
Repetition suppression in the auditory cortex:

an interdisciplinary investigation

Thesis for the degree of

doctor rerum naturalium (Dr. rer. nat.)

approved by the Faculty of Natural Sciences

of Otto von Guericke University Magdeburg

written by Nina Härtwich, M.Sc.

born on 16 July 1990 in Dresden, Germany

Examiners: PD Dr. Reinhard König

Prof. Dr. Jonas Obleser

submitted on 26 August 2024 defended on 04 March 2025





Abstract

"Repetition suppression in the auditory cortex: an interdisciplinary investigation"

Nina Härtwich, M.Sc.

Auditory sensory memory is essential for the interpretation of a sound in the context of

the immediate past. While memory traces can be observed behaviourally, the underlying

mechanisms in the auditory cortex (AC) are more elusive and can often only be observed

indirectly. One such indirect observation is repetition suppression (RS), the attenuation of

neural responses when a stimulus is presented repeatedly. This phenomenon indicates that

the auditory system contains memory traces of recent stimulation that affect responses to

incoming stimuli.

While the RS phenomenon is well established, the neuronal underpinning and factors that

modulate its lifetime are not fully understood. This thesis investigates the emergence of RS

in the AC through computational modelling and in-vivo measurements. Moreover, a robust

analysis pipeline for the determination of in-vivo RS lifetimes and an automated approach for

the optimisation of computational AC models are introduced.

Simulation results from a newly created computational model of the gerbil AC predict

that the lifetime of RS does not simply reflect recovery from short-term synaptic depres-

sion (STSD). Instead, RS is a result of the interplay between STSD dynamics and network

connectivity patterns. The same prediction also resulted from simulations with a simplified

computational model of the human AC. When network connection strengths were altered,

the lifetime of RS changed. Moreover, the gerbil AC model demonstrated that network

interactions cause variations in RS lifetime as a function of stimulus audio-frequency. Elec-

trophysiological recordings revealed audio-frequency-specific RS lifetimes in the AC of four

out of six gerbils. Moreover, the RS lifetimes deduced from the intracortical recordings were

shorter than lifetimes deduced from extracortical measurements of activity in the human AC.

In conclusion, the findings suggest that RS in the AC is a network effect. The resulting

lifetime variations across neural populations and the audio-frequency of the stimulus might

play a functional role in the context of temporal binding of sounds. The variation across

species might reflect that AC response dynamics are respectively tailored to temporal binding

across the shorter time scales of gerbil vocalisations and the longer time scales of human

speech.
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Zusammenfassung

"Wiederholungsunterdrückung im Hörkortex: eine interdisziplinäre Untersuchung"

Nina Härtwich, M.Sc.

Ein auditives sensorisches Gedächtnis ist essentiell, um Hörreize im Kontext der unmittel-

baren Vergangenheit zu interpretieren. Während Gedächtnisspuren auf der Verhaltensebene

gut beobachtet werden können, sind die zugrunde liegenden Mechanismen im Hörkortex schwe-

rer zu fassen und meist nur indirekt zu beobachten. Eine solche indirekte Beobachtung

ist Wiederholungsunterdrückung (WU), eine Verminderung neuronaler Aktivität bei wieder-

holtem Auftreten eines Stimulus. Dieses Phänomen deutet darauf hin, dass im auditiven

System Gedächtnisspuren von vorhergehenden Stimuli existieren, die die neuronale Antwort

auf folgende Stimuli beeinflussen.

WU ist ein gut beschriebenes Phänomen, jedoch sind die neuronalen Grundlagen sowie

die Faktoren, die die Verfallszeit der Unterdrückung beeinflussen, nicht abschließend geklärt.

Diese Dissertation nutzt Computersimulationen und In-vivo-Messungen, um das Auftreten

von WU im Hörkortex zu untersuchen. Zusätzlich werden eine robuste Analyse-Pipeline für

die Ermittlung von Verfallszeiten in vivo sowie ein Ansatz für die automatisierte Optimierung

von Computermodellen des Hörkortex vorgestellt.

Die mit einem neuen Modell des Gerbil-Hörkortex erzielten Simulationsergebnisse sagen

voraus, dass Verfallszeiten der WU nicht allein die Verfallszeiten synaptischer Kurzzeitde-

pression spiegeln. Stattdessen ergibt sich WU aus der Wechselwirkung zwischen synaptischer

Kurzzeitdepression und dem Verbindungsmuster des neuronalen Netzwerkes. Dieselbe Prog-

nose resultierte auch aus Simulationen mit einem vereinfachten Computermodell des men-

schlichen Hörkortex. Änderungen der Stärke der Netzwerkverbindungen führten zu einer

Veränderung der WU-Verfallszeit. Zusätzlich war im Gerbil-Modell zu beobachten, dass auf-

grund von bestimmten Netzwerk-Interaktionen die Verfallszeit abhängig von der Audiofre-

quenz des Stimulus ist. Elektrophysiologische Messungen im Hörkortex offenbarten audio-

frequenz-spezifische Verfallszeiten bei vier von sechs Gerbilen. Außerdem waren die aus den

intrakortikalen Messungen ermittelten Verfallszeiten kürzer als die von extrakortikalen Mes-

sungen abgeleiteten Verfallszeiten für den menschlichen Hörkortex.

Die Ergebnisse deuten somit darauf hin, dass WU im Hörkortex ein Netzwerkeffekt ist.

Die sich daraus ergebenden Variationen der Verfallszeiten, über neuronale Populationen und

Stimulus-Audiofrequenzen hinweg, könnten eine Rolle bei der Verarbeitung von längeren und

komplexeren Tonsequenzen spielen. Die Variation zwischen den Spezies könnte bedeuten, dass

die Reaktionsdynamik des jeweiligen Hörkortex an die Verarbeitung der kürzeren Gerbil-Laute

beziehungsweise der längeren Sequenzen menschlicher Sprache angepasst ist.
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Part I: Introduction

Figure 1: Someone just said ‘ma’ – is there
a cuddly la-ma in sight, is a child looking for
their ma-ma or did a dangerous pu-ma appear?
Distinct temporal sequences of sounds modu-
late the meaning of a given sound. The sound-
scape at a specific moment in time can thus
only be interpreted properly if the brain cre-
ates an auditory memory trace of the imme-
diate past. Image generated using Microscoft
Designer AI.

As exemplarily illustrated in Figure 1, auditory memory is essential for humans and other

animals to make sense of speech or species-specific vocalisations and of other sounds with a

temporal structure. It allows for incoming auditory stimuli to be perceived and interpreted in

the seamless context of the immediate past. Auditory processing, from stimulus transduction

to perception and interpretation, begins at the ear, where sound pressure waves are translated

into neural signals that encode the audio-frequency spectrum of the incoming sound. These

signals then travel through a number of subcortical stations before reaching the sensory area

of the cortex tasked with further interpretation of the sound scape – the auditory cortex (AC).

Higher-level cortical areas are also involved in this process. As summarised by King et al.

(2018), several aspects of hearing, such as sound localisation and pitch discrimination, rely on

processing steps that already take place subcortically, whereas the AC seems to perform pro-

cessing steps that play a critical role in the perception and interpretation of sound sequences.

As described above, this requires the formation of memory traces.

While memory traces in the brain can be observed at the behavioural level (for a critical re-

view, see Brady et al., 2023), the underlying brain mechanisms, specifically basic mechanisms

at the level of the AC, are more elusive and can often only be observed indirectly. One such

indirect observation is repetition suppression (RS), also known as adaptation or habituation.

RS refers to the phenomenon of neuronal responses diminishing in strength when a stimulus

is repeated (Megela and Teyler, 1979; Malmierca et al., 2014). It is also closely related to

forward masking, which is the phenomenon that the response to a test tone is maximally

1



suppressed by a preceding probe tone if the probe and the test are identical (e.g. Brosch and

Schreiner, 1997, 2000).

Given that the neural response to a specific stimulus depends on stimulus history rather

than being fixed, RS indicates directly that the auditory system contains representations –

memory traces – of the recent past that affect responses to incoming stimuli. But what

exactly is the neural substrate of these memory traces, how are they formed, and which factors

modulate their properties? While the RS phenomenon is a well-established feature of the brain

(for a more general review, see Webster, 2012, for a review regarding the auditory system,

see Pérez-González and Malmierca, 2014; Malmierca et al., 2014), the neuronal mechanisms

underlying it are not fully understood. In this thesis, I attempt to explain the emergence of RS

as a system property through computational modelling as well as extracranial and intracortical

in-vivo measurements of neuronal responses. The following sections of the Introduction first

review the existing literature on RS and then introduce the new studies carried out in the

context of the thesis work.

Memory traces in the human auditory cortex

Barring some rare exceptions in the context of epilepsy treatment and other medical inter-

ventions (for a review, see Mukamel and Fried, 2012), ethical reasons limit in-vivo studies of

the response behaviour of the human AC to non-invasive measurement methods. RS is ob-

served via electroencephalography (EEG) and magnetoencephalography (MEG) by presenting

blocks of repeating tones and varying the stimulus-onset interval (SOI) across the blocks. In

recent years, the term ‘regular-SOI paradigm’ was coined for this type of stimulation pattern

(Hajizadeh et al., 2019; Tomana et al., 2023) and it will be used throughout this thesis. Re-

sponses to the regular-SOI paradigm are averaged across each stimulus block to reveal the

event-related potentials (ERPs) and fields (ERFs). One example of such an ERF, from the

left AC of a human subject, is shown in Figure 2.

The long-latency components of ERPs and ERFs consist of a series of characteristic de-

flections called the P1(m), the N1(m), and the P2(m). The names refer to waves of opposite

polarity – P for positive and N for negative in the context of ERPs obtained via EEG. A

lower case ‘m’ (magnetic) is added for ERFs. The characteristic deflections of the auditory

response occur at latencies of approximately 50 ms (P1m), 100 ms (N1m), and 150–180 ms

(P2m) relative to stimulus onset.

Variations in SOI affect the amplitudes and latencies of these peaks (for a review, see May

and Tiitinen, 2010). The effect of SOI on the magnitude of the N1(m), the most prominent

peak of the response, is particularly well studied (e.g. Lu et al., 1992a; Mäkelä et al., 1993;

Sams et al., 1993; McEvoy et al., 1997; Rojas et al., 1999; Cheng and Lin, 2012; Zacharias

et al., 2012). Below a certain subject-specific threshold, stimulus history affects the response
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Figure 2: Representative example of an au-
ditory ERF from the left hemisphere of a
human subject (regular-SOI paradigm, 1-s
SOI). The characteristic deflections – P1m,
N1m, and P2m – are marked. Time relative
to stimulus onset. For details regarding the
measurements and analysis performed to ob-
tain this ERF, please refer to Section 4.1.2.

and the N1(m) magnitude is smaller the shorter the SOI, i.e. RS is more pronounced the

higher the repetition rate of the stimulus. Above this threshold, RS is not observed and the

stimulus history does not seem to affect the response to the stimulus. This suggests that

the magnitude of the suppressive effect caused by preceding stimuli decays over time and

that RS has a distinct lifetime. How this lifetime can be quantified based on the regular-SOI

paradigm is explained in more detail in the following section. In human MEG studies, RS

lifetime mostly ranges from about 1 s to 3 s and is highly subject-specific (Lu et al., 1992a;

Mäkelä et al., 1993; Sams et al., 1993; McEvoy et al., 1997; Rojas et al., 1999; Cheng and Lin,

2012; Zacharias et al., 2012).

Lu et al. (1992a) investigated the relationship between RS lifetime and the lifetime of

sensory memory measured behaviourally. In a forced-choice task, subjects evaluated whether

a probe tone was softer or louder than a preceding test tone and the interval between the two

tones was varied. Additionally, RS lifetime was quantified via a regular-SOI paradigm. Lu

and colleagues found that the longer the RS lifetime observed for the subject, the longer the

maximum time span across which the subject could remember the loudness of the probe tone.

This result suggests that RS is not only a fatigue effect but a reflection of a psychological

memory process.

Moreover, the adaptation of the N1(m) to a repeated stimulus does not generalise to

other stimuli. If the repeated sound is followed by a sound that deviates in some way from

the repeated one, an enhanced ERP and ERF is observed at 100-ms to 200-ms latencies

(Butler, 1968). This differential response is termed the mismatch negativity (MMN; Näätänen

et al., 1978). It indicates the presence of a memory trace of the repeating stimulus as well

as the brain’s ability to detect surprising events in the environment (Näätänen, 1990; May

and Tiitinen, 2010). Indeed, MMNs appear to underlie the behavioural ability to detect

unexpected sounds: When the subject’s task is to detect the deviating stimulus, the presence

or absence of an MMN predicts whether the subject is able to make this detection (Näätänen

et al., 1993) and the peak latency of the MMN predicts reaction time (Tiitinen et al., 1994).
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An alternative interpretation of the MMN is expressed in the predictive coding framework

(Friston, 2005; Rao and Ballard, 1999; Wacongne et al., 2012), where RS is not viewed as

a reflection of a memory process in AC but, instead, attributed to a suppressive top-down

signal. In consequence, the MMN is viewed as a prediction error. In a series of simulations,

however, May and colleagues (May and Tiitinen, 2010; May, 2021) have shown that the RS-

based interpretation of MMN phenomena in the AC is very robust. They demonstrated that

it provides mechanistic explanations for experimentally observed responses to various MMN

paradigms reported in the literature whereas explanations in the current predictive coding

framework are mostly conceptual. Note, however, that the two hypotheses do not entirely

exclude each other. As concluded by May, "it is possible that the brain uses local adaptation

and predictive coding in tandem" (May, 2021).

Quantification of sensory memory lifetimes

As elaborated in the previous section, the neural responses recorded in the context of a

regular-SOI paradigm are stimulus-history-specific – the amplitude of the stimulus-evoked

response increases and ultimately saturates as a function of SOI. This indicates that the

auditory system contains representations – memory traces – of the recent past and that these

memory traces decay with increasing SOI. The dependence of the response peak amplitude on

SOI is commonly described by an exponentially saturating function (Lu et al., 1992a; Mäkelä

et al., 1993; Sams et al., 1993; McEvoy et al., 1997; Rojas et al., 1999; Cheng and Lin, 2012;

Zacharias et al., 2012). This function first rises rapidly and then levels off as it approaches

an asymptote:

Pfit(SOI) = Asat

[
1− exp

(
− SOI− t0

τSOI

)]
. (1)

Parameter Asat defines the saturation level, i.e. the response amplitude that the function

approaches asymptotically. It is given in units of the selected amplitude measure (for example

magnetic field strength in the context of MEG measurements using magnetometers). Time

point t0 marks the SOI at which the function crosses the abscissa. It reflects the largest SOI-

value at which the response is fully suppressed. Note that amplitude is measured in terms

of absolute values and that Equation (1) is only a valid description of response amplitudes

as a function of SOI for SOI ≥ t0. Thus, it does not suggest a reversal in the polarity of the

response for SOI < t0.

Parameter τSOI is a time constant describing the steepness of the initial, rapidly rising

slope of the function and thus the time course of recovery from RS. It is given in units of

time and technically reflects the SOI at which the response amplitude reaches 66% of the
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asymptote. Time constant τSOI is used as a robust quantifier of the lifetime of RS and viewed

as a reflection of the lifetime of a sensory memory trace in the AC that stores information on

stimulus history.

Memory traces along the auditory pathway of other species

Human studies are predominantly limited to extracranial measurements. However, as re-

viewed by Willmore and King (2023), invasive electrophysiological recordings from single

neurons or small populations of neurons in other species have shown that: (1) RS can be

observed throughout the subunits of the entire auditory system, (2) RS does not generalise to

all stimuli, just as observed via extracranial recordings. If the repeated stimulus (standard)

is followed by a more rare stimulus deviating from the repeating one (deviant), a stronger

response is observed. In the context of single-cell and multi-unit responses, this phenomenon

is called stimulus-specific adaptation (SSA). Evidence suggests that SSA is the single-cell re-

sponse behaviour involved in the generation of the MMN (e.g. Ulanovsky et al., 2003; Klein

et al., 2014; Yarden and Nelken, 2017).

Intracranial recordings have shown that RS is more pronounced in non-lemniscal than in

lemniscal parts of the auditory system and that the lifetime of RS increases when ascending

along the auditory pathway – from auditory nerve to superior olivary complex to inferior

colliculus to medial geniculate nucleus of the thalamus to AC (Pérez-González and Malmierca,

2014; Parras et al., 2017). In the auditory nerve, RS can be observed for inter-stimulus

intervals of up to 35 ms (Yates et al., 1983, recordings from anaesthetised guinea pigs). For

the superior olivary complex, an RS recovery time constant of 106 ms was reported (Finlayson

and Adam, 1997, recordings from anaesthetised rats, time constant similar but not equal to

Equation (1)). In the inferior colliculus, RS for the standard tone in an SSA paradigm was

usually only observed for SOIs below 250 ms (Pérez-González et al., 2005; Malmierca et al.,

2009, recordings from anaesthetised rats). In the medial geniculate nucleus (MGN) of the

thalamus, the lemniscal divisions exhibited RS for the standard tone at SOIs below 250 ms,

whereas in the non-lemniscal MGB, it was observed with SOIs ranging up to 2 s (Anderson

et al., 2009; Antunes et al., 2010, recordings from anaesthetised mice and rats, respectively).

In the AC, RS for the standard tone is strong and occurs for SOIs of up to 2 s (Taaseh et al.,

2011, recordings from anaesthetised rats).

SSA measured in AC is likely to be cortically generated rather than inherited from sub-

cortical processing, given that the lemniscal midbrain, which feeds into the primary auditory

field (A1) of the AC, displays weaker SSA with a shorter lifetime (Ulanovsky et al., 2003;

Pérez-González et al., 2005, recordings from anaesthetised cats and rats, respectively). This

proposition is also supported by layer-specific recordings of SSA in A1 (Szymanski et al., 2009,

recordings from anaesthetised rats).
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Mechanisms behind cortical repetition suppression

Insights from in-vivo recordings

The fundamental mechanism giving rise to cortical RS is suspected to be short-term synaptic

depression (STSD), a transient weakening of synaptic efficacy caused by previous activity.

This form of plasticity occurs due to a mixture of stimulus-evoked effects: depletion of read-

ily releasable synaptic vesicles, inactivation of release sites, and inactivation of presynaptic

calcium channels (Fioravante and Regehr, 2011). STSD has been linked to neuronal infor-

mation processing, specifically gain control (Abbott et al., 1997), temporal filtering (Fortune

and Rose, 2001; Rosenbaum et al., 2012), and the efficiency of information transfer neurons

(Benda et al., 2005; Salmasi et al., 2019; Kohashi et al., 2021). It affects cortical as well as

subcortical synapses (for a review, see Friauf et al., 2015). Ulanovsky et al. (2004), observing

SSA in cat A1, noted that the decay time of STSD in cortex, being hundreds of milliseconds to

several seconds, coincides with the lifetime of SSA measured in A1, which would be consistent

with cortical STSD driving cortical SSA.

Another candidate mechanism for cortical RS is inhibition. However, Wehr and Zador

(2003, 2005), conducting intracortical recordings in rat A1, noted that the suppressive effects

of repeating a stimulus outlast the 100-ms effects of cortical inhibition. They concluded that

RS is likely to be caused by cortical STSD rather than by inhibition.

Although invasive intracortical recordings provide greater insights into the mechanisms

behind RS in the AC than the extracranial measurements commonly used in human studies,

they also come with limitations. For example, measurement durations and locations need to

be restricted to preserve the viability of the animal during the recordings. Moreover, it is

difficult to isolate and alter individual factors that might affect RS. As summarised by Teufel

and Fletcher (2016), in modelling, "certain aspects of reality can be ignored because they are

irrelevant to the bit of reality that the model attempts to explain". Computational neuroscience

can explore how interactions between biological neurons implement computational functions.

As reviewed by Kriegeskorte and Douglas (2018), computational modelling endeavours of the

last decades have led to a range of insights regarding sensory coding (Simoncelli and Ol-

shausen, 2001; Olshausen and Field, 2004), working memory (Chaudhuri and Fiete, 2016),

decision mechanisms (Newsome et al., 1989; Wang, 2008; Shadlen and Kiani, 2013), motor

control (Diedrichsen et al., 2010), and even high-level sensory and cognitive brain representa-

tions (Yamins and DiCarlo, 2016; Kriegeskorte and Douglas, 2018). Therefore, computational

modelling is also an important complementary tool for the exploration of AC function.
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Insights from computational modelling

The role of STSD in the context of the SSA observed in the AC has already been further

delineated through computational modelling. David and Shamma (2013) modelled a single A1

neuron receiving input via a set of synapses, each with different STSD dynamics. Responses

were then compared to the spiking activity recorded from single neurons in A1 of awake ferrets.

To optimise overlap, the temporal response function of the model was adjusted via a boosting

algorithm. Specifically, the connection weights of the different synapses were altered. David

and Shamma were able to demonstrate that synapse-specific STSD dynamics can explain the

adaptive response dynamics of neurons in A1 in response to the stimulus envelope over a time

scale of several hundreds of milliseconds.

Loebel et al. (2007) constructed a model of A1 as a chain of columns, each tuned to

a specific stimulus audio-frequency and comprising two units, one representing the column’s

excitatory neurons and the other representing the inhibitory neurons. STSD was incorporated

as a transient weakening of the excitatory synapses, driven by the pre-synaptic firing rate.

Model parameters governing STSD dynamics had identical values across all connections. The

authors found that this model reproduced forward masking and it demonstrated how frequency

tuning curves depend on the balance between excitation and inhibition. In addition, the model

replicated non-linear effects present in responses to subthreshold tones mixed in with noise

stimuli.

Mill et al. (2011) represented A1 not by columns but by a small network of individual

spiking neurons connected by dynamic synapses. The input layer of the network consisted

of audio-frequency-tuned Poisson neurons which formed connections with sets of adaptive

exponential integrate-and-fire neurons. Synapses belonged to one of three categories: fast ex-

citatory, fast inhibitory, and fast excitatory with rapid depression and slow recovery. Model

parameters governing STSD dynamics were constant across all synapses in the third category.

Mill and colleagues demonstrated that a wide range of published SSA data could be repli-

cated if more complex circuits with more than one layer are formed from the building blocks

described above.

Yarden and Nelken (2017) created a model of A1 that closely followed the approach of

Loebel et al. (2007) but where both feedforward thalamocortical connections and recurrent

intracortical connections were affected by STSD. Recovery from STSD had identical dynam-

ics across thalamocortical and intracortical connections, respectively, but was assumed to be

faster for the former. Yarden and Nelken demonstrated that modelling STSD at the feedfor-

ward connections did not suffice to explain experimentally observed properties of SSA. STSD

at the recurrent connections played an important role. Moreover, they found that feedforward

inhibition was not necessary for the model to exhibit SSA. It did, however, expand the range

of model parameters where SSA could be observed.
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Kudela et al. (2018) created a model that represents a 3.6 mm2 multilayer patch of A1,

made up of multicompartmental cells organised in an audio-frequency-specific manner. The

connection strength between these cells was modulated by STSD while the afferent thala-

mocortical connections were not affected. In addition to single-cell and population spiking

activity, which were the focus of the previous modelling studies reviewed above, this model was

able to simulate local field potentials. These could be compared to auditory evoked responses

recorded from human cortex. The model’s responses were validated relative to intracranical

electrocorticographic recordings from a human subject undergoing intracranial monitoring for

clinical purposes. The authors demonstrated that cortical sources suffice for SSA phenomena

to arise but also noted that this does not exclude the contribution of other sources.

The modelling studies reviewed above suggest that SSA is a network effect arising from

a tonotopically organised system of interconnected neural populations where synapses are

affected by STSD. The replication of experimental data did not require a plethora of synapse-

specific STSD dynamics, rather, the corresponding model parameters were constant across

cortical connections and the connectivity pattern shaped the diverse adaptive response be-

haviour of the model units.

In this context, it is important to note that, by only describing multiunit behaviour in a

single AC field, namely A1, these modelling studies omit a large part of the network pattern

that characterises the AC. It is hierarchically organised and consists of a core, belt, and

parabelt area (for a review, see Hackett, 2011). Each of these areas is further subdivided into

fields and the number of fields as well as their connectivity pattern is species-specific.

An approach to modelling AC that reflects this network organisation was introduced

by May and colleagues (May and Tiitinen, 2013; May et al., 2015). In their model, the

computational unit is the cortical column, described as two interacting mean-field units,

one representing the excitatory neurons and the other the inhibitory neurons of the column.

The excitatory connections are modulated by STSD as in Loebel et al. (2007) and as in

the modelling studies reviewed above, simulations were run with identical STSD parameter

values across all cortical connections. What sets the model apart is that it emulates the meso-

structure of the macaque AC by including 13 cortical fields, each one tonotopically organised.

These represent three core fields, eight belt fields, and two parabelt fields, as described by

Hackett et al. (1998) and Kaas and Hackett (2000).

A unique feature that results from this modelling approach is the model’s ability to repli-

cate intracortically as well as non-invasively observed phenomena (see also May, 2021): SSA

(e.g. as observed intracortically in cat AC by Ulanovsky et al., 2003), context sensitive re-

sponses to species-specific vocalisations/speech (e.g. as observed intracortically in macaque

AC by Recanzone, 2008) and tone sequences (e.g. as observed intracortically in marmoset

AC by Sadagopan and Wang, 2009), forward masking and forward facilitation in two-tone

stimulation (e.g. as observed intracortically in cat AC by Brosch and Schreiner, 2000), as well
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as the adaptation of the N1(m) response of the ERP and ERF (e.g. as observed non-invasively

in human AC by Zacharias et al., 2012) and the generation of the MMN (e.g. as observed

non-invasively in human AC by Näätänen et al., 1978).

Simulations, also those by Westö et al. (2016), were used to investigate the time window

over which past stimulation affects the responses to incoming signals. The results indicate

that this time window widens as one moves from the core to the belt and then to the parabelt

and that it exceeds the time window of recovery from STSD. Hajizadeh et al. (2022) created

a simplified and analytically tractable version of the model used by May and colleagues, and

found that RS as observed in the adaptation of the N1m response results from a complete

reorganisation of AC dynamics in terms of the normal mode oscillations that AC supports.

The authors also observed that, in the simulated AC, τSOI increases as one moves up the

core-belt-parabelt hierarchy. In summary, these modelling studies indicate that the structure

of the neural network itself shapes the sensory memory traces formed in AC.

Animal models of human auditory processing

As showcased by the literature reviewed in the previous sections, various mammals, such

as cats, mice, rats, macaques, marmosets, and ferrets, are treated as model organisms of

human auditory processing. Another popular animal model is the Mongolian gerbil (meriones

unguiculatus, hereafter simply referred to as ‘gerbil’), a small rodent with a body size that

lies between those of mice and rats. Brain-related studies across multiple topics, such as for

example epilepsy (as reviewed as early as 1995 by Bertorelli et al.), age-dependent hearing loss

(for a review, see Gleich and Strutz, 2012), and social cognition (e.g. Tchabovsky et al., 2019),

have turned to the gerbil over the last decades. Most importantly, the gerbil has advanced to

one of the key species in auditory processing research (e.g. Scheich, 1991; Ohl and Scheich,

1997a; Happel et al., 2010; Wrobel et al., 2018).

One general advantage of the gerbil is its suitability as a laboratory animal. Gerbils are

small in size and easy to breed, good care and living conditions can be provided at relatively

low cost, and the animals take relatively well to caged living. One of the main reasons for its

preferential use in auditory research is the gerbil’s high sensitivity to sounds with a relatively

low audio-frequency. As described by Gleich and Strutz (2012), this likens it to humans, who

are highly receptive to the frequency-range of the normal human voice (from about 100 Hz to

2 kHz). In contrast, other laboratory animals like mice and rats are most sensitive to much

higher audio-frequencies (> 6 kHz). Gerbil audiograms are thus particularly well aligned

with those of humans. Moreover, the middle ear cavities of the gerbil are large enough to

easily reach the cochlea – this is beneficial in the context of experimental intervention. The

gerbil cochlea covers an audio-frequency range from about 200 Hz to 50 kHz which is mapped

to tonotopically organised fields in the AC (Thomas et al., 1993). The field structure and
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connectivity pattern of the gerbil AC is very well described (e.g. Budinger et al., 2000a,b;

Saldeitis et al., 2014, for a review see Section 1.1.2 of this thesis), an advantage for employing

the computational modelling approach introduced by May and colleagues 2013; 2015. Thus,

we selected the gerbil as a focal point of our in-vivo and in-silico investigation of RS.

Research questions addressed in this thesis

As reviewed above, STSD seems to be a central mechanism driving RS, yet the meso-structure

of AC could also be an important factor in generating context sensitivity in the AC. It is,

however, unclear, how the network pattern shapes RS dynamics. In this thesis, we study the

emergence of RS in vivo and in silico in the gerbil as well as the human AC. We used the

modelling approach developed by May and colleagues as a starting point for building our gerbil

AC model – a model that captures the gerbil-specific field structure and connectivity pattern

of the AC. As in the studies by May and colleagues, STSD dynamics were kept constant

across all model units. We then used our model to explore RS at the level of individual neural

populations in A1.

Specifically, we employed a regular-SOI paradigm to investigate how the lifetime of RS

might vary as a function of stimulus audio-frequency and traced back the network effects

giving rise to this variation. The in-silico investigation was complemented by an analysis

of in-vivo electrophysiological data from gerbil A1, recorded during a regular-SOI paradigm

where stimulus blocks were presented at two different audio-frequencies. The explanatory

power of our results depended on two important factors: (1) the quality and robustness of

the analysis pipeline from raw experimental data to the final subject- and condition-specific

τSOI-values, i.e. RS lifetimes, and (2) the quality of our gerbil AC model. Therefore, beyond

examining RS itself, we also worked on these two factors.

To address factor 1, we scrutinised the data set from each animal to verify its suitabil-

ity for τSOI-computation (Section 2.2) and developed a bootstrap-based approach for the

determination of subject- and condition-specific confidence intervals for these RS lifetimes

(Section 2.3). The bootstrap-based approach is also transferable to data sets collected using

other measurement methods and we employed it to verify the robustness of a hemispheric

difference observed for RS lifetimes in the human AC (Chapter 3).

To address factor 2, we took great care in reflecting a plethora of experimentally established

properties of the gerbil AC in our computational model (Sections 1.1.1 and 1.1.2). With the

future improvement of this first version of our model in mind, we also embarked on a project

where we pioneered an algorithm-based optimisation pipeline for a simplified version of the

AC model by May and colleagues (Chapter 4). This optimised model, in turn, provided

predictions regarding widespread RS generation and area-specific RS lifetimes in the human

AC.
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Thus, in total, this thesis consists of four intertwined projects:

P1:. The in-silico exploration of audio-frequency-specific RS in the gerbil AC via computa-

tional modelling

P2:. The in-vivo exploration of audio-frequency-specific RS in the gerbil AC via electrophys-

iological recordings, including the development of a new analysis pipeline

P3:. The application of this new pipeline to a human MEG data set to verify the robustness

of the observed hemispheric difference in RS lifetime

P4:. The development of an automated approach for the improvement of computational AC

models, also resulting in predictions regarding RS generation and lifetimes

The following chapters, each comprising their own ‘Materials and Methods’ and ‘Results’

sections, cover these projects in the order given above. Each chapter ends with a short set of

preliminary conclusions or predictions. The main ‘Discussion’ ensues after the results from

all four projects have been introduced and aims to answer a series of questions by linking

these results. Specifically, I will discuss how the challenges of RS lifetime quantification

can be addressed, which underlying processes this lifetime reflects, and which role network-

modulated RS might play as a memory trace facilitating the process of temporal binding, such

as, for example, the binding of the syllables ‘pu’ and ‘ma’ in our opening example (Figure 1).

As I aim to link our results across projects, the electronic form of this thesis contains

many clickable cross references, some of them taking the reader to a location far away from

the respective current page. To improve the reading experience, I would like to make the

following recommendation: In most PDF readers, the viewing path can be retraced. After

following a cross reference, rather than scrolling through the document in search of your

previous location, simply use the shortcut Alt + ← (or cmd + [ for Mac users).

Collaborations

Most of the interdisciplinary research I present below was only possible via collaborations.

Therefore, I use the ‘we’-perspective throughout the next four chapters.

