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Abstract

In data analysis, rare pattern mining is essential for uncovering valuable insights
by identifying uncommon patterns that often escape traditional methods. Despite
notable advancements in deep learning, challenges related to explainability and
interpretability persist, particularly when it comes to identifying and understanding
rare, but impactful patterns. Rare pattern mining, especially association rule mining,
offers an interpretable approach that provides insights that are crucial for informed
decision-making.

This doctoral dissertation addresses key challenges in rare pattern mining through four
main contributions: (1) developing an efficient method for discovering rare patterns,
(2) discovering the concise representation of rare patterns to reduce redundancy, (3)
unveiling interesting patