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ABSTRACT  

M. Sc., Baars, Iris: „Leishmania major drives host phagocyte death and cell-to-cell transfer 

depending on intracellular pathogen proliferation rate” 

The virulence of intracellular pathogens relies largely on the ability to survive and replicate 

within phagocytes, but also on the release and transfer into new host cells. Such cell-to-cell 

transfer could represent a target for counteracting microbial pathogenesis. However, our un-

derstanding of the underlying cellular and molecular processes remains woefully insufficient. 

Therefore, we studied Leishmania major (L. major) cell-to-cell transfer among monocyte-de-

rived cells and investigated the involvement of monocyte-derived host cell death and altered 

host cell metabolism in such transfer events. Using depletion of Leishmania-permissive 

CD11c-expressing monocyte-derived host cells in vivo, we were able to show that CD11c+ 

cells play a dual role in the ongoing infection, functioning both as host cells for L. major 

parasites and as inducers of iNOS, an important contributor in Leishmania clearance. In order 

to study L. major transfer among these monocyte-derived cells, we quantified L. major transfer 

and uptake of host cell material together with the parasite into adoptively transferred cells in 

vivo using intravital 2-photon microscopy analysis and flow cytometry analysis of CD11c-YFP 

reporter mice. Transfer of the parasite to new host cells occurred directly without a detectable 

extracellular state, and was associated with concomitant uptake of cellular material from the 

original host cell. By visualising cell death using live cell imaging, and using intravital 2-photon 

imaging of a Förster resonance energy transfer-based (FRET-based) cell-death-biosensor, we 

next studied whether apoptosis of the original host affects L. major transfer. Using intravital 

2-photon microscopy of caspase-3 activation in the L. major-infected live skin and using a 

caspase-3 reporter assay in L. major-infected human monocyte-derived macrophages, we 

showed increased apoptosis in cells infected by the parasite. To see whether intracellular par-

asite proliferation affects the fate of the infected host cell, we studied intracellular L. major 

proliferation in relation to cellular changes in murine intraperitoneal and bone marrow-derived 

macrophages using a photoconversion-based proliferation biosensor in vitro. In this regard, 

we observed a relation between high pathogen proliferation and cell death in infected cells, 

and long-term residency within an infected host cell was only possible for slowly proliferating 

parasites. Interestingly, using proliferation-modified parasites, we were able to show that L. 

major proliferation induced cell death of the infected host cell and that intracellular parasite 

proliferation rate modified host cell metabolic pathways. More specifically, intracellular para-

site proliferation reduced glucose uptake and increased the expression of CD36, a glycopro-

tein involved in high fatty acids uptake, in infected host macrophages. Regarding parasite 

proliferation and the microenvironment, we showed, using intravital imaging of the prolifera-

tion biosensor-infected murine ear dermis, that high proliferating parasites were more often 

observed in close proximity to blood vessels as compared to low proliferating parasites. This 
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might be due to reduced control by macrophages or by the increased likelihood of newly re-

cruited monocyte-derived host cells present in this area. Lastly, we showed that IL-11 receptor 

signalling, which is suggested to play a role in phagocytosis, does not play a major role in 

recruitment and infection of monocytes during L. major infection in vivo. Taken together, our 

results suggest that L. major drives its own dissemination to new phagocytes by inducing host 

cell death in a proliferation-dependent manner. To our knowledge, we are the first to show 

evidence that L. major stimulates dissemination among phagocytes through parasite prolifer-

ation-dependent cell death. This newly obtained knowledge can serve as a starting point for 

the creation of innovative treatments that can inhibit the establishment of intracellular path-

ogens at their site of infection. 
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ZUSAMMENFASSUNG 

M. Sc., Baars, Iris: „Leishmania major drives host phagocyte death and cell-to-cell transfer 

depending on intracellular pathogen proliferation rate” 

Die Virulenz intrazellulärer Krankheitserreger hängt weitgehend von ihrer Fähigkeit ab, in Pha-

gozyten zu überleben und zu replizieren, aber auch von der Freisetzung aus solchen Pha-

gozyten und dem Transfer in neue Wirtszellen. Dieser Zell-zu-Zell-Transfer könnte ein An-

griffspunkt für die Bekämpfung der mikrobiellen Pathogenese sein, aber die zugrunde liegen-

den zellulären und molekularen Prozesse sind nach wie vor wenig charakterisiert. Daher wurde 

in der vorliegenden Arbeit der Zell-zu-Zell-Transfer des Parasiten Leishmania major (L. major) 

zwischen monozytenabgeleiteten Wirtszellen und die Beteiligung des Zelltods und Verände-

rungen im Stoffwechsel von infizierten Wirtszellen an diesen Prozessen untersucht. Mithilfe 

der Depletion von Leishmania-permissiven CD11c-exprimierenden monozytenabgeleiteten 

Wirtszellen in vivo konnten wir zeigen, dass CD11c+-Zellen eine doppelte Rolle bei der lau-

fenden Infektion spielen und sowohl als Wirtszellen für L. major, als auch als Induktoren von 

iNOS, einem wichtiger Faktor bei der Beseitigung von Leishmanien, fungieren. Um den L. ma-

jor-Transfer zwischen monozytenabgeleiteten Zellen zu untersuchen, quantifizierten wir den 

L. major-Transfer und die Aufnahme von Wirtszellmaterial zusammen mit dem Parasiten in 

adoptiv übertragene Zellen in vivo mithilfe der intravitalen 2-Photonen-Mikroskopie und einer 

Durchflusszytometrie von CD11c-YFP-Reportermäuse. Die Übertragung des Parasiten auf 

neue Wirtszellen erfolgte direkt ohne erkennbaren extrazellulären Zustand und war mit der 

gleichzeitigen Aufnahme von Zellmaterial aus der ursprünglichen Wirtszelle verbunden. Als 

nächstes untersuchten wir, ob die Apoptose der ursprünglichen Wirtszelle den L. major-

Transfer beeinflusst, indem wir den Zelltod im lebenden Gewebe visualisierten, wofür wir einen 

auf Fluoreszenzresonanzenergietransfer basierenden (FRET-basierten) Apoptose-Biosensor 

für die intravitale 2-Photonen-Bildgebung verwendeten. Mit diesem experimentellen Tiermo-

dell und unter Verwendung eines Caspase-3-Reporter-Assays in mit L. maior infizierten 

menschlichen monozytenabgeleiteten Makrophagen zeigten wir eine erhöhte Apoptose in mit 

dem Parasiten infizierten Zellen. Um herauszufinden, ob die intrazelluläre Parasitenprolifera-

tion das Schicksal der infizierten Wirtszelle beeinflusst, untersuchten wir die intrazelluläre L. 

major-Proliferation in Bezug auf zelluläre Veränderungen in murinen intraperitonealen und 

aus dem Knochenmark differenzierten Makrophagen unter Verwendung eines auf Photokon-

version basierenden Proliferationsbiosensors in vitro. In diesem Zusammenhang beobachteten 

wir einen Zusammenhang zwischen hoher Pathogenproliferation und Zelltod in infizierten Zel-

len, und ein langfristiger Aufenthalt in einer infizierten Wirtszelle war nur für langsam prolife-

rierende Parasiten möglich. Interessanterweise konnten wir mithilfe proliferationsmodifizierter 

Parasiten zeigen, dass die Proliferation von L. major den Zelltod der infizierten Wirtszelle in-

duzierte und dass die intrazelluläre Parasitenproliferationsrate den Stoffwechsel der Wirtszelle 
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veränderte. Genauer gesagt reduzierte die intrazelluläre Parasitenvermehrung die Glukose-

aufnahme und erhöhte die Expression von CD36, einem Glykoprotein das an der Aufnahme 

hoher Fettsäuren beteiligt ist. In Bezug auf die Parasitenproliferation zeigten wir außerdem 

mithilfe intravitaler Mikroskopie, dass stark proliferierende Parasiten häufiger in unmittelbarer 

Nähe von Blutgefäßen beobachtet wurden als niedrig proliferierende Parasiten, was möglich-

erweise darauf zurückzuführen ist, dass in diesem Bereich vermehrt neu rekrutierte aus mo-

nozytenabgeleiteten Wirtszellen vorhanden sind, für die bekannt ist, dass sie eine hohe Pa-

thogenproliferation begünstigen. Schließlich haben wir gezeigt, dass die Signalübertragung 

des IL-11-Rezeptors, von dem angenommen wird, dass er eine Rolle bei der Phagozytose 

spielt, bei der Rekrutierung und Infektion von Monozyten während einer L. major-Infektion in 

vivo keinen Einfluss hat. Zusammenfassend legen unsere Ergebnisse nahe, dass L. major seine 

eigene Verbreitung in neue Phagozyten vorantreibt, indem der Parasit den Zelltod des Wirts in 

proliferationsabhängiger Weise induziert. Unseres Wissens nach sind wir die ersten, die Be-

weise dafür vorlegen konnten, dass L. major die Ausbreitung zwischen Phagozyten durch den 

durch die Proliferation des Parasiten bedingten Zelltod stimuliert. Dies kann als Ausgangs-

punkt für die Entwicklung innovativer Behandlungen dienen, die die Etablierung intrazellulärer 

Krankheitserreger an ihrem Standort hemmen können Ort der Infektion.  
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ABBREVIATIONS 
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1. INTRODUCTION 

1.1 Pathogens 

Apart from containing about 1013 human cells, the human body contains about 1014 microbes, 

such as bacteria, viruses, fungi and parasites. Most microbes live in symbiosis with the human 

body, meaning that both organisms benefit from the interaction (1). However, some microbes 

are potentially harmful when the host lacks the ability to maintain homeostasis. These harmful 

microbes are referred to as pathogens.  

In order for the host to survive, a strong response against pathogens is required. These re-

sponses are executed by the immune system, consisting of an innate and an adaptive part. 

The innate immune system is fast-acting and consists of physical barriers, such as the skin 

and mucous membranes, as well as effector cells, including natural killer (NK) cells, mast cells, 

eosinophils, basophils, macrophages, neutrophils and dendritic cells (DCs). The soluble me-

diators of the innate system comprise predominantly the complement system and cytokines 

and chemokines. The adaptive system is slow-acting and highly specific. The main effector 

cells of the adaptive immune system are B lymphocytes and cytotoxic CD8+ and CD4+ T helper 

lymphocytes, which are further subdivided into T-helper1 (Th1), T-helper2 (Th2), T-helper17 

(Th17) and regulatory T (Treg) cells. Soluble factors of the adaptive immune system include 

cytokines, chemokines and antibodies (see chapter 1.3 for more detail).  

Despite the existence of these complex systems, many pathogens have developed strategies 

to be able to survive inside the host. In order to survive, the pathogen not only needs to avoid 

or circumvent the host immune responses, but also requires a suitable niche in order to rep-

licate, and needs strategies in order to eventually exit and spread to a new host (2, 3).  

Various types of intracellular pathogens exist, which all have co-evolved with their hosts to 

establish pathogen-host cell interactions, forming the basis of the pathogen’s cellular tro-

pism. The most widespread pathogens are viruses and bacteria. It is difficult to treat viral 

infections, since viruses need the basic transcription and translation machinery of their host 

cells for their replication (4). Nonetheless, there are antiviral drugs available and vaccination 

allows us to prevent viral infections (5). Bacterial infections, on the contrary, are relatively 

easily treatable. Bacteria, which are usually free-living cells, reproduce mainly by binary fission 

and perform most of their basic tasks themselves, relying on the host primarily for nutrition. 

Because the basic machinery of bacteria is quite different from that of their host, it enables us 

to find antibacterial drugs that specifically target the pathogen. Nevertheless, antimicrobial 

resistance is currently one of the biggest global public health threats (6). The most complex 

group of pathogens are pathogenic fungi and protozoan parasites, because just like the hosts 

that they infect, they are eucaryotes. In addition, fungi and parasites take on different forms 

during their life cycle. It is therefore more difficult to find drugs that will kill the pathogen 
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without killing the host and that will attack all forms of the pathogen (7). Thus, it is essential 

to understand the interaction between the host and these pathogens in more detail to be better 

able to treat the infections caused by them. In this regard, this thesis will focus on further 

understanding the dynamics between parasites and their hosts. 
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1.2 Leishmania 

In this thesis, we will focus on the obligate intracellular parasite, Leishmania. This parasite 

causes the disease Leishmaniasis, the second most severe neglected tropical disease next to 

malaria, with approximately one million new cases annually (8, 9). More than 20 different 

Leishmania spp. are known to cause disease in humans (10), the six major ones being L. trop-

ica, L. major, L. donovani, L. infantum and L. mexicana, all of the Leishmania (Leishmania) 

subgenus and L. braziliensis, of the Leishmania (Viannia) subgenus (11, 12). There are three 

major forms of Leishmaniasis; cutaneous (CL), mucosal/muco-cutaneous (MCL) and visceral 

(VL) (10). VL is the most severe form, affecting visceral organs like spleen and liver and can be 

fatal if left untreated. CL and MCL are less severe, with the former manifesting self-healing 

ulcers and the latter resulting in partial or total destruction of the mucosal epithelia of the 

mouth, nose, throat, and associated tissues (Figure 1.1). A fourth form, post kala-azar dermal 

leishmaniasis (PKDL), usually presents as a complication of VL and is characterised by a mac-

ular, maculopapular, and nodular rash and is, in contrast to VL, not fatal (10, 13). The severity 

of disease progression depends on various factors, including the parasite strain, infecting 

parasite dose, composition of sand fly saliva, site of infection, extent of tissue damage, host 

skin microbiome, sand fly gut microbiota and most importantly, the host immune response 

(14-25). So far, drugs to control Leishmaniasis are limited due to high costs and toxicity, and 

there is currently no safe and effective vaccine for application in humans (26, 27). The com-

plexity of the host immune response to Leishmania is also a key limiting factor for develop-

ments in this field (28-30).  
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Figure 1.1: Types of leishmaniasis, affected organs and infection-causing Leishmania species. Mucocu-

taneous Leishmaniasis affects mucocutaneous junctions, Visceral Leishmaniasis affects liver and spleen, 

Cutaneous Leishmaniasis affects skin epidermis and dermis. Created with Biorender. 

Life cycle 

Leishmaniasis is generally transmitted by female Phlebotomine and Lutzomyia sand flies, but 

can, sporadically, also be transmitted by syringe sharing, blood transfusions, or from mother 

to foetus (13, 31, 32). Leishmania parasites occur in two forms, the elongated (10–20 μm) 

motile promastigote form and the oval-shaped (3–7 μm in diameter) non-motile amastigote 

form. The promastigote form exists in the sand fly vector, where it undergoes various differ-

entiation steps and transforms into the infective metacyclic promastigote form. When a sand 

fly vector bites an infected mammal, it ingests the amastigotes, which transform into the flag-

ellated promastigote form in the midgut of the insect. Eventually, the procyclic promastigotes 

move to the alimentary tract of the insect where they survive extracellularly and multiply by 

asexual binary fission (13). Although Leishmania reproduction is mainly asexual, a nonoblig-

atory sexual reproductive cycle is now known to accompany parasite development in the sand 

fly vector (33-35). After reproduction in the alimentary tract, the promastigotes migrate to-

wards the salivary glands and oesophagus, transform into infective metacylcic promastigotes 

and are transmitted along with the insect saliva, containing anticoagulant to prevent blood 

coagulation, to the mammalian host during the next blood meal (32). After entry into the host, 

the promastigotes are rapidly taken up by neutrophils and thereafter mainly reside within 
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macrophages and DCs. Within these professional phagocytes, the parasite-enclosing para-

sitophorous vacuoles fuse with lysosomes to form phagolysosomes, which are acidic com-

partments rich in microbicidal peptides and hydrolytic enzymes and wherein Leishmania pro-

mastigotes transform into and replicate as amastigotes (36, 37). Thereafter, amastigotes can 

be phagocytosed by new monocyte-derived cells or can be taken up by the sand fly during a 

blood meal, thereby completing its life cycle (38, 39) (Figure 1.2). 

Figure 1.2: Leishmania life cycle. Leishmania parasites maintain their life cycle by residing inside mam-

malian (blue cycle) and sand fly (green cycle) hosts. Leishmaniasis is transmitted by the bite of infected 

female phlebotomine sandflies. The sand fly injects promastigotes into the mammalian skin during a 

blood meal (1). Upon inoculation into the skin, promastigotes are rapidly phagocytised by neutrophils 

(2) and thereafter transfer to monocyte-derived phagocytes (3). Promastigotes transform into 

amastigotes inside the phagolysosomes of these professional phagocytes and multiply by simple division 

(4). Amastigote-infected monocyte-derived cells are ingested by a sand fly during their blood meal and 

amastigotes are released inside the sand fly midgut (5), where they transform into procyclic pro-

mastigotes (6). Procyclic promastigotes migrate towards the alimentary tract (7), divide and migrate to-

wards the oesophagus, where they transform into infective metacyclic promastigotes (8). These metacy-

clic promastigotes can be ingested into a mammalian host by another blood meal, thereby completing 

the Leishmania life cycle. Created with Biorender. 
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1.3 Immune response during Leishmania infection 

1.3.1 Host cell entry 

Complement 

Upon skin infiltration, Leishmania promastigotes evade immediate host immune responses by 

entering different types of host cells, which include neutrophils, macrophages, fibroblasts, 

keratinocytes and DCs. This intracellular lifestyle provides several advantages, including nu-

trient accessibility and evasion from the immune system (40). An important regulator in Leish-

mania uptake by professional phagocytes is C3, which is part of the complement system. The 

complement system represents a network of activators, regulators, effectors and signals that 

are involved in rapid clearance of invading pathogens (41). There are three distinct pathways 

through which complement can be activated: the classical, the lectin and the alternative path-

way. Whereas the classical and the lectin pathway require antibody or lectin binding respec-

tively, the alternative pathway is directly activated by the pathogens. Activated complement 

generates various effector molecules. C3a and C5a are involved in immune cell recruitment 

and activation, whereas C3b, iC3b, and C3d opsonise pathogens, thereby promoting their 

phagocytosis. The C5b-C6-C7-C8-C9 (C5b-9) membrane attack complex (MAC) directly pro-

motes lysis of the target pathogen (42-45) (Figure 1.3).  

Leishmania can use deposited C3b to enter macrophages and neutrophils through comple-

ment receptor (CR)2 and can be phagocytosed by monocytes through CR1 and CR3, which is 

associated to a low respiratory burst and therefore to parasite survival (46, 47). Leishmania 

have developed additional strategies to avoid killing by the complement system. The two major 

virulence factors of Leishmania are glycocalyx component lipophosphoglycan (LPG) and the 

leishmanial metalloprotease GP63. LPG is the major acceptor of C3b and is essential for re-

sistance to killing by the complement system in metacyclic promastigotes (48, 49). Similarly, 

GP63 converts C3 into iC3b, thereby inhibiting the formation of subsequent MAC (50) (Figure 

1.3). Importantly, LPG and GP63 induce phagocytosis through C3b receptor CD11b by C3b 

opsonisation or through direct binding to cell surface receptors such as the mannose and 

fibronectin receptor. Thus, LPG and GP63-mediated uptake into host cells protect Leishmania 

from the complement cascade killing. In addition, L. donovani inhibitor of Serine Peptidases 2 

(LdISP2) inhibits the lectin pathway of complement by inhibiting the formation of MAC and 

complement-mediated lysis via upregulation of C5aR signalling, which in turns promotes par-

asite survival inside the host (51). 



INTRODUCTION | IRIS BAARS 

7 

 

 

Figure 1.3: Activation of complement by Leishmania parasites. All three complement pathways are acti-

vated by Leishmania. The alternative pathway is activated directly by Leishmania and is considered to be 

the main complement pathway involved in Leishmania clearance. The classical pathway is activated by 

antibodies and the lectin pathway is activated by the binding of mannose-binding lectin (MBL) and 

ficolins on the parasite. Following activation of all pathways, the complement protein C3 convertase 

cleaves C3 to generate C3b. C3b facilitates the deposition of the C5b-C9 membrane attack complex 

(MAC) onto the surface of Leishmania, resulting in phagocytosis and killing by neutrophils and macro-

phages. However, lipophosphoglycan (LPG) and metalloproteinase glycoprotein (GP63) on the surface of 

Leishmania parasites inhibits MAC formation by cleaving the C3b into inactive C3b (iC3b), thereby pro-

moting safe entry into host cells and parasite survival. Created with Biorender. 

Pattern Recognition Receptors 

Neutrophils and macrophages, the major innate immune cells that respond to Leishmania in-

fection are equipped with specific receptors called pattern recognition receptors (PRR) (52). 

These receptors can detect conserved structures of pathogens called pathogen-associated 

molecular patterns (PAMPs), which results in the activation of inflammatory signalling path-

ways. The PRRs are subdivided into the membrane bound toll-like receptors (TLRs) and C-type 

lectin like receptors (CLRs), and the cytoplasmic Nod-like receptors (NLR), Aim2-like receptors 

(ALR), RIG-I like receptors (RLRs) and several cytoplasmic DNA sensors based on their locali-

sation and homology. TLR2, TLR4 and TLR9 play an important role in the immune response 

against Leishmania infection, of which TLR2 seem to be the most crucial. They are activated 

through recognition of glycolipids and LPG present in the cell membranes of the parasite (53). 
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These receptors are involved in the activation of neutrophils, macrophages, DCs and NK cells 

and ultimately contribute to driving CD4+ T cells to Th1 and Th17 cells. Specifically, TLR2 are 

involved in enhancing the production of cytokines such as Interleukin (IL)-12, tumor necrosis 

factor alpha (TNF-α), interferon gamma (IFN-γ), reactive oxygen species (ROS), nitric oxide 

(NO), nuclear translocation of NF-kappaB (NFκB) and expression of the chemokine CXCL1 (54-

56). All these mechanisms contribute to the defence against Leishmania infection. However, 

in some instances LPG binding to TLR2 can lead to a reduction in anti-leishmanial responses, 

thereby inducing Leishmania burden (44, 57, 58). Whether the TLR2-LPG interaction elicits a 

host-protective or disease-exacerbation response depends on several factors, such as the 

Leishmania species, TLR homodimer or heterodimer formation, tissue tropism, and differential 

downstream immune signalling (59). While TLR2, as well as TLR4, recognise Leishmania out-

side, TLR3 and TLR9 recognise Leishmania-related PAMPs inside the vacuole (44). Similar to 

TLR2, TLR9 promote the production of IL-12 and IFN-γ by DCs and are involved in the activa-

tion of NK cells and the recruitment of neutrophils (60-62). 

  



INTRODUCTION | IRIS BAARS 

9 

 

1.3.2 Innate immune response during Leishmania infection 

Neutrophils 

Neutrophils are the first innate immune cells responding upon Leishmania inoculation into the 

skin (19). They are recruited to the site of infection in response to several factors derived from 

the host, the sand fly, or the parasite itself. Neutrophils rapidly engulf Leishmania parasites 

and contribute to clearance of invading pathogens by formation of neutrophil extracellular 

traps (NETs) or by the secretion of neutrophil elastase (NE) or ROS (19, 63-65) (Figure 1.4). In 

addition, neutrophils can contribute to the recruitment of immune cells, such as additional 

neutrophils, monocytes, immature DCs and T cell subsets trough the secretion of cytokines 

and chemokines (66, 67). Although neutrophils are important contributors to Leishmania con-

trol, Leishmania have developed strategies to survive within neutrophils. Neutrophils have a 

short lifespan and rapidly undergo cell death, leading to their phagocytosis by macrophages. 