To investigate in-vivo RS dynamics of the gerbil AC (Project 2), I collaborated with

former PhD candidate Dr J. Ma, who carried out electrophysiological recordings in gerbil

A1. For her thesis, J. Ma analysed the resulting data set with a focus on layer-specific RS

in gerbil AC, whereas, for my thesis, I investigated audio-frequency-specific RS using the

same recordings. For both approaches, I developed a bootstrap-based analysis pipeline. The

results from J. Ma’s thesis about layer-specific RS in the gerbil AC are presented in a joint

manuscript (preprint: Ma & Brunk et al., 2021).
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The human MEG data presented in Project 3 was recorded during a previous research

project at the Leibniz Institute for Neurobiology Magdeburg. PhD candidate A. Dar and I

then collaborated to create a refined analysis pipeline for the computation of RS lifetimes in

the human AC. To assess the robustness of a potential hemispheric difference in RS lifetime,

we built on the bootstrap-based approach I established for the gerbil data. A. Dar developed

the scripts required to adapt the approach to MEG data and I introduced additional analysis

steps. The collaboration resulted in a shared first-author publication about hemisphere-

specific RS in the human AC (Dar & Härtwich et al., 2025). The exploration of underlying

mechanisms giving rise to this difference, as well as its potential functional relevance, will be

the central focus of A. Dar’s thesis. In my thesis, the focus lies on demonstrating how to

produce robust subject-specific estimates of RS lifetimes.

To carry out Project 4, the development of an automated approach for the improvement of

computational AC models, I collaborated with PhD candidate E. Tomana and her supervisor,

Dr C. Sielużycki (Department of Biomedical Engineering, Wrocław University of Science and

Technology, Poland). Supported by her supervisor, E. Tomana developed and implemented

an optimisation algorithm suitable for a simplified model of the human AC. I prepared this

computational model and provided neuroscientific advice and general assistance during the

conception and refinement of the optimisation. E. Tomana’s analysis of the resulting data

focussed on network connectivity patterns, whereas I characterised the model in terms of RS

response dynamics. The collaboration lead to a joint publication about connectivity patterns

and RS in the human AC (Tomana et al., 2023). Connectivity patterns in the human AC will

be a central focus of E. Tomana’s thesis, whereas my thesis introduces predictions regarding

RS lifetimes.
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Part II: Repetition suppression in the gerbil

auditory cortex

"All models are wrong, but some are useful"

– George Box

Project 1: Repetition suppression in silico

As reviewed in the Introduction, while STSD seems to be a central mechanism in driving

RS, the network structure of the AC could also play an important role in generating context

sensitivity in the AC. To unveil how the network pattern might shape RS dynamics, we turned

to computational modelling. After building a gerbil AC model, we employed a regular-SOI

paradigm to investigate how the lifetime of RS in individual neural populations of the A1

field might vary as a function of stimulus audio-frequency and traced back the network effects

giving rise to this variation.

The Materials and Methods section of this chapter first describes the computational gerbil

AC model we created. Additionally, a model consisting of a single node – the single-column

model – is introduced and used to contrast its response behaviour with that of the nodes in

the complex gerbil AC network. Next, the regular-SOI paradigm used to stimulate the two

models is specified. Finally, the analysis pipeline applied to the in-silico responses recorded

from both models is presented.

The Results section first describes the response behaviour of the single-column model, in

terms of frequency response functions, RS lifetimes, and response peak latencies. Then the

mechanisms behind this response behaviour are unveiled. Next, the single-column model’s

response behaviour is contrasted with that of the gerbil AC model and the network effects

leading to these different responses are explored.

Finally, the predictions deduced from the simulations are summarised and then tested in

vivo in the following chapter (Project 2).
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1.1 Materials and Methods

We constructed a computational gerbil AC model based on the modelling approach for the

human AC developed by May et al. (2013; 2015). The basic building block in this approach

is a simplified version of the cortical column, encompassing a population of excitatory cells

(pyramidal neurons) and a population of inhibitory cells (interneurons) and thus having an-

tecedents in the model of Wilson and Cowan (1972). The following subsections first introduce

the dynamic equations that govern the interactions between any assembly of these building

blocks (Section 1.1.1) and then explain how they were assembled to reflect the gerbil AC

(Section 1.1.2). Next the experimental paradigms that we simulated (Section 1.1.4) are de-

scribed and, finally, the analysis steps applied to the data ‘recorded’ in silico are explained

(Section 1.1.5). Simulations as well as data analysis were performed using MATLAB (The

Math Works, Inc., Version 2021b).

1.1.1 Model dynamics

The state of each neural population is described by a state variable, u for excitatory and v for

inhibitory populations, and the output of each population is reflected by a mean firing rate

g, which is a non-linear function of the state variable:

g(u) =

0 u ≤ θ

tanh [κ(u− θ)] u > θ
(2)

Note that the same equation applies for state variable v. The population starts to fire when

threshold θ is crossed and, as the state variable increases further, the firing rate asymptotically

approaches a maximum value of 1. The factor κ scales the sensitivity of the firing rate to the

state variable.

The dynamic equations describing the temporal evolution of the state variables of the

neural populations are based on the leaky-integrator model, specifically as described by Hop-

field and Tank (1986). They expressed neural interactions at the single neuron level based

on approximations of the cross-membrane current flow (mean-field leaky integrator neuron).

In this case, the state variable of the individual units in the network is an approximation

of the membrane potential. As a simplifying approximation, the May-et-al. modelling ap-

proach assumes that individual neurons within a population are identically and symmetrically

connected with each other, and that they all receive the same external input. Under these

conditions, the individual units of a population all behave identically and can be viewed as

subunits of the population which in turn can be treated as a unit in the mean-field leaky

14



Figure 3: Diagram illustrating the excitatory (blue) and inhibitory (red) neural population of two
columns (grey) in the May-et-al. modelling approach. The connections the left column forms internally
and across its boundaries are illustrated by arrows.

integrator neuron model.

For a network with a total of N cortical columns, the two vectors u(t) = (u1(t), . . . ,

uN (t))⊤ and v(t) = (v1(t), . . . , vN (t))⊤ respectively denote the state variables of the N exci-

tatory and inhibitory populations in the network. The dynamic equations describing neural

interactions as a function of time t are:

τm u̇(t) = −u(t) +Wee Q(t) g[u(t)]−Wei g[v(t)] + iaff(t), (3a)

τm v̇(t) = −v(t) +Wie Q(t) g[u(t)]−Wii g[v(t)], (3b)

q̇(t) = −q(t) ◦ g[u(t)]
τon

+
1− q(t)

τrec
, Q(t) = diag(q(t)), (3c)

where τm is the membrane time constant and iaff(t) is a vector of length N reflecting the

amplitudes of afferent input arriving at individual populations via the auditory pathway.

Afferent input is assumed to target the excitatory populations only. The matrices W specify

the weights of

• Excitatory connections within and between populations of pyramidal neurons (Wee),

• Inhibitory connections from interneuron to pyramidal neuron populations (Wei),

• Inhibitory connections within and between populations of interneurons (Wii),

• Excitatory connections from pyramidal neuron to interneuron populations (Wie).

Figure 3 illustrates these connection types. Note that ii-connections are effectively excitatory

as they dampen further inhibition whereas ie-connections are effectively inhibitory as they

drive the inhibitory action of inhibitory populations.
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description symbol value

firing rate threshold θ 0.050

firing rate sensitivity κ 2/3

membrane time constant τm 0.030 s

time constant of synaptic depression onset τon
thalamus: 0.020 s
cortex: 0.100 s

time constant of recovery from synaptic depression τrec
thalamus: 0.100 s
cortex: 1.000 s

Table 1: Time constants and firing rate parameter values used in the gerbil AC model.

A further expansion of the Hopfield and Tank model is the inclusion of STSD. Following

Loebel et al. (2007), this is implemented by introducing a term that scales the weights of

excitatory connections as a function of pre-synaptic firing rate. The modulation is expressed

by the matrix multiplication of the elements of Wee and Wie with the time-dependent diagonal

matrix Q(t) = diag(q(t)). The elements of q reduce in amplitude as a function of increasing

pre-synaptic firing rate, with distinct time constants τon and τrec for onset of and recovery

from this reduction in synaptic efficacy (see Equation (3c), note that ◦ indicates element-

wise multiplication, i.e. the Hadamard product). Onset of and recovery from a decrease in

synaptic efficacy are competing effects and full recovery can only occur if the pre-synaptic

neural population is not firing. For simplicity, only excitatory connections are affected by

synaptic depression. However, note that, due to the effectively inhibitory ie-connections,

both excitation and inhibition of the network is affected by synaptic depression.

For our simulations, we set the time constants of the model to the values listed in Table 1.

The order-of-magnitude difference of the time constants of synaptic depression in the parts of

the model representing MGv and AC reflects the different time scales of RS observed along

the lemniscal part of the auditory pathway (Ulanovsky et al., 2004; Asari and Zador, 2009;

Pérez-González and Malmierca, 2014). Across all our simulations, the firing rate threshold

θ was equal to 0.050 and we set κ to 2
3 . When the structure of the model (i.e. the weight

matrices Wee, Wei, Wie, and Wii) as well as the stimulus sequence (in terms of iaff) is defined,

the nonlinear system described by Equations (3a)–3c can be solved numerically to provide

a picture of the spatiotemporal activity patterns of the network in response to the chosen

paradigm.
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1.1.2 Structure of the anatomy-based model

In our computational model, the weight matrices W represent the structure and connectivity

of the gerbil AC. Its functional organisation has been investigated intensively, using electro-

physiological (e.g. Thomas et al., 1993) as well as metabolic (e.g. Scheich et al., 1993) and

anatomical (e.g. Budinger et al., 2000a,b) mapping techniques. These studies have identified

eight functional fields. Each field can be characterised in terms of its position in the structural

hierarchy of the core, the belt, and the parabelt. The core consists of two fields – the primary

auditory field (A1) and the anterior auditory field (AAF). Three fields make up the gerbil

AC belt area – the dorsoposterior field (DP), the ventroposterior field (V), and the ventral

field (V). The gerbil AC parabelt area encompasses three fields – the dorsal field (D), the

ventromedial field (VM), and the anteroventral field (AV).

Properties of the gerbil AC fields

Auditory fields are characterised by their connectivity at the intracortical and subcortical

level (Budinger et al., 2000a,b, 2006, 2008; Budinger and Scheich, 2009; Budinger et al., 2013;

Saldeitis et al., 2014; Henschke et al., 2015; Kurt et al., 2008) as well as by cyto-, fiber-, and

chemoarchitectural criteria (Budinger et al., 2000a; Radtke-Schuller et al., 2016).

Like in cats, monkeys, humans, and other mammals (for a review, see Hackett, 2011),

fields in the gerbil AC have the following chracaterisics: The core fields are tonotopically

organised, have short-latency on-responses to pure tones, a koniocortical architecture, and

dense myelinisation. They form connections with the thalamus, specifically the tonotopically

organised ventral division of the medial geniculate nucleus (MGv). Additionally, core fields

form extensive local connections with each other and the surrounding belt fields.

Belt fields are also tonotopically organised, although with a lesser spatial resolution of

frequencies, and they have a prokoniocortical architecture. Their connections with thalamus

primarily target the MGv but they are also connected to non-tonotopic parts of the auditory

thalamus. Furthermore, strong connections exist between the belt and the core as well as

between the belt and the parabelt, and the belt fields also share connections with other

sensory and non-sensory cortical areas.

The non-tonotopic parabelt fields are isocortical with a lesser cell density and fiber myelin-

isation than the belt fields. They are not tonotopically organised and respond to a large range

of audio-frequencies. Connections project to non-tonotopic auditory and non-auditory thala-

mic nuclei and remote cortical areas.

Taken together, the studies cited above provide a detailed picture of the field parcellation,

connectivity, and hierarchical organisation in the gerbil AC. We summarised this information

in the diagram shown in Figure 4a. It forms the basis of the more formalised connectivity

matrix used for the gerbil AC model, shown in Figure 4b. The connections listed in this matrix
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a b

Figure 4: Gerbil AC connectivity diagram (a) and translation of the diagram into a connectivity
matrix (b), mainly based on Budinger et al. (2000a,b) and Saldeitis et al. (2014), as well as on
assumptions 1, 2, and 3. The thicker black arrows in the diagram (a) indicate that experimentally
observed neuronal connections between the respective fields were more numerous than between fields
linked by blue arrows. In b, entries along the main diagonal of the matrix reflect intra-field connections
and off-diagonal entries describe inter-field connections. In analogy to the arrows in the diagram, the
darker green shade marks net connection strengths classified as stronger and the lighter green shade
those classified as weaker. Intra-field connections are also strong. The white matrix elements indicate
that these particular inter-field connections have, thus far, not been reported in the literature.

are mainly based on results of anterograde tracer injections (biocytin, dextran amines) into

the two core fields as well as the three belt fields and the MGv (Budinger et al., 2000a,b;

Saldeitis et al., 2014). Additionally, the following assumptions were made:

1. Fields that share a common border (i.e. neighbouring fields) are connected.

2. Interfield connections occur in a reciprocal manner (the available studies did not always

test for reciprocity).

3. Reciprocal connections have equal weight in both directions.

Connections within auditory fields

To model the functional organisation of the gerbil AC introduced above, we reflected each of

the eight cortical fields by a total of Nf = 16 model columns. Furthermore, we included 16

MGv columns to be used as an input area, relaying activation to the AC. In total, there were

thus N = (8 + 1) ·Nf = 144 columns and over 20 · 103 potential connections per connection

type (N2 = 144 · 144 = 20, 736). To identify each column, we assigned column indices i from

1 to 144. Table 2 lists the columns’ distribution across cortical fields in terms of this index.

The fine structure of intra-field connections originating from excitatory neural populations

(ie, ee) was based on findings from the mouse AC. Levy and Reyes (2012) showed that neurons

in A1 with somata in close proximity of each other have a higher connection probability than

neurons located further apart. The connection probability decreases as a Gaussian function
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Location MGv Core Belt Parabelt

AAF IA1I DP VP V D VM AV

Column
indices

1
...
16

17
...
32

33
...
48

49
...
64

65
...
80

81
...
96

97
...

112

113
...

128

129
...

144

Table 2: Distribution of columns in the gerbil AC model, in terms of column index i, across MGv
and cortical fields in the core, belt, and parabelt area.

of radial distance from the soma of the respective cell. In past implementations of the May-

et-al. modelling approach (reflecting the macaque/human AC), this finding was reflected by

generating weight matrices W via a stochastic process. The occurrence (binary, ’on’ vs ’off’)

of connections beyond the leading diagonal was governed by a Gaussian probability density

function (May and Tiitinen, 2013; May et al., 2015). Thus, each regeneration of the matrices

yielded the same general connectivity pattern at the field level but different patterns at the

microstructure (single-column) level. Here, we opted for a deterministic process generating

highly organised weight matrices – even at the single-column level – to improve the traceability

of single-column response patterns and identify basic mechanisms behind RS dynamics.

Weight values for all four connection types were largest along the main diagonal of the

weight matrices W (i.e. for intra-column connections). Connections originating from in-

hibitory neural populations (ei, ii) were assumed to be very localised and only occurred

within columns. On either side of the main diagonal (but within the intra-field limit), values

decreased with increasing difference between column indices i (target of connection) and j

(source of connection) for ee- as well as ie-connections. Note that, for columns within the

same field, the difference between column indices reflects, at least conceptually, the physical

distance between neurons as investigated by Levy and Reyes (2012). The effectively inhibitory

ie-connections (c.f. Section 1.1.1) between these columns reflect a form of lateral inhibition

observed experimentally in gerbil A1 (Kurt et al., 2008; Moeller et al., 2010).

Connections across auditory fields

Connections across fields, i.e. inter-field connections, only originated from excitatory popula-

tions, reflecting the considerable reach of the long axons of pyramidal neurons (de la Mothe

et al., 2006). For connections across auditory fields, these axons predominantly target cortical

layer III (Thomas and López, 2003). In this layer, inhibitory neurons are not very abundant,

making up only a quarter of the neuronal population, and pyramidal neurons receive the

majority of ipsilateral as well as contralateral cortical connections (Budinger and Kanold,

2018). Based on these findings, our model assumed that connections driving inhibition (ie-

connections) only extend across columns within the same field.

19



Figure 5: Illustration of the connectivity pattern defined by weight matrix Wee. The network
reflecting gerbil AC has a total of N = 144 ‘nodes’, namely columns comprising an excitatory and
an inhibitory neural population. Thus, matrix Wee is a square matrix of size 144 × 144. It reflects
connections between excitatory populations (ee). Indices i (1 to 144) of the connection targets are
listed along the vertical axis and indices j (1 to 144) of the connection sources along the horizontal
axis. Each entry Wee(i, j) reflects the strength of the connection between source j and target i, one of
the over 20 ·103 possible ee-connections (N2 = 20, 736). Weight values are mapped out according to a
colour gradient – the darker the colour the stronger the connection. Recurrent excitatory connections,
i.e. intracolumn connections, are listed along the main diagonal of the matrix, where i = j. They are
the strongest of all connections, as reflected by the dark blue colour. As each field comprises a total
of 16 columns, grey lines divide the matrix into subdivisions of size 16× 16. Each subdivision reflects
connections between two specific fields (or, for subdivisions along the main diagonal, one and the
same field), as summarised in Figure 4b. Weight values are largest on the respective diagonal of each
subdivision and decrease with distance from this diagonal (Equation (6)), thus creating a topographic
connectivity pattern. The distinction between stronger and weaker connections at the field level, as
mapped out in Figure 4b, is reflected by the stronger and weaker connection weights in the respective
subdivisions of Wee.
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We arranged the connections driving excitation across fields (ee-connections) in a topo-

graphic manner. This is illustrated in Figure 5. Each 16×16 subdivision of weight matrix Wee,

mapped out by grey lines, reflects connections between two specific fields. Weight values were

largest on the diagonals of these subdivisions and continuously decreased with distance from

the respective diagonal. This distance ∆i is given by the difference between intrafield indices

k(i), i.e. the difference between the columns’ respective positions within a field:

k(i) = i− ⌊i/(Nf + 1)⌋ ·Nf , (4)

where ⌊ ⌋ denotes the floor function. For example, the column with index i = 39 is the seventh

column in A1, the third of the model fields, where indices range from 33 to 48 (c.f. Table 2).

Consequently, the intrafield index k of column 39 is equal to (39−⌊39/(16+1)⌋ ·16) = 7. For

any connection from column j to column i, distance ∆i from the diagonal of the corresponding

weight matrix subdivision is thus

∆i = |k(i)− k(j)|. (5)

The decrease in connection weights as a function of ∆i was governed by a truncated

Gaussian function. For for i ̸= j, connection weights were defined by

W (i, j) =

α · exp
[
−1

2(
∆i
σ )

2
]

if ∆i ≤ σ

0 otherwise
, (6)

where the connection-type-specific standard deviation σ is expressed in units of ∆i and α is a

connection-type-specific scaling factor. The weight values for connections within the column

(i = j) were assigned separately and were always larger than for all other connections.

By imposing the topographic connectivity reflected by Equation (6), we created a network

that preserved the tonotopic organisation of the input (described in the following section),

thus reflecting the tonotopic maps found in core and belt fields of the gerbil AC. For simplicity,

parabelt field connections in our model were also tonotopically organised. Parameters defining

the specific connection weight values we used across all four weight matrices are summarised in

Table 3. Weight values describing connections within columns and connections between fields

remained constant across our simulations. However, as part of our investigation, we varied

the lateral reach σ of ie-connections within fields. May and Tiitinen (2013) demonstrated that

this lateral inhibition modulates levels of spectral selectivity. Thus, we used parameter σie to

investigate the relationship between spectral selectivity and audio-frequency-specific RS.
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connection type
parameter setting

within column within field across fields

ei – from inhibitory to
excitatory population Wei(j, j) = 3.5 Wei(i, j) = 0 Wei(i, j) = 0

ii – from inhibitory to
inhibitory population Wii(j, j) = 1.0 Wii(i, j) = 0 Wii(i, j) = 0

ie – from excitatory to
inhibitory population Wie(j, j) = 3.5

thalamus:
Wie(i, j) = 0 Wie(i, j) = 0

cortex:
α = 1

σ ∈ [4, 5, 7]

ee – from excitatory to
excitatory population Wee(j, j) = 6

thalamus:
Wee(i, j) = 0

thalamus ↔ cortex:
α = 0.5, σ = 0

cortex:
α = 0.6
σ = 2

cortex ↔ cortex:
α = 0.6 (strong)
α = 0.06 (weak)

Table 3: Weight values used in the weight matrices W of the gerbil AC model.
Connections originating from inhibitory populations (ei, ii) are very localised and
only occur within columns. All other entries of the respective weight matrices are
equal to zero. Connections driving the inhibition (ie) are strongest within the column
but also extend across columns within the same field. Similarly, connections driving
excitation (ee) are strongest within the column and also extend across columns within
the same field. Additionally, they are the only connections that extend across fields.
The larger the distance ∆i (Equation (5)) between intrafield indices k (Equation (4))
of the source and target population, the weaker the connection weight (Equation (6)).
Exact weight values are defined by the respective parameter values α and σ. Where
the table lists weight values equal to zero, α was set to zero. The network defined by
the four weight matrices given above is characterised by a topographic connectivity
pattern that preserves the tonotopic organisation of the input.
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Figure 6: Diagram illustrating the tonotopic map across the 16 columns reflecting thalamus (MGv)
in the gerbil AC model. The bottom axis lists the BFs assigned to these columns, with respective
column indices i listed along the middle axis. As an example for one of the 16 audio-frequency options,
the plotted curve depicts the scaling factor s(i) (Equation (7)) applied to the presynaptic firing rate
r(t) when a 2-kHz pure tone (iBF = 7) is simulated.

Connections involving thalamus

Thalamic connections in the model were purely intra-columnar and both thalamocortical

and corticothalamic connections were limited to their direct counterparts (∆i = 0) in the

respective fields. MGv and core fields were more strongly connected than MGv and belt

fields, whereas parabelt fields were not connected to MGv at all. Moreover, our model did not

include a proper description of peripheral processing. Instead, the front end of the model was

an abstract tonotopic map whereby each of the 16 columns in the MGv could be maximally

tuned to a single stimulus audio-frequency or frequency range and thus each had a different

best frequency (BF, the stimulus audio-frequency that elicits the strongest response). The

tonotopic map we specified to facilitate comparisons with experimental results is illustrated

by the bottom axis of Figure 6. We assigned a specific BF to each MGv column, spanning

the hearing range of the gerbil in half-octave steps from 0.25 kHz to 45.2 kHz (the hearing

range of the gerbil extends from about 0.2 kHz to 50 kHz at 30 dB sound pressure level; e.g.

Ryan, 1976; Gleich and Strutz, 2012).

Sequences of identical pure-tone stimuli were expressed in terms of pre-synaptic firing rate

time courses r(t). A firing rate of 0 reflected no stimulation, a firing rate of 1 the maximum

sound pressure level (SPL) of the tone. Any given pre-synaptic firing rate was then scaled as

a function of the target field and the difference between the BF of the target column and the
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∆F [oct] 0 0.5 1 1.5 2 2.5 3 3.5 4
s(i) 1.000 0.969 0.882 0.755 0.607 0.458 0.325 0.216 0.135

Table 4: Scaled pre-synaptic firing rates s(i) reflecting pure tone stimulation, as a function of the
distance ∆F of the audio-frequency of the simulated stimulus from the targeted MGv column’s BF
(σin = 2).

audio-frequency of the stimulus. Cortical columns were never directly activated by afferent

input, hence the corresponding scaling factors were always equal to zero. For the MGv, the

scaling factor was governed by a Gaussian function, with a maximum value of 1 centred on

the index iBF of the MGv column where BF = stimulus audio-frequency (1 ≤ iBF ≤ Nf),

and with a standard deviation σin= 2 columns. Thus, in summary, scaling factor s for target

column i was described by:

s(i) =

exp
[
−1

2(
i−iBF
σin

)
2
]

i ≤ Nf

0 i > Nf ,
(7)

where 1 ≤ i ≤ N . The round markers in Figure 6 illustrate, as an example, s(i) for the 16

MGv columns and a stimulus audio-frequency of 2 kHz.

We listed the products of column-specific scaling factor s(i) and firing rate time course

r(t) in the vector gaff(t) = (s(1) · r(t), . . . , (s(N) · r(t))⊤. Via vector iaff (c.f. Equation (3a)),

these column-specific scaled pre-synaptic firing rates ultimately induced excitatory synaptic

currents in the AC model. Akin to all other connections in the network, afferent connections

were affected by STSD, with the temporal evolution of synaptic efficacies described by (c.f.

Equation (3c)):

q̇aff(t) = −qaff(t) ◦ gaff(t)
τon,aff

+
1− qaff(t)

τrec,aff
. (8)

Time constants τon,aff and τrec,aff were set to values equal to those used for thalamic connec-

tions (see Table 1). Entries in the vector iaff(t), i.e. the afferent excitatory synaptic currents

(see Equation (3a)) as a function of time, were ultimately computed as:

iaff(t) = waff(qaff(t) ◦ gaff(t)) , (9)

where waff is the connection weight for the afferent connections. We used waff = 1 in all

our simulations. Due to the Gaussian function in Equation (7), input representing pure tone

stimuli at the BF of a specific MGv column also activated neighbouring columns, but to

a lesser extent. This approach reflects the fact that neuronal tuning curves have a certain
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width (see, for example, Butts and Goldman, 2006) and that there should thus not be a

sudden cut-off of input across columns. To further facilitate comparisons with experimental

results, we defined the term ∆F. It reflects the distance of the stimulus audio-frequency from

a column’s BF in units of octaves. For a pre-synaptic firing rate reflecting the maximum SPL

of a simulated pure-tone stimulus (r = 1), Table 4 summarises, as a function of ∆F, the scaled

pre-synaptic firing rate s(i) at afferent connections targeting MGv.

1.1.3 Structure of the single-column model

Stimulation

afferent 
connection

Inhibitory
neurons

Excitatory
neurons

ee

ei

ei

ii

Figure 7: Diagram illustrating the single-column model, where N = 1. Afferent input (reflecting
auditory stimulation) targets the excitatory population via the afferent connection. Just as for the
gerbil AC model, the dynamic response of the network is governed by Equations (3a-c). Afferent and
excitatory intracolumnar connections are subject to STSD (c.f. Equations (3c) and (8), respectively).

In addition to the gerbil AC model, we implemented a model consisting of a single excitatory

and inhibitory population (see Figure 7). The aim was to compare this column’s response be-

haviour to the RS dynamics observed for columns embedded into the larger gerbil AC network

and thus identify potential network effects. Just like for the gerbil AC model, the dynamic

response of the single-column model was governed by Equations (3a-c). Note that, for a model

of size N = 1, these equations are reduced to scalar form and only a single target for afferent

input remains. Such a single-column model could, of course, not be tonotopically organised.

However, akin to the approach taken for the gerbil AC model, we reflected different stimu-

lus audio-frequencies by scaling the pre-synaptic firing rate of the afferent connection. BF

stimulation was reflected by a pre-synaptic firing rate of 1 and for each half-octave step away

from the BF, the maximum value decreased according to the previously described Gaussian

function with σin = 2 (see Table 4).

With the exception of τrec,aff , parameter values in the single-column model were always

equal to those in the gerbil AC model, i.e. all cortical values summarised in Table 1 as well

as the intracolumnar connection weights summarised in Table 3 were applied. We used three

different values for τrec,aff to investigate how RS lifetime varies when STSD recovery at the

afferent connection is faster than, equal to, or slower than at the recurrent connections. Exact

values are summarised in Table 5.
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afferent vs. intracolumnar STSD recovery

parameter faster equal slower

τrec,aff 0.500 s 1.000 s 1.500 s
τrec 1.000 s 1.000 s 1.000 s

Table 5: Time constants of recovery from STSD for afferent (τrec,aff) and intracolumnar (τrec) con-
nections, used for simulations with the single-column model.

1.1.4 Stimulation paradigms

Repetition suppression paradigm

We investigated audio-frequency-specific RS in the gerbil AC and in the single-column model

by presenting a classic regular-SOI paradigm. Each stimulus had a duration of 100 ms, with

a respective linear rise and fall time of 5 ms. Within a stimulus block, the SOI was constant

and the stimulus was repeated a total of nstim = 20 times. Across blocks, the following 10

SOI-values were used: 0.219 s, 0.328 s, 0.438 s, 0.656 s, 0.875 s, 1.313 s, 1.750 s, 2.626 s,

3.500 s, and 7.000 s. These values were selected to match those employed for the in-vivo

experiments (see Section 2.1.2). For the single-column model, the blocks were presented at

nine different audio-frequencies, with ∆F ranging from 0 oct to 4 oct in half-octave steps.

For the gerbil AC model, we found that, at a SOI of 219 ms, model columns were still re-

sponding to the previous stimulus when the subsequent stimulus was presented (c.f. Figure 8).

Stimulus-specific responses could thus not be identified. Therefore, we excluded data recorded

for the 0.219-s SOI from further analysis and added a 5-s SOI to the paradigm instead. The

10 stimulus blocks were each presented at two different audio-frequencies – 2 kHz and 8 kHz.

The initial conditions before the presentation of each stimulus block were equal to the

model’s resting state (i.e. all state variables in u and v set to zero, all elements of q equal to

1, no input), postulating full recovery from synaptic depression after the presentation of the

previous stimulus block. The order of presentation of the different blocks was thus irrelevant.

During the presentation of each block, we continuously recorded the state variables of all

populations in the network as well as the synaptic efficacies for all connections. The sampling

rate was 1 kHz.

Frequency response paradigm

To characterise the frequency response of the gerbil AC model, we presented the 0.656-s-SOI

stimulus block at additional audio-frequencies, ranging from 0.25 kHz to 42.5 kHz, in half-

octave steps (thus covering the full tonotopic map defined for the MGv columns). For

the single-column model, the frequency response paradigm was already included in the RS

paradigm, where the 0.656-s-SOI stimulus block was presented at nine different audio-frequen-

cies, with ∆F ranging from 0 oct to 4 oct in half-octave steps.
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1.1.5 Analysis of simulated data

Measures of neuronal activity

In our modelling approach, the state of excitatory and inhibitory neuronal populations is

reflected by state variables (u and v, respectively) and population output is reflected by firing

rates (g(u) and g(v)). Moreover, as the state variables can be thought of as the populations’

mean membrane potentials, −u̇ and −v̇ represent net current flow across the respective mem-

brane. The chosen polarity matches the sign convention used in electrophysiology (see, for

example, Hammond, 2015). Given that our in-vivo data reflected changes in current flow

across the membranes of pyramidal neurons (see Section 2.1.3), we based our analysis of in-

silico RS dynamics on the net current flow reflected by ξnet = −u̇. We used Equations 3a-3c

to compute column-specific time courses ξnet(t) from the data recorded during the simulations

(u(t), v(t), and q(t)).

To investigate the response behaviour of individual columns in further detail, we also

decomposed ξnet(t) into the different types of transmembrane current that make up this net

flow. These types are reflected by the individual terms on the right-hand side (r.h.s.) of

Equation (3a). The first term on the r.h.s. of Equation (3a) reflects a passive leak current

to account for the membrane’s finite resistance. For any given column i, the leak current

associated with the excitatory population is

ξleak,i(t) =
ui(t)

τm
. (10)

The excitatory synaptic current caused by ee-connections (c.f. second term on the r.h.s.

of Equation (3a)) is

ξee,i(t) = − 1

τm
wee,i Q(t) g[u(t)] , (11)

where the weights of the ee-connections targeting column i are given by wee,i = (Wee(i, 1),

. . . , Wee(i,N))⊤. The inhibitory synaptic current caused by ei-connections (c.f. third term

on the r.h.s. of Equation (3a)), is

ξei,i(t) =
1

τm
wei,i g[v(t)] , (12)

where vector wei,i = (Wei(i, 1), . . . , Wei(i,N))⊤ contains the weights of the ei-connections

targeting column i. Finally, synaptic current induced via the afferent connection to reflect

stimulus presentation (c.f. fourth term on the r.h.s. of Equation (3a)), is
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area index vector column indices
MGv jMGv (1, . . . , Nf)

core jcore (Nf + 1, . . . , 3Nf)

belt jbelt (3Nf + 1, . . . , 6Nf)

parabelt jp.belt (6Nf + 1, . . . , 9Nf)

Table 6: Area-specific column indices for the gerbil AC model. Nf is the number of columns per field
and was set to 16. The core area has two fields, the belt areas has three fields, and the parabelt area
also has three fields (c.f. Figure 4).

