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A B S T R A C T

Background: Evidence suggests that brain-computer interface (BCI)-based rehabilitation strategies show promise 
in overcoming the limited recovery potential in the chronic phase of stroke. However, the specific mechanisms 
driving motor function improvements are not fully understood.
Objective: We aimed at elucidating the potential functional brain connectivity changes induced by BCI training in 
participants with chronic stroke.
Methods: A longitudinal crossover design was employed with two groups of participants over the span of 4 weeks 
to allow for within-subject (n = 21) and cross-group comparisons. Group 1 (n = 11) underwent a 6-day motor 
imagery-based BCI training during the second week, whereas Group 2 (n = 10) received the same training during 
the third week. Before and after each week, both groups underwent resting state functional MRI scans (4 for 
Group 1 and 5 for Group 2) to establish a baseline and monitor the effects of BCI training.
Results: Following BCI training, an increased functional connectivity was observed between the medial prefrontal 
cortex of the default mode network (DMN) and motor-related areas, including the premotor cortex, superior 
parietal cortex, SMA, and precuneus. Moreover, these changes were correlated with the increased motor function 
as confirmed with upper-extremity Fugl-Meyer assessment scores, measured before and after the training.
Conclusions: Our findings suggest that BCI training can enhance brain connectivity, underlying the observed 
improvements in motor function. They provide a basis for developing novel rehabilitation approaches using non- 
invasive brain stimulation for targeting functionally relevant brain regions, thereby augmenting BCI-induced 
neuroplasticity and enhancing motor recovery.

1. Introduction

Stroke is the leading cause of motor impairment worldwide, and its 
prevalence is expected to rise as the population ages (Feigin et al., 2021). 
After treatment-induced and/or spontaneous motor recovery during the 
acute phase, stroke survivors often reach a functional plateau, following 
which further recovery is usually slow or stagnant (Grefkes and Fink, 
2020). Nevertheless, emerging evidence evinces the potential of motor 
imagery (MI)-based brain-computer interface (BCI) based rehabilitation 
therapies in helping individuals surpass the recovery plateau (Cervera 

et al., 2018; Nojima et al., 2022; Zhang et al., 2024). This plateau un
derscores the need for innovative approaches that can reignite neuro
plastic processes and promote sustained functional improvement.

Traditional rehabilitation methods, including physical and occupa
tional therapy, exhibit limited efficacy in addressing this plateau, 
particularly for individuals with severe motor deficits. Emerging tech
nologies such as motor imagery (MI)-based brain-computer interfaces 
(BCIs) offer a promising alternative by leveraging neuroplasticity prin
ciples. MI activates cortical regions overlapping with actual movement 
execution, including the premotor cortex, supplementary motor area 
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(SMA), and inferior parietal lobule (Donati et al., 2024). However, 
performing MI without any feedback has drawbacks such as a lack of 
control over the activity and reduced motivation. BCIs address this 
limitation by creating closed-loop systems that translate real-time brain 
activity into visual or somatosensory feedback, actively involving pa
tients in their recovery.

Recent studies advocate for coupling BCI devices with complemen
tary technologies, such as MI-triggered functional electrical stimulation 
(FES) and incorporating virtual reality for visual feedback (Khokale 
et al., 2023; Johansson, 2012; Donati et al., 2016). FES delivers precisely 
timed electrical impulses to peripheral nerves, inducing muscle con
tractions that mimic natural movement patterns. While early applica
tions focused on gait rehabilitation, modern closed-loop FES systems 
synchronize stimulation with volitional motor intent, enhancing both 
functional assistance and plasticity induction (Shin et al., 2022). The 
transition from open-loop to closed-loop FES systems marked a para
digm shift − EMG-triggered and BCI-controlled FES now enable voli
tional engagement by linking motor intention to functional movement 
execution (Shin et al., 2022;Ren et al., 2024). Neuroimaging reveals that 
MI combined with FES amplifies μ-rhythm suppression in sensorimotor 
cortices while increasing interhemispheric coherence between primary 
motor regions (Donati et al., 2024;Yakovlev et al., 2023). This synergy 
arises through three mechanisms: 1) FES provides congruent somato
sensory feedback to enhance MI vividness, 2) peripheral stimulation 
reinforces central motor commands via thalamocortical loops, and 3) 
combined MI-FES strengthens cortico-cortical connectivity through 
Hebbian plasticity (Donati et al., 2024;Ren et al., 2024; Yakovlev et al., 
2023).

Modern BCI systems convert MI-related EEG signals into FES- 
triggered movements, creating a closed sensorimotor loop that simul
taneously engages peripheral receptors and central networks (Shin et al., 
2022;Ren et al., 2024; Khan et al., 2023). This approach capitalizes on 
Hebbian plasticity principles − volitional MI paired with contingent FES 
strengthens cortico-cortical and corticospinal connections through 
temporal binding of pre- and post-synaptic activity (Ren et al., 2024; 
Yakovlev et al., 2023). Preliminary evidence suggests such systems 
induce dual plasticity: 1) local increases in SMN connectivity supporting 
motor execution, and 2) enhanced DMN-SMN integration facilitating 
goal-directed attention and error monitoring (Wu et al., 2020).

These findings highlight the potential of combined central- 
peripheral interventions to drive multifaceted neuroplasticity. Howev
er, despite promising hypotheses that strengthening central-peripheral 
connections through complementary technologies enhances motor re
covery via use-dependent plasticity, the precise mechanisms underlying 
these adaptive brain changes remain poorly characterized.

Resting-state functional MRI has proven to be a powerful tool for 
investigating functional brain networks in stroke patients, offering in
sights into changes in functional brain connectivity without the need for 
task performance, which can be challenging for patients with motor 
impairments (Fan et al., 2015; Mattos et al., 2023; Cassidy et al., 2021). 
Unlike task-based functional MRI, which is confounded by task execu
tion, resting-state functional MRI allows characterization of changes 
associated with recovery and rehabilitation independent of individual 
performance.