During Leishmania infection, the parasite resides within neutrophils, delaying the apoptosis 

of their initial host cell by activation of ERK1/2 and induction of anti-apoptotic proteins Bcl-2 

and Bfl-1 until macrophages are recruited to the site of infection (68). Thereafter, neutrophil 

cell death is induced in order to promote transfer into macrophages where the parasite can 

survive and replicate. In addition, Leishmania can evade neutrophil-mediated killing by inter-

fering with NETs. These NETs, released by neutrophils, are composed of nuclear DNA and 

granular and cytoplasmic proteins that form extracellular filaments, which can ensnare and 

kill microorganisms (69). Leishmania can induce both classical NETosis, which is ROS-depend-

ent and concludes with the death of the neutrophil, and early NETosis, which is ROS-inde-

pendent, does not result in neutrophil death and is associated with the trapping of microor-

ganism by chromatin (70-73). Some Leishmania promastigotes have been shown to be re-

sistant to NET-mediated killing by the expression of LPG on the promastigote cell surface (74). 

Also, 3’-nucleotidase/nuclease, a class I nuclease member expressed by Leishmania pro-

mastigotes, as well as the endonuclease Lundep present in the vector’s saliva are able to cleave 

NET-DNA, allowing parasites to escape the trapping and killing by NETs (75, 76). Moreover, 

NET formation has been shown to interfere with monocyte-derived DC differentiation and 

function, thereby promoting parasite survival (77, 78). In addition, L. major-infected neutro-

phils were shown to have enhanced uptake of apoptotic cells, thereby decreasing nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase and ROS production. This in turn also results 

in increased parasite survival (79).  
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Figure 1.4: Immune response against Leishmania infection. Upon Leishmania entry into the skin dermis, 

different phagocytic cells infiltrate to the infection site. Infiltrating neutrophils rapidly engulf Leishmania 

parasites and contribute to clearance of the parasite by formation of neutrophil extracellular traps (NETs) 

or by the secretion of neutrophil elastase (NE) or reactive oxygen species (ROS). Additionally, infected 

neutrophils can become apoptotic, thereby promoting parasite phagocytosis by macrophages. Parasites 

can also be engulfed antigen-presenting cells (APCs), such as resident dendritic cells (DC) and monocyte-

derived cells, which migrate to the draining lymph carrying Leishmania antigens. Inside the draining 

lymph node, parasite antigens are presented by such APCs. This antigen presentation, together with the 

production of Interleukin (IL)-12 by DCs and natural killer (NK) cells, induces CD4+ Th1 cell differentia-

tion. Th1 cells migrate to the infection site and finally produce and secrete Interferon (IFN)-γ and Tumor 

necrosis factor (TNF)-α. This in turn induces the production macrophage-derived iNOS and thereby of 

nitric oxide (NO), which promotes Leishmania killing. A Th1-mediated immune response is therefore 

associated to parasite clearance. Additionally, the differentiation of CD4+ Th2 cell inside the draining 

lymph node and the subsequent migration of Th2 cells to the site of infection leads to the production of 

IL-4, IL-5, IL-9 and IL-10 and does not induce iNOS production by macrophages. A Th2-mediated im-

mune response is therefore associated with parasite survival. Created with Biorender. 

Monocyte-derived cells 

Although neutrophils are the initial host cell of Leishmania parasites, monocyte-derived cells, 

and more specifically macrophages, are the primary resident cell of the parasite and the major 

effector cells to kill the parasite (19, 80). Leishmania infect macrophages directly after being 

released from neutrophils or following the phagocytosis of apoptotic neutrophils containing 



INTRODUCTION | IRIS BAARS 

11 

 

intact parasites, with Leishmania parasites using the neutrophils as “Trojan horses” before 

they enter macrophages (19, 81, 82) (Figure 1.4). In vivo imaging revealed that parasites can 

also escape dying neutrophils to infect macrophages, which was termed the ‘Trojan rabbit’ 

strategy (83). Macrophage inflammatory protein (MIP)-1β secretion by infected neutrophils 

has been suggested to be involved in the recruitment of macrophages to the site of the infec-

tion (82). Once the parasite is recognised by the macrophage, host cell vesicles originating 

from endosomes, lysosomes and the endoplasmic reticulum fuse with the plasma membrane 

to contribute to parasite engulfment and formation of the promastigote-containing phago-

somes, which subsequently fuse with further lysosomes (84-86). The result of this fusion is 

the formation of a phagolysosomal parasitophorous vacuole, where Leishmania develop into 

amastigotes.  

The phagocytic effect of macrophages is usually initiated following their activation by DCs and 

by opsonisation (87, 88). There are different activation and maturation states of recruited 

monocyte-derived phagocytes that can be found inside the infected dermis of the mouse skin, 

which can be distinguished based on their Ly6C and major histocompatibility complex (MHC)-

II expression (89). Previous findings have indicated an important role of such inflammatory 

monocytes as a niche for the parasite during primary infection and for efficient containment 

of L. major during secondary infections (90). More recently, our group has shown that CD11c-

expressing Ly6C+CCR2+ monocytes, resembling an inflammatory phenotype, constitute a res-

ervoir for efficient Leishmania proliferation and cell-to-cell transmission (91).  

While macrophages are the main effector cells during Leishmania infection, strategies to cir-

cumvent the anti-microbial effects of macrophages are of utmost importance for Leishmania 

to spread and survive. Therefore, the parasite has developed several of such strategies. First, 

Leishmania use GP63 to interfere with macrophage signalling pathways to overcome the mi-

crobicidal effect of the host and use LPG to inhibit the fusion of the parasitophorous vacuole 

with host cell lysosomes (92-96). In addition, Leishmania amastigotes are able to survive in 

the harsh highly acidic environment of the phagolysosome and are even able to hijack its anti-

microbial defence mechanisms (97-99). Lastly, Leishmania are able to interfere with macro-

phage functioning by modulating the adhesion and migratory capability of mononuclear phag-

ocytes (100, 101). 

Dendritic cells 

DCs are antigen-presenting cells (APCs) that are able to take up, process and present patho-

gen-derived material, called antigens, to T cells via antigen presentation platforms, called 

MHC molecules (102). They form the link between the innate and the adaptive immune system. 

Following the recognition and internalisation of pathogens, DCs migrate to secondary lym-

phoid organs to present processed antigens to naïve T cells (103) (Figure 1.4). Subsequently, 

the adaptive immune response is activated via the presentation of small endogenous peptides 



INTRODUCTION | IRIS BAARS 

12 

 

through MHC class I molecules, recognised by cytotoxic CD8+ T cells, or via the presentation 

of small exogenous peptides through MHC class II molecules, recognised by CD4+ T helper 

cells. DCs are also able to take up, process and present exogenous antigens with MHC class I 

molecules to cytotoxic CD8+ T cells, a process known as cross-presentation (104). Addition-

ally, co-stimulatory molecules, such as CD40, CD80, and CD86, provide secondary signals for 

T cell expansion and differentiation and are therefore critical for effective antigen presentation 

(105). The infection of DCs with Leishmania results in the production of Interleukin-12p70 

(IL-12), which facilitates the deployment of a so-called Th1 response (see chapter 1.3.3 -1.3.4 

for more detail) and enhances protective immunity through activation of NK cells and subse-

quent IFN-γ production (60, 61, 92). DCs are therefore considered to play a central role in 

facilitating an effective immune response against Leishmania (106-108). Dermal monocyte-

derived DCs were shown to be especially important in the induction of protective Th1 re-

sponses against Leishmania. These dermal monocyte-derived DCs, which differentiate inside 

the dermis and subsequently migrate into the draining lymph nodes (dLNs), differ from lymph 

node monocyte-derived DCs, which are recruited directly to the dLNs (107). 
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1.3.3 Adaptive immune response during Leishmania infection 

B and T lymphocytes 

As mentioned previously, the main factor influencing the severity of Leishmaniasis is the im-

mune response developed by the host, and, more specifically, the adaptive immune response 

(25). The functions of the adaptive immune response are executed by lymphocytes, the B and 

T cells. B cells are responsible for the humoral response of the adaptive immune system and 

are characterised by the production of pathogen-neutralising antibodies, also known as im-

munoglobulins, upon antigen recognition via a membrane-bound B-cell receptor (BCR). Ad-

ditionally, B cells are involved in chemokine and cytokine secretion and function as antigen-

presenting cells via MHC-II-dependent antigen presentation (109). On the other hand, T cells 

possess exclusive surface receptors, called T cell receptors (TCRs), that recognise antigens 

bound to MHC on the surface of APCs. Naïve T cells become activated through recognition of 

the MHC-bound antigen by the TCR and binding of co-stimulatory molecules on the surface 

of APCs with co-stimulatory receptors expressed on T cells. This in turn leads to the secretion 

of cytokines and an antigen-specific T cells response (110). Furthermore, the proliferating 

CD4+ T helper cells, which later develop into effector T cells, differentiate into the T helper 

(Th) subtypes, Th1 and Th2 (110-112) (Figure 1.4).  

A Th2 response is most typically associated with IL-4, IL-5, IL-9 and IL-13 production, which 

drives B cell proliferation and immunoglobulin class-switching to immunoglobulin E (IgE) and 

basophil and mast cells activation (111, 113). Because Leishmania are obligate intracellular 

parasites and are therefore not efficiently neutralised by antibodies, individuals with a pre-

dominantly humoral response, mediated by Th2 cells, are unable to control the infection and 

exhibit a severe form of the disease, called diffuse cutaneous leishmaniasis (25, 114). Suc-

cessful control of Leishmania infection is associated with a strong Th1 response, in which Th1 

cells activate macrophages through IFN-γ production (115-118). Activated T cells also upreg-

ulate CD40L, which bind CD40 on macrophages and act as a secondary activation signal (119). 

Activated macrophages in turn express inducible nitric oxide synthase (iNOS), an enzyme that 

produces NO, which is needed for clearance of intracellular Leishmania parasites (90, 107, 

118, 120, 121) (Figure 1.4). However, an exaggerated T cell response accompanied by the 

production of high levels of proinflammatory cytokines, such as IFN-γ and TNF-α, as well as 

a decreased production of IL-10 and transforming growth factor β (TGF-β) can also lead to 

immunopathology, which, in severe cases, can lead to mucosal leishmaniasis (122).  

To evade an effective Th1 response, Leishmania employ several mechanisms that interfere 

with the antigen presentation machinery. For example, L. donovani was suggested to disrupt 

membrane rafts, which are important for antigen presentation and efficient activation of ef-

fector T cells, in infected macrophages (123, 124). In addition, Leishmania GP63 can cleave 

the CD8 molecule on T cells to suppress proper recognition of exogenous Leishmania antigens 
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on MHC-I, also known as cross-presentation (125). With these mechanisms, Leishmania are 

able to suppress both CD4+ and CD8+ T cell activation. However, paracrine secretion of IFN-γ 

by T cells has been shown to activate infected macrophages even without direct cell-to-cell 

contact, suggesting that CD4+ T cells can exert their protective activity by engaging a minority 

of infected cells (126). 

Importantly, the adaptive immune response is essential for immunity against secondary Leish-

mania infections. That is, it has been shown that upon resolution of primary Leishmania in-

fections, a small pool of parasites remains at the primary infection site and in the dLNs. These 

parasites are responsible for a long-lasting memory CD4+ T cell-dependent immunity to re-

infection and were mainly found in iNOS+ macrophages (127, 128). Two distinct populations 

of persistently-infected macrophages have been described in the skin. One subset contained 

parasites that remain quiescent, whereas parasites in another subset continued to replicate in 

a manner similar to those during the acute stage of the infection (128). The fact that slowly 

proliferating, persistent parasites can remain within iNOS+ host cells suggest that these par-

asites can somehow circumvent killing by iNOS. A possible explanation is that cells expressing 

NO are activated by, and preferentially kill, metabolically active parasites. Another explanation 

is that persistent parasites are generally resistant to killing by NO produced in the tissue. In 

addition to the importance of CD4+ T cells and iNOS+ macrophages, Foxp3+ Treg cells, im-

mune cells that play an important role in homeostasis via suppressing aberrant immune re-

sponses, also seem to play an important role during Leishmania persistence and help main-

taining efficient immunity against reinfection (129-134).  



INTRODUCTION | IRIS BAARS 

15 

 

1.3.4 Cytokines and paracrine signalling during Leishmania infection 

Type 1-related cytokines 

Cytokines related to an efficient Th1 response are IL-12, IFN-γ and TNF-α. IL-12, predomi-

nantly produced by macrophages, DCs and NK cells, is essential for differentiation of IFN-γ- 

and TNF-α-producing Th1 cells, which in turn are responsible for the activation of inflamma-

tory macrophages (135, 136) (Figure 1.4). These inflammatory macrophages are crucial for 

the killing of Leishmania parasites via the triggering of a respiratory burst. This burst is asso-

ciated with enhanced production of ROS and reactive nitrogen species (RNS), including super-

oxide, hydrogen peroxide, hydroxyl radicals, and NO, which exhibit high microbicidal capacity 

(25, 137, 138). Especially NO, which is produced by iNOS under consumption of L-arginine 

and in the presence of cofactors NADPH, tetrahydrobiopterin, flavin adenine nucleotide (FAD) 

and flavin mononucleotide (FMN), is essential for the resolution of Leishmania infection (139-

141). In addition to the antimicrobial effect of respiratory burst-derived reactive oxygen in-

termediates (ROIs) and reactive nitrogen intermediates (RNIs) alone, NO together with super-

oxide can form the even more reactive peroxynitrite, which has been shown to be an effective 

antimicrobial compound (142). Thus, peroxynitrite formation might be a way of concentrating 

the antimicrobial effect of ROIs and RNIs to the site where it is needed, and NO production 

could be more effective at sites with high oxygen availability. 

Type 2-related cytokines 

In contrast to Th1-related cytokines, IL-4 and IL-13, produced by Th2 lymphocytes, induce 

the anti-inflammatory phenotype (143). Anti-inflammatory macrophages are characterised by 

polyamine biosynthesis via activation of the enzyme arginase and the production of urea and 

L-ornithine, which are beneficial for Leishmania proliferation and survival inside macrophages 

(137, 144, 145). In addition, infection of macrophages by Leishmania also enhances the pro-

duction of other immuno-regulatory cytokines, such as IL-10 and TGF-β, which deactivate 

macrophage functions (11). IL-10 also inhibits the respiratory burst and the production of 

inflammatory cytokines, particularly TNF, by macrophages and thus inhibits the anti-microbial 

mechanisms of the infected host cell (143) (Figure 1.4).  

Interleukin-11 

Although IFN-γ, TNF-α and IL-12 are known to be the main players in Leishmania clearance, 

other cytokines also play role. As such, IL-6 is expressed in experimental cutaneous and vis-

ceral Leishmania infections of the mouse (146-151), and was shown to be present also in 

cutaneous, mucosal, and visceral human leishmaniasis (152-161). However, evidence exists 

that IL-6 might either promote, suppress, or leave unaltered intracellular antileishmanial host 

defence mechanisms, leaving the role of this cytokine during Leishmania infection unclear 

(162-168). In addition, recent studies have suggested a role for IL-11, another member of the 
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IL-6 family of cytokines, during Leishmania infection. IL-11 activates its target cells by first 

binding to the membrane-bound IL-11 receptor (IL-11R), which subsequently results in the 

recruitment of two molecules glycoprotein 130 (gp130), the formation of a gp130 homodimer 

and the activation of intracellular signalling cascades, most notably the Jak/STAT signalling 

pathway (169, 170). Furthermore, it can bind to soluble forms of the IL-11R (sIL-11R), which 

also induce gp130 homodimerization and activate intracellular signalling (171). Although the 

biological functions of IL-11 are under intense investigation, it is established that it mediates 

proliferation, production of cytokines, immunity to infection, and inflammatory response 

(172-175). IL-11 has important immunomodulatory functions by acting on macro-

phages/monocytes, CD4+ T cells and B cells and has been shown to be upregulated in bacterial 

and viral infection (176-178). In human, IL-11 has been implied to play a role in cancers, 

tuberculosis, and multiple sclerosis and inhibition of IL-11 signalling has been proposed as a 

therapeutic strategy for a number of diseases, including cancer, cardiovascular and lung dis-

eases (179-182). Furthermore, a role for IL-11 has been implied in phagocytosis. In more 

detail, IL-11 was suggested to affect phagocytic functions in osteoclasts and was shown to 

reduce myelin phagocytosis by microglia, macrophage-like immune cells of the central nerv-

ous system (183, 184). Also, CsIL-11, a teleost IL-11 homologue, was shown to increase the 

phagocytic capacity of peripheral blood leukocytes (185). Interestingly, increased levels of IL-

11 mRNA in the lesions of L. donovani-infected patients have been reported (186). However, 

a role for IL-11 on the monocyte recruitment and pathogen uptake during Leishmania infec-

tion has not been investigated so far. 
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1.4 Cell-to-cell transmission of Leishmania parasites 

Host cell exit of intracellular pathogens, such as Leishmania, and subsequent infection of new 

cells represents a fundamental step in infection, and might represent an Achilles' heel of mi-

crobial pathogenesis (40). Although the mechanisms by which Leishmania parasites enter into 

and exit from neutrophils have been intensely studied (82, 83), the exit from and transfer 

among monocyte-derived cells remains largely uncharacterised. While very early studies in 

mice postulated that the unrestricted replication of the intracellular amastigotes causes host 

cell rupture and release of the parasites (187), more recent findings suggested that the release 

of Leishmania from the infected host cells is strictly regulated. For example, Rittig and col-

leagues found evidence that L. major is released by murine peritoneal macrophages through 

exocytosis (188, 189). Furthermore, L. amazonensis was shown to use a pore-forming cytol-

ysin to exit host cells (190-192). Despite these findings, the mechanisms involved in efficient 

parasite exit and transmission in vivo are still largely unknown. Unravelling these mechanisms 

is however of utmost importance, since Leishmania amastigotes, which are proliferating in-

tracellularly, have to leave infected macrophages to infect other cells in order to persist and 

propagate at the site of infection. Pathogens can exit their host cells either by lytic or non-

lytic mechanisms. Non-lytic mechanisms include exocytosis, extrusion, budding, protrusion 

and apoptotic programmed cell death, whereas lytic mechanisms include cell lysis and necrop-

totic and pyroptotic programmed cell death (Figure 1.5). The majority of intracellular patho-

gens most likely utilises more than one of these strategies, depending on life-cycle stage, 

environmental factors and host cell type (193-197). One possible mechanism involved in the 

spread of Leishmania parasites among phagocytic subsets is cell death of the infected host 

cell.  
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Figure 1.5: Pathogen exit strategies. Pathogens can exit host cells by various exit strategies. After path-

ogen entry, pathogens reside within a vacuole inside the host cell cytoplasm. Pathogens can exit their 

host cell while remaining within a vacuole by exocytosis (upper left section). Pathogens can also exit the 

vacuole and translocate into the cytosol by promoting vacuole lysis. After vacuole exit, pathogens can 

exit their host cell by cell lysis, necroptosis or pyroptosis, which are all associated with cell membrane 

rupture (upper right section) or by non-lytic mechanisms, thereby leaving the host cell intact. These 

mechanisms include extrusion, budding, protrusion, and apoptosis (lower section). Created with Bioren-

der. 
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1.5 Host cell death during Leishmania infection 

Cell death is critical for homeostatic maintenance and plays an important role during inflam-

mation (198). Cells can be removed either in a controlled manner, by programmed cell death, 

or in a lytic poorly controlled manner. The most well characterised and prevalent form of con-

trolled cell death, apoptosis, involves specific molecular machinery that ensures non-lytic re-

moval of cells (199). Other forms of regulated cell death include autophagy, necroptosis and 

pyroptosis, each with specific regulatory factors and effects on the surrounding, whereas the 

uncontrolled lysis of cells, also known as necrosis, results in the unspecific spilling of the 

cellular contents into surrounding tissues (200).   

Autophagy 

Autophagic cell death is characterised by the appearance of large intracellular vesicles. Alt-

hough autophagy is officially considered a cell death pathway, it is predominantly a survival 

process associated with the maintenance of cellular and tissue homeostasis (201, 202). The 

pathway is activated in response to a metabolic crisis or in order to remove damaged orga-

nelles and protein aggregates via lysosome-mediated degradation and therefore usually ac-

companies rather than promotes cell death (203). A specific autophagic pathway, known as 

LC3-associated phagocytosis (LAP), plays a role in eliminating intracellular pathogens (204). 

LAP results in lysosomal fusion and maturation of the LAPosome, which engulfs pathogenic 

particles (205). Although the relevance of autophagic cell death in Leishmania infection re-

mains poorly understood, enhanced LC3 labelling, suggesting autophagy induction, was ob-

served in various in vitro and in vivo Leishmania infection models (206-213). Furthermore, L. 

major GP63 was shown to inhibit LC3 recruitment to the phagosomal membrane, resulting in 

parasite escape from LAP-promoted engulfment and therefore potentially in enhanced intra-

cellular survival (210, 214). 

Necrosis and necroptosis 

Necrosis and necroptosis are characterised by swelling of cell organelles, plasma membrane 

rupture and eventual lysis of the cell. This in turn results in spillage of intracellular contents 

into the surrounding tissue and is therefore associated to tissue damage (215, 216). Necrotic 

and necroptotic cell death are triggered by extracellular toxic stimuli, including hypoxia, ex-

treme temperatures, radiation, drugs, and pathogens, and are generally accompanied by an 

inflammatory response (217). Although necrosis is mainly associated with caspase-independ-

ent uncontrolled cell death occurring as a consequence of irreparable cell damage, necroptosis 

occurs in a regulated manner. Necroptosis is initiated by several signalling pathways and oc-

curs due to the activation of the kinase domain of the receptor-interacting protein 1 (RIP1) 

and the assembly of the RIP1/RIP3-containing signalling complex. It is triggered by members 

of the TNF family, requires caspase-8 inhibition, and assembly of the necrosome (RIPK1-RIPK3 
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complex IIb) (218, 219). When looking at Leishmania infection, previous studies have demon-

strated that RIPK1-RIPK3-MLKL-associated necroptosis is important for neutrophil death dur-

ing L. infantum infection and for macrophage death during L. braziliensis, L. amazonensi and 

L. major infection (220-222). In case of necrosis, high mobility group box 1 protein (HMGB1) 

and hepatoma-derived growth factor (HDGF) released from necrotic cells activate nod-like 

receptor protein 3 (NLRP3), resulting in inflammasome activation and release of the pro-in-

flammatory cytokine IL-1β. NLRP3 inflammasome activation in bystander cells is triggered 

mainly through ATP produced by mitochondria released from damaged cells (223). With regard 

to Leishmania, the inflammasome, although playing a more central role in pyroptotic cell 

death, was shown to be important for restriction of parasite replication during infection with 

L. amazonensis, L. braziliensis, and L. infantum chagasi, but not during L. major infection 

(224). 