ξaff,i(t) = −
iaff,i(t)

τm
. (13)

Note that, for the single-column model, where N = 1, the equations introduced above are

reduced to scalar form. Net transmembrane current flow for any column i is given by

−u̇i = ξnet,i = ξleak,i + ξee,i + ξei,i + ξinp,i. (14)

To explore the response behaviour of individual columns in the gerbil AC model even

further, we also decomposed the excitatory synaptic current ξee,i according to the following

regions of connection origin: MGv, core, belt, parabelt. Moreover, we treated recurrent

excitation (where the index of the target column is equal to the index of the source column,

i = j), as a separate category. Columns located in a given area have indices j ∈ jarea. Table 6

specifies these vectors j for the different areas. Thus, for a given column i, the vector

warea
ee,i = (Wee(i, j)) j ∈ jarea, j ̸=i (15)

lists the weights of the intercolumnar connections originating in the respective area and tar-

geting column i. The matching levels of synaptic efficacy are summarised in matrix

Qarea(t) = diag[ (qj(t)) j ∈ jarea, j ̸=i ] , (16)

and the state variables of the connection sources are reflected by entries of vector

uarea(t) = (uj(t)) j ∈ jarea, j ̸=i. (17)

The net excitatory synaptic current induced via intercolumnar connections originating in a

given area is thus

28



ξarea
ee,i (t) = − 1

τm
warea

ee,i Qarea(t) g[uarea(t)] , (18)

and the excitatory synaptic current induced via the recurrent, intracolumnar ee-connection is

ξrecurrent
ee,i (t) = − 1

τm
Wee(i, i) qi(t) g[ui(t)] . (19)

Preliminary assessment

In the gerbil AC model, our investigation of response behaviour was focussed on the primary

auditory cortex, i.e. the 16 columns making up A1. We found that the responses that our

stimuli evoked in these columns evolved over a time scale of about 300 ms. This is illustrated

in Figure 8, where examples of time courses ξnet(t) recorded in response to the first stimulus

within each block are plotted in a time window from −50 ms to 350 ms relative to stimulus

onset. Given that our model was noise-free and the initial conditions for the presentation of

each block were equal to the model’s resting state, the response to the first stimulus within

each block was identical across SOIs. After stimulus presentation, current flow ξnet(t) returned

to baseline (zero) shortly after the 300-ms mark.

As shown in Figure 8, peak response amplitudes in the time window from 0 ms to 150 ms

declined with increasing difference between iBF (index of the MGv column where BF = stimu-

lus audio-frequency, c.f. Figure 6) and k(i) (Equation (4), intrafield index of the A1 columns).

We found that |iBF − k(i)| = 4 was the largest difference where the A1 columns showed

a distinct response peak across all three settings of model parameter σie. Thus, we lim-

ited our analysis of RS response behaviour to columns where |iBF − k(i)| ≤ 4. Note that,

while |iBF − k(i)| = 0 only applies to one A1 column, the other distances each apply to two

columns. Thus, a total of nine A1 columns satisfied the condition. The complete overlap of

the response curves for column pairs with the same |iBF − k(i)|-value reflects the symmetry

of the connectivity patterns defined in the weight matrices.

After identifying the subset of responsive columns, we assessed the evolution of the peak

amplitude Aistim of the response in the time window from 0 ms to 150 ms for stimulus indices

istim = 1 to nstim. For SOIs < 3.5 s, stimulus repetition led to, at least, a 10% decrease in

Aistim relative to the first stimulus, i.e. for istim > 1, (A1−Aistim)/A1 ≥ 0.100. The smaller the

SOI, the larger the decrease. The model was thus exhibiting SOI-dependent RS. In 60% of

the 540 cases (2 stimulus audio-frequencies × 10 SOIs × 3 σie-values × 9 columns), Aistim was

fully stable from the fifth stimulus onward (A5 = A6 = A7 = ... = Anstim). For an example of

this response behaviour, see Figure 9a.
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Figure 8: Column-specific responses, in terms of
ξnet, to the first stimulus in all blocks for σie = 7
and iBF = 7. Evoked responses unfold within
a time window of about 300 ms and the ampli-
tude of the response peak in the time window from
0 ms to 150 ms decreases with increasing differ-
ence |iBF − k(i)|. At |iBF − k(i)| = 5, columns are
virtually unresponsive. Blue curve: A1 column 7;
orange curve: A1 columns 5 and 9; yellow curve:
A1 columns 3 and 11; green curve: A1 columns 2
and 12.

Cases where response amplitudes were not fully stable by the fifth stimulus were clustered

at shorter SOIs. Stabilisation required up to nstable = 10 stimulus repetitions – one example

is illustrated in Figure 9b. Moreover, stabilisation was not absolute and we observed small

cyclic patterns. One clear example of such a pattern is shown in Figure 9c. Compared to

the change in amplitude relative to the first response, however, variations in peak amplitudes

across the second half of the stimulus block were small. We defined the mean peak amplitude

Astable =

(
1

nstim−nstable

) nstim∑
(nstable+1)

Aistim (20)

and found that, at most, deviations from this mean were equal to 16% of the difference between

A1 and Astable, i.e. for istim > 10, |Astable−Aistim |/(A1−Astable) ≤ 0.16. 53% of the deviations

|Astable −Aistim |, were equal to less than 10% of the difference (A1 −Astable). Given that our

gerbil AC model was noise free, these small variations were part of the network’s response to

the RS paradigm. To determine lifetimes of RS for this model, we characterised stabilised RS

for each SOI, column, stimulus audio-frequency, and σie by the average response, in terms of

ξnet, across stimuli nstable+1 to nstim. Thus, with time t expressed relative to stimulus onset,

single trials in the time window −50 ms ≤ t ≤ 350 ms, or −50 ms ≤ t ≤ SOI if SOI < 350 ms,

were averaged across stimuli 11 to 20.

Examples of such condition-specific average time courses ξnet(t) are shown in Figure 10a

and b. We determined the absolute amplitude A(SOI) of the associated response peak in

the time window from 0 ms to 150 ms. For each model and stimulus parameter setting

employed in our simulations, A(SOI) gradually increased with SOI and converged towards a

saturation value, as is characteristic of the RS phenomenon. Table 7 provides an overview of

all conditions investigated in our simulations.

30



Figure 9: Examples of the response behaviour of A1 column 7, in terms of ξnet, observed for different
stimulus blocks. The grey horizontal markers reflect stimulus onset and duration, red circles mark
response peaks, and the dashed line indicates mean peak amplitude Astable. a: For a SOI of 0.875 s
and a stimulus audio-frequency of 2 kHz, the column’s response peaks stabilise within the first five
stimulus repetitions. b: For a SOI of 0.328 s and a stimulus audio-frequency of 2 kHz, the column’s
response peaks only stabilise after ten stimulus repetitions. Stabilisation is not absolute but deviations
from the mean amplitude Astable are small. c: For a SOI of 0.875 s and a stimulus audio-frequency
of 8 kHz, the column exhibits a clear cyclic response pattern but response peaks remain close to the
mean amplitude Astable when compared to the difference between A1 and Astable. Note that while
peak amplitudes have negative polarity in this figure, peak amplitude A(SOI) determined from the
mean across stimulus repetitions was an absolute value without polarity in subsequent analysis steps.
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model
type

stimulus
audio-

frequency SOI [s]

model
parameter
setting

examined
columns total

gerbil
AC

two options:
2 kHz, 8 kHz

ten options:
0.328, 0.438,

0.656, 0.875, 1.313,
1.750, 2.626, 3.500,

5.000, 7.000

three options:
intrafield

σie ∈ [4, 5, 7]

nine options:
A1 columns

where
|iBF − k(i)| ≤ 4

540
conditions

single
column

nine options:
0 oct ≤

∆F ≤ 4 oct
(0.5-oct steps)

ten options:
0.219, 0.328, 0.438,
0.656, 0.875, 1.313,
1.750, 2.626, 3.500,

7.000

three options:
τrec,aff ∈

[0.5, 1.0, 1.5] s
one option 270

conditions

Table 7: Overview of experimental conditions investigated in our simulations

In the single-column model, we found that the responses evoked by the stimuli evolved

over a time scale of about 200 ms. Thus, unlike for the gerbil AC model, we included data

recorded for the 219-ms SOI in further analysis. Moreover, even stimulation at the largest

∆F (4 oct) used for the RS paradigm showed a clear response peak across all SOI- and τrec,aff -

values. Consequently, all recorded data was included in further analysis. For SOIs < 2.626 s,

stimulus repetition led to, at least, a 10% decrease in Aistim relative to the first stimulus (for

istim > 1, (A1 − Aistim)/A1 ≥ 0.100) and the smaller the SOI, the larger the decrease. The

model was thus exhibiting SOI-dependent RS. Aistim was always fully stable from the fifth

stimulus onward (A5 = A6 = A7 = ... = Anstim). To harmonise the analysis pipelines, we

characterised stabilised RS in the single-column model via the same approach as used for the

gerbil AC model. Thus, although technically unnecessary, we computed the average response

ξnet across stimuli nstable + 1 to nstim, i.e. stimuli 11 to 20, separately for each SOI, stimulus

audio-frequency, and τrec,aff -value.

Examples of the resulting condition-specific average time courses ξnet(t) are shown in

panels a and b of Figure 11. Again, as is characteristic of the RS phenomenon, peak response

amplitude A(SOI) observed in the time window from 0 ms to 80 ms gradually increased with

SOI and converged towards a saturation value at the largest SOI. The SOI-dependence of

the peak amplitude exhibited this characteristic increase for each of the model and stimulus

parameter settings employed in our simulations. Table 7 provides an overview of all the

investigated conditions.
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Figure 10: Overview of results for column 7 in A1 of the gerbil AC model with lateral range of
effectively inhibitory connections, σie, equal to 5. a and b: SOI-specific response, in terms of ξnet,
for stimulation at ∆F = 0 oct (left) and at ∆F = 2 oct (right). c: Circles indicate peak response
amplitude plotted as a function of SOI for ∆F = 0 oct, squares for ∆F = 2 oct. The two grey curves
are plots of Equation (1) fitted to the respective data set. d: Circles indicate peak latency plotted as
a function of SOI-dependent peak amplitude for stimulation at ∆F = 0 oct, squares for stimulation
at ∆F = 2 oct. The dark grey line in each panel is a linear regression (c.f. Equation (21)).
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Figure 11: Overview of results for the single-column model when τrec,aff = 1.000 s. a and b: Time
course of ξnet per SOI for stimulation at ∆F = 0 oct (left) and at ∆F = 2 oct (right). c: Circles
indicate response amplitude plotted as a function of SOI for ∆F = 0 oct, squares for ∆F = 2 oct.
The two grey lines are plots of Equation (1) fitted to the respective data set. d: Circles indicate peak
latency plotted as a function of SOI-dependent peak amplitude for stimulation at ∆F = 0 oct, squares
for stimulation at ∆F = 2 oct. The dark grey curves are linear regressions (c.f. Equation (21)) for the
respective data set.
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Quantification of repetition suppression lifetime

To quantify the lifetime of RS, we fitted Equation (1) to the amplitude values A(SOI) observed

for ξnet (time window 0 ms to 150 ms w.r.t. stimulus onset for the gerbil AC model, 0 ms

to 80 ms for the single-column model). The parameter t0 was set to the stimulus duration

(0.100 s), reflecting the logic that once SOI equals stimulus duration and individual tones

merge into a continuous tone, no evoked response peak should be detectable beyond the first

stimulus. To ensure robust fitting results, the fitting algorithm consisted of a two-step process.

First, we applied a non-iterative regression method based on an appropriate integral equation

(Jacquelin, 2009). Next, the values for τSOI and Asat obtained via this approach were used as

the starting points for a further improvement of the fit via an iterative least squares approach

(lsqnonlin function, MATLAB R2021b). Ultimately, we thus obtained six τSOI-values per

column for the gerbil AC model (two options for stimulus audio-frequency × three options

for model parameter σie) and 27 values for the single-column model (nine options for stimulus

audio-frequency × three options for model parameter τrec,aff). As an example, Figures 10c

and 11c show the peak amplitudes from respective panels a and b as a function of SOI along

with the corresponding fits of Equation (1) (grey curves).

Quantification of peak latency shift

In both the gerbil AC and the single-column model, we observed a shift in peak latency as

a function of SOI. In most cases, peak latency tpeak increased with decreasing SOI and thus

with decreasing peak response amplitude A(SOI) (see, for example, Figures 10a and b). For

all simulation conditions, the relationship between SOI-specific peak amplitude A(SOI) and

peak latency tpeak could be coarsely summarised by the linear function

ℓfit(A(SOI)) = µ A(SOI) + c , (21)

where fitting parameter µ reflects direction and magnitude of the peak latency shift and

c is the x-axis intercept. As an example, Figures 10d and 11d show plots of tpeak as a

function of A(SOI), deduced from the data in panels a and b, and the corresponding linear

regressions (Equation (21), grey lines). Ultimately, we normalised peak amplitudes relative to

the respective 7-s SOI peak amplitude before carrying out linear regressions to achieve better

comparability of µ-values across conditions.
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Computation of frequency response functions

For the FR paradigm, we characterised the audio-frequency-specific responses of each column

via the same single-trial averages as the SOI-specific responses for the RS paradigm, i.e. we

computed the average response, in terms of ξnet, across stimuli nstable + 1 to nstim for each

audio-frequency and model parameter setting. Next, we determined the amplitude of the

response peak (time window 0 ms to 150 ms w.r.t. stimulus onset for the gerbil AC model,

0 ms to 80 ms for the single-column model). Finally, FR functions for individual columns were

obtained by plotting the respective peak amplitudes as a function of stimulus audio-frequency

(c.f. Figures 12 and 19).

1.2 Simulation results and predictions

1.2.1 Response behaviour of the single-column model

Frequency response

Figure 12 shows the FR functions obtained for the single-column model by varying ∆F,

i.e. the amplitude of the presynaptic firing rate of the afferent connection (c.f. Table 4).

Overall, Figure 12 confirms that the approach we devised to reflect stimulus audio-frequency

in the single-column model leads to single-peaked FR functions comparable to the average

FR functions the literature reports for neural populations in the gerbil AC (e.g. Happel et

al. 2010, Figure 3A; Deane et al. 2020, Figure 3B; Ma & Brunk et al. 2021, Figure 1G). The

model parameter τrec,aff , the time constant of recovery from STSD at the afferent connection,

has an effect on the model’s FR function. With increasing τrec,aff , the peak amplitude at ∆F

= 0 oct decreases from 38.9 to 31.1 to 26.3. Additionally, the FR function becomes less sharp.

FR function width, in terms of the ratio between the peak response amplitude at ∆F = 2 oct

and ∆F = 0 oct increases from 0.760 to 0.811 to 0.846.

Figure 12: FR functions of the
single-column model for the three
different τrec,aff -values used during
simulations. Results are mirrored
at the axis ∆F = 0 oct to reflect
stimulus audio-frequencies above as
well as below the BF.
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Lifetime of repetition suppression and peak latency shift

Figure 13 summarises the RS response dynamics of the single-column model for a τrec,aff -value

of 0.500 s (black markers), 1.000 s (grey markers), and 1.500 s (white markers). Compared to

STSD at the recurrent connections, this corresponds to faster, equal, or slower recovery from

STSD at the afferent connection (c.f. Table 5). As we describe our results in this context, we

refer to the three parameter settings with these descriptive terms in the text below as well as

in the legends of Figures 13, 16, and 17.

In Figure 13a, RS lifetimes τSOI are plotted as a function of ∆F. As illustrated by the

white triangles, τSOI decreases with increasing distance from the BF (i.e. with increasing ∆F)

when recovery from STSD is slower at the afferent connection. The τSOI-value starts out at

1.284 s for ∆F = 0 oct and decreases to 0.989 s for ∆F = 4 oct. In contrast, the black triangles

show that τSOI increases with increasing distance from the BF when STSD recovery is faster

at the afferent connection. For this scenario, the τSOI-value starts out at 0.762 s for ∆F = 0

oct and reaches 0.883 s for ∆F = 4 oct. When τrec and τrec,aff are equal, τSOI shows a milder

decrease with increasing distance from the BF. The τSOI-value starts out at 1.049 s for ∆F =

0 oct and decreases to 0.939 s for ∆F = 4 oct.

Figure 13b presents results regarding response peak latencies. The top panel summarises

peak latency shift µ (c.f. Equation (21)), as a function of ∆F. The absolute value of µ always

exhibits a mild increase with distance from the BF, however the polarity and magnitude

varies. For slower afferent STSD recovery, latency shift µ is positive (black circles). This

means that peak latency is delayed with increasing SOI. Note, however, that this shift is very

minor, with µ ≤ 5 ms for ∆F < 3 oct and a maximum value of 11 ms. For faster afferent

STSD recovery, latency shift µ is negative peak (white circles). This means that peak latency

is delayed with decreasing SOI. The extent of this delay increases with ∆F. The µ-value starts

out at −13 ms for ∆F = 0 oct and reaches −32 ms for ∆F = 4 oct. When STSD recovery

dynamics are equal for all connections, there is a mild delay in peak latency with decreasing

SOI. The extent of this delay is fairly stable across all but the largest ∆F: for ∆F < 4 oct,

µ-values range from −6 ms to −8 ms and for ∆F = 4 oct, µ = −15 ms.

The bottom panel of Figure 13b shows the median response peak latency, m(tpeak), across

all ten SOI values as a function of ∆F. Peak latencies increased by about 40 ms across ∆F-

values, and there was little difference between τrec,aff -settings (3 ms at most).
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Figure 13: RS lifetimes and peak latency variations in the single-column model. a: RS lifetime
τSOI as a function of ∆F when, relative to the recurrent connections, STSD recovery at the afferent
connection is slower (black markers), equal (grey markers), or faster (white markers). For the faster
condition, τSOI increases, whereas for the slower condition, τSOI decreases with distance from the BF.
b: The top panel summarises RS-induced peak latency shift, reflected by fitting parameter µ, and
the bottom panel shows the median response peak latency m(tpeak), across all ten SOI values, as a
function of ∆F for the three different τrec,aff -settings. The same colour code as in panel a applies.

In summary, we thus observed:

1. a decrease or an increase in τSOI as a function of ∆F, depending on STSD recovery

dynamics.

2. an increase in median peak latency as a function of ∆F

3. an increase in the magnitude of the peak latency shift µ as a function of ∆F

4. a positive or a negative the peak latency shift µ, depending on STSD recovery dynamics

Response measures µ, m(tpeak), and τSOI were based on the net transmembrane current

associated with the excitatory population of the model. In the following sections, we will

explore the model’s response behaviour in terms of the different subtypes of transmembrane

current that make up this net flow (c.f. Equations (10) to (13)). This was done in order to

study which neuronal interactions are contributing to the variations in RS lifetime and peak

latency.
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Figure 14: Break-down of the time course of the
single-column model’s stabilised response into the
components that make up the net current flow. In
this example, τrec,aff = τrec, SOI = 0.328 s, and ∆F
= 2 oct. Stimulus onset and duration are mapped
out via the grey shading in the background. Grey
curve: afferent input, ξaff, reflecting stimulus pre-
sentation (Equation (13)); orange curve: leak cur-
rent, ξleak (Equation (10)); red curve: inhibitory
synaptic current, ξei (Equation (12)); green curve:
excitatory synaptic current, ξee (Equation (11));
blue curve: net current flow, ξnet (Equation (14)).

Components of the single-column model’s response

For one example condition, Figure 14 breaks down the net response of the single-column

model into excitatory and inhibitory synaptic current, leak current, and afferent current. The

illustrated response sequence could be observed across all conditions:

1. Afferent input drives the response via ξaff and moves the column away from its resting

state (u = 0, v = 0), which first activates the passive leak current, ξleak.

2. After a certain delay relative to stimulus onset, the excitatory population’s firing thresh-

old is crossed and the population begins to respond actively (g(u) > 0), leading to an

excitatory synaptic current, ξee, via the population’s recurrent ee-connection.

3. Activity of the excitatory population also causes the activation of the inhibitory popula-

tion (g(v) > 0) via the ie-connection, which in turn causes inhibitory synaptic current,

ξei, targeting the excitatory population via the ei-connection.

4. After stimulus offset, current flow steadily decreases and the column returns to its resting

state.

While this basic response sequence was preserved across conditions, the relative contribution

of the individual current components to the net response varied. This in turn affected the

response measures τSOI and µ. The underlying mechanisms will be explored in the following

sections.
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Effect of short-term synaptic depression on the afferent current

Recovery from STSD at the afferent connection, i.e. the connection that relayed pre-synaptic

activity reflecting stimulus presentation, was governed by time constant τrec,aff . The effect

of τrec,aff on ξaff is illustrated in Figure 15, where time courses ξaff(t) for the first 4 s of a

stimulus block are shown for the three different τrec,aff -values. The four panels summarise

responses for two different SOI values and two different stimulus audio-frequencies, respec-

tively. Stimulus repetition led to depression at the afferent synapse which in turn suppressed

single-trial responses. Across all panels, the effect of τrec,aff on the level of this suppression

becomes apparent. The longer the time constant, the slower the recovery from STSD and

thus the more suppressed the single-trial response when the stimulus is repeated. Compare

for example Figures 15b and d, where SOI is equal to 1.750 s: for a τrec,aff of 0.500 s, single-

trial time courses of ξaff are close to identical across stimulus repetition, whereas for a τrec,aff

of 1.500 s, there is a clear decline in response. For the shorter SOI of 0.438 s (Figures 15a and

c), recovery from STSD is incomplete across all three τrec,aff -values and responses decrease

continuously across several stimulus repetitions but the decline is again most pronounced for

the longest τrec,aff . Across condition, single-trial response were always stabilised by stimulus

five.

Across stimulus audio-frequencies, peak response amplitudes were larger the smaller ∆F.

This reflects the audio-frequency-specific scaling we imposed on the presynaptic firing rate

(c.f. Table 4). Across the duration of each stimulus, a continuous decline in ξaff -amplitude

could be observed. This occurred across all conditions and reflected the decline in synaptic

efficacy brought on by STSD and governed by time constant τon,aff (see Equation (8)). Thus,

in summary:

• The afferent current ξaff exhibits SOI-specific RS. Single-trial responses decrease across

stimulus repetitions and stabilise after a few repetitions. The amplitude of the stabilised

response is smaller the shorter the SOI.

• For a given SOI, the amplitude of the stabilised ξaff response decreases with increasing

τrec,aff , i.e. RS is more pronounced the longer τrec,aff .

• ∆F affects response amplitudes, reflecting the audio-frequency-specific scaling imposed

on the presynaptic firing rate (c.f. Table 4)
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Figure 15: Afferent excitatory current ξaff induced at the excitatory population of the single-column
model when simulating the presentation of pure tone stimuli with a SOI of 0.438 s (left) or a SOI of
1.750 s (right) and an an audio-frequency characterised by ∆F = 0 oct (top) or ∆F = 2 oct (bottom).
Blue curves reflect simulation results for τrec,aff = 0.500 s, green curves results for τrec,aff = 1.000 s,
and pink curves for τrec,aff = 1.500 s. The afferent current exhibits RS, single-trial responses decrease
with stimulus repetition and the longer τrec,aff , the more pronounced the suppression. Additionally,
response amplitudes are affected by ∆F, reflecting the audio-frequency-specific scaling imposed on the
presynaptic firing rate (c.f. Table 4).
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Figure 16: Single-column model response behaviour – ratio ρpeak of currents ξaff and ξee at tpeak
(Equation (22)) as a function of ∆F for a short SOI (0.328 s, panel a) and a longer SOI (2.626 s, panel
b) and all three τrec,aff -values (faster, red markers; equal, orange markers; slower, yellow markers).
τrec,aff has a strong effect on ρpeak when SOI is short and ∆F is small.

Mechanisms behind variations in the lifetime of repetition suppression

A response peak in ξnet is observed at time tpeak because excitatory synaptic current, namely

the sum of ξaff and ξee, maximally exceeds the inhibitory current, ξleak + ξie, at this moment

(c.f. Figure 14). While this was the case across all τrec,aff -values, SOIs, and ∆F-values, the

relative contribution of the two excitatory synaptic currents to the net response varied as a

function of all these factors. To capture the variation, we defined the ratio

ρpeak =
ξaff(tpeak)

ξee(tpeak)
. (22)

In Figure 16, ρpeak is plotted as a function of ∆F for a short SOI (a) and a longer SOI (b) and

for all three τrec,aff -values. For both SOIs, ρpeak decreased with ∆F. This is easily explained

by the decrease in presynaptic firing rates, i.e. maximum values of ξaff , that goes along with

the increase in ∆F (c.f. Table 4).

For the shorter SOI, ρpeak showed a large dependence on τrec,aff , fanning out at smaller

∆F and converging at larger ∆F. In contrast, ρpeak-values converged across τrec,aff -values in

the longer SOI condition. This observation also applied to the other SOI-values. For SOIs ≥

2.626 s, values of ρpeak were very similar across τrec,aff -values, and differed by no more than

10%. For SOIs < 2.626 s and small ∆F, ρpeak-values differed significantly across τrec,aff -values,

remaining below 0.5 for the longer τrec,aff condition and approaching values of 1 for the shorter

condition. A ρpeak-value ≃ 1 means that afferent synaptic current ξaff made up about 50% of

the net excitatory synaptic current at tpeak when STSD recovery was faster at the the afferent

than at the recurrent connection. This relative contribution to the net excitatory synaptic

current decreased as a function of SOI and ∆F.

The observations described above can be related to the τSOI-distribution shown in Fig-
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ure 13a. The τSOI-values reflect the amalgamation of the τrec,aff - and τrec-value influencing

the time course of ξaff and ξee. The amalgamation is partially based on the relative contri-

bution of the respective current type to the net response peak. For ∆F = 4 oct, the relative

contribution of ξaff is small across all three τrec,aff -values (ρpeak < 0.300 for all investigated

SOIs) and thus τSOI is a close reflection of τrec irrespective of τrec,aff . With τrec set to 1.000 s

(c.f. Table 5), values of τSOI ranged from 0.882 s to 0.989 s.

At the other end of the ∆F-range, i.e. for ∆F = 0 oct, the relative contribution of ξaff
was larger and, additionally, varied as a function of τrec,aff . For the shorter-τrec,aff condition

and short SOIs, ξaff made up almost half of the net excitatory synaptic current at tpeak. The

resulting τSOI-value, being equal to 0.762 s, lies about halfway between τrec,aff (0.500 s) and

τrec (1.000 s). In contrast, for the longer-τrec,aff condition, the relative contribution of ξaff was

equal to just under 30% for short SOI values. The resulting τSOI-value, being equal to 1.284 s,

also lies about halfway between τrec,aff (1.500 s) and τrec (1.000 s). Here, we additionally need

to consider that, unless ρpeak is very small, recurrent excitation is limited in its ability to

compensate for the STSD affecting ξaff . For τrec,aff = 1.500 s, STSD is quite pronounced (c.f.

pink curves in Figure 15).

In summary, the τSOI distribution observed for the single-column model (c.f. Figure 13a)

can thus be explained as follows:

• Irrespective of τrec,aff , τSOI-values converge towards a value close to τrec with increasing

∆F because the relative contribution of ξee to the net response peak increases whereas

the relative contribution of ξaff declines.

• For small ∆F, the relative contribution of ξaff to the net response peak is more significant

and τSOI-values reflect an amalgamation of τrec,aff and τrec. Therefore, τSOI > τrec for

τrec,aff > τrec, τSOI ≃ τrec for τrec,aff = τrec, and τSOI < τrec for τrec,aff < τrec.

• In consequence, τSOI increases as a function of increasing ∆F when τrec,aff < τrec, stays

fairly stable when τrec,aff = τrec, and decreases when τrec,aff > τrec.

Mechanisms behind variations in response peak latency

As described in Section 1.2.1, Components of the single-column model’s response, and illus-

trated in Figure 14, the column’s excitatory population only starts to fire after a certain delay

relative to stimulus onset, when the firing threshold θ is crossed due to the induced afferent

current ξaff (c.f. Point 2 of the description of the column’s response sequence). The population

then starts to further excite itself via the recurrent ee-connection (ξee). Figure 17 illustrates

the firing onset latency, tfire, as a function of ∆F for a shorter SOI (0.328 s, panel a) and a

longer SOI (2.626 s, panel b), and all three τrec,aff options. For both SOIs, the firing onset

latency increases by at least 13 ms from ∆F = 0 oct to ∆F = 4 oct. This increase in tfire
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Figure 17: Single-column model response behaviour – firing onset latency tpeak of the excitatory
population as a function of ∆F. In panel a, SOI is short (0.328 s) and in panel b, it is longer (2.626 s).
An increase in ∆F delays firing onset.

as a function of ∆F was observed for all investigated conditions. The effect can be explained

by the aforementioned decrease in ξaff -amplitude that accompanies the increase in ∆F. The

smaller ξaff , and thus the resulting change in state variable u per increment of time, the longer

it takes for the population to reach its firing threshold.

Additionally, decreasing ξaff -amplitudes also affected the rising slope of ξee. The respective

gradient was always steeper the smaller ∆F was. Figure 18 illustrates this for τrec,aff = τrec.

An overlay of time courses of ξee is shown for the different ∆F-values and the three panels

reflect three different SOI-values. In the first 30 to 50 ms, the darker and lighter green curves

do not overlap and the magnitude of the respective gradient is always larger for smaller ∆F.

This difference further delays the latency of the ξee peak, and therefore the net response peak,

as a function of increasing ∆F. In summary, the delay in median peak latency as a function

of increasing ∆F observed for the single-column model (c.f. lower panel of Figure 13b) can

be explained as follows: The amplitude of ξaff decreases as a function of ∆F. This delays the

firing onset of the excitatory population and decreases the gradient of the rising slope of ξee,

which in turn delays tpeak.

As discussed in Section 1.2.1, Effect of short-term synaptic depression on the afferent

current, ξaff -amplitudes for a given ∆F were affected by both SOI and τrec,aff . For a shorter

τrec,aff , the effect of STSD on SOI-specific ξinp-amplitudes was comparatively mild (c.f. blue

curves in Figure 15). In consequence, firing onset latencies did not differ by more than 5 ms

across SOIs (e.g. compare red markers in Figure 17a vs. b). Peak latencies of the net response

ξnet were thus relatively stable across SOI-values and the magnitude of the latency shift µ

was close to zero for ∆F < 3 (c.f. black markers in the upper panel of Figure 13b). For large

∆F, we observed a mild delay in peak latency with increasing SOI. This can be explained by

the slightly larger contribution of the early-peaking ξaff to the net peak for shorter than for

longer SOIs (c.f. Figure 16, a vs. b).
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Figure 18: Time courses of synaptic current ξee in the single-column model (τrec-ratio = 1) for the
nine different stimulus audio-frequencies (∆F = 0 oct to ∆F = 4 oct, darkest to lightest green curve).
To compare the gradients of the condition-specific time courses, they were aligned relative to the
respective firing onset latency, i.e. t = 0 ms marks firing onset rather than stimulus onset. SOI-values
increase from left to right, in panel a, SOI = 0.328 s, in panel b, SOI = 0.656 s, and in panel c, SOI
= 1.313 s. For time points preceding the peak response, the magnitude of the gradient increases with
decreasing ∆F. Moreover, it increases with increasing SOI.

For a longer τrec,aff , the scenario was different. The effect of STSD on ξaff -amplitudes

was comparatively strong (c.f. pink curves in Figure 15) and, in consequence, firing onset

latencies and gradients of ξee where shorter/shallower the shorter the SOI. The difference in

tfire between shortest and longest SOI was about 10 ms. This difference, along with the SOI-

specific magnitude of the ensuing ξee-gradient, caused a delay in peak latency with decreasing

SOI and we thus observed negative µ-values, ranging from -13 ms to -32 ms (c.f. white markers

in upper panel of Figure 13).

The condition τrec,aff = τrec resulted in a milder delay in peak latency as a function of

decreasing SOI (µ-values range from -7 ms to -15 ms, c.f. grey markers in the upper panel of

Figure 13) due to a milder effect of STSD on ξaff -amplitudes (c.f. green curves in Figure 15).

In summary, the peak latency dependence on SOI we observed for the single-column model

can be explained as follows:

• When τrec,aff is longer, the effect of STSD on the afferent current is stronger and ampli-

tudes of ξaff increase with SOI across the investigated range. In consequence, as SOI is

increased, the firing onset latency decreases and the ensuing gradient of the rising slope

of ξee increases. This leads to a decrease in the peak latency of ξnet.

• When τrec,aff is shorter, the effect of STSD on the afferent current is milder. In conse-

quence, amplitudes of ξaff and therefore peak latencies of ξnet vary less across SOI.

