvent,
which indicates that the ligand could not fit into the binding site. No interactions could be
observed for the obtained pose in HDAC6. The hit ligand could not show the bidentate
zinc chelation commonly observed for co-crystallized HDAC8 inhibitors.

In previous studies, we performed a structural comparison of the optimized HDAC11
AlphaFold model with HDAC6 and HDAC8 as candidates of class I and class II HDACs [32].
The comparison showed that the folding of loop 3 of HDAC11 is more similar to HDAC8,
suggesting the formation of the so-called foot pocket in HDAC11, similarly to HDAC8.
Thus, the HDAC11 model shows a large foot pocket that justifies the binding of ligands
with long alkyl chains, such as the alkyl hydrazide derivative SIS17. The entrance of the
foot pocket in HDAC11 is formed by the residues Gly139, Gly140, and Phe141, whereas in
HDAC8, the Phe141 is replaced by the bulkier residue Trp141. In HDAC6, loop 3 residues
are replaced by the bulkier Pro607 and Pro608 as well as the larger residue Arg606. In
addition, the Arg606 side chain is directed towards loop 1, forming polar interactions with
Glu50, thus causing loop 3 to fold in the opposite direction and blocking the formation of
the foot pocket in HDAC6.

Since we found that the optimized HDAC11-AlphaFold model in complex with TSA
and the lowest energy rotamer of Phe152 (flipped-out conformation) showed the best results
in docking of selective ligands such as FT895 and SIS17, we used this model for virtual
screening in the current study. To better understand the structural basis of the HDAC11
inhibition, we analyzed the shape of the binding pockets of the crystal structures and the
HDAC11 AlphaFold model. The analysis revealed that the flipping of Phe152 in HDAC11
together with the less bulky residue Phe141 as foot pocket gatekeeper allows for a wider
binding pocket that can accommodate the bulky methoxy substituent in the ortho position
of the benzohydroxamate moiety of the hit 9. Analysis of the crystal structures of HDAC1
(5ICN) and HDAC6 (5EDU) (Figure 6A,B) shows that, here, the different conformation
of this conserved phenyl alanine brings it closer to the residues from loop 1 and loop 2
(such as Tyr24 and Lys31 in HDAC1 and Glu502 in HDAC6) and narrows the pocket in
HDAC1 as well as HDAC6. As a result, this pocket cannot accommodate ortho-substituted
benzohydroxamates (no zinc chelation is possible) like the hit compound 9.



Int. J. Mol. Sci. 2024, 25, 1358 9 of 29Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW  9  of  31 
 

 

 

Figure  5. Docked  poses  of ZINC000028464438  (9).  (A) HDAC11.  (B) HDAC1.  (C) HDAC6.  (D) 

HDAC8. The protein backbone is shown as white cartoon, zinc ion as orange sphere, the binding 

site residues as grey sticks, and the ligands as sticks(green = carbon, blue = nitrogen, red = oxygen, 

grey = polar hydrogens). Coordination and hydrogen bonds are shown as yellow dashed lines, π–

π interactions as cyan dashed lines, and the ionic interactions as magenta dashed lines. 

In  previous  studies,  we  performed  a  structural  comparison  of  the  optimized 

HDAC11 AlphaFold model with HDAC6 and HDAC8 as candidates of class I and class II 

HDACs [32]. The comparison showed that the folding of loop 3 of HDAC11 is more sim-

ilar to HDAC8, suggesting the formation of the so-called foot pocket in HDAC11, similarly 

to HDAC8. Thus, the HDAC11 model shows a large foot pocket that justifies the binding 

of ligands with  long alkyl chains, such as the alkyl hydrazide derivative SIS17. The en-

trance  of  the  foot  pocket  in HDAC11  is  formed  by  the  residues Gly139, Gly140,  and 

Phe141, whereas  in HDAC8,  the Phe141  is  replaced by  the bulkier  residue Trp141.  In 

HDAC6,  loop 3  residues are  replaced by  the bulkier Pro607 and Pro608 as well as  the 

larger  residue Arg606.  In  addition,  the Arg606  side  chain  is directed  towards  loop  1, 

Figure 5. Docked poses of ZINC000028464438 (9). (A) HDAC11. (B) HDAC1. (C) HDAC6. (D) HDAC8.
The protein backbone is shown as white cartoon, zinc ion as orange sphere, the binding site residues
as grey sticks, and the ligands as sticks (green = carbon, blue = nitrogen, red = oxygen, grey = polar
hydrogens). Coordination and hydrogen bonds are shown as yellow dashed lines, π–π interactions
as cyan dashed lines, and the ionic interactions as magenta dashed lines.

The HDAC8 crystal structure 5FCW was used as an “anti-target” for virtual screening
in this study, as, to our knowledge, it has the best resolution for a wild-type human HDAC8
crystal structure co-crystallized with a hydroxamic acid. A closer look and comparison of
the docked poses of the hit compound in HDAC11 and HDAC8 show that the ligand in
the HDAC11 pocket is oriented slightly differently (Figure 6C,D), allowing for a better fit
to the ortho substitution. Another observation is that in the docking poses in HDAC8, a
considerable portion of the ligand is exposed to the solvent due to the shorter loop 1 of
HDAC8, whereas the ligand in HDAC11 is stabilized by the longer loop 1, as shown in
the MD studies. In the case of HDAC8-selective inhibitors, a more L-shaped conformation
was observed in docking studies and X-ray structures [45,55,56]. Consideration of these
observations may explain the preferential binding of the hit compound in HDAC11.
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Figure 6. Docking poses of the hit compound 9 and demonstration of the binding site shape and
size. (A) HDAC1 (PDB ID 5ICN), (B) HDAC6 (PDB ID 5EDU), (C) HDAC11 (AlphaFold model),
(D) HDAC8 (PDB ID 5FCW). The ligand is represented as stick model (green = carbon, blue = nitrogen,
red = oxygen, grey = polar hydrogens).

2.5. Molecular Dynamics Simulations

Docking methods are limited by not considering the flexibility of the protein but
treating the receptor as rigid body. On the other hand, the MD simulation technique
takes into account the flexibility of the complex, thus providing a deeper insight regarding
the binding mode of the ligand and its behavior in a dynamic environment. Therefore,
we decided to study the binding mode of the confirmed hit extensively, using short and
long MD simulations. The docking pose of the hit compound in the optimized HDAC11
AlphaFold model was subjected to three short (50 ns) molecular dynamics simulations using
different random seeds. Furthermore, a longer MD simulation (500 ns) was performed to
assess the stability of the obtained pose over a longer time scale.

In all MD simulations, the protein and the zinc ion demonstrated high stability that
could be observed through the calculated RMSD plots. The protein backbone stabilizes
between 1 Å and 2 Å while the zinc ion stabilizes at almost 1 Å (Figure 7A,B).

The results of the three independent short MD simulations were comparable. The
RMSD plot of the ligand demonstrated that there is a shift in the pose directly after the
simulation started and that the ligand stabilizes between 3 Å and 4 Å till the end of the
simulation (Figure 8A). Analyzing the RMSF of the ligand-heavy atoms showed that the
phenoxymethyl capping group is the most fluctuating substructure of the ligand, with an
RMSF reaching 2 Å (Figure 8B).
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Inspecting the MD trajectories showed that there is a slight shift of the initial docking
pose, allowing for the benzohydroxamate moiety to be accommodated deeper into the
binding pocket, which also leads to a better accommodation of the capping group through
the relaxation of the conformation (Figure 9).
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 Figure 9. Superposition of the first and last frames of ZINC000028464438 (9), showing the shift
in the pose during the simulation from the first MD run of 50 ns. The zinc ion is represented as
orange sphere, the protein backbone as cartoon, and ligand as sticks (cyan and yellow = carbon,
blue = nitrogen, red = oxygen, grey = polar hydrogens). The protein backbone and the ligand are
colored in cyan and yellow for the first and last frames, respectively.

The stability of the bidentate chelation mode was confirmed for the three runs by
monitoring the distances between the chelator atoms of the hydroxamate zinc binding
group and the zinc ion (Figure 10A,B). The salt bridge to His142 showed very high stability,
with persistence of almost 100% for the three runs. The hydrogen bond interaction to
His143 showed moderate stability, with persistence ranging between 54% and 72%. It is
worth noting that we observed similar weak to moderate stability of the hydrogen bond
interaction with His143 during MD simulation with some of the ligands we utilized for the
model optimization in our previous study, such as TSA and some of the selective docked
ligands, e.g., FT895 and MIR002 [32].

The slight shift in the pose discussed above leads to almost complete loss of the
hydrogen bond between Tyr304 and the carbonyl oxygen of the hydroxamate moiety
but allowed for the formation of another hydrogen bond between the same residue and
the oxygen of the methoxy substituent in the ortho position of the benzohydroxamate
substructure that showed high stability, with persistence ranging between 72% and 87%.
This shift in the pose also allowed for the formation of another hydrogen bond interaction
that was not observed in the initial docked pose between His183 and the carbonyl oxygen
of the amide linker; however, low stability of this interaction was observed with persistence
between 26% and 37%. (Table S2, Supplementary Materials).

The longer molecular dynamics simulation was able to confirm the stability of the
obtained pose of the hit in the HDAC11 AlphaFold model over a long time scale. Inspecting
the RMSD plot of the ligand showed that it is stabilizes between 4 Å and 5 Å (Figure 11A),
with the RMSF indicating that the substructure that fluctuates most is the phenoxymethyl
group (Figure 11B).
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for the long MD run (500 ns).

Distances between the zinc ion and the chelator atoms of the hydroxamate zinc
binding group were shown to be stable, thus confirming the bidentate chelation mode
(Figure 12A,B).
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Figure 12. (A,B) Distances to the zinc ion for the hydroxyl and the carbonyl oxygen atoms of the
hydroxamate zinc binding group, respectively, for the long MD run (500 ns).

MD simulation trajectory analysis demonstrated the same slight shift in the pose,
with the benzohydroxamate moiety inserted deeper into the binding pocket, along with
the relaxation of the phenoxymethyl capping group (Figure 13), as observed in the three
independent and shorter MD runs.
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Figure 13. Selected snapshots from the long MD simulation (500 ns) of ZINC000028464438 (9)-
HDAC11-docked pose showing the shift in the pose and fluctuation in the phenoxymethyl capping
group. (A) Frame 1. (B) Frame 1250. (C) Frame 2500. (D) Frame 5000. The protein backbone is shown
as white cartoon, zinc ion as orange sphere, the binding site residues as grey sticks, and the ligands
as atom-colored sticks (green = carbon, blue = nitrogen, red = oxygen, grey = polar hydrogens).
Coordination and hydrogen bonds are shown as yellow dashed lines and the ionic interactions as
magenta dashed lines.
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The salt bridge between the deprotonated hydroxyl oxygen of the zinc binding group
and His142 showed very high stability, with persistence of about 100%, while, for His143,
the hydrogen bond interaction with the carbonyl oxygen of the hydroxamate moiety
demonstrated average stability, with persistence of 68%. The same observations could be
made concerning the other hydrogen bond interactions during the simulation in the short
runs. The hydrogen bond interaction between the oxygen of the methoxy group in the
ortho position to the hydroxamate moiety and Tyr304 demonstrated persistence of 85%,
while for His183, a weakly stable hydrogen bond with the carbonyl of the amide linker
showing persistence of 42% could be observed. Overall, the predicted binding mode of the
hit compound demonstrated good stability during the MD simulation. The key interactions
of the zinc binding group were not affected by the slight shift of the ligand from the initial
docked pose or the fluctuation in the capping group (Figures 14 and 15).
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Metadynamics is an enhanced sampling technique that is able to capture the structural
dynamics more efficiently in limited time scale by using a history-dependent bias potential
as a function of a collective variable [57]. This process helps the system escape energy
minima and previously sampled regions, thus accelerating sampling of the entire complex
free-energy landscape.
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Binding pose metadynamics (BPMD) application [58] implemented in Schrödinger
was originally developed to rank docking poses of a single ligand in a single protein binding
site by running a series of metadynamics simulations. We utilized this methodology to
further explore the stability of the predicted binding mode observed for the hit compound
in the HDAC11 AlphaFold model.

For this purpose, and because we observed a slight shift in the original docked pose
during the classical MD simulation, we applied BPMD for the obtained docked pose and the
last frame (500 ns) of the classical MD simulation representing the equilibrated ligand pose.

The BPMD method employs the RMSD of the ligand from its initial pose as a collective
variable. The stability of the protein ligand complex is evaluated in terms of the ligand’s
RMSD fluctuations and the persistence of important contacts between the ligand and the
receptor over the course of the simulation. The PoseScore indicates the average RMSD of
the ligand, the persistence score (PersScore) indicates the persistence of the interactions
over the course of the simulation, and the composite score (CompScore) combines the
PoseScore and PersScore [58,59].

The results from BPMD demonstrated a PoseScore of 3.226 and 1.747 for the original
docked pose and the last MD frame, respectively (Figure 16). Generally, ligand poses with
a PoseScore ≤ 2 Å were considered stable [58]. The resulting PoseScore indicates that the
stabilized pose during the MD simulation is more stable when compared to the starting
docked pose, thus reinforcing the results obtained from the classical MD simulation which
showed a slight shift of the ligand during the run.
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Figure 16. Plots of the average value of the collective variable (RMSD) over the metadynamics
simulation. (A) The original docked pose and (B) the pose from last frame of the 500 ns MD
simulation, respectively, of HDAC11-ZINC000028464438 (9).

The resulting persistence of the interactions is almost equivalent for both poses and
showed a PersScore of 0.712 and 0.679 for the original docked pose and the last MD frame
pose, respectively. The results match the defined threshold of ≥0.6 [58], indicating that the
contact network was maintained during the course of the simulation. The CompScore for
the original pose and the last frame pose of the hit ligand were found to be −0.335 and
−1.647, respectively, with increasingly negative values indicating better stability.

Overall, the results from the metadynamics studies confirmed the stability of the
predicted binding pose in terms of the ligand RMSD and persistence of the observed
interactions and further supported the results from the classical MD simulations.
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3. Materials and Methods

Schrödinger Suite 2019 was used for all of the modeling work. Maestro [60] was
utilized for visualization (Release 2019-1, Schrödinger, LLC: New York, NY, USA).

All ligands were docked in the deprotonated hydroxamate form while the grids for
docking were all generated with the His142 (HDAC11 numbering) in the protonated HIP
form. According to our experience from our previous study [32], this methodology shows
better performance with the docking software used, Glide (Release 2019-1, Schrödinger,
LLC: New York, NY, USA), in terms of reproducing the bidentate chelation native poses of
the co-crystallized ligands.

3.1. Protein Preparation

All protein structures were preprocessed using Protein Preparation Wizard (Release
2019-1, Schrödinger, LLC: New York, NY, USA) [61,62] by adding hydrogen atoms and
assigning bond orders. Water molecules beyond 5 Å from the ligands were deleted and
zero order bonds to metals were added. Filling in missing side chains and loops using
Prime [63–65] was performed. Ionization states of the ligands were generated using
Epik (Release 2019-1, Schrödinger, LLC: New York, NY, USA) [66–68] at pH 7.0 ± 2.0.
The deprotonated hydroxamates form [32,69–72] was selected for further hydrogen bond
optimization. Hydrogen bond optimization was assigned with sampling water orientation,
using PROPKA (Release 2019-1, Schrödinger, LLC: New York, NY, USA) at pH 7.0.

3.2. Grid Generation

For all protein–ligand complexes, grids were generated using the Receptor Grid
Generation panel, utilizing the centroid of the ligand as the center of the grid.

3.3. Ligand Preparation

Ligands were prepared in the predominant form at pH 7, utilizing the LigPrep [73]
panel with OPLS3e force fields.

3.4. Database Acquiring and Curation
3.4.1. Acquiring Ligand Database

A focused library of benzohydroxamic acids (SMARTS=C1=CC=C(C(=O)NO)C=C1)
comprising 407,834 ligands was downloaded from https://tldr.docking.org/ using the
zinc20-all database (accessed on 1 August 2023) [49].

3.4.2. Ligand Preparation

The library was prepared using Ligprep and resulted in 510,529 structures using
OPLS2005 (Release 2019-1, Schrödinger, LLC: New York, NY, USA) [74–77]; possible states
were generated at pH 7.2 ± 2 using Epik. Specified chiralities from the original dataset
were retained.

3.4.3. Property Calculation

The rule of five properties was calculated for all ligands in the database using QikProp
(Release 2019-1, Schrödinger, LLC: New York, NY, USA) [78] properties from the Molecular
Descriptor panel.

3.4.4. Database Filtering

The prepared library was filtered to select the hydroxamate form [32,69–72] of the
ligands using a defined custom pattern of [O-]N([H])C(=O)c1ccccc1. The library was
filtered using the calculated rule of five properties, thereby discarding all structures which
showed one or more violations of the rule of five, using the Ligand Filtering panel. A total
of 18,113 compounds successfully passed the aforementioned filters.
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3.5. Virtual Screening
3.5.1. Structure-Based Pharmacophore Modeling
Pharmacophore Generation

The E-pharmacophore [79,80] hypothesis was generated using the Develop Pharma-
cophore Model panel form in Phase (Release 2019-1, Schrödinger, LLC: New York, NY,
USA) [81–83] utilizing the optimized AlphaFold TSA-HDAC11 complex with the flipped-
out Phe152 rotamer [32]. The auto E-pharmacophore method was used to specify the
maximum number of features to be generated and assign the receptor-based excluded-
volume shell.