Pyroptosis 

Pyroptosis is a form of programmed cell death, which, unlike apoptosis, is pro-inflammatory 

(225). This form of cell death relies on caspase-1 activation and is intended to remove path-

ogens through massive induction of inflammatory signalling. Caspase-1-dependent pore for-

mation results in rapid rupture of the plasma membrane and the release of the pro-inflam-

matory cytokines, IL-1β and IL-18 (226-228). Pyroptosis is initiated by activation of the NLRs, 

mainly NLRP3 or NLRC4, upon detection of danger signals during infection (229). NLRs then 

promote the formation of the inflammasome and the activation of caspase-1 through inflam-

masome adaptor protein ASC (230-233). Sequentially, activated caspase-1 is able to cleave 

the pore forming Gasdermin D (GSDMD) proteins, which are essential for the pyroptosis-me-

diated cytokine release (227, 234, 235). Thus far, the role of pyroptosis during Leishmania 

infection remains inconclusive. Recently, we were able to demonstrate that L major spread in 

macrophages is diminished upon impairment of the pyroptosis pathway in vitro, implicating 

pyroptotic cell death as a possible exit mechanism from infected macrophages (236). Another 

recent study showed that L. amazonensis infection triggered GSDMD activation in macro-

phages, leading to transient pore formation, potassium efflux and NLRP3 inflammasome ac-

tivation, although it did not lead to cell death (237). Moreover, other studies have suggested 

that host macrophage pyroptosis may contribute to Leishmania dissemination and that L. 

amazonensis and L. donovani infection suppress macrophage pyroptosis (94, 238-241).  

Apoptosis 

During this thesis, we will mainly focus on apoptotic cell death, the most common type of 

programmed cell death. This evolutionarily conserved form of cell death contributes to organ 

development and tissue homeostasis and also plays an important role in preventing pathogen 

reproduction, as previously observed during viral infections (242). Apoptosis focusses on re-

moving cellular debris in a highly regulated and controlled manner without causing collateral 
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damage to surrounding tissues. It is characterised by cell shrinkage, phosphatidylserine (PS) 

exposure, membrane blebbing, DNA fragmentation, and packaging of cell contents into apop-

totic bodies and usually results in phagocytosis of such apoptotic bodies (200, 243-245). 

Phagocytosis of pathogen-containing apoptotic bodies prevents the release of intracellular 

pathogens to the extracellular space, often facilitating the re-uptake of pathogens and thus 

their cell-to-cell spread (246). Apoptosis is dependent on the activation of a series of cyste-

ine-aspartate proteases known as caspases and can be initiated through two distinct signalling 

pathways (247). The intrinsic, or mitochondrial, pathway is usually initiated in a cell-autono-

mous manner. This pathway is predominantly mitochondrial-mediated and is triggered by 

various extra- and intra-cellular stresses, which include oxidative stress, irradiation, and 

treatment with cytotoxic drugs (248, 249). Additionally, the pathway can be initiated by the 

absence of pro-survival signals, such as cytokines, hormones and growth factors in the im-

mediate environment of the cell. The intrinsic pathway is controlled by the Bcl2 protein family 

and more specifically, by the insertion of Bax/Bak into the mitochondrial outer membrane, 

which results in cytochrome c release from the mitochondrial intermembrane space into the 

cytosol and eventually in apoptosis (250, 251). On the contrary, cytochrome c release is 

blocked by the anti-apoptotic proteins, Bcl-2 and Bcl-xL (252). 

The extrinsic, or death receptor, pathway involves a classical ligand–cell-surface-receptor in-

teraction. This pathway is critical for immune system function and homeostasis and is engaged 

when extracellular ligands such as TNF, Fas ligand (Fas-L), and TNF-related apoptosis-induc-

ing ligand (TRAIL) bind their corresponding transmembrane receptors (253, 254). This binding 

subsequently results in the formation of a death-inducing signalling complex (DISC) and even-

tually leads to a cascade of caspase activation and death of the cell (255). 

Both the intrinsic and the extrinsic pathway converge at the execution phase, a phase mainly 

mediated by caspases (256). These caspases have been subclassified into initiator caspases 

(caspase-8 and -9) and executioner caspases (caspase-3, -6, and -7). The initiator caspases 

are activated through “induced proximity” when adaptor proteins interact with the pro-do-

mains and promote caspase dimerization (257, 258). In contrast to the initiator caspases, the 

executioner caspases are activated due to proteolytic cleavage. Cleavage of caspase-6 is me-

diated by caspase-3 and -7, whereas activation of caspase-3 and -7 is generally carried out 

by the initiator caspases, caspases-8 and -9 (259). The activation of the executioner caspases 

initiates a cascade of events that results in endonuclease-mediated DNA fragmentation, de-

struction of the nuclear proteins and cytoskeleton, crosslinking of proteins, the expression of 

ligands for phagocytic cells and the formation of apoptotic bodies (260, 261).  

Findings regarding host cell apoptosis and Leishmania infection so far remain inconclusive. A 

number of previous studies have suggested that Leishmania inhibit apoptosis. For example, 

L. donovani infection was suggested to inhibit the programmed cell death-1 (PD-1) receptor 

or to activate the anti-apoptotic AKT signalling pathway, or the anti-apoptotic protein myeloid 
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cell leukemia 1 (MCL-1) (262-267). Additionally, L. donovani and L. infantum promastigotes 

have been suggested to increase anti-apoptotic Bcl-2 in macrophages (268, 269). Moreover, 

camptothecin-induced apoptosis of monocyte-derived DCs was inhibited by infection with L. 

mexicana promastigotes and amastigotes and Akarid and colleagues showed that L. major 

inhibits apoptosis in murine bone marrow-derived macrophages (270-275). On the contrary, 

there are also a number of reports showing that Leishmania induce apoptosis. DaMata and 

colleagues demonstrated that L. amazonensis-induced macrophage apoptosis was associated 

with activation of caspases-3, -8 and -9 (276). Furthermore, parasite viability was shown to 

be an essential criterion for apoptosis induction in infected macrophages in vitro and L. ae-

thiopica, but not L. mexicana, was shown to induce caspase-3-dependent host macrophage 

apoptosis and cell-to-cell spreading in vitro (277, 278). This suggests that host cell apoptosis 

might be Leishmania state and strain dependent, which is in line with another study showing 

that Leishmania infection protects murine macrophages from cycloheximide-induced apop-

tosis in a species and strain specific manner (279). Recently, we and others showed that Leish-

mania cell-to-cell transmission among phagocytes might be associated to host cell death (38, 

91). Also, in a human in vitro infection model, L. major promastigotes, hiding inside apoptotic 

neutrophils, were demonstrated to transfer to macrophages, using the neutrophils as Trojan 

horses (82). Finally, increased apoptosis in CD4+ lymphocytes and monocytes was observed 

in patients with acute visceral leishmaniasis (280). 
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1.6 Project aims 

Despite the above-described findings about Leishmania cell-to-cell transmission and host cell 

death, transfer mechanisms remain enigmatic. So far, studies have mainly focused on the 

connection between infection-related inflammation and cell death and not on the link between 

infection and cell death on a cellular level. Therefore, we aimed to investigate host cell death 

in relation to L. major exit from and uptake into monocyte-derived phagocytes during ongoing 

infection in vivo.  

Using intravital 2-photon microscopy of the infected skin, we show here an increased apop-

tosis rate in L. major infected phagocytes in the ongoing infection, and direct cell-to-cell 

transfer to newly recruited phagocytes. This transfer involved the uptake of cell material from 

the original infected host cell both in vivo and in isolated human cells. In addition, our findings 

indicated that L. major proliferation specifically modulates host cell metabolism and drives 

cell death, thereby enabling the efficient dissemination of the pathogen to new phagocytes.  

As cell-to-cell transfer of L. major seems to be linked with pathogen proliferation, we further-

more analysed the microenvironment of cells infected with high- and low-proliferating path-

ogens. We could show by intravital 2-photon microscopy that pathogen proliferation in the 

proximity of blood vessels is higher, indicating a specific distribution of cell-to-cell transfer 

into monocytes newly recruited from the bloodstream. 

Moreover, since IL-11 has been suggested to play a role in phagocytosis and increased levels 

of IL-11 mRNA were observed in the lesions of L. donovani-infected patients, the contribution 

of IL-11 signalling on monocyte-derived cell recruitment and infection by L. major in a mouse 

model of cutaneous leishmaniasis was established. In this regard, we show using flow cytom-

etry analysis of murine L. major-infected ear tissue that ablation of IL-11R signalling does not 

influence monocyte recruitment in Leishmania-infected ear tissue and does not affect Leish-

mania infection in monocytes in vivo. 
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2. MATERIALS AND METHODS 

2.1 Materials 

Table 2.1.1: Mouse lines. 

Mouse line Supplier/Source 

B6.129(ICR)-Tg(CAG-ECFP)CK6Nagy/J Jackson Laboratories 

B6.129S7-Rag1tm1Mom/J Jackson Laboratories 

B6.Cg-Tg(Itgax-Venus)1Mnz/J Jackson Laboratories 

B6N-TyrcBrdCrCrl Charles River 

B6.FVB-Tg(ITGAX-DTR/EGFP)57Lan/J Jackson Laboratories 

B6.SJL-PtprcaPepcb/BoyJ Jackson Laboratories 

C57BL/6J  Charles River 

IL11R+/+ Christoph Garbers, University of Mag-

deburg 

IL11R-/- Christoph Garbers, University of Mag-

deburg 

Table 2.1.2: Biological agents. 

Agents Supplier/Source 

Leishmania major line 

LRC-L137 V121 wild type (Handman et al., 1983) 

LRC-L137 V121, dsRed expressing (Misslitz et al., 2000) 

LmSWITCH, mKikume expressing (Müller et al., 2013) 

MHOM/IL/81/FEBNI, dsRed expressing (Wenzel et al., 2012) 

Cell line 

294T Stefanie Kliche, University of Magde-

burg 

Plasmid/construct 

pLC-ECO Stefanie Kliche, University of Magde-

burg 

pLEXSY-hyg2 Jena Bioscience 

CFP-DEVD-YFP Philippe Bousso, Institut Pasteur, Paris 

CFP-DEVG-YFP Philippe Bousso, Institut Pasteur, Paris 

Table 2.1.3: Basic buffers. 

Buffer Reagents Concentration/amount 

Flow cytometry/MACS 

in PBS 

FCS 

EDTA 

0.5% (w/v) 

2.5 mM 
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PBS 

in ddH2O, pH 7.4 

NaCl 

KCl 

Na2HPO4 

KH2PO4 

140 mM 

2.7 mM 

8 mM 

1.8 mM 

TAP 

in 100 mL ddH2O 

Tris 

Acidic acid 

EDTA 

242 g 

57.1 mL 

37.3 g 

Table 2.1.4: Primer sequences. 

Gene Forward primer Reverse primer 

SHERP GACGCTCTGCCCTTCACATAC TCTCTCAGCTCTCGGATCTTGTC 

ABC CGGGTTTGTCTTTCAGTCGT CACCAGAGAGCATTGATGGA 

NMT CCGTCGACTGTGATTGGGAA GTGAATGCGCCACGATCAAA 

Table 2.1.5: Antibiotics. 

Antibiotic Stock concentration Supplier 

Ciprofloxacin (Ciprobay) 50 mg/mL in ddH2O Bayer 

Hygromycin B 50 mg/mL in PBS Thermo Fisher Scientific 

Neomycin sulfate 50 mg/mL in ddH2O Sigma-Aldrich 

Penicillin/Streptomycin 10000 U, 10000 μg/mL Biochrom AG Carl Roth 

Table 2.1.6: Kits. 

Kit Supplier 

CF® 640R TUNEL Assay Apoptosis Detection Kit Biotium 

High-Capacity cDNA reverse Transcription Kit Applied Biosystems™ 

LIVE/DEAD™ Fixable Violet Dead Cell Stain Kit Thermo Fisher Scientific 

SYBRTM Green PCR Master Mix Applied Biosystems™ 

Table 2.1.7: Biochemical and chemical reagents. 

Reagent Source/Supplier 

2-Mercaptoethanol Carl Roth 

2-Mercaptoethanol Sigma-Aldrich 

2-NBDG (2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-

yl)Amino)-2-Deoxyglucose) 

Invitrogen 

Accutase BioLegend 

Acepromazin CEVA GmbH 

Adenine Sigma-Aldrich 

Agarose Standard Carl Roth 

AlexaFluor405SE Molecular Probes 

AmBisome Gilead Sciences 
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Aminoethyltrioxsalen (AMT, psoralen) Sigma-Aldrich 

BD FACS Flow™ Sheath Fluid BD Bioscience 

BD FACS™ Clean Solution BD Bioscience 

BD FACS™ Rinse Solution BD Bioscience 

Biotin Sigma-Aldrich 

Biotin MicroBeads Miltenyi Biotech 

Biopterin Sigma-Aldrich 

BODIPY™ 500/510 C1, C12 (4,4-Difluoro-5-Methyl-4-

Bora-3a,4a-Diaza-s-Indacene-3-Dodecanoic Acid) 

Invitrogen 

BODIPY™ FL C16 (4,4-Difluoro-5,7-Dimethyl-4-Bora-

3a,4a-Diaza-s-Indacene-3-Hexadecanoic Acid) 

Invitrogen 

BODIPY™ FL LDL (Low Density Lipoprotein from Human 

Plasma, BODIPY™ FL complex) 

Invitrogen 

Bovine serum albumin (BSA) Sigma-Aldrich 

Calcium chloride (CaCl2) Carl Roth 

Caspase-3 reporter dye NucView405 Biotium 

Carboxyfluorescein succinimidyl ester (CFSE) Molecular Probes  

Chloroform Sigma–Aldrich 

Chloroquine Sigma-Aldrich 

Collagenase Sigma-Aldrich 

4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI) Sigma-Aldrich 

Diphtheria toxin (DTX) Sigma-Aldrich 

DMEM medium Sigma-Aldrich 

DNase I Invitrogen 

Endotoxin-Free Ultra Pure Water Merck 

Ethanol (99% v/v) Carl Roth 

Ethidium bromide Carl Roth 

Ethylenediaminetetraacetic acid (EDTA) Carl Roth 

Fetal Calf Serum (FCS) Pan Biothech GmbH 

Fetal Calf Serum (FCS) Sigma-Aldrich 

Gamma-interferon  R&D Systems 

Glycerol Carl Roth 

Glycogen Sigma-Aldrich 

Heat-inactivated fetal bovine serum PAN Biotech 

Hemin Sigma-Aldrich 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES)-Buffer 

Gibco 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES)-Buffer 

Biochrom AG 
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Isoflurane CP Pharma 

Isopropanol Carl Roth 

IVISense Vascular NP 680 Fluorescent Nanoparticles 

(AngioSPARK) 

PerkinElmer 

Ketamine Ratiopharm 

L-Glutamin Gibco 

L-Glutamin Biochrom AG 

Liberase™ TL Roche/Sigma-Aldrich 

N6-(1-iminoethyl)-L-lysine hydrochloride (L-NIL) Sigma-Aldrich 

LPS Sigma-Aldrich 

Macrophages colony-stimulating factor (M-CSF) PeProTech 

Macrophages colony-stimulating factor (M-CSF) R&D systems/bio-techne 

Magnesium chloride (MgCl2) Carl Roth 

Medium 199 Sigma-Aldrich 

Mouse Interleukin-3 R&D Systems 

Mouse Interleukin-6 R&D Systems 

Mouse serum Recovered from mice 

Natriumchloride (NaCl) Carl Roth 

Paraformaldehyde (PFA) Sigma-Aldrich 

PBS Dulbecco (phosphate-buffered saline, without (w/o) 

Ca2+, Mg2+) 

Biochrom AG 

Perm/Wash buffer BD Biosciences 

Polybrene Sigma-Aldrich 

Quick-Load 1 kb DNA Ladder New England Biolabs 

Random hexamer primers Thermo Fisher Scientific 

Retronectin Takara 

RPMI 1640 medium PAN Biotech 

RPMI 1640 medium Sigma-Aldrich 

SOC-medium New England Biolabs 

Sodium chloride (NaCl) Carl Roth 

Sodiumpyrovat Gibco 

Stem cell factor (SCF) Sigma-Aldrich 

StemSpan™ SFEM Stemcell 

Sucrose Carl Roth 

Tris (hydroxymethyl)-aminomethan (Tris) Carl Roth 

Triton X-100 Sigma-Aldrich 

TRIzol Invitrogen 

Trypan Blue Solution (0.4%) Sigma-Aldrich 
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Trypsin/EDTA Merck Millipore 

Xylazine (Rompun 2%) Bayer 

Table 2.1.8: Antibodies for negative hematopoietic stem cell selection via MACS. All antibod-

ies are biotin-labelled and diluted in MACS buffer. 

Antibody specificity Clone Supplier Dilution from com-

mercial stock 

CD127 (IL-7R) SB/199 BioLegend 1:500 

CD19 6D5 BioLegend 1:500 

CD3ε 145-2C11 BioLegend 1:500 

CD4 GK1.5 BioLegend 1:500 

CD45R/B220 RA3-6B2 BioLegend 1:500 

CD8a 53-6.7 BioLegend 1:500 

Ly-6G/Ly-6C (Gr-1) RB6-8C5 BioLegend 1:500 

TER119 TER-119 BioLegend 1:500 

Table 2.1.9: Antibodies for hematopoietic stem cell sorting using Aria III Cell Sorter. 

Antibody speci-

ficity 

Clone Supplier Dilution from 

commercial 

stock 

Label 

cKIT 2B8 BioLegend 1:500 AF647 

Sca-1 D7 BioLegend 1:500 FITC 

Streptavidin n/a BioLegend 1:500 BV421 

Table 2.1.10: Antibodies for flow cytometry analysis. 

Antibody speci-

ficity 

Clone Supplier Dilution from 

commercial 

stock 

Label 

AnnexinV n/a BioLegend 1:40 APC 

AnnexinV n/a BioLegend 1:40 AF647 

CD11b M1/70 BioLegend 1:200 APC 

CD11c N418 BioLegend 1:200 APC-Cy7 

CD16/32 93 BioLegend 1:100 None (Fc-block) 

CD36 CRF D-2712 BioLegend 1:200 APC 

CD36 CRF D-2712 BioLegend 1:200 FITC 

CD45 30-F11 BioLegend 1:200 BV510 

CD45.1 A20 BioLegend 1:200 APC-Cy7 

CD45.1 30-F11 BioLegend 1:200 PerCP-Cy5 

CD45.2 104 BioLegend 1:200 PE-Cy7 
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F4/80 BM8 BioLegend 1:200 BV421 

Glut1 SA0377 Invitrogen 1:200 APC 

iNOS CXNFT Invitrogen 1:200 APC 

Ly6C HK1.4 BioLegend 1:200 Pe-Cy7 

Ly6C HK1.4 BioLegend 1:200 BV785 

Ly6G 1A8 BioLegend 1:200 BV421 

MHC class II 

(IA/IE) 

M5/114.15.2 BioLegend 1:200 BV510 

Table 2.1.11: Laboratory equipment. 

Equipment Supplier 

24-well NuncTM UpCell plates Thermo Fisher Scientific 

µ-Dish 35 mm, high Grid-500 Glass Bottom ibidi 

ABI PRISM 7000 Applied Biosystems 

Aria III Cell Sorter BD Biosciences 

AutoMACS Pro Separator Miltenyi Biotech 

Centrifuge 1-16K Sigma 

FACS Fortessa BD Biosciences 

FACS Symphony BD Biosciences 

FACS ARIA III BD Biosciences 

Gel Doc XR+ System Bio-Rad 

Gene Pulser II System BioRad 

HeraSafe HS 12 Heraeus 

Incubating orbital shaker VWR 

Incubator Gesellschaft für Labortechnik 

LED diodes 375 nm Strato 

LED diodes 405 nm Thorlabs 

MicroAmp™ Fast Optical 96-Well Reaction Plate with Bar-

code, 0.1 mL 

Applied Biosystems™ 

(Wide) Mini-sub® Cell GT BioRad 

Multifuge 1 SR/3 SR Heraeus 

NanoDrop ND-1000 Spectophotometer Thermo Fisher Scientific 

Thermocycler Bio-Rad 

Thermomixer comfort Eppendorf 

Tube Revolver Thermo Fisher Scientific 

qTOWER3 G RT-PCR Cycler Analytik Jena 
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Table 2.1.12: Microscopes. 

Equipment Supplier 

2-photon microscope 

LSM 700 confocal laser scanning microscope Zeiss 

Mai Tai DeepSee Ti:Sa laser Spectra-Physics 

W Plan-Apochromat 20x/1.0 DIC VIS-IR dipping 

objective 

Zeiss 

Inverted transmitted light microscope 

Wilovert S Helmut Hund GmbH 

Widefield microscope 

Leica DMi8 inverted microscope Leica Microsystems 

20x dry objective Leica Microsystems 

Table 2.1.13: Software. 

Software Supplier 

Ape (A plasmid Editor) M. Wayne Davis 

BD FACS Diva  BD Biosciences 

Deconvolution/deblurring algorithm XCOSM software package 

DiscIT (Moreau et al., 2012) 

Fiji software NIH, http://rsb.info.nih.gov/ij/ 

FlowJo X software FlowJo, LLC 

GraphPad Prism 8 GraphPad Inc. Software 

Imaris Oxford Instruments 

Las X Navigator Leica microsystems 

NxT Software Thermo Fisher Scientific 

ZEN acquisition software Zeiss 
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2.2 Methods 

2.2.1 Parasites, mice and infections  

All mice were bred and housed under specific pathogen-free conditions in the central animal 

facility (ZTL) of the Medical Faculty at the Otto von Guericke University of Magdeburg (Table 

2.1.1). Wild type CD45.1 (B6.SJL-PtprcaPepcb/BoyJ), Actin-ECFP (B6.129(ICR)-Tg(CAG-

ECFP)CK6Nagy/J), CD11c-DTR-GFPtg (B6.FVB-Tg(ITGAX-DTR/EGFP)57Lan/J), Rag1-/-

(B6.129S7-Rag1tm1Mom/J) and CD11c-EYFP (B6.Cg-Tg(Itgax-Venus)1Mnz/J) mice were pur-

chased from Jackson Laboratories (Bar Harbor, MA), wild type C57BL/6J and B6N-TyrcBrdCrCrl 

(B6 albino wild type) mice were obtained from Charles River (Sulzfeld, Germany) and mice 

deficient for IL-11R have been described previously (281). Mice were used at an age of 8-10 

weeks for bone marrow recipients, and up to 16 weeks for infection and as donors. All mice 

had been backcrossed for at least 10 generations onto a C57/BL6 background by the com-

mercial suppliers. Age- and sex-matched animals were used as controls.  

For all murine in vivo and in vitro experiments, L. major LRC-L137 V121 wild type, DsRed or 

mKikume expressing LmSWITCH parasites were previously described (282-284) (Table 2.1.2). 

Parasites were grown in M199 medium completed with 10% heat-inactivated fetal calf serum 

(FCS), 0.1 mM adenine, 1 mg/mL biotin, 5 mg/mL hemin, and 2 mg/mL biopterin (all from 

Sigma) for maximally 6 passages.  

For the infection of human monocyte-derived macrophages (MDM), L. major 

(MHOM/IL/81/FEBNI) DsRed parasites were cultured on Novy-McNeal-Nicolle modified me-

dium and axenic amastigotes were generated from logarithmic phase promastigotes as de-

scribed previously (285). Axenic amastigotes were resuspended in complete medium, centri-

fuged (2400 g, 8 min, at room temperature (RT)) and adjusted to 10 x 106 parasites per mL.  