On the following pages, we will present simulations results from the gerbil AC model and com-

pare the response behaviour of individual columns in core field A1 to the response behaviour

of the single column model. Recall that for τrec,aff = τrec, i.e. when all connections were
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parameter
setting σie = 4 σie = 5 σie = 7

qualitative description
of resulting FR functions broader intermediate sharper

Table 8: Lateral reach of effectively inhibitory ie-connections σie, and qualitative description of
resulting FR functions for columns in A1

characterised by the same STSD recovery time, we observed τSOI ≃ τrec in the single column

model. In the gerbil AC model, all connections targeting A1 columns were characterised by

a τrec of 1.000 s (c.f. Table 1). Does this mean that τSOI ≃ τrec for these columns? How does

embedding columns in a larger network affect their response behaviour? We aimed to answer

these questions with our analysis.

1.2.2 Response behaviour of the gerbil AC model

Spectral selectivity

The FR functions of the individual A1 columns in the gerbil AC model were always single

peaked, thus identifying a clear BF for each column. This BF increased with column index.

Due to the tonotopic connectivity pattern we defined in the weight matrices, A1 tuning was

a direct reflection of the MGv tuning we specified (c.f. Figure 6). Increasing σie, the lateral

reach of the effectively inhibitory ie-connections, from 4 to 5 to 7, lead to a sharpening of the

FR functions.

As an example of the results described above, Figure 19 summarises the FR functions of

A1 columns 7, 9 and 11. These have a BF of 2 kHz, 4 kHz, and 8 kHz, respectively. To

quantify the ‘sharpness’ of the FR functions, we computed the ratio of the peak response

amplitude two octaves below the BF and at the BF. This ratio decreased from about two

thirds for σie = 4 to one half for σie = 5 to one third for σie = 4. In contrast, peak response

amplitudes at the BF differed by no more than 1%.

Our results are in agreement with the previously reported observation that strength and

lateral reach of the effectively inhibitory ie-connections modulate spectral selectivity (May and

Tiitinen, 2013). Using σie = 4 results in broader and σie = 7 in sharper audio-frequency tuning,

whereas σie = 5 results in an intermediate case. We will interpret the results presented below

in this context of broader, intermediate, and sharper FR functions. Therefore, we will use

these descriptive terms to refer to the respective σie parameter setting. For easy referencing,

Table 8 summarises the correspondence between parameter value and descriptive term.
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Figure 19: Overview of FR functions for A1 columns 7 (a), 9 (b), and 11 (c) of the gerbil AC model
when σie, the lateral reach of the effectively inhibitory ie-connections, is equal to 4 (dark blue markers),
5 (light blue markers), and 7 (yellow markers). For each column, the respective BF is highlighted by
a thicker vertical grid-line. BF increases with column index and, due to the tonotopic connectivity
pattern defined in the weight matrices, A1-tuning directly reflects the tuning defined for MGv. The
increase in σie, the lateral reach of the effectively inhibitory ie-connections, from 4 to 5 to 7 sharpens
the FR function of each column.

Lifetime of repetition suppression and SOI-specific peak latency

In the gerbil AC model, τrec for all connections targeting the AC was equal to 1.000 s. Re-

call that, in the single-column model, we observed a mild decrease in τSOI as a function of

increasing ∆F when this time constant of recovery from STSD was equal across connections

but overall, τSOI was roughly equal to τrec. Thus, a similar result might be expected for the

gerbil AC model.

Figures 20a to c summarise lifetimes of RS observed for A1 columns when FR functions

were broader, intermediate, and sharper. Each bar chart reflects τSOI-values for individual

columns in A1 for two different stimulus audio-frequencies: 2 kHz (purple bars) and 8 kHz

(grey bars). These frequencies are the BFs of column 7 and 11, respectively. Each τSOI-

distribution is u-shaped and centred on the BF column, i.e. the distribution shifts as a function

of stimulus audio-frequency. The u-shaped distribution translates to a continuous increase in

τSOI as a function of ∆F. This increase is steeper the sharper the FR function. For example,

for a stimulus audio-frequency of 2kHz (the BF of column 7), τSOI-values for columns 7 (∆F

= 0 oct) and 10 (∆F = 1.5 oct) differ by 89 ms when the FR function is broader but by

201 ms when the FR function is sharper.

Figures 20d to f summarise SOI-dependent peak latency shift in terms of fitting parameter

µ. Each panel depicts results for one of the three different levels of FR function sharpness.

Just as for τSOI, distributions of µ-values are u-shaped and centred on the BF column. Thus,

latency shift also increases with ∆F. And just as for τSOI, the increase is steeper the sharper

the FR functions.
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broader FR functions intermediate FR functions sharper FR functions

Figure 20: Response behaviour in the primary auditory field (A1) of the gerbil AC model for two
different stimulus audio-frequencies and three levels of FR function sharpness (left: broader; middle:
intermediate; right: sharper FR functions). Response measures are shown for columns that, given
the stimulus audio-frequency, were responsive at all three sharpness levels. Results are plotted as a
function of intrafield column index k(i) (c.f. Equation (4)). In the first row (panels a to c), pale purple
bars reflect the columns’ τSOI-values for a stimulus audio-frequency of 2 kHz and grey bars reflect the
columns’ τSOI-values for a stimulus audio-frequency of 8 kHz. The secondary and tertiary x-axes
in matching colours indicate the ∆F-values for the A1 columns given the stimulus audio-frequency.
They also apply to the respective panels below. The larger the distance from a column’s BF, the
longer the respective τSOI-value and the sharper the FR function, the steeper the increase. In the
second and third row (d to i), the same colour code reflecting stimulus audio-frequency as in the first
row is used. Panels d to f reflect µ-values (circular markers) and panels g to i median peak latency
(diamond markers) as a function of intrafield column index. The larger the distance from a column’s
BF, the larger the peak latency shift across SOIs (µ-values are increasingly negative) and the longer
the median peak latency. The strength of this effect increases with FR function sharpness. Results for
column 7 are emphasised by using more saturated colours – some of the underlying data is reflected in
Figure 10 and we will compare the response behaviour of this column with our in-vivo observations.
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Figures 20g to i summarises median peak latencies, m(tpeak), across SOIs for the three

different levels of FR function sharpness. Again, the distribution is u-shaped and centred

on the BF column, meaning that m(tpeak) also increases with ∆F and again, the increase is

steeper the sharper the FR functions. In summary, the following observations can be made

in comparison to the single-column model:

1. Unlike in the single-column model, an equal STSD recovery time constant for all connec-

tions resulted in a pronounced increase in τSOI as a function of ∆F for the A1 columns

of the gerbil AC model.

2. For a given ∆F, response peaks in the gerbil AC model occurred at later times than in

the single-column model. For ∆F = 0 oct, for example, m(tpeak) in the single-column

model was equal to about 25 ms whereas for A1 columns in the gerbil AC model, it was

equal to 58 ms.

3. Latency shift µ was more pronounced in the gerbil AC model than in the single-column

model. The smallest shift for an A1 column in the gerbil AC model exceeded the largest

shift in the single-column model by 23 ms.

Response measures µ, m(tpeak), and τSOI were based on the net transmembrane current

associated with the excitatory population of A1 columns in the model. In the following

sections, we will explore these columns’ response behaviour in terms of the different subtypes

of transmembrane current that make up the net flow (c.f. Equations (10) to (13) as well as

Equations (18) and (19)). This was done in order to study which neuronal interactions across

the network are contributing to the variations in RS lifetime and peak latency.

Components of the gerbil AC model’s responses

Figure 21 breaks down a response of A1 column 7 into the excitatory and inhibitory com-

ponents that make up the net transmembrane current flow (panel a) and further divides

the excitatory synaptic current into subcomponents according to connection origin (panel b).

Taken together, Figures 21a and b illustrate the response sequence observed in A1 columns

for BF-stimulation across all investigated SOI-values:

1. Stimulus presentation leads to excitatory synaptic current via the thalamocortical con-

nection (ξMGv
ee , medium green dotted curve) and moves the excitatory population away

from its resting state. This first activates the passive leak current, ξleak (orange curve).

2. After a certain delay relative to the onset of current flow ξMGv
ee , the excitatory popula-

tion’s firing threshold is crossed and it begins to respond actively. This in turn leads to

an excitatory synaptic current, ξrecurrent
ee (light green dotted curve), via the population’s

recurrent ee-connection.
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Figure 21: Components of transmembrane current flow in A1 column 7 for SOI = 0.438 s, ∆F = 0 oct,
and intermediate FR functions. a: The orange curve reflects the leak current ξleak (Equation (10)), the
green curve reflects the excitatory synaptic current ξee delivered via ee-connections (Equation (11)),
and the red curve reflects the inhibitory synaptic current ξei delivered via ei-connections (Equa-
tion (12)). The afferent synaptic current ξaff induced via an afferent connection during stimulus
presentation (Equation (13)) is always zero beyond MGv (Equation (7)) and therefore not explicitly
depicted. A response peak in ξnet is observed at time tpeak = 89 ms because excitatory synaptic cur-
rent ξee maximally exceeds the inhibitory current (ξleak + ξei) at this moment. b: Decomposition of
excitatory synpatic current ξee into regions of connection origin. Current components were computed
using Equations 15 to 18 with area-specific column index vectors jarea. The medium green dotted curve
reflects ξMGv

ee , the excitatory synaptic current induced via intercolumnar connections originating in
thalamus (MGv). Excitatory synaptic current induced via intercolumnar connections originating in
the core area, ξcore

ee , is shown in dark green. The medium green curve illustrates ξbelt
ee , the excitatory

synaptic current resulting from intercolumnar connections originating in the belt area. Finally, ξp.belt
ee ,

excitatory synaptic current caused by intercolumnar connections originating in the parabelt area, is
mapped out in light green and ξrecurrent

ee , the intracolumnar excitatory synaptic current, in dotted light
green. Currents induced via the recurrent connection and connections originating in the belt are the
dominant components of the excitatory synaptic current.
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3. In parallel, other core columns become active and contribute input ξcore
ee (dark green

curve) via intercolumnar ee-connections.

4. Activity of the excitatory population and, to a lesser extent, neighbouring excita-

tory populations, also causes the activation of the inhibitory population via the ie-

connections. In turn, this causes inhibitory synaptic current, ξei, targeting the excitatory

population via the ei-connection (red curve).

5. With a certain delay relative to onset of activity in the core, first the belt and then

also the parabelt become active, leading to further excitatory synaptic current (medium

green and light green curve) via intercolumnar ee-connections. Alongside recurrent

excitation, ξrecurrent
ee , synaptic current ξbelt

ee reaching the target column due to activity in

the belt fields makes up a particularly large component of the net excitatory synaptic

current at the column. In contrast, while thalamocortical input drives the response, its

direct contribution to the net response peak is negligible.

6. After stimulus offset, current flow steadily decreases and the column returns to its resting

state.

With increasing ∆F, the sequence described above was slightly altered for longer SOIs.

The onset of synaptic current via core connections started to precede the onset of input

via the recurrent connection, because activation spreads laterally from the BF column (the

first to activate) to neighbouring columns. The observations that, (1) while thalamocortical

input drives the response, its contribution to the net response peak is very minor and that

(2) ξrecurrent
ee,i and ξbelt

ee,i are the dominant components of ξee,i, remained valid across SOI- and

∆F-values.

Effect of network activation pattern on the lifetime of repetition suppression

A response peak in ξnet is observed at time tpeak because excitatory synaptic current ξee maxi-

mally exceeds the inhibitory current, ξleak + ξei, at this moment, just like in the single column

model. Unlike in the single column, however, the amplitude of the response peak of a given

excitatory population i in the gerbil AC model does not only depend on presynaptic firing

rate and STSD-dependent synaptic efficacy at one afferent and one recurrent ee-connection.

Instead, the SOI-dependent response behaviour of multiple individual network nodes has a

decisive impact on the lifetime of RS in a given A1 column, as will be demonstrated in this

section.

While the number of excitatory connections targeting a given excitatory population is

constant (as defined in weight matrix Wee), the effect a connection has on the target population

depends on the activity level at that connection. This in turn depends on the firing rate g(t)
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Figure 22: Activation of connections that target A1 column 7 in the gerbil AC model. a: Number
of active connections when ∆F = 0 oct (black markers) and when ∆F = 2 oct. When stimulus
audio-frequency deviates from the BF of the column, i.e. when ∆F = 2 oct, the number of active
connections increases with SOI. b: Summed connection activity levels as a function of SOI for ∆F =
2 oct. Pink markers reflect summed activity for connections active across all SOIs (‘early-activating’),
blue markers for connections only active if SOI > 0.875 s (‘late-activating’) and yellow markers for
all connections. The late activation of additional connections decreases the rising slope of overall
connection activity.

of the presynaptic population and the synaptic efficacy q(t) for the given connection. We

defined the activity level at a given connection as

ai,j(t) = Wee(i, j) qj(t) g(uj(t)) , (23)

i.e. the product of connection weight, synaptic efficacy, and presynaptic firing rate. Note that

this reflects the amplitude of the excitatory synaptic current transmitted via this connection,

since (c.f. Equation (11))

− 1

τm

N∑
j=1

ai,j(t) = ξee,i(t) . (24)

Given that minimal levels of activity persisted in the entire network, we defined an active

connection as one where ai,j(tpeak) ≥ 0.008. The absolute number of active connections was,

of course, sensitive to the selected threshold value. However, a coarse investigation, using

threshold values as low as 0.001 and as high as 0.050, showed that the general response

behaviour described below remained stable.

Figure 22a shows, as a function of SOI, the number of active ee-connections targeting

column 7 in A1 when FR functions have intermediate sharpness and stimulus audio-frequency

is equal to 2 kHz (∆F = 0 oct, black markers) or 8 kHz (∆F = 2 oct, grey markers). The

number of active connections as a function of SOI is fairly stable for ∆F = 0 oct. It is equal
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∆F
broader FR function intermediate FR function sharper FR function
active connections active connections active connections

min max for SOI ≥ min max for SOI ≥ min max for SOI ≥
0 29 31 1.750 s 29 31 0.875 s 29 31 0.656 s
2 23 35 5.000 s 15 30 3.5 s 17 23 2.626 s

Table 9: Overview of the minimum (min) and maximum (max) number of active ee-connections
targeting A1 column 7 and SOI-values at which the stable maximum is reached.

to 29 for SOIs below 0.875 s and stabilises at 31 for SOIs ≥ 0.875 s. In contrast, the number

of active connections as a function of SOI for ∆F = 2 oct covers a much wider range. It starts

out at 15 for SOI = 0.328 s and stabilises at 30 for SOI ≥ 3.500 s. We observed similar trends

for both sharper and broader FR functions. The results are summarised in Table 9. In each

case, the number of active connections as a function of SOI spans a wider range for ∆F =

2 oct and saturates earlier for ∆F = 0 oct.

Figure 22b illustrates how the SOI-dependent increase in the number of active connections

observed for ∆F = 2 oct affected activity levels at the connections targeting A1 column 7.

Summed connection activity levels are plotted as a function of SOI for connections that

activate at the shortest SOI, i.e. ‘early’ (pink markers), for connections that are only active

for SOI > 0.875 s, i.e. ‘late’ (blue markers), and for all connections (yellow markers). The late

activation of additional connections results in the rising slope of overall connection activity

being less steep than for the activity of the early activating connections. In contrast, for ∆F

= 0 oct, the vast majority of connections activates early and this modulation is negligible.

The effect described above generalised to all three levels of FR function sharpness. As SOI

was increased, levels of connection activity throughout the network increased because there

was more time for recovery from STSD between subsequent stimuli. This, in turn, led to a

more far-reaching spread of activation, i.e. an increasing total number of active connections.

Thus, while all active connections recovered from STSD with the same τrec, some connections

were only activated at longer SOIs. These connections were relevant for columns with a BF

further away from the stimulus audio-frequency. The additional synaptic current (recall that a

reflects amplitudes of synaptic current, c.f. Equation (24)) transmitted via the late-activating

connections prolonged recovery from RS.

Beside the sheer number of active connections, it was of course also the amplitude of

the excitatory synaptic current induced via these connections that shaped the RS recovery

dynamics of a given column i. A connection that is only active for longer SOIs but that

induces an additional current that is negligible in comparison to the total current ξee will

not prolong RS lifetime significantly. To verify how the observed differences in the number

of active connections affected the SOI-dependence of the evoked excitatory synaptic current,

we determined lifetimes of RS from the SOI-dependence of ξee(tpeak). Note that here, tpeak
still refers to the latency of the respective response peak observed for ξnet. Equation (1) was
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Figure 23: SOI-specific interaction between excitatory and inhibitory synaptic current for A1 column
7, given ∆F = 2 oct and intermediate FR functions. a: SOI-dependence of the amplitude of excitatory
(green markers) and inhibitory (red markers) synaptic current as well as the sum of these two currents
(yellow markers) at time tpeak, along with respective fits of Equation (1). Amplitude values are
normalised with respect to the saturation amplitudes of the fitted curves. b: Percentage reduction
from amplitude ξee(tpeak) to the amplitude of the summed currents ξee(tpeak)+ξei(tpeak) as a function of
SOI. The reduction is equal to or exceeds 40% for SOIs ≤ 0.875 s and stabilises at about 25% for longer
SOIs. This SOI-specific reduction has a flattening effect on the SOI-dependence of ξee(tpeak)+ξei(tpeak)
compared to the SOI-dependence of ξee(tpeak).

fitted using the same procedure as for ξnet (c.f. Section 1.1.5, Quantification of repetition

suppression lifetime) and the resulting lifetimes are referred to as τSOI,ee. An example of such

a fit is shown in Figure 23a (grey curve), where normalised values of ξee(tpeak) are plotted as

a function of SOI (green markers). Overall, we found that, in line with the relatively stable

number of active connections, τSOI,ee-values for ∆F = 0 oct differed by no more than 5%

across levels of FR function sharpness. Comparing results for ∆F = 0 oct and ∆F = 2 oct,

τSOI,ee-values were longer for the latter condition and differed more for the intermediate and

sharper FR functions (23% and 24% difference, respectively) than for the broader FR function

(15% difference). We thus conclude that, for ∆F = 2 oct, the additional connections activated

at longer SOIs made a more significant contribution to ξee for the higher levels of FR function

sharpness.

Effect of inhibition on repetition suppression lifetime

The inhibitory synaptic current ξei was driven by excitatory populations via the lateral ie-

connections. In consequence, the differences in activation level of the excitatory populations

also affected the SOI-dependence of ξei(tpeak). We again determined corresponding RS life-

times, referred to as τSOI,ei. One example of the approach is shown in Figure 23a, where

normalised values of ξei(tpeak) (red markers) are plotted as a function of SOI and the grey

curve reflects Equation (1) fitted to the data. RS lifetimes for ξei(tpeak) were generally short,

with τSOI,ei < 0.530 s, but increased as a function of ∆F. The sharper the FR functions,
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the steeper the increase: comparing results for ∆F = 0 oct and ∆F = 2 oct given broader,

intermediate, or sharper FR functions, we found that τSOI,ei-values differed by 12%, 31%, or

36%, respectively.

Inhibitory synaptic current opposes the excitatory current and thus reduces the amplitude

of the response peak observed for the net current ξnet (recall the time courses of the current

components depicted in Figure 21a). As elaborated above, SOI-dependences of ξee(tpeak) and

ξei(tpeak) were not characterised by the same lifetime. In consequence, relative to ξee(tpeak), the

reduction in amplitude for the sum of currents ξee(tpeak) and ξei(tpeak) was not characterised

by a common scaling factor across SOIs. This is illustrated in Figure 23b, where

ree =

[
1−

ξee(tpeak) + ξei(tpeak)

ξee(tpeak)

]
× 100 , (25)

the percentage reduction from ξee(tpeak) to the summed currents ξee(tpeak) + ξei(tpeak), is

plotted as a function of SOI for A1 column 7, intermediate FR functions, and ∆F = 2 oct.

For SOIs ≤ 0.875 s, ree is equal to or exceeds 40% whereas for longer SOIs, it first decreases

and then stabilises at about 25%. Such an effect was observed for all conditions, but to

varying degrees. For BF stimulation, ree-values for shorter and longer SOIs differed by about

20 percentage points, irrespective of FR function sharpness. In contrast, for ∆F = 2 oct, ree-

values for shorter versus longer SOIs differed by 23, 24, and 35 percentage points for broader,

intermediate, and sharper FR functions, respectively.

The difference in ree-values across SOIs resulted in a flattening effect on the the rising

slope of the SOI-dependence of the sum of currents ξee(tpeak) and ξei(tpeak) compared to the

SOI-dependence of current ξee(tpeak) alone. This, in turn, caused RS lifetimes, τSOI,ee+ei, that

were longer than the lifetimes for the individual current components. The effect is visualised

in Figure 23a, where the normalised sum of the opposing synaptic currents ξee and ξei at time

tpeak is plotted as a function of SOI (yellow markers) for A1 column 7, given intermediate

FR functions and ∆F = 2 oct. The grey curve represents Equation (1) fitted to the data

and the associated RS lifetime is referred to as τSOI,ee+ei. Overall, we found that for BF

stimulation, τSOI,ee+ei-values were about 19% longer than τSOI,ee values, irrespective of FR

function sharpness. For ∆F = 2 oct and broader, intermediate, and sharper FR functions,

respectively, values of τSOI,ee+ei were about 20%, 28%, and 41% longer than the corresponding

τSOI,ee. Thus, lateral inhibition further steepened the increase in RS lifetime as a function of

∆F, in particular for sharper FR functions.

In combination, the network effects described above explain the τSOI distributions illus-

trated in Figures 20a to c. The distributions were characterised by an increase in RS lifetime

τSOI as a function of ∆F and a change in the steepness of this increase across levels of FR

function sharpness.
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Figure 24: a: Mean firing onset latency tfire (Equation (26)) of excitatory neural populations con-
nected to A1 column 7, plotted as a function of SOI-specific response peak amplitude for stimulation
at ∆F = 0 oct (black markers) and at ∆F = 2 oct (grey markers). Firing onset increases with distance
from the BF and the longer the SOI, the earlier the firing onset. b: Time courses of thalamocortical
synaptic current ξMGv

ee (Equation (18)) reaching A1 column 7 for different SOI-values (∆F = 0 oct).
The shorter the SOI, the smaller the current peak.

We found that

• The SOI-dependence of response measure ξnet, the net transmembrane current, is af-

fected by SOI-specific excitatory and inhibitory synaptic currents.

• The larger ∆F, the longer the SOI at which the increasing number of active excitatory

connections ultimately stabilises. This prolongs RS lifetime.

• The sharper the FR function, the stronger the effect of the ‘late’ activation of additional

connections on synaptic current flow. As a result, the longest RS lifetimes were observed

for ∆F = 2 oct and sharper FR functions.

Mechanisms behind variations in response peak latency

The previously described Figure 21b illustrates the response cascade that affected peak la-

tencies in the gerbil AC model. Stimulus presentation first activated the MGv, which then

relayed this activation to the core and, to a lesser extent, to the belt. Thus, columns in the

core reached the firing threshold first, followed by belt, and then by parabelt columns. A1

columns were targeted by connections originating in each of these areas and, in consequence,

the net response ξnet peaked at later times than in the single-column model, where there was

no comparable activation cascade.

We summarised the firing onset latencies of excitatory populations at the source of con-

nections targeting a given A1 column by a weighted arithmetic mean tfire. To account for

the differing contributions of individual connections to the net excitatory current, ξee, weights
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A1 column 7
FR functions broader intermediate sharper

∆F 0 oct 2 oct 0 oct 2 oct 0 oct 2 oct

range of tfire
across SOIs 64 ms 90 ms 40 ms 58 ms 51 ms 53 ms

range of A(SOI)
across SOIs 285 245 261 193 259 146

ratio of
ranges 0.225 0.367 0.153 0.301 0.197 0.363

difference
between ratios 0.142 0.148 0.166

Table 10: For A1 column 7, this table list ranges of mean firing onset latency tfire (Equation (26)) and
response peak amplitudes (A = |ξnet(tpeak)|) across SOIs for the three levels of FR function sharpness
and stimulation at ∆F = 0 oct and ∆F = 2 oct. The ratio between the two ranges increases with ∆F
and the steepest increase was observed for the sharper FR functions.

were equal to the activity level ai,j(tpeak) (c.f. Equation (23)) at the respective connection,

i.e., for a given SOI and target population i:

tfire =

N∑
j=1

ai,j(tpeak(i)) tfire(j)

N∑
j=1

ai,j(tpeak(i))

. (26)

Figure 24a shows values of tfire for A1 column 7 as a function of SOI-specific peak response

amplitude A(SOI). The mean firing onset latency tfire decreases as a function of A(SOI) and

increases with ∆F, an observation that generalised to all simulation conditions. This in turn

caused changes in the latency of the net response peak (recall that longer firing onset latencies

result in longer peak latencies).

The increase in tfire with decreasing SOI can be explained by the decreasing levels of tha-

lamocortical synaptic current ξMGv
ee reaching the cortical fields. This decrease occurs due to

STSD at the thalamocortical connections. As an example, Figure 24b illustrates the decrease

in ξMGv
ee reaching A1 column 7. Recall that thalamocortical synaptic current drives the re-

sponse of the A1 columns. The larger current ξMGv
ee , the sooner the targeted cortical columns

reach the firing threshold and the sooner the response cascade illustrated in Figure 21b is

initiated. This is comparable to the effect of the SOI-specific amplitudes ξaff on firing onset

latency in the single-column model. But while the range of tfire across SOIs covered less than

20 ms in the single-column model, network interactions in the gerbil AC model amplified this

range, with values of tfire spanning a range of 40 ms or more across SOIs.
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The peak latency shift µ can be related to the ratio between the range of tfire and the range

of A(SOI) across SOIs. For A1 column 7, Table 10 lists the respective ranges and resulting

ratios observed for the three levels of FR function sharpness and the two different stimulus-

audiofrequencies. We found that the ratio between ranges of tfire and A(SOI) increased with

∆F. Moreover, the steepness of the increase scaled with FR function sharpness. In conse-

quence, the difference in the µ-value from ∆F = 0 oct to ∆F = 2 oct was most pronounced

for sharper FR functions. This observation generalised to other A1 columns.

In summary, while the basic mechanisms giving rise to variations in peak latency gen-

eralised from single-column to gerbil AC model, network interactions delayed peak latencies

and modulated the magnitude of the peak latency shift.

Overview of gerbil AC model predictions

Our simulations resulted in the following predictions regarding RS response behaviour in

gerbil A1:

1. The lifetime of RS does not simply reflect the lifetime of STSD. Instead, RS is a network

effect resulting from the interplay of STSD dynamics and connectivity patterns.

2. RS lifetimes at a given measurement location are not constant across stimulus audio-

frequencies. The further the distance from the BF of the measurement location, the

longer the lifetime of RS and the sharper the FR function, the steeper the increase.

3. Peak response latencies are not stable across stimulus audio-frequencies. The further

the distance from the BF of the measurement location, the longer the peak latency and

the sharper the FR function, the steeper the increase.

4. Peak latency is not stable across SOIs. An increase in SOI moves the response peak to

an earlier time point. The sharper the FR function, the steeper the decrease in peak

latency as a function of SOI.

Next, we verified whether these predictions could be confirmed in vivo.

58



Project 2: Repetition suppression in vivo

To test the predictions of the gerbil AC model in vivo, a regular-SOI paradigm comprising

stimuli with two different audio frequencies was presented to nine anaesthetised gerbils while

carrying out intracranial recordings in A1. The resulting data was then analysed to quantify

RS response behaviour, in particular in terms of lifetimes. The sections below first introduce

how the electrophysiologcial measurements were carried out and describe the details of the

experimental paradigm. Next, the analysis pipeline developed to obtain robust results and

subject-specific statistical inferences on response measures is explained and finally, in-vivo

results are compared with model predictions.

2.1 Materials and pre-established methods

The experiments were carried out with healthy adult Mongolian gerbils (Meriones unguicu-

latus, n = 9, all male, age 3–6 months, body weight 70–90 g). All experiments satisfied the

ethical animal research standards defined by the German Law and were officially approved by

an ethics committee of the German state of Saxony-Anhalt (license 42502-2-1394LIN).

2.1.1 Surgical procedure and electrophysiological measurements

Surgical procedures and electrophysiological measurements were conducted akin to the ap-

proach described by Brunk et al. (2019), Deliano et al. (2020), and Deane et al. (2020).

A linear multichannel electrode (Neuronexus A1x32-50-413, nchan = 32 equidistant chan-

nels, channel distance ∆z = 50 µm) was implanted into the right A1 of the anaesthetised

animal (anaesthesia induced by intraperitoneal injection of 45% v/v ketamine (50 mg/ml,

Ratiopharm GmbH), 5% v/v xylazine (Rompun 2%, Bayer Vital GmbH), and 50% v/v of iso-

tonic sodium-chloride solution (154 mmol/l, B. Braun AG) with a dose of 0.004 ml/g body-

weight and maintained by the same ketamine/xylazine infusion at a rate of 15 mg/kg/h).

The level of anaesthesia was controlled by monitoring the hindlimb withdrawal reflex and the

breathing rate (every 10 to 25 min). The multichannel electrode was positioned perpendicular

to the cortical surface (Happel et al., 2010) and the implantation site was determined based

on vascular landmarks (Thomas et al., 1993; Ohl and Scheich, 1997b).

Measurements of depth profiles of local field potentials (LFPs) were performed in an

acoustically and electrically shielded recording chamber. Stimuli were delivered by a speaker

positioned 100 cm behind the animal (Tannoy arena satellite KI-8710-32). These sound

stimuli were generated and controlled via Matlab (Mathworks, R2006b) and then converted

into an analogue signal (sampling frequency 1 kHz, NI PCI-BNC2110, National Instruments).

This signal was routed through an attenuator (gPAH, Guger Technologies), and then amplified
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(Thomas Tech Amp75) before reaching the microphone. To calibrate the stimuli, a microphone

and conditioning amplifier (G.R.A.S. 26AM and B&K Nexus 2690-A, Bruel & Kjær, Germany)

were used. The recorded LFPs were amplified via an Omnetics connector (HST/32V-G2O

LN 5V, 20x gain, Plexon Inc.) into a PBX25 preamplifier (Plexon Inc.), pre-amplified 500-

fold and band-pass filtered (0.7-300 Hz). Next, the signals were digitized at 2 kHz with a

multichannel-recording system (Multichannel Acquisition Processor, Plexon Inc.).

2.1.2 Stimulation paradigms

For each animal, the experiment was divided into two phases: first an investigation of

the audio-frequency response at the measurement site, and then an investigation of audio-

frequency-specific RS recovery dynamics at that same site. All presented stimuli were pure

tones at an SPL of 65 dB.

Frequency response paradigm

During the frequency response (FR) paradigm, a series of 350 pseudo-randomised pure tones

was presented. Audio-frequencies of these stimuli ranged from 0.25 to 16 kHz in iso-octavial

steps and the duration of each stimulus was 200 ms, including a linear rise and fall time of

5 ms each. Inter-stimulus intervals were randomised but limited to the 600 ms to 800 ms

range and stimuli were repeated a total of 50 times for each audio-frequency. After the

implantation of the electrode, the described stimulus sequence was presented repeatedly to

monitor the stabilisation of the responses to the different tones (c.f. Deane et al., 2020). Across

all animals, stabilisation occurred within the first hour after implantation. Once the response

was stable, a final data set was recorded.

Next, the best frequency (BF) of the measurement site was identified. It was defined as the

stimulus audio-frequency evoking the largest root mean square (RMS) response amplitude in

the granular layer III/IV (time window from 15 ms to 64 ms after stimulus onset, response in

terms of current source densities computed during the recording, for details see Section 2.1.3

and Equation (27) therein). Response amplitudes for stimulation two octaves above and

below the BF were then compared and the audio-frequency eliciting the smaller response

was selected as the ‘non-BF’. The BF and non-BF determined online were used to investigate

audio-frequency-specific RS recovery dynamics in the second phase of the experiment. During

subsequent offline data analysis, we verified the suitability of the BF and non-BF selection.

Repetition suppression paradigm

To investigate audio-frequency-specific RS, sequences of identical pure-tone stimuli, hereafter

referred to as stimulus blocks, were presented at the BF and non-BF. Each tone had a duration

of 100 ms, including a linear rise- and fall-time of 5 ms. Within a stimulus block, the SOI was
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Figure 25: Illustration of analysis pipeline from measured local field potential (LFP) profile to
current source density (CSD, see Equation (27)) profile to rectified average of the current source
density profile (AVREC, see Equation (28))

constant. In total, we presented stimulus blocks with 10 different SOIs (values in seconds:

0.219, 0.328, 0.438, 0.656, 0.875, 1.313, 1.750, 2.626, 3.500, and 7.000) at both the BF and

non-BF. Their presentation order was randomised and, for a given stimulus audio-frequency,

each block was presented a total of 24 times. A silent interval of 14 s separated subsequent

blocks. In order to harmonise the number of stimulus repetitions per block across SOI values,

individual blocks had a duration of 7.2 s for SOIs < 2.626s and of 14.2 s for SOIs ≥ 2.626

s. The last second of the silent interval preceding a stimulus block was treated as a baseline

recording.

2.1.3 Measures of neuronal activity

The activity of neuronal populations leads to localised current flow of mostly positive ions

through the cell membranes. On a more macroscopic scale, and viewed from the extracellular

space, a lack of positive ions in the extracellular space leads to a negative charge (sinks)

whereas a release of positive ions into the extracellular space leads to a positive extracellu-

lar charge (sources). The local field potentials (LFPs) measured by an electrode implanted

perpendicular to the cortical layers are caused by these sinks and sources. They can be pre-

dominantly attributed to the activity of pyramidal neurons and their location and strength

can be deduced from the LFP depth profiles by computing the corresponding current source

density (CSD) profiles. The second spatial derivative of the LFP is an approximation of the

spatiotemporal CSD profile at the measurement location. We used this well-established rela-
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tionship (Mitzdorf, 1985) to compute CSD profiles from all our LFP data. At any time point

t of the measurement, the CSD profile can be approximated as follows:

−CSD(z) ≈ ∂2Φ(z)

∂z2
≈ Φ(z + n∆z)− 2Φ(z) + Φ(z − n∆z)

(n∆z)2
(27)

The spatial coordinate z reflects cortical depth (perpendicular to the cortical layers), Φ(z)

denotes the field potential at depth z, ∆z is the spatial sampling interval of the measurement

(i.e. the distance between neighbouring electrode channels) and n∆z specifies the differentia-

tion grid. In our experiments, ∆z was equal to 50 µm. We set n = 1 for CSD computation,

resulting in a total of 32 CSD traces across the cortical depth covered by the electrode. More-

over, any LFP profile Φ used for CSD computation was spatially smoothed using a weighted

Hamming window with a kernel size of 300 µm.

Given that our computational gerbil AC model did not include any resolution across cor-

tical depth, we summarised neuronal activity across all six cortical layers in a single measure.

The N = 32 traces of the CSD profiles were condensed into the average rectified current

source density (AVREC):

AVREC(t) =

∑N
i=1 |CSDi(t)|

N
(28)

where t is time, i denotes the trace index and |CSDi(t)| is the absolute value of the CSD for

trace i at time t. While this rectification makes sinks and sources indistinguishable and thus

causes a loss of information regarding transmembrane current flow direction, the approach

allows for the computation of an average CSD trace across the full depth of the AC without

sinks (current flow due to excitatory synaptic events) and sources (predominantly return

currents) cancelling each other out (note that a small residual current remains, see for example

Harding, 1992; Happel et al., 2010; Brunk et al., 2019). The AVREC is thus a good measure

of the temporal evolution of the overall activation of a cortical column (Givre et al., 1994;

Schroeder et al., 1998). All results presented here are based on AC response behaviour at the

AVREC level. Figure 25 illustrates our LFP−→CSD−→AVREC analysis pipeline.
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2.2 Preliminary assessment

2.2.1 Frequency response

For each animal, we segmented the LFP data recorded during the FR paradigm into responses

to individual stimuli (time window -200 ms to 600 ms relative to stimulus onset) and sorted

the segments according to the seven different stimulus audio-frequencies, resulting in 50 seg-

ments per frequency. For each audio-frequency separately, we then averaged across these 50

segments and spatially smoothed the resulting LFP profile. Next, we computed CSD pro-

files (Equation (27)) and baseline corrected each individual CSD trace with respect to the

mean across the 200-ms time window prior to stimulus onset. Subsequently, we computed the

AVREC of these baseline corrected CSD profiles (Equation (28)). For each stimulus audio-

frequency, we then determined the peak response amplitude within the first 100 ms after

stimulus onset from this AVREC trace and thus obtained animal-specific FR functions (peak

response amplitude as a function of stimulus audio-frequency).

Figure 26 shows these FR functions for the nine animals in our study. The blue marker

highlights the BF and the red marker the non-BF that were selected during the recording and

used for the RS paradigm (c.f. Section 2.1.2). For two of the animals (4 and 9), the FR function

is multipeaked and the peak response amplitude for the 16-kHz stimulus is larger than that

for the selected BF. We decided to omit these animals from further analysis and comparison

with the gerbil AC model because we could not confirm the selected BF and because the

model only produced single-peaked FR functions. Similarly, animal 2 was excluded because

the selected BF did not match the peak of the FR function (BF selected online: 4 kHz; peak

of AVREC-based offline FR function: 2 kHz).

The FR functions for the remaining six animals were single-peaked and the BF selected

during the recordings could be confirmed offline – it corresponded to the stimulus audio-

frequency at which the peak of the AVREC-based FR function was located. The BFs identified

within the investigated range (250 Hz to 16 kHz) were either at 1 kHz (animals 1, 3, and 5),

2 kHz (animals 7 and 8) or 4 kHz (animal 6). The BF peak response amplitude ranged from

0.88 mV/mm2 (animal 1) to 3.01 mV/mm2 (animal 2). The FR functions were not equally

broad – FR function width in terms of the ratio between non-BF and BF peak response

amplitude ranged from 0.375 (animal 8, sharpest FR function) to 0.715 (animal 5, broadest

FR function).
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Figure 26: Overview of animal-specific FR functions. Black markers: AVREC peak response am-
plitude as a function of stimulus audio-frequency computed from the data recorded during the FR
paradigm. The small grey markers map out associated 95-% confidence intervals. How these were
computed is described in the final paragraph of Section 2.3.2. Blue circles mark the BF and red
squares the non-BF selected during ongoing recordings. Panels highlighted in light grey identify the
three animals not considered for further analysis because FR functions were multipeaked and/or the
BF determined online did not correspond to the BF indicated by the offline FR function. Note that,
across animals, the upper limit of the y-axis varies.
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2.2.2 Repetition suppression stabilisation

To investigate how RS evolves across stimulus repetitions within stimulus blocks, we analysed

the recorded response behaviour as a function of stimulus index i, i.e. of the stimulus position

within a given stimulus block. For each animal separately, we first segmented the LFP data

recorded during the RS paradigm into responses to individual stimulus blocks (time window

-1 s to 18 s relative to the onset of the first stimulus in the block) and sorted the segments

according to SOI value and stimulus audio-frequency (BF vs. non-BF, 24 segments per SOI,

respectively – the sorting process is illustrated in Figures 30a and b). Each LFP trace within

a profile (see Figure 25 for a visual representation of LFP traces making up a profile) was

then separately baseline corrected with respect to the mean across the 1-s time window prior

to onset of the first stimulus. Next, separately for each combination of SOI and audio-

frequency, we averaged the LFP data across stimulus block repetitions. Using the approach

described in Section 2.1.3, corresponding CSD profiles were then deduced from the resulting

LFP profiles. Finally, we summarised the cortical activation reflected in each of the CSD

profiles by computing an AVREC trace (Equation (28)). Figure 27a shows an example of

such an AVREC trace (animal 8, SOI = 0.328 s, BF stimulation).

Next, we determined peak response amplitudes in time windows from 20 ms to 90 ms

relative to the onset of the individual stimuli for each of the AVREC traces. Figure 27b maps

out the stimulus-specific peak response amplitudes in panel a as a function of stimulus index

i. Across the first few stimuli, response amplitude diminishes as a function of stimulus index.

For subsequent stimuli, the amplitude reaches a plateau and only exhibits minor fluctuations

for the remainder of the stimulus block. Visual inspection of the corresponding AVREC

traces for all animals and SOIs, and for both BF and non-BF stimulation, suggested that the

diminished peak response amplitudes caused by RS stabilise at most 2 s after the onset of the

first stimulus within a block. In Figure 27b, the corresponding time window where responses

were deemed ‘stable’, is highlighted in pale green.

To objectively verify the time point, tstable, at which RS has stabilised across animals,

SOIs, and stimulus audio-frequency, and to quantify the level of stability, we performed corre-

lation tests (non-parametric Kendall rank correlation) for peak amplitude and stimulus index

and assessed the level of fluctuation across stimulus-index-specific peak response amplitudes.

Moreover, to assess the variance in the response across individual stimulus block presenta-

tions, we also computed AVREC traces from individual (non-averaged) LFP profiles (via

Equations 27 and 28).

Correlation between peak response amplitude and stimulus index

We observed the most pronounced negative correlations between peak response amplitude

and stimulus index for the stimulus block with the shortest SOI (0.219 s). For this block,
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Figure 27: Stabilisation of response as a function of stimulus index for animal 8, SOI = 0.328 s
and BF stimulation a: AVREC time course for 0.328-s SOI stimulus block, based on LFP profiles
averaged as illustrated in Figure 30b. Grey shading maps out onset and duration of the stimuli. b:
Stimulus-specific peak response amplitudes as a function of stimulus index i. Response amplitude
initially diminishes as a function of stimulus index and then reaches a plateau for t ≥ 2 s. The dotted
line reflects Astable, the mean peak amplitude for responses at t > 2 s. c: Standard deviation across
AVREC traces computed from individual, unaveraged LFP profiles. d: Standard deviation at response
peaks as a function of stimulus index i. As a function of time, σ exhibits pronounced fluctuations but
at response peaks, σ-values stabilise after a few stimulus repetitions.
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Kendalls’s tau for stimuli 1 to 5 was negative, with absolute values ≥ 0.6, across all animals

and both stimulus audio-frequencies. Moreover, in 9 out of the 12 cases (six animals × two

stimulus audio-frequencies), the correlation was negative and significant (Kendall’s tau nega-

tive, absolute value ≥ 0.44, p-value ≤ 0.03) up to stimulus index 9, i.e. across all responses

occurring within the first 2 s of the stimulus block. However, using a sliding window encom-

passing nine responses, we found that these correlations between stimulus index and peak

response amplitude quickly turned insignificant beyond the 2-s mark – on average, when the

upper bound of the window reached the 12th response (i.e. when the window extended from

about 0.7 s to 2.5 s) and, at the very latest, when the upper bound of the window reached the

16th response (i.e. when the window extended from about 1.5 s to 3.3 s). Across SOIs, 97.5%

of the 120 separate cases (ten SOIs × six animals × two stimulus audio-frequencies), showed

no significant negative correlation between peak response amplitude and stimulus index for

the full set of responses occurring at t > 2 s. The very few cases with a significant correlation

were not clustered at a particular SOI, animal or stimulus audio-frequency.

Stability of peak response amplitude

To assess the level of fluctuation across peak response amplitudes, we computed Astable, the

mean peak amplitude for responses at t > 2 s (separately for each animal, SOI, and stimulus

audio-frequency). The dotted pale blue line in Figure 27b indicates Astable in animal 8 for

a SOI of 0.328 s and BF stimulation. Less than 3% of all peak amplitudes for responses

occurring at t > 2 s (across animals, SOIs, and audio-frequencies) deviated from the respective

Astable-value by more than a quarter (|Ai −Astable|/Astable ≤ 1/4). For the majority of these

cases, the deviation was still small compared to the RS-related change in amplitude, being

equal to less than a third of the difference between Astable and the non-suppressed A1, i.e.

the peak amplitude observed in response to the first stimulus within the respective block

(|Ai − Astable|/(A1 − Astable) < 1/3). Less than 1% of all cases exceeded both limits defined

above and these cases were not clustered at a particular SOI or animal.

To further investigate the distribution of the evoked responses, we also evaluated the

variance across individual stimulus blocks. For the same animal, SOI, and audio-frequency

as in the panels above, Figure 27c shows an example of the standard deviation σ observed

across AVREC traces computed from individual LFP profiles (i.e. computed without averaging

profiles across stimulus block repetitions, as done for the trace in panel a). As a function of

time, σ exhibits pronounced fluctuations. Relative to A1, values range from 4% up to 56%.

Across all animals and SOIs, and both audio-frequencies, the maximum range even extended

from 11% to 140% (non-BF stimulation and a 3.5-s SOI in Animal 6). Thus, the noise

distribution for the AVREC traces was clearly heteroscedastic. However, when focussing on

σ-values at times where peak responses occur in the respective AVREC traces computed from
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the average LFP profile (c.f. Figure 27a), a more stable picture emerged. Figure 27d shows

an example of σ-values plotted as a function of stimulus index istim. The dotted light blue

line indicates σstable, the mean standard deviation for peak responses occurring at t >2 s.

Relative to σstable, the underlying σi-values deviate by no more than 35%. Less than 5% of

all σi-values for responses occurring at t > 2 s (across animals, SOIs, and audio-frequencies)

deviated from the respective σstable-value by more than a quarter (|σi−σstable|/σstable ≤ 1/4).

Conclusions

In summary, our investigation showed that, in the context of the RS paradigm, peak response

amplitudes initially decline as a function of stimulus index but then stabilise at t > 2 s,

exhibiting only minor fluctuations (relative to the mean amplitude Astable and to the RS-

related change in amplitude A1 −Astable). Moreover, while the standard deviation associated

with the AVREC traces varies greatly across the duration of the stimulus block and the data is

thus not homoscedastic, the standard deviation associated with the peak response amplitudes

at t > 2 s exhibits a similar level of stability as the peak amplitudes themselves.

From a neuroscientific perspective, the responses recorded during the RS paradigm are,

strictly speaking, never independent as they reflect stimulus history. However, under the

premise that a state of stable RS has been established and is continuously maintained, the

observed peak response amplitudes can be viewed as independent and identically distributed

(i.i.d.). Thus, we applied tstable = 2 s and decoupled responses occurring at t > tstable from

their respective stimulus indices in our subsequent analysis of peak amplitude as a function

of SOI. Table 11 lists the specific number of responses for t > tstable at each SOI, along with

the SOI-specific total number of presented stimuli within a block. Note that these numbers

diverge because, when designing the paradigm, a compromise between competing demands

had to be found:

• Reducing measurement duration by reducing the number of stimuli in a given block

• Reducing noise levels by increasing the number of stimuli in a given block

• Equalising the number of stimuli across blocks
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SOI [s]
stimulus block
duration [s]

number of
stimuli

number of
responses

for t > tstable

number of
block repetitions

0.219 7.2 33 24 24
0.328 7.2 22 16 24
0.438 7.2 17 13 24
0.656 7.2 11 8 24
0.875 7.2 9 7 24
1.313 7.2 6 5 24
1.750 7.2 5 4 24
2.626 14.2 6 5 24
3.500 14.2 5 4 24
7.000 14.2 3 2 24

Table 11: Structure of stimulus blocks for the ten different SOI-values used for the RS paradigm,
along with the respective number of evoked responses occurring after tstable = 2 s. Time t is taken
relative to the onset of the first stimulus in each block.

2.3 A new analysis pipeline for subject-specific statistical in-

ferences

2.3.1 The standard approach to quantifying repetition-suppression lifetime

The first part of our analysis pipeline reflected the standard approach reported in RS studies

based on extracranially recorded data from the human AC (see, for example Zacharias et al.,

2012; McEvoy et al., 1997; Lu et al., 1992a). In these studies, one evoked response per SOI

(and, if applicable, per condition), was determined for each subject by averaging across multi-

ple trials. To determine evoked responses for the stabilised RS state in the gerbil AC, we first

segmented the recorded LFP profiles into single trials (time window, −40 ms to 159 ms relative

to stimulus onset), and baseline corrected each of the 32 individual LFP traces across cortical

depth z with respect to the individual mean across the 20-ms time window preceding stimulus

onset. Next, to reduce noise and thus reveal the evoked response, we computed the arithmetic

average across responses recorded at t > tstable (for each animal, SOI, and BF vs. non-BF

separately; t measured relative to the onset of the first stimulus within each block). Using

the steps outlined in Section 2.1.3, we then computed CSD profiles and subsequently AVREC

traces from these average LFP profiles. For one example animal, the resulting AVREC traces

for all SOIs are shown for BF and non-BF stimulation in Figures 28a and b, respectively.

The peak response amplitude increases with SOI. We determined amplitude and latency of

the AVREC response peaks within a time window from 20 ms to 90 ms. Figures 28c and d

map out the peak amplitudes from Figures 28a and b as a function of SOI for BF stimulation

(circles) and non-BF stimulation (diamonds).

To quantify the lifetime of RS, we fitted Equation (1) to the SOI-specific peak response

amplitudes. We decided to set parameter t0 to the stimulus duration (0.100 s), reflecting the

logic that once SOI equals stimulus duration and individual tones merge into a continuous
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Figure 28: (Previous page.) Procedure for determining RS lifetime τSOI using the example of a single
animal. Panels on the left reflect BF stimulation; those on the right non-BF stimulation. a, b: SOI-
dependence of evoked responses for animal 8. The individual waveforms represent evoked responses
in terms of the AVREC for SOIs between 0.219 s and 7 s. With increasing SOI, the peak amplitude
gradually increases and converges towards a saturation value at the largest SOIs. Stimulus onset is
at time t = 0 ms. c, d: Derivation of τSOI from the SOI-dependence of the peak amplitudes of the
data shown in a and b for BF (circular markers) and non-BF (diamond markers) stimulation. The
curves are fits of Equation (1). e, f: Generation of surrogate data using the bootstrap technique.
AVREC time courses for the 0.656-s SOI are displayed as an example. The blue curves represent the
original evoked response shown in a and b. The light grey waveforms represent the 999 bootstrap-
based evoked response for each stimulus audio-frequency, with the corresponding peak amplitudes
displayed as circular (e) and diamond (f) markers. Original peak amplitudes are highlighted in blue.
g, h: Fits of Equation (1) to the SOI-dependence of the peak amplitudes from the original (coloured
circles and diamonds, see c and d, respectively) and the resampled data (white circles and diamonds,
see e and f, respectively). The fits to the resampled data are shown as light grey curves. The dotted
curves depict Equation (1) computed with the median values of τSOI and Asat across all fits.

tone, no evoked response peak should be detectable beyond the first stimulus. To ensure

robust fitting results, our fitting algorithm consisted of a two-step process. First, we applied

a non-iterative regression method based on an appropriate integral equation (Jacquelin, 2009).

Next, the estimated parameter values obtained via this approach were used as the starting

points for a further optimisation of the fit via an iterative least squares approach (lsqnonlin

function, MATLAB R2021b). Ultimately, we thus obtained two τSOI-values per animal – one

for BF and one for non-BF stimulation. In Figures 28c and d, the corresponding fitting results

for the data displayed in a and b are shown as a black curve. For BF-stimulation, τSOI was

equal to 0.377 s, whereas for non-BF stimulation, it was equal to 0.283 s.

Given the limited sample size, both in terms of SOI-values and in terms of stimulus

repetitions per SOI, and the jitter of the data points around the fitted curve, questions

regarding the robustness of the fitting results arise. How much would the subject-specific

τSOI-values change if we were to repeat the experiment? Are RS recovery dynamics indeed

affected by stimulus audio-frequency or are we simply observing two possible outcomes based

on the same underlying distribution? To better answer these questions, we extended our

analysis pipeline.

2.3.2 A bootstrap-based expansion of the standard approach

Figure 29 shows a representative example of the large variability across the single-trial data

that forms the basis of the evoked response revealed via averaging. Panel a shows the 192

individual AVREC traces computed from the 192 single-trial LFP profiles recorded in animal

8 for the 0.656-s SOI and BF stimulation (24 block repetitions × 8 responses at t > tstable,

c.f. Table 11). Panel b shows the evoked response computed from the arithmetic average

across the 192 single-trial LFP profiles. This blue curve corresponds to the same-colour curve

in Figure 28a. The range of peak amplitudes reflected by the single-trial data is very large.

It exceeds the range of the peak amplitudes of the trial-averaged evoked responses observed
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Figure 29: Illustration of variability across single-trial data. a: 192 individual AVREC traces
computed from the 192 single-trial LFP profiles recorded in animal 8 for the 0.656-s SOI and BF stim-
ulation (24 block repetitions × 8 responses at t > tstable, c.f. Table 11). b: Evoked response computed
from the arithmetic average across the 192 single-trial LFP profiles. This blue curve corresponds to
the same-colour curve in Figure 28a.

across SOI-values (c.f. Figure 28).

In an ideal world, we would extend our sample size (in terms of SOIs and stimulus repeti-

tions) to increase the robustness of our estimates of RS lifetime and/or repeat our recordings

to establish confidence intervals for these estimates. In the real world, the non-parametric

bootstrap technique (Efron, 1979, for a review, see, for example Hesterberg, 2011) offers the

next best thing: available data is resampled to create surrogate data sets. The power of this

technique lies in its ability to yield statistical inferences – such as confidence intervals (CIs)

or medians – without postulating a normal distribution or homoscedasticity for the original

data. Therefore, bootstrap methods can be remarkably more accurate than other classical

approaches relying on these assumptions.

The non-parametric bootstrap technique can be applied in a meaningful way when the

set of observations, in our case the response peaks, can be assumed to originate from an

independent and identically distributed (i.i.d.) population. In Section 2.2.2, we have shown

that this is indeed a reasonable assumption for our data. From a neuroscientific perspective,

the response peak amplitudes observed for the regular-SOI paradigm are, strictly speaking,

never independent as they reflect stimulus history. However, we demonstrated that, after a

few stimulus repetitions, a stable state of RS is established and maintained, and the observed

peak response amplitudes can be viewed as i.i.d. Therefore, we applied the non-parametric

bootstrap technique: for each animal, SOI, and stimulus audio-frequency, we resampled the

corresponding 24 LFP profiles recorded during stimulus block presentation by randomly draw-

ing one of the profiles a total of 24 times. Selected profiles were available again in subsequent

draws, i.e. sampling occurred with replacement. For one SOI, this resampling is illustrated in

Figure 30c. We then proceeded with the analysis described in the previous section (2.3.1) for
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Figure 30: Illustration of resampling procedure applied to the LFP profiles recorded from gerbil
A1. a: To investigate RS, a sequence of stimulus blocks, characterised by 10 different SOIs and
two different stimulus audio-frequencies (BF and non-BF), was presented. In total, the sequence
comprised 24 blocks per SOI and audio-frequency. During stimulation, an intracortical electrode
recorded a continuous LFP profile. b: The continuous recording was segmented into responses to
individual stimulus blocks. These were then sorted according to SOI and stimulus audio-frequency,
resulting in 24 LFP profiles per condition. To assess response stabilisation across stimulus repetitions,
AVREC traces were computed (Equations 27 and 28) based on the average across the respective 24
LFP profiles (for an example of a corresponding result, see Figure 27a). c: To assess the robustness of
and confidence intervals for the evoked responses revealed via averaging, we first resampled the 24 LFP
profiles per condition by drawing a random profile a total of 24 times. Selected profiles were available
again in subsequent draws, i.e. sampling occurred with replacement. We repeated this procedure 999
times and computed an average LFP profile from each of the resampled sets. d: The resulting 1000
profiles (original plus resampled) were then each segmented into responses to individual stimuli and
stabilised responses (t ≥ tstable, c.f. Section 2.2.2) were averaged to reveal LFP profiles reflecting
the response evoked by the stimulus. Finally, 1000 AVREC traces were computed from these 1000
profiles. The plot on the right illustrates the obtained results for BF stimulation and a 0.656-s SOI
in animal 8, as shown in Figure 28e.
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this newly created data set: segmentation into single trials −→ baseline correction −→ arith-

metic averaging across LFP profiles recorded at t > tstable −→ computation of AVREC −→

determination of response peak amplitude and latency. For each animal, SOI, and stimulus

audio-frequency, we created 999 additional data sets via resampling, thus obtaining a total

of 1000 AVREC traces reflecting evoked responses (1 original + 999 resampled) as well as

the 1000 associated peak response amplitude and peak latency values (see Figure 30d for a

visualisation).

Figures 28e and f show examples of the results obtained via this approach for the 0.656-s

SOI with BF and non-BF stimulation, respectively. The blue curves represent the original

AVREC traces, as shown in a and b. The grey curves represent additional evoked responses

deduced from the resampled data sets. The respective response peaks are labelled with circular

(BF stimulation) and diamond-shaped (non-BF stimulation) markers. The response peaks

associated with the original data, as shown in b and c, are highlighted in blue. The grey

band mapped out by the bootstrapped AVREC traces illustrates the variability across the

single-trial responses that form the basis of the original evoked response, i.e. the spread of

the sampling distribution is reflected by the spread of the bootstrap distribution. Similarly,

the vertical scatter of the corresponding response peak amplitudes serves as an estimate of

the confidence intervals (CIs, for example the 95-% CI) associated with the original peak

amplitude.

In the final step of our analysis, we used these peak amplitudes to determine CIs for τSOI

and Asat. First, we created sets of data containing one peak response amplitude per SOI, i.e.

10 data points per set. The selection of the peak amplitudes from the pool of surrogate data

occurred randomly and without replacement and we used up all data points, i.e. given the

1000 peak amplitudes × 10 SOIs = 10,000 data points, we produced 1000 subsets with 10

data points each. Next, we fitted Equation (1) to each of these subsets. For the same example

animal as in the panels above, Figures 28g (BF stimulation) and h (non-BF stimulation) show

the final results obtained via this approach. The original peak amplitudes, along with the fit

of Equation (1) to these amplitudes, are reflected by coloured markers and a black curve, just

as in panels c and d. The vertical distribution of circular/diamond-shaped markers at each

SOI maps out the peak response amplitudes deduced from the bootstrapped evoked responses

(see Figures 28e and f) and the grey curves reflect the fits of Equation (1) to the described

subsets of this data. The grey band mapped out by these curves demarcates ranges for the

associated fitting parameter values. These ranges are a result of the variability across the

original single-trial data and thus provide CIs for the τSOI- and Asat- values associated with

the original AVREC traces depicted in panels a and b.

We determined median values m(τSOI) and m(Asat) from the respective distributions for

each animal and stimulus audio-frequency. These medians, along with the fixed intercept

t0 = 100 ms, were used in Equation (1) to compute the final RS recovery function. The
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dotted curve in Figures 28g and h reflects the corresponding final result for animal 8. For

BF stimulation, m(τSOI) was equal to 0.377 s and for non-BF stimulation, it was equal to

0.286 s. In agreement with the FR functions (Figure 26), the saturation amplitude was larger

for BF than for non-BF stimulation, with m(Asat) = 3.122 mV/mm2 and 1.095 mV/mm2,

respectively. This trend generalised to all animals.

Across all animals and conditions, original values and bootstrap-based medians were in

good agreement, differing by less than 5% for τSOI and by less than 2% for Asat. We were thus

able to confirm the robustness of our original estimates despite the aforementioned limitations

regarding sample sizes (see final paragraph of Section 2.3.1). A repetition of the resampling

process also confirmed that the number of surrogate data sets was sufficient for the stabilisa-

tion of median values and confidence intervals, with respective median values differing by less

than 1% and ranges of respective 95-% CIs by, at most, 8%.

We also used the bootstrapping technique to compute the CIs for the FR functions shown

in Figure 26. For each stimulus audio-frequency, we resampled the available 50 single-trial

responses to create surrogate data sets. Each surrogate data set contained 50 random samples,

drawn with replacement, and we produced a total of 100 such data sets per stimulus audio-

frequency. Each of the grey markers in Figure 26 reflects the peak amplitude of the AVREC

trace computed from the average LFP profile across one of these surrogate data sets. The

approach confirmed that, in the selected animals, there was a robust difference between the

peak response amplitudes for BF and non-BF stimulation.

2.3.3 SOI-specific peak latencies

For both BF and non-BF stimulation, we observed a change in peak latency across SOIs.

More specifically, peak latency decreased with SOI, asymptotically approaching a minimum

value for the largest SOIs. Two examples of the shift in peak latency across SOIs can be seen

in Figures 28a and b. Just as in our simulations, the relationship between SOI-specific peak

latency and peak amplitude could be described by a linear function (Equation (21)), with

latency shift µ quantifying the direction and magnitude of the change in peak latency across

SOIs. Akin to the approach for RS lifetime, we used bootstrap-based peak amplitudes and

latencies to determine CIs for µ. Note that, while the vertical scatter of the 1000 grey circular

markers in Figures 28e and f represents CIs associated with the original peak amplitude

observed for animal 8, the mild horizontal scatter reflects CIs for the original peak latency of

the 0.656-s SOI.

For each animal and stimulus audio-frequency respectively, we created subsets of data

containing one peak response amplitude and one peak latency per SOI, i.e. 10 value pairs

per subset. The selection from the pool of surrogate data occurred randomly and without

replacement, meaning that all available values were used up after creating 1000 subsets.
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Figure 31: Peak latency as a function of SOI-specific peak amplitude for BF (a) and non-BF (b)
stimulation in animal 8. Coloured markers reflect the original values and the black line is the associated
linear regression. Error bars map out respective 95-% CIs across the resampled data. The fits to the
resampled data are shown as grey lines and map out a grey band reflecting the ranges of the fitting
parameters.

For better comparability of µ-values across animals, we normalised peak amplitudes with

respect to the peak amplitude of the 7-s SOI at BF stimulation. Next, we performed a linear

regression (Equation (21)) for each of these subsets. For the same example animal as in

Figure 28, Figure 31 shows a summary of the results obtained via this approach. The original

peak latencies are plotted as a function of the original peak amplitudes and the colour code

of the markers reflects the associated SOI-value. The linear regression for these data points

is reflected by a black curve. The error bars reflect respective 95-% CIs, deduced from the

bootstrapped evoked responses (c.f. Figures 28e and f). Linear regressions to bootstrap-based

subsets of data are reflected by grey lines. Just as for RS lifetime, the grey band mapped out

by these lines demarcates ranges for the associated fitting parameter values (Equation (21)).

These ranges are a result of the variability across the original single-trial data and provide

CIs for µ-values associated with the original AVREC traces.

We determined median values for µ and the x-intercept c from the respective distribu-

tions for each animal and stimulus audio-frequency. The dotted line in Figures 31a and b

reflects the final result for animal 8. For BF stimulation, m(µ) was −17 ms and for non-BF

stimulation, it was −136 s. Across all animals and conditions, original values and bootstrap-

based medians were in good agreement, differing by less than 1%. Just as for RS lifetime, we

were thus able to confirm the robustness of our original estimates despite the aforementioned

limitations regarding sample sizes (see final paragraph of Section 2.3.1). A repetition of the

resampling process also confirmed that the number of surrogate data sets was sufficient for the

stabilisation of median values and confidence intervals, with respective median values differing

by less than 1% and ranges of respective 95-% CIs differing by, at most, 5%.
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2.4 Final results and comparison with model predictions

In vivo, we presented stimuli at the BF and non-BF of the measurement location. This

corresponds to conditions ∆F = 0 oct and ∆F = 2 oct in the gerbil AC model. Given the

simulated stimulus audio-frequencies, 2 kHz and 8 kHz, these conditions were met for A1

columns 7 and 11 (c.f. Figure 19). Column 7 had a BF of 2 kHz and column 11 a BF of 8 kHz.

The BFs observed in vivo ranged from 1 kHz to 4 kHz, with a mean of 2 kHz, therefore, we

compared our in-vivo results to the response behaviour of A1 column 7. Figure 32 summarises

in-vivo (left) and in-silico (right) RS response behaviour for the six animals and across the

three different AC model parameter settings, respectively. The in-silico results presented in

this figure correspond to the highlighted values in Figure 20.

2.4.1 Repetition suppression lifetime

Figure 32a summarises median τSOI-values and associated 95-% CIs across animals and across

BF and non-BF stimulation. We found that RS lifetime in vivo was always shorter than 1 s.

Median τSOI-values ranged from 0.197 s (animal 6, non-BF stimulation) to 0.465 s (animal

3, BF stimulation). For two animals (1 and 5), RS lifetime was longer for non-BF than for

BF stimuli, with median values and 95-% CIs of τSOI above the line of equality, and for two

animals (6 and 8), RS lifetime was shorter for non-BF stimuli (median values and 95-% CIs

of τSOI below the line of equality). For the remaining two animals (3 and 7), RS lifetime was

not significantly affected by the audio-frequency of the stimuli, with median values close to

the line of equality and 95-% CIs extending on either side. Thus, in four out of six animals,

the lifetime of RS at a given measurement location changed with stimulus audio-frequency.

Time constants differed by up to 132 ms between the BF and non-BF condition (animal 1).