Using resting-state functional MRI, our longitudinal study investi
gated the effects of a BCI intervention on functional brain connectivity in 
individuals with stroke, with a specific focus on the default mode 
network (DMN). The DMN is comprised of interconnected brain regions 
including the medial frontal gyrus, posterior cingulate cortex, pre
cuneus, and lateral parietal cortex. These regions are significantly more 
active when the individual is not actively engaged with the external 
world (Raichle, 2015). Furthermore, there is evidence suggesting that 
motor skill learning through MI affects the DMN (Ge et al., 2015). It is of 
particular interest to investigate the DMN in individuals with stroke, as 
it provides insight into the functional state of the brain unaffected by 
their clinical or behavioral conditions. Previous studies have 

demonstrated that lesion location, and time since stroke impact func
tional connectivity within the DMN, and between the DMN and other 
networks such as the sensorimotor network (SMN) (Zhang et al., 2016). 
The DMN also plays an important role in understanding the neural 
mechanisms of post-stroke cognitive and functional deficits(Li et al., 
2022; Sharp et al., 2011; Jiang et al., 2018; Chen et al., 2019), sug
gesting that changes in the DMN may reflect pathophysiological prop
erties of functional networks. Furthermore, the interaction between the 
DMN and SMN may facilitate post-stroke motor recovery (Wu et al., 
2020). And yet it remains unclear whether the DMN is malleable to 
intervention, which would suggest potential restorative functional pro
cesses in the brain.

In this study, we aimed to address two key mechanistic questions: Is 
the DMN in individuals with stroke malleable to a short-term intensive 
BCI intervention? And are functional brain network changes associated 
with improvements in motor function?

By conducting a longitudinal analysis using resting-state fMRI, we 
sought to characterize the plasticity of DMN interactions in response to 
MI-BCI training and explore their relationship with post-stroke motor 
recovery. These findings could provide critical insights into the neural 
mechanisms underlying BCI-facilitated rehabilitation and inform the 
development of more effective therapeutic strategies tailored to indi
vidual patient needs.

2. Methods

2.1. Participant cohort

The study included a cohort of 21 individuals with chronic stroke (5 
females; mean age: 60.81 ± 8.66 years; detailed characteristics of the 
participants are provided in Supplementary Table 1; detailed inclusion 
and exclusion criteria are provided in the Supplementary Table 2).

2.2. Experimental design

We employed a longitudinal delayed-start crossover design with two 
groups (the timeline of the study is illustrated in Fig. 1). This design 
enabled both within-subject and cross-group comparisons, while ma
naging the potential influence of the MRI scanner by alternating the 
order of interventions and measurements. It ensures a more robust ex
amination of the immediate and sustained effects of BCI training 
addressing methodological considerations to increase the validity of the 
results.

The primary difference between the two groups was the scheduling 
of their BCI training sessions. Specifically, Group 1 received the training 
during the second week, whereas Group 2 received their training in the 
third week. To monitor the effects of the training, both groups were 
subjected to a series of MRI scans before and after their respective 
training weeks. Each of the MRI scans consisted of structural (multi- 
parametric mapping and diffusion-weighted imaging), and functional 
(resting-state and task-based) scans. Consequently, participants in 
Group 1 underwent a total of four MRI sessions, while those in Group 2 
had five.

Throughout the weeks when no intervention was scheduled, 

Fig. 1. Experimental Timeline.
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participants were asked to continue with their usual daily activities 
without making any changes that could be attributed to their partici
pation in the study. This is to ensure that any observed effects could be 
more confidently linked to the BCI training rather than any external 
factors.

To assess the immediate training effects, the results of BCI training 
from Group 1′s second week were directly compared with those of Group 
2 during the same timeframe. To enhance statistical power and mitigate 
potential confounding factors, the results of Group 2′s week 3 BCI 
training were combined with Group 1′s week 2 BCI training outcomes, 
effectively doubling the sample size for subsequent analyses. Addition
ally, post-training week outcomes for each group were compared to 
elucidate sustained effects or variations in performance.

Participants in both groups underwent upper-extremity Fugl-Meyer 
assessment (UE-FMA) (Fugl-Meyer et al., 1975) before and after their 
respective BCI-intervention weeks.

All participants have given their written informed consent before 
participating in the study. The ethical approval for this study was 
granted by the ethics committee of the Medical Faculty at the University 
of Leipzig, under the category of fundamental/basic research, with 
application number 208/17-ek on January 23, 2018.

2.3. Brain-computer interface-based intervention

Participants underwent daily 90-minute BCI training sessions for six 
consecutive weekdays. The BCI system (recoveriX, g.tec medical engi
neering GmbH, Schiedlberg, Austria) (Irimia, 2016; Sebastián-Roma
gosa et al., 2020) was coupled with FES, and virtual avatar. Each session 
consisted of five trials, interspersed with 5-minute breaks. The trials 
were used either for classifier training or practice mode. During classi
fier training trials, the participants received FES and avatar feedback 
irrespective of whether the system accurately classified their intended 
movement (left or right wrist dorsiflexion). In contrast, during practice 
mode trials, feedback was provided only when the system correctly 
classified the participant’s intended movement.

On day 1, four classifier trials were followed by one practice trial. On 
subsequent days 2–6, one classifier trial was performed to update the 
classifier, followed by four practice trials.

Before each session, an EEG cap with 16 active electrodes (g.Scar
abeo, g.tec medical engineering GmbH, Schiedlberg, Austria) was placed 
according to the international 10/10 system, with the reference elec
trode on the right ear, and the ground electrode at FPz.

Individual FES parameters were then adjusted to achieve wrist dor
siflexion. Participants were seated at a table with underarms resting on 
it. Non-invasive electrodes with adhesive gel were attached to the left 
and right forearms, targeting the extensor digitorum muscle. The stim
ulation parameters (frequency, amplitude, phase length) were gradually 
adjusted until the individual threshold for wrist dorsiflexion was 
reached.

After the FES parameters were adjusted, the first trial would begin. 
The participant received an initial auditory warning beep followed two 
seconds later by a directional arrow (“left” or “right”) on the screen. 
Simultaneously, a corresponding audio command (“left” or “right”) was 
played. In response, the participant was instructed to imagine dorsi
flexion of the indicated wrist. If the BCI system detected MI for the 
instructed side, the system would trigger the FES and virtual avatar 
feedback. The virtual on-screen avatar mirrored the participant’s 
movement in synchrony with the FES stimulation.