For the infection of mice, stationary phase promastigote parasites were centrifuged (600 g, 5 

min, RT) and resuspended in PBS. For flow cytometry analysis, 2 x 106 and for intravital imag-

ing, 2 x 105 parasites were subsequently injected in 10 μL into the ear dermis.  Analysis was 

performed 3 weeks post infection. Photoconversion of the LmSWITCH parasites in the mouse ear 

was performed with a 405 nm wavelength, 665 mW/cm2 collimated high power LED 

(Thorlabs). Ears of anesthetized mice were illuminated from each side for 30 seconds at 20 

cm distance and analysed after 48h by flow cytometry. 
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2.2.2 Preparation of killed but metabolically active parasites 

To prepare the KBMA L. major, 12.5 x 106 parasites were opsonized with RPMI 1640 containing 

25% naïve mouse serum and 10 µM 4’aminomethyl-4,5’,8-trimethyl psoralen (AMT) (Sigma-

Aldrich) for 30 min at 26°C. Parasites were illuminated for 10 minutes with 375 nm UV-A-light 

using an assembly of 3 × 3 LED diodes (Strato, half-viewing angle: 10°; Radiant Power: 10 mW) 

at a distance of 0.8 cm. The KBMA parasites were washed once with pre-warmed RPMI for 10 

min at 2500 rpm, 4°C and used for the infection of murine intraperitoneal or murine bone 

marrow-derived macrophages.  

Proliferation competence was tested by comparing 5 x 106 LmDsRed proliferation-competent 

and KBMA promastigotes which were seeded in pre-warmed M199 medium completed with 

10% heat-inactivated FCS, 0.1 mM adenine, 1 mg/mL biotin, 5 mg/mL hemin, and 2 mg/mL 

biopterin (all from Sigma) into each well of an uncoated 24-Well plate and incubated at 26 °C. 

The parasite concentration of each sample was determined after counting using a Neubauer 

chamber at day 0, 1, 2 and 3.  
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2.2.3 Adoptive cell transfer 

For bone marrow isolation, bone marrow cells from CD45.1+ or constitutively CFP-expressing 

Actin-CFP wild type mice were flushed out of tibia and femur with ice cold non-supplemented 

RMPI medium and filtered through 100-micron cell strainers. Cells were washed with non-

supplemented PBS, and 8 x 107 cells per recipient were resuspended in PBS and injected in-

travenously into the tail vein of CD45.2+ C57BL/6 or CD11c-YFP reporter mice. 5 days post 

transfer, immune cells isolated from the infected ears were analysed via flow cytometry.  

For Carboxyfluorescein succinimidyl ester (CFSE) staining, CD45.1+ wild type, IL-11R+/+ and 

IL-11R-/- bone marrow cells mice were mixed in a 1:1 ratio and labelled with CFSE for 20 

minutes at 37°C in non-supplemented PBS. Thereafter, cells were washed with PBS supple-

mented with 10% FCS, and 8 x 107 cells per recipient were resuspended in PBS and injected 

intravenously into the tail vein of CD45.2+ C57BL/6 mice. As a control for IL-11R deficiency, 

CFSE-labelled CD45.1+ WT and CD45.2+ IL-11R+/+ cells were injected intravenously into the 

tail vein of CD45.2+ C57BL/6 mice. Immune cells isolated from the infected ears were analysed 

via flow cytometry 5 days post transfer. 
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2.2.4 Generation of bone marrow chimeric mice  

In order to study the effect of CD11c cell depletion during Leishmania infection, bone marrow 

chimeric mice were generated. To this end, we made use of cells containing a diphtheria toxin 

receptor (DTR)-Enhanced Green Fluorescent Protein (EGFP, Stratagene) fusion protein under 

the control of the CD11c promoter. These cells allowed us to deplete CD11c cells by intraper-

itoneal application of diphtheria toxin (DTX) (Sigma-Aldrich). For generation of bone marrow 

chimeric mice, 20 x 106 CD11c-DTR/GFP bone marrow cells were used to reconstitute lethally 

irradiated 9–10-week-old wild type CD45.1+ (B6.SJL-PtprcaPepcb/BoyJ) or C57BL/6J recipient 

mice, resulting in animals that expressed the DTR on CD11c cells specifically in the non-

lymphocyte immune cell compartment. Drinking water was supplemented with neomycin sul-

fate (2 g/L Sigma-Aldrich) for two weeks following transplantation to prevent infection with 

opportunistic pathogens. Nine weeks post transplantation, mice were infected with 2 x 106 

DsRed-expressing L. major. Mice were then exposed to either 96 h or 48 h of CD11c cell 

depletion. Mice undergoing the 96 h depletion were injected intraperitoneally with 4 µg/kg 

body weight DTX (dissolved at 1 µg/mL in PBS) 96 h and 48 h before analysis and mice un-

dergoing the 48 h depletion were injected with 4 µg/kg body weight DTX (dissolved at 1 µg/mL 

in PBS) 48 h before analysis with flow cytometry.  

In order to visualise apoptosis in myeloid cells, we employed a genetically encoded reporter 

based on a Förster Resonance Energy Transfer (FRET)-based CFP-DEVD-YFP construct for 

Caspase-3 activity  or a non-cleavable CFP-DEVG-YFP control construct (286-288) (Table 

2.1.2). For virus production, the constructs, encoded on mouse stem cell virus (MSCV) vectors 

(kindly provided by Philippe Bousso, Institut Pasteur, Paris) were transfected into 294T cells 

(kindly provided by Stefanie Kliche, University of Magdeburg) together with the pLC-ECO 

helper plasmid (Addgene plasmid # 12371, kindly provided by Stefanie Kliche, University of 

Magdeburg) (Table 2.1.2) in DMEM medium with 10% FCS and 1:1000 (V/V) Chloroquine 

(Sigma-Aldrich). Bone marrow-derived hematopoietic stem cells (HSCs) from 8-16 week old 

Rag1-/- donor mice were isolated by negative magnetic selection after incubation at 4° C for 

30 min with lineage biotinylated antibodies anti-CD45R/B220 (clone RA3-6B2), anti-Ly-

6G/Ly-6C (Gr-1) (clone RB6-8C5), anti-TER119 (clone TER-119), anti-CD3ε (clone 145-

2C11), anti-CD19 (clone 6D5), anti-CD4 (clone GK1.5), anti-CD8a (clone 53-6.7) and anti-

CD127 (IL-7R) (clone SB/199), which were all purchased from BioLegend. Cells were washed 

once with 1x PBS/2% EDTA and incubated with 1:10 Biotin MicroBeads in 1x PBS/2% EDTA for 

15 min at 4° C. Removal of lineage-positive cells was performed using an autoMACS Pro Sep-

arator (Miltenyi Biotech). The purified cells were stained with BV421 conjugated anti-Streptav-

idin (Biolegend), AF647 conjugated anti-cKIT (Biolegend, clone 2B8) and FITC conjugated anti-

Sca-1 (Biolegend, clone D7) at 4° C. Lin-cKit+Sca1+ HSCs were FACS sorted on an Aria III Cell 

Sorter (BD Biosciences) with a flow rate < 5 into a 10% BSA-coated collection tube containing 

1 mL StemSpan™ SFEM (Stemcell) + 2 mg Ciprobay (Bayer). Cells, with a final concentration of 
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2 x 106 cells/mL, were resuspended in StemSpan™ SFEM (Stemcell) + 2 mg/mL Ciprobay + 10 

ng/mL mIL-3 + 30 ng/mL mIL-6 + 50 ng/mL Stem cell factor (SCF) and 100 µL cell suspension 

was added to each well of a 50 µg/mL retronectin-coated (Takara) 96-well. Cells were incu-

bated overnight at 37 °C and 5% CO2. For transfection of the HSCs, the CFP-DEVD-YFP and 

CFP-DEVG-YFP encoding retroviral particles were added to retronectin-coated wells contain-

ing StemSpan™ SFEM + 2 mg/mL Ciprobay + 10 ng/mL mIL-3 + 30 ng/mL mIL-6 + 50 ng/mL 

SCF + 4 µg/mL Polybrene and 1:20 HSC suspension was added with a final concentration of 

1:2. Thereafter, plates were centrifuged at 700 g, 90 min, 30 °C and incubated at 37 °C, 5% 

CO2 overnight. The transfection procedure was repeated the next day. After overnight incu-

bation, transfection efficiency was determined using flow cytometry analysis by measuring the 

percentage of YFP+ cells. For generation of bone marrow chimeric mice, 1 x 105 transfected 

Rag1-/- HSCs together with 1 x 105 wild type CD45.1+ supporter bone marrow cells were used 

to reconstitute lethally irradiated 10-week-old B6N-Tyrc BrdCrCrl recipient mice, resulting in 

animals that expressed the reporter constructs specifically in the non-lymphocyte immune 

cell compartment. Drinking water was supplemented with neomycin sulfate (2 g/L Sigma-

Aldrich) for two weeks following transplantation to prevent infection with opportunistic path-

ogens. After two weeks, blood of CFP-DEVD-YFP and CFP-DEVG-YFP bone marrow chimeras 

was isolated and FRET was measured by flow cytometry analysis in order to test whether the 

bone marrow chimeric mice were successfully reconstituted with our DEVD and DEVG (control) 

construct. Four weeks later, mice were infected with 2 x 105 DsRed-expressing L. major and 

imaged three weeks later using intravital 2-photon microscopy. 
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2.2.5 Human monocyte-derived macrophages  

Human peripheral blood mononuclear cells were isolated from buffy coats of anonymised do-

nors (DRK-Blutspendedienst Hessen GmbH) as previously described (289). Human MDM were 

generated by cultivation in complete medium composed of RPMI 1640, 10% FCS, 50 μM β-

mercaptoethanol (all from Sigma), 2 mM L-glutamine, 100 U/mL penicillin, 100 μg/mL strep-

tomycin and 10 mM HEPES (all from Biochrom AG), supplemented with 50 ng/mL macrophages 

colony-stimulating factor (M-CSF) (R&D systems /bio-techne) for 5-7 days at 37°C, 5% CO2. If 

not stated otherwise, all incubation and infection steps with cultured human MDM were per-

formed at 37°C, 5% CO2 using complete medium.  

For co-incubation experiments, human MDM were harvested, centrifuged at 147 g, 8 min, RT 

and stained using 5 µM AlexaFluor405SE in PBS (Molecular Probes) according to manufac-

turer’s instructions. Cells were seeded into 12-well culture plates with 3 x 105 human MDM 

per well, infected with axenic amastigotes (MOI 5) for 3 h and washed twice. 24 h post-infec-

tion, uninfected human MDM were stained using 5 µM CFSE in PBS (Molecular Probes) accord-

ing to manufacturer’s instructions and added to infected macrophages in a ratio of 1:1. After 

18 h of co-incubation, cells were harvested, centrifuged at 500 g, 5 min, RT and resuspended 

in MACS buffer composed of PBS, 0.5% BSA, 0.5 mM EDTA for analysis by flow cytometry.  

For the caspase-3 reporter staining, human MDM were harvested, centrifuged at 147 g, 8 min, 

RT and seeded into 24-well NuncTM UpCell plates (Thermo Fisher Scientific) with 2 x 105 cells 

per well. Adhered cells were infected with axenic amastigotes (MOI 2) and incubated for 24 h. 

Subsequently, the caspase-3 reporter dye NucView405 (Biotium) was added to the culture with 

a final concentration of 2.5 µM and incubated for additional 20 h. Cells were then resuspended 

in the supernatant, centrifuged at 500 g, 5 min, RT and resuspended in MACS buffer for anal-

ysis by flow cytometry. 
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2.2.6 Murine macrophages 

For isolation of peritoneal macrophages, mice were sacrificed and subsequently 5 mL cold PBS 

(Sigma-Aldrich) was injected intraperitoneally. The cell suspension was aspirated and cells 

were seeded in RPMI 1640 (PAN Biotec) supplemented with 10% heat-inactivated fetal bovine 

serum (PAN Biotech) and 1% Penicillin-Streptomycin (10.000 U/mL, Biochrom) for infection 

and live cell imaging. For infection, peritoneal macrophages were cultured for 24 h at 37°C, 

5% CO2 and stationary phase non-photoconverted, green fluorescent proliferation-competent 

LmSWITCH  (MOI 10) and red fluorescent LmDsRed KBMA (MOI 80) promastigotes (opsonised with 

25% mouse immune serum for 30 min at 26°C) were added for 2 h. After 24 h of infection, 

cells were induced with gamma-interferon (0.01 ng/μL, R&D Systems), LPS (1μg/mL, E. coli 

O26:B6, Sigma-Aldrich) and the nitric oxide synthase iNOS was inhibited by addition of N6-

(1-iminoethyl)-L-lysine hydrochloride (L-NIL) (0.023μg/μL, Sigma-Aldrich) as described pre-

viously (282). TUNEL staining was performed using the CF® 640R TUNEL Assay Apoptosis De-

tection Kit (Biotium) according to the manufacturer's instructions and staining with 0.2 µg/mL 

DAPI (Sigma-Aldrich). For analysis of parasite proliferation rate during microscopy, LmSWITCH 

parasites were photoconverted for 5 sec at maximum intensity under a 20x dry objective using 

the 405 nm excitation of a Leica DMi8 inverted microscope (Leica Microsystems) which was 

also used for all time-lapse microscopy of cell culture infections. 490 nm excitation and 

500/550 nm emission was used for detecting non-photoconverted mKikume, 550 nm excita-

tion and 573/647 nm emission for photoconverted mKikume and DsRed, 635 excitation and 

662 nm for detection of TUNEL staining and 385 excitation and 425 nm for detection of DAPI 

staining.  Images were automatically acquired every 10 min for a total of 48 h and movies were 

processed with the Fiji software (NIH, http://rsb.info.nih.gov/ij/).  

For preparation of bone marrow-derived macrophages (BMDM), bone marrow cells from 

CD45.1+ wild type mice were flushed out of tibia and femur with ice cold non-supplemented 

RMPI medium and filtered through 100-micron cell strainers. Cells were washed with non-

supplemented PBS, and 8 x 107 cells seeded in RPMI 1640 supplemented with 10% heat-inac-

tivated fetal bovine serum, 1% Penicillin-Streptomycin (10.000 U/mL), 1% 100 mM Sodi-

umpyrovat (Gibco), 1 μg/mL M-CSF (PeProTech) and 50 μM 2-mercaptoethanol (Carl Roth) 

into each well of an uncoated 6-Well plate (TPP-92406). The medium was changed every three 

days. After seven days of differentiation, the cells were used in further experiments. For in-

fection, stationary phase LmDsRed proliferation-competent (MOI 20) and proliferation-incom-

petent KBMA (MOI 50) promastigotes (opsonized with 25% mouse immune serum for 30 min 

at 26°C) were added for 2 h, washed three times with pre-warmed medium and cultivated for 

48 h. Cells were then detached using 1 mL of Accutase (BioLegend) and incubation for 15 

minutes at 37 °C, and removed by pipetting.  

Uptake of short- or medium-chain fatty acids was determined by incubation with 0.5 µg/mL 

4,4-Difluoro-5-Methyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Dodecanoic Acid (C1-BODIPY 
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500/510 C12, Invitrogen) in PBS for 15 min, RT. Long-chain fatty acid uptake was quantified 

by incubation with 0.1 µg/mL 4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-

3-Hexadecanoic Acid (BODIPY™ FL C16, Invitrogen) in PBS for 15 min, RT. LDL uptake was 

measured by incubation with 20 µg/mL Low Density Lipoprotein from Human Plasma, BOD-

IPY™ FL complex (BODIPY™ FL LDL, Invitrogen) in PBS for 30 min, RT. Glucose uptake was 

determined using incubation of 100 μm 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-

2-Deoxyglucose (2-NBDG, Invitrogen) in glucose-free medium (290) for 90 min at 37°C, 5% 

CO2.  

APC conjugated anti-Glut1 (clone SA0377) or anti-CD36 (clone CRF D-2712), BV421 conju-

gated anti-F4/80 (clone BM8), and BV510 conjugated anti-CD45 (clone 30-F11), which were 

all purchased from BioLegend, were used for surface staining. For live/dead staining, antibod-

ies were diluted in FACS Buffer containing 1:500 LIVE/DEAD™ Fixable Violet Dead Cell Stain 

Kit (Thermo Fisher Scientific). For AnnexinV staining, cells were resuspended AnnexinV bind-

ing buffer (H2O, 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-Buffer 

(Gibco), 50mM NaCl, 10mM CaCl2 (Carl Roth), sterile filtered) containing 1:40 APC-labelled 

AnnexinV (BioLegend) or AF647- labelled AnnexinV (BioLegend). Cells were incubated for 15 

minutes on ice in the dark and washed once with AnnexinV binding buffer for 5 minutes at 

900 g, 4 °C before analysis. 

DsRed fluorescence was read out at 558 nm excitation and 585/15 nm emission and auto-

fluorescence was recorded at 488 nm excitation and 695/40 nm emission. Samples were Fc-

blocked using anti-CD16/32 antibody (clone 93) (BioLegend) before antibody staining. Anal-

ysis was performed with a Fortessa or FACS ARIA III (BD Biosciences) using 355, 405, 488 and 

633 nm lasers. Data were analysed using the FlowJo X software (FlowJo, LLC). 
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2.2.7 Flow cytometry 

For the analysis of in vivo experiments, ears of mice were separated into two sheets (ventral 

and dorsal) using forceps and enzymatically digested in RPMI 1640 medium containing 0.1 

mg/mL Liberase™ TL (Sigma) and 4 µg/mL DNase (Sigma-Aldrich) for 60 min shaking at 600 

rpm and 37°C, and passed through a 70 μm cell strainer. Surface staining of cells was done 

using APC conjugated anti-CD11b (clone M1/70), APC conjugated anti-iNOS (clone CXNFT), 

APC-Cy7 conjugated anti-CD11c (clone N418), APC-Cy7 conjugated anti-CD45.1 (clone A20), 

PE-Cy7 conjugated anti-CD45.2 (clone 104), PerCP-Cy5.5 conjugated anti-CD45 (clone 30-

F11),  BV421 conjugated anti-Ly6G (clone 1A8), BV421 conjugated anti-F4/80 (clone BM8), 

BV510 conjugated anti-MHC class II (IA/IE, clone M5/114.15.2), FITC- or APC-conjugated 

anti-CD36 (clone CRF D-2712)  and PE-Cy7 or BV785 conjugated anti-Ly6C (clone HK1.4), 

which were all purchased from BioLegend. DsRed fluorescence was read out at 558 nm exci-

tation and 585/15 nm emission. An autofluorescence signal was recorded at 488 nm excita-

tion and 695/40 nm emission. Samples were Fc-blocked using anti-CD16/32 antibody (clone 

93) (BioLegend) before antibody staining. Analysis was performed with a Fortessa or FACS 

ARIA III (BD Biosciences) using 355, 405, 488, 561 and 640 nm lasers. For in vitro experiments 

using human MDM, analysis was performed with FACS Symphony or FACS Fortessa (both BD) 

with laser lines 402 nm (VioFluor405SE, 410LP 431/28), 405 nm (NucView405, 450/50), 

488 nm (CFSE, 505LP 530/30 and autofluorescence, 685LP 710/50) and 561 nm (DsRed, 

570LP 586/15). Data were analysed using the FlowJo X software (FlowJo, LLC).  
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2.2.8 Proliferation analysis 

For widefield microscopy analysis, the proliferation index of L. major was calculated based on 

the fluorescence signals of mKikume Green and mKikume Red in parasite regions of interest 

defined in a combined total mKikume channel without any proliferation information. In each 

image analysed, at least five background regions of interest were defined, and their average 

fluorescence was subtracted from the respective parasite signals. Parasite proliferation index 

values were defined as 

10 −
𝑚𝐾𝑖𝑘𝑢𝑚𝑒 𝑅𝑒𝑑parasite − 𝑚𝐾𝑖𝑘𝑢𝑚𝑒 𝑅𝑒𝑑backgroud

𝑚𝐾𝑖𝑘𝑢𝑚𝑒 𝐺𝑟𝑒𝑒𝑛parasite − 𝑚𝐾𝑖𝑘𝑢𝑚𝑒 𝐺𝑟𝑒𝑒𝑛backgroud

 

For photoconversion in vivo and subsequent flow cytometry analysis, a 405 nm wavelength, 

665 mW/cm2 collimated high power LED (Thorlabs) was used. Ears of anesthetized mice were 

fixed and illuminated from each side for 30 seconds at a distance of 20 cm and cells isolated 

from the infected tissues were analysed after 48 h by flow cytometry. The proliferation index 

of L. major for flow cytometry was calculated based on the MFI of mKikume Green and 

mKikume Red as described previously (91). In brief, for visualising qualitative comparisons 

within the same sample using the FlowJo X software (FlowJo, LLC), values were plotted as 

100 − 10 ∗ (
𝑚𝐾𝑖𝑘𝑢𝑚𝑒 𝑅𝑒𝑑

𝑚𝐾𝑖𝑘𝑢𝑚𝑒 𝐺𝑟𝑒𝑒𝑛
)

cell
 

For inter-sample comparison of flow cytometry data, the proliferation index was calculated as 

1 − (
𝑚𝐾𝑖𝑘𝑢𝑚𝑒 𝑅𝑒𝑑

𝑚𝐾𝑖𝑘𝑢𝑚𝑒 𝐺𝑟𝑒𝑒𝑛
)

mean (cell population of interest)

1 − (
𝑚𝐾𝑖𝑘𝑢𝑚𝑒 𝑅𝑒𝑑

𝑚𝐾𝑖𝑘𝑢𝑚𝑒 𝐺𝑟𝑒𝑒𝑛
)

mean (all infected cells)

 

and represented as percent deviation from the total infected cell population within one sample.  
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2.2.9 Quantitative Reverse Transcription PCR 

A quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) was performed to 

measure promastigote (SHERP) and amastigote (ABC) gene expression in BMDM infected with 

LmDsRed proliferation-competent and KBMA proliferation-incompetent parasites. Extracellular 

promastigotes were used as a positive control for promastigote gene expression. Ribonucleic 

acid (RNA) was isolated from infected BMDM and extracellular promastigotes 48 h post-infec-

tion. Samples were transferred to 1.5 mL Eppendorf tubes, washed once with PBS and incu-

bated in 1 mL TRIzol reagent (Invitrogen) for 5 min, RT. For RNA extraction, 200 µL Chloroform 

(Sigma–Aldrich) was added and samples were mixed by shaking vigorously and incubated for 

2-3 min, RT. Subsequently, samples were centrifuged for 15 minutes at 12000 g, 4 °C and 

500 µL clear aqueous phase was carefully transferred into a fresh 1.5 mL Eppendorf tube. 

Thereafter, 1 μL Glycogen and 500 μL isopropanol were added and samples were incubated 

for 20 min, -80 °C. After centrifugation for 20 min at 12000g, 4°C, samples were washed with 

1 mL 75% cold ethanol for 15 min at 7400g, 4°C. After removal of 75% Ethanol, samples were 

incubated in 10 µL PCR water for 2-3 min, RT, resuspended and total RNA concentration was 

measured using a NanoDrop ND-1000 Spectophotometer (Thermo Fisher Scientific).  

cDNA was synthesised using random hexamer primers and the High-Capacity cDNA reverse 

Transcription Kit (Applied Biosystems™) according to the manufacturer’s instructions starting 

from 500 ng total RNA and amplified using a thermocycler (Bio-Rad). PCR products were an-

alysed on a 3% agarose gel and agarose gel pictures were captured using Gel Doc XR+ System 

(Bio-Rad).  

For RT-qPCR analysis of infected BMDM and extracellular promastigotes, the SYBRTM Green 

PCR Master Mix (Applied Biosystems™) was used according to the manufacturer's instructions 

to measure SHERP and ABC expression (Table 2.1.4). RT-qPCR was run on a qTOWER3 G RT-

PCR Cycler (Analytik Jena). Samples were analysed in triplicates and CT values were exported 

from the ABI PRISM 7000 (Applied Biosystems) sequence detection system. For normalization, 

the NMT gene expression was included as a reference (Table 2.1.4).  
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2.2.10 Intravital imaging 

For intravital 2-photon microscopy, mice were anaesthetised and prepared as described pre-

viously (91). Two-photon imaging was performed with a W Plan-Apochromat 20x/1,0 DIC VIS-

IR objective (Zeiss) on a LSM 700 confocal laser scanning microscope (Zeiss) and Mai Tai 

DeepSee (tuned to 840 nm or 920 nm).  