Compared to panel a, Figure 32b illustrates that, overall, RS lifetime was longer in silico

than in vivo. In terms of relative differences between the BF and non-BF condition, simula-

tions predicted an increase in RS lifetime from BF to non-BF stimulation, i.e. the scenario

observed for animals 1 and 5. Moreover, our simulations with the gerbil AC model predicted

that differences between BF and non-BF τSOI are more pronounced the sharper the FR func-

tion. We were not able to identify a similar correlation for the in-vivo data. Animals 1

and 5 had broader FR functions than animals 3 and 7 (c.f. Figure 26), yet exhibited larger

differences between BF and non-BF τSOI.

2.4.2 Peak latency shift

Figure 32c summarises µ-values across animals as well as across BF and non-BF stimulation.

For both stimulus audio-frequencies, median µ is negative across all six animals. Thus, peak

latency was always delayed with decreasing SOI. The result is relatively robust, with only one
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Figure 32: Comparison of in-vivo and previously introduced in-silico results. a: RS lifetimes in vivo.
Values of τSOI for non-BF stimulation are plotted against τSOI-values for BF stimulation. Diamond
markers reflect median values across the bootstrapped data and the capped grey error bars reflect the
respective 95-% CIs. The dotted grey diagonal line marks equality between the conditions. b: RS
lifetimes in silico (highlighted values from Figure 20a to c). Note that while the x- and y-axis in a
and b each extend over a 700-ms range, absolute values are larger in b than in a. c: Latency shift
in vivo. µ-values for non-BF stimulation are plotted as a function of µ-values for BF stimulation.
The x- and y-axis cover the same range of µ-values and are both inverted, with increasingly negative
values plotted in the right and upward direction, respectively. The circular markers reflect median
values across the bootstrapped data and the capped grey error bars indicate the respective 95-% CIs.
d: Latency shift in silico (highlighted values from Figure 20d to f). Note that the overall range of
µ-values was much larger in vivo than in silico, with axes in c covering a range of 200 ms whereas axes
in d only cover a range of 40 ms. e: Median peak latency across SOIs for non-BF stimulation, plotted
against values for BF stimulation. The square markers reflect median values across the bootstrapped
data and the capped grey error bars reflect the respective 95-% CIs. The dotted grey diagonal line
marks equality between the conditions. f: Peak latency in silico (highlighted values from Figure 20g
to i). Note that while the axes in e and f all extend over a 30-ms range, absolute values are larger in
f than in e.

of the 95-% CIs for µ reaching into the positive range, and only up to the 8 ms mark (animal

1, BF stimulation).

For BF stimulation, µ-values are limited to a relatively small range. Median µ values

extend from −8 ms (animal 3) to −17 ms (animal 8) and the grand median is −11 ms. For

non-BF stimulation, the picture is much more diverse. Median µ-values range from −9 ms

(animal 1) to −136 ms (animal 8). For five of the six animals (3, 5, 6, 7, and 8), the latency

shift is more pronounced for non-BF than for BF stimulation. The corresponding median

µ-values are above the line of equality and the respective 95-% CIs do not cross this line.

For animal 1, median µ-values are equal across conditions (-10 ms at both BF and non-BF

stimulation) and the 95-% CIs extend on either side of the line of equality.

As repeated in Figure 32d, simulations with the gerbil AC model predicted what the

in-vivo data showed (recall Section 1.2.2 and Figures 20d to f therein):

• Peak latency decreases with increasing SOI (reflected by negative µ-values)

• µ-values for BF stimulation do not change with FR function sharpness

• The magnitude of µ increases from BF to non-BF stimulation

Moreover, simulations predicted that differences between BF and non-BF µ-values are more

pronounced the sharper the FR function. This was coarsely confirmed in vivo. While there

was no statistically significant correlation between FR function sharpness and the difference

between BF and non-BF µ-value, the two animals with the sharpest FR functions (8 and 3)

exhibited much larger differences in median BF vs. non-BF µ-values than the two animals with

the broadest FR functions (1 and 5). The overall range of non-BF µ-values was much larger

in vivo than in silico but this was accompanied by a larger range of FR function sharpness.
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This is in agreement with the prediction that differences between BF and non-BF µ-values

are more pronounced the sharper the tuning.

2.4.3 Median peak latency

Overall, peak latencies were shorter in vivo than in silico. Figure 32e summarises median peak

latencies across SOIs and the associated 95-% CIs for all animals and both BF and non-BF

stimulation. For BF-stimulation, latency-values are limited to a relatively small range. They

extend from 32 ms (animal 3) to 36 ms (animals 7 and 8). For non-BF stimulation, the picture

is more diverse. Values range from 36 ms (animal 5) to 47 ms (animal 1). In all six animals,

the median peak latency is longer for non-BF than for BF stimulation. Values lie above the

line of equality (grey dots) and the respective 95-% CIs do not cross this line.

As repeated in Figure 32f, simulations with the gerbil AC model predicted the increase in

peak latency from BF to non-BF stimulation. Moreover, simulations predicted that the delay

is more pronounced the sharper the FR function. This could not be confirmed in vivo. While

the two animals with the sharpest FR functions (animals 8 and 3) exhibited larger differences

in BF vs. non-BF peak-latency-values than the animal with the widest FR function, the

biggest difference was observed for the animal with the second widest FR-function (animal

1).

2.4.4 Preliminary conclusions

As summarised in Figure 32, the main predictions made with the gerbil AC model were

confirmed in vivo:

• RS recovery dynamics at a given measurement location are not necessarily constant.

The lifetime of RS changed from BF to non-BF stimulation in four out of six animals.

• Peak latency is also not constant and varies across both SOIs and stimulus audio-

frequencies.

• Peak latency is longer for non-BF than for BF stimuli.

• A decrease in SOI leads to an increase in peak latency and this increase is steeper for

non-BF than for BF stimuli

Note however, that the sample size (6 animals) was rather small and should be increased

to further verify results at the group level. This could also shed additional light on the

predicted correlations between FR function sharpness and difference between BF and non-BF

response measures. Furthermore, the FR paradigm might need to be adapted. With the

current paradigm, the in-vivo FR functions only have a 1-oct resolution. Thus, FR function
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sharpness could be misrepresented, especially when the ‘true BF’ at the measurement location

lies halfway between two investigated audio-frequencies.

While group-level results need to be confirmed by extending the subject pool, we were

able to confirm the robustness of our results at the single-subject level via a newly developed,

bootstrap-based analysis pipeline. This pipeline can also be applied to regular-SOI paradigm

responses recorded from other species and/or via other methods. Furthermore, it can serve as

a tool to verify the robustness of group-level results. In the study summarised in Chapter 3,

we were able to showcase the benefits of our analysis pipeline by applying it to MEG data

recorded from the AC of 14 human subjects.

Peak latency, total duration of the evoked response, and RS recovery, were all slower in

silico than in vivo. To better match in-silico and in-vivo results, the gerbil AC model’s time

constants (c.f. Table 1) could be scaled down. Note, however, that optimising the model

to better match in-vivo results by manually adjusting model parameter settings is a tedious

process and does not allow for a systematic search of the most suitable values within the full

parameter space. Therefore, an automation of the parameter-value search is desirable. In

the project summarised in Chapter 4, we addressed this need and pioneered a computational

approach for the systematic optimisation of parameter values in a simplified AC model. This

optimisation pipeline has the potential to also be adapted for use with the gerbil AC model.

The prediction that RS lifetime is longer for non-BF than for BF stimulation was tested

with mixed success. This prediction emerged from a network where τrec, the time constant of

recovery from STSD, was identical across all connections targeting AC. In simulations with

the single-column model, we showed that mixing τrec-values can lead to a scenario where τSOI

decreases from BF to non-BF, as observed in vivo for animals 6 and 8. However, it remains

to be explored how introducing different τrec values across columns and/or fields would affect

the response behaviour of the gerbil AC network. As we have seen in Section 1.2.2, activation

patterns across the entire network affect the RS lifetime of individual columns. Therefore,

even for seemingly equivalent parameter settings across column, the response behaviour of

the single-column model does not necessarily predict the response behaviour of the gerbil AC

model. When τrec was constant across all connections, there was a decrease in RS lifetime

τSOI as a function of distance from the BF in the single-column model (c.f. Section 1.2.1)

but an increase in the gerbil AC model (c.f. Section 1.2.2). Further simulations with a range

of different model parameter settings are needed to investigate how a decrease in τSOI as a

function of distance from the BF might arise in the gerbil AC model. In the Discussion, we

will address which changes to and expansions of the gerbil AC model could be particularly

beneficial in the future, especially in the context of also tackling more complex stimulation

paradigms.

81





Part III: Refining strategies for repetition sup-

pression studies

Project 3: An analysis pipeline to verify the robust-

ness of lifetime estimates

The data set we used to determine RS lifetimes for BF and non-BF stimulation in gerbil A1

came from a small group of animals (n = 6) and the relationship between the RS lifetimes for

the two conditions was highly subject-specific. Our bootstrap-based analysis pipeline helped

to confirm the robustness of the subject-specific RS lifetime estimates. Here, we demonstrate

how an adapted and expanded version of our bootstrap-based analysis pipeline improved the

investigation of a potential group-level asymmetry in MEG-based RS lifetimes of the left and

right human AC.

Numerous hemispheric lateralisations in both structure and function have been observed

across the auditory system (for a review, see Ruthig and Schönwiesner, 2022; Ocklenburg and

Güntürkün, 2024). This raises the question of whether lifetimes of auditory sensory memory,

as reflected by RS lifetime τSOI, also differ across hemispheres. The literature reports that the

amplitude of the N1/N1m response is larger in the hemisphere contralateral to the stimulated

ear when stimulation is monaural (see, for example, Hine and Debener, 2007; McEvoy et al.,

1997; Pantev et al., 1998; Reite et al., 1981; Ross et al., 2005; Salmelin et al., 1999; Woldorff

et al., 1999) but with binaural stimulation, no pronounced lateralisation was observed (Ross

et al., 2005). Results regarding the lateralisation of RS lifetime deduced from the N1m

response amplitudes are inconclusive.

For the small group size of four subjects but a large number of investigated SOIs (11)

ranging from 0.5 s to 16 s, Lu et al. (1992a) found similar RS lifetimes across hemispheres

when stimulating the respective contralateral ear. Rojas et al. (1999) also delivered stimuli

to the ear opposing the hemisphere where MEG recordings were obtained. They found no

difference in RS lifetimes across hemispheres but while their group size was larger (25), they

used only six SOIs ranging from 1 s to 6 s. Using five SOIs ranging from 0.6 s to 8 s and

stimulating the left ear of eight participants, McEvoy et al. (1997) found no statistically

significant difference in τSOI between left and right hemisphere. In contrast, Zacharias et al.

(2012) found that mean τSOI-values across 15 subjects were about 600 ms longer in the left

than in the right hemisphere when using a regular-SOI paradigm consisting of five SOIs
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ranging from 0.5 s to 10 s and left-ear stimulation. However, they did not investigate the

significance level of this difference. Finally, using binaural stimulation, Cheng and Lin (2012)

found no significant difference between RS lifetimes of the left and right AC in three groups

of 15 subjects each. They used five SOIs, ranging from 0.5 s to 8 s.

None of the studies introduced above investigated the robustness and confidence intervals

of the subject-specific RS lifetime estimates obtained for the left and right hemisphere. Thus,

while four out of five studies report that left and right AC are characterised by the same RS

lifetime, conclusively answering the question of whether a difference exists requires further

investigation. In the study presented below (Dar & Härtwich et al., 2025), we adapted the

bootstrap-based analysis pipeline introduced for the analysis of electrophysiological recordings

from gerbil AC to the analysis of MEG recordings from left and right human AC. This allowed

us to compute CIs for all subject- and hemisphere-specific response measures and to base our

investigation of hemispheric lateralisation of RS lifetimes at the group level on subject-specific

statistics.

3.1 Materials and Methods

The following sections first introduce the subject pool, the design of the regular-SOI paradigm

used to investigate RS in the human AC, and the data acquisition process. Next, pre-

processing steps and ERF computation are discussed and finally, the bootstrap-based analysis

pipeline applied to the data is described.

3.1.1 Subjects

Fourteen subjects, belonging mainly to the academic environment of the Leibniz Institute for

Neurobiology and the Otto von Guericke University Magdeburg, participated in the study. All

participants were healthy and presented with normal audiograms. The study was approved by

the Ethics Committee of the Otto von Guericke University Magdeburg and subjects provided

written consent to take part in MEG measurements.

3.1.2 Experimental paradigm

The regular-SOI paradigm used for the MEG measurements consisted of ten stimulus blocks,

characterised by respective SOIs of 0.25 s, 0.50 s, 0.75 s, 1.00 s, 1.50 s, 2.00 s, 3.00 s, 4.00 s,

5.00 s, and 7.00 s . Stimuli had a duration of 100 ms, with a linear rise and fall time of 5 ms,

respectively, and were presented at an audio-frequency of 1.5 kHz. To improve signal-to-noise

ratio but keep overall measurement duration at a level manageable for the subjects, blocks

with SOIs ≤ 0.750 s consisted of 120 stimuli whereas the remaining blocks consisted of 100

stimuli. Blocks were presented in a random order and the resulting full measurement session

took about 45 minutes.
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Stimuli were simultaneously delivered to both ears of the subject using a plastic tube

connected to an earmold. The commercial Presentation software package (Neurobehavioral

Systems Inc., Albany, CA) was used on a conventional PC to generate each tone. The onset

of each stimulus block was independently initiated by the subject and required pressing a

distinct button on a keypad. Breaks between subsequent blocks typically ranged from about

10 s to 30 s. The SPL of the tones was adjusted to 80 dB prior to the measurement, aiming

for equal subjective levels of loudness in both ears. Two subjects required a moderate down

regulation of the SPL delivered to the left ear to achieve such equality (75 dB SPL, subjects

i and n). Subjects were instructed to refrain from movement during the measurement and to

focus on a fixation cross displayed on a screen 1 m in front of them.

3.1.3 Data acquisition and pre-processing

A whole-head Elekta Neuromag TRIUX MEG system located in a magnetically shielded

chamber was used to record data at a sampling rate of 1 kHz. The chamber was ventilated

and contained a camera and loudspeakers to observe and communicate with the subject. An

online filter was used during data acquisition (low-frequency cut-off: DC or 0.1 Hz; high-

frequency cut-off of: 330 Hz) and the signal-space separation (SSS) method was applied to

the data. Simultaneous measurements of horizontal and vertical electrooculograms were taken

to identify eye movements and eye blinks.

For pre-processing, the raw data from all 102 magnetometers was loaded into the Brain-

storm software (Tadel et al., 2011) and single trials containing eye blinks were rejected. For

subjects with prominent regular heartbeat in the MEG signal, heartbeat artefacts were iden-

tified and corrected using the signal space projection (SSP) module included in Brainstorm.

Additionally, other artefacts caused by muscle tension or technical incidents were identified

via visual inspection. Subsequently, the continuous recordings from all channels were seg-

mented into epochs ranging from −500 ms to 1500 ms relative to stimulus onset and epochs

containing artefacts were discarded. Additionally, the non-adapted response to the first stim-

ulus in each block was removed (Rosburg et al., 2010). Finally, the remaining epochs (80%

to 90%, depending on SOI), were exported and band-pass filtered (high-pass 1 Hz, low-pass

30 Hz, both zero phase, Butterworth filter design of order 5) for further analysis within the

Julia language (Bezanson et al., 2017).

3.1.4 Computation of SOI-specific ERFs

For each SOI respectively, ERFs were determined by computing the arithmetic average across

artefact-free single trial epochs. Baseline correction was performed based on the 200-ms

interval preceding stimulus onset but to verify our findings, we also ran our full analysis

without baseline correction. ERFs with substantial amplitudes were only obtained for MEG
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channels located over the left and right AC. Therefore, we limited our analysis to these two

subsets of channels. For each subset, a principal channel was identified. This channel was

characterised by showing, in a time window from 50 ms to 150 ms, the largest absolute N1m-

peak amplitude across a majority of SOIs. For each subject, subsequent analysis steps were

performed on data recorded by the principal channel above the left and right AC, respectively.

As an example, Figures 33a and b show the SOI dependence of the principal-channel ERFs

observed for the left and right hemisphere of subject a.

The information content of N1m peak amplitudes was assessed by computing signal-to-

noise ratios (SNRs) for each subject, hemisphere, and SOI. SNR was defined as the ratio

between N1m-peak amplitude and the standard deviation of the signal in the 200 ms prior

to stimulus onset. We set the SNR-threshold to 1.5 after reviewing all ERFs and associated

SNR-values. ERFs with an SNR below 1.5 and no clear N1m peak were excluded from further

analysis. As a result, most ERFs for the 250-ms SOI were excluded and ultimately, we

removed all of them from further analysis to guarantee a fair comparison across hemispheres

and subjects. To keep the number of SOIs identical across hemispheres, we also excluded

data from both hemispheres from further analysis when one hemisphere did not meet the

SNR criterion for another SOI. Figures 33c and d map out the SOI-dependence of the N1m-

peak amplitudes in the left and right hemisphere of subject a.

3.1.5 Bootstrapping

To gauge the robustness of the obtained ERFs and N1m-peak amplitudes, we used the non-

parametric bootstrap technique to generate surrogate waveforms. Recall that the power of this

technique lies in its ability to yield statistical inferences – such as confidence intervals (CIs) or

medians – without postulating a normal distribution or homoscedasticity for the original data

(c.f. Section 2.3.2, A bootstrap-based expansion of the standard approach). Separately for

each subject, hemisphere, and SOI, single trials were drawn randomly and with replacement

from the respective pool of artefact-free trials. The number of drawn trials was equal to

the total number of trials in each pool and surrogate ERFs were computed by arithmetically

averaging the data across each newly created set of samples. This procedure was repeated 999

times, thus resulting in 1000 ERFs (original + bootstrapped) per SOI for each hemisphere in

each subject.

Figures 33e and f illustrate the approach described above for the 3-s SOI. Black curves

represent the original ERFs, as seen in Figures 33a and b, and the black and white markers

reflect the original N1m-peak amplitudes as seen in Figures 33c and d. Light grey curves in

Figures 33e and f reflect the 999 bootstrap-based ERFs, with respective N1m-peak amplitudes

marked in blue for the left and pink for the right hemisphere. The variability across the

single-trial responses underlying the original ERF is reflected by the grey band mapped out
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by the bootstrap-based ERFs. Thus, estimates of the CIs (e.g. the 95-% CI) associated with

the original N1m-peak amplitude could be deduced from the scatter of the bootstrap-based

amplitude values.

To determine CIs for RS lifetime estimates, we proceeded as follows: For each subject and

hemisphere, a data set reflecting the SOI-dependence of the N1m peak amplitude was created

by drawing one amplitude per SOI from the respective pool of 1000 N1m-peak amplitude

values, randomly and without replacement. This was repeated until the pools were depleted,

thus resulting in 1000 data sets. Equation (1) was fitted separately to each of these data sets,

thus resulting in 1000 exponential curves per subject and hemisphere.

For fitting, we used the method of least squares (LsqFit.jl, Julia). The fitting procedure

was two-tiered: First, an arbitrary starting value of τSOI = 0.10 s was used to fit Equation (1)

to the data sets for each subject and hemisphere. Next, the resulting τSOI-values were arith-

metically averaged. The resulting grand mean (τSOI = 1.30 s) was then used as the starting

value for a second round of fits. The starting value for Asat was always equal to the maxi-

mum peak amplitude in the respective data set. As in previous chapters, we again used t0 =

stimulus duration (100 ms), reflecting the logic that once SOI equals stimulus duration and

individual tones merge into a continuous tone, no evoked response peak should be detectable

beyond the first stimulus. To verify fitting results, we also recomputed all fits with t0 as a

third fitting parameter with a lower bound and starting value of 100 ms.

Figures 33g and h summarise the final results of our analysis for the left and right hemi-

sphere of subject a. Black and white markers, respectively, reflect the original peak amplitude

data and black curves represent the associated fits of Equation (1). At each SOI, the vertical

distribution of blue and pink markers reflects the N1m-peak amplitudes of the bootstrap-based

ERFs. Grey curves represent fits of Equation (1) to the described sets of these amplitude val-

ues. The bootstrap-based fits map out a grey band that reflects the range of fitting parameter

values resulting from the variability in the single-trial responses. Thus, CIs for the τSOI- and

Asat-values deduced from the original ERFs could be computed. The final response recovery

function for each subject and hemisphere was defined by the median values of τSOI and Asat

across the bootstrap-based fits.
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Figure 33: Procedure for determining RS lifetime τSOI using the example of a single subject. Panels
on the left refer to the left hemisphere; those on the right to the right hemisphere. a, b: SOI-
dependence of ERFs of this subject. The individual waveforms represent ERFs from SOIs between 0.5
s and 7 s, recorded by the subject- and hemisphere-specific principal MEG channel. With increasing
SOI, the N1m-peak amplitude gradually increases and converges towards a saturation value at the
largest SOIs. Since the magnetic field patterns of auditory ERFs have different polarities in the
two hemispheres, the ERFs in b were multiplied by −1 for an easier comparison between the two
hemispheres. Stimulus onset is at time t = 0 ms. c, d: Derivation of τSOI from the SOI-dependence
of the N1m-peak amplitudes of the data shown in a and b for the left (black markers) and the right
hemisphere (white markers). The curves are fits of Equation (1). e, f: Generation of surrogate ERFs
using the bootstrap technique. ERFs for the 3-s SOI from each hemisphere are displayed as an example.
The black curves represent the original ERF waveforms. The light grey waveforms represent the 999
bootstrap-based ERFs for each hemisphere, with the corresponding N1m-peak amplitudes displayed
as blue (e) and pink (f) circles. g, h: Fits of Equation (1) to the SOI-dependence of N1m-peak
amplitudes from the original (black and white circles, see c and d, respectively) and the resampled
data (blue and pink circles, see e and f, respectively). The fits to the resampled data are shown as
light grey curves. The blue (left hemisphere) and pink (right hemisphere) curves depict Equation (1)
computed with the median values of τSOI and Asat across all fits. Figure taken from and caption
adapted from Dar & Härtwich et al. (2025).

3.2 Results

3.2.1 Repetition suppression lifetime and saturation amplitude across hemi-

spheres and subjects

A comparison of median τSOI-values across hemispheres revealed longer RS lifetimes in the

left hemisphere for 12 out of 14 subjects. This is illustrated in Figure 34a, where RS lifetimes

for the left hemisphere are compared to RS lifetimes for the right hemisphere. The coloured

markers reflect median values and the grey error bars map out the 95-% CIs associated with

the respective medians. Medians of τSOI,LH covered a range from about 1.0 s to 3.0 s whereas

medians of τSOI,RH ranged from about 0.4 s to 2.0 s. 95-% CIs extended from about 0.8 s

to 4.9 s in the left and 0.2 s to 2.9 s in the right hemisphere. To quantify the relationship

between 95-% CIs and respective medians, we computed the ratio (q97.5(x) − q2.5(x))/m(x),

where x represents one subject- and hemisphere-specific distribution of τSOI-values, q(x) the

respective quantiles, and m(x) the median of the distribution. Overall, 95-%-CI ranges were

large compared to the associated median τSOI-values, with ratios ranging from 0.34 to 1.21

across subjects and hemispheres.

We confirmed the significance of the difference between m(τSOI,LH) and m(τSOI,RH) via a

non-parametric Wilcoxon signed rank test (estimated z = 2.73, p-value = 0.004). The effect

size r = z/
√
n = 0.73 classified as large (see, for example Fritz et al., 2012). Given the

substantial CIs for the τSOI-values, we verified the robustness of the finding τSOI,LH > τSOI,RH

by analysing the difference

∆τSOI = τSOI,LH − τSOI,RH . (29)
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Figure 34: Subject- and hemisphere-specific results for RS lifetime τSOI. a: Comparison of τSOI in
left and right hemisphere for all subjects of the cohort. Coloured symbols mark the median values
for each subject, the corresponding error bars oriented along each axis display the 95-% CIs. The
diagonal line marks equal lifetimes for the two hemispheres. A Wilcoxon signed rank test revealed a
hemispheric difference in τSOI with significantly larger values for the left hemisphere (p-value =0.004).
b: Overview of ∆τSOI-values across subjects. Coloured symbols (same colour code as in a) mark
median values for each subject. The thicker grey error bars map out the interquartile range, and the
thinner grey error bars the respective 95-% CIs. Median ∆τSOI exceeds zero in 12 out of 14 subjects.
Figure and caption adapted from Dar & Härtwich et al., 2025.

Separately for each subject, left and right hemisphere τSOI-values obtained via bootstrap-

ping were paired randomly and without replacement to compute values of ∆τSOI. The re-

sulting median values, interquartile ranges, and 95-% CIs of ∆τSOI are shown in Figure 34b.

In subjects where the median ∆τSOI-value, m(∆τSOI) was greater than zero (12 out of 14),

the lower quartile, q1(∆τSOI) also exceeded zero in the majority of cases (8 out of 12, H1 ‘if

m(∆τSOI) > 0, q1(∆τSOI) > 0’ confirmed, p = 0.021). Moreover, 78% of all ∆τSOI-values ex-

ceeded zero. These statistics confirm the robustness of our finding τSOI,LH > τSOI,RH beyond

the median values of ∆τSOI.

Across subjects, the grand median M(∆τSOI) was equal to 0.39 s. This corresponded to

29% of the grand median M(τSOI), which was equal to 1.34 s. The lower quartile of the

full distribution of ∆τSOI-values across subjects, Q1(∆τSOI), was also positive (0.16 s). The

effect size of the hemispheric difference was thus not only large in terms of data ranks. The

difference in terms of absolute values was considerable as well. As illustrated in Figure 34a,

the distributions of the bootstrap-based τSOI-values computed for each subject were broad.

We investigated the impact of outliers by removing data points more than 1.5 interquartile

ranges (IQRs) away from the lower or upper quartile of each distribution (i.e. data point xi

from distribution x was an outlier if xi did not lie within the range [q1(x)−1.5 IQR(x), q3(x)+

1.5 IQR(x)]). The resulting changes in grand median as well as test statistics for medians and

lower quartiles of ∆τSOI were negligible.
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Statistics two-parameter fit three-parameter fit

bc no bc bc w/o bc

p-value
∆τSOI ̸= 0

0.004 0.013 0.009 0.020

p-value
∆Asat ̸= 0

0.426 0.391 0.463 0.426

effect size r
∆τSOI ̸= 0

0.73 0.65 0.68 0.61

Table 12: Summary of p-values from the Wilcoxon signed rank test obtained for the difference
between τSOI,LH and τSOI,RH and the difference between Asat,LH and Asat,RH, along with effect sizes r
for ∆τSOI ̸= 0. Bold font highlights statistically significant results and the abbreviation ‘bc’ refers to
baseline correction. Values as shown in Table 1 of Dar & Härtwich et al. (2025).

In summary, we were thus able to demonstrate that ∆τSOI > 0 is a robust finding despite

the large CIs for τSOI,LH and τSOI,RH. In contrast, the subject-specific difference between

saturation amplitudes Asat for the left and right hemisphere (∆Asat = Asat,LH −Asat,RH) was

not significant (Wilcoxon signed rank test, p-value = 0.426, for a detailed treatise, see Section

3.2 of Dar & Härtwich et al., 2025). The hemispheric difference in RS lifetime was thus not

paired with a hemispheric difference in saturation amplitude. As described in Materials and

Methods, we repeated our analysis without baseline correction and with t0 as a third fitting

parameter to confirm our findings. Compared to the time scales observed for τSOI, deviations

of the resulting t0-values from the previously fixed value of 100 ms were small. The median

deviation across subjects and both the baseline and non-baseline corrected analysis condition

was equal to 37 ms for the left hemisphere and 155 ms for the right hemisphere.

For each of the four analysis conditions (with and without baseline correction and with a

two- or three-parameter fit, respectively), Table 12 summarises the p-values for the hypotheses

that (1) the difference between τSOI,LH and τSOI,RH is systematic (∆τSOI ̸= 0) and (2) the

difference between ALH and ARH is systematic (∆Asat ̸= 0). The hemispheric difference in

τSOI was significant and the hemispheric difference in Asat remained insignificant across all

four conditions. This confirms our findings and suggests that, within subjects, τSOI does not

systematically increase with Asat.

3.2.2 Relationship between adaptation lifetime and saturation amplitude

We explored the relationship between τSOI and Asat to determine whether these parameters

co-vary across hemispheres and/or subjects. In Figure 35a, median τSOI-values are plotted as

a function of the associated median Asat-values. To investigate the correlation between these

value pairs, we applied the non-parametric Kendall rank correlation test. It showed that

correlation coefficients were small and that correlations were far from significant (Kendall’s

tau-b = 0.14, p-value = 0.317). Correlations were also insignificant when separating the data
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Figure 35: Relationship between RS lifetime and saturation amplitude. a: RS lifetime τSOI as a
function of saturation amplitude Asat. Blue and pink markers indicate the subject-specific median
values for the left and right hemisphere, respectively. The error bars extend across the respective
95-% CI. There is no significant correlation between the median values for τSOI and Asat (p-value =
0.317). b: Difference between RS lifetimes, ∆τSOI, as a function of the difference between saturation
amplitudes, ∆Asat. The green markers map out subject-specific median values and the error bars
extend across the respective 95-% CI. The covariance of the median ∆τSOI- and ∆Asat-values is not
statistically significant (p = 0.062). Figure and caption adapted from Dar & Härtwich et al. (2025).

into hemispheres (left: Kendall’s tau-b = 0.10, p-value = 0.667; right: Kendall’s tau-b = 0.14,

p-value = 0.518).

To determine whether τSOI and Asat co-vary across hemispheres, we assessed the rela-

tionship between ∆τSOI and ∆Asat. In Figure 35b, median values of ∆τSOI are plotted as a

function of median values of ∆Asat, with error bars indicating the associated 95-% CIs. The

correlation between the two measures was not significant (Kendall’s tau-b = 0.38, p-value

= 0.062).

We also assessed the correlations listed above for the alternative analysis conditions pre-

viously introduced. These amounted to τSOI vs. Asat for both hemispheres combined and for

left and right hemisphere separately, as well as ∆τSOI vs. ∆Asat, i.e. four potential correla-

tions × two baseline correction options × two fitting parameter options. The vast majority of

correlations (14 out of 16) was insignificant (p-value > 0.05). Only the correlations between

τSOI and Asat in the right hemisphere, for a three-parameter fit without baseline correction,

and the correlation between ∆τSOI and ∆Asat, for a three-parameter fit with baseline correc-

tion, had associated p-values minimally below the significance level. In summary, we thus

confirmed that there is no covariation between τSOI and Asat, neither across hemispheres nor

across subjects.
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3.2.3 Summary and outlook

We used binaural stimulation and a regular-SOI paradigm to determine RS lifetimes τSOI

based on the N1m response of auditory ERFs. Our bootstrap-based analysis pipeline yielded

subject- and hemisphere-specific statistical inferences and, to our knowledge, this study is the

first robust demonstration of a hemispheric difference in the RS lifetime of the human AC.

In the main Discussion of this thesis, I will elaborate on what might cause this difference. If

it is functionally relevant, it might reflect hemispheric specialisation regarding the formation

of sensory memory traces across distinct time windows. Whether the asymmetry is reduced,

retained, or boosted when the auditory stimulation is task relevant and thus in the focus

of selective attention remains to be explored. Moreover, given the correlation between τSOI-

values and behaviourally measured lifetimes of sensory memory identified by Lu et al. (1992a),

it needs to be established whether RS in the left or right AC better predicts behaviourally

assessed lifetimes of auditory sensory memory.
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Project 4: An automated approach to improve audi-

tory cortex models

In Project 2, we have seen that the gerbil AC model was able to predict two major aspects of

the general response behaviour of neural populations in gerbil A1, namely the decrease in peak

latency as a function of SOI and the variation in RS lifetime as a function of stimulus audio-

frequency (see Section 2.4). In order to further increase the predictive power of an AC model,

not only validation but also further refinement of the model itself is required. Refinement can

occur on two levels – (1) by improving the settings of the available parameters, and (2) by

introducing new parameters, i.e. increasing model complexity. Here, we will focus on how to

improve existing model parameter values in the context of an RS paradigm. So how could

this be achieved?

Given the context of an RS paradigm, improvement refers to a better in-silico replication

of the in-vivo response behaviour of the AC observed for said paradigm. For the gerbil AC,

there was, for example, a mismatch between in-vivo and in-silico results for the absolute values

of τSOI. This could potentially be addressed by changing parameter settings in the gerbil AC

model. For the human AC, one very suitable and direct target is the detailed replication of

the characteristic time course of the auditory response measured extracranially. But which

model parameters should be adjusted and to what values?