2.4. Magnetic resonance imaging

MRI was performed on a 3 T MAGNETOM Prismafit (Siemens, 
Erlangen, Germany) scanner using a 32-channel head coil. High- 
resolution structural images were acquired using a multi-parametric 
mapping (MPM) protocol: two multi-echo fast low angle shot (FLASH) 
scans with T1- and PD-weighting (T1w, PDw), maps of the radio 

frequency (RF) transmit field B1+ and static magnetic field B0. The MPM 
acquisition was adapted for whole-brain with a uniform resolution of 1 
mm, building upon previously established methods (Weiskopf et al., 
2013; Weiskopf et al., 2011; Trampel et al., 2019).

Resting-state fMRI was acquired using a T2*-weighted echo planar 
imaging (EPI) sequence: axial acquisition orientation, phase encoding A 
≫ P, voxel size 2.5 mm isotropic, spacing between slices 2.75 mm, TR 
2000 ms, TE 22 ms, flip angle 80◦, bandwidth 1795 Hz/pixel, duration 
10 min. During each resting-state fMRI scan, participants were instruc
ted to lie still with their eyes open and to loosely fixate a low-contrast 
crosshair. Before each functional scan, a dual-echo gradient echo non- 
EPI scan (voxel size 2.5 mm isotropic, TR 620 ms, TE 4 ms, flip angle 
60◦) and two sets of spin echo EPI scans (voxel size 2.5 mm isotropic, TR 
8000 ms, TE 50 ms) were acquired for field map and reverse phase 
encoding distortion correction, respectively.

All the preprocessing and first-level analysis steps were performed 
using CONN (Whitfield-Gabrieli and Nieto-Castanon, 2012) (RRID: 
SCR_009550) release 22.a (Nieto-Castanon and Whitfield-Gabrieli, 
2022) toolbox, and second-level analysis was performed using SPM 
(Penny et al., 2011) (RRID:SCR_007037) release 12.7771.

Preprocessing: Functional and anatomical data were preprocessed 
using a flexible preprocessing pipeline (Handbook of functional con
nectivity magnetic resonance imaging methods in CONN, 2020) 
including creation of voxel-displacement maps, realignment with sus
ceptibility distortion correction using fieldmaps, slice timing correction, 
outlier detection, indirect segmentation and MNI-space normalization, 
and smoothing. Functional data were realigned using SPM realign & 
unwarp procedure (Andersson et al., 2001) integrating gradient echo 
fieldmaps for susceptibility distortion correction, where all scans were 
coregistered to a reference image (first scan of the first session) using a 
least squares approach and a 6 parameter (rigid body) transformation, 
and resampled using b-spline interpolation (KarlJ et al., 1995) to 
simultaneously correct for motion, magnetic susceptibility geometric 
distortions, and their interaction. Temporal misalignment between 
different slices of the functional data was corrected following SPM slice- 
timing correction procedure (Sladky et al., 2011), using sinc temporal 
interpolation to resample each slice fMRI timeseries to a common mid- 
acquisition time. Potential outlier scans were identified using ART 
(Whitfield-Gabrieli et al., 2009) as acquisitions with framewise 
displacement above 0.9 mm or global fMRI signal changes above 5 
standard deviations, and a reference image was computed for each 
subject by averaging all scans excluding outliers. Functional and 
anatomical data were coregistered and normalized into standard MNI 
space, segmented into grey matter, white matter, and CSF tissue classes, 
and resampled to 2 mm isotropic voxels following an indirect normali
zation procedure using SPM unified segmentation and normalization 
algorithm (Ashburner and Friston, 2005;Ashburner, 2007) with the 
default IXI-549 tissue probability map template. Last, functional data 
were smoothed using spatial convolution with a Gaussian kernel of 8 
mm full width at half maximum.

Denoising: In addition to the preprocessing steps, functional data 
were denoised using CONN’s standard denoising pipeline (Handbook of 
functional connectivity magnetic resonance imaging methods in CONN, 
2020) including the regression of potential confounding effects char
acterized by white matter timeseries (5 CompCor noise components), 
CSF timeseries (5 CompCor noise components), motion linear and 
quadratic parameters and their first order derivatives (24 covariates, 
also known as the Friston-24 model) (Friston et al., 1996), session effects 
and their first order derivatives (2 covariates), and linear trends (2 
covariates) within each functional run, followed by bandpass frequency 
filtering of the fMRI timeseries (Hallquist et al., 2013) using default 
cutoff frequencies of 0.008 Hz and 0.09 Hz. CompCor (Behzadi et al., 
2007;Chai et al., 2012) noise components within white matter and CSF 
were estimated by computing the average fMRI signal as well as the 
largest principal components orthogonal to the signal average, motion 
parameters within each subject’s eroded segmentation masks. From the 
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number of noise terms included in this denoising strategy, the effective 
degrees of freedom of the fMRI signal after denoising were estimated to 
84.3 across all subjects.

2.5. Seed based analysis

First-level analysis: Seed-based connectivity maps were estimated 
characterizing the spatial pattern of functional connectivity with a seed 
area. As we expected functional connectivity alterations within the 
default-mode network (DMN), seed-based correlation maps were 
generated for all four regions of the DMN obtained from the HPC-ICA 
networks (see Supplementary Fig. 1), i.e. four seed-based correlation 
maps were generated for each participant and each scanning session. 
Functional connectivity strength was represented by Fisher-transformed 
bivariate correlation coefficients from a weighted general linear model 
(weighted-GLM (Handbook of functional connectivity magnetic reso
nance imaging methods in CONN, 2020), estimated separately for each 
seed area and target voxel, modeling the association between their fMRI 
signals. To compensate for possible transient magnetization effects at 
the beginning of each run, individual scans were weighted by a step 
function convolved with an SPM canonical hemodynamic response 
function and rectified.

Second-level analysis: Individual seed-based correlation maps were 
then entered into a group analysis using SPM12 with a General Linear 
Model (GLM (Handbook of functional connectivity magnetic resonance 
imaging methods in CONN, 2020) implementing a flexible-factorial 
design. Different models were used to implement a repeated- 
measurements analysis:

Group analysis (i): Interaction Between Group and Time.
The first group analysis examined two measurements per participant: 

MRI 2 and MRI 3 (see Supplementary Fig. 2a). A design matrix was 
constructed to include two factors: GROUP (BCI vs. control) and TIME 
(pre-intervention vs. post-intervention). Contrast images were gener
ated to test for a potential interaction between these two factors, spe
cifically assessing whether changes over time differed between the BCI 
and control groups.