For intravital analysis of cell-to-cell transmission, CFP, YFP and DsRed fluorescence as well as 

harmonics were split with 555 nm long pass, 495 nm long pass, and 510 nm long pass dichroic 

mirrors and filtered with 600/40 (DsRed), 465/15 (second harmonics), 519/49 (CFP) and 

560/25 (YFP) nm bandpass filters.  

For analysis of host cell apoptosis in vivo, the emitted FRET signal and second harmonics were 

split with 555 nm long pass, 445 nm long pass, and 510 nm long pass dichroic mirrors and 

filtered with 465/15 (second harmonics), 519/49 (FRET CFP), 560/25 (FRET YFP) and 600/40 

(DsRed) nm bandpass filters before collection with nondescanned detectors.  

For blood vessel distance studies, photoconversion of the proliferation biosensor containing 

LmSWITCH parasites in the mouse ear was performed with a 405 nm wavelength, 665 mW/cm2 

collimated high power LED (Thorlabs). Ears of anesthetised mice were fixed and illuminated 

from each side for 30 seconds at a distance of 20 cm and were analysed after 48 h by intravital 

imaging. Mice were injected intravenously with 50 µL IVISense Vascular NP 680 Fluorescent 

Nanoparticles (AngioSPARK) (PerkinElmer), 15 minutes before intravital 2-photon imaging to 

visualise the vascularity during Leishmania infection in order to determine Leishmania prolif-

eration in relation to blood vessel distance in vivo. For analysis of parasite proliferation in vivo, 

the emitted mKikume signal, Angiospark signal and second harmonics (all excited at 920 nm) 

were split with 625 nm long pass, 495 nm long pass, 525 nm long pass, and 555 nm long 

pass dichroic mirrors and filtered with 470/20 (second harmonics), 525/50 (mKikume green), 

600/40 (mKikume red), and 665/80 (Angiospark) nm bandpass filters before collection with 

nondescanned detectors. 

Imaging volumes of 0.8 mm3 for automated analysis were obtained by collecting 3–4 μm 

spaced z stacks using the ZEN acquisition software (Zeiss). Images were colour corrected using 

the channel arithmetics function, superimposed and analysed using the Imaris software (Ox-

ford Instruments), 3D projections and slices were extracted using the Fiji software (NIH, 

http://rsb.info.nih.gov/ij/). 
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2.2.11 Intravital image analysis 

Intravital imaging data were rough segmented using the split objects function of the Imaris 

software (Versions 9 and 10, Oxford Instruments) on the basis of the YFP channel (for FRET 

analysis) or a combined mKikume red and green channel (for proliferation analysis). Data were 

then converted to .fcs flow cytometry files using the DiscIT software (291) for further analysis 

using FlowJo, in which all spectral filtering and gating was performed. Spectral filtering of 

mKikume parasites was performed on the basis of 625+ nm autofluorescence as described 

previously (292), and as indicated in chapter 3.8. Distance to blood vessels was calculated 

using an ImageJ macro employing positional lists of parasite and blood vessel objects (see 

chapter 7.1 for ImageJ macro). 
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2.2.12 Statistical analysis 

Statistical analysis was carried out with GraphPad Prism 8 (GraphPad Software, San Diego, CA, 

USA). To compare multiple samples pairwise analysis within datasets with more than two ex-

perimental groups were performed, one-way analysis of variance (ANOVA) were done for da-

tasets that had passed a Shapiro-Wilk normal distribution test, Kruskal-Wallis tests were per-

formed for datasets with non-normal distribution. Appropriate multiple comparison post-

tests (Bonferroni’s in ANOVA, Dunn’s test for Kruskal-Wallis analyses) were employed as in-

dicated in the respective figure legends. Two-group comparisons were made by two-sided, 

unpaired or paired t tests for data with normal distribution and Mann-Whitney tests for da-

tasets for which a Shapiro-Wilk normal distribution suggested non-normal distribution. Rep-

resentation of the mean, median and error (in cases in which not all samples are shown indi-

vidually) are indicated together with sample size in the figure legends. 
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2.2.13 Study approval 

All animal experiments were reviewed and approved by the Ethics Committee of the Office for 

Veterinary Affairs of the State of Saxony-Anhalt, Germany (permit license numbers IMKI/G/01-

1314/15 and IMKI/G/01-1575/19) in accordance with legislation of both the European Union 

(Council Directive 499 2010/63/EU) and the Federal Republic of Germany (according to § 8, 

Section 1 TierSchG, and TierSchVersV). Human monocytes to generate primary macrophages 

were isolated from buffy coat of healthy volunteers and commercially obtained from the blood 

bank of the University of Frankfurt, with ethical allowance # 329/10. 
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3. RESULTS 

3.1 CD11c-expressing cells play dual role during Leishmania infection depending on 

the infection stage 

We recently showed that CD11c-expressing cells constitute an important reservoir for efficient 

Leishmania proliferation and for cell-to-cell transmission (91). We therefore aimed to further 

study the role of these cells during L. major infection by assessing the impact of CD11c+ cell 

depletion during ongoing infection in the murine ear dermis.  

In order to do so, we generated bone marrow chimeras that were reconstituted with CD11c-

DTR/GFP cells to allow us to deplete CD11c cells in the hematopoietic cell compartment upon 

DTX injection (Figure 3.1.1).  

 
Figure 3.1.1: Experimental strategy for DTX-mediated CD11c cell depletion during L. major infection. In 

vivo flow cytometry analysis of LmDsRed-infected CD11c-DTR/GFP-reconstituted bone marrow chimeras.  

First, to confirm efficient depletion of GFP-expressing CD11c+ cells upon DTX treatment, the 

GFP fluorescence in CD45+ monocyte-derived phagocytes isolated from the infected ear der-

mis was determined by flow cytometry analysis (Figure 3.1.1 - 3.1.3). Although we observed 

a reduction in GFP fluorescence upon both 48 h and 96 h of DTX treatment as compared to 

untreated mice, the difference was not significant, (Figure 3.1.3B).  

 
Figure 3.1.2: Analysis of cells isolated from the infected ear dermis. Gating strategy for CD45+ phago-

cytes in cells isolated from the infected ear dermis of CD11c-DTR/GFP-reconstituted bone marrow chi-

meras.  
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Figure 3.1.3: DTX-mediated CD11c cell depletion during L. major infection in vivo. (A) Gating strategy 

for GFP+ CD11c-expressing cells (green) in non-treated (left plot), 48 h DTX-treated (middle plot) and 

96 h DTX-treated (right plot) bone marrow chimeric mice within the CD45+ phagocytes shown in (Figure 

3.1.2). (B) Quantification of median GFP mean fluorescence intensity according to the gating shown in 

(Figure 3.1.2) and (A). Each dot represents one mouse ear. Horizontal bars denote the mean. Data pooled 

from two independent experiments. ns, not significant according to one-way ANOVA with Bonferroni 

post-test.  

When looking at the DsRed fluorescence, we observed a reduction upon 48 h depletion of 

CD11c+ cells, indicating a decrease in L. major burden if CD11c-expressing cells were de-

pleted. In contrast, upon 96 h of depletion, we observed higher DsRed fluorescence than upon 

48 h depletion, indicating a L. major burden comparable to the control situation (Figure 

3.1.4A-B).  

 

Figure 3.1.4: CD11c cells as reservoir for L. major parasites in vivo. (A) Gating strategy for DsRed+ in-

fected cells (red) in non-treated (left plot), 48 h DTX-treated (middle plot) and 96 h DTX-treated (right 

plot) bone marrow chimeric mice within the CD45+ phagocytes shown in (Figure 3.1.2). (B) Quantification 

of percentage of DsRed+ cells according to the gating show in (Figure 3.1.2) and (A).  Each dot represents 

one mouse ear. Horizontal bars denote the mean. Data pooled from two independent experiments. *, p 

< 0.05; #, p < 0.1; ns, not significant according to one-way ANOVA with Bonferroni post-test.  

Interestingly, the higher L. major burden at 96 h post depletion was accompanied with a trend 

towards decreased iNOS production (Figure 3.1.5A-B), suggesting that reduced pathogen 

clearance by iNOS might compensate the effects of the missing CD11c+ cells as hosts for the 

parasite. Taken together, these results underlined that CD11c+ cells might play a dual role in 

the ongoing infection, functioning both as host cells for L. major parasites and as inducers of 

iNOS production.  
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Figure 3.1.5: CD11c cells as iNOS-producers during L. major infection in vivo. (A) Gating strategy for 

iNOS+ cells (blue) in non-treated (left plot), 48 h DTX-treated (middle plot) and 96 h DTX-treated (right 

plot) bone marrow chimeric mice within the CD45+ phagocytes shown in (Figure 3.1.2). (B) Quantification 

of percentage of iNOS+ cells according to the gating show in (Figure 3.1.2) and (A). Each dot represents 

one mouse ear. Horizontal bars denote the mean. Data pooled from two independent experiments. ns, 

not significant according to one-way ANOVA with Bonferroni post-test.  
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Chapter 3.2 – 3.7 published in: Baars I et al., Leishmania major drives host phagocyte death and cell-to-

cell transfer depending on intracellular pathogen proliferation rate. JCI Insight. 2023. 

3.2 Quantification of L. major uptake by newly recruited monocytes in vivo suggests 

direct cell-to-cell transfer 

To study the role of CD11c+ cells during ongoing L. major infection in more detail, we next 

investigated the transfer of Leishmania parasites from these cells. We had recently found evi-

dence that L. major parasites can transfer directly from one host cell to the next and therefore 

aimed to further investigate and quantify L. major cell transmission in vivo (91). Importantly, 

previous studies have shown that phagocytosis of parasites reduces the motility of cells, mak-

ing intravital 2-photon imaging of Leishmania cell-to-cell spread over several hours possible 

(19).  

To this end, we infected CD11c-YFP reporter mice with 2 x 105 DsRed-expressing L. major 

(LmDsRed) in the ear dermis for 16 days, then adoptively transferred bone marrow cells from 

constitutively CFP-expressing Actin-CFP mice, and subjected the mice to intravital 2-photon 

imaging after five days (Figure 3.2.1).  

 
Figure 3.2.1: Experimental strategy for LmDsRed cell-to-cell transfer in vivo. In vivo intravital 2-photon 

microscopy of LmDsRed transfer from recipient CD11c-YPF cells into newly recruited actin-CFP bone mar-

row (BM) cells.  

We could readily observe the transfer of DsRed-expressing parasites from CD11c-YFP-ex-

pressing recipient cells into newly recruited CFP-expressing cells (Figure 3.2.2A). When quan-

tifying the YFP and CFP fluorescence surrounding a parasite during cell-to-cell transfer over 

time, we observed an immediate drop in YFP fluorescence concomitantly with CFP fluorescence 

increase, leading to an immediate increase in the CFP/YFP ratio over time (Figure 3.2.2B).  

Quantification of all transition events detected, revealed that YFP fluorescence around the par-

asite did not significantly change before the uptake by CFP-expressing cells, but only at the 

time point of the most pronounced increase in CFP fluorescence (Figure 3.2.3A-B). These ob-

servations suggested that the transfer of L. major parasites from one host cell to the next is 

direct, with no extracellular phase detectable in vivo.  



RESULTS | IRIS BAARS 

50 

 

 

Figure 3.2.2: Intravital 2-photon imaging of LmDsRed cell-to-cell transfer in vivo. (A-B) Z-projections (left) 

and single XY image planes (XY) with XZ/YZ reconstructions (right) showing two examples (A) with quan-

tification (B) of an L. major (red) cell-to-cell transfer event from an original infected (green) into a newly 

recruited (blue) cell inside the ear dermis of an anesthetised mouse. Projections consist of 3 μm-spaced 

z-stacks taken longitudinally every 10 minutes of 8 and 5 slices, respectively. Scale bar, 15 μm.  

 
Figure 3.2.3: L. major cell-to-cell transfer is direct in vivo. (A) Fluorescence intensity of YFP (green), CFP 

(blue) and CFP/YFP ratio (black) around parasites undergoing cell-to-cell transfer over time of all transfer 

events obtained from 6 animals imaged. Mean fluorescence intensity normalised to the minimum and 

maximum of each parasite track is shown. Each dot represents one time point of a transfer event. Hori-

zontal bars represent the mean. (B) Overlay of mean values data shown in (A). Data pooled from two 

independent experiments. 
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3.3 Original host cell material is taken up by newly infected cells 

We next sought to analyse possible mechanisms of cell-to-cell transfer in vivo. We and others 

had found evidence that L. major transfer to new host cells might occur from dying phagocytes 

in vitro (38, 91). However, in vivo, this has only been shown for infected neutrophils at the 

very early phase of the infection (19). Therefore, we next examined whether the uptake of 

original host cell material is accompanied by the uptake of the parasite into newly recruited 

cells in vivo.  

To this end, we infected CD45.2+ CD11c-YFP reporter mice with 2 x 106 DsRed-expressing L. 

major in the ear dermis for 16 days, and then adoptively transferred bone marrow cells from 

CD45.1+ wild type mice. Five days after transfer, cells isolated from the infected ears were 

analysed by flow cytometry (Figure 3.3.1 -3.3.2).  

 
Figure 3.3.1: Experimental strategy for original host cell material transmission in vivo. In vivo flow cy-

tometry analysis of YFP+ original host cell material uptake into newly recruited LmDsRed-infected and non-

infected bone marrow (BM) cells. 

 

Figure 3.3.2: Analysis of original host cell material uptake in vivo. Gating strategy for CD11b+Ly6G- cells 

in cells isolated from the infected ear dermis of the mouse.  

Newly recruited monocytes could be identified according to their CD45.1 expression (Figure 

3.3.3A), and exhibited an increase in YFP fluorescence as compared to those transferred into 

CD45.2 non-fluorescent recipients, suggesting they had taken up YFP at the site of infection 

(Figure 3.3.3B).  

Interestingly, we observed significantly more YFP fluorescence in infected compared to non-

infected CD45.1+ cells, both by fraction of YFP+ cells (Figure 3.3.4A) and mean fluorescence 

(Figure 3.3.4B). The higher YFP fluorescence in infected compared to non-infected cells was 

observed both in all CD45.1+ cells (Figure 3.3.4A-B, left panels) and in CD45.1+ Ly6G- phag-

ocytes (Figure 3.3.4A-B, right panels). As expected, mean YFP fluorescence was negligible in 

YFP- control recipient mice, both in infected and non-infected CD45.1+ cells (Figure 3.3.4B, 

left panels) and Ly6G- phagocytes (Figure 3.3.4B, right panels).  
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Figure 3.3.3: Analysis of cellular transmission into newly recruited infected and non-infected phagocytes 

in vivo. (A) Gating on CD45.1+ (newly recruited, blue) and CD45.2+ (recipient, black) cells and Ly6G- 

phagocytes (pink). (B) Gating on median YFP fluorescence in newly recruited CD45.1+ infected (red) and 

non-infected (grey) cells for CD11c-YFP (left plots) and control (right plots) recipient mice. 

 
Figure 3.3.4: L. major-infected newly recruited cells take up more YFP+ original host cell material com-

pared to uninfected cells in vivo. (A-B) Quantification of percentage of YFP fluorescence (A) and median 

YFP fluorescence (B) in all CD45.1+ cells (left panels) and Ly6G- phagocytes (right panels) within live 

CD11b+Ly6G- newly recruited bone marrow cells for CD11c-YFP and control recipient mice (B only). Each 

dot represents one mouse ear. Horizontal bars denote the median. Data pooled from three independent 

experiments. **, p < 0.01; *, p < 0.05; ns, not significant according to paired t test.  

To test for human relevance, we studied the transfer of cellular material using an in vitro co-

incubation assay with human MDM. To this end, AlexaFluor405SE-labelled LmDsRed-infected 

human MDM were co-incubated with CFSE-labelled uninfected human MDM for 18 h and the 

transfer of cellular material into CFSE-labelled uninfected human MDM was analysed by flow 

cytometry (Figure 3.3.5 - 3.3.6).  

Infected cells could be clearly distinguished into cells that were primary infected 

(AlexaFluor405SE+ CFSE-) newly infected without uptake of cellular material (AlexaFluor405SE- 

CFSE+) and newly infected with uptake of cellular material (AlexaFluor405SE+ CFSE+) (Figure 

3.3.7A). In line with our in vivo data, the percentage of infected human MDM was significantly 

higher for cells containing cellular material of the primary infected host as compared to cells 
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containing no cellular material of the primary infected host (Figure 3.3.7B). These results in-

dicate that uptake of the parasite by newly recruited monocytes is occurring concomitantly 

with the uptake of material from the originally infected host cell. 

 
Figure 3.3.5: Experimental strategy for transmission of cellular material in vitro. In vitro analysis to de-

termine AlexaFluor405SE+ material uptake from primary LmDsRed-infected human MDM into newly in-

fected CFSE+ human MDM. MDM, monocyte-derived macrophages.  

 
Figure 3.3.6: Analysis of cellular material transmission in vitro. Gating strategy for single live human 

MDM (left plot) and for infected (red) and uninfected (grey) single live human MDM (right plot). MDM, 

monocyte-derived macrophages. Data obtained in collaboration with van Zandbergen G, Jaedtka M, 

Bagola K and Volkmar K (Division of Immunology, Paul-Ehrlich-Institut Langen, Langen, Germany). 

 
Figure 3.3.7: L. major-infected cells take up cellular material in vitro. (A) Gating on primary infected 

(AlexaFluor405SE+ CFSE-), newly infected without cellular material uptake (ViaFluor405SE- CFSE+) and 

newly infected with cellular material uptake (AlexaFluor405SE+ CFSE+) human MDM (left plot). Uninfected 

cells stained with either CFSE or AlexaFluor405SE are shown as controls (right plots). (B) Quantification 

of percentage of infected human MDM cells without cellular material uptake and with cellular material 

uptake. Each dot represents one sample. Horizontal bars denote the median. **, p < 0.01 according to 

paired t test. MDM, monocyte-derived macrophages. Data obtained in collaboration with van Zandbergen 

G, Jaedtka M, Bagola K and Volkmar K (Division of Immunology, Paul-Ehrlich-Institut Langen, Langen, 

Germany). 
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3.4 An in vivo cell death reporter system shows higher apoptosis in infected com-

pared to uninfected phagocytes at the site of infection 

To investigate the fate of host cells in real-time in the context of parasite infection, we aimed 

to determine the dynamics of programmed cell death induction during intravital 2-photon 

imaging of the L. major infection site in the ear dermis of the mouse. For this, we retrovirally 

transduced Rag1-/- hematopoietic stem cells (HSCs) with a CFP-DEVD-YFP construct in order 

to express a genetically encoded reporter system in inflammatory cells recruited to the skin 

(286, 287). This construct is sensitive to cleavage by caspase-3 at the specific Asp-Glu-Val-

Asp site linking a Förster Resonance Energy Transfer (FRET) donor (CFP) and acceptor (YFP). 

Upon the induction of apoptosis, active caspase-3 is expected to cleave the donor from the 

acceptor, resulting in an increased CFP to FRET ratio (Figure 3.4.1A). A non-cleavable CFP-

DEVG-YFP control construct was used to determine specificity of the reporter for caspase-3-

dependent cleavage (288). The transfected Rag1-/- HSCs together with wild type supporter 

bone marrow were used to reconstitute lethally irradiated recipient B6 albino wild type mice, 

resulting in animals that expressed the reporter constructs specifically in the non-lymphocyte 

immune cell compartment. After 10 weeks of recovery from irradiation and bone marrow 

transfer, mice were infected with 2 x 105 DsRed-expressing L. major (LmDsRed) and imaged 

three weeks later using intravital 2-photon microscopy (Figure 3.4.1B).  

 
Figure 3.4.1: Experimental strategy for analysis of host cell apoptosis during L. major infection in vivo. 

(A) In vivo quantification of cell death dynamics using a FRET-based capase-3 reporter. DEVD, caspase-

3 recognition site. (B) Rag1-/- hematopoietic stem cells transduced with capase-3 reporter (DEVD) or 

non-cleavable control (DEVG) were FACS sorted and transferred into lethally irradiated recipient mice. 

FRET, Foerster Resonance Energy Transfer; HSC, hematopoietic stem cell; WT, wild type; BM, bone mar-

row. 

When analysing the whole blood isolated from the bone marrow chimeric mice, cells positive 

for both CFP (donor fluorophore) and YFP (acceptor fluorophore) were detectable in CD45.2+ 

transferred cells (Figure 3.4.2A). This was the case for both CFP-DEVD-YFP and control CFP-

DEVG-YFP bone marrow chimeric mice. We could show that reporter-expressing cells exhib-

ited a small fraction of cells with FRET loss in the CFP-DEVD-YFP bone marrow chimeric mice, 

but not in the bone marrow chimeric mice containing the CFP-DEVG-YFP control construct 

(Figure 3.4.2B).  
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Figure 3.4.2: Analysis of apoptosis biosensor reconstitution in bone marrow chimeric mice. (A) Gating 

strategy for live CD45.2+ CFP-DEVD-YFP and CFP-DEVG-YFP control cells in whole blood isolated from 

biosensor-transfected bone marrow chimeric mice. BM, bone marrow. (B) Gating strategy (upper left 

panel), histogram plots (lower left panel) and percent of cells (right panel) showing increased CFP/FRET 

ratio, indicating FRET loss, in cells expressing the CFP-DEVD-YFP (blue) and CFP-DEVG-YFP control (grey) 

construct as measured by flow cytometry analysis according to gating shown in (A-B). Each symbol rep-

resents one mouse. Horizontal bars denote the median. FRET, Foerster Resonance Energy Transfer.  

As expected, time-lapse imaging using 2-photon microscopy at the site of infection showed 

an accumulation of reporter-expressing bone-marrow derived cells. Automated segmentation 

and tracking of these cells over time enabled us to map, identify and localise infected and 

FRET-losing cells by converting the extracted imaging data to cytometry datasets using the 

DiscIt software (291). This revealed FRET loss, indicating apoptosis, in reporter-expressing 

cells for the CFP-DEVD-YFP (Figure 3.4.3, left panels), but not the CFP-DEVG-YFP control con-

struct (Figure 3.4.3, right panels). Of note, we were also able to localise individual cells un-

dergoing FRET loss over time (Figure 3.4.4A-B).  

 
Figure 3.4.3: Intravital 2-photon imaging of host cell apoptosis during L. major infection in vivo. Z-

projections of infected ear dermis of CFP-DEVD-YFP (left) and CFP-DEVG-YFP control (right) mice. 18 

slices of 3 μm-spaced z-stacks are projected. Scale bar, 100 μm. 3D surface plot of detected reporter-

expressing cells, grey. Mapped cell positions, black; infected cells, red; cells with increased CFP to FRET 

ratio, blue; infected cells exhibiting FRET loss (map only), pink. FRET, Foerster Resonance Energy Trans-

fer. 
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Figure 3.4.4: Intravital 2-photon imaging of host cell apoptosis during L. major infection in vivo. (A) Z-

projections (left) and XY/XZ/YZ sections (right) of an LmDsRed-infected (upper panels) and a non-infected 

(lower panels) apoptotic cell over time. Projections consist of 3 μm-spaced z-stacks taken longitudinally 

of 11 and 14 slices, respectively. Scale bar, 10 μm (B) Percent of initial CFP and FRET fluorescence and 

normalised CFP/FRET ratio over time of cells shown in (A). FRET, Foerster Resonance Energy Transfer. 

Strikingly, when we compared cells infected by DsRed-expressing L. major with non-infected 

cells (Figure 3.4.5A), we found progressive FRET loss in the infected cell population, which was 

higher compared to the non-infected cell population (Figure 3.4.5B). Additionally, significantly 

higher maximum FRET loss was observed in infected as compared to non-infected cells when 

looking at individual tracks (Figure 3.4.5C) and significantly higher relative FRET loss was ob-

served in infected as compared to non-infected cells when looking at individual mice (Figure 

3.4.5D). Again, no FRET loss was observed in the control CFP-DEVG-YFP bone marrow chime-

ras (Figure 3.4.5A-D). Thus, these data indicate that L. major-infected cells undergo more 

apoptosis as compared to uninfected cells.  

 
Figure 3.4.5: More apoptosis in L. major-infected cells in vivo. (A) Gating strategy for infected (red) and 

non-infected (grey) cell tracks. (B) FRET loss in infected (left panels) and non-infected (right panels) cells 

for CFP-DEVD-YFP (left) and CFP-DEVG-YFP control (right) mice. 50 randomly selected tracks of at least 
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200 tracks analysed per condition are shown. (C) FRET loss in infected and non-infected CFP-DEVD-YFP 

and CFP-DEVG-YFP control mice. Each symbol represents one track. Horizontal bars denote the median. 

(D) FRET loss in infected and non-infected cell populations from 4-5 animals imaged. Each symbol pair 

represents one mouse ear. ****, p < 0.0001; **, p < 0.01; ns, not significant according to Kruskal-Wallis 

with Dunn post-test in (C), and paired two-way ANOVA with Bonferroni post-test in (D). FRET, Foerster 

Resonance Energy Transfer. 

To support these findings, we made use of a caspase-3 reporter assay to measure caspase-3 

activity in LmDsRed-infected and uninfected human MDM by flow cytometry (Figure 3.4.6 - 

3.4.7). Indeed, we observed significantly higher NucView405 mean fluorescence, indicating 

caspase-3, in infected compared to uninfected human MDM. Strikingly, the increase in Nu-

cView405 mean fluorescence was already observed directly after staining with the caspase-3 

reporter, but was even more apparent 20 h post incubation with the reporter (Figure 3.4.7). 

Therefore, our data indicated that L. major infection is related to caspase-3 activity and 

thereby to apoptosis both in vivo and in vitro. 

 

Figure 3.4.6: Analysis of caspase-3 activity in vitro. Gating strategy for single live human MDM (left plot) 

and for DsRed expression (right plots) in infected (left) and non-infected (right) human MDM. MDM, 

monocyte-derived macrophages. Data obtained in collaboration with van Zandbergen G, Jaedtka M, 

Bagola K and Volkmar K (Division of Immunology, Paul-Ehrlich-Institut Langen, Langen, Germany). 

 
Figure 3.4.7: More active caspase-3 in L. major-infected human monocyte-derived macrophages. Nu-

cView405 (caspase-3 activity), in LmDsRed-infected (red) and uninfected (black) human MDM 0 h and 20 

h post incubation. Each symbol pair represents one donor. ****, p < 0.0001; **, p < 0.01 according to 

paired two-way ANOVA with Bonferroni post-test. MDM, monocyte-derived macrophages. Data obtained 

in collaboration with van Zandbergen G, Jaedtka M, Bagola K and Volkmar K (Division of Immunology, 

Paul-Ehrlich-Institut Langen, Langen, Germany). 
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3.5 L. major-infected cells containing high proliferating pathogens undergo apopto-

sis and drive cell-to-cell transfer  

Our previous findings had suggested that high proliferating L. major parasites undergo more 

cell-to-cell transmission than low proliferating parasites (91). Since we had observed en-

hanced apoptosis in infected cells, we next aimed to investigate L. major proliferation rate in 

relation to cell death of the infected host cells in vitro.  

To do so, we infected murine intraperitoneal macrophages with mKikume-expressing LmSWITCH 

parasites, which express a photoconvertible proliferation biosensor (282). In brief, the para-

sites in the infected macrophages were photoconverted from green to red and imaged by 

widefield microscopy for 48 h. This enabled us not only to track cell-to-cell transfer of the 

parasites, but also to determine pathogen proliferation as a function of recovery from photo-

conversion (91). Furthermore, the use of gridded microscopy dishes allowed us to fix the cells 

and identify and localise apoptotic macrophages by TUNEL staining following live cell imaging 

(Figure 3.5.1).  

 
Figure 3.5.1: Experimental setup for in vitro analysis of parasite proliferation and host cell death. In vitro 

analysis of murine peritoneal macrophages infected with a photoconversion-based pathogen prolifera-

tion biosensor (LmSWITCH) using widefield imaging.  

We detected higher L. major proliferation in TUNEL+ compared to TUNEL- macrophages (Figure 

3.5.2A-C), suggesting that high parasite proliferation is correlated to cell death of the original 

host cell. Time-resolved analysis of cell-to-cell transfer events prior to fixation (Figure 3.5.3A) 

revealed that parasite proliferation was high not only in TUNEL+ cells, but also in TUNEL- cells 

that had been infected only recently (< 800 min, Figure 3.5.3B). In contrast, TUNEL- cells found 

infected for longer periods of time (> 800 min) harboured parasites with significantly lower 

proliferation (Figure 3.5.3B).  

As shown previously in vivo (91), we did not detect any correlation between pathogen burden 

and intracellular pathogen proliferation rate (Figure 3.5.4A-B), indicating that the differences 

of intracellular residence time before apoptosis were attributable to pathogen proliferation, 

and not pathogen burden. Taken together, these data suggested that long-term residency of 

L. major parasites within macrophages is related to low parasite proliferation.  
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Figure 3.5.2: Intracellular L. major proliferation rate affects host cell death in vitro. (A) One example of 

high proliferating (green) LmSWITCH parasites co-localising with TUNEL+ (cyan) murine peritoneal macro-

phages. One frame at the end of live cell imaging (left panel) and TUNEL staining after fixation (right 

panel) of the same site are shown. TUNEL+ cells are marked with closed arrows and TUNEL- cells are 

marked with open arrows. Scale bar, 50 μm. (B) Quantification of TUNEL signal (left panel) and prolifer-

ation index (right panel) within the peritoneal macrophages shown in (A). Each symbol represents one 

individual cell (left panel) or parasite (right panel). Horizontal bars denote the median. (C) Quantification 

of proliferation index in all TUNEL+ and TUNEL- murine peritoneal macrophages analysed. Each symbol 

represents one individual parasite. Data were pooled from two independent microscopy experiments. 

Horizontal bars denote the median. ***, p < 0.001 according to Mann-Whitney test.  

 
Figure 3.5.3: Intracellular L. major proliferation rate and time affects the fate of the infected host cell in 

vitro. (A) One example of an LmSWITCH cell-to-cell transfer event between two murine peritoneal macro-

phages. The transferring LmSWITCH parasites are indicated with an open arrow in the donor host macro-

phage and with a closed arrow in the recipient macrophage. Scale bar, 20 μm. (B) Quantification of pro-

liferation index in TUNEL+ and TUNEL- murine peritoneal macrophages distinguished based on long-

term (> 800 min before fixation) and recent (< 800 min before fixation) parasite residency. Note that 

long-term intracellular residency in TUNEL- cells involves low parasite proliferation. Each symbol shows 

one individual parasite. Data were pooled from two independent microscopy experiments. Horizontal 

bars denote the mean. **, p < 0.01; ns, not significant according to Mann-Whitney test. 
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Figure 3.5.4: Intracellular L. major proliferation does not correlate with intracellular pathogen burden in 

vitro. (A) Number of parasites per infected macrophage determined in >100 cells infected with LmSWITCH 

48 h after photoconversion and imaged by widefield microscopy. (B) Pathogen proliferation determined 

by widefield microscopy for LmSWITCH 48 h after photoconversion in macrophages infected with 1, 2 or 

more than 2 parasites. Each symbol represents one cell. Data pooled from 10 independently imaged 

fields of view. Horizontal bars denote the median. No significant differences were found according to 

Kruskal-Wallis test. 
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3.6 Proliferation-competent pathogens induce cell death in infected macrophages  

The observation that high proliferating L. major parasites were found mainly in apoptotic or 

newly infected cells raised the question if pathogen proliferation might induce cell death in 

infected macrophages, or is a result of cell death. In order to investigate whether a predefined 

parasite proliferation affects the fate of the infected host in a direct manner, we aimed to 

modify parasite proliferation for infection of murine intraperitoneal macrophages and murine 

bone marrow-derived macrophages.  

To do so, we made use of Killed but Metabolically Active (KBMA) L. major parasites (293-295). 

These parasites are not able to proliferate due to low-grade DNA crosslinking (Figure 3.6.1), 

but largely retained their fluorescence (Figure 3.6.2) and could be shown by qPCR to switch to 

amastigote-specific gene expression upon infection of macrophages (Figure 3.6.3). These 

findings together suggested that KBMA L. major parasites indeed lack proliferation capacity, 

but predominantly maintain essential Leishmania-related properties and could therefore be 

used to investigate whether parasite proliferation affects the fate of infected macrophages in 

a direct manner.  

 
Figure 3.6.1: Killed but metabolically active L. major parasites do not proliferate. (A) Plot of mean error 

with standard deviation displaying the growth curve of proliferation-competent (green) and KBMA pro-

liferation-incompetent (red) parasites. Data represent three independent samples for each condition. 

Vertical bars denote the standard deviation. ****, p < 0.0001; ***, p < 0.001; ns, not significant accord-

ing to paired two-way ANOVA with Sidak post-test. KBMA, killed but metabolically active. Data obtained 

in collaboration with Dewitz L-A (Institute of Molecular and Clinical Immunology, Medical Faculty, Otto 

von Guericke University Magdeburg, Magdeburg, Germany). 

 
Figure 3.6.2: Killed but metabolically active L. major parasites largely retain DsRed fluorescence. (A) 

Gating strategy for single live cells (left) and histogram plots showing DsRed fluorescence (right) in BMDM 

infected with non-fluorescent LmWT (black), proliferation-competent LmDsRed (green) and proliferation-

incompetent KBMA LmDsRed (red) parasites. (B) DsRed mean fluorescence intensity (left) and percent of 

DsRed+ cells (right) in BMDM infected with non-fluorescent LmWT (black), proliferation-competent 
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LmDsRed (green) and proliferation-incompetent KBMA LmDsRed (red) parasites. Each symbol represents one 

independent sample. Horizontal bars denote the median. ****, p < 0.0001; ***, p < 0.001; **, p < 0.01 

according to one-way analysis of variance (ANOVA). KBMA, killed but metabolically active; WT, wild type. 

Data obtained in collaboration with Dewitz L-A (Institute of Molecular and Clinical Immunology, Medical 

Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany). 

 

Figure 3.6.3: Killed but metabolically active L. major parasites maintain differentiation-related Leishma-

nia properties. Promastigote (SHERP) and amastigote (ABC) gene expression (normalised to NMT as a 

housekeeping gene) in extracellular promastigotes (black), proliferation-competent (green) and KBMA 

proliferation-incompetent (red) parasites as measured by qPCR. Each symbol represents one sample. 

Data represent three independent samples for each condition. Horizontal bars denote the median. KBMA, 

killed but metabolically active; WT, wild type. Data obtained in collaboration with Dewitz L-A (Institute 

of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Mag-

deburg, Germany). 

To study the fate of KBMA-L. major-infected macrophages versus macrophages infected with 

proliferation-competent parasites side-by-side, DsRed-expressing KBMA parasites and 

mKikume green-expressing non-treated  parasites were used to co-infect murine intraperi-

toneal macrophages. The infected macrophages were imaged by widefield microscopy for 48 

h using gridded microscopy dishes to identify and localise apoptotic macrophages by TUNEL 

staining after the live cell imaging (Figure 3.6.4).  

 
Figure 3.6.4: Experimental setup for in vitro analysis of host cell death upon modification of intracellular 

pathogen proliferation. Widefield imaging of host cell death using murine peritoneal macrophages in-

fected with LmmKikumeGreen proliferation-competent and LmDsRed proliferation-incompetent KBMA para-

sites. KBMA, killed but metabolically active. 

We observed cell death both by TUNEL staining and by visual signs of cell death (membrane 

blebbing, figure 3.6.5A). Significantly more proliferation-competent, mKikume green-ex-

pressing parasites were observed in the TUNEL+ compared to the TUNEL- macrophages (Figure 

3.6.5B-C), suggesting that L. major proliferation induces cell death of the infected host.  
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Figure 3.6.5: Proliferation-competent L. major parasites induce cell death in infected macrophages in 

vitro. (A) Selected frames from live cell imaging and TUNEL staining after fixation of the same site are 

shown, revealing TUNEL+ (cyan) murine peritoneal macrophages co-localising with proliferation-compe-

tent (green) but not KBMA proliferation-incompetent (red) parasite. Scale bar, 20 μm. (B) Selection of 

LmmKikumeGreen proliferation-competent and LmDsRed proliferation-incompetent KBMA parasites in TUNEL- 

(left) and TUNEL+ (right) cells according to green and red parasite fluorescence. All measured infected 

cells are shown individually. (C) Quantification of percentage of proliferation-competent parasites in all 

TUNEL+ and TUNEL- murine peritoneal macrophages. Each symbol shows one field of view imaged over 

time and relocalised afterwards for TUNEL staining, with at least three TUNEL+ and at least six TUNEL- 

cells per imaged field analysed according to the criteria shown in (B). Horizontal bars denote the mean. 

**, p < 0.01 according to paired t test. KBMA, killed but metabolically active. 
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3.7 L. major intracellular proliferation rate modifies host cell metabolic pathways 

In order to analyse host cellular changes related to infection with proliferation-competent vs. 

KBMA-parasites, we set up a flow cytometry-based analysis approach. Murine bone marrow-

derived macrophages (BMDM) were used for this purpose in order to yield sufficient numbers 

of host cells for infection and analysis (Figure 3.7.1).  

 
Figure 3.7.1: Analysis of LmDsRed-infected murine bone marrow-derived macrophages. Gating strategy 

for live CD45+F4/80+ macrophages (left plots) and DsRed expression (right plots) in uninfected, prolif-

eration-competent-infected and KBMA-infected bone marrow-derived macrophages. Data obtained in 

collaboration with Dewitz L-A (Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von 

Guericke University Magdeburg, Magdeburg, Germany). 

Cell death analysis via AnnexinV staining (296) 48 h after infection revealed no significant 

differences between uninfected and KBMA- or proliferation-competent parasite-infected host 

cells (Figure 3.7.2A-B), probably due to the loss of cellular adherence of dying cells in the 

course of the experiment. Using murine BMDM infected with proliferation-competent vs. 

KBMA-parasites did however enable us to measure the impact of L. major proliferation capacity 

on host cellular metabolism on a single cell level.  

  
Figure 3.7.2: AnnexinV staining in murine bone marrow-derived macrophages infected with prolifera-

tion-competent and proliferation-incompetent KBMA LmDsRed parasites. (A) Gating strategy for AnnexinV 

in uninfected, proliferation-competent-infected and KBMA-infected CD45+F4/80+ macrophages. (B) 

Percent of AnnexinV+ cells (normalised to uninfected) in uninfected (black), proliferation-competent-

infected (green) and KBMA-infected (red) bone marrow-derived macrophages. Each symbol shows one 
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individual sample. Horizontal bars denote the mean. Data were pooled from three independent experi-

ments. KBMA, killed but metabolically active. No significant differences according to one-way ANOVA. 

Data obtained in collaboration with Dewitz L-A (Institute of Molecular and Clinical Immunology, Medical 

Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany). 

To this end, we studied glucose-uptake and transport by the fluorescent tracer 2-NBDG and 

expression of the glucose transporter 1 (GLUT1). The macrophages infected with either KBMA 

L. major or proliferation-competent L. major were compared with non-infected cells using 

flow cytometry analysis 48 h after infection. While no significant differences were observed in 

2-NBDG uptake between uninfected and KBMA-infected macrophages, macrophages infected 

with proliferation-competent L. major exhibited significantly less 2-NBDG uptake as compared 

to both the uninfected and the KBMA-infected macrophages (Figure 3.7.3A-B). This suggested 

that infection with proliferating parasites decreases glucose uptake in the host cell.  

Remarkably, no significant differences were observed in GLUT1 expression between any of the 

conditions (Figure 3.7.4A-B), suggesting that the changes in glucose uptake induced by pro-

liferation-competent pathogens are achieved not via marked changes in surface expression of 

the transporter GLUT1.  

 
Figure 3.7.3: Intracellular L. major proliferation rate modifies glucose uptake in host macrophages in 

vitro. (A-B) Gating (A) and mean fluorescence intensity (normalised to uninfected) (B) for 2-NBDG uptake 

in uninfected (grey), LmDsRed proliferation-competent-infected (green) and LmDsRed KBMA-infected (red) 

bone marrow-derived macrophages. Each symbol shows one individual sample, data pooled from three 

independent experiments. Horizontal bars denote the mean. **, p < 0.01; *, p < 0.05 according to one-

way ANOVA with Bonferroni post-test. KBMA, killed but metabolically active. Data obtained in collabo-

ration with Dewitz L-A (Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Gue-

ricke University Magdeburg, Magdeburg, Germany). 

  
Figure 3.7.4: Intracellular L. major proliferation rate does not affect GLUT1 in host macrophages in vitro. 

(A-B) Gating (A) and mean fluorescence intensity (normalised to uninfected) (B) for GLUT1 expression in 

uninfected (grey), LmDsRed proliferation-competent-infected (green) and LmDsRed KBMA-infected (red) 
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bone marrow-derived macrophages. Each symbol shows one individual biological replicate. Horizontal 

bars denote the mean. Data pooled from three independent experiments. No significant differences ac-

cording to one-way ANOVA. KBMA, killed but metabolically active. Data obtained in collaboration with 

Dewitz L-A (Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University 

Magdeburg, Magdeburg, Germany). 

In addition to glucose uptake, we analysed the expression of CD36, a membrane glycoprotein 

involved in high affinity tissue uptake of long chain fatty acids (297, 298). We found that 

expression of CD36 was significantly increased in macrophages infected with proliferation-

competent parasites as compared to both uninfected, as well as KBMA-infected cells (Figure 

3.7.5A-B), suggesting that pathogen proliferation might increase CD36 expression in infected 

macrophages.  

 
Figure 3.7.5: Intracellular L. major proliferation rate modifies CD36 expression in host macrophages in 

vitro. (A-B) Gating (A) and mean fluorescence intensity (normalised to uninfected) (B) for CD36 in unin-

fected (grey), LmDsRed proliferation-competent-infected (green) and LmDsRed KBMA-infected (red) bone 

marrow-derived macrophages. Each symbol shows one individual sample. Data pooled from three inde-

pendent experiments. Horizontal bars denote the mean. *, p < 0.05 according to one-way ANOVA with 

Bonferroni post-test. KBMA, killed but metabolically active. Data obtained in collaboration with Dewitz 

L-A (Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Mag-

deburg, Magdeburg, Germany). 

To validate these findings in vivo, we analysed intracellular pathogen proliferation and CD36 

expression in CD11c+Ly6Chi and CD11c+Ly6Clo monocytes isolated from the LmSWITCH-infected 

ear dermis. When we determined pathogen proliferation in vivo, CD11c+Ly6Chi monocytes ex-

hibited higher intracellular pathogen proliferation than CD11c+Ly6Clo monocytes (Figure 

3.7.6A-B).  

Of note, CD36 expression in cells isolated from the infection site was not only generally higher 

in CD11c+Ly6Chi monocytes, but also exhibited a substantial increase when comparing in-

fected with non-infected CD11c+Ly6Chi monocytes. This was, in contrast, not the case for 

CD11c+Ly6Clo monocytes (Figure 3.7.7A-B). This suggested that also in vivo, infection with 

high proliferating pathogen correlated with higher CD36 expression.  
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Figure 3.7.6: Intracellular L. major proliferation rate depends on monocyte subtype in vivo. (A) Gating 

for CD11c+Ly6Chigh and CD11c+Ly6Clow CD45.1+ monocytes (upper panel) and histogram plots showing 

proliferation index in infected CD11c+Ly6Chigh (green) and CD11c+Ly6Clow (red) (lower panel) CD45.1+ 

cells. (B) Quantification of proliferation index normalised to the total proliferation index in each sample 

(see chapter 2.2.8) in infected CD11c+Ly6Chigh (green) and CD11c+Ly6Clow (red) monocytes in newly re-

cruited CD45.1+ cells analysed according to gating shown in (A). Each symbol represents one mouse ear. 

Horizontal bars denote the mean. Data pooled from two independent experiments. ***, p < 0.001 ac-

cording to paired t-test. Data obtained in collaboration with Fu Y (Institute of Molecular and Clinical 

Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany). 

  
Figure 3.7.7: Increased CD36 expression in monocyte reservoir associated with high intracellular parasite 

proliferation in vivo. (A) Gating for CD11c+Ly6Chigh and CD11c+Ly6Clow monocytes (upper panel) and his-

togram plots showing CD36 expression in infected and uninfected CD11c+Ly6Chigh (green) and 

CD11c+Ly6Clow (red) (lower panels) CD45+ cells. (B) Mean fluorescence intensity for CD36 expression in 

infected (squares) and uninfected (dots) CD11c+Ly6Chigh (green) and CD11c+Ly6Clow (red) CD45+ mono-

cytes analysed according to gating shown in (A). Each symbol represents one mouse ear. Horizontal bars 

denote the mean. Data pooled from two independent experiments.  ****, p < 0.0001; ***, p < 0.001; **, 

p < 0.01 according to one-way ANOVA with Bonferroni post-test. Data obtained in collaboration with Fu 

Y (Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magde-

burg, Magdeburg, Germany). 
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As CD36 is involved in high affinity tissue uptake of long chain fatty acids (297, 298), we next 

aimed to evaluate whether differential pathogen proliferation resulted in distinct lipid uptake 

behaviours in infected cells in vitro. In order to do so, we analysed the uptake of low-density 

lipoprotein (LDL), long chain (C16) and short-/medium-chain (C1/12) fatty acids into unin-

fected as well as KBMA and proliferation-competent L. major-infected murine BMDM. Both 

LDL (Figure 3.7.8A-B) and long chain (Figure 3.7.9A-B), but not short chain fatty acid uptake 

(Figure 3.7.10A-B) was increased upon L. major infection. Strikingly, KBMA-infected mono-

cytes showed a higher uptake of LDL (Figure 3.7.8B) and long chain fatty acids (Figure 3.7.9B) 

as compared to cells infected by proliferation-competent L. major. This suggested that the 

increased CD36 expression might be compensatory as a result of different lipid uptake rates 

linked with pathogen proliferation (299), and underlined that L. major proliferation differen-

tially modulated metabolic pathways in the infected host phagocytes.  

  
Figure 3.7.8: Intracellular L. major proliferation rate modifies low-density lipoprotein uptake in host 

macrophages in vitro. (A-B) Gating (A) and mean fluorescence intensity (normalised to uninfected) (B) for 

LDL uptake in uninfected (grey), LmDsRed proliferation-competent-infected (green) and LmDsRed KBMA-

infected (red) bone marrow-derived macrophages. Each symbol shows one individual sample, data 

pooled from three independent experiments. Horizontal bars denote the mean. ****, p < 0.0001; *, p < 

0.05 according to one-way ANOVA with Bonferroni post-test. KBMA, killed but metabolically active. LDL, 

low-density lipoprotein. Data obtained in collaboration with Dewitz L-A (Institute of Molecular and Clin-

ical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany). 

 
Figure 3.7.9: Intracellular L. major proliferation rate modifies long chain fatty acid uptake in host mac-

rophages in vitro. (A-B) Gating (A) and mean fluorescence intensity (normalised to uninfected) (B) for 

C16 uptake in uninfected (grey), LmDsRed proliferation-competent-infected (green) and LmDsRed KBMA-

infected (red) bone marrow-derived macrophages. Each symbol shows one individual sample, data 

pooled from three independent experiments. Horizontal bars denote the mean. ****, p < 0.0001; **, p 

< 0.01 according to one-way ANOVA with Bonferroni post-test. KBMA, killed but metabolically active. 

C16, long chain fatty acid. Data obtained in collaboration with Dewitz L-A (Institute of Molecular and 

Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany). 
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Figure 3.7.10: Intracellular L. major proliferation rate does not affect short-/medium- chain fatty acid 

uptake in host macrophages in vitro. (A-B) Gating (A) and mean fluorescence intensity (normalised to 

uninfected) (B) for C1/12 fatty acid uptake in uninfected (grey), LmDsRed proliferation-competent-infected 

(green) and LmDsRed KBMA-infected (red) BMDM. Each symbol shows one individual sample. Horizontal 

bars denote the mean. Data are pooled from at least three independent experiments. KBMA, killed but 

metabolically active; BMDM, bone marrow-derived macrophages. No significant differences according to 

one-way ANOVA. KBMA, killed but metabolically active. C1/12, short-/medium chain fatty acid. Data 

obtained in collaboration with Dewitz L-A (Institute of Molecular and Clinical Immunology, Medical Fac-

ulty, Otto von Guericke University Magdeburg, Magdeburg, Germany). 
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3.8 High proliferating L. major parasites more likely reside in close proximity to blood 

vessels 

Having shown that intracellular pathogen proliferation alters the fate of the infected host cell 

and induces cell-to-cell transfer, we next sought to investigate whether intracellular parasite 

proliferation might be associated to differences in the microenvironment. We assumed that 

newly recruited cells, the main reservoir for high proliferating parasites, are more likely to 

reside in close proximity to the blood vessel. We therefore expected to observe a negative 

correlation between parasites proliferation and their distance to blood vessels. However, since 

recent findings suggested that NO-mediated Leishmania killing by macrophages might be 

affected under hypoxic conditions (117, 292, 300, 301), an alternative cause for potential 

differential pathogen proliferation with respect to blood vessels might be related to differences 

in oxygen availability. As the production of NO is oxygen dependent (302), proximity to blood 

vessels might indicate, in contrast to the contribution of newly recruited host cells, an en-

hanced L. major control and thus lower proliferation.  

In order to analyse parasite proliferation in relation to blood vessel distance, wild type mice 

were infected with 2 x 105 mKikume-expressing L. major (LmSWITCH) for 21 days. Photoconver-

sion of the LmSWITCH parasites in the mouse ear was performed 48 h before analysis. In order 

to visualise the vascularity, mice were injected intravenously with the vascular fluorescent na-

noparticle probe AngioSPARK 15 minutes before intravital 2-photon imaging (Figure 3.8.1). 

To allow analysis of parasite proliferation and the distance to the next blood vessel, acquired 

intravital imaging data were converted by spectral filtering based on mKikumeRed and far-red 

fluorescence ratio determined from manually selected L. major and autofluorescent shapes as 

described previously (292) (Figure 3.8.2A-E). 

 
Figure 3.8.1: Experimental setup for in vivo analysis of parasite proliferation in relation to blood vessel 

distance. In vivo analysis of parasite proliferation in relation to blood vessel distance using a photocon-

version-based pathogen proliferation biosensor (LmSWITCH), a vascular fluorescent nanoparticle probe 

(AngioSPARK) and 2-photon intravital imaging.  
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Figure 3.8.2: Intravital 2-photon imaging of parasite proliferation in relation to blood vessel distance in 

vivo. (A) Z-projection of LmSWITCH-infected ear dermis displaying low proliferating LmmKikumeRed, high pro-

liferating LmmKikumeGreen and AngioSpark-stained blood vessels. 18 slices of 3 μm-spaced z-stacks taken 

longitudinally are projected. Scale bar, 1000 μm. (B) Gating strategy for segmented mKikume+ Leishma-

nia objects (left panel) and for segmented AngioSpark+ blood vessel objects (right panel) using Imaris-

to-FlowJo converted data. (C) Gating strategy for Leishmania (left panel) and for hair follicles (right panel) 

according to manually selected objects using Imaris software. (D) Histogram plots displaying prolifera-

tion index of mKikume+ objects. (E)  Mapped XY positions as determined by spectral filtering; blue, blood 

vessel; red, low proliferating L. major; orange, intermediate proliferating L. major; green, high prolifer-

ating L. major.  

When analysing distance to the nearest blood vessel, we observed a negative correlation be-

tween parasite proliferation and blood vessel distance (Figure 3.8.3, upper panels and Figure 

3.8.4A, left panel). Moreover, this negative correlation was no longer observed when looking 

at scrambled data in which the pathogen proliferation rates had been assigned arbitrarily (Fig-

ure 3.8.3, lower panels and Figure 3.8.4A, right panel). This negative correlation between par-

asite proliferation and blood vessel distance was also observed when looking at the slopes of 

correlation for each individual animal, but again was no longer observed when looking at 

scrambled data (Figure 3.8.4B). Additionally, we observed a positive correlation between vessel 

distance and absolute mKikumeRed signal (Figure 3.8.4C), indicating our findings are due to 

parasite proliferation and not to protein folding kinetics. Thus, our results indicate that high 

proliferating parasites were more often observed in close proximity to blood vessels as com-

pared to low proliferating parasites, which might be due to reduced control by macrophages 

or by the increased likelihood of newly recruited monocyte-derived host cells present in this 

area. 
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Figure 3.8.3: L. major proliferation in relation to blood vessels distance in vivo. Correlation plots of 

measured (upper panels) and scrambled (lower panels) data showing parasite proliferation index in re-

lation to distance to the closest blood vessel of all imaged sites. Each plot indicates one imaged site. 

Each symbol represents one Leishmania object. ****, p < 0.0001; ***, p < 0.001; **, p < 0.01; ns, not 

significant according to according to Pearson's correlation coefficient (r).  

 
Figure 3.8.4: High proliferating L. major parasites more likely reside in close proximity to blood vessels 

in vivo. (A-B) Overlay (A) and quantification (B) of mean values data shown in (Figure 3.8.3). Each symbol 

pair represents one mouse ear. Horizontal bars denote the mean. (C) Correlation plot of mKikumeRed 

level in relation to distance to the closest blood vessel of all imaged sites. Data pooled from two inde-

pendent experiments. ****, p < 0.0001; *, p < 0.05; ns, not significant according to according to Pear-

son's correlation coefficient (r) in (A) and (B), and Mann-Whitney test in (C). 
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Chapter 3.9 published in: Baars I et al., Interleukin-11 receptor expression on monocytes is dispensable 

for their recruitment and pathogen uptake during Leishmania major infection. Cytokine. 2021. 

3.9 Ablation of IL-11 receptor signalling does not significantly influence Leishmania 

infection in monocytes in vivo 

IL-11 plays an essential role in bone remodelling by acting on all major cell types involved in 

bone homeostasis, namely osteoblasts, osteocytes, and osteoclasts and was suggested to af-

fect phagocytic functions in osteoclasts (183, 303). Moreover, IL-11 was shown to reduce 

myelin phagocytosis by microglia, macrophage-like immune cells of the central nervous sys-

tem (184). Since we were able to show that IL-11 receptor (IL-11R) is expressed on human 

monocytes (304), we hypothesised that IL-11 might influence the uptake of Leishmania par-

asites by newly recruited monocytes. Therefore, we sought to investigate L. major infection of 

monocytes upon IL-11R ablation in vivo. We used an adoptive transfer approach in order to 

compare wild type and IL-11R-deficient monocytes side by side (91). For this, we injected 2 x 

106 DsRed-labelled Leishmania (LmDsRed) parasites intradermally into the ear of C57BL/6 mice. 

16 days post infection, we injected a 1:1 mixture of either CFSE-labelled CD45.1+ WT cells 

and CD45.2+ IL-11R-/- or, as a control, CFSE-labelled CD45.1+ WT cells and CD45.2+ IL-11R+/+ 

intravenously into the tail vein of the mice. Five days after cell transfer, we analysed cells 

isolated from the infected ears via flow cytometry (Figure 3.9.1).  

 
Figure 3.9.1: Experimental strategy to determine the role of IL-11 receptor signalling during L major 

infection. In vivo flow cytometry analysis of CFSE-labelled, newly recruited IL-11R+/+ or IL-11R-/- 

(CD45.2+) and WT control (CD45.1+) cells side-by-side.  

First, we assessed whether the IL-11R affects monocyte recruitment. For this, we determined, 

in the CFSE-labelled recruited cell population, the ratio between CD45.1+ and CD45.2+ cells 

for mice adoptively transferred with either IL-11R+/+ or IL-11R-/- CD45.2+ cells together with 

CD45.1+ control cells (Figure 3.9.2A). We observed no significant difference in the recruitment 

of IL-11R+/+ versus IL-11R-/- cells (Figure 3.9.2B). In order to analyse the proportion of IL-

11R-/- cells among different monocyte populations, we analysed Ly6C+MHC-II- (immature), 

Ly6C+ MHC-II+ (semi-mature) and Ly6C- MHC-II+ (mature) monocytes separately (Figure 

3.9.3A), yielding no significant differences in case of recently recruited immature monocytes 

(Figure 3.9.3B). However, a significant reduction in the recruitment of semi-matured 

Ly6C+MHC-II+ monocytes was observed, suggesting IL-11R signalling might play a role in the 

recruitment of specific monocyte subsets or might affect maturation of infected monocytes, 

although no significant changes were observed in case of matured monocytes (Figure 3.9.3B). 
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Further investigation will be required to determine the exact role of IL-11R signalling in mon-

ocyte recruitment during ongoing Leishmania infection.  

 
Figure 3.9.2: IL-11 receptor signalling does not influence monocyte recruitment in the L. major-infected 

murine ear dermis. (A) Gating strategy to identify CD45.2+ IL-11R+/+ (control) or IL-11R-/- and CD45.1+ 

WT control cells among CFSE+ newly recruited cells. (B) Ratio of CD45.2+/CD45.1+ cells among newly 

recruited CFSE+ cells in WT/IL-11R+/+ and WT/IL-11R-/- mice according to the gating shown in (A). Each 

dot represents one mouse ear. Horizontal bars in red denote the median. Data pooled from two inde-

pendent experiments. ns, not significant according to one-way ANOVA with Bonferroni post-test and 

pairwise comparison. WT, wild type; BM, bone marrow. 

  
Figure 3.9.3: Influence of IL-11 receptor signalling on the recruitment of different monocyte subsets in 

L. major-infected murine ear dermis. (A) Monocytes (CD11b+Ly6G-) gated with respect to expression of 

Ly6C and MHC class II in order to identify immature Ly6C+MHCII-, semi-mature Ly6C+MHCII+ and mature 

Ly6C-MHCII+ monocytes. (B) Ratio of CD45.2+/CD45.1+ cells among newly recruited CFSE+ monocytes in 

WT/IL-11R+/+ and WT/IL-11R-/-mice within the different cell populations shown in (A). Each dot repre-

sents one mouse ear. Horizontal bars in red denote the median. Data pooled from two independent 

experiments. ns, not significant according to one-way ANOVA with Bonferroni post-test and pairwise 

comparison. WT, wild type; BM, bone marrow.   

To determine whether IL-11R signalling affects monocyte infection by L. major, we measured 

the infection rate for the recruited monocytes via L. major DsRed fluorescence, and calculated 

the ratio of infection rates between CD45.1+ and CD45.2+ cells for both mouse groups (Figure 
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3.9.4A). No significant differences were detected, neither for all cells (Figure 3.9.4B), nor for 

Ly6C+ MHC-II- (immature), Ly6C+ MHC-II+ (semi-mature) or Ly6C- MHC-II+ (mature) cells when 

analysed separately (Figure 3.9.4C). In conclusion, our data argue against a significant role of 

IL-11R signalling in monocyte recruitment and infection during L. major infection in vivo. 

 
Figure 3.9.4: IL-11 receptor signalling does not influence infection of monocytes in the L. major-infected 

murine ear dermis. (A) Gating strategy to identify DsRed+ infected cells in WT/IL-11R+/+ and WT/IL-11R-

/- mice within the different cell populations shown in (Figure 3.9.2A) and (Figure 3.9.3A). (B-C) Ratio of 

DsRed+ CD45.2+/CD45.1+ cells among newly recruited CFSE+ monocytes in WT/IL-11R+/+ and WT/IL-

11R-/- mice within all CD11b+Ly6G- monocytes (B) according to gating shown in (Figure 3.9.2A) and (A) 

and within the different monocyte subsets (C) according to gating shown in (Figure 3.9.3A) and (A). Each 

dot represents one mouse ear. Horizontal bars in red denote the median. Data pooled from two inde-

pendent experiments. ns, not significant according to one-way ANOVA with Bonferroni post-test and 

pairwise comparison. WT, wild type; BM, bone marrow.  
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4. DISCUSSION 

Host cell exit is a critical step in the life-cycle of intracellular pathogens. Similar to cell invasion 

and intracellular survival, host cell exit represents a well-regulated system that has evolved 

during host-pathogen co-evolution and relies on intricate host-pathogen dynamics. The main 

exit strategies employed by pathogens are initiation of programmed cell death, active breach-

ing of host cell-derived membranes and membrane-dependent exit without host cell lysis. 

The majority of intracellular pathogens utilise more than one of these strategies, depending 

on life-cycle stage, environmental factors and host cell type (193-197). Although it is well-

known that the ability of L. major parasites to exit from and to spread among phagocytes are 

key survival strategies of the parasite, they have hardly been studied during ongoing infection. 

Elucidating these strategies is however of utmost importance, while this might lead to the 

identification of novel targets for future treatment approaches.  

A possible mechanism involved in L. major cell-to-cell transfer among phagocytes is cell death 

of the infected host cell. Thus far, multiple studies have shown that Leishmania parasites can 

delay apoptosis in infected neutrophils and subsequently use apoptotic neutrophils as “Trojan 

horses” for silent entry into macrophages without activating their effector mechanisms (68, 

81, 82, 305, 306). We hypothesised that L. major might employ a similar approach for their 

transfer among macrophages, although findings regarding macrophage cell death during 

Leishmania infection are inconsistent. Therefore, we aimed to investigate original host cell 

death in relation to L. major exit from and uptake into monocyte-derived phagocytes during 

ongoing infection in vivo. Additionally, since intracellular proliferation is another major sur-

vival strategy of L. major parasites and since we have recently shown that high proliferating L. 

major parasites undergo more cell-to-cell transfer as compared to low proliferating parasites 

(91), we investigated whether pathogen proliferation affects host cell death, thereby enabling 

the efficient dissemination of the pathogen to new phagocytes. In this study, we show that L. 

major infection modulates host cell metabolism and drives host cell death in vivo depending 

on intracellular pathogen proliferation rate, thereby enabling the efficient dissemination of the 

pathogen to new phagocytes.  

  



DISCUSSION | IRIS BAARS 

77 

 

4.1 The role of CD11c-expressing cells during Leishmania infection 

When looking at the function of CD11c-expressing Leishmania-permissive host cells, our re-

sults, based on CD11c+ cell depletion, indicate that these cells play a dual role in the ongoing 

infection. That is, CD11c-expressing cells seemed to promote infection by functioning as host 

cells for the parasite and seemed to control the infection by inducing iNOS production. This is 

in contrast to previous findings showing that depletion of CD11c+ cells during ongoing infec-

tion dramatically increased iNOS-dependent NO production in splenocytes. However, in line 

with our current findings indicating that CD11c-expressing cells are an important reservoir 

for Leishmania parasites, the same study showed that depletion of CD11c+ cells reduced 

splenic parasite burden (307). Additionally, our findings support previous data showing that 

CD11c+ DCs are important for control of the infection by inducing Leishmania-specific T cell 

responses and are the most abundant cell type expressing iNOS (107, 307-311). Of note, the 

time of CD11c+ cell differentiation and the efficiency of T cell priming and iNOS production by 

CD11c+ cells might depend on the Leishmania species causing the infection (312, 313). Our 

present findings also support our recent data showing that CD11c-expressing monocytes are 

the main host cell type for efficient Leishmania proliferation and for cell-to-cell transmission 

and support previous findings from others showing that infected CD11c+ DCs constitute an 

important reservoir for L. major parasites (91, 311, 314). We hypothesise that the increase in 

parasite burden observed at later stages of CD11c+ cell depletion could be further enhanced 

by more efficient phagocyte recruitment due to the decreased iNOS production. This potential 

increase in phagocyte recruitment could in turn also lead to an increase in intracellular path-

ogen proliferation, as has previously been postulated by our group (292). Moreover, although 

we have not looked at DCs in lymph nodes during CD11c+ cell depletion in ongoing infection, 

it has been suggested that Leishmania parasites might additionally use these cells to migrate 

to secondary lymphoid organs and peripheral sites (315). This in turn could further promote 

Leishmania dissemination during later stages of the infection. Of note, infected CD11c+ cells 

were indicated to have reduced MHC-II-mediated antigen-presenting potential and therefore 

more likely contribute to the spread rather than to the control of the infection (314, 316, 317). 

However, findings regarding antigen-presentation ability in CD11c+ cells are inconsistent, 

with other studies showing that DCs were able to efficiently present Leishmania antigen to T 

cells (108, 318). Interestingly, inflammatory macrophages, resembling the host cells used in 

the present study, were shown to successfully capture and kill L. major parasites, but did not 

upregulate MHC-II expression upon infection, suggesting these cells do not actively partici-

pate in T cell priming (108). Taken together, these findings indicate that CD11c-expressing 

cells play distinct roles during Leishmania infection, depending on the CD11c+ cell subpopu-

lation, the Leishmania species and strain, the infection site and the infection stage.  

Along the same lines, we were able to show that high proliferating L. major parasites more 

likely reside nearby blood vessels. This might be related to the residency of newly recruited 
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CD11c+ monocytes, which we have previously shown to preferentially harbour fast prolifera-

tors and which migrate via blood vessels, in that area (91). The accumulation of high prolifer-

ating parasites around blood vessels might however also be related to altered NO-mediated 

Leishmania killing by macrophages. Although NO is considered to be a critical player in Leish-

mania clearance, the relation between NO-mediated parasite clearance and hypoxia is unclear 

thus far. That is, previous findings have indicated that hypoxia promotes the control of L. 

amazonensis infection by macrophages (319), while other findings have suggested that hy-

poxia in L. major skin lesions impairs the NO-dependent control of pathogen proliferation by 

macrophages (320). This second finding would be in line with the implication that NO together 

with superoxide can form the effective antimicrobial compound peroxynitrite (142), proposing 

that NO production could be more effective at sites with high oxygen availability and less 

effective at sites with low oxygen availability. This finding is however contradictory to the 

findings of the present study. The reason for the contradictory findings regarding hypoxia and 

Leishmania infection might be related to the fact that these previous studies investigated the 

effect of experimentally-induced hypoxia and not the effect of biologically-induced hypoxia 

(e.g. by infection or microenvironment). Additionally, during our present studies, we did not 

look at a direct connection between parasite proliferation and hypoxia, but only at a connec-

tion between parasite proliferation and blood vessel distance. Apart from explanations re-

garding cell niche and oxygen availability, our current findings might also be explained by 

altered oxygen-dependent parasite proliferation. It however seems unlikely that differences in 

local oxygen concentration would be the main factor influencing intracellular Leishmania 

amastigote proliferation directly. That is, previous findings suggest that Leishmania parasites 

have developed certain strategies to survive under hypoxic conditions and that mitochondria 

in Leishmania amastigotes are less dependent on respiratory energy as compared to pro-

mastigotes, potentially contributing to the survival of amastigotes within phagolysosomes 

where apparent hypoxic conditions persist (321, 322). We therefore propose that the residency 

of high proliferating parasites in close proximity to blood vessels might be due to reduced 

control by macrophages or to the increased likelihood of newly recruited monocyte-derived 

host cells present in this area. 
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4.2 Cellular dissemination of Leishmania  

When looking at the spread of L. major parasites, we observed that transfer from one host 

phagocyte to the next is direct, with no extracellular phase detectable in vivo. In line with this, 

L. major transfer among phagocytes was shown to be direct in vitro and cell-to-cell transfer 

of L. amazonensis amastigotes was reported to occur without full exposure to the extracellular 

milieu (38, 91, 323). Also, in the present study, we observed that the uptake of L. major par-

asites by newly recruited monocytes was accompanied by the uptake of original host cell ma-

terial, which supports our previous data showing that the original host cell was phagocytosed 

by the newly infected host cell upon parasite transfer in vitro (91). While the uptake of neu-

trophil material together with parasites by recruited monocyte-derived macrophages and DCs 

has been demonstrated in a variety of studies (19, 306, 323-325), the transit between infected 

monocyte-derived cells in an established infection had been less well elucidated. Our data 

now show that also the transfer from infected CD11c-expressing cells, most probably inflam-

matory monocytes (91), involves the uptake of original host cell material. Importantly, we 

could validate our findings from mice in an in vitro system of human monocytes, illustrating 

that both in preclinical in vivo and human in vitro systems, uptake of original host cell material 

is involved in the cell-to-cell transfer of the parasite.  
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4.3 Apoptosis as cellular exit strategy for Leishmania  

Although intracellular pathogens have developed numerous strategies to delay or inhibit 

apoptosis in order to establish their intracellular niche, the induction of host cell apoptosis is 

also one of the main exit strategies employed by pathogens in order to establish pathogen 

dissemination (326, 327). The significance of host macrophage apoptosis in pathogen spread 

has previously been shown for Mycobacterium avium, as well as for Mycobacterium tubercu-

losis (246, 328). Additionally, apoptosis was found to mediate the spread of Mycobacterium 

marinum among macrophages in granulomas and cell death in macrophages infected with the 

facultative intracellular fungus Cryptococcus neoformans was shown to be associated with 

apoptotic features (329-333). Interestingly and very much in line with the findings of the pre-

sent study, Cryptococcus neoformans-induced apoptosis was suggested to be related to in-

tracellular growth and cellular escape (331). Furthermore, host cell apoptosis has been shown 

to play a role during Chlamydia infection. However, the exact role of cellular apoptosis in 

Chlamydia-infected cells so far remains unclear with some studies suggesting infection in-

duced apoptosis in host cells (334-336), thereby promoting propagation of the infection, and 

others suggesting infection inhibited apoptosis (337, 338). Lastly, Francisella tularensis and 

Salmonella enterica were shown to induce apoptosis in infected host cells, although this in-

duction in apoptosis was not specifically linked to pathogen dissemination (339-341). In re-

gard to Leishmania, host cell death has already been postulated to play a role in egress from 

neutrophils (19, 82, 342). However, its role for Leishmania egress from macrophages thus far 

remained elusive. We now observed more apoptosis in L. major-infected cells as compared to 

uninfected cells, both by live cell imaging and intravital 2-photon imaging in the living tissue. 

In contrast, a number of previous studies suggested that Leishmania infection inhibits mac-

rophage apoptosis. For example, L. donovani infection has been shown to inhibit the pro-

grammed cell death-1 (PD-1) receptor and to activate the anti-apoptotic AKT signalling path-

way, and the anti-apoptotic Bcl-2 family-related protein myeloid cell leukemia 1 (MCL-1) in 

macrophages (262-267). In line with this, L. donovani and L. infantum promastigotes have 

been suggested to increase anti-apoptotic Bcl-2 in macrophages (268, 269). Moreover, other 

studies showed that both L. mexicana promastigotes and amastigotes downregulate camp-

tothecin-induced apoptosis of monocyte-derived DCs and Akarid and colleagues suggested 

that L. major inhibits apoptosis in murine BMDM (270-275). However, these studies investi-

gated mainly the prevention of experimentally-induced apoptosis in vitro, the effect of short-

term Leishmania infection or cell death irrespective of the cellular infection status. In line with 

our findings of the present study, there are also a number of reports showing that Leishmania 

infection induces macrophage apoptosis. DaMata and colleagues demonstrated that L. ama-

zonensis induces PS exposure, DNA cleavage into nucleosomal size fragments, and conse-

quent hypodiploidy in macrophages, all indicating apoptosis. In addition, the same study 

showed that L. amazonensis-induced macrophage apoptosis was associated to activation of 

caspases-3, -8 and -9 (276). Other studies suggested that viable, but not dead, L. major, L. 
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aethiopica and L. tropica promastigotes induced apoptosis in infected macrophages in vitro 

and that L. aethiopica, but not L. mexicana, induced cell-to-cell transfer following caspase-

3-dependent host macrophage apoptosis in vitro (277, 278). These findings together suggest 

that host cell apoptosis might be Leishmania state and Leishmania species or strain depend-

ent. This is in line with another study showing that Leishmania infection protects murine mac-

rophages from cycloheximide-induced apoptosis in a species and strain specific manner (279). 

Also in line with our present findings, we recently showed that L. major-infected murine mac-

rophages exhibited signs of apoptosis-associated membrane blebbing shortly before parasite 

transfer into a new phagocyte, suggesting that the infection of new host cells mainly occurs 

via cell-to-cell transmission from dying phagocytes in vitro (91). Moreover, multidimensional 

live imaging of long-term-infected macrophages demonstrated that L. amazonensis 

amastigotes underwent cell-to-cell transfer when the original host macrophage shows signs 

of imminent apoptosis in vitro, in a process mediated by parasitophorous extrusions (38). 

Interestingly, increased apoptosis in CD4+ lymphocytes and monocytes was observed in pa-

tients with acute visceral leishmaniasis (280). These data together suggest that Leishmania 

parasites might employ a similar approach for macrophage egress as for neutrophil egress; 

delaying initial host cell apoptosis until apoptosis is induced in order to promote parasite 

dissemination among phagocytes. 
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4.4 Other potential cellular exit strategies for Leishmania  

Although we employed in vivo and in vitro reporters specific for caspase-3, we are not able to 

formally exclude an involvement of other regulated cell death pathways, such as necroptosis 

and pyroptosis, in L. major infection and cell-to-cell transfer. Further studies are needed to 

explore the role of these pathways in L. major spread among phagocytes. In this regard, pre-

vious studies have demonstrated that necroptosis, more specifically RIPK1-RIPK3-MLKL-as-

sociated necroptosis, is important for neutrophil death during L. infantum infection and for 

macrophage death during L. braziliensis, L. amazonensis and L. major infection (220-222). In 

addition, it was suggested that the inflammasome was important for restriction of parasite 

replication during infection with L. amazonensis, L. braziliensis, and L. infantum chagasi, but 

not during L. major infection (224). Besides playing a potential role during Leishmania infec-

tion, host cell necroptosis has also been observed during infections with other pathogens. For 

example, Salmonella enterica serovar Typhimurium, a facultative intracellular gram-negative 

bacterium, enhanced IFN-induced necroptosis in host macrophages, thereby sustaining infec-

tion (343, 344). Additionally, Mycobacterium tuberculosis was suggested to induce NLRP3-

mediated necroptosis in macrophages and ROS-induced cell death of human Mycobacterium 

tuberculosis-infected neutrophils resembled necroptosis and led to transfer of the bacteria 

into macrophages (345-347). Necroptosis has also been suggested to play a role during viral 

infections. For instance, murine cytomegalovirus and influenza A virus infections were shown 

to induce RIPK1-RIPK3-MLKL-mediated necroptosis and herpes simplex virus infection in-

duced necroptosis in murine cells, but reduced necroptosis in human cells (348-354).  

In addition to apoptosis and necroptosis, we and others have shown that host macrophage 

pyroptosis may contribute to Leishmania dissemination (94, 236). On the contrary, other stud-

ies suggested that L. amazonensis and L. donovani infection suppress macrophage pyroptosis 

(238-241). With regard to other pathogens, a number of studies have indicated that various 

bacteria, such as Legionella pneumophila, Francisella tularensis, Shigella flexneri, Salmonella 

spp. and Listeria monocytogenes, induce pyroptosis (193, 194, 197, 355-366). Moreover, the 

deletion of caspase-11, a member of the murine caspase family and an important initiator of 

pyroptosis, makes host cells more susceptible to Salmonella and Legionella pneumophila in-

fection (367, 368), suggesting pyroptosis might also play a role in antimicrobial functions. In 

addition, a role for pyroptosis in host cell exit has been proposed for the opportunistic yeast 

pathogen Candida albicans, which induces pyroptosis in macrophages and facilitates release 

of the pathogen (369). These data together suggest that host cell pyroptosis can both benefit 

the host by controlling infection and can enable the exit of Salmonella spp., Legionella pneu-

mophila, Francisella tularensis and Candida albicans from infected macrophages (193, 356, 

358, 370, 371), thereby potentially promoting pathogen spread. It therefore seems plausible 

that pyroptosis, while involved in the antimicrobial host response, also plays a role in host cell 

exit of certain pathogens.  
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These findings together suggest that apoptosis may not be the only form of programmed cell 

death important for Leishmania spread among phagocytes. This is especially of interest since 

apoptosis, necroptosis, and pyroptosis have recently been shown to be tightly connected and 

can cross-regulate each other. More specifically, caspase-8 can promote apoptosis, necrop-

tosis, or pyroptosis depending on its posttranslational state and the cell type (372). Also, a 

recently identified cytoplasmic multimeric protein complex named the PANoptosome, which 

can engage, in parallel, pyroptosis, apoptosis, and necroptosis, has been shown to play a role 

during microbial infections. The complex contains Z-DNA-binding protein 1 (ZBP1), NLRP3, 

ASC, RIPK1, RIPK3, caspase-8, caspase-1 and caspase-6 (373). Since Leishmania infection has 

already been associated to caspase-8-associated apoptosis and to RIPK1-RIPK3-MLKL-asso-

ciated necroptosis in macrophages (221, 222, 276), it could be well possible that multiple 

forms of programmed cell death occur simultaneously in these infected cells. It would thus be 

of interest to study caspase-8 and PANoptosome activity in L. major-infected macrophages. 

Besides programmed host cell death, other means of host cell exit might play a role in Leish-

mania cell-to-cell transfer. The subcellular localisation of the pathogen within the host cell is 

a determining factor for egress. Usually, after successful entry into the host cell, pathogens 

reside within a vacuole inside the host cell cytoplasm. Therefore, pathogens first have to es-

cape their vacuole in order to exit their host cell. In order to do so, many pathogens have been 

shown to utilise pore toxins and phospholipases to disrupt the vacuolar membrane (374-391). 

On the contrary, cytolysis, which includes the destruction of both vacuolar membrane and host 

cell plasma membrane, is often mediated by proteases (392-398). In case of Leishmania, 

leishporin, a pore-forming protein expressed by L. amazonensis promastigotes and 

amastigotes, was shown to be involved in vacuolar escape and lysis of infected macrophages 

(190-192, 399). Apart from vacualor escape and cytolysis, pathogens have also developed 

less destructive means of escape, which are mainly membrane-dependent. One of these es-

cape mechanisms involves actin-mediated protrusion (383, 400-425), which relies on the 

polymerisation of host cell actin on the microbial surface, protects the pathogen from extra-

cellular defence mechanisms and often results in the transfer to new host cells (426). Some 

pathogens also employ extrusion or budding (427-434), during which the pathogen is pro-

tected by a membrane coat and during which the host cell remains intact, to exit host cells or 

use  exocytosis-like egress (435-451), which involves the transport and fusion of intracellular 

endosomal vesicles with the plasma membrane and the subsequential release of the pathogen 

(452, 453). A number of pathogens, such as Listeria monocytogenes and Shigella flexneri, 

seem to employ multiple exit strategies. That is, both actin-mediated protrusion and pyrop-

tosis have been suggested to play a role during the cellular escape of these bacteria (360, 361, 

366, 383, 403-411, 418-425). Taking all these findings into account, which suggest that 

pathogens might use various strategies to exit their host cells, it is very well possible that 

Leishmania also exploit different pathways to exit and spread among host cells. While the way 

of cellular exit might depend on the host organism, immune response, cellular niche, parasite 
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species and strain, infection site, tissue tropism and infection stage, it seems unlikely that L. 

major parasites employ exit strategies during which parasites are released to the extracellular 

milieu. Hereof, we have recently shown that parasites were taken up directly from one host 

cell to the next (91) and our present study suggests that parasites do not undergo an extra-

cellular phase during cell-to-cell transmission. Moreover, initiation of host cell apoptosis 

seems to be a beneficial cellular exit strategy for the pathogen, while employing apoptosis 

initiation would be a way to facilitate uptake by new host cells without inducing inflammatory 

responses that are usually associated with necroptosis and pyroptosis. 
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4.5 Host cell death and intracellular Leishmania proliferation  

When looking at host cell death in relation to intracellular parasite proliferation, we observed 

higher parasite proliferation in dying host cells as compared to vital host cells, suggesting that 

L. major proliferation could result in death of the infected phagocyte. Although it would be 

tempting to assume that the proliferation-dependent initiation of cell death is related to an 

increased number of intracellular parasites, we have previously shown that high proliferating 

parasites were present at lower numbers per infected cell (91). This finding was also confirmed 

in the present study. It therefore seems more probable that the death of cells infected with 

proliferating parasites is associated with more efficient cellular exit and transfer of these high 

proliferating L. major parasites. This in turn is also in line with earlier data obtained by our 

group showing that high proliferating L. major parasites undergo more cell-to-cell transfer as 

compared to low proliferating parasites (91). Additionally in support of this hypothesis, our 

data indeed showed that host cells are only able to survive for more than 72 h post-infection 

if the proliferation rate of the parasite inside the cell is low, suggesting that long-term resi-

dency of L. major parasites within macrophages is related to low parasite proliferation. To-

gether with our murine and human data showing more apoptosis in infected compared to 

uninfected cells, we thus hypothesised that proliferating L. major parasites induce cell death 

of the original host cell, thereby promoting transfer to a new phagocyte. Since we observed 

high proliferating parasites in close proximity to blood vessels, which we assume might be 

due to higher numbers of newly recruited monocyte-derived host cells present in this area, it 

would be interesting to study host cell apoptosis in relation to blood vessel distance. 

In order to decipher whether high Leishmania proliferation induces or is an effect of cell death 

of the donor cell, we aimed to study host cell death in macrophages infected with prolifera-

tion-modified Leishmania parasites. We had shown earlier that inflammatory monocytes are 

infected by parasites with specifically high pathogen proliferation (91), and that enhanced 

monocyte recruitment can increase pathogen proliferation (292), suggesting that pathogen 

proliferation might be at least in part dependent on the availability of newly recruited host 

cells. With the enhanced cell death in, and pathogen exit from, cells infected with high prolif-

erating L. major, it would be possible that the phagocyte subtype is the main determinant for 

pathogen proliferation capacity, and propensity of cell death. Using KBMA L. major, which are 

proliferation-incompetent parasites, we were able to investigate this question beyond pure 

correlation between L. major proliferation and cell death of the original host cell. Infected host 

cells displaying signs of cell death were more often associated with proliferation-competent 

parasites as compared to proliferation-incompetent parasites, suggesting that L. major pro-

liferation induces cell death of the infected host. While KBMA parasites most likely reflect only 

partially the phenotype of low-proliferating pathogens, our data clearly show that modulation 

of proliferation per se can impact on the probability of host cell death. These data, together 
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with the implication that Leishmania parasites might employ a similar approach for macro-

phage egress as for neutrophil egress, suggest that the potential initial delay in host cell 

apoptosis and the eventual initiation of host cell apoptosis might be dependent on intracellular 

parasite proliferation. To our knowledge, we are the first to show this direct association be-

tween Leishmania parasite proliferation and host cell death on the cellular level.  
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4.6 Host cell metabolism and intracellular Leishmania proliferation  

To further investigate the phagocyte phenotype in relation to intracellular pathogen prolifer-

ation, metabolic pathways in L. major- infected host cells were analysed. Importantly, phag-

ocytes, including macrophages, adapt their metabolism in response to invading pathogens 

(454, 455), which plays an important role in cellular defence mechanisms against intracellular 

pathogens (456). We therefore analysed various metabolic components in L. major-infected 

macrophages. We show that expression of the glucose transporter GLUT1 is not affected by L. 

major infection, which is in contrast to data showing that L. major promastigotes increased 

GLUT1 levels and glycolysis in infected macrophages (457). However, these findings were 

based on short-term in vitro infection of susceptible murine macrophages, suggesting GLUT1 

might be differentially affected depending on infection stage and/or Leishmania susceptibility. 

Also arguing against our current findings, GLUT1-mediated glucose metabolism has been as-

sociated with a proinflammatory phenotype and GLUT1 was shown to be highly expressed in 

inflammatory macrophages (458, 459). While it is possible that L. major inhibits the increase 

in GLUT1 that is normally associated with inflammation, this does not seem to depend on the 

proliferation rate of the intracellular parasite. Alternatively, other glucose transporters could 

play a role in enhancing the glucose supply that is suggested to be needed for amastigote 

proliferation inside macrophages (460-462). In contrast to the latter, we observed reduced 2-

NBDG uptake in host macrophages infected with proliferating parasites as compared to non-

proliferating parasites, indicating reduced glucose uptake as a result of intracellular pathogen 

proliferation. This is in contrast to data showing that glucose was an essential nutrient for 

Leishmania amastigotes and that L. donovani metacyclic promastigotes increased glycolysis 

in infected bone marrow-derived macrophages during short-term in vitro infection (460-463). 

The reduction in glucose uptake we observed in macrophages infected with high proliferators 

could however be a result of the host cell attempting to contain pathogen proliferation. Alter-

natively, massive glucose consumption by high proliferating pathogens might result in down-

stream effects by metabolic products that interfere with efficient glucose uptake (464). Our 

current findings are however in support of other findings indicating that L. donovani parasites, 

during their differentiation into amastigotes, shift from glucose to fatty acid oxidation as the 

main source of metabolic energy and in support of findings indicating that macrophages 

switch from an early glycolytic metabolism to an oxidative phosphorylation during L. infantum 

infection (465, 466). Additionally, it supports the finding that L. mexicana amastigotes are 

characterised by a glucose-sparing metabolism associated with reduced glucose uptake (467). 

This suggests that Leishmania might inhibit the increase in glycolysis that macrophages dis-

play during inflammatory activation (468, 469), either in order to avoid a glycolysis-mediated 

pro-inflammatory response or in order to protect themselves from nutrient overload-induced 

metabolic stress (470, 471). This would also be in line with earlier findings showing that My-

cobacterium tuberculosis limits host glycolysis (472), which has been shown to be important 



DISCUSSION | IRIS BAARS 

88 

 

in host defence against the intracellular pathogen (473-475). Therefore, our observations 

likely pertain beyond Leishmania to other intracellular pathogens.  

In addition to investigating glucose metabolism in L. major-infected macrophages, we also 

analysed lipid metabolism. We demonstrate increased CD36 expression upon L. major infec-

tion depending on the proliferation rate of the intracellular parasite. This is in line with previ-

ous data showing an increase in CD36 expression upon L. infantum and L. amazonensis in-

fection (476, 477), but in contrast to findings showing that L. major promastigotes actively 

limited CD36 transcription in macrophages (478). Being a central regulator for lipid metabo-

lism, CD36 has important functions in the uptake of fatty acids, but also serves as a scavenger 

receptor (479, 480). Evidence for changes in lipid regulation are particularly interesting in the 

context of Leishmania since parasites modulate macrophage membrane cholesterol, as well 

as gene regulation in cholesterol biosynthetic and trafficking pathways in vitro (481-483). 

Moreover, L. amazonensis has been found to engage CD36 in order to drive maturation of the 

parasitophorous vacuole (477), where Leishmania parasites survive and proliferate (36, 484). 

In support of this, the lipid accumulation, potentially resulting from increased CD36 expres-

sion, observed during L. major infection was in close association with the parasitophorous 

vacuole (457). Alternatively, this accumulation of lipids could be a result of lipid-dependent 

parasite proliferation inside the parasitophorous vacuole, which would support our current 

findings showing that increased CD36 expression relates to increased intracellular Leishmania 

proliferation. The assumption that lipid accumulation might benefit pathogens inside the par-

asitophorous vacuole would also be in line with data showing that cytoplasmic lipid droplets 

were translocated into the lumen of the parasitophorous vacuole in Chlamydia infected cells 

(485). Of note, we found that the uptake of LDL and long chain fatty acids, whose transport is 

mediated by CD36 (297, 486), was increased upon L. major infection, which is in line with 

previous findings (457). Interestingly, while infection with proliferation-competent L. major 

increased CD36 expression as compared to KBMA infection, the effect seemed to be opposite 

for LDL and long chain fatty acid uptake. This suggests that L. major proliferation might impact 

infected cells in a way that decreases the net lipid uptake, but induces compensatory CD36 

expression (299) or that lipid uptake reduces during the course of the infection because pro-

liferating parasites have used the lipids as an energy source. While lipid metabolism was also 

shown to be required for apoptosis initiation (487, 488), it might be possible that the increase 

in CD36 and the uptake of LDL and long chain fatty acid is related to apoptosis initiation in L. 

major-infected cells. An alternative explanation for increased CD36 surface expression in 

macrophages infected with proliferation-competent parasites might be the involvement of this 

receptor in the phagocytosis of apoptotic cells (489-491). Specifically, the enhanced phago-

cytosis of transferring proliferating parasites by CD36hi macrophages could result in the higher 

signal in the population harbouring proliferation-competent pathogen. Nevertheless, this 

would again be in favour of our hypothesis that pathogen proliferation drives cell death of the 
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original host cell and in line with our previous findings that high proliferating L. major para-

sites undergo more cell-to-cell transfer as compared to low proliferating parasites (91).  

Since phagocytic receptors have been shown to be involved in phagosomal escape and intra-

cellular pathogen proliferation (492), it would be of interest to investigate whether specific 

receptors are involved in the spread of high proliferating parasites among phagocytes. In this 

regard, we were already able to show that IL-11R signalling, which has been suggested to play 

a role in phagocytosis (183, 493), does not significantly influence monocyte recruitment and 

infection in a mouse model of cutaneous leishmaniasis. Moreover, other cellular pathways 

could be affected by or associated with intracellular pathogen proliferation. For example, host 

arginine metabolism has already been considered important for Leishmania proliferation and 

persistence inside the host cell, although, with l-arginine being a substrate for NO production, 

it is also essential for parasite elimination by the host (494-496). Interestingly, arginase, the 

enzyme that converts l-arginine into ornithine and urea, was suggested to play a role in mac-

rophage efferocytosis and internalisation of apoptotic and pyroptotic cells, suggesting that 

elevated arginase expression in newly recruited monocytes may promote parasite cell-to-cell 

transfer (497). Therefore, it would be of interest to investigate arginine metabolism in macro-

phages infected with proliferation-competent and proliferation-incompetent L. major para-

sites. Furthermore, iron was suggested to be critical for Leishmania amastigote proliferation 

within macrophage phagolysosomes and host tryptophan metabolism was associated with in-

creased L. major proliferation in infected macrophages (498, 499). When looking at other 

pathogens, recent data suggested that intracellular Staphylococcus aureus induces cytoplas-

mic calcium overload, which results in apoptotic and/or necrotic cell death and may subse-

quentially facilitate the spread of infection and tissue destruction (500). Taking all these data 

into account, it seems plausible that Leishmania parasites utilise numerous metabolic host cell 

pathways to allow efficient intracellular survival and proliferation. It would therefore be worth-

while to investigate intracellular Leishmania proliferation in relation to other pathways within 

the infected host cell.   
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4.7 Conclusions and implications 

In order to promote pathogen dissemination and disease progression, intracellular pathogens 

have developed a variety of strategies to escape from and transfer among host cells. It is 

therefore essential to identify and study these strategies, and it seems as if a limited set of 

general strategies is utilised among pathogen species, including induced membrane-depend-

ent exit, active host cell lysis, and initiation of different forms of cell death (193, 195, 197). 

However, especially for Leishmania, data on the significance of any of these strategies for cell-

to-cell transfer are scarce (40). Taken together, we show here that L. major drives host cell 

death and cell-to-cell transfer among phagocytes. In addition, our findings indicate that in-

creased L. major proliferation rate might be involved in these processes. To our knowledge, 

we are the first to show evidence that L. major stimulates dissemination among monocyte-

derived phagocytes through parasite proliferation-dependent cell death, which can serve as a 

starting point for the creation of innovative treatments that can inhibit the establishment of 

intracellular pathogens at their site of infection. While targeting pathogen exit might not pro-

tect from primary infection, it could contribute to control of the infection and disease pro-

gression by diminishing pathogen spread among cells and tissues.
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7. APPENDIX  

7.1 Macro for vessel distance analysis 

waitForUser("Import the .xls file containing the blood vessel positions with the File/Im-

port/Results pathway then click OK"); 

 

VesselCount=nResults(); 

VesselX=newArray(VesselCount); 

VesselY=newArray(VesselCount); 

VesselZ=newArray(VesselCount); 

 

for (i=0; i<VesselCount; i++) { 

 

 VesselX[i]=getResult("X", i); 

 VesselY[i]=getResult("Y", i); 

 VesselZ[i]=getResult("Z", i); 

 //print(i, LeishX[i], LeishY[i]); 

} 

 

//imports all blood vessel positions from a microscopy dataset and generates a data array 

with x, y, z positions 

 

waitForUser("Import the xls file containing the Leishmania positions with the File/Import/Re-

sults pathway then click OK"); 

 

//opens a results file with Leishmania x, y, z positions and fluorescence values 

 

LeishmaniaCount=nResults(); 
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for (j=0; j<LeishmaniaCount; j++) { 

 

 dLeishMin= 13000000; 

 

 for (k=0; k<VesselCount; k++) { 

   

  Xpos=getResult("X", j); 

  Ypos=getResult("Y", j); 

  Zpos=getResult("Z", j); 

  dLeish=sqrt(((Xpos-VesselX[k])*(Xpos-VesselX[k]))+((Ypos-VesselY[k])*(Ypos-

VesselY[k]))+((Zpos-VesselZ[k])*(Zpos-VesselZ[k]))); 

 

  if (dLeish<dLeishMin) { 

 

   dLeishMin=dLeish; 

  } 

 

 } 

 

setResult ("MinVesselDist", j, round(dLeishMin)); 

 

} 

  

//calculates for each Leishmania object the distance to the closest blood vessel object and 

stores the calculates distance with the Leishmania object 

 