Pharmacophore Screening

The prepared database was screened through Phase Ligand Screening panel using the
previously generated E-pharmacophore and implementing the four obtained features and
excluded volumes. Up to 50 conformers were generated during the search and specifying,
leading us to report, at most, one hit per ligand. A total of 12,154 hits successfully passed
the pharmacophore screening.

3.5.2. Docking into HDAC11 AlphaFold Model

The hits obtained from the pharmacophore screening were docked into the HDAC11
AlphaFold model using Glide (Release 2019-1, Schrödinger, LLC: New York, NY, USA) [84–87]
with standard precision and flexible ligand sampling. A total of 15 poses were sub-
jected to post-docking minimization and reporting of the top-scored pose. A total of
12,151 compounds could be successfully docked.

3.5.3. Pose Filtering

The obtained docking poses in the HDAC11 AlphaFold model were filtered using
Pose Filter panel, utilizing the distance between the carbonyl and the hydroxyl oxygens of
the hydroxamate moiety and the zinc ion while specifying maximum contact distance to be
2.6 Å. A total of 11,409 poses successfully passed the filter.

3.5.4. Docking and Pose Filtering in Other HDACs’ Isoforms

The following crystal structures were used for the docking studies in other HDAC
subtypes:

Isoform PDB ID Resolution Organism Bound Inhibitor

HDAC1 5ICN 3.30 Å Homo sapiens Hydroxamic acid inhibitor

HDAC6 5EDU 2.79 Å Homo sapiens CD2 Hydroxamic acid inhibitor

HDAC8 5FCW 1.98 Å Homo sapiens Hydroxamic acid inhibitor

Validation by Redocking of the Native Ligand

To validate the docking protocol, redocking of the co-crystallized ligands of HDAC1,
HDAC6, and HDAC8 was performed, and RMSD for the docked and the native poses was
calculated. RMSD was found to be 2.018 Å, 1.192 Å, and 0.416 Å for HDAC1, HDAC6, and
HDAC8, respectively.

Docking and Pose Filtering

The filtered poses from the HDAC11 docking results were further docked into HDAC1,
HDAC6, and HDAC8. The obtained docking poses were further subjected to Pose Filter.
Ligand docking and pose filtering were performed using the same settings as mentioned
for HDAC11. In total, 450, 9934, and 11,308 hits were successfully docked to HDAC1,
HDAC6, and HDAC8, respectively. Compounds that were able to show correct poses and
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zinc chelation in HDAC1, HDAC6, and HDAC8 were removed from the final HDAC11
inhibitor hit list.

3.6. REOS Filtering and MM-GBSA Calculations

To remove compounds with reactive groups that may interfere with biological evaluation,
rapid elimination of swill (REOS) filter was applied using structure filter in Canvas [88–90].

To prioritize the hits for further evaluation, ligand binding energies were calculated
using the molecular mechanics with Generalized Born and surface area solvation (MM-
GBSA). For this purpose, the Prime MM-GBSA panel was utilized, the variable-dielectric
Generalized Born (VSGB) solvation model was specified, and sampling was carried out by
minimizing all atoms using OPLS3e force field.

3.7. Molecular Dynamics Simulation

The predicted binding mode of the virtual screening hit of HDAC11 was further
analyzed by means of molecular dynamics simulation using the program Desmond [91,92].
The HDAC11-inhibitor complex was simulated for 50 ns, and the simulation was repeated
three times, applying different random seeds. Furthermore, a single longtime scale MD
run was performed for 500 ns. The system was solvated in SPC water model using an
orthorhombic box and a buffer distance of 10 Å distance between the solute structures
and the simulation box boundary. The box volume was then minimized. The system was
neutralized by adding chloride ions that were placed 4 Å away from the ligand.

Relaxation of the prepared system was performed using the default Desmond relax-
ation protocol for NPT ensemble followed by a production run utilizing the NPT ensemble
at 300 K using a Nosé–Hoover chain thermostat and a pressure of 1.01325 bar using
Martyna–Tobias–Klein barostat.

The Simulation Event Analysis panel was utilized for the calculation of RMSD and
distance to the zinc ion. The RMSD of the protein was calculated using the backbone atoms,
while the RMSD of the ligand and the zinc ion was calculated by fitting to the protein
backbone. The Simulation Interaction Diagram panel was used for analyzing the RMSF and
the interaction persistence of the ligands. RMSD of the protein was calculated excluding
the termini (residues: 1–14 and 321–347).

Metadynamics (implemented in the Schrödinger software, (Release 2019-1, Schrödinger,
LLC: New York, NY, USA) was used to assess the stability of the original docked pose
compared to the stabilized pose resulting from the 500 ns MD run. For this purpose,
Binding Pose Metadynamics panel was utilized, with the default settings of 10 trials per
pose each of 10 ns. Binding pose metadynamics (BPMD) application [53] implemented in
Schrödinger was originally developed to rank docking poses of a single ligand in a single
protein binding site by running a series of metadynamics simulations. We utilized this
methodology to further explore the stability of the predicted binding modes.

3.8. Chemistry
3.8.1. General

Materials and reagents were purchased from Sigma-Aldrich Co., Ltd. (St. Louis, MO,
USA) and abcr GmbH (Karlsruhe, Germany). Solvents used during the synthesis and
purification were analytically pure and dry. Thin-layer chromatography was carried out
using aluminum sheets coated with silica gel 60 F254 (Merck, Darmstadt, Germany).
For medium-pressure chromatography (MPLC), columns containing silica gel Biotage®

(Biotage, Uppsala, Sweden) SNAP ultra-HP-sphere 25 µm were used.
The purity of the hit compound was determined using high-pressure liquid chro-

matography (HPLC) (Figure S3) and was measured by UV absorbance at 254 nm. The
HPLC system consisted of two LC-10AD pumps, a SPD-M10A VP PDA detector, and a
SIL-HT autosampler from the manufacturer Shimadzu (Kyoto, Japan). For the stationary
phase, Merck LiChrospher 100 RP18, 125 mm × 4 mm, 5 µm column was used. The mobile
phase was composed of methanol, H2O, and 0.05% trifluroacetic acid.
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Mass spectrometry (MS) analyses were carried out on a Finnigan MAT710C (Thermo
Separation Products, Planegg/Martinsried, Germany) for the ESI MS spectra (Figure S4).
High-resolution mass spectrometry (HRMS-ESI) analyses were performed with an LTQ
(linear ion trap) Orbitrap XL hybrid mass spectrometer (Thermo FisherScientific, Planegg/
Martinsried, Germany) (Figure S5). Varian Inova 400 (Varian, Darmstadt, Deutschland)
was used to measure 1HNMR and 13CNMR spectra using deuterated dimethyl sulfoxide
(DMSO-d6) as solvent. Chemical shifts were referenced to the residual solvent signals
(Figures S1 and S2).

The hit compound was synthesized according to Scheme 1.
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(ii) C6H6OH/Cs2CO3/DMF/RT/18 h; (iii) LiOH.H2O/THF:H2O (50:50)/RT/1 h; (iv) 5/C2O2Cl2/
DCM/RT/2 h then 2/DIPEA/RT/overnight; (v) LiOH.H2O/THF:H2O (50:50)/RT/4 h; (vi) O-(Tetrahydro-
2H-pyran-2-yl)-hydroxylamin/HATU/DIPEA/DMF/RT/4 h; (vii) THF/aq. HCl/RT/overnight.

3.8.2. Synthesis Procedure

Methyl 5-amino-2-methoxybenzoate hydrochloride (2).
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8.06–7.95 (m, 2H), 7.77–7.70 (m, 1H), 7.33–7.23 (m, 2H), 7.06–6.97 (m, 2H), 6.97–6.88 (m, 1H),
5.22 (s, 2H), 3.87 (s, 3H). MS m/z: [M + H]+ 244; yield, 82.92%.

6-(phenoxymethyl)pyridine-2-carboxylic acid (5).
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2H). MS m/z: [M + H]+ 230; yield, 92.09%.
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mixture was then added dropwise to a solution of (0.52 g, 2.4 mmol) of 2 and N,N-
diisopropylethylamine (DIPEA) (1.09 g, 8.4 mmol) in DCM, and the mixture was stirred
overnight at room temperature. The reaction mixture was washed with saturated aqueous
solutions of ammonium chloride and sodium carbonate followed by brine. The organic
layer was then dried over anhydrous sodium sulfate and evaporated using rotary evapo-
rator. The product was purified with medium-pressure liquid chromatography (MPLC)
using mixture of n-heptane and ethyl acetate; 1H NMR (400 MHz, DMSO-d6) δ 10.51 (s,
1H), 8.19 (d, J = 2.7 Hz, 1H), 8.09–8.02 (m, 2H), 8.00 (dd, J = 9.0, 2.8 Hz, 1H), 7.73 (dd, J = 6.4,
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An amount (0.68 g, 1.7 mmol) of 6 was dissolved in a mixture of tetrahydrofuran and
water (50:50), an amount (0.355 g, 8.5 mmol) of lithium hydroxide monohydrate was added,
and the reaction mixture was stirred for 4 h at room temperature. The reaction mixture
was added dropwise to iced water and neutralized by acetic acid. The solution was then
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saturated with sodium chloride, and the solid precipitate was filtered and washed with
water; 1H NMR (400 MHz, DMSO-d6) δ 12.70 (s, 1H), 10.48 (s, 1H), 8.15 (d, J = 2.7 Hz, 1H),
8.10–8.01 (m, 2H), 7.96 (dd, J = 9.0, 2.8 Hz, 1H), 7.73 (dd, J = 6.8, 2.1 Hz, 1H), 7.34–7.26 (m,
2H), 7.12 (d, J = 9.0 Hz, 1H), 7.08–7.00 (m, 2H), 6.98–6.90 (m, 1H), 5.32 (s, 2H), 3.79 (s, 3H).
MS m/z: [M + H]+ 379,1; yield, 94.56%

N-{4-methoxy-3-[(oxan-2-yloxy)carbamoyl]phenyl}-6-(phenoxymethyl)pyridine-2-
carboxamide (8).
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A mixture of 7 (0.57 g, 1.5 mmol) and hexafluorophosphate azabenzotriazole tetram-
ethyl uronium (HATU) (0.68 g, 1.8 mmol) in DMF was stirred for 15 min, after which,
O-(tetrahydro-2H-pyran-2-yl)-hydroxylamin (0.2 g, 1.7 mmol) and DIPEA (0.58 g, 4.5 mmol)
were added and stirring was continued for 4 h. The reaction mixture was diluted with
water and extracted with ethyl acetate. The organic layer was washed with saturated
solutions of ammonium chloride and sodium carbonate followed by brine. The organic
layer was dried over anhydrous sodium sulfate and evaporated using rotary evaporator.
The product was purified using medium-pressure liquid chromatography (MPLC) using
a mixture on n-heptane and ethyl acetate; 1H NMR (400 MHz, DMSO-d6) δ 11.02 (s, 1H),
10.49 (s, 1H), 8.13–8.00 (m, 3H), 7.96 (dd, J = 8.9, 2.8 Hz, 1H), 7.73 (dd, J = 6.5, 2.3 Hz, 1H),
7.35–7.25 (m, 2H), 7.12 (d, J = 9.0 Hz, 1H), 7.08–7.00 (m, 2H), 6.99–6.91 (m, 1H), 5.32 (s,
2H), 5.06–4.96 (m, 1H), 4.08–3.97 (m, 1H), 3.82 (s, 3H), 3.55–3.44 (m, 1H), 1.81–1.62 (m, 3H),
1.60–1.44 (m, 3H). MS m/z: [M + H]+ 478.2; yield, 84.8%

N-[3-(hydroxycarbamoyl)-4-methoxyphenyl]-6-(phenoxymethyl)pyridine-2-carboxamide
(9).
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An amount (0.58 g, 1.2 mmol) of 8 was dissolved in 20 mL of tetrahydrofuran, 1 mL of
2N aqueous HCl was added, and the mixture was stirred overnight. The reaction mixture
was then added dropwise to iced water, and the precipitate was filtered and washed with
water; 1H NMR (400 MHz, DMSO-d6) δ 10.62 (s, 1H), 10.47 (s, 1H), 9.09 (s, 1H), 8.13–8.00
(m, 3H), 7.93 (dd, J = 9.0, 2.8 Hz, 1H), 7.73 (dd, J = 6.6, 2.2 Hz, 1H), 7.36–7.25 (m, 2H),
7.11 (d, J = 9.0 Hz, 1H), 7.08–7.00 (m, 2H), 6.99–6.90 (m, 1H), 5.32 (s, 2H), 3.82 (s, 3H). 13C
NMR (101 MHz, DMSO-d6) δ 163.15, 162.49, 158.44, 156.55, 153.46, 149.75, 139.36, 131.68,
130.07, 124.98, 124.01, 122.77, 122.53, 121.65, 121.52, 115.20, 112.48, 70.13, 56.35. MS m/z:
[M + H]+ 394.3, HRMS m/z: [M + H]+ 394.1394; calculated C21H20O5N3: 394.1403. HPLC:
rt 13.123 min (purity 95.755%); yield 77.43%.
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3.9. In Vitro Enzymatic Inhibition Evaluation

In the case of HDAC11, the full-length human was expressed and purified as described
in previous work [22]. A fluorescence-based HDAC11 assay was used. The fluorescence
measurements were performed using a PerkinElmer Envision 2104 multilabel plate reader
(Waltham, MA, USA) at λex = 320 nm and λem = 430 nm. The reaction mixture consisted of
HDAC11 and the fatty acid-acylated peptide substrate derived from TNFα in a reaction
buffer—comprising 50 mM HEPES, 2 mg/mL BSA, and 70 µM TCEP—at pH 7.4, which
was adjusted with NaOH (total volume 40 µL). The reactions were incubated in black
384-well plates for 30 min (scan every 30 s) at room temperature, and the increase in relative
fluorescence reflecting the product formation was monitored. Positive (HDAC11, substrate,
DMSO, and buffer) and negative controls (substrate, DMSO, and vuffer) were included in
every measurement. They were set as 100 and 0%, respectively, and the measured values
were normalized accordingly.

For HDAC1, 2, 3, 6, and HDAC6, the recombinant proteins were purchased from
ENZO Life Sciences AG (Lausen, Switzerland), whereas HDAC4–7, 9, and 10 were pro-
duced as described in previous work [93]. All inhibitors were tested in an enzymatic in vitro
assay (Table S3), as described previously, using 384-well plates (GreinerONe, catalogue no.
784900) [55,93]. After five minutes of incubation of inhibitors with the respective enzyme
(HDAC1: 10 nM, HDAC2 and 3: 3 nM, HDAC4: 5 nM, HDAC5: 10 nM, HDAC6: 1 nM,
HDAC7: 5 nM, HDAC8: 2 nM, HDAC 9: 20 nM, HDAC10: 5 nM), the reactions were
started by the addition of the substrate.

For HDAC1, 2, 3, and 6, an acetylated peptide substrate derived from p53 (Ac-
RHKK(Acetyl)-AMC) was used in a discontinuous fluorescence assay, as described previ-
ously [55]. All reactions were performed in assay buffer (20 mM HEPES, 140 mM NaCl,
10 mM MgCl2, 1 mM TCEP, and 0.2 mg/mL BSA, pH 7.4 adjusted with NaOH) at 37 ◦C.
After 1 h, the reaction was quenched by adding trypsin and SAHA. The fluorescence
intensity was measured after 1 h of incubation using an Envision 2104 Multilabel Plate
Reader (PerkinElmer, Waltham, MA, USA) with an excitation wavelength of 380 ± 8 nm
and an emission wavelength of 430 ± 8 nm.

HDAC4–7, 8, 9, and 10 were measured in a continuous manner using the thioacetylated
peptide substrate (Abz-SRGGK(thio-TFA)FFRR-NH2) which was described previously [93].
For HDAC 10, an internal quenched spermidine-like substrate was used. The fluorescence
increase was followed for 1 h with two reads per min with an excitation wavelength of
320 ± 8 nm and an emission wavelength of 430 ± 8 nm. For all measurements, positive
(enzyme, substrate, DMSO, and buffer) and negative (substrate, DMSO, and buffer) controls
were included in every measurement and were set as 100 and 0%, respectively. The
measured values were normalized accordingly.

4. Conclusions

In the current study, a structure-based pharmacophore model utilizing our previously
optimized HDAC11 AlphaFold model was generated as the preliminary step for screening
a large, focused library of benzohydroxamate compounds. The resulting hits were further
docked in an HDAC11 model and followed by pose filtration to select compounds that
could show bidentate chelation of the catalytic zinc ion. A comparative approach was then
applied by docking the hits obtained from docking in HDAC11 using different selected
HDAC isoform (HDAC1, HDAC6, and HDAC8) crystal structures and eliminating com-
pounds that showed good poses in other HDAC isoforms. This approach proved effective
in filtering the initially obtained hit compounds to find a selective ligand. The obtained
hits that showed good poses in HDAC11 but not in the other isoforms were subjected to
a final filtration step using the REOS filter, and the final hits were further prioritized by
MM-GBSA calculations. It is interesting to see that all top-ranked hits have a substituent
in ortho-position to the aromatic hydroxamate group. This ortho-substituent is sterically
accepted in the HDAC11 binding pocket only. In all other HDAC structures studied in
the current work, this substitution leads to the abolition of the correct chelation of the zinc
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ion. The experimentally confirmed selectivity for HDAC11 underpins the usefulness of the
optimized HDAC11 AlphaFold model for structure-based drug design.

Moreover, the binding mode of the confirmed hit in HDAC11 was further analyzed
by several MD simulations. MD simulation studies proved the stability of the initially
observed binding mode in terms of ligand RMSD, RMSF, bidentate chelation of the zinc
ion, and interaction stability.

In conclusion, a multistep and comparative virtual screening approach was success-
fully implemented in an attempt to identify novel selective HDAC11 inhibitors utilizing
a previously optimized HDAC11 AlphaFold model. This study experimentally verifies
the HDAC11 AlphaFold model optimization approach we adopted in our previous study.
Additionally, it confirms that AlphaFold models can be utilized for the aim of drug design
and discovery subsequent to a prior optimization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25021358/s1.
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Abstract

AlphaFold is an artificial intelligence approach for predicting the three‐dimensional

(3D) structures of proteins with atomic accuracy. One challenge that limits the use

of AlphaFold models for drug discovery is the correct prediction of folding in

the absence of ligands and cofactors, which compromises their direct use. We

have previously described the optimization and use of the histone deacetylase

11 (HDAC11) AlphaFold model for the docking of selective inhibitors such as FT895

and SIS17. Based on the predicted binding mode of FT895 in the optimized HDAC11

AlphaFold model, a new scaffold for HDAC11 inhibitors was designed, and the

resulting compounds were tested in vitro against various HDAC isoforms.

Compound 5a proved to be the most active compound with an IC50 of 365 nM

and was able to selectively inhibit HDAC11. Furthermore, docking of 5a showed a

binding mode comparable to FT895 but could not adopt any reasonable poses in

other HDAC isoforms. We further supported the docking results with molecular

dynamics simulations that confirmed the predicted binding mode. 5a also showed

promising activity with an EC50 of 3.6 µM on neuroblastoma cells.

K E YWORD S

AlphaFold, HDAC11, model optimization, molecular dynamics simulation, neuroblastoma

1 | INTRODUCTION

Histone deacetylases (HDACs) are enzymes that catalyze the removal

of the acetyl group from the lysine residue of histone protein leading

to condensed chromatin structures, a process that suppresses

transcription.[1] The HDACs family is classified into four classes.

Eleven zinc‐dependent HDACs have been identified so far and

constitute class I, class II, and class IV of the family with HDAC11

being the only member of class IV.[2] There is growing evidence that

HDAC11 is implicated in various pathophysiological processes[3,4]

including various carcinomas.[4–8] These findings establish HDAC11

as a potential target for anticancer therapeutics.

Few selective HDAC11 inhibitors have been reported in the

literature. FT895 is a hydroxamic acid‐based HDAC11 selective
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inhibitor that was reported by Forma Therapeutics[9] and could

significantly reduce non‐small cell lung cancer cell viability.[10] Recently,

Bai et al. reported the development of PB94, which also bears a

hydroxamic acid moiety as a zinc‐binding group and demonstrated a

beneficial effect in a neuropathic pain mouse model.[11] Since the

defatty‐acylase activity of HDAC11 is confirmed,[12,13] the ability

of HDAC11 to accommodate a longer alkyl chain was exploited for

the design and development of selective inhibitors as the alkyl

hydrazide derivative SIS17 which bears a 16 carbon long alkyl chain[14]

and the natural product trapoxin A analog TD034.[15]

Currently, there is no crystal structure reported for HDAC11. The

low sequence identity of the HDAC11 catalytic domain with other HDAC

family members[16,17] affects the reliability of the conventional template‐

based homology modeling. AlphaFold models, which are produced by a

neural network artificial intelligence (AI) approach, demonstrate highly

accurate predictions of the three‐dimensional (3D) protein structures

even in the absence of known similar structures.[18,19] Two studies

reported the successful utilization of AlphaFold models using AI molecular

generation methods to design novel inhibitors for cyclin‐dependent

kinase 20 (CDK20) and salt‐inducible kinase 2 (SIK2).[20,21]

However, AlphaFold models demonstrated worse performance

in several studies when assessed for docking or virtual screening in

comparison to their corresponding crystal structures[22–26] which

suggests that further refinement is required for AlphaFold models

before utilization for the aim of drug design and discovery.

We previously optimized the HDAC11 AlphaFold model[16] by

docking the zinc ion into the protein model followed by minimization in

the presence of HDAC11 inhibitors which were also found co‐crystallized

with HDAC8. Moreover, we showed that the optimized model could be

successfully used for docking of HDAC11 selective inhibitors such as

FT895 and SIS17 and was successfully utilized for virtual screening to

identify new selective HDAC11 inhibitors.[27] In the current study, we

further employed the predicted binding mode of HDAC11 inhibitors in

the AlphaFold model for the rational structure‐based design of selective

inhibitors with novel scaffolds. The developed compounds were assessed

by in vitro testing and the most active and selective compound was

evaluated for its anti‐neuroblastoma activity in cancer cells. Additionally,

we conducted a comparative docking study as well as molecular dynamics

simulations to investigate the binding mode and rationalize the detected

activity and selectivity.

2 | RESULTS AND DISCUSSION

2.1 | Structure‐based design

As shown in our previous study,[16] the predicted binding mode of the

selective inhibitor FT895 in the refined HDAC11 AlphaFold model

demonstrated the typical interactions for hydroxamic acids showing a

bidentate chelation of the zinc ion through the two oxygen atoms of

the hydroxamate moiety along with the salt bridge and two hydrogen

bond interactions with His142, His143, and Tyr304, respectively.

Additionally, the ligand was sandwiched between the side chains of

Tyr209 and Leu268 of loop 5 and loop 6, respectively with which it

formed hydrophobic interactions (Figure 1a).

To further examine the significance of the predicted binding mode of

FT895 and the applicability of the optimized model, we aimed to develop

probes bearing new scaffolds based on the observed docked pose of

FT895. In the newly designed compounds, the linear shape of the ligand

along with the ortho substitution pattern to the hydroxamic acid moiety

F IGURE 1 Representation of the structure‐based design strategy applied in the current study. (a) Docking pose of the selective ligand FT895
in the optimized HDAC11 AlphaFold model. The protein backbone appears as a white cartoon, the zinc cofactor as an orange sphere, and FT895
as green sticks. Surface loops (loops 1, 2, 5, and 6) are highlighted in yellow. Hydrogen bonds and coordination bonds are represented as grey
dashed lines and ionic interactions as magenta dashed lines. The blue arrow points towards loop1, highlighting the position for additional
structure features. (b) Schematic diagram representing the design of compound 5a based on the ligand FT895, highlighting the similarities in
linear structure along with ortho substitution and additional structural features in 5a directed toward loop 1.
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was kept, since these were considered selectivity determinants for

HDAC11. As the structure of FT895 is accommodated between the side

chains of residues Tyr209 and Leu268 of loops 5 and 6 respectively, we

thought of designing branched ligands (Figure 1b) by extending various

groups that are directed toward loop 1, thus making interactions with

loop 1 residues and blocking the binding site from both sides to maintain

selectivity and increase activity. The new scaffold was designed to be

synthetically accessible through Claisen–Schmidt condensation followed

by cyclization using substituted hydrazines, a pathway that would allow

for the chemical modification of the branching substructures and their

substitutions easily.

2.2 | Molecular docking

Docking of compound 5a was performed in the refined HDAC11

AlphaFold model as well as HDAC1, HDAC6, and HDAC8. For the

optimized HDAC11 AlphaFold model the docking was performed in

the complex minimized in the presence of trichostatin A (TSA) and using

the grid with flipped‐out Phe152 as it showed the best docking results in

our previous study.[16] The obtained pose of 5a in HDAC11, showed

bidentate chelation of the zinc ion through the two oxygen atoms of the

hydroxamate group with distances of 2.18 and 2.17Å for the hydroxyl

oxygen and the carbonyl oxygen, respectively. A salt bridge is formed

between the deprotonated oxygen of the hydroxamate and His142.

Furthermore, a hydrogen bond interaction is observed between the

carbonyl oxygen of the hydroxamate moiety and Tyr304. Additionally,

the inhibitor formed two π–π interactions through the pyrazole ring and

one terminal phenyl ring withTyr304 and Tyr209, respectively (Figure 2).

The comparison of the docking poses of 5a and FT895

(Figure 3a) shows that the benzohydroxamate moiety of 5a is

inserted deeper in the binding pocket allowing for one terminal

phenyl ring to be sandwiched between the side chains of Tyr209 and

Leu268 with which it forms hydrophobic interactions, while the other

phenyl ring attached to the pyrazole nitrogen is directed toward loop

1 and forming hydrophobic interactions with Pro36 thus fulfilling the

aim of the design. Hydrophobic interactions with Phe37, Phe152, and

Tyr304 were also observed. Docking of 5a in HDAC1 and HDAC6

(Figure 3b,c) demonstrated that the ligand could not be placed into

the binding site and failed to show effective chelation of the zinc

ion. The obtained pose of 5a in HDAC8 showed an orientation in

which the ligand was not able to chelate the zinc ion in the correct

bidentate fashion or show the interactions commonly observed for

HDAC8 co‐crystallized hydroxamic acid inhibitors (Figure 3d).

2.3 | Chemistry

Compounds were synthesized as described in Scheme 1. Starting from

the commercially available 2‐methylacetophenone 1 and by reaction with

aromatic aldehydes in the presence of alcoholic NaOH, the corresponding

chalcones 2a–bwere obtained. The chalcones were further cyclized using

substituted hydrazines in the presence of thiamine hydrochloride

as a catalyst.[28] The reaction afforded a mixture of pyrazole/pyrazoline

products. The crude product from the cyclization reaction was used

without further purification for the oxidation reaction by heating under

reflux with potassium permanganate in a mixture of water and pyridine to

afford the corresponding carboxylic acid pyrazole derivatives 3a–d. The

F IGURE 2 (a) Docked pose of 5a in HDAC11. The protein backbone appears as a white cartoon, residues as grey sticks, zinc cofactor as
orange sphere, and compound 5a as green sticks. Hydrogen bonds and coordination bonds are represented as yellow dashed lines, salt bridges
as magenta dashed lines, and π–π interactions as cyan dashed lines. (b) Two‐dimensional (2D) representation of ligand interactions for 5a in
HDAC11.
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obtained acid was then coupled with O‐(tetrahydro‐2H‐pyran‐2‐yl)‐

hydroxylamine (THP‐hydroxylamine) in the presence of hexafluoropho-

sphate azabenzotriazole tetramethyl uronium (HATU) and using N,N‐

diisopropylethylamine (DIPEA) as a base to afford the corresponding

THP‐protected derivatives 4a–d, which were subsequently de‐protected

using aqueous HCl in THF to afford the final hydroxamic acid

products 5a–d.

2.4 | In vitro enzymatic evaluation and
anti‐neuroblastoma activity

The four synthesized compounds were first screened for their

enzymatic inhibitory activity at 10 µM concentration against the

main target, HDAC11. The screening was also performed for

HDAC1, HDAC6, and HDAC8 as representative candidates from

class I and class II HDACs. For HDAC1 and HDAC6 no inhibition

could be observed for all compounds. For HDAC11, the

compounds demonstrated inhibition percent ranging between

79% and 98%. For HDAC8 weak inhibition between 30% and 65%

was observed (Figure 4a, Table 1). Profiling the IC50 values of the

four compounds for HDAC11 showed that the most active

compound is 5a demonstrating an IC50 value of 365 ± 16 nM,

while the IC50 values of the other three compounds are in the

micromolar range between 3 and 4 µM (Figure 4b, Table 2).

Interestingly the most active compound 5a is also the most

selective one showing only around 30% inhibition of HDAC8.

Furthermore, we screened compound 5a against all other

F IGURE 3 (a) Superposition of the docked poses of FT895 and 5a in HDAC11 highlighting the difference in the orientation of the
benzohydroxamate and the position of the terminal phenyl ring extension. Docked poses of 5a in (b) HDAC1 (PDB 5ICN), (c) HDAC6 (PDB
5EDU), and (d) HDAC8 (PDB 5FCW). The protein backbone appears as a white cartoon, residues as grey sticks, zinc cofactor as an orange
sphere, compound 5a as green sticks, and FT895 as cyan sticks.
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SCHEME 1 Synthesis of target compounds. Reagents and conditions: (i) Alcoholic NaOH/RT/overnight; (ii) NH2NHR1/Thiamine.
HCl/ethanol/RT/overnight; (iii) KMnO4/H2O:pyridine (50:50)/reflux/48 h; (iv) DMF/hexafluorophosphate azabenzotriazole tetramethyl uronium
(HATU)/N,N‐diisopropylethylamine (DIPEA)/RT/3‐4 h; (v) THF/aq. HCl/RT/overnight. DMF; dimethylformamide.

F IGURE 4 (a) Percentage inhibition of HDAC1, HDAC6, HDAC8, and HDAC11 enzyme activity at 10 µM inhibitor concentration. (b) IC50

curve of the best candidate 5a for HDAC11.
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isoforms of HDACs and no or very weak inhibition could be

observed (Figure 5). When comparing the IC50 with the

previously reported HDAC11 inhibitor FT895, it is important to

consider the variation in IC50 when using different substrates for

the evaluation of the inhibitory activity. FT895 showed an

HDAC11 IC50 value of 0.003 µM[9] when using a nonnative

triflouroacetyl lysine substrate and an IC50 value of 0.74 µM[14]

when using a myristoyl‐H3K9 peptide which is more similar to the

physiologic substrate. The HDAC11 in vitro assay used in the

current work also utilized a long alkyl chain acylated peptide.[12]

As a reference, we included the reported HDAC11 selective

inhibitor SIS17 in our assay and measured an IC50 value of

0.17 µM. Thus our results show that 5a has a similar in vitro

activity compared with FT895 and SIS17 and retained promising

selectivity. Interestingly the results from the in vitro enzymatic

evaluation for 5a are in agreement with the results from the

docking study which further reflects the success of the adopted

structure‐based design approach.

Since the depletion of HDAC11 in MYCN‐driven neuroblastoma

cells was reported to induce cell death through caspase‐mediated

apoptosis[29] we further evaluated compound 5a for its anti‐

neuroblastoma activity using the BE(2)‐C neuroblastoma cell line.

Interestingly the compound showed promising activity as it could

inhibit the viability of the neuroblastoma cells with an EC50 value of

about 3.6 µM. We also tested the reported inhibitor SIS17 for its

effect in the BE(2)‐C neuroblastoma cell line and measured a weaker

inhibition (EC50 > 10.0 µM).

2.5 | Molecular dynamics simulations

To validate the observed binding mode of 5a in the HDAC11 AlphaFold

model, three independent short (50 ns) as well as single long (500 ns)

molecular dynamics (MD) simulations were conducted. Analyzing the root

mean square deviation (RMSD) plots of the short runs showed that the

protein‐backbone atoms are stabilizing between 1 and 2Å while the zinc

ion is stabilizing at about 1Å (Figure 6a,b). The root mean square

fluctuation (RMSF) plots (Supporting Information S2: Figure S3) of the

protein backbone show fluctuations slightly above 2Å for loop 1 and loop

2, while for loop 5 and loop 6, fluctuations below 2Å are observed.

Similar behavior of these surface loops was observed in our previous

study.[16] It is worth noting that such RMSF values can be expected for

long loops that are solvent‐exposed. The ligand RMSD is similar for the

three runs and is stabilizing at about 2Å all over the simulation time

indicating a stable pose (Figure 6c). Inspecting the ligand RMSF plots

confirmed the observed stability as all the ligand heavy atoms are

fluctuating below 2Å with the capping phenyl rings being the most

fluctuating substructure (Figure 6d).

Interaction persistence showed very high stability for the salt

bridge to His142 with persistence percent above 95% for the three

independent runs, while the stability of the hydrogen bond to Tyr304

was also confirmed with persistence percent ranging between 76%

and 88% (Supporting Information S2: Table S1, Figures S4 and S5).

The stability of the bidentate chelation mode observed initially in

the docked pose was confirmed by monitoring the stability of the

distance between the two chelator oxygen atoms of the zinc‐binding

group and the zinc ion (Figure 7).

The RMSD plots of the protein and zinc ion obtained from the

long molecular dynamics simulation are comparable to the short runs

(Figure 8a) with the ligand RMSD stabilizing at 2 Å. The ligand RMSF

plots showed that the most fluctuating substructures are the terminal

phenyl capping groups (Figure 8b and Supporting Information S2:

Figure S6 and S7) while the bidentate chelation was found to be

stable all over the simulation (Figure 8c,d).

In the long‐scale molecular dynamic simulation, the salt bridge

stability to His142 was also confirmed with a persistence percent of

about 94%, however, the persistence percent for the hydrogen bond

interaction with Tyr304 decreased to 38% (Supporting Information S2:

Table S1, Figures S4, and S5). It is worth noting that such behavior of the

hydrogen bond interaction with this conserved tyrosine residue was

TABLE 1 Percent inhibition of enzymatic activity at 10 µM concentration of compounds 5a‐d for HDAC1, HDAC6, HDAC8, and HDAC11.

Percent inhibition at 10 µM
HDAC1 HDAC6 HDAC8 HDAC11

Compound R R1 % SDa % SDa % SDa % SDa

5a H C6H5 4.0 0.08 0 0.43 31.0 2.71 98.1 0.36

5b H CH3 0 1.32 0 6.42 46.7 1.61 79.5 1.15

5c Cl C6H5 0 1.5 0 9.1 58.5 1.73 86.5 0.9

5d Cl CH3 0.7 1.86 2.4 3.09 65.0 2.91 87.9 0.98

aStandard deviation, all tests were done in three replicates.

TABLE 2 IC50 values of the synthesized inhibitors in nM for
HDAC11.

Compound IC50 HDAC11 (nM) SDa

5a 365 16

5b 4000 517

5c 3100 491

5d 3900 593

SIS17 170 20

aStandard deviation, all test were done in three replicates.
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F IGURE 6 RMSD and RMSF plots of 5a for three independent MD runs each for 50 ns. (a) RMSD plots of protein backbone heavy atoms.
(b) RMSD plots of zinc ion. (c) RMSD plots of 5a heavy atoms. (d) RMSF plots of 5a heavy atoms. MD, molecular dynamics; RMSD, root mean
square deviation; RMSF, root mean square fluctuation.

F IGURE 5 Percent inhibition at 10 µM concentration for SIS17 and compound 5a for all histone deacetylase (HDAC) subtypes.

F IGURE 7 Distances to the zinc ion for three independent MD runs each for 50 ns. (a) and (b) are the hydroxyl and the carbonyl oxygen
atoms of the zinc‐binding group, respectively. MD, molecular dynamics.

BASELIOUS ET AL. | 7 of 13
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observed before in our previous study[16] and other studies[30] due to

side‐chain flexibility.[31,32]

Additionally, the hydrophobic interactions of the ligand were

monitored throughout the simulation. For the three short MD simula-

tions, 5a showed hydrophobic interactions with Phe37 in loop 1 and

Tyr209 in loop 5 that demonstrated good stability with persistence

ranging between 50% and 75%. Moreover, highly persistent hydrophobic

interactions with Phe152 and Tyr304 were observed (Supporting

Information S2: Figure S8). While the ligand could initially form

hydrophobic interactions with Pro36 of loop 1 and Leu268 of loop 6 in

the obtained docking pose, these interactions were not stable during the

MD simulation. This instability might be due to the flexibility of the

terminal phenyl rings as observed in the RMSF plots (Figures 6d, 8b and

Supporting Information S2: Figure S7). For the long MD simulation, the

persistence of the hydrophobic interactions with Phe37 and Tyr209

decreased to approximately 10%–30%. However, the hydrophobic

interactions of the ligand with Phe152 and Tyr304 could maintain high

stability in the long MD run. Overall, the results from the MD simulations

supported the results obtained from the ligand docking study.

3 | CONCLUSION

To summarize, the previously optimized HDAC11 AlphaFold model was

utilized for the structure‐based design of new active and selective probes

bearing a novel scaffold by using the docked pose of the previously

reported selective inhibitor FT895. Four compounds were synthesized

and were first screened for inhibitory activity against different HDAC

isoforms. Determining the IC50 for HDAC11 showed compound 5a to be

the most active and selective compound with an IC50 value of 365 nM for

HDAC11 and no inhibition or weak inhibition for other HDAC subtypes

at 10µM concentration. Compound 5a also possessed promising anti‐

neuroblastoma activity with EC50 of 3.6µM. Docking of 5a in the

optimized HDAC11 AlphaFold model showed a comparable binding

mode to FT895 with the benzohydroxamic acid moiety of 5a being

inserted deeper in the binding pocket while one terminal phenyl ring is

accommodated between the side chains of Tyr209 and Leu268 of loop 5

and loop 6 and the other terminal phenyl ring is directed toward loop 1

forming hydrophobic interactions thus fulfilling the aim of the initial

design. The binding mode in terms of stability of the initially observed

interactions and bidentate chelation was further validated using three

independent short as well as single‐long molecular dynamic simulations.

Given the observed promising activity and selectivity of com-

pound 5a, additional chemical optimization is still to be considered to

improve activity and selectivity. While compound 5a interestingly

demonstrated promising inhibition of cell viability of neuroblastoma

cells, more investigations regarding the involvement of HDAC11 and

the use of HDAC11 inhibitors in neuroblastoma cells are required.

In conclusion, the utilization of the optimized HDAC11 Alpha-

Fold model for the structure‐based design of new selective inhibitors

with cellular activity was successful. The results of the current

study show the possibility of using optimized AlphaFold models for

the structure‐based design of new lead structures and reflect the

significance of the optimization procedure we previously adopted.

4 | EXPERIMENTAL

4.1 | Computational modelling

The computational modeling was performed using Schrödinger Suite

2019 and Maestro[33] for visualization.

F IGURE 8 (a) RMSD plots of the protein backbone heavy atoms, zinc ion, and 5a heavy atoms for the long MD run (500 ns). (b) RMSF plots
of the 5a heavy atom for the long MD run (500 ns). (c) and (d) are distances between the zinc ion and the hydroxyl and the carbonyl oxygen
atoms of the zinc‐binding group, respectively, for the long MD runs (500 ns). MD, molecular dynamics; RMSD, root mean square deviation;
RMSF, root mean square fluctuation.
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4.1.1 | Protein preparation

Protein structures were prepared using the Protein Preparation

Wizard[34,35] by adding hydrogen atoms and assigning bond orders.

Zero‐order bonds to metals were generated and water molecules

(when available in the X‐ray structure) 5 Å away from the ligands

were removed. Ionization states of the ligands were generated using

Epik[36–38] at pH 7.0 ± 2.0. The hydroxamate[16,39–42] form of the

ligands was selected for further hydrogen bond optimization.

Hydrogen bond optimization was assigned specifying the protonated

state of His142 (HDAC11 numbering) in the HIP form with sampling

water orientation and using PROPKA at pH 7.0.

4.1.2 | Ligand preparation

The designed compounds and the co‐crystallized ligands were prepared

using LigPrep[43] panel with OPLS3e[44–47] force fields. The compounds

were prepared in the deprotonated hydroxamate form.

4.1.3 | Docking

The binding mode of the most active and selective compound 5a

was studied by docking. Receptor grids were generated using

the Receptor Grid Generation panel utilizing the centroid of the

co‐crystallized ligands. All grids were generated with the protonated

His142 in HIP state. Docking was performed using Glide[48–51] with

specifying standard precision mode and flexible ligand sampling

utilizing the OPLS3e force field. For HDAC11, docking was

performed in the grid obtained from the TSA‐HDAC11 AlphaFold

model complex with flipped‐out Phe152.[16] For the other HDAC

isoforms, the following crystal structures were used: HDAC1 (PDB

5ICN), HDAC6 (PDB 5EDU), and HDAC8 (PDB 5FCW).

Redocking of the co‐crystallized ligands was performed to

validate the docking protocol. The RMSD for the docked and the

native poses were found to be 2.018, 0.763, and 0.369 Å for HDAC1,

HDAC6, and HDAC8, respectively.

The docking of all ligands was performed using the default

settings in the Glide panel (Schrödinger Suite 2019) by including five

poses per ligand for postdocking minimization and reporting the top‐

scored pose.

4.1.4 | Molecular dynamics simulation

The initially predicted binding mode of 5a was further studied by

molecular dynamics simulations using Desmond software.[52,53] The

protein–ligand complex was solvated in the simple point charge

water model. Orthorhombic box shape and buffer distance of 10 Å

were specified as boundary conditions. The box volume was then

minimized and neutralization of the system was performed by the

addition of chloride ions 4 Å away from the ligand.[27]

The solvated protein–ligand complex was relaxed using the

default Desmond relaxation protocol for the isobaric‐isothermal

(NPT) ensemble followed by a production run utilizing the NPT

ensemble at a pressure of 1.01325 bar using Martyna–Tobias–Klein

barostat and temperature of 300 K using a Nose–Hoover chain

thermostat.[27]

The Simulation Event Analysis panel was employed to calculate

the RMSD and the distances. For the protein RMSD, the backbone

atoms were used. The ligand and zinc ion were fitted to the protein

backbone before calculating their RMSD values. The RMSF and the

interaction persistence of the ligand were calculated using the

Simulation Interaction Diagram panel. The termini of the protein

(residues: 1–14 and 321–347) were excluded from the RMSD and

RMSF calculations.[27]

4.2 | Chemistry

4.2.1 | General

Materials and reagents were purchased from Sigma‐Aldrich Co. Ltd

and abcr GmbH. Analytically pure and dry solvents were used. Thin

layer chromatography was performed on aluminum sheets coated

with silica gel 60 F254 (Merck). For medium pressure chromatogra-

phy (MPLC), silica gel Biotage® (Biotage) SNAP ultra‐HP‐sphere

25 µm containing columns were used.[27]

The purity of the final synthesized compounds was assessed

using high‐pressure liquid chromatography (HPLC) and employing a

UV detector at a wavelength of 254 nm. The HPLC system employed

two LC‐10AD pumps, an SPD‐M10A VP PDA detector, and a SIL‐HT

autosampler, all from the manufacturer Shimadzu. Merck LiChro-

spher 100 RP18, 125mm x 4mm, 5 µm column was used. The mobile

phase composition was Methanol, H2O, and 0.05% trifluroacetic

acid.[27]

High‐resolution mass spectrometry (HRMS‐ESI) analyses were

performed with an LTQ(linear ion trap) Orbitrap XL hybrid mass

spectrometer (Thermo Fisher Scientific). 1HNMR and 13CNMR

spectra were taken on a Varian Inova 400using deuterated dimethyl

sulfoxide (DMSO‐d6) as solvent.[27] Residual solvent signals were

used as a reference for the chemical shifts.

The InChI codes of the investigated compounds, together with

some biological activity data, are provided as Supporting Information.

4.2.2 | General procedures for the synthesis
of chalcones (2a,b)

A mixture of equimolar amounts (25mmol) of 2‐methylacetophenone

1 and the appropriate aromatic aldehyde in absolute ethanol (25mL)

containing NaOH (25mmol), was stirred at room temperature

overnight. In the case of benzaldehyde, the reaction mixture was

diluted with water and extracted with ethyl acetate. The organic layer

was dried over anhydrous sodium sulfate, filtered, and evaporated

BASELIOUS ET AL. | 9 of 13
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under vacuum to afford yellow oil as product 2a. In the case of

3,4‐dichlorobenzaldehyde the solid precipitate was filtered, and

washed with methanol to afford yellow powder as product 2b.

(2E)‐1‐(2‐Methylphenyl)‐3‐phenylprop‐2‐en‐1‐one (2a): Yellow oil,
1H NMR (400MHz, DMSO‐d6) δ 7.78–7.71 (m, 2H), 7.62–7.57 (m,

1H), 7.51–7.35 (m, 6H), 7.34–7.28 (m, 2H), 2.35 (s, 3H). Yield, 67.87%.

(2E)‐3‐(3,4‐Dichlorophenyl)‐1‐(2‐methylphenyl)prop‐2‐en‐1‐one

(2b): Yellow powder, 1H NMR (400MHz, DMSO‐d6) δ 8.13 (d,

J = 2.0 Hz, 1H), 7.80–7.73 (m, 1H), 7.71–7.61 (m, 2H), 7.57–7.39 (m,

3H), 7.36–7.26 (m, 2H), 2.37 (s, 3H). Yield, 72.16%.

4.2.3 | General procedures for the synthesis
of pyrazol‐3‐yl‐benzoic acids (3a–d)

A mixture of equimolar amounts (3.5 mmol) of the appropriate

chalcone 2a–b and substituted hydrazine in absolute ethanol was

stirred overnight in the presence of catalytic amounts (100mg) of

thiamine HCL. The reaction mixture was diluted with water and

extracted with ethyl acetate. The organic layer was dried over

anhydrous sodium sulfate, filtered, and evaporated under reduced

pressure to afford orange‐yellow oil as a product.

The obtained crude product, without further purification, was

dissolved in a mixture of water and pyridine (50:50). The mixture

was heated under reflux and an excess of potassium per-

manganate (18 mmol) was added portion‐wise. Heating under

reflux was continued for 48 h. The reaction mixture was then

cooled and filtered. The filtrate was neutralized with concen-

trated HCl affording the product as solid precipitate. The

obtained precipitate was then filtered and dried. For purification,

the obtained solid was dissolved in a warm aqueous solution of

sodium hydroxide. The solution was filtered and re‐acidified by

aqueous HCl. The obtained solid was then filtered and dried to

afford the products 3a–d.

2‐(1,5‐Diphenyl‐1H‐pyrazol‐3‐yl)benzoic acid (3a): White solid,
1H NMR (400MHz, DMSO‐d6) δ 12.86 (s, 1H), 7.76 (dd, J = 7.8,

1.2 Hz, 1H), 7.61–7.52 (m, 2H), 7.48–7.33 (m, 7H), 7.32–7.21 (m, 4H),

6.87 (s, 1H). Yield, 51.2%.

2‐(1‐Methyl‐5‐phenyl‐1H‐pyrazol‐3‐yl)benzoic acid (3b): White

solid, 1H NMR (400MHz, DMSO‐d6) δ 12.84 (s, 1H), 7.70–7.65 (m,

1H), 7.57–7.47 (m, 6H), 7.46–7.42 (m, 1H), 7.40–7.37 (m, 1H), 6.57

(s, 1H), 3.86 (s, 3H). Yield, 60.57%.

2‐[5‐(3,4‐Dichlorophenyl)‐1‐phenyl‐1H‐pyrazol‐3‐yl]benzoic

acid (3c): Yellow solid, 1H NMR (400MHz, DMSO‐d6) δ 12.86 (s, 1H),

7.73 (dd, J = 7.8, 1.3 Hz, 1H), 7.65–7.50 (m, 4H), 7.49–7.36 (m, 4H),

7.35–7.29 (m, 2H), 7.14 (dd, J = 8.4, 2.1 Hz, 1H), 7.00 (s, 1H).

Yield, 61.08%.

2‐[5‐(3,4‐Dichlorophenyl)‐1‐methyl‐1H‐pyrazol‐3‐yl]benzoic

acid (3d): White solid, 1H NMR (400MHz, DMSO‐d6) δ 12.83 (s, 1H),

7.86 (d, J = 2.1 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.65 (dd, J = 7.8,

1.3 Hz, 1H), 7.59–7.47 (m, 3H), 7.43–7.35 (m, 1H), 6.68 (s, 1H), 3.89

(s, 3H). Yield, 52.67%.

4.2.4 | General procedures for amide
coupling (4a–d)

A mixture of the obtained acid 3a–d (1.3mmol) and HATU (1.3mmol)

in dimethylformamide (DMF) was stirred for 15min after which

O‐(tetrahydro‐2H‐pyran‐2‐yl)‐hydroxylamine (1.4mmol) and DIPEA

(3.9mmol) were added and stirring was continued for 3–4 h. The reaction

mixture was diluted with water and extracted with ethyl acetate. The

organic layer was washed with saturated solutions of ammonium chloride

and sodium carbonate followed by brine. The organic layer was dried over

anhydrous sodium sulfate and evaporated under reduced pressure. The

product was purified by medium‐pressure liquid chromatography (MPLC)

using a gradient of ethyl acetate/n‐heptane.

2‐(1,5‐Diphenyl‐1H‐pyrazol‐3‐yl)‐N‐(oxan‐2‐yloxy)benzamides

(4a): White solid, 1H NMR (400MHz, DMSO‐d6) δ 11.48 (s, 1H),

7.93–7.86 (m, 1H), 7.56–7.48 (m, 1H), 7.45–7.28 (m, 10H), 7.27–7.20

(m, 2H), 6.92 (s, 1H), 5.03 (t, J = 3.0 Hz, 1H), 3.98–3.88 (m, 1H),

3.37–3.31 (m, 1H), 1.72–1.59 (m, 3H), 1.53–1.41 (m, 3H).

Yield 81.5%.

2‐(1‐Methyl‐5‐phenyl‐1H‐pyrazol‐3‐yl)‐N‐(oxan‐2‐yloxy)

benzamides (4b): White solid, 1H NMR (400MHz, DMSO‐d6) δ

11.43 (s, 1H), 7.80 (dd, J = 7.9, 1.2 Hz, 1H), 7.54–7.43 (m, 6H),

7.38–7.33 (m, 1H), 7.32–7.28 (m, 1H), 6.66 (s, 1H), 5.06 (t,

J = 2.8 Hz, 1H), 3.98–3.90 (m, 1H), 3.87 (s, 3H), 3.42–3.35 (m, 1H),

1.73–1.62 (m, 3H), 1.53–1.43 (m, 3H). Yield 71.6%.

2‐[5‐(3,4‐Dichlorophenyl)‐1‐phenyl‐1H‐pyrazol‐3‐yl]‐N‐(oxan‐2‐

yloxy)benzamides (4c): White solid, 1H NMR (400MHz, DMSO‐d6) δ

11.49 (s, 1H), 7.87 (dd, J = 7.8, 1.2 Hz, 1H), 7.61 (d, J = 8.4 Hz, 1H),

7.56 (d, J = 2.1 Hz, 2H), 7.48–7.31 (m, 7H), 7.09 (dd, J = 8.4, 2.1 Hz,

1H), 7.04 (s, 1H), 5.06 (t, J = 2.8 Hz, 1H), 4.01–3.92 (m, 1H),

3.42–3.32 (m, 1H), 1.73–1.60 (m, 3H), 1.55–1.43 (m, 3H).

Yield 77.2%.

2‐[5‐(3,4‐Dichlorophenyl)‐1‐methyl‐1H‐pyrazol‐3‐yl]‐N‐(oxan‐2‐

yloxy)benzamides (4d): White solid, 1H NMR (400MHz, DMSO‐d6) δ

11.46 (s, 1H), 7.83 (d, J = 2.1 Hz, 1H), 7.80–7.74 (m, 2H), 7.55 (dd,

J = 8.4, 2.1 Hz, 1H), 7.51–7.44 (m, 1H), 7.40–7.34 (m, 1H), 7.33–7.28

(m, 1H), 6.76 (s, 1H), 5.10 (t, J = 2.5 Hz, 1H), 4.03–3.93 (m, 1H), 3.90

(s, 3H), 3.46–3.37 (m, 1H), 1.75–1.66 (m, 3H), 1.55– 1.47 (m, 3H).

Yield 70.7%.

4.2.5 | General procedures for THP
de‐protection (5a–d)

The respective THP‐protected hydroxamic acid 4a–d (0.8 mmol) was

dissolved in 20mL of tetrahydrofuran, 1mL of 2N aqueous HCl was

added, and the mixture was stirred overnight. The reaction mixture

was diluted with water and extracted with ethyl acetate. The organic

layer was dried over anhydrous sodium sulfate and evaporated under

reduced pressure. The product was purified by medium‐pressure

liquid chromatography (MPLC) using a gradient elution with methanol

and dichloromethane.
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2‐(1,5‐Diphenyl‐1H‐pyrazol‐3‐yl)‐N‐hydroxybenzamide (5a):

White solid, 1H NMR (400MHz, DMSO‐d6) δ 10.91 (s, 1H), 9.12

(s, 1H), 7.92 (dd, J = 7.8, 1.3 Hz, 1H), 7.52–7.46 (m, 1H), 7.44–7.30

(m, 10H), 7.26–7.22 (m, 2H), 6.84 (s, 1H). 13C NMR (101MHz,

DMSO‐d6) δ 166.73, 149.98, 143.76, 140.03, 134.43, 131.04,

130.35, 129.88, 129.50, 129.07, 128.98, 128.94, 128.72, 128.43,

128.14, 125.48, 107.88. HRMS m/z: [M + H] + 356.1399; calculated

C22H18O2N3: 356.1399. HPLC: rt 12.966 min (purity 99.60%).

Yield 10.6%.

N‐Hydroxy‐2‐(1‐methyl‐5‐phenyl‐1H‐pyrazol‐3‐yl)benzamides

(5b): White solid, 1H NMR (400MHz, DMSO‐d6) δ 10.82 (s, 1H), 9.04

(s, 1H), 7.84 (dd, J = 7.9, 1.3 Hz, 1H), 7.57–7.41 (m, 6H), 7.36–7.30 (m,

1H), 7.29–7.25 (m, 1H), 6.59 (s, 1H), 3.88 (s, 3H). 13C NMR (101MHz,

DMSO‐d6) δ 166.80, 147.85, 144.20, 134.14, 131.55, 130.41,

129.73, 129.26, 128.96, 128.90, 128.57, 128.11, 127.58, 105.73,

38.11. HRMS m/z: [M +H] + 294.1237; calculated C17H16O2N3:

294.1243. HPLC: rt 11.091min (purity 96.93%). Yield 38.6%.

2‐[5‐(3,4‐Dichlorophenyl)‐1‐phenyl‐1H‐pyrazol‐3‐yl]‐N‐

hydroxybenzamide (5c): White solid, 1H NMR (400MHz, DMSO‐

d6) δ 10.91 (s, 1H), 9.11 (s, 1H), 7.90 (dd, J = 7.8, 1.3 Hz, 1H), 7.62

(d, J = 8.4 Hz, 1H), 7.55 (d, J = 2.1 Hz, 1H), 7.52–7.32 (m, 8H), 7.13

(dd, J = 8.4, 2.1 Hz, 1H), 6.92 (s, 1H). 13C NMR (101MHz, DMSO‐

d6) δ 166.62, 150.16, 141.22, 139.57, 134.46, 131.85, 131.67,

131.23, 130.80, 130.79, 130.59, 129.93, 129.72, 129.06, 128.72,

128.54, 128.45, 128.31, 125.66, 108.47. HRMS m/z: [M + H]

424.0613; calculated C22H16O2N3Cl2: 424.0620. HPLC: rt

14.541 min (purity 99.33%). Yield 12.6%.

2‐[5‐(3,4‐Dichlorophenyl)‐1‐methyl‐1H‐pyrazol‐3‐yl]‐N‐

hydroxybenzamide (5d): White solid, 1H NMR (400MHz, DMSO‐

d6) δ 10.83 (s, 1H), 9.06 (s, 1H), 7.85–7.80 (m, 2H), 7.77 (d,

J = 8.3 Hz, 1H), 7.56 (dd, J = 8.3, 2.1 Hz, 1H), 7.49–7.42 (m, 1H),

7.38–7.32 (m, 1H), 7.30–7.26 (m, 1H), 6.66 (s, 1H), 3.90 (s, 3H).
13C NMR (101MHz, DMSO‐d6) δ 166.67, 148.00, 141.75, 134.17,

132.07, 131.77, 131.42, 131.30, 130.92, 130.57, 129.78, 129.09,

128.56, 128.15, 127.74, 106.34, 38.27. HRMS m/z: [M + H]+

362.0460; calculated C17H14O2N3Cl2: 362.0463. HPLC: rt

13.398 min (purity 96.741%). Yield 37.0%.

4.3 | In vitro enzymatic assay

Human HDAC11 full‐length protein was expressed and purified

as described.[13] A fluorescence‐based HDAC11 enzymatic assay

was used.[27] For the fluorescence measurements, a PerkinElmer

Envision 2104 multilabel plate reader was used at λex = 320 nm

and λem = 430 nm. The reaction mixture consisted of HDAC11,

and the acylated peptide substrate derived from tumor necrosis

factor‐α (TNF‐α) in a reaction buffer comprising 50 mM HEPES,

2 mg/mL BSA, and 70 µMTCEP, and at pH 7.4 which was adjusted

with NaOH (total volume 40 μL).[27] The reactions were incubated

in black 384‐well plates for 30 min (scan every 30 s) at room

temperature, and the increase of relative fluorescence reflecting

the product formation was monitored. As a reference for

HDAC11 inhibitors, we used the reported compound SIS17

(purchased from MedChemExpress LLC, 1 Deer Park Dr, Suite

Q, Monmouth Junction, NJ 08852, USA).

For HDAC1, 2, 3, and HDAC6 the recombinant proteins were

purchased from ENZO Life Sciences AG (Lausen, CH) whereas

HDAC4, 5, 7, 9, and 10 were produced as described.[54] Human

HDAC8 was produced as described.[55] The inhibitors were tested in

an enzymatic in vitro assay using 384‐well plates (GreinerONe,

catalogue no. 784900).[27,55] After 5 min of incubation of the

inhibitors with the respective enzymes (HDAC1 = 10 nM, HDAC2

and 3 = 3 nM, HDAC4 = 5 nM, HDAC5 = 10 nM, HDAC6 = 1 nM,

HDAC7 = 5 nM, HDAC8 = 2 HDAC 9 = 20 nM, HDAC10 = 5 nM), the

reactions were always started by the addition of substrate.

For HDAC1, 2, 3, and 6, an acetylated peptide substrate derived

from p53 (Ac‐RHKK(Acetyl)‐AMC) was used in a discontinuous

fluorescence assay.[54] All reactions were performed in assay buffer

(20mM HEPES, 140mM NaCl, 10mM MgCl2, 1mM TCEP, and

0.2mg/mL BSA, pH 7.4 adjusted with NaOH) at 37°C. The reaction

was quenched after 1 h by adding trypsin and suberoylanilide

hydroxamic acid (SAHA). The fluorescence intensity was measured

after 1 h of incubation using an Envision 2104 Multilabel Plate Reader

(PerkinElmer), with an excitation wavelength of 380 ± 8 nm and an

emission wavelength of 430 ± 8 nm. HDAC4, 5, 7, 8, 9, and 10 were

measured in a continuous manner using the thio‐acetylated peptide

substrate (Abz‐SRGGK(thio‐TFA)FFRR‐NH2).[54] For HDAC10, an

internal quenched spermidine‐like substrate was utilized. The fluores-

cence increase was followed for 1 h with two reads per min with an

excitation wavelength of 320 ± 8 nm and an emission wavelength of

430 ± 8 nm. Positive (enzyme, substrate, DMSO, and buffer) and

negative (substrate, DMSO, and Buffer) controls were included in

every measurement and were set as 100% and 0%, respectively and

the measured values were normalized accordingly. All tests were done

in three replicates.

4.4 | Anti‐neuroblastoma evaluation

BE(2) C (ATCC, CRL‐2268) cells were cultured in a 1:1 mixture of

DMEM/F12 (with HEPES, Gibco) and eagle`s minimum essential

medium (ATCC) supplemented with 10% fetal bovine serum (FBS).

Cells were grown at 37°C and 5% CO2. BE(2) C cells were

authenticated at Eurofins Genomics by 16 independent polymerase

chain reaction (PCR) systems (D8S1179, D21S11, D7S820, CSF1PO,

D3S1358, TH01, D13S317, D16S539, D2S1338, AMEL, D5S818,

FGA, D19S433, vWA, TPOX and D18S51). Subsequently, a progres-

sive dilution series of the tested inhibitor was executed, and these

solutions were added to the cells alongside dimethyl sulfoxide

(DMSO) as a control condition. Following a 72 h treatment duration,

the cell viability was quantified and adjusted relative to the DMSO

control. The determination of EC50 values was achieved through the

utilization of GraphPad Prism software (version 10.1.1) employing

nonlinear regression analysis. The tests were carried out in four

replicates.
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4.1. Abstract 

The clinical usefulness of HDAC inhibitors bearing hydroxamic acid moiety as ZBG is limited 

by their potential mutagenicity. Moreover, hydroxamic acids show poor selectivity that results 

in off-target effects and toxicity. Recently, the development of HDAC inhibitors bearing other 

ZBG than hydroxamic acid is emerging as an interesting scope to overcome these limitations. 

HDAC inhibitors carrying alkyl hydrazide ZBG have been developed and investigated in 

HDAC classes known to possess a foot pocket such as class I and class IV. In this chapter, the 

binding mode of one of the most active alkyl hydrazide HDAC11 inhibitors from the in-house 

library was studied by docking in the optimized HDAC11-AF2 model. MD simulation further 

supported the predicted binding mode. Additionally, a ligand-based virtual screening workflow 

to identify new HDAC11 alkyl hydrazide inhibitors was devised and implemented using a 

categorical classification model. Tow compounds of the identified potential inhibitors were 

selected for further investigations. The binding mode of the selected candidates was predicted 

by docking and was further verified using MD simulation studies.   
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4.2. Results and discussion 

4.2.1. Modeling of in-house alkyl hydrazides 

Hydroxamic acid is the most commonly used ZBG for the development of HDAC inhibitors as 

it represents a well-characterized pharmacophore for chelating the zinc ion [81, 82]. A number 

of hydroxamic acid HDAC inhibitors have been approved by FDA for clinical use [140], while 

some others have reached to clinical trials [140-144]. Examples of FDA-approved inhibitors 

include vorinostat for cutaneous T-Cell lymphoma [145], belinostat for peripheral T-cell 

lymphoma [146] and panobinostat for multiple myeloma [147]. The therapeutic usefulness of 

the HDAC hydroxamic acid inhibitors, however, is limited by toxicities and undesirable off-

target effects as a consequence of poor selectivity over other metalloenzymes as well as within 

HDACs family subtypes [148, 149]. Other disadvantages of the hydroxamic acid moiety 

include susceptibility to metabolic inactivation via glucuronidation [150-152] and potential 

mutagenicity [153, 154]. 

Consequently, the design and development of HDAC inhibitors bearing different ZBG other 

than hydroxamic acid have recently gained growing interest [84, 85]. Inspired by the confirmed 

defatty-acylase activity of HDAC11, alkyl hydrazide inhibitors bearing long alkyl chain have 

been designed and reported [109]. In our group, we reported before the development of novel 

class I HDAC inhibitors bearing alkyl hydrazide moiety as ZBG [85]. Screening of the 

developed compounds against HDAC11 identified compound PSP74 (4c) [85] as one of the 

most active HDAC11 alkyl hydrazide inhibitors (HDAC11 IC50 27 nM) in the series. The 

binding mode of PSP74 was studied by docking and molecular dynamics simulation, using the 

optimized HDAC11-AF2 model, to get a deeper insight about the binding mode. 

The docking resulted in a pose that is leaning towards loop 5 and loop 6 with the methylindole 

capping group directed towards loop 5 (Figure 6). The ligand demonstrated bidentate chelation 

of the zinc ion through the carbonyl oxygen and the nitrogen of the hydrazide moiety with 

distances of 2.38 Å and 2.4 Å, respectively. The 6-carbon long alkyl chain is accommodated in 

the foot pocket and forms hydrophobic interactions with Phe37, Phe141, Phe152 and Cys153. 

Three hydrogen bonds were observed between the carbonyl oxygen and the two NH groups of 

the hydrazide moiety and Tyr304, His142 and His143, respectively. Additionally, the ligand 

formed a salt bridge between the protonated nitrogen of the piperazine ring and Glu94. 

Moreover, a π-π interaction was observed between the methylindole ring and Tyr209.  
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Figure 6. (A). The docking pose of compound PSP74 in HDAC11. The protein backbone 
appears as white cartoon, interacting residues of the binding site as grey sticks, zinc cofactor as 
orange sphere and compound PSP74 as green sticks. Hydrogen bonds are represented as yellow 
dashed lines, coordination bonds as grey dashed lines, π-π interactions as cyan dashed line and 
salt bridge as magenta dashed line. (B). 2D structure of PSP74. 

Molecular dynamics simulation is a computational technique that is used to simulate the 

dynamics of molecular systems such as protein-ligand complexes [155]. MD simulation thus 

provides a tool to study the behavior and stability of the ligand in dynamic environment giving 

an advantage over docking methods that do not take protein flexibility into account. The root 

mean square deviation (RMSD), the root mean square fluctuation (RMSF) and the interactions 

persistence/occupancy are common metrics that are used to analyze and evaluate the MD 

simulation results. Such metrics can give a figure about protein-ligand complex stability, thus 

reflecting the reliability of the predicted binding mode [156].  

For compound PSP74, the RMSD plots reflect the stability of the protein and the zinc ion 

(Figure S21). The protein is stabilizing at almost 1 Å while the zinc ion is stabilizing below 1 

Å. For the ligand, the RMSD plots (Figure 7A) show that the ligand is stabilizing at around 2 

Å. However, some shifts reaching up to 4 Å can be observed during the course of simulation.  
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Figure 7. (A) and (B). RMSD and RMSF plots, respectively, of ligand heavy atoms of PSP74 
for two 50 ns independent MD simulations. 

The RMSF plots (Figure 7B) of the ligand heavy atoms show that the methylindole capping 

group is the most fluctuating part of the ligand with RMSF reaching up to 4 Å. Inspecting the 

trajectory snapshots can confirm this observation by showing that the capping group can move 

in various directions but more towards loop 5 (Figure S22). 

The hydrogen bonds to His142 and His143, as well as the salt bridge to Glu94, showed high 

stability with persistence ranging between 81% and 100%. The hydrogen bond with Tyr304 

was completely lost during the simulation. This was also observed in previous studies due to 

the flexibility of the side chain of this tyrosine residue [157]. During the MD simulation, a π-

cation interaction was established between the protonated nitrogen of the piperazine ring and 

Tyr209. The pi-cation interaction showed high stability with persistence around 90% (Table 

S2, Figures S23 and S24). While the RMSD and RMSF plots indicate that the capping group 

can fluctuate freely in various directions, interestingly, this fluctuation did not significantly 

affect the stability of the interactions of the protonated nitrogen with either Glu94 or Tyr209. 

As a conclusion, the results from the MD simulation support the predicted binding mode. 
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4.2.2. Virtual screening 

Virtual screening utilizes computational tools to identify potential hits for certain targets from 

large databases of compounds. Compared to experimental approaches, virtual screening is 

faster and more cost-effective in identifying new lead molecules, which can then be optimized 

to meet the desired efficacy [158-160]. ZINC20 is a publicly available database that includes 

nearly two billion compounds in 2D and 3D downloadable formats through a website that 

allows for rapid analogue search [161]. For the aim of searching for new alkyl hydrazide 

HDAC11 inhibitors, a focused library of N`-alkyl benzohydrazide compounds was acquired 

from ZINC20 database and virtually screened using a multistep workflow. 

4.2.2.1. Virtual modification and filtering 

In order to find new HDAC11 alkyl hydrazide inhibitors, a specific chemical space was 

designed by virtually modifying the structures in the obtained library. The modification was 

performed by replacing the various N`-alkyl substitutions of the hydrazide moiety with N`-

hexyl group. A substitution of 6-carbon long alkyl chain was considered optimal for HDAC11 

inhibition based on the activity results obtained from the in-house alkyl hydrazide inhibitors 

database. This substitution was also considered suitable when taking into account the drug-

likeness of the desired hit molecules. Subsequent to this modification, several filtering 

procedures were performed as represented in (Figure 8). The new library was first filtered to 

remove the duplicates and fragments with less than two rings resulted from the modification 

step.  

Molecular filters are commonly employed to narrow down the chemical space in order to 

remove molecules with chemical structures and properties that lie beyond the scope of interest. 

Most of such filters are developed with the aim of defining and extracting molecules that are 

drug-like and bioavailable from large libraries [162]. Drug-likeness can be defined as the 

desired properties often found in approved drugs, such as water solubility, oral absorption, low 

toxicity, suitable clearance rate, and membrane permeability [162-164]. In searching for an 

HDAC11 inhibitor with drug-like properties, rapid elimination of swill (REOS) and Lipinski 

rule of five filters were applied. 
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Figure 8. Schematic representation of the virtual screening workflow. 

REOS filter [158, 162, 165] is a structural filter that includes 117 SMARTS strings used to 

define certain substructures collected from literature. It can eliminate compounds bearing 

certain functional groups that are associated with nondrug-like molecules or possess known 

toxicity. This filter can also remove compounds with known reactive groups that can induce 

nonspecific binding and multi-target interactions, thus interfering with the biological assays. 

[162, 165]. 

The Lipinski rule of five is a widely used molecular filter for identifying bioavailable drug-like 

candidates. For a compound to pass the rule of five, it must possess the following properties: 

molecular weight <500 Da, logP <5, H-bond donors <5, and H-bond acceptors <10 [166, 167]. 

The rule of five was developed based on data analysis of a set of 2245 compounds from the 

World Drug Index. This analysis could identify molecular properties that are probably 
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associated with orally available drugs [162, 166]. Screening of the designed library using the 

aforementioned filters resulted in 1684 hits. 

4.2.2.2. Developing and utilizing the categorical classification model 

4.2.2.2.1. Model development 

The categorical model was built using Bayes classification model, which is a probabilistic 

classification based on Bayes' theorem [168], and using radial fingerprints as descriptors. Radial 

fingerprints [169, 170], also known as extended connectivity fingerprints (ECFPs) [171, 172], 

are a class of topological 2D fingerprints that was developed specifically for structure-activity 

modeling [172]. These fingerprints are generated by growing fragments radially from each 

heavy atom. Each unique fragment is then transformed to a distinct integer through hashing the 

description of the fragment’s bonds and atoms as well as the bonds connecting it to the 

surrounding substructures [170, 172]. The model was developed using 80 alkyl hydrazide 

HDAC11 inhibitors from an in-house dataset that were assigned either active or inactive classes 

(Figure 9) as discussed in the Materials and methods section. 

For classification models, several metrics are used to assess the performance of the developed 

model [173, 174]. Accuracy provides an overall assessment of the performance of the model 

by calculating the percentage of all correctly classified compounds. A confusion matrix (Table 

1), which provides a representation of the model predictions in comparison to the assigned true 

labels, then can be used to give a more detailed insight regarding the categorical model 

performance [173]. Sensitivity is the ability of the model to predict the active compounds or 

positive instances correctly and is expressed as the ratio of true-positive results to the total 

number of positive data. Specificity can be defined as the ability of the model to predict the 

inactive compounds or negative instances correctly and represented by the ratio of true-negative 

results to the total number of negative instances [173, 174]. The developed model showed 

excellent performance with accuracy, specificity and sensitivity exceeding 90%. 

Table 1. Confusion matrix of the developed categorical model. 

Categorical model 

Activity Correct Incorrect Total   
0 45 3 48 specificity 93.75 

1 31 1 32 sensitivity 96.88 

Total 76 4 80 accuracy 95.00 
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4.2.2.2.2. Model validation 

In order to validate the initially obtained Bayes classification model, the compounds were 

classified according to their scaffolds based on the linker type and the point of attachment to 

the phenyl ring of the benzohydrazide moiety. The dataset was classified into eight subsets 

(Figure 9), including amide, amine and methoxy linkers attached to the meta position of the 

hydrazide group, and amine, amide, phenyl and piperazine linkers attached to the para position 

of the hydrazide group, as well as small compounds containing no linker. To ensure 

homogenous distribution of the chemical scaffold and activity class when selecting the training 

and test sets for validation, the compounds in the dataset were arranged according to their 

scaffold subset. Furthermore, within each subset, compounds were arranged according to their 

activity class. Selection of the training and test sets was then performed as discussed in 

Materials and methods section and resulted in four different training and their corresponding 

test sets. 

 

Figure 9. Classification of the in-house HDAC11 inhibitors dataset. (A). Classification 
according to scaffold. (B). Classification according to activity. 

The external validation of the categorical model, using the four different training and test sets, 

demonstrated a robust performance (Table S5). The overall accuracy was between 80% and 

85% for the four test sets, while the specificity ranged between 85% and 92%. Although the 

model showed a lower sensitivity range of 71% to 80%, this might not be considered 

problematic when screening large datasets to identify active compounds. 

4.2.2.2.3. Model application 

Before utilizing the categorical model to classify the designed and filtered library and to ensure 

that the predictions are reliable, applicability domain for the model was calculated and applied. 

One way of determining the applicability domain is based on the chemical 
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similarity/dissimilarity identified by similarity distances [175, 176]. For example, a large 

similarity distance indicates that a test compound is more dissimilar than can lie within the 

applicability domain of the training set. For this reason, Euclidian distances [175-177] were 

calculated using the same descriptor used to develop the model, the radial fingerprints. Distance 

threshold/applicability domain then was calculated and applied as discussed in the Materials 

and methods section. 1620 compounds were found to lie within the applicability domain of 

the developed model. The general categorical model was then applied to predict the class of 

these compounds. 481 compounds were predicted to be active.  

Upon visual inspection of the 481 hits, two ligands were considered to be of particular interest 

when searching for active and selective HDAC11 inhibitors. These hits are bearing some 

similarity to hydroxamic acid analogues that were previously reported to exhibit selectivity 

towards HDAC6 over other HDACs [178-182]. X-ray crystal structures of two of these 

hydroxamic acid compounds were reported, namely, PDB: 7UK2 [182] and 6ZW1 [181] 

(Figure 10). Considering the absence of the foot pocket in class IIb HDACs and their inability 

to accommodate such alkyl chain attached to the zinc binding group, it is proposed that the 

replacement of the hydroxamic acid function by hexyl hydrazide will demolish the inhibitory 

activity towards HDAC6. This change might then provide a chance to develop inhibitors with 

absolute selectivity towards HDAC11.  

 

Figure 10. 2D structures of the virtual screening hits of interest and their hydroxamic acid 
analogues. 

Interestingly, the docking poses of the selected hits in HDAC11-AF2 demonstrated an 

orientation similar to their co-crystallized hydroxamic acid analogues in HDAC6 (Figures 11A 

and 11B).  
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Figure 11. (A) and (B). Superposition of the docking poses of the first and second virtual 
screening hits in HDAC11 (pale green) with similar hydroxamic acid analogues from HDAC6 
crystal structures (light pink) PDB: 7UK2 and 6ZW1, respectively. (C) and (D). The docking 
poses of the first and second virtual screening hits, respectively, in HDAC11. The protein 
backbone appears as white cartoon, interacting residues of the binding site as grey sticks, zinc 
cofactor as orange sphere and ligands as green sticks. Hydrogen bonds are represented as yellow 
dashed lines and coordination bonds as grey dashed lines. 

The alkyl hydrazide moiety showed the common zinc binding group interactions. It could 

chelate the zinc ion in a bidentate fashion and formed hydrogen bonds with His142, His143 and 

Tyr304 (Figures 11C and 11D). The alkyl chain occupied the foot pocket and formed 

hydrophobic interactions with Phe37, Phe141, Phe152 and Cys153. The capping groups 

adopted a bent conformation directed towards loop 1 and loop 2 and formed hydrophobic 
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interactions with Pro36. For hit-1, additional hydrogen bond was observed between the NH of 

the terminal amide group and the backbone oxygen of Glu94.  

The predicted binding modes of the virtual screening hits of interest were then evaluated by 

MD simulation. For both hits, the RMSD plots of the protein backbone show that the protein is 

stabilizing slightly above 1 Å, while the zinc ion is stabilizing below 1 Å (Figures S25 and 

S27). The ligand RMSD plots of hit-1 (Figure 12A) demonstrate a shift in the pattern during 

the simulation that is stabilizing at around 3 Å. From the RMSF plots (Figure 12B), it is clear 

that the capping group is the most fluctuating part. To further investigate this fluctuation, the 

MD trajectories were analyzed. The analysis revealed that the sulfonamide group adopts an 

opposite conformation during the simulation compared to the starting docking pose (Figure 

S26).  

 
Figure 12. (A) and (B). RMSD and RMSF plots, respectively, of ligand heavy atoms of hit-1 
for two 50 ns independent MD simulations. 

The new conformation brings the oxygen atoms of the sulfonamide group closer to loop 1, thus 

making them available for hydrogen bond formation with His35 and the fluctuating catalytic 

Tyr304. During the simulation, an additional hydrogen bond was also formed between the NH 

of the sulfonamide linker and Glu94 either directly or through a water bridge, while the 
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hydrogen bond between the NH of the terminal amide group and the carbonyl oxygen of Glu94 

backbone was almost completely lost. The hydrogen bond stability between the ligand and the 

binding site interacting residues was monitored (Table S3, Figures S29 and S31) and 

demonstrated very high stability for His142 and His143 with persistence ranging between 97% 

and 100%. The catalytic Tyr304 fluctuation led to complete loss of the hydrogen bond with the 

carbonyl oxygen of the hydrazide moiety and the formation of another hydrogen bond with one 

of the sulfonamide oxygen atoms as discussed above. This hydrogen bond showed intermediate 

to high stability with persistence percent of 55% and 94% for two replicas. The stability of the 

newly formed hydrogen bonds with His35 and Glu94 was intermediate and ranged between 

39% and 51%. 

Hit-2 exhibited high stability during the course of the MD simulation which is indicated by an 

RMSD below 2 Å and RMSF slightly above 1 Å for the ligand heavy atoms (Figures 13 and 

S28). The interaction persistence demonstrated a similar behavior as for hit-1 demonstrating 

very high stability of the hydrogen bond interactions with His142 and His143 with persistence 

ranging between 98% and 100%. However, for Tyr304, the hydrogen bond is completely lost 

(Table S4, Figures 30 and S32). 

 
Figure 13. (A) and (B). RMSD and RMSF plots, respectively, of ligand heavy atoms of hit-2 
for two 50 ns independent MD simulations. 
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Considering the given results, it is important to note that the hydroxamic acid analogues also 

showed selectivity towards HDAC6 over HDAC11 [180, 181]. However, the selectivity profile 

of the hydroxamic acid analogues of hit-1 showed variation with the alkylation pattern of the 

NH of the sulfonamide and the decoration of the terminal phenyl ring [178, 179]. Taking this 

into account and as the alkyl hydrazide hits were predicted to be active towards HDAC11 by 

the classification model, experimental verification of the potential activity and selectivity of the 

identified hits remains to be of interest.  

4.3. Materials and methods  

Schrodinger Suite 2019 was used for all the modeling work. Maestro [183] was utilized for 

visualization. 

4.3.1. Ligand preparation 

Ligands were prepared utilizing LigPrep [184] panel  without changing the ionization states or 

generating tautomers or isomers. 

4.3.2. Receptor grid generation 

The receptor grid was generated using the Receptor Grid Generation panel and utilizing the 

vertical pose of SIS17 in the optimized HDAC11-AF2 model [185] as the input protein-ligand 

complex. The centroid of the ligand was selected as the center of the grid box. All default 

settings were kept while docking of ligands with length <= 25 Å option was specified to account 

for difference in ligand size.  

4.3.3. Docking 

Ligands docking was performed using Glide [186-189] and utilizing OPLS3e force fields [190-

193]. SIS17 was selected as core containing molecule for the restricted docking by using 

reference position. The core atoms were defined by maximum common substructure. The 

standard precision docking and flexible ligand sampling settings were employed. The top 

scored poses were selected for further analysis. 

4.3.4. Molecular dynamics simulation 

The selected docking poses were subjected to molecular dynamics simulation using Desmond 

[194, 195] and employing OPLS2005 force fields. Each pose was simulated for 50 ns and the 

simulation was repeated twice using different random seeds. Zero order bonds to the metal were 

created using the Protein Preparation Panel before submitting to system preparation. The system 
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was solvated in SPC water model using an orthorhombic box and 10 Å distance between the 

solute structures and the simulation box boundary. The system was neutralized by adding 

chloride ions that were placed 4 Å away from the ligand. 

The prepared system was relaxed using the default Desmond relaxation protocol for NPT 

ensemble followed by a production run utilizing the NPT ensemble at the temperature of 300 

K using a Nose–Hoover chain thermostat and pressure of 1.01325 bar using Martyna-Tobias-

Klein barostat. The progress of the simulation was recorded every 100 ps. 

For analysis, the Simulation Event Analysis panel was used for RMSD calculations. The RMSD 

of the protein was calculated using the backbone atoms. For calculating the RMSD of ligands 

and zinc ion, fitting to the protein backbone was performed. The Simulation Interaction 

Diagram panel was used for analyzing the RMSF and the interaction persistence of the ligands. 

RMSD of the protein was calculated excluding the termini (residues: 1–14 and 321–347). 

4.3.5. Properties calculations 

The rule of five property was calculated using QikProp [196] properties from the Molecular 

Descriptor panel. 

4.3.6. Categorical classification model  

4.3.6.1. Building the categorical model 

The categorical model was built using the Bayes classification application in Canvas [170, 197, 

198] and utilizing an in-house dataset of 80 alkyl hydrazide compounds bearing different 

scaffolds and alkyl chain length. The dataset was classified into active and inactive categories 

using an IC50 value of 0.5 µM as a threshold.  

To build the model, radial fingerprints for the compounds were generated using Binary 

Fingerprints from Structures panel in Canvas and were used as descriptor. 

4.3.6.2. Validating the categorical model 

To validate the model, compounds in the dataset were arranged based on their scaffold (position 

and structure of the linker). Furthermore, compounds within each scaffold subset were arranged 

according to their class. The training and test sets were created by selecting every forth entry 

as test compound. This process was repeated four times starting from different entry each time 

(starting from entry 1 to entry 4) and resulted in four different training and their corresponding 

test sets.  
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4.3.6.3. Applicability domain calculation 

Euclidian distances were calculated for the compounds using the Similarity/Distance Matrix 

from Fingerprints panel and employing the generated radial fingerprints. The average of all the 

distances was then calculated and distances below this average were used to calculate the 

distance average term Av and the standard deviation σ [199]. The applicability domain or 

distance threshold for the developed categorical model was then calculated using the following 

equation in which Z is an empirical parameter and the default value of 0.5 was used in this work 

[199, 200]: 

Applicability domain = Zσ +Av 

4.3.7. Virtual screening 

4.3.7.1. Dataset acquisition 

A focused library of N`-alkyl benzohydrazide ligands (substructure SMILES: 

CN([H])N([H])C(=O)c1ccccc1) was downloaded from the ZINC20-all database [161] using 

the Arthor tool in the TLDR interface (tldr.docking.org) [201].  

4.3.7.2. Virtual modification 

The structures in the obtained library were modified virtually by converting the various N`-

alkyl substitutions of the hydrazide moiety in the SMILES file to N`-hexyl group.  

4.3.7.3. Multistep screening 

As a first step, the modified library was filtered to remove the duplicates using the Merge 

Duplicates panel, followed by the removal of fragment compounds with less than 2 rings using 

Ligand Filtering panel.  

The output was then subjected to further screening by applying the rapid elimination of swill 

(REOS) using the Structure Filter in Canvas. This step aimed to remove compounds with 

reactive groups that may interfere with biological evaluation. Any structure that can show one 

or more violations for the rule of five was eliminated from the library by using Ligand Filtering 

panel and the calculated rule of five property. Furthermore, the categorical model was used to 

classify the filtered dataset to active and inactive compounds subsequent to an applicability 

domain filtration. 
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5.1. Model optimization 

The HDAC11 AlphaFold model was initially optimized by adding the catalytic zinc ion and 

adjusting the coordination distances to match what is observed in the reported crystal structures 

of histone deacetylases. The direct use of the resulted model for docking of FT895 showed not 

to be successful as the ligand was not placed properly into the binding site and could not show 

any of the well-characterized interactions of HDAC inhibitors. For this reason, the optimization 

of the binding site was considered necessary. The binding site was optimized by applying 

minimization in presence of ligands that were previously described as HDAC11 inhibitors.  

 

Figure 14. The four optimized ligand-HDAC11-AF2 complexes showing the poses of the 
ligands after merging and minimization. The protein backbone appears as white cartoon, 
interacting residues of the binding site as grey sticks, zinc cofactor as orange sphere and ligands 
as green sticks. Hydrogen bonds are represented as yellow dashed lines, salt bridges or ionic 
interactions as magenta dashed lines, π-π interactions as cyan dashed lines and coordination 
bonds as grey dashed lines. (A). Trapoxin A. (B). TSA. (C) and (D). Two different poses of 
quisinostat.  
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The merging of ligands was performed by copying the ligand’s coordinates from HDAC8-

ligand co-crystals after superposition with the HDAC11-AF2 model. The ligands used were 

trapoxin A, trichostatin A (TSA) and two different poses of quisinostat from two different 

HDAC8 crystal structures (Figure 14). Four HDAC11-ligand complexes were generated from 

this process and demonstrated the expected interactions that are well-characterized for HDAC 

inhibitors, mainly the bidentate chelation of the zinc ion and the salt bridge or hydrogen bonds 

with His142, His143 and Tyr304.  

For the four complexes obtained after minimization, the stability of the binding mode in terms 

of hydrogen bond interactions and bidentate chelation, along with the stability of the protein, 

was confirmed by MD simulation. This reflects the feasibility of the adopted optimization 

protocol and affirms the usability of the obtained models for subsequent drug design studies. 

5.2. Docking of known selective inhibitors 

Several grids were generated using the models resulted from the optimization process. Docking 

of the hydroxamic acid selective inhibitor FT895 was performed in all the generated grids. The 

best-performing model in the docking was selected based on the docking score as well as the 

fulfillment of the necessary hydrogen bond interactions and bidentate chelation of the zinc ion. 

The selected model was then used to study the binding mode of another reported HDAC11 

selective inhibitor bearing a bulky adamantine group, named MIR002 (Figure 15).  

 

Figure 15. (A) and (B). Docking poses of FT895 and MIR002 in the optimized HDAC11-AF2 
model. The protein backbone appears as white cartoon, interacting residues of the binding site 
as grey sticks, zinc cofactor as orange sphere and ligands as green sticks. Hydrogen bonds are 
represented as yellow dashed lines, salt bridges or ionic interactions as magenta dashed lines, 
π-π interactions as cyan dashed lines and coordination bonds as grey dashed lines.  
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The predicted binding modes of FT895 and MIR002 by docking were subjected to three short 

independent MD simulations (50 ns) as well as a single long MD run (500ns). The results from 

these MD simulations further confirmed the stability of the docking poses. 

5.3. Exploring the foot pocket 

As the defatty-acylase activity of HDAC11 was proved to be preferential over the deacetylation 

activity by multiple studies, docking of SIS17, a 16-carbon alkyl hydrazide selective HDAC11 

inhibitor, was performed in order to investigate the foot pocket and to identify the tunnel that 

can accommodate such long alkyl chain. The direct docking of SIS17 in all the generated grids 

did not result in reasonable pose. In all poses, the long alkyl chain was positioned exposed to 

the solvent. For this reason, different approaches were utilized to dock SIS17. Loop 1 of the 

HDAC11-AF2 model demonstrated less confidence regarding its accuracy and position. This 

is defined by the predicted local distance difference test (pLDDT) and the predicted aligned 

error (PAE) scores. Therefore, the first approach adopted was to remodel loop 1 of the AF2 

model to generate a knowledge-based model using HDAC6 crystal structure as a template. 

Remodeling loop 1 resulted in a space that could accommodate the alkyl chain. Direct docking 

of SIS17 in this model predicted a binding mode in which the long alkyl chain is accommodated 

between loop 1 and loop 7, while the necessary hydrogen bond interactions and zinc bidentate 

chelation were all observed. The second approach implemented a stepwise docking and 

minimization process utilizing two different grids generated from HDAC11-TSA optimized 

complex. The two grids differ in the orientation of the side chain of Phe152. The docking and 

minimization approach resulted in two different orientations of the alkyl chain based on the side 

chain conformation of Phe152. Docking in the flipped-in Phe152 grid directed the alkyl chain 

horizontally to be accommodated between loop 1 and loop 2. On the other hand, the flipped-

out Phe152 blocked the entrance to this space, leading to a vertical pose in which the long alkyl 

chain is accommodated in a tunnel along loop 3 and loop 7 (Figure 16). 

The MD simulation results for the predicted binding mode using the remodeled loop 1 were not 

satisfactory because the alkyl chain was not stable in its initial accommodating space. In 

contrast, the three short independent MD simulations (50 ns) of the vertical and horizontal poses 

proved the stability of the predicted poses, reflecting the probability of the long alkyl chain 

being conveniently accommodated within either of the identified tunnels. Based on a structural 

comparison with HDAC8 and since the defatty-acylase activity of HDAC8 was also previously 

reported, the vertical pose was selected as the most reasonable pose and its stability was further 

verified by a single long MD simulation (500 ns). 
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Figure 16. Docking poses of SIS17 in the optimized HDAC11-AF2 model showing the two 
different predicted orientations of the long alkyl chain. Protein backbone is represented as white 
cartoon and the zinc ion as orange sphere. SIS17 is represented as cyan-colored sticks for the 
vertical pose and yellow-colored sticks for the horizontal pose.  

5.4. Utilization of the optimized model 

5.4.1. Virtual screening 

For virtual screening, a focused library of benzohydroxamic acid compounds was obtained from 

ZINC20 database. The library was initially prepared and filtered to obtain the ligands that do 

not violate the rule of five and in the hydroxamate form which demonstrated to perform better 

in molecular docking. 

The optimized HDAC11-AF2 model was implemented in a comparative structure-based virtual 

screening workflow (Figure 17) to identify novel HDAC11 inhibitors while addressing subtype 

selectivity. As a first step, a structure-based pharmacophore employing the HDAC11-TSA 

optimized complex was used for preliminary filtration of the prepared and filtered compounds 

library. The aim of this step was to eliminate ligands that cannot fit into the binding site, as well 

as very small ligands and fragments, thus reducing the number of compounds for the subsequent 

more computationally demanding docking-based virtual screening. The hits from the 

pharmacophore screening were docked in HDAC11-AF2 model followed by pose filtration to 

select ligands that could adopt bidentate chelation mode of the catalytic zinc ion. To address 

isoform selectivity, a comparative approach was applied by docking the resulting hits from the 

last step into different HDAC isoform crystal structures. For this step, HDAC1, HDAC6 and 

HDAC8 were selected as representatives for class I and class II HDACs. Compounds that could 

demonstrate good poses in any of these isoforms were eliminated. Only the compounds that 
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could adopt good docking poses in HDAC11 model but not in any of the other HDAC isoforms 

were considered for further filtration. REOS filter was used to remove compounds with reactive 

or toxic groups that can interfere with biological assays followed by prioritization using MM-

GBSA calculations. 

 

Figure 17. The workflow of the structure-based virtual screening. 

The final resulted hits were all bearing a substituent in the ortho-position to the hydroxamate 

group. This observation might indicate that a substituent in this position can be accommodated 

in the binding pocket of HDAC11 but not in the other HDAC isoforms, suggesting such 

substitution pattern to be a selectivity determinant for HDAC11. The top-scored hit was 

evaluated for its inhibitory activity and demonstrated an IC50 of 3.5 µM for HDAC11. The hit 

compound was also screened against other HDAC isoforms (HDAC1-10) and was able to 

selectively inhibit HDAC11 at 10 µM concentration (Figure 18A).  

Interestingly, these results are in agreement with the theoretical computational results. In 

contrast to HDAC1, HDAC6 and HDAC8, the hit compound from virtual screening could adopt 
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an ideal pose in HDAC11 by showing the bidentate chelation of the zinc ion and the expected 

interactions of an HDAC benzohydroxamate inhibitor (Figure 18B).  

 

Figure 18. (A). Percent inhibition of the hit compound for all HDAC isoforms at 10 µM 
concentration. (B). Docking pose of the hit compound in the optimized HDAC11-AF2 model. 
The protein backbone appears as white cartoon, interacting residues of the binding site as grey 
sticks, zinc cofactor as orange sphere and ligand as green sticks. Hydrogen bonds are 
represented as yellow dashed lines, salt bridges or ionic interactions as magenta dashed lines, 
π-π interactions as cyan dashed lines and coordination bonds as grey dashed lines.  

Furthermore, the predicted binding mode of the hit compound in HDAC11 was analyzed by 

multiple classical MD and metadynamics simulation studies. The results from these studies 

confirmed the binding mode in terms of the ligand and interactions stability. 

5.4.2. Structure-based design 

Moreover, the optimized HDAC11-AF2 model was utilized for the structure-based design of 

novel selective ligands employing the docking pose of the selective inhibitor FT895. In the 

design of the new probes, the linear shape of FT895 and the ortho substitution pattern were kept 

since these molecular features were defined as selectivity determinants for HDAC11.  

The docking pose of FT895 in HDAC11 shows that the fused system of the ligand is 

sandwiched between the side chains of residues Tyr209 in loop 5 and Leu268 in loop 6. For the 

aim of increasing activity and maintaining selectivity, branched ligands were designed (Figure 

19A). In the newly designed ligands, different groups are extended towards loop 1 to make 

interactions with loop 1 residues and further block the binding site from both sides. The most 

active compound 5a exhibited an IC50 of 365 nM and showed almost no or very weak inhibition 

for other HDAC subtypes at 10 µM concentration (Figure 19B). Moreover, compound 5a was 
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evaluated for anti-neuroblastoma activity using BE(2)-C neuroblastoma cell line and 

demonstrated promising activity with an EC50 of 3.6 µM. 

 

Figure 19. (A). Schematic representation of the strategy employed to design compound 5a 
based on the ligand FT895. (B). Percent inhibition of compound 5a for all HDAC isoforms at 
10 µM concentration. 

The docking pose of compound 5a in the optimized HDAC11-AF2 model predicted a binding 

mode that is comparable to that of FT895 (Figure 20), in which one terminal phenyl ring is 

sandwiched between the side chains of Tyr209 of loop 5 and Leu268 of loop 6. The 

benzohydroxamic acid is accommodated deeper into the binding pocket compared to FT895, 

while the other terminal phenyl ring is directed to loop 1 and forms hydrophobic interactions 

with Pro36.  

 

Figure 20. (A) and (B). Docking poses of FT895 and 5a, respectively, in the optimized 
HDAC11-AF2 model. The protein backbone appears as white cartoon, interacting residues of 
the binding site as grey sticks, zinc cofactor as orange sphere and ligands as green sticks. 
Hydrogen bonds and coordination bonds are represented as yellow dashed lines, salt bridges or 
ionic interactions as magenta dashed lines and π-π interactions as cyan dashed lines.  
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MD simulation studies using three independent short (50 ns) and long (500 ns) runs verified the 

predicted binding mode and proved the stability of the ligand in terms of RMSF, RMSD and 

interaction persistence. 

5.5. Modeling of alkyl hydrazides 

In the last part of this work, the optimized model was utilized to study the binding mode of one 

of the most active alkyl hydrazide inhibitors from the in-house library. The predicted binding 

mode was further validated by MD simulation. 

In order to identify new HDAC11 inhibitors bearing alkyl hydrazide moiety as a ZBG, a ligand-

based multistep virtual screening workflow was devised and executed. In this workflow, a 

focused library of N`-alkyl benzohydrazide compounds obtained from ZINC20 database was 

virtually modified by replacing the different N`-alkyl substituents with N`-hexyl group. This 

modification was performed because it was noted that 6-carbon alkyl substitution is optimal for 

HDAC11 activity and selectivity.  

The workflow then employed various filtration steps to remove duplicates and to discard very 

small compounds and fragments generated during the virtual modification. In order to identify 

drug-like molecules, filters like the Lipinski rule of five and REOS were further applied.  

Furthermore, a classification categorical model, developed utilizing 80 alkyl hydrazide 

inhibitors from the in-house library, was used to classify the obtained hits from the last filtration 

step with the aim of identifying potentially active ligands lying within the in-house chemistry 

toolbox. 

Applying this workflow resulted in identifying 481 compounds that were further inspected 

visually. Two compounds were identified as hits of interest and were prioritized for further 

development based on the visual inspection. The interest in these two hits comes from the fact 

that they demonstrate some structural similarity with hydroxamic acid analogues previously 

reported as HDAC6 selective inhibitors. Since HDAC6 lacks the foot pocket that can 

accommodate the alkyl chain of alkyl hydrazide inhibitors, it is proposed that the replacement 

of the hydroxamic acid ZBG with alkyl hydrazide, as observed in the identified hits, might lead 

to selectivity towards HDAC11. 

The binding modes of these two hits in HDAC11 were studied by docking. Interestingly the 

docking poses show similar orientation to that reported before for the hydroxamic acid 

analogues co-crystallized with HDAC6. The binding modes of the identified hits of interest 
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were studied with MD simulation. Results demonstrated that the sulfonamide linker of hit-1 

can shift its position to form additional hydrogen bonds with His35, Glu94 and Tyr304, while 

for hit-2, very high stability of the ligand was proved as given by the RMSD and RMSF plots 

of the ligand heavy atoms. 

5.6. General conclusion and outlook  

The main aim of this work is the molecular modeling, design and development of novel 

selective HDAC11 inhibitors. For this purpose and since there is no X-ray crystal structure 

reported for HDAC11 so far, the development of a suitable 3D model of HDAC11 using 

previously reported inhibitors and assessing its usability for drug design studies is necessary. 

The results from this work suggest that the models as output from the AI AlphaFold approach 

are usable for SBDD. However, optimization or post-modeling refinement prior to its utilization 

is mandatory. When interpreting the results from this work, some limitations have to be taken 

into consideration. One general limitation when working with homology models is the absence 

of water molecules which might affect the results from the docking studies as well as the 

stability of the ligand and its interactions during the MD simulation.  

The accuracy of the homology model holds significant importance and is crucial for the 

reliability of the results from drug design studies. The HDAC11-AF2 model shows high 

confidence scores except for loop 1. Lower confidence in the accuracy of the folding prediction 

and the whole loop position is indicated by the pLDDT and PAE scores. Such low confidence 

may indicate for error in the prediction that affects the output results when using the model, 

thus verification through experimental 3D structure determination is of great importance and is 

still required. 

Similarly, docking of SIS17 resulted in two potential poses and the MD simulation studies 

proved the stability of both poses. This process identified two possible tunnels as structural 

features of HDAC11 that can accommodate such long alkyl chain. While the vertical pose was 

selected as the more reasonable pose based on structural comparison with HDAC8, 

experimental validation of this result via 3D structure determination of SIS17-HDAC11 

complex is necessary. 

One approach to emphasize the usability of the optimized HDAC11-AF2 model involves using 

it for the design and development of novel inhibitors followed by experimental in vitro 

enzymatic evaluation. For this purpose, two different strategies were employed in this work. 

The first was to employ the model in a multistep structure-based virtual screening workflow to 
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identify a novel selective hit. While this workflow was successful in identifying a ligand that 

could selectively inhibit HDAC11 at 10 µM concentration, the hit ligand demonstrated only 

moderate inhibition for HDAC11 with IC50 of 3.5 µM. These results can be interpreted in the 

context of the capabilities of virtual screening and what it can provide in terms of lead 

identification by searching large chemical space. However, lead optimization of the identified 

hit to maximize the inhibitory activity and keep the selectivity is still of interest. 

The second utilized strategy was the structure-based design of novel probes based on the 

docking pose of the well-characterized selective inhibitor FT895 in HDAC11. Considering the 

results of the most active compound 5a, chemical optimization and development of a series of 

ligands bearing similar scaffold to maximize the activity and enhance selectivity is of interest. 

This is also important to establish a structure-activity relationship. Given the promising anti-

neuroblastoma activity of compound 5a, more investigation of the role of HDAC11 and the use 

of its inhibitors to combat neuroblastoma is still required. 

Overall, the experimentally verified selectivity of the lead compounds from the structure-based 

virtual screening and the structure-based design approaches supports the usability of the 

adjusted HDAC11-AF2 model and validates the optimization process adopted in this work.  

In the last part of this work, the ligand-based virtual screening workflow, which employed a 

categorical classification model, identified 481 alky hydrazide hits. Two hits were selected as 

potential active and selective HDAC11 inhibitors. Experimental verification through the 

development and in vitro enzymatic evaluation of the hits of interest is yet to be considered. 
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7.1. Figures 

 

Figure S21. (A) and (B). RMSD plots of protein backbone heavy atoms and zinc ion, 
respectively, for two independent MD simulations of PSP74.  

 

Figure S22. Superposition of the first (yellow) and last (cyan) frames demonstrating the 
fluctuation of the ligand. (A) and (B). Two independent MD simulations of PSP74. The zinc 
ion is represented as orange sphere, the protein backbone as cartoon and the ligand as sticks.  
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Figure S23. (A) and (B). Ligand interaction persistence diagram for the first and second 
independent MD simulations of PSP74, respectively. Hydrogen bonds are represented as pink 
arrows, π-π interactions as green lines, π-cation interactions as red lines and metal coordination 
bonds as grey lines. 
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Figure S24. (A) and (B). Hydrogen bond occupancy diagrams for the first and second 
independent MD simulations of PSP74, respectively. 
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Figure S25. (A) and (B). RMSD plots of protein backbone heavy atoms and zinc ion, 
respectively, for two independent MD simulations of hit-1.  

 

Figure S26. Superposition of the first (yellow) and last (cyan) frames demonstrating the 
fluctuation of the ligand. (A) and (B). Two independent MD simulations of hit-1. The zinc ion 
is represented as orange sphere, the protein backbone as cartoon and the ligand as sticks.  
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Figure S27. (A) and (B). RMSD plots of protein backbone heavy atoms and zinc ion, 
respectively, for two independent MD simulations of hit-2.  

 

Figure S28. Superposition of the first (yellow) and last (cyan) frames demonstrating the 
fluctuation of the ligand. (A) and (B). Two independent MD simulations of hit-2. The zinc ion 
is represented as orange sphere, the protein backbone as cartoon and the ligand as sticks.  

 



89 
 

 

Figure S29. (A) and (B). Ligand interaction persistence diagram for the first and second 
independent MD simulations of hit-1, respectively. Hydrogen bonds are represented as pink 
arrows, π-π interactions as green lines and metal coordination bonds as grey lines. 
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Figure S30. (A) and (B). Ligand interaction persistence diagram for the first and second 
independent MD simulations of hit-2, respectively. Hydrogen bonds are represented as pink 
arrows, π-π interactions as green lines and metal coordination bonds as grey lines. 
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Figure S31. (A) and (B). Hydrogen bond occupancy diagrams for the first and second 
independent MD simulations of hit-1, respectively. 

 

Figure S32. (A) and (B). Hydrogen bond occupancy diagrams for the first and second 
independent MD simulations of hit-2, respectively. 
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7.2. Tables 

Table S2. Hydrogen bond persistence for 2 independent 50 ns MD simulations of PSP74. 

PSP74 

 HIS142 HIS143 Tyr304 Glu94 

MD-1 99.00 99.60 3.79 86.63 
MD-2 100.00 97.41 0 81.44 

Table S3. Hydrogen bond persistence for 2 independent 50 ns MD simulations of hit-1. 

VS-hit1 

 His142 His143 Tyr304-C=O Tyr304-S=O His35 Glu94_O Glu94_OE 

MD-1 100.00 99.80 0.00 55.29 43.11 13.57 39.12 

MD-2 100.00 97.01 0.00 94.41 51.30 1.00 48.10 

Table S4. Hydrogen bond persistence for 2 independent 50 ns MD simulations of hit-2. 

VS-hit2 

 His142 His143 Tyr304 

MD-1 99.80 98.60 0.00 
MD-2 100.00 98.60 0.00 

Table S5. Validation of the developed categorical model using different training and test sets. 

Set 1 

Training set Test set 

Activity Correct Incorrect Total Activity Correct Incorrect Total 

0 33 2 35 0 11 2 13 
1 24 1 25 1 5 2 7 

Total 57 3 60 Total 16 4 20 

specificity 94.29   specificity 84.62   
sensitivity 96.00   sensitivity 71.43   
accuracy 95.00   accuracy 80.00   

Set 2 

Training set Test set 

Activity Correct Incorrect Total Activity Correct Incorrect Total 

0 34 2 36 0 11 1 12 
1 23 1 24 1 6 2 8 

Total 57 3 60 Total 17 3 20 

specificity 94.44   specificity 91.67   
sensitivity 95.83   sensitivity 75.00   
accuracy 95.00   accuracy 85.00   
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Set 3 

Training set Test set 

Activity Correct Incorrect Total Activity Correct Incorrect Total 

0 33 2 35 0 11 2 13 
1 24 1 25 1 5 2 7 

Total 57 3 60 Total 16 4 20 

specificity 94.29   specificity 84.62   
sensitivity 96.00   sensitivity 71.43   
accuracy 95.00   accuracy 80.00   

Set 4 

Training set Test set 

Activity Correct Incorrect Total Activity Correct Incorrect Total 

0 36 2 38 0 9 1 10 
1 21 1 22 1 8 2 10 

Total 57 3 60 Total 17 3 20 

specificity 94.74   specificity 90.00   
sensitivity 95.45   sensitivity 80.00   
accuracy 95.00   accuracy 85.00   

Table S6. List of compounds used in the categorical model with their actual and predicted 
activity classes. 

Categorical Model 

NO. Compound Model Set Activity Predicted 

1 FM18 training 1 1 
2 FM19 training 1 1 
3 FM39 training 1 1 
4 FM40 training 1 1 
5 FM42 training 1 1 
6 FM43 training 1 1 
7 FM44 training 1 1 
8 FM46 training 1 1 
9 FM47 training 1 1 

10 FM48 training 1 1 
11 FM77 training 1 1 
12 FM9 training 0 0 
13 FM45 training 0 1 
14 FM49 training 0 1 
15 NM-H-1 training 0 0 
16 NM-H-3 training 0 0 
17 PR4 training 1 1 
18 PR8 training 1 1 
19 PSP42 training 1 1 
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Categorical Model 

NO. Compound Model Set Activity Predicted 

20 PSP43 training 1 0 
21 PR3 training 0 0 
22 PSP40 training 0 0 
23 PSP41 training 0 0 
24 PSP81 training 0 0 
25 FM80 training 1 1 
26 FM122 training 1 1 
27 FM128 training 1 1 
28 FM129 training 1 1 
29 FM130 training 1 1 
30 FM131 training 1 1 
31 FM132 training 1 1 
32 FM133 training 1 1 
33 PR18 training 1 1 
34 FM11 training 0 0 
35 FM76 training 0 0 
36 FM123 training 0 0 
37 FM124 training 0 0 
38 FM125 training 0 0 
39 FM126 training 0 0 
40 FM127 training 0 0 
41 PSP39 training 0 0 
42 PSP67 training 0 0 
43 PSP50 training 1 1 
44 PSP51 training 1 1 
45 PSP52 training 1 1 
46 PSP71 training 1 1 
47 PSP72 training 1 1 
48 PSP73 training 1 1 
49 PSP74 training 1 1 
50 PSP45 training 0 0 
51 PSP49 training 0 1 
52 PSP84 training 0 0 
53 NI82 training 0 0 
54 PR2 training 0 0 
55 PR2.1 training 0 0 
56 PR6 training 0 0 
57 PR14 training 0 0 
58 PR15 training 0 0 
59 NI16 training 0 0 
60 NI26 training 0 0 
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Categorical Model 

NO. Compound Model Set Activity Predicted 

61 NI32 training 0 0 
62 NI173 training 0 0 
63 PSP47 training 0 0 
64 PSP48 training 0 0 
65 PSP69 training 0 0 
66 PSP70 training 0 0 
67 PSP82 training 0 0 
68 PSP83 training 0 0 
69 FM21 training 0 0 
70 FM22 training 0 0 
71 PR1 training 0 0 
72 PR19 training 0 0 
73 SIS17 training 1 1 
74 PR11 training 0 0 
75 PR12 training 0 0 
76 PR16 training 0 0 
77 PR20 training 0 0 
78 PR21 training 0 0 
79 PR22 training 0 0 
80 PR23 training 0 0 

Table S7. List of training and test compounds used in validation set 1 with their actual and 
predicted activity classes. 

Set 1 

NO. Compound Model Set Activity Predicted 

1 FM18 training 1 1 
2 FM19 training 1 1 
3 FM39 training 1 1 
4 FM40 test 1 1 
5 FM42 training 1 1 
6 FM43 training 1 1 
7 FM44 training 1 1 
8 FM46 test 1 1 
9 FM47 training 1 1 

10 FM48 training 1 1 
11 FM77 training 1 1 
12 FM9 test 0 1 
13 FM45 training 0 1 
14 FM49 training 0 1 
15 NM-H-1 training 0 0 
16 NM-H-3 test 0 0 
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Set 1 

NO. Compound Model Set Activity Predicted 

17 PR4 training 1 1 
18 PR8 training 1 1 
19 PSP42 training 1 0 
20 PSP43 test 1 0 
21 PR3 training 0 0 
22 PSP40 training 0 0 
23 PSP41 training 0 0 
24 PSP81 test 0 0 
25 FM80 training 1 1 
26 FM122 training 1 1 
27 FM128 training 1 1 
28 FM129 test 1 1 
29 FM130 training 1 1 
30 FM131 training 1 1 
31 FM132 training 1 1 
32 FM133 test 1 1 
33 PR18 training 1 1 
34 FM11 training 0 0 
35 FM76 training 0 0 
36 FM123 test 0 0 
37 FM124 training 0 0 
38 FM125 training 0 0 
39 FM126 training 0 0 
40 FM127 test 0 0 
41 PSP39 training 0 0 
42 PSP67 training 0 0 
43 PSP50 training 1 1 
44 PSP51 test 1 1 
45 PSP52 training 1 1 
46 PSP71 training 1 1 
47 PSP72 training 1 1 
48 PSP73 test 1 0 
49 PSP74 training 1 1 
50 PSP45 training 0 0 
51 PSP49 training 0 0 
52 PSP84 test 0 0 
53 NI82 training 0 0 
54 PR2 training 0 0 
55 PR2.1 training 0 0 
56 PR6 test 0 0 
57 PR14 training 0 0 
58 PR15 training 0 0 
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Set 1 

NO. Compound Model Set Activity Predicted 

59 NI16 training 0 0 
60 NI26 test 0 0 
61 NI32 training 0 0 
62 NI173 training 0 0 
63 PSP47 training 0 0 
64 PSP48 test 0 0 
65 PSP69 training 0 0 
66 PSP70 training 0 0 
67 PSP82 training 0 0 
68 PSP83 test 0 0 
69 FM21 training 0 0 
70 FM22 training 0 0 
71 PR1 training 0 0 
72 PR19 test 0 0 
73 SIS17 training 1 1 
74 PR11 training 0 0 
75 PR12 training 0 0 
76 PR16 test 0 1 
77 PR20 training 0 0 
78 PR21 training 0 0 
79 PR22 training 0 0 
80 PR23 test 0 0 

Table S8. List of training and test compounds used in validation set 2 with their actual and 
predicted activity classes. 

Set 2 

NO. Compound Model Set Activity Predicted 

1 FM18 training 1 1 
2 FM19 training 1 1 
3 FM39 test 1 1 
4 FM40 training 1 1 
5 FM42 training 1 1 
6 FM43 training 1 1 
7 FM44 test 1 1 
8 FM46 training 1 1 
9 FM47 training 1 1 

10 FM48 training 1 1 
11 FM77 test 1 0 
12 FM9 training 0 0 
13 FM45 training 0 1 
14 FM49 training 0 1 
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Set 2 

NO. Compound Model Set Activity Predicted 

15 NM-H-1 test 0 0 
16 NM-H-3 training 0 0 
17 PR4 training 1 1 
18 PR8 training 1 1 
19 PSP42 test 1 0 
20 PSP43 training 1 0 
21 PR3 training 0 0 
22 PSP40 training 0 0 
23 PSP41 test 0 0 
24 PSP81 training 0 0 
25 FM80 training 1 1 
26 FM122 training 1 1 
27 FM128 test 1 1 
28 FM129 training 1 1 
29 FM130 training 1 1 
30 FM131 training 1 1 
31 FM132 test 1 1 
32 FM133 training 1 1 
33 PR18 training 1 1 
34 FM11 training 0 0 
35 FM76 test 0 0 
36 FM123 training 0 0 
37 FM124 training 0 0 
38 FM125 training 0 0 
39 FM126 test 0 0 
40 FM127 training 0 0 
41 PSP39 training 0 0 
42 PSP67 training 0 0 
43 PSP50 test 1 1 
44 PSP51 training 1 1 
45 PSP52 training 1 1 
46 PSP71 training 1 1 
47 PSP72 test 1 1 
48 PSP73 training 1 1 
49 PSP74 training 1 1 
50 PSP45 training 0 0 
51 PSP49 test 0 1 
52 PSP84 training 0 0 
53 NI82 training 0 0 
54 PR2 training 0 0 
55 PR2.1 test 0 0 
56 PR6 training 0 0 
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Set 2 

NO. Compound Model Set Activity Predicted 

57 PR14 training 0 0 
58 PR15 training 0 0 
59 NI16 test 0 0 
60 NI26 training 0 0 
61 NI32 training 0 0 
62 NI173 training 0 0 
63 PSP47 test 0 0 
64 PSP48 training 0 0 
65 PSP69 training 0 0 
66 PSP70 training 0 0 
67 PSP82 test 0 0 
68 PSP83 training 0 0 
69 FM21 training 0 0 
70 FM22 training 0 0 
71 PR1 test 0 0 
72 PR19 training 0 0 
73 SIS17 training 1 1 
74 PR11 training 0 0 
75 PR12 test 0 0 
76 PR16 training 0 0 
77 PR20 training 0 0 
78 PR21 training 0 0 
79 PR22 test 0 0 
80 PR23 training 0 0 

Table S9. List of training and test compounds used in validation set 3 with their actual and 
predicted activity classes. 

Set 3 

NO. Compound Model Set Activity Predicted 

1 FM18 training 1 1 
2 FM19 test 1 1 
3 FM39 training 1 1 
4 FM40 training 1 1 
5 FM42 training 1 1 
6 FM43 test 1 1 
7 FM44 training 1 1 
8 FM46 training 1 1 
9 FM47 training 1 1 

10 FM48 test 1 1 
11 FM77 training 1 1 
12 FM9 training 0 0 
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Set 3 

NO. Compound Model Set Activity Predicted 

13 FM45 training 0 1 
14 FM49 test 0 1 
15 NM-H-1 training 0 0 
16 NM-H-3 training 0 0 
17 PR4 training 1 1 
18 PR8 test 1 0 
19 PSP42 training 1 1 
20 PSP43 training 1 0 
21 PR3 training 0 0 
22 PSP40 test 0 0 
23 PSP41 training 0 0 
24 PSP81 training 0 0 
25 FM80 training 1 1 
26 FM122 test 1 0 
27 FM128 training 1 1 
28 FM129 training 1 1 
29 FM130 training 1 1 
30 FM131 test 1 1 
31 FM132 training 1 1 
32 FM133 training 1 1 
33 PR18 training 1 1 
34 FM11 test 0 0 
35 FM76 training 0 0 
36 FM123 training 0 0 
37 FM124 training 0 0 
38 FM125 test 0 0 
39 FM126 training 0 0 
40 FM127 training 0 0 
41 PSP39 training 0 0 
42 PSP67 test 0 0 
43 PSP50 training 1 1 
44 PSP51 training 1 1 
45 PSP52 training 1 1 
46 PSP71 test 1 1 
47 PSP72 training 1 1 
48 PSP73 training 1 1 
49 PSP74 training 1 1 
50 PSP45 test 0 1 
51 PSP49 training 0 1 
52 PSP84 training 0 0 
53 NI82 training 0 0 
54 PR2 test 0 0 
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Set 3 

NO. Compound Model Set Activity Predicted 

55 PR2.1 training 0 0 
56 PR6 training 0 0 
57 PR14 training 0 0 
58 PR15 test 0 0 
59 NI16 training 0 0 
60 NI26 training 0 0 
61 NI32 training 0 0 
62 NI173 test 0 0 
63 PSP47 training 0 0 
64 PSP48 training 0 0 
65 PSP69 training 0 0 
66 PSP70 test 0 0 
67 PSP82 training 0 0 
68 PSP83 training 0 0 
69 FM21 training 0 0 
70 FM22 test 0 0 
71 PR1 training 0 0 
72 PR19 training 0 0 
73 SIS17 training 1 1 
74 PR11 test 0 0 
75 PR12 training 0 0 
76 PR16 training 0 0 
77 PR20 training 0 0 
78 PR21 test 0 0 
79 PR22 training 0 0 
80 PR23 training 0 0 

Table S10. List of training and test compounds used in validation set 4 with their actual and 
predicted activity classes. 

Set 4 

NO. Compound Model Set Activity Predicted 

1 FM18 test 1 1 
2 FM19 training 1 1 
3 FM39 training 1 1 
4 FM40 training 1 1 
5 FM42 test 1 0 
6 FM43 training 1 1 
7 FM44 training 1 1 
8 FM46 training 1 1 
9 FM47 test 1 1 

10 FM48 training 1 1 
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Set 4 

NO. Compound Model Set Activity Predicted 

11 FM77 training 1 1 
12 FM9 training 0 0 
13 FM45 test 0 0 
14 FM49 training 0 1 
15 NM-H-1 training 0 0 
16 NM-H-3 training 0 0 
17 PR4 test 1 1 
18 PR8 training 1 1 
19 PSP42 training 1 1 
20 PSP43 training 1 0 
21 PR3 test 0 1 
22 PSP40 training 0 0 
23 PSP41 training 0 0 
24 PSP81 training 0 0 
25 FM80 test 1 1 
26 FM122 training 1 1 
27 FM128 training 1 1 
28 FM129 training 1 1 
29 FM130 test 1 1 
30 FM131 training 1 1 
31 FM132 training 1 1 
32 FM133 training 1 1 
33 PR18 test 1 0 
34 FM11 training 0 0 
35 FM76 training 0 0 
36 FM123 training 0 0 
37 FM124 test 0 0 
38 FM125 training 0 0 
39 FM126 training 0 0 
40 FM127 training 0 0 
41 PSP39 test 0 0 
42 PSP67 training 0 0 
43 PSP50 training 1 1 
44 PSP51 training 1 1 
45 PSP52 test 1 1 
46 PSP71 training 1 1 
47 PSP72 training 1 1 
48 PSP73 training 1 1 
49 PSP74 test 1 1 
50 PSP45 training 0 0 
51 PSP49 training 0 1 
52 PSP84 training 0 0 
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Set 4 

NO. Compound Model Set Activity Predicted 

53 NI82 test 0 0 
54 PR2 training 0 0 
55 PR2.1 training 0 0 
56 PR6 training 0 0 
57 PR14 test 0 0 
58 PR15 training 0 0 
59 NI16 training 0 0 
60 NI26 training 0 0 
61 NI32 test 0 0 
62 NI173 training 0 0 
63 PSP47 training 0 0 
64 PSP48 training 0 0 
65 PSP69 test 0 0 
66 PSP70 training 0 0 
67 PSP82 training 0 0 
68 PSP83 training 0 0 
69 FM21 test 0 0 
70 FM22 training 0 0 
71 PR1 training 0 0 
72 PR19 training 0 0 
73 SIS17 test 1 1 
74 PR11 training 0 0 
75 PR12 training 0 0 
76 PR16 training 0 0 
77 PR20 test 0 0 
78 PR21 training 0 0 
79 PR22 training 0 0 
80 PR23 training 0 0 
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