2.5.1. Group analysis (ii): effect of intervention across the cohort
The second group analysis aimed to evaluate the overall effect of the 

intervention across all participants. For this analysis, MRI 2 and MRI 3 
were used for Group 1, while MRI 3 and MRI 4 were used for Group 2 
(see Supplementary Fig. 2b). The model included a single factor, TIME 
(pre-intervention vs. post-intervention). Contrast images were gener
ated to identify potential brain connectivity changes associated with the 
TIME factor by comparing pre- and post-intervention measurements in a 
paired analysis.

2.5.2. Group analysis (iii): longitudinal analysis across all sessions
The third group analysis investigated pre- and post-intervention 

differences using a more advanced longitudinal approach to enhance 
robustness. This model incorporated all available functional sessions: 
MRI 1, MRI 2, MRI 3, and MRI 4 for Group 1, and MRI 2, MRI 3, MRI 4, 
and MRI 5 for Group 2 (see Supplementary Fig. 2c). Each participant 
contributed four input maps, with the model implementing the TIME 
factor. Contrast images were generated to explore brain connectivity 
changes associated with the TIME factor across all sessions.

2.5.3. Group analysis (iv): brain connectivity and outcome relationship
The final group analysis assessed the relationship between brain 

connectivity changes and individual outcomes as measured by the Fugl- 
Meyer Assessment of Upper Extremity (FMA-UE). To account for the 
intervention across all participants, MRI 2 and MRI 3 were used for 
Group 1, while MRI 3 and MRI 4 were used for Group 2 (see Fig. 1). Each 
participant contributed two input maps, with the model including the 

TIME factor. Additionally, individual pre- and post-intervention FMA- 
UE scores were included as covariates (see Supplementary Table 3). This 
analysis aimed to identify potential correlations between brain con
nectivity changes and FMA-UE scores.

Note that all analyses were computed at the full-brain level, i.e. 
parameter estimation was performed for all voxels within the entire 
brain. Voxel-level hypotheses were evaluated using multivariate para
metric statistics with random-effects across subjects and sample 
covariance estimation across multiple measurements. Inferences were 
performed at the level of individual clusters (groups of contiguous 
voxels). Cluster-level inferences were based on parametric statistics 
from Gaussian Random Field theory (Worsley et al., 1996). Resulting 
statistical parametric maps were initially assessed using a cluster- 
forming voxel threshold of P < 0.005. To correct for multiple compar
isons, significant clusters were obtained with P < 0.05 using family-wise 
error (FWE) correction at the cluster-level (Worsley and Friston, 1995; 
Eklund et al., 2016; Flandin and Friston, 2019).

2.6. ROI-to-ROI analysis

First-level analysis: ROI-to-ROI connectivity (RRC) matrices were 
estimated characterizing the functional connectivity between each pair 
of selected DMN and motor-related regions (DMN networks, precentral 
gyrus, postcentral gyrus, SMN, SMA) within the CONN Toolbox (Nieto- 
Castanon and Whitfield-Gabrieli, 2022). Functional connectivity 
strength was represented by Fisher-transformed bivariate correlation 
coefficients from a general linear model (weighted-GLM), estimated 
separately for each pair of ROIs, characterizing the association between 
their BOLD signal timeseries. In order to compensate for possible tran
sient magnetization effects at the beginning of each run, individual scans 
were weighted by a step function convolved with an SPM canonical 
hemodynamic response function and rectified.

Group-level analyses were performed using a General Linear Model 
(GLM (Handbook of functional connectivity magnetic resonance imag
ing methods in CONN, 2020). For each individual connection a separate 
GLM was estimated, with first-level connectivity measures at this 
connection as dependent variables (one independent sample per subject 
and one measurement per task or experimental condition, if applicable), 
and groups or other subject-level identifiers as independent variables. 
Connection-level hypotheses were evaluated using multivariate para
metric statistics with random-effects across subjects and sample 
covariance estimation across multiple measurements. Inferences were 
performed at the level of individual clusters (groups of similar connec
tions). Cluster-level inferences were based on parametric statistics 
within- and between- each pair of networks (Functional Network Con
nectivity (Jafri et al., 2008), with networks identified using a complete- 
linkage hierarchical clustering procedure (Sørensen, 1945) based on 
ROI-to-ROI anatomical proximity and functional similarity metrics. 
Results were thresholded using a combination of a p < 0.05 connection- 
level threshold and a familywise corrected p-FDR < 0.05 cluster-level 
threshold (Benjamini and Hochberg, 1995).

2.7. Lesion masking

For each participant, a lesion mask was created by an expert using 
manual image segmentation. The resulting masks were then verified by 
a second neurologist for accuracy. For all participants showing a lesion 
in the right hemisphere (n = 5), masks were flipped horizontally (i.e. 
along the x-axis), resulting in all lesions located uniformly in the left 
hemisphere (see Fig. 2). All lesion masks were added together, thresh
olded, and binarized, resulting in a final mask containing an overlay of 
lesions from all participants. This final mask was added to the statistical 
analysis as an exclusive mask.
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2.8. Visualization

Figures showing glass-brain images were generated using nilearn 
(Abraham et al., 2014) (RRID:SCR_001362) v0.10.3 Python library.

Figures showing 3D brain slices were generated using the Mango 
(Habes et al., 2019) image processing software v4.1 with the statistical 
parametric maps added as an overlay and were directly obtained from 
SPM12.

Figures showing ROI-to-ROI connectivity were generated using 
CONN Toolbox (Nieto-Castanon and Whitfield-Gabrieli, 2022).

3. Results

In the behavioral domain, the 6-day BCI training resulted in 
improvement in upper limb motor function as assessed by Fugl-Meyer 
Assessment of Upper Extremity (UE-FMA) scores (P < 0.0002, differ
ence in 1.95 scores; see Supplementary Table 3).

To investigate the potential correlation between the motor function 
improvement and changes in the functional connectivity within the 
default mode network (DMN), we employed the following models 
incorporating a repeated-measures design.

Using a two-factorial design with the factors GROUP and TIME (see 
group analysis (i)), an examination of the interaction between group 
(BCI vs. control) and time (pre vs. post) showed a differential pattern of 
pre-post brain connectivity change between the BCI and the control 
group, with the BCI group exhibiting increased connectivity between the 
mPFC and left superior parietal gyrus, ipsilesional inferior parietal 
gyrus, and ipsilesional precuneus (see Fig. 3, and Table 1).

Leveraging the advantage of a crossover design, we pooled inter
vention weeks from both groups and conducted a pre-post analysis 
(group analysis (ii)). As anticipated, these results mirrored the findings 
observed in the interaction analysis, i.e. increase in connectivity be
tween the mPFC and superior and inferior parietal gyri, and precuneus. 
Additionally, we saw an increase in connectivity between the mPFC and 
pre-/postcentral gyrus (see Fig. 4, and Table 1).

A pre vs. post analysis of the consolidated corresponding interven
tion and non-intervention weeks from both groups (group analysis (iii)) 
reveals significant increase in functional connectivity between mPFC 
and contralesional SMA, middle cingulate & paracingulate gyri, ipsile
sional paracentral lobule, contralesional rolandic operculum, and con
tralesional pre- and postcentral gyri (see Fig. 5, and Table 1).

When correlating Fugl-Meyer Assessment of Upper Extremity (FMA- 
UE) scores with the functional connectivity (group analysis (iv)), we 
observed a significant positive correlation between changes in FMA-UE 
scores and increased functional connectivity from mPFC to the con
tralesional pre- and postcentral gyri, ipsilesional superior parietal gyrus, 
and contralesional precuneus (see Fig. 6, and Table 1).

While seed-based correlation maps were generated for all four re
gions of the DMN obtained from HPC-ICA networks, significant results 

were observed only for the mPFC seed region.
In addition to the voxel-wise analyses, a region-of-interest (ROI)-to- 

ROI connectivity analysis was performed to further explore functional 
connectivity changes between the medial prefrontal cortex (mPFC) of 
the default mode network (DMN) and motor-related regions. The anal
ysis revealed significant increases in functional connectivity between 
the mPFC and several contralesional sensorimotor areas. These included 
the precentral gyrus (PreCG), which is associated with voluntary motor 
control and execution, and the postcentral gyrus (PostCG), which is 
involved in somatosensory processing. Increased connectivity was also 
observed with the supplementary motor area (SMA), a region critical for 
motor planning and coordination, as well as with superior and lateral 
sensorimotor areas, which are linked to the integration of sensory input 
and motor output (see Fig. 7).

These findings align with and reinforce our seed-based results (group 
analysis (iii)), providing robust evidence that the intervention enhances 
functional connectivity between DMN regions and contralesional motor- 
related areas, further supporting its role in promoting neuroplasticity 
and motor recovery.

This figure visualizes the results of the ROI-to-ROI analysis. The 
circular plot at the top illustrates the significant connections between 
the medial prefrontal cortex (DefaultMode.mPFC) and contralesional 
sensorimotor regions, including the precentral gyrus (PreCG.r), post
central gyrus (PostCG.r), supplementary motor area (SMA.r), superior 
sensorimotor area, and lateral sensorimotor area. The thickness and 
color intensity of the lines represent the strength of connectivity, with 
warmer colors indicating stronger positive correlations.

The bottom panel displays 3D renderings of these connections 
overlaid on brain templates, highlighting their spatial distribution. The 
red lines represent significant connections.

The table shows the contrast, number of clusters with the number of 
voxels in the cluster, brain region with T-maximum of the cluster (in 
bold) and two further local maxima more than 8 mm apart and peak 
voxel coordinates in MNI space. MNI – Montreal Neurological Institute; 
x, y, z – coordinates in mm; L – left; R – right.

4. Discussion

In 21 participants with chronic stroke, we show that BCI with MI- 
triggered functional electrical stimulation (FES) and visual feedback 
leads to an increased functional connectivity between the mPFC of the 
DMN and motor-related regions including the premotor cortex, superior 
parietal cortex, SMA, and precuneus. Additionally, we found increased 
functional connectivity between the mPFC of the DMN and the superior 
parietal gyrus. Notably, changes in functional connectivity were posi
tively correlated with improvements in Fugl-Meyer Assessment of Upper 
Extremity scores.

DMN has been mostly associated with internal modes of cognition 
(Raichle, 2015), various forms of self-generated thought like episodic 
memory retrieval, future planning, scene imagination, social cognition, 
and self-reflection (Andrews-Hanna et al., 2014). Interestingly, DMN 
connectivity has also been shown to be sculpted by motor learning 
through altering the interregional connectivity between the medial 
temporal lobe, lateral temporal cortex, and lateral parietal cortex within 
the DMN, rather than changing the overall activity of the network (Ge 
et al., 2015).

Evidence for changes in DMN connectivity after stroke has been re
ported in several studies. One study in patients with brainstem stroke 
found a link between DMN connectivity changes and early cognitive 
dysfunction (Jiang et al., 2018). Furthermore, significantly lower voxel- 
mirrored homotopic connectivity (VMHC, a technique used to measure 
the connectivity between mirror areas of the brain hemispheres) in the 
DMN and motor-related regions was found in subcortical stroke patients, 
compared to healthy controls, including in the precuneus, para
hippocampus, precentral gyrus, supplementary motor area, and middle 
frontal gyrus (Li et al., 2022). The increased VMHC in the superior 

Fig. 2. Cumulative lesion mask. Glass-brain views illustrate the distribution of 
lesions across all participants. Brighter regions represent areas where fewer 
participants have lesions, while darker regions represent areas with a higher 
prevalence of lesions. L – left; R – right.
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precuneus may reflect functional recovery (Li et al., 2022). Another 
study investigated functional connectivity changes within the DMN and 
sensorimotor network in patients with basal ganglia and pontine stroke 

in the early chronic phase. Compared to healthy controls, patients with 
basal ganglia stroke exhibited reduced FC in the left precuneus of the 
posterior DMN (Chen et al., 2019).

Fig. 4. Glass-brain views and an axial brain section showing significant pre-post-differences. This figure illustrates the results of a pre- versus post-intervention 
analysis conducted on combined intervention weeks for all participants (n = 42). The yellow region marks the seed region, located in the medial prefrontal cor
tex (mPFC) of the default mode network (DMN). The red regions represent areas that demonstrated increased functional connectivity with the mPFC following the 
intervention: superior and inferior parietal gyri, precuneus. mPFC – medial prefrontal cortex; DMN – default mode network; L – left; R – right. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Glass-brain views and a coronal brain section showing significant pre-post-differences of consolidated intervention and non-intervention weeks. This figure 
depicts the results of a pre-post analysis of consolidated intervention and non-intervention weeks across both groups (group analysis iii). The yellow region highlights 
the seed region, located in the medial prefrontal cortex (mPFC) of the default mode network (DMN). The red regions represent areas with significantly increased 
functional connectivity with the mPFC following the intervention: contralesional SMA, middle cingulate and paracingulate gyri, ipsilesional paracentral lobule, 
contralesional rolandic operculum, contralesional pre- and postcentral gyri. mPFC – medial prefrontal cortex; DMN – default mode network; L – left; R – right. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Glass-brain views and a coronal brain section showing a significant positive correlation of FMA-UE with functional connectivity. This figure illustrates the 
results of a correlation analysis (group analysis iv) that examined the relationship between Fugl-Meyer Assessment of Upper Extremity (FMA-UE) scores and 
functional connectivity changes. The yellow region represents the seed region, located in the medial prefrontal cortex (mPFC) of the default mode network (DMN). 
The red regions indicate areas where increased functional connectivity with the mPFC positively correlated with improvements in FMA-UE scores: contralesional pre- 
and postcentral gyri, ipsilesional superior parietal gyrus, and contralesional precuneus. mPFC – medial prefrontal cortex; DMN – default mode network; L – left; R – 
right. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Glass-brain views and a coronal brain section showing a significant interaction between group (BCI vs. control) and time (pre vs. post). This figure presents 
the results of a two-factorial analysis examining the interaction between group (BCI vs. control) and time (pre vs. post). The yellow region represents the seed region, 
located in the medial prefrontal cortex (mPFC) of the default mode network (DMN). The red regions indicate areas with increased functional connectivity with the 
seed region, specifically in the BCI group compared to the control group: ipsilesional superior parietal gyrus, ipsilesional inferior parietal gyrus, and ipsilesional 
precuneus. BCI – brain-computer interface; mPFC – medial prefrontal cortex; DMN – default mode network; L – left; R – right. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)
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The two aforementioned lines of evidence regarding DMN connec
tivity, i.e., its alterations after stroke, and the changes induced by motor 
learning, motivated our approach to test in participants with chronic 
stroke whether DMN connectivity might be malleable to neurofeedback 
intervention and therefore be a potential mechanism of recovery. 
Indeed, we were able to confirm this hypothesis. The increased 

connectivity which we observed between the mPFC and motor regions 
could reflect the recruitment and integration of cognitive processes 
facilitated by the DMN in support of motor skill learning and recovery.

In addition to connectivity changes of mPFC to motor-related re
gions, the BCI group also exhibited increased connectivity between the 
mPFC and regions such as the ipsilesional superior parietal gyrus, ipsi
lesional inferior parietal gyrus, and ipsilesional precuneus. The pre-post 
analysis of consolidated intervention weeks further corroborated and 
extended these findings, revealing increased functional connectivity 
between the mPFC and regions such as the SMA, middle cingulate & 
paracingulate gyri, ipsilesional paracentral lobule, contralesional 
rolandic operculum, and contralesional pre- and postcentral gyri. The 
SMA and cingulate cortex are implicated in motor planning and 
execution (Picard and Strick, 1996), while the paracentral lobule and 
pre- and postcentral gyri are key components of the primary sensori
motor cortex (Rosazza and Minati, 2011). These connectivity changes 
suggest that BCI intervention may have facilitated the reorganization 
and integration of motor control networks, potentially contributing to 
the observed improvements in upper limb motor function.

Crucially, changes in functional connectivity were positively corre
lated with improvements in Fugl-Meyer Assessment scores of Upper 
Extremity. Specifically, increased connectivity from the mPFC to the 
contralesional pre- and postcentral gyri, ipsilesional superior parietal 
gyrus, and contralesional precuneus was associated with greater gains in 
motor skills. These findings provide compelling evidence for the po
tential neuroanatomical substrates underlying motor skill recovery and 
highlight the reorganization of interregional communication within the 
motor network as a key mechanism facilitated by BCI intervention.

The observed connectivity changes around lesioned areas also merit 
further exploration in the context of perilesional tissue reorganization 

Table 1 
Summary of brain regions per contrast with significantly increased connectivity 
with the mPFC of the DMN.

Contrast Cluster/ 
extent (n 
voxels)

Region Peak voxel 
coordinates (MNI)

T max

x y z

Interaction 
between group 
(BCI vs. control) 
and time (pre vs. 
post)

Cluster 1/ 
1378

​ ​ ​ ​ ​

​ ​ Superior 
parietal 
gyrus L

¡20 ¡56 70 5.28

​ ​ Precuneus L − 6 − 60 62 4.89
​ ​ Inferior 

parietal gyrus 
L

− 28 − 50 52 4.68 

Pre vs. post 
analysis of 
combined 
intervention 
weeks of all 
participants

Clusters 
2/ 1181, 
1091

​ ​ ​ ​ ​

​ ​ Precuneus L ¡6 ¡40 62 5.85
​ ​ Superior 

parietal gyrus 
L

− 24 − 52 60 4.85

​ ​ Inferior 
parietal gyrus 
L

− 28 − 46 50 4.81

​ ​ Postcentral 
gyrus R

24 ¡36 58 4.72

​ ​ Precentral 
gyrus R

62 4 20 4.68

​ ​ Postcentral 
gyrus R

32 − 36 62 4.65

Pre vs. post 
analysis of 
consolidated 
intervention and 
non- 
intervention 
weeks

Cluster 1/ 
4869

​ ​ ​ ​ ​

​ ​ SMA R 8 ¡16 62 5.01
​ ​ Precentral 

gyrus L
− 36 − 4 62 4.97

​ ​ Paracentral 
lobule L

− 8 − 24 58 4.46

Correlation of 
FMA-UE scores 
with functional 
connectivity

Clusters 
2/ 8228, 
3307

​ ​ ​ ​ ​

​ ​ Superior 
parietal 
gyrus L

–22 ¡54 72 10.41

​ ​ Postcentral 
gyrus R

64 2 16 8.85

​ ​ Precuneus L − 10 − 54 68 7.98
​ ​ SMA L ¡4 6 76 7.40
​ ​ Superior 

frontal gyrus, 
L

–22 42 40 6.35

​ ​ SMA L − 2 22 60 6.24

Fig. 7. ROI-to-ROI connectivity analysis showing significant increases in 
functional connectivity between the mPFC and contralesional sensori
motor regions.
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post-stroke. Perilesional regions, which border the area of infarct or 
injury, have been implicated in functional recovery and plasticity 
mechanisms following stroke (Cramer, 2008). The increased connec
tivity between the mPFC and regions such as the contralesional pre- and 
postcentral gyri, ipsilesional superior parietal gyrus, and contralesional 
precuneus may reflect reorganization within the perilesional tissue, 
potentially facilitating the recruitment of alternative neural pathways or 
the unmasking of existing connections. This reorganization could 
contribute to the observed improvements in motor function by enabling 
the remapping of motor representations or the formation of new func
tional networks to compensate for the lesioned areas (Grefkes and Fink, 
2014).

The increased connectivity between the mPFC and contralesional 
regions, such as the superior parietal gyrus and precuneus, invites 
further consideration in light of emerging perspectives on the con
tralesional hemisphere’s role in stroke recovery. Our findings suggest 
that the contralesional hemisphere might play a supportive role. The 
recruitment of areas like the superior parietal gyrus and precuneus could 
indicate their compensation for the damaged motor cortex in the ipsi
lesional hemisphere, aligning with the growing recognition of con
tralesional recruitment in functional recovery, especially during the 
acute and subacute phases post-stroke (Rehme and Grefkes, 2013).

While this study offers valuable insights into the neural and behav
ioral effects of BCI intervention, it is not without limitations. The rela
tively small sample size presents challenges in terms of generalizability 
and limits the ability to explore more nuanced subgroup analyses. It 
restricts the ability to detect subtle or complex interactions between 
variables that could provide deeper mechanistic insights into the 
observed connectivity changes and motor recovery.

Despite these constraints, several methodological strategies were 
employed to mitigate their impact. The longitudinal delayed-start 
crossover design allowed for within-subject comparisons, reducing 
inter-individual variability and enhancing statistical power. Addition
ally, combining intervention weeks from both groups effectively 
doubled the sample size for certain analyses, providing more robust 
estimates of pre-post intervention effects.

It is also important to note that while this study focused on upper 
limb motor function recovery, the findings may not be directly gener
alizable to other motor domains or cognitive functions. Studies with 
larger and more diverse samples are needed to validate these results 
across broader populations and explore the applicability of BCI in
terventions in other domains. Larger cohorts would enable detailed 
subgroup analyses based on demographic and clinical characteristics, 
such as age, gender, lesion type, or time since stroke. Such analyses 
could uncover critical factors influencing individual variability in 
response to BCI training.

Moreover, multi-center collaborations could facilitate recruitment of 
larger and more heterogeneous participant pools, enhancing external 
validity and enabling cross-validation of findings across different pop
ulations and settings. These efforts would also allow for exploration of 
potential additive or synergistic effects when combining BCI in
terventions with other rehabilitation strategies.

Future studies should explore integrating BCI training with com
plementary neurostimulation techniques to further enhance recovery 
outcomes. One particularly promising approach is combining BCI 
training with non-invasive brain stimulation methods such as trans
cranial magnetic stimulation (TMS). Applying rTMS to motor-related 
refions before BCI sessions could potentially create a window of 
enhanced plasticity, amplifying intervention effects. Similarly, rTMS 
protocols targeting specific cortical areas might enhance interhemi
spheric balance or promote connectivity within motor networks, 
amplifying the effects of BCI-based interventions. Future research 
should investigate optimal stimulation parameters, timing, and target 
regions to maximize the synergistic benefits of combining TMS or rTMS 
with BCI training.

Another promising area is the use of virtual reality (VR) or 

augmented reality (AR) in combination with BCI. Virtual environments 
can provide immersive and engaging feedback during motor imagery 
tasks, which may increase patient motivation and adherence to training 
protocols. For example, VR-based systems could simulate real-world 
tasks or gamified scenarios that align with the patient’s rehabilitation 
goals, thereby creating a more meaningful and rewarding training 
experience. Similarly, AR could overlay visual cues or real-time feed
back onto the physical environment, allowing patients to interact with 
augmented representations of their movements. This could enhance 
action observation mechanisms, which are known to support motor 
learning.

Moreover, extended reality (XR) technologies could be used to create 
closed-loop systems where neural signals detected by the BCI are 
translated into dynamic visual feedback within the virtual or augmented 
environment. Such systems could reinforce neuroplasticity by providing 
immediate and contextually relevant feedback on motor imagery per
formance. Future studies should investigate how different types of XR 
feedback—such as first-person versus third-person perspectives or 
varying levels of task complexity—affect brain connectivity changes and 
motor recovery outcomes.

Longitudinal studies are also needed to evaluate the long-term sus
tainability of neural and behavioral changes induced by BCI in
terventions. Such studies could track participants over months or years 
to determine whether gains in motor function persist. Imaging-based 
investigations could provide deeper insights into how brain networks 
reorganize over time in response to sustained training.

Finally, personalized approaches represent another critical avenue 
for improving outcomes. Identifying biomarkers that predict individual 
responsiveness to BCI training—such as lesion characteristics, baseline 
functional connectivity patterns, or genetic predispositions—could help 
tailor interventions to each patient’s unique needs. This precision- 
medicine approach would optimize therapeutic efficacy by targeting 
specific neural pathways or adjusting training intensity based on indi
vidual capacity for neuroplasticity.

In summary, our study underscores the efficacy of BCI intervention in 
fostering motor function recovery through reorganization of brain 
connectivity patterns and integration of cognitive processes facilitated 
by the default mode network. The observed neural changes, particularly 
increased functional connectivity between the medial prefrontal cortex 
(mPFC) and motor-related regions, highlight a potential neuroanatom
ical substrate for motor skill recovery and emphasize the significance of 
interregional communication within the motor network. By addressing 
current limitations and pursuing these future research directions—such 
as combining BCI with neurostimulation techniques like TMS, incorpo
rating virtual or augmented reality in the training paradigm, conducting 
longitudinal studies, expanding applications to other domains, and 
personalizing interventions—BCI-based rehabilitation strategies can be 
further optimized for clinical use, ultimately broadening their impact on 
stroke recovery and neurorehabilitation.
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Chai, X.J., Castañón, A.N., Öngür, D., Whitfield-Gabrieli, S., 2012. Anticorrelations in 
resting state networks without global signal regression. NeuroImage. 59 (2), 
1420–1428. https://doi.org/10.1016/j.neuroimage.2011.08.048.

Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN. In: 
Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN. 
Hilbert Press.; 2020:26-62. doi:10.56441/hilbertpress.2207.6598.

Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN. In: 
Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN. 
Hilbert Press.; 2020:63-82. doi:10.56441/hilbertpress.2207.6598.

Worsley, K.J., Marrett, S., Neelin, P., Vandal, A.C., Friston, K.J., Evans, A.C., 1996. 
A unified statistical approach for determining significant signals in images of 
cerebral activation. Hum Brain Mapp. 4 (1), 58–73. https://doi.org/10.1002/(sici) 
1097-0193(1996)4:1<58::aid-hbm4>3.0.co;2-o.

Worsley, K.J., Friston, K.J., 1995. Analysis of fMRI time-series revisited—again. 
NeuroImage. 2 (3), 173–181. https://doi.org/10.1006/nimg.1995.1023.

Eklund, A., Nichols, T.E., Knutsson, H., 2016. Cluster failure: Why fMRI inferences for 
spatial extent have inflated false-positive rates. Proc Natl Acad Sci. 113 (28), 
7900–7905. https://doi.org/10.1073/pnas.1602413113.

Flandin, G., Friston, K.J., 2019. Analysis of family-wise error rates in statistical 
parametric mapping using random field theory. Hum Brain Mapp. 40 (7), 2052–2054. 
https://doi.org/10.1002/hbm.23839.

Jafri, M.J., Pearlson, G.D., Stevens, M., Calhoun, V.D., 2008. A method for functional 
network connectivity among spatially independent resting-state components in 

schizophrenia. NeuroImage 39 (4), 1666–1681. https://doi.org/10.1016/j. 
neuroimage.2007.11.001.

Sørensen, T., 1945. A Method of Establishing Groups of Equal Amplitude in Plant Sociology 
Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on 
Danish Commons. Munksgaard https://books.google.de/books?id=rpS8GAAACAAJ. 

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. J R Stat Soc: Ser B (methodol). 57 (1), 
289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

Abraham, A., Pedregosa, F., Eickenberg, M., et al., 2014. Machine learning for 
neuroimaging with scikit-learn. Front Neuroinformatics. 8, 14. https://doi.org/ 
10.3389/fninf.2014.00014.

Habes M, Lancaster JL, Martinez MJ. Multi-Image Analysis GUI (Mango, Version 4.1).; 
2019. https://mangoviewer.com/index.html.

Andrews-Hanna, J.R., Smallwood, J., Spreng, R.N., 2014. The default network and self- 
generated thought: component processes, dynamic control, and clinical relevance. 
Ann N York Acad Sci. 1316 (1), 29–52. https://doi.org/10.1111/nyas.12360.

Picard, N., Strick, P.L., 1996. Motor areas of the medial wall: a review of their location 
and functional activation. Cereb Cortex. 6 (3), 342–353. https://doi.org/10.1093/ 
cercor/6.3.342.

Rosazza, C., Minati, L., 2011. Resting-state brain networks: literature review and clinical 
applications. Neurol Sci. 32 (5), 773–785. https://doi.org/10.1007/s10072-011- 
0636-y.

Cramer, S.C., 2008. Repairing the human brain after stroke: I. Mechanisms of 
spontaneous recovery. Ann Neurol. 63 (3), 272–287. https://doi.org/10.1002/ 
ana.21393.

Grefkes, C., Fink, G.R., 2014. Connectivity-based approaches in stroke and recovery of 
function. Lancet Neurol. 13 (2), 206–216. https://doi.org/10.1016/s1474-4422(13) 
70264-3.

Rehme, A.K., Grefkes, C., 2013. Cerebral network disorders after stroke: evidence from 
imaging-based connectivity analyses of active and resting brain states in humans. J 
Physiol. 591 (1), 17–31. https://doi.org/10.1113/jphysiol.2012.243469.

K.A. Grigoryan et al.                                                                                                                                                                                                                           NeuroImage: Clinical 46 (2025) 103772 

10 

https://doi.org/10.1016/j.neuroimage.2013.05.116
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2011.08.048
https://doi.org/10.1002/(sici)1097-0193(1996)4:1<58::aid-hbm4>3.0.co;2-o
https://doi.org/10.1002/(sici)1097-0193(1996)4:1<58::aid-hbm4>3.0.co;2-o
https://doi.org/10.1006/nimg.1995.1023
https://doi.org/10.1073/pnas.1602413113
https://doi.org/10.1002/hbm.23839
https://doi.org/10.1016/j.neuroimage.2007.11.001
https://doi.org/10.1016/j.neuroimage.2007.11.001
http://refhub.elsevier.com/S2213-1582(25)00042-7/h0265
http://refhub.elsevier.com/S2213-1582(25)00042-7/h0265
http://refhub.elsevier.com/S2213-1582(25)00042-7/h0265
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.1111/nyas.12360
https://doi.org/10.1093/cercor/6.3.342
https://doi.org/10.1093/cercor/6.3.342
https://doi.org/10.1007/s10072-011-0636-y
https://doi.org/10.1007/s10072-011-0636-y
https://doi.org/10.1002/ana.21393
https://doi.org/10.1002/ana.21393
https://doi.org/10.1016/s1474-4422(13)70264-3
https://doi.org/10.1016/s1474-4422(13)70264-3
https://doi.org/10.1113/jphysiol.2012.243469

	Short-term BCI intervention enhances functional brain connectivity associated with motor performance in chronic stroke
	1 Introduction
	2 Methods
	2.1 Participant cohort
	2.2 Experimental design
	2.3 Brain-computer interface-based intervention
	2.4 Magnetic resonance imaging
	2.5 Seed based analysis
	2.5.1 Group analysis (ii): effect of intervention across the cohort
	2.5.2 Group analysis (iii): longitudinal analysis across all sessions
	2.5.3 Group analysis (iv): brain connectivity and outcome relationship

	2.6 ROI-to-ROI analysis
	2.7 Lesion masking
	2.8 Visualization

	3 Results
	4 Discussion
	Declaration of Generative AI and AI-assisted technologies in the writing process
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Appendix A Supplementary data
	Data availability
	References