Thus far, parameter settings in the May-et-al. modelling approach have been informed by

a-priori knowledge about the structure and function of the AC. This knowledge only provides

limited boundaries for the parameter values, which are ultimately selected on a trial-and-error

basis. Such a manual approach is of course very time consuming and does not allow for a

systematic search of the most suitable values within the full parameter space. Therefore, an

automation of the parameter-value search is desirable.

In the project summarised in the following sections, we addressed this need and pioneered

a computational approach to systematically optimise parameter values of an existing AC

model. Further details of this work are reported and discussed in our recent publication

(Tomana et al., 2023). The target of our optimisation were the weight values of the AC model

and the optimisation criterion was the model’s ability to match a set of in-vivo auditory

responses observed during an RS paradigm.

This chapter first introduces the AC model that we optimised (Section 4.1.1) and the

experimental data set we used as a reference (Section 4.1.2). Next, an overview of the op-

timisation algorithm is provided (Section 4.1.3) and, finally, the new predictions about RS

dynamics deduced from the optimised model are introduced (Section 4.2).
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4.1 Materials and Methods

4.1.1 Human AC model and simulation of ERFs

The starting point for the development of our optimisation approach was the well-established

human AC model developed by May et al. (2013; 2015; 2021). It can simulate extracranial

recordings of auditory responses and there is thus a direct in-vivo counterpart that the in-

silico signal can be compared to. The model is constructed out of the same building blocks

as introduced for the gerbil AC model (columns comprising populations of excitatory and

inhibitory neurons, c.f. Section 1.1.1) and the same dynamic equations govern the interactions

between these network nodes (Equations (2), (3a), (3b), and (3c)). As reviewed by Moerel

et al. (2014), the exact field pattern of the human AC remains elusive. Therefore, the closest

available approximation was referenced: the well-studied structure of the macaque AC. The

macaque AC consist of three core, eight belt, and two parabelt fields and their connection

pattern is summarised in Figure 36a (for a review, see Romanski and Averbeck, 2009; Kaas

and Hackett, 2000).

The AC connection pattern of the macaque maps out a set of parallel serial streams along

the core-belt-parabelt hierarchy. Weight matrices of the human AC model by May et al.

reflect this pattern. To reflect tonotopic organisation and produce audio-frequency-specific

responses, the model consists of 16 columns per field (the same approach was adopted for

the gerbil AC model, see Section 1.1.2 for a more detailed explanation). In the context of

our optimisation approach, we decided to match the complexity of the AC model to the

complexity of the employed RS paradigm, which only consisted of pure tones at a single

audio-frequency (see Section 4.1.2 for further details). Thus, we minimised the parameter

space that our optimisation algorithm had to address to one column per field. This also had

the added benefit of decreasing simulation run times.

The remaining weight values were equal to those reported by May et al. (2015) and the

resulting Wee weight matrix is illustrated in Figure 36b. On the main diagonal (light purple),

weight values were equal to 6 and all non-zero interfield-connections (green) had a weight of

0.5. Weights for Wie and Wei were non-zero on the leading diagonal, where values were equal

to 3.5. Additionally, ie-connections from the three core areas (RT, R, A1) to thalamus (MGv),

had a weight of 1. Wii had no non-zero entries. Other model parameter values, such as the

time constants, were also equal to those reported by May et al. (2015) and are summarised

in Table 13.

Unlike the gerbil AC model, the human AC model also generates simulations of extracra-

nial recordings of brain activity, namely data acquired via magnetoencephalography (MEG).

The magnetic field detected via MEG is predominantly generated by current flow in the

aligned apical dendrites of a large number of simultaneously activated pyramidal neurons in
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Figure 36: a: Schematic representation of the field structure and connectivity pattern of the macaque
AC. The core area comprises three fields, the primary auditory field (A1), the rostral field (R), and the
rostrotemporal field (RT), which receive parallel input from thalamus. The belt surrounds the core
and consists of eight fields, the anterolateral (AL), the middle lateral (ML), the caudolateral (CL),
the caudomedial (CM), the mediomedial (MM), the rostromedial (RM), the medial rostrotemporal
(RTM), and the lateral rostrotemporal (RTL) field. The belt is bounded by two parabelt fields – the
rostral parabelt (RPB) and the caudal parabelt (CPB). Arrows linking fields represent experimentally
observed connections between fields (black: higher connection density, blue: lower connection density).
Image file courtesy of Dr Aida Hajizadeh. b: Wee matrix as used in the initial version of the simplified
AC model; main diagonal (purple): wi,j = 6; inter-field connections (green): wi,j = 0.5.

the cortex (Hämäläinen et al., 1993). Therefore, the computation of in-silico MEG data is

based on a scaled summation of the simulated synaptic currents induced via ee-connections

(second term on the right-hand side of Equation (3a)):

R(t) =
∑
i,j

ki,j wi,j qj(t) g(uj(t)), (30)

where R(t) is the time course of the in-silico MEG signal and i and j are column indices

identifying the post- and presynaptic counterparts of each connection. The matching entries

of the connection weight matrix Wee are referenced by wi,j , the factor qj(t) refers to the

respective elements of the synaptic efficacy vector q(t), as defined in Equation (3c), and

g(uj(t)) is the presynaptic firing rate, as defined in Equation (2). For a given connection from

j to i, the product of these three factors reflects the excitatory synaptic current induced at

time t. The connection-specific factor ki,j scales the contribution of each synaptic current to

the net in-silico MEG signal. Indices i and j range from 1 to N , the number of columns in

the network, which was equal to 14 in our case.

As thalamic activation does not contribute to auditory ERFs, ki,j = 0 for all connections

targeting thalamus. Moreover, where wi,j = 0, i.e. for connections that do not exist, ki,j is

also set to zero. The magnitude of all non-zero k-values, i.e. for connections targeting the
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description symbol value

firing rate threshold θ 0.050

firing rate sensitivity κ 2/3

membrane time constant τm 0.030 s

time constant of synaptic depression onset τon
thalamus: 0.020 s
cortex: 0.100 s

time constant of recovery from synaptic depression τrec
thalamus: 0.100 s
cortex: 1.600 s

Table 13: Time constants and firing rate parameter values used in the simplified human AC model.

AC, was equal to 1. Their polarity was determined by connection type, specifically in terms

of directionality along the core-belt-parabelt hierarchy. The apical dendrites of pyramidal

neurons extend across several cortical layers and feedforward and feedback connections target

these dendrites at different cortical depths. Feedforward connections predominantly form in

the middle cortical layers, specifically layer IV. These are thus connections located close to the

soma and synaptic activity results in dendritic current flowing away from the soma, towards

the cortical surface. In contrast, feedback connections predominantly target the upper layers

I and II. These are thus connections located further away from the soma and synaptic activity

results in dendritic current flowing towards the soma, away from the cortical surface (see, for

example, Ahlfors et al., 2015; Douglas and Martin, 2004; Kohl et al., 2022; Schroeder and

Foxe, 2002).

To reflect these differences, ki,j was negative for feedforward connections and positive for

feedback connections as well as intrafield connections (where i = j). Figure 37b shows an

example of in-silico MEG signal time courses generated with the AC model described above.

They were obtained by simulating the RS paradigm outlined in the following section (4.1.2).

4.1.2 Experimental data and paradigm

The data used to define an optimisation criterion for the human AC model was recorded during

an auditory MEG study by Zacharias et al. (2012). It was approved by the Ethics Committee

of the Otto von Guericke University in Magdeburg, Germany, and written informed consent

was obtained from all participants. Subjects were exposed to passive listening paradigms to

record auditory event-related fields (ERFs).

In the context of our optimisation project, we focussed on a data set recorded from a single

subject who passively listened to five different stimulus blocks with SOIs of 0.5 s, 1.0 s, 2.5 s,

and 5.0 s, respectively. The pure tone stimuli were repeated 111 times per block at an SPL

of 80 dB. Each tone had an audio frequency of 1.5 kHz, a duration of 100 ms, and a linear
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Figure 37: In-silico and in-vivo waveforms observed in response to the RS paradigm described in
Section 4.1.2. a: MEG signals recorded from the left auditory cortex of a human subject. b: In-silico
MEG signals produced by the initial version of the simplified human AC model. c: In-silico MEG
signals produced by the optimised version of the simplified human AC model.

rise and fall time of 5 ms, respectively. For the MEG channel with the largest N1m signal

above the left hemisphere, Figure 37a shows the artefact-corrected trial-averaged time course

of the MEG signal for the five different SOIs. Repetition suppression, i.e. the characteristic

decline in N1m- (and also P1m-) amplitude as a function of decreasing SOI is clearly visible.

Moreover, N1m-peak latency increases with SOI and the rising slope towards the N1m peak

is very homogeneous across SOIs.

The in-silico MEG data simulated for the paradigm described above successfully replicates

the decrease in N1m-peak amplitude as a function of decreasing SOI. However, additional

aspects of the response behaviour differ. N1m-peak latency increases with decreasing SOI,

the P1m is hardly present, and the rising slope towards the N1m peak is SOI-specific. We

attempted to address these discrepancies by optimising the weight values in our AC model.

4.1.3 Optimisation algorithm

We employed an advanced optimisation method called evolutionary algorithm (EA) to opti-

mise weight values in our AC model. EAs explore the available parameter space in a manner

that reflects mechanisms known from genetics and evolutionary theory, such as reproduction,

mutation, recombination, and selection (Michalewicz, 1996). Due to their stochastic nature,

EAs are less prone to getting stuck in local minima, compared to deterministic approaches

like, for example, gradient based methods.
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Initial population

The first step of running an EA is the creation of an initial population, made up of a number

of specimens. In our case, specimens were versions of the Wee and Wie matrices of the human

AC model. We created an initial population of 100 specimens with specimens being diversified

by adding a random value from the uniform distribution U(−0.5, 0.5) to non-zero entries of

Wee and Wie. Each specimen was represented by two ‘chromosomes’, one comprising the

non-zero weight values of Wee and one those of Wie. The individual weight values represented

the ‘genes’ that make up the respective chromosomes.

Fitness function

Next, the specimens were evaluated by assessing how well they were adapted to the ‘environ-

ment’. Here, the environment posed the problem of perfect replication of the experimental

data introduced in Section 4.1.2. Hence, a specimen (versions of Wee and Wie in the hu-

man AC model) would achieve optimal adaptation to the environment if the simulation of

the experimental paradigm described in Section 4.1.2 were to yield in-silico MEG waveforms

that perfectly match the in-vivo data in the time window from −50 ms to 200 ms relative to

stimulus onset.

To quantify the quality of the ‘solution’ that each specimen x achieves and thus rank

them, a fitness function Φ(x) needs to be defined. We concatenated the in-vivo and in-silico

MEG signals (c.f. Figure 37) into the respective vectors,

MEGin-vivo =
[
MEGin-vivo

1 , . . . ,MEGin-vivo
S

]
(31)

and

MEGin-silico =
[
MEGin-silico

1 , . . . ,MEGin-silico
S

]
, (32)

with the subscript denoting the five different SOIs in ascending order (with S = 5), and

quantified their alignment for specimen x via the following dot product:

Φ(x) =

〈
MEGin-vivo, MEGin-silico(x)∥∥MEGin-silico(x)

∥∥
2

〉
∥∥MEGin-vivo∥∥

2

. (33)

Here, MEGin-silico(x) was ℓ2-normalised in order to focus on relative signal morphology rather

than absolute amplitudes of the in-silico MEG signal. Moreover, since the maximum of the

dot product in 33 is equal to

〈
MEGin-vivo,

MEGin-vivo∥∥MEGin-vivo∥∥
2

〉
=

∥∥MEGin-vivo∥∥
2
, (34)
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the division by the ℓ2-norm of MEGin-vivo constrains the fitness function Φ(x) to the interval

[0, 1].

Selection and reproduction

When running EAs, ‘parent’ pairs are selected from the available pool of specimen in order

to create ‘offspring’. This offspring possesses chromosomes that consists of a mixture of the

genes from the two parents. Additionally, random mutations can be introduced. We found the

ranking method (Arabas, 2001; Michalewicz, 1996; Rutkowska et al., 1997) to be a suitable

choice for parent selection during our optimisation. In this method, a specimen’s probability

of being selected for ‘reproduction’ depends on its rank, in terms of Φ(x), within the selection

pool. The higher the rank, the greater the probability to be selected as a parent.

To create offspring, the genes in the chromosomes of the two parents (i.e., in our case,

weight values for Wee and Wie) are recombined into new chromosomes. We used four types

of arithmetic crossover to govern this reshuffle, meaning that all resulting offspring had chro-

mosomes that were linear combinations of the respective parent chromosomes. Chromosomes

of the offspring also underwent random mutations in the form of insertion, deletion, and in-

version of genes (i.e. weight values). Since the chromosomes only contained weight values for

connections present in the macaque AC, the associated connectivity pattern could never be

contradicted by newly emerging additional connections. For full details on our approaches for

selection, reproduction, and mutation, please refer to Section 4 of our publication (Tomana

et al., 2023).

Succession and stopping criterion

After producing a pool of offspring, we merged it with the parent population and computed the

fitness function value for each specimen. The 100 specimens with the highest fitness function

values were then used as a new ‘generation’, a process called ‘succession’. Next, reproduction,

mutation, and succession were performed again, thus initiating a looped procedure. Possible

stopping criteria for such a procedure are (1) a predetermined number of iterations or (2) a

fitness function value threshold. We opted for a total of 1000 iterations.

4.1.4 Shortening runtimes via a SOI-specific reduction of stimulus repeti-

tions

Due to the large number of simulations performed during each of the 1000 iterations of a

single EA run, it was important to minimise the runtime of the individual simulations. One

important parameter that affected this runtime in the context of the RS paradigm was the

number of stimuli used in each SOI block, as each additional stimulus repetition prolonged the

simulation. Thus, ideally, responses should be identical from the second stimulus onward and
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only two stimuli per block would be required to obtain a waveform reflecting stabilised RS.

Note that the concept of RS stabilisation has been extensively explored in previous chapters,

c.f. Sections 1.1.5 and 2.2.2. The same terminology is used in this section. We assessed

the evolution of the in-silico response as a function of stimulus index istim in our initial AC

model to determine the number of stimuli required to obtain a waveform reflecting stabilised

RS. Response similarity S was quantified akin to the alignment between in-vivo and in-silico

MEG signals (c.f. Equation (33)), i.e. by computing normalised dot products between response

pairs, with each response R(istim) covering a time window from −50 ms to 200 ms relative to

stimulus onset:

S(istim, k) =

〈
R(istim),

R(istim+k)∥∥R(istim+k)
∥∥

2

〉
∥∥R(istim)

∥∥
2

, (35)

where k is an integer ranging from 1 to the number of stimuli presented in the stimulus block.

Additionally, we compared N1m-peak amplitudes. Across 20 stimulus repetitions, we observed

the following:

• For SOIs > 2.5 s, responses were fully stable from the second stimulus onward, as

reflected by identical N1m-peak amplitudes (less than 0.01% difference) and identical

waveform morphologies (S = 1.000 for istim ≥ 2).

• For the 2.5-s and 1-s SOI, N1m-peak amplitudes differed by no more than 0.05% from

the third stimulus onward and responses were extremely similar in terms of waveform

morphology (S > 0.999 for istim ≥ 3).

• For the 0.5-s SOI, N1m-peak amplitudes differed by no more than 5% from the fourth

stimulus onward and responses were very similar in terms of waveform morphology

(S > 0.997 for istim ≥ 4). Moreover, the N1m-peak of the average response across

stimuli 4 to 6 and the N1m-peak of the average response across stimuli 4 to 20 differed

by less than 1%.

Based on these results, we proceeded as follows: for the simulations performed during the

optimisation, stimulus blocks for the 10-s and 5-s SOI consisted of two stimuli, stimulus

blocks for the 2.5-s and 1-s SOI consisted of four stimuli, and the stimulus block for the 0.5-s

SOI consisted of six stimuli. Evoked responses for the stabilised RS state, as depicted in

Figure 37b, were reflected by the response to the second stimulus for SOIs > 2.5 s, by the

average response across stimuli 3 and 4 for the 2.5-s and 1-s SOI, and the average response

across stimuli 4 to 6 for the 0.5-s SOI. These waveforms were then concatenated in the

vector MEGin-silico (Equation (32)) to evaluate the EA’s fitness function (Equation (33)).

The approach is summarised in Table 14.

101



SOI [s]
number of

stimuli MEG[ ]
in-silico subscript [ ]

0.5 6 average response across stimuli 4 to 6 1

1 4 average response across stimuli 3 and 4 2

2.5 4 average response across stimuli 3 and 4 3

5 2 response to stimulus 2 4

10 2 response to stimulus 2 5

Table 14: SOI-specific reduced number of stimuli per block and computation of the stabilised response
to shorten the runtime of the simulations while properly capturing the RS phenomenon.

4.2 Results

EAs belong to the category of metaheuristics. Thus, running the full optimisation repeatedly,

with the same starting point, does not lead to the same result. In order to explore the

robustness of our results, we ran our full EA implementation a total of ten times.

To confirm the validity of the approach summarised in Table 14, we also assessed the

evolution of the in-silico response as a function of stimulus index istim (across 20 stimuli) for

the ten optimised AC models. As in the initial model, responses were always fully stable from

the second stimulus onward for the 5-s and 10-s SOI (S = 1.000, less than 0.01% difference in

N1m-peak amplitude for istim ≥ 2 ). For the 2.5-s and 1-s SOI, N1m-peak amplitudes differed

by no more than 3% from the third stimulus onward and responses were still extremely similar

in terms of waveform morphology (S > 0.999 for istim ≥ 3). For the 0.5-s SOI, there was one

outlier (run 9) where response amplitudes showed a pronounced oscillatory pattern. For the

remaining runs, N1m-peak amplitudes from the fourth stimulus onward differed by up to 15%

(run 6) but less than 7% for the majority of EA runs (seven out of ten). Responses were still

very similar in terms of waveform morphology (S > 0.995 for istim ≥ 4).

Thus, overall, our approach (summarised in Table 14) was an acceptable compromise

between the runtime and the number of stimuli per block. However, the observations listed

above also highlight the importance of the RS stabilisation analysis. As observed in the gerbil

AC model (Section 1.1.5), changes in model connectivity can alter the RS stabilisation process

and, therefore, too strong a reduction in the number of stimulus repetitions runs the risk of

improperly capturing the state of stabilised RS.

4.2.1 Auditory cortex model optimisation

For each of the ten runs of the EA, the fitness function values Φ(x) of the best and worst

specimen in a generation increased monotonically with the number of iterations. While no
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two optimisation results were identical in terms of Wee and Wie (and in terms of the resulting

waveforms), the algorithm always achieved a fitness function value ≥ 0.977 for the final best

specimen (median: 0.981, maximum: 0.983). This is a drastic improvement given that the

Φ-value for the initial model, i.e. for the waveforms depicted in Figure 37b, was equal to 0.870.

Figure 37c illustrates the in-silico MEG waveforms achieved with the optimised model

for the best of the ten EA runs, i.e. the run achieving the largest Φ-value. Even without

comparing the initial and final fitness function value, the pronounced improvements from b to

c can easily be identified. Unlike for the initial model, where a strong delay of peak latency is

observed with decreasing SOI, the in-silico waveforms produced by the optimised model show

a mild delay in peak latency with increasing SOI. This is a much closer replication of the

response behaviour observed experimentally. Likewise, the homogeneity of the rising slope

towards the N1m-peak and the appearance of the P1m have improved. Thus, we were able to

show that the response dynamics of the AC model can be modulated via the time-independent

weight values for ee- and ie-connections (just as it was the case for ie-connections in the gerbil

AC model, see Section 1.2).

Although optimised Wee and Wie were not identical across runs, we identified strong

commonalities. These can be viewed as predictions regarding human AC connectivity and

are discussed in detail in Sections 5 and 6 of our publication (Tomana et al., 2023). Here,

we will focus on the optimised model’s predictions regarding RS recovery dynamics along the

core-belt-parabelt hierarchy.

4.2.2 Predictions regarding area-specific repetition suppression lifetimes

Equation (30), i.e. the net in-silico MEG signal, can be decomposed into AC-area-specific

activity patterns. Columns located in the three areas have the following indices: icore =

{2, 3, 4}, ibelt = {5, ..., 12}, and iparabelt = {13, 14} (c.f. Figure 36b). Thus, the area-specific

components of the net in-silico MEG signal are:

Rcore(t) =

4∑
i=2

N∑
j=1

ki,j wi,j qj(t) g(uj(t)), (36a)

Rbelt(t) =

12∑
i=5

N∑
j=1

ki,j wi,j qj(t) g(uj(t)), (36b)

Rparabelt(t) =

14∑
i=13

N∑
j=1

ki,j wi,j qj(t) g(uj(t)). (36c)

For the best out of the 10 runs of our EA, panels on the l.h.s. of Figure 38 illustrate the

SOI-specific response behaviour of the full AC (Figure 38a, c.f. Equation (30)) as well as of

the individual areas, i.e. the core (Figure 38c, c.f. Equation (36a)), the belt (Figure 38e, c.f.
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τSOI [s]

area median Q1 Q3

AC 2.019 1.989 2.078
core 2.371 2.347 2.573
belt 1.857 1.723 1.913

parabelt 2.353 2.292 2.430

Table 15: Overview of median τSOI-values across the ten EA runs for the full AC as well as the
core, the belt, and the parabelt, along with lower and upper quartiles (Q1 and Q3) of the respective
distributions.

Equation (36b)) and the parabelt (Figure 38g, c.f. Equation (36c)).

Across all five SOIs, the largest contribution to the net ERF (orange curves) is made

by the eight belt fields (pink curves). Respective response amplitudes clearly exceed those

associated with the three core fields (purple curves). This observation held true for six out of

the ten EA runs. For the remaining four runs, contributions of core and belt to the net ERF

were roughly equal. The contribution of the two parabelt fields (green curves) to the net ERF

was always negative (note the inverted y-axis in Figure 38d) and of smaller amplitude than

those of both the core and the belt.

To compute net AC as well as area-specific RS lifetimes, we determined, for each SOI

respectively, the peak response amplitude within the time window from 50 ms to 150 ms

(relative to stimulus onset) for the corresponding in-silico signals, R, Rcore, Rbelt and Rparabelt.

Next, for each run separately, we fitted Equation (1) to the data to determine RS lifetime

τSOI, using t0 = 100 ms. Starting points for Asat were equal to the peak amplitude for the

respective 10-s SOI and the starting point for τSOI was set to 1.000 s. The circular markers

in the panels on the r.h.s. of Figure 38 map out N1m-peak amplitudes normalised relative to

the respective Asat-values as a function of SOI for all ten EA runs. The grey curves illustrate

the fits of Equation (1) to the respective data sets.

Statistics regarding the fitting parameter τSOI are summarised in Table 15. Median τSOI-

values for the core and parabelt exceed two seconds and are very similar (τSOI ≈ 2.4 s) ,

whereas the belt recovers more quickly (τSOI ≈ 1.9 s). This observation also holds true at

the level of the ten individual runs and at the level of the interquartile ranges (IQRs) of the

respective τSOI-distributions. The IQRs for core and parabelt have a large overlap but do not

intersect with the IQR of the belt. Thus, similar to the gerbil AC model, where RS lifetimes

of individual A1 columns do not simply increase with response amplitude, the area with the

largest response amplitudes is not equal to the area with the longest RS lifetime.

The collective response of the full AC exhibits an intermediate RS lifetime (τSOI ≈ 2.0 s).

This is in excellent alignment with the in-vivo MEG response, where the AC of the subject

was characterised by a τSOI-value of 2.006 s. In contrast, the initial model was characterised

by a lower τSOI-value of 1.387 s.
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Figure 38: SOI-specific in-silico MEG signals (left) and associated N1m-peak amplitudes (right) of
the full AC (a and b) as well as the core (c and d), the belt (e and f), and the parabelt area (g and h).
Waveforms depicted on the left were simulated with the optimised model that achieved the highest
fitness-function-value Φ across the ten EA runs (‘best run’). The circular markers on the right map out
normalised SOI-specific N1m-peak amplitudes for each of the ten runs, with amplitudes from the best
run highlighted in the same colours as the adjacent waveforms. The underlying grey curves depict fits
of Equation (1) to the data from each of the ten EA runs, with the fit for the best run highlighted in
darker grey. Overall, the belt area has the shortest RS lifetime, with fits exhibiting the steepest rising
slope. The τSOI-values listed in the panels on the right reflect the lifetime of RS deduced from the best
run (i.e. the waveforms shown in the respective adjacent panels). For statistics on RS lifetime across
the ten runs, see Table 15. For better comparability of the rising slope of Equation (1) across EA runs
and areas, the N1m-peak amplitudes shown here were normalised with respect to the corresponding
saturation amplitude Asat. Note that such scaling does not affect τSOI.

We verified the robustness of the insights deduced from our fits by rerunning the fitting

algorithm with t0 as a third fitting parameter (starting point: 100 ms) and found that they

were confirmed in that:

• The optimisation of the ee- and ie-connection weights prolongs RS lifetime, moving it

closer to the in-vivo value

• RS lifetime is shorter in the belt than in the core and parabelt

• Core and parabelt have similar RS lifetimes

4.2.3 Preliminary conclusions

In the traditional view, adapting ERFs are deemed to arise from spatially discrete sources

that are very localised. In contrast, our simulations predict that RS is a phenomenon that

occurs across the entire AC. In our model, the mechanism that gave rise to this RS was

STSD. Model parameter τrec, the time constant of recovery from STSD, was constant across

all cortical areas. Yet the response behaviour of the model was area-specific, with the belt

exhibiting a shorter RS lifetime than the core and parabelt. Time constant τSOI was thus not

a direct reflection of model parameter τrec. Moreover, we showed that AC connectivity can

affect RS recovery dynamics. While keeping the time constants of the model at fixed values,

changes in connection weights alone were sufficient to alter the RS lifetime of the net AC by

about 600 ms (from initial to optimised model). These results further support the prediction

deduced from our simulations with the gerbil AC model: RS is a network effect resulting from

the interplay of neural dynamics and connectivity patterns.

In addition to the insights gained from the response behaviour of the optimised model, the

optimisation pipeline itself is also a result. We have shown that an evolutionary algorithm

is an excellent tool to improve the parameter values of a computational AC model. The

optimisation pipeline has the potential to be adapted for use with the gerbil AC model. In

the Discussion (Part IV), we will elaborate on how this could be achieved.
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Part IV: Discussion

Over the past four chapters, I have described a plethora of analysis steps and results, obtained

in the context of four different projects. What ensues in this final part of the thesis is an

interdisciplinary discussion and consolidation of our results and hypotheses. The projects were

carried out at various levels of observation: in vivo vs. in silico, human vs. gerbil, extracranial

vs. intracortical measurements. However, there was one overarching theme: the exploration

of the phenomenon of RS in the AC and, more specifically, its lifetime.

Simulation results from the newly created computational model of the gerbil AC predict

that the lifetime of RS does not simply reflect recovery from short-term synaptic depres-

sion (STSD). Instead, RS is a result of the interplay between STSD dynamics and network

connectivity patterns. The same prediction also resulted from simulations with a simplified

computational model of the human AC. When network connection strengths were altered, the

lifetime of RS changed. Moreover, the gerbil AC model demonstrated that network interac-

tions cause variations in RS lifetime as a function of stimulus audio-frequency. Electrophysi-

ological recordings revealed audio-frequency-specific RS lifetimes in the AC of four out of six

gerbils. Moreover, the RS lifetimes deduced from the intracortical recordings were shorter

than lifetimes decduced from extracortical measurements of activity in the human AC.

In the first section of this discussion chapter, I review the challenges of RS lifetime quan-

tification and discuss how we addressed them. In the subsequent section, I discuss what RS

lifetime reflects. This is followed by a discussion of the role network-modulated RS might play

as a memory trace facilitating the process of temporal binding. As we observed differences

in RS lifetimes across species, I also discuss how these differences might arise and how they

might manifest at the behavioural level. Finally, I discuss how the gerbil AC model could be

refined and provide an outlook regarding future studies that could be carried out to further

investigate the role network-modulated RS might play in temporal binding.

Q1: How can the challenges of repetition suppression lifetime

quantification be addressed?

Paradigm selection

At the level of intracortical recordings, the literature predominantly assesses neural adaptation

along midbrain and cortical stations of the auditory pathway in the context of the oddball

paradigm (e.g. Ulanovsky et al., 2004; Pérez-González et al., 2005; Malmierca et al., 2009;
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Taaseh et al., 2011; Nieto-Diego and Malmierca, 2016). A sequence of stimuli, comprising two

different tones each occurring with a certain probability, is presented to the subjects and the

focus of the analysis lies on the average level of adaptation observed for each of the stimuli.

Across sequences, the effect of temporal and spectral separation of the stimuli, as well as of

their respective probability of occurrence, is investigated. As reviewed in the Introduction,

responses generally adapt more strongly to the stimulus that is repeated more frequently, a

phenomenon termed stimulus-specific adaptation (SSA).

RS is a fundamental aspect of the response behaviour observed for adaptation paradigms

such as the oddball paradigm (Nelken, 2014; Pérez-González and Malmierca, 2014). While

this paradigm creates a diverse stimulus history and does not permit the detailed study of

fundamental RS dynamics, the regular-SOI paradigm creates a state of adaptation where the

response stabilises across stimulus repetitions (recall, for example, the response stabilisation

illustrated in Figure 27). The systematic variation of SOI across stimulus blocks permits

the detailed quantification of an adaptation lifetime (τSOI) rather than just of the average

level of adaptation for the ‘standard’ and ‘deviant’ stimulus. Insights on this lifetime can

form the basis for the explanation of more complex phenomena, like SSA. To our knowledge,

the results introduced in Chapter 2, along with the results we present in Ma & Brunk et al.

(2021), are the first detailed reports of such lifetimes for individual neural populations in the

AC. Note that other authors also report rates of decay or adaptation time constants based

on intracranial measurements in the AC. These, however, are a reflection of the exponential

decay or increase in response amplitude as a function of stimulus index (e.g. Deane et al.,

2023; Ulanovsky et al., 2004) and should not be equated to the RS lifetimes reported here.

Noise sensitivity of in-vivo signals

Be it intracranial local field potentials or extracranial magnetic fields – in vivo, the noise

sensitivity of the recorded brain signal poses a challenge to the quantification of RS lifetime.

In the context of the RS paradigm, signal-to-noise ratios of evoked responses revealed via

averaging can be very low unless a large number of single trials is averaged (see, for example,

Figure 29a). Moreover, even if the number of trials is sufficient to stabilise the baseline

prior to stimulus onset, questions regarding the robustness of response measures such as peak

amplitude arise (Sielużycki et al., 2021). Given the large variability across the single trial

data, has this measure stabilised or would it change if we were to increase the number of

single trials?

For a given SOI, an increase in the number of single trials increases the measurement

duration by the product of the number of additional trials and the SOI. Thus, increasing

the number of trials is particularly problematic for longer SOIs, where it can quickly lead to

excessive measurement durations. For extracranial recordings in awake subjects, this is a chal-
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lenge in terms of endurance and the increasing level of fatigue can distort the recorded data.

For intracranial recordings in anaesthetised animals, maintaining a stable level of anaesthesia

can be problematic and the changes in level of consciousness can distort the recorded data.

Moreover, the viability of the animal is at stake.

To tackle the conflict between the need for shorter measurement durations and larger sam-

ple sizes, we developed a bootstrap-based analysis pipeline. The approach creates additional

surrogate data sets based on the existing recordings by mimicking the repetition of these

recordings via resampling. As a result, the number of evoked responses revealed by averaging

single trials can be multiplied and the spread of these evoked responses is a measure of the CIs

associated with the original evoked response. This in turn permits statistical inferences on

RS lifetime, all without requiring a normal distribution and homoscedasticity for the original

data. Consequently, as demonstrated in Projects 2 and 3, the significance of differences in RS

lifetime observed across experimental conditions can be assessed at the single-subject level.

Moreover, as demonstrated in Project 3, the robustness of results observed at the group level

can be verified.

Selection of the fitting function

Traditionally, RS lifetime is quantified by fitting Equation (1), an exponentially saturating

curve, to peak response amplitudes observed as a function of SOI (e.g. Lu et al., 1992a; Mäkelä

et al., 1993; McEvoy et al., 1997; Sams et al., 1993). In doing so, the x-intercept t0 can either

be set to a constant value or used as a fitting parameter. For the experimental data and

simulations presented here, we set t0 equal to the stimulus duration. Lifetimes τSOI were thus

always determined relative to the same reference point and could be compared directly across

different conditions. Note, however, that a fixed value for t0 is not always an appropriate

choice. In our simulations, we have seen that some neural populations across the AC network

activate at SOIs much longer than the stimulus duration (recall Table 9 and Figure 22). Their

RS response behaviour would be more adequately summarised by a t0 that is longer than the

stimulus duration. Other simulations have revealed scenarios where t0 is negative – for their

simplified model of the human AC, Hajizadeh et al. (2022) report t0-values ranging from

about −1.4 s to −0.4 s. In vivo, Rojas et al. (1999) used t0 as a fitting parameter and, based

on MEG data, report a significant difference in values for male and female subjects.

When t0 is not fixed, comparisons of time constant τSOI across conditions (measurement

locations, species, models, stimulus properties etc.) are less valid, because lifetime is not

measured with respect to the same reference point. One approach to solve this issue could

be to define RS lifetime as t0 + τSOI. In this case, however, RS lifetime no longer reflects the

rising slope of the SOI-dependence of the peak amplitude. A scenario with a long t0 and short

τSOI would be reflected by the same RS lifetime as a scenario with a short t0 and a long τSOI.
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Equation (1) describes the relationship between peak amplitude and SOI via a single

exponential function. It is important to note that such functions are very rare in nature

(Lukichev, 2019). Hajizadeh et al. (2022) used computational modelling to investigate whether

RS in the AC is the rare exception and concluded that whether Equation (1) is an appropriate

description of the recovery process also depends on the number and range of sampling points.

Alternatively, other fitting functions could be used, for example the stretched exponential

Kohlrausch function, as recommended by Lukichev (2019). This might increase the goodness

of fit, but at the cost of increasing the number of fitting parameters that need to be interpreted,

both individually and in relation to each other.

Irrespective of the selected fitting function, the aim is to quantify the lifetime of RS. While

the resulting values might be imperfect estimates of the time window neural populations

require to recover from RS, these estimates are necessary to make comparisons of RS lifetime

across conditions. In this work, Equation (1), along with a fixed t0, was the most parsimonious

choice and provided an excellent foundation for the comparison of RS recovery dynamics across

measurement locations, subjects, experimental conditions, and even species.

Q2: What does the lifetime of repetition suppression reflect?

As summarised by Gollisch and Herz (2004), potential mechanisms giving rise to RS and other

forms of adaptation can be divided into two categories: (1) mechanisms that take effect on

the output of neurons, such as voltage dependent conductances or hyperpolarisation, and (2)

mechanisms that take effect on the input received by a neuron, such as STSD and inhibition.

As reviewed in the Introduction (see ‘Mechanisms behind cortical RS’), in-vivo studies by

Wehr and Zador (2003, 2005) and Ulanovsky et al. (2004) identify STSD as the most likely

mechanism at the source of adaptation phenomena and in-silico studies further support this

hypothesis (Loebel et al., 2007; Mill et al., 2011, 2012; David and Shamma, 2013; Yarden

and Nelken, 2017; May and Tiitinen, 2013; May et al., 2015; May, 2021). Computational AC

models with an implementation of STSD, but without mechanisms that take effect on the

output of neurons, can replicate a multitude of adaptation-based phenomena.

STSD occurs due to a mixture of stimulus-evoked effects: the depletion of readily releasable

synaptic vesicles, the inactivation of release sites, and the inactivation of presynaptic calcium

channels (Fioravante and Regehr, 2011). The combined time courses of vesicle replenishment,

reactivation of release sites, and reactivation of presynaptic calcium channels determine the

lifetime of STSD. So is the lifetime of RS a direct reflection of the lifetime of STSD? Our

intracortical measurements from gerbil A1 showed that τSOI for a given neural population

can change between BF and non-BF stimuli, with respective lifetimes differing by up to

132 ms (c.f. Figure 32a). Postulating that STSD lifetime is the only factor that modulates

RS lifetime, this could be explained by synapse-specific STSD lifetimes across the dendritic
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tree and the activation of different synapses for BF vs. non-BF stimulation. The literature

indeed reports that a wide range of time scales for STSD, spanning hundreds of milliseconds

to seconds, exists for corticocortical synapses (Markram et al., 1998; Tsodyks and Markram,

1997; Varela et al., 1997). Moreover, we demonstrated in our simulations that, in the very

simplified case of the single-column model, audio-frequency-specific RS lifetimes reflected the

audio-frequency-specific amalgamation of the STSD recovery time constants at the afferent

and recurrent synapse (Section 1.2.1).

Simulations with the gerbil AC model, however, have shown that STSD recovery dynamics

cannot be directly related to RS recovery dynamics in this larger network (Section 1.2.2).

Despite identical STSD lifetimes across all cortical connections, τSOI varied as a function of

stimulus audio-frequency and always exceeded synaptic time constant τrec. A detailed analysis

revealed that this is the result of large-scale network interactions. These in turn were affected

by mild changes to the network’s connectivity pattern in the form of varying ranges of lateral

inhibition. The effect of network connectivity on RS lifetime was further confirmed during

our optimisation project (4), where we showed that changes in the connection weights of a

simplified AC model based on macaque AC anatomy lead to changes in the ‘extracranially’

observed RS lifetime based on in-silico MEG signals.

We thus conclude that RS is a network effect. While STSD is the mechanism that gives

rise to RS, the lifetime of RS reflects a plethora of interdependent network events. This

hypothesis is supported by simulation results from Hajizadeh et al. (2022), who showed that

changes to the serial core-belt-parabelt connection pattern of the AC affect the lifetime of RS.

Furthermore, our observations are in line with results from Buonomano and Merzenich (1995).

They showed that, in a network where neuronal properties are time-dependent but the model’s

time constants are fixed and equal across units, the response behaviour of the individual units

is highly heterogeneous. The in-silico SSA studies we reviewed in the Introduction (Insights

from computational modelling) also indicate this (Loebel et al., 2007; Mill et al., 2011, 2012;

Yarden and Nelken, 2017; May and Tiitinen, 2013; May et al., 2015; May, 2021).

An additional facet of the network effect that is RS could be the desynchronisation of

synaptic events. In Ma & Brunk et al. (2021), we showed that, at the layer-specific level, RS is

more pronounced for the measure reflecting peak current flow during sink activity than for the

measure reflecting total current flow across sink activity. This also resulted in longer lifetimes

of RS for the peak current flow than for the total current flow. Further analysis of the gerbil

AC model responses could reveal whether this effect is also present in silico as the model is well

suited for the detailed decomposition of the net response of a column into contributions from

individual connections. We expect this to be a promising approach because, as demonstrated

in Sections 2.4.2 and 2.4.3, the model made well-confirmed predictions regarding the timing

of the net response peak as a function of SOI and stimulus audio-frequency. It could thus

serve as a tool to further disentangle the different network events that contribute to RS.
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RS lifetime measured extra-cortically via MEG might reflect an additional factor, namely

cortical folding. As roughly expressed by the MEG equations in our simplified AC model

(Equations 30, 36a, 36b, and 36c), the MEG signal is an amalgamation of individual neural

responses. In vivo, the summation of these responses is not straightforward – differences in

cortical folding can cause differences in the observed ERF (Shaw et al., 2013; Hajizadeh et al.,

2021). Thus, two AC networks with the same connectivity patterns and STSD dynamics but

different macroscopic anatomical properties might be characterised by two different MEG-

based RS lifetimes.

It is well established that the folding of the AC differs across hemispheres (Heschl, 1878;

Morosan et al., 2001; Rademacher et al., 2001; v. Economo and Horn, 1930) Thus, the different

RS lifetimes we observed for the left and right human AC (Chapter 3) might mostly reflect

hemisphere-specific cortical folding. However, they might also reflect hemisphere-specific time

scales for the underlying neural mechanisms that give rise to RS and/or hemisphere specific

AC connectivity that shapes RS dynamics. The three factors do not exclude each other and

their role in hemisphere-specific RS lifetime needs to be explored further. If the different time

scales of RS lifetime in the left vs. right hemisphere are indeed indicative of hemisphere-

specific network dynamics, this difference might have a functional relevance and reflect a

lateralisation in the processing of auditory information. This is discussed further in Dar &

Härtwich et al. (2025).

Q3: What is the functional relevance of repetition suppression

as a network effect?

We expect that the variation in the lifetime of RS as a function of stimulus audio-frequency

lays the foundation for the process of temporal binding, for example the ability of individual

neural populations or neurons in the AC to exhibit combination sensitivity (CS) – a selective

response to a specific stimulus sequence but not its individual components or the reversed

sequence. Experimentally, CS neurons have been observed in the primary auditory cortex

or comparable areas of multiple species such as songbirds (Margoliash and Fortune, 1992;

Lewicki and Arthur, 1996; Doupe, 1997), rats (Kilgard and Merzenich, 1999; Orduña et al.,

2001), cats (McKenna et al., 1989; Brosch and Schreiner, 2000), marmosets (Bartlett and

Wang, 2005; Sadagopan and Wang, 2009), and macaques (Brosch et al., 1999). However, it

is unclear how this property arises.

Combination sensitivity in computational modelling

Several simulation studies have shown that a neural network where connection strengths are

modulated by short-term synaptic plasticity and, if applicable, afferent input is spectrally
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filtered, is a structure that can perform temporal binding and generate network nodes that

exhibit forms of CS observed in vivo. David and Shamma (2013) demonstrated that the

response behaviour of their model of an A1 neuron receiving input via a set of STSD-affected

synapses (for a further review of the modelling approach, refer back to page 7) encodes

stimulus envelope history for a time window of up to 290 ms .

Lee and Buonomano (2012) created a network model reflecting a simplified cortical col-

umn and demonstrated that this network starts to form vocalisation-sensitive neurons during

an unsupervised training scheme. The model consisted of 400 excitatory and 100 inhibitory

single-compartment, conductance-based leaky integrate-and-fire neurons as well as 18 input

fibers, each representing an audio-frequency band. Time constants of short-term synaptic de-

pression and facilitation (STSF) were constant across excitatory and inhibitory connections,

respectively. Neurons were divided into a population reflecting cortical layer IV and a popu-

lation reflecting cortical layers II and III. Layer IV neurons received tonotopically organised

afferent input whereas layer II/III neurons were only driven by the propagation of activity

within the network. The network was initialised with random connectivity. During the un-

supervised training scheme, vocalisations – spoken digits from zero to nine – were presented

and connection weights were altered. Afterwards, a subset of neurons exhibited sensitivity for

one of the digits. Lee and Buonomano demonstrated that this selectivity hinges on synap-

tic plasticity. When removing STSD and STSF from the model, direction selectivity, e.g.

a strong response to a specific vocalisation but not its time-reversed counterpart, decreased

significantly.

Goudar and Buonomano (2015) also showed that CS neurons arise naturally from a large

neural network reflecting properties of A1, including connections affected by STSD and STSF.

Model parameters defining short-term plasticity were connection-type-specific but constant

across cells. The model comprised 800 excitatory and 200 inhibitory single-compartment,

conductance-based leaky integrate-and-fire neurons, the input layer as well as its projections

were tonotopically organised, and recurrent connections in A1 were randomised but most

probable for cells in close proximity. Without specific training, responses to paired tones were

very diverse and included neurons exhibiting CS.

May and colleagues (2013; 2015) demonstrated that STSD, a serial network structure, and

tonotopically organised afferent input suffice for columns in their AC model to exhibit CS to

tone pairs, tone sequences, and short vocalisations. As previously reviewed (page 8), units

in this modelling approach reflect columns comprising an excitatory and an inhibitory neural

population and network connectivity mirrors the field structure along the core-belt-parabelt

hierarchy of the macaque AC. The lifetime of STSD is constant across the network and the

fine structure of the connectivity pattern is randomised. May and colleagues demonstrated

that columns exhibiting CS appear without specific training or fine tuning of the model. The

percentage of CS columns in the model changed as a function of several variables: the STSD
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recovery time constant τrec, the balance between excitation and inhibition, the connection

density in the network, the level of spectral selectivity in the network, and the duration and

composition of the stimulus sequence. Moreover, temporal binding of shorter sequences mostly

occurred in the core area whereas CS for longer sequences was observed higher up the serial

structure, in the belt and parabelt fields. When serial processing was removed by targeting

afferent input to all fields, CS almost vanished.

Repetition suppression as a tool for temporal binding

The studies reviewed above demonstrate that CS automatically emerges in neural network

models of the AC when connections are affected by synaptic plasticity and the fine struc-

ture of the connection pattern is not purely tonotopic. Moreover, the authors delineate the

boundary conditions of the parameter space within which CS can be observed. Our results

regarding network-modulated, audio-frequency-specific RS offer first building blocks towards

an explanation of how exactly such CS arises. Figure 39 conceptually depicts an example

scenario where five columns, responding as observed in the gerbil AC model, are connected

to an additional column. This column exhibits CS for a distinct stimulus sequence due to the

selected connection pattern.

Figure 39a summarises the response behaviour observed for A1 columns in the gerbil

model. The x-axis lists intrafield column indices and the horizontal colour gradient below

maps out the associated BF of each column. The green, yellow, and red bar charts illustrate

how, in terms of response amplitude and RS lifetime, the columns respond to stimulus blocks

of pure tones A, B, or C. Tones A, B, and C are the BF of columns 4, 8, and 12, respectively.

Taller bars in the bar charts simultaneously indicate larger response amplitudes and shorter

RS lifetimes. Note that the distribution of RS lifetimes across columns is the same u-shaped

distribution as shown in Figures 10a to c, it was just inverted to simultaneously depict RS

lifetimes (vertical axis on the l.h.s.) and response amplitudes (vertical axis on the r.h.s.). The

depicted response amplitudes reflect FR functions as shown in Figure 19.

Figure 39b depicts a stimulus sequence comprising the pure tones A, B, and C. Its repet-

itive pattern can coarsely be likened to that of naturalistic vocalisations observed for the

gerbil (Kobayasi and Riquimaroux, 2012). Figures 39c and d illustrate how the CS column

responds when the last segment of the sequence is presented in isolation and as part of the

sequence, respectively. Due to the connection pattern between the CS column and the other

A1 columns, the firing threshold of the CS column is only reached when the full sequence is

presented, whereas, due to audio-frequency-specific RS, presenting individual components of

the sequence does not trigger a response. The assumption that the CS column requires par-

allel excitatory input from several columns to cross its firing threshold is in line with in-vivo

observations from Sadagopan and Wang (2009), who reported sparse spontaneous firing for
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CS neurons and concluded that this suggests a high firing threshold.

Note that Figure 39 is just one simple example to illustrate the functional potential of

audio-frequency-specific RS – scenarios with a much higher level of complexity could also

be thought up. At the same time, audio-frequency-specific RS is probably only one factor

contributing to temporal binding in the AC. A first step towards exploring the hypothesis

that audio-frequency-specific RS facilitates CS would be to implement and verify the scenario

sketched out in Figure 39. Moreover, CS columns in the May et al. model as presented in 2013

and 2015 should be investigated further. First, RS lifetimes of pure-tone driven, spectrally

selective columns in the network could be catalogued via the regular-SOI paradigm. Next, the

input received by the previously identified CS columns could be decomposed and potentially

traced back to audio-frequency-specific RS at a set of columns responsive to pure tones. In

this context, it would also be interesting to classify the position of the pure-tone columns

along the core-belt-parabelt hierarchy and relative to the CS column.

In vivo, the coexistence of pure-tone-driven neurons and sequence-driven neurons in A1

has been well described (e.g. Sadagopan and Wang, 2009) and, in the future, methods like

optogenetic techniques (for a review, see Emiliani et al., 2022) or juxtacellular nanostimula-

tion (Stüttgen et al., 2017) might permit the artificial alteration of the response pattern of

pure-tone-driven, adapting neurons while simultaneously recording the effect this intervention

might have on previously identified CS neurons. Sadagopan and Wang (2009) noted that the

precision of the CS neurons they observed aligned with the audio-frequency tuning bandwidth

of tone-tuned neurons and this could thus be a promising line of investigation. It could also

shed light on the robustness of the neural code and the dependence of CS on input from

different AC fields.

Our hypothesis suggests that audio-frequency specific RS operates as a stimulus-history-

dependent network activity ‘gating mechanism’ that affects the response to future stimuli.

This interpretation can be embedded in the framework of ‘active’ and ‘hidden’ internal states

developed by Buonomano and colleagues (for a review, see Buonomano and Maass, 2009;

Motanis et al., 2018). The active state reflects the network’s measurable response behaviour

(in terms of firing rates etc.), the hidden state refers to time- and stimulus-history-dependent

neuronal properties (e.g. current levels of STSD and STSF).

Buonomano and colleagues (2009) illustrate the relationship between active and internal

state with the ‘pebble thrown into a pond’ analogy: "A pebble thrown into a pond will create

a spatiotemporal pattern of ripples, and the pattern produced by any subsequent pebbles will be

a complex nonlinear function of the interaction of the stimulus (the pebble) with the internal

state of the liquid (the pattern of ripples when the pebble makes contact)." Thus, the hidden

state serves a crucial memory function. In this context, it is important to note that the com-

putational studies reviewed above as well as the work presented in this thesis have shown that

complex response behaviour does not require a high diversity in STSD and STSF dynamics
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Figure 39: Audio-frequency-specific RS lifetimes as a basis for CS.

a: Response behaviour of A1 columns in the gerbil AC model (c.f. Section 1.2.2) when pure tones
A (green), B (yellow), or C (red) are presented repeatedly. The horizontal axis maps out intrafield
column indices and associated BFs. The vertical axes map out response amplitude (right) and RS
lifetime τSOI (left). RS lifetime decreases in the upward direction.

b: Combination of tones into a sequence. The audio-frequency of tone A is the BF of Col.4. Neigh-
bouring columns also respond but response amplitude decreases with distance from the BF column.
In contrast, RS lifetime increases with this distance. Col.1 responds mildly to tone A but, due to
the long RS lifetime, only when SOI is long – as is the case in the stimulus sequence. Tone B has
an intermediate audio-frequency, the BF of Col.8. As for A, response amplitudes decrease and RS
lifetimes increase with distance from the BF column. Col.7 responds fairly strongly to tone B, even
at the intermediate SOIs present in the stimulus sequence, because RS lifetime is intermediate. In
contrast, Col.5 has a longer RS lifetime for tone B and its response to it is mostly suppressed by the
end of the sequence. Tone C has a higher audio-frequency, the BF of Col.12 – it responds strongly to
the tone, even at the short SOIs present in the sequence (due to the short RS lifetime). Col.9 has a
long RS lifetime for tone C and its mild response is suppressed at the short SOI.

c: Connection pattern for additional column that would exhibit CS for the stimulus sequence shown in
b. Col.1 responds mildly to A and forms a strong ee-connection with the CS column. Col.7 responds
fairly strongly to B and forms an ee-connection of intermediate strength. Col.12 responds strongly
to C and forms a weak ee-connection. Col.5 responds mildly to B but forms a strong ie-connection.
Col.9 responds mildly to C but forms a strong ie-connection. The joint presentation of A, B, and C
with no prior stimulus history activates all five columns but inhibition dominates excitation and the
CS column does not respond.

d: If A, B, and C are presented as the final stimulus of the sequence in b, the inhibitory effect of Col.5
and 9 is strongly decreased due to long-lived RS. The CS column responds. It does not respond to
the previous B+C or just C because the connection weights are adjusted such that the strong con-
tribution from Col.1 is required to activate the excitatory population. Therefore, an inversion of the
sequence also does not lead to a response. Moreover, ‘just A’ is not sufficient because excitation from
column 1 is counteracted by inhibition from column 5. A further decrease in the SOI for C makes the
contribution of Col.12 insufficient, a further decrease in the SOI for B the contribution of Col.7 and a
decrease in A the contribution of Col.1. Increasing SOI for B and C reactivates inhibition from Col.5
and 9. Thus, the CS column performs temporal binding based on audio-frequency specific RS.
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but can arise through complexity in connectivity patterns and be modulated by changes in

these patterns.

We propose that audio-frequency-specific RS lifetimes, produced by the network pattern

of the AC, play a role in temporal binding. This in turn suggests that the upper limits of

RS lifetime observed in a given species might be a reflection of the species-specific maximum

time window across which the AC can perform such binding. We address this topic in the

following section.

Q4: Is the lifetime of repetition suppression species-specific?

Interestingly, the τSOI-values we determined for neural populations in gerbil A1 are much

shorter than the more global RS lifetimes determined for the human AC based on MEG data.

In our animal study, the grand median τSOI-value (across animals and conditions) in gerbil A1

was equal to 0.357 s, with the full range spanning from 0.197 s to 0.465 s (c.f. Section 2.4.1). In

contrast, in our human MEG study, the AC was characterised by a grand median τSOI-value

(across subjects and hemispheres) of 1.339 s, with subject- and hemisphere-specific values

ranging from 0.455 s to 3.998 s (c.f. Section 3.1).

The MEG-based values Zacharias et al. (2012) report for the human AC lie in the same

range: 2.8 s for the left and 2.2 s for the right hemisphere (mean τSOI-value across 15 subjects,

same stimulus duration and rise and fall times as in our RS paradigm). These results are also

supported by older MEG-studies (Mäkelä et al., 1993; McEvoy et al., 1997; Sams et al., 1993),

where τ -values ranged from about 0.9 s to 3 s.

For humans, the time scale of RS lifetime, based on auditory ERFs, is thus very well

established and clearly exceeds the range we observed for neural populations in gerbil A1.

Whether this time scale difference arises due to the different levels of observation or whether

it is a true reflection of species-specific RS recovery dynamics remains to be explored. Several

factors differentiate the levels of observation at which RS was studied in the gerbil and human

AC. In total, there are four potential reasons that could explain the different results:

• Measurement method : intracranial recordings of local field potentials vs. extracranial

recordings of magnetic fields

• Mental state: anaesthetised vs. awake subjects

• Source of the measured response: one neural population in A1 vs. all neural populations

across the entire AC together

• Species-specificity : gerbil vs. human
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Differences introduced by the measurement method

Relating intracranially measured LFPs reflecting neural activity to extracranially measured

magnetic fields reflecting neural activity poses a challenging forward/inverse problem (for

a review, see for example Baillet, 2013). Moreover, as discussed in the final paragraphs

of ‘Q2: What does RS lifetime reflect?’, cortical folding affects the MEG signal. Thus, in

the most extreme case, the extracranially measured response behaviour of the human AC

could be characterised by longer τSOI-values even if the intracranially measured response

behaviour of individual neural populations in the human AC were to perfectly align with

results from gerbil A1. Simulations suggests that, in the context of the regular-SOI paradigm,

the superposition of neural activity into ERFs is SOI-specific and depends on cortical folding

(Hajizadeh et al., 2022). The differences we observed could thus be a reflection of the species-

specific measurement method rather than species-specific RS dynamics.

Differences introduced by anaesthesia

Deane et al. (2020) found that the amplification of thalamocortical input in gerbil A1 via

recurrent excitation is significantly increased under ketamine anaesthesia – the type of anaes-

thesia also used in our gerbil experiments. They concluded that this effect is most likely

caused by an anaesthesia-induced decrease in inhibition. In Ma & Brunk et al. (2021), we

demonstrated that pharmacological intervention increasing the level of inhibition and thus

minimising recurrent excitation leads to longer RS lifetimes. Thus, the ketamine-induced

increase in recurrent excitation might lead to faster recovery from RS in anaesthetised than

in awake animals. While no literature on RS lifetimes in the awake gerbil is available, data

presented in another publication by Deane et al. (2023) permits coarse estimates of τSOI-

values for another small rodent species – the black mouse. For neural populations in A1 of

awake mice, the electrophysiological data presented in the study suggests lifetimes of RS in

the same range as we observed for the anaesthetised gerbils, with τSOI not exceeding 0.3 s.

Note, however that the stimulus duration in these paradigms was much shorter than for our

experiments (< 4 ms) and the results are thus only comparable to a limited extent. Further

investigation in awake gerbils is required to determine whether and to what extent anaesthesia

affects RS lifetime.

Differences introduced by the anatomical source of the measured response

Another explanation for the different RS lifetimes we observed in gerbils and humans could be

that RS dynamics vary across auditory fields, with τSOI-values increasing when moving from

the core to higher order areas, i.e. the belt and parabelt. In such a case, a value deduced from

the activation of a core field would be smaller than a value deduced from the net activation

of the entire AC. For the rat AC, Nieto-Diego and Malmierca (2016) observed that, for a
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given sequence of standard tones, RS was most pronounced in the non-primary fields. This

is consistent with the hypothesis of longer RS lifetimes in the belt and parabelt than in the

core. Studies in human subjects also suggest different RS dynamics across AC areas (Lu

et al., 1992b; Kropotov et al., 2000; Jääskeläinen et al., 2004; Opitz et al., 2005). However,

the available data from the human AC is not sufficient to make clear comparative statements

about the lifetime of RS along the core-belt-parabelt hierarchy.

Recent modelling work by Hajizadeh et al. (2022), who constructed a simplified compu-

tational model of the AC with one network node per AC area, predicts that RS lifetime is

about 0.2 s longer in the belt and parabelt than in the core. In contrast, our recent work (see

Project 4) predicts that RS lifetimes are shortest in the belt. We optimised the parameter

values of our computational human AC model based on human MEG data and found that, in

the optimised model, RS lifetime was about 0.5 s shorter in the belt than in core and parabelt.

Further work is required to explore and verify these contradictory predictions regarding RS

lifetimes in the different areas of the human AC.

Ramifications of species-specific RS lifetimes

If the time scales of RS lifetime in gerbil versus human AC are indeed species-specific, this

could be a reflection of the AC dynamics being tailored to the species-specific temporal pat-

terns of vocalisations employed to exchange information. In their detailed study of the spec-

trotemporal pattern of gerbil vocalisations, Kobayasi and Riquimaroux (2012) showed that

gerbil “utterances” are much shorter and more repetitive than human utterances. They iden-

tified a maximum “phrase duration” of about 3 s. This means that the gerbil operates in

a soundscape that requires temporal integration across much shorter time scales than hu-

man speech. For humans, Lu et al. (1992a) showed that there is a correlation between the

subject-specific lifetime of RS and of a behaviourally evaluated memory trace. Thus, one

way to further investigate the species-specificity of RS lifetime would be to test whether the

behavioural lifetime of auditory sensory memory is shorter in gerbils than in humans.

Work by Kaernbach and Schulze (2002) suggests that this is indeed the case. They found

that gerbils can distinguish a stimulus comprising of seamless repetitions of a shorter white

noise stimulus (repeated noise, RN) from a stimulus made up of entirely random white noise

(non-repeated noise, NRN) if the cycle length of the RN does not exceed 360 ms (observed

limit after 156 days of training the behavioural response). In contrast, humans can reliably

identify RN with a cycle length of several seconds (after just a few minutes of training, see

Warren et al., 2001). This difference in performance might be a direct reflection of species-

specific RS lifetimes, which, in turn, could reflect the brain’s evolution-based adaptation to

or specialisation towards a distinct habitat.

The hypotheses introduced above – (1) differences observed due to the measurement
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method, (2) differences observed due to anaesthesia, (3) differences observed due to the

anatomical sources of the response, (4) differences observed due to the species-specificity

of RS dynamics – do not necessarily exclude each other. Further studies are required to

disentangle the potential species- and observation-level-specificity of RS lifetime. Note that

species-specific RS dynamics do not necessarily suggest species-specific STSD dynamics. They

could also reflect the species-specific AC field structures and connectivity patterns. As illus-

trated in Figures 4 vs. 36, the literature reports pronounced differences between gerbil and

macaque AC. The gerbil AC consists of 8 fields, whereas the macaque AC, which is used as an

approximation of the human AC, consists of 13 fields. The macaque AC connection pattern is

characterised by a set of parallel serial streams along the core-belt-parabelt hierarchy, whereas

the gerbil AC includes connections from core to parabelt. As discussed in ‘Q2: What does

RS lifetime reflect?’, connectivity patterns shape RS dynamics and the species-specific AC

networks could thus lead to species-specific RS lifetimes.

Q5: How could the gerbil auditory cortex model be refined?

In this work, we created a first version of an anatomically-informed computational model of

the gerbil AC. The aim of the modelling efforts was not to create perfect replica of exper-

imental data in terms of absolute values but rather to compare response behaviours across

experimental conditions and to use the model to explore mechanisms that might give rise

to the observed phenomena. While multiple time scales of synaptic depression have been

reported for cortico-cortical synapses (Markram et al., 1998; Tsodyks and Markram, 1997;

Varela et al., 1997), we opted for a single τrec-value (time constant of recovery from STSD)

across all columns and AC fields because we wanted to focus on investigating the effect of

connectivity patterns on RS dynamics. Thus, here we reported results from simulations at

three distinct locations in the vast parameter space theoretically available for the gerbil AC

model to illustrate how connectivity patterns can affect the lifetime of RS in the primary

auditory field.

To reflect the response delay caused by sub-cortical processing, a delay term can be added

to the stimulus sequence presented to the model (c.f. Hajizadeh et al., 2019, 2021, 2022).

Here, we refrained from using such a term because peak latencies (and overall responses) in

the animals were generally shorter than in the simulations. Therefore, future work should

entail a reassessment of the gerbil AC model time constants. The RS lifetimes were also

shorter in vivo than in silico. As demonstrated by May et al. (2015), RS lifetime τSOI scales

with STSD lifetime τrec. Thus, the adjustment of the model’s time constant trio, τm, τon and

τrec, would be a useful first target for our optimisation algorithm. While the optimisation

algorithm, as presented in Chapter 4, previously addressed weight values, the time constants

could similarly be reflected by a chromosome containing three genes. As the gerbil AC model
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does not produce a direct equivalent of the electrophysiological response measures available

in our in-vivo data set, the fitness function should not address the direct overlap between

response waveforms but could instead be based on the in-vivo vs. in-silico agreement of SOI-

specific peak latencies and of RS lifetime.

After this first adjustment of the response dynamics of the gerbil AC model, another

optimisation process could be used to investigate whether the parameters defining the details

of the network pattern can be adjusted such that the u-shaped τSOI distribution observed for

the current version of the gerbil AC model (c.f. Figure 10) is inverted. This would replicate the

response behaviour of animals 6 and 8 where τSOI(∆F = 0) > τSOI(∆F = 2). The genes in the

chromosome could reflect the connection-type-specific α- and σ-values (c.f. Equation (6) and

Table 3) and the fitness function would be based on the condition τSOI(∆F = 0) > τSOI(∆F =

0.5) > τSOI(∆F = 1) etc. Of course, this would also require the definition of meaningful

boundary conditions, such as for example σie > σee to keep FR functions reasonably sharp.

If the optimisation algorithm achieves the inversion of the τSOI distribution, this would be

further proof of the strong effect of network pattern on RS lifetimes. Moreover, it would be

interesting to trace back the network effects that give rise to the inverted response behaviour.

A gerbil AC model version with a stochastic network fine structure as defined in May et

al. (2013; 2015) could be used to verify whether the findings reported there can be replicated

in a model that reflects the AC anatomy of a different species. Unlike the AC model based on

macaque anatomy, the gerbil AC model sends thalamic input to the core as well as the belt

(albeit to a lesser extent). Moreover, there are direct connections from core to parabelt. Given

that May et al. identified serial processing as an important condition for CS is there then,

for example, still a similar overall percentage of CS columns? And does temporal binding of

sequences still mostly occur in the core for shorter and in the belt and parabelt for longer

sequences? As already suggested for the model described by May et al., this investigation

should also entail tracking and characterisation of the network nodes that send input to the

CS column.

Hajizadeh et al. (2019) reported that stochasticity in the weight matrices leads to columns

that exhibit multi-peaked and/or broad tuning curves. Multi-peaked spectral tuning in the

human AC has also been observed in vivo (Moerel et al., 2013) and is probably required

for temporal binding of and CS to more complex stimulus patterns. In this context, the

non-tonotopic organisation of the gerbil AC parabelt fields (as observed experimentally, c.f.

literature referenced in Section 1.1.2) might also be of high functional relevance and should

be explored in future simulations.
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Closing remarks

The results presented in this doctoral thesis as well as the future studies proposed in the

Discussion indicate that the triad of in-vivo experiments, simulations, and model optimisation

is a powerful tool for the investigation of memory trace formation in the AC. Thus far, we

have shown that RS is a network effect modulated by connectivity patterns. Further work

will reveal how the brain exploits this effect in the context of temporal binding.
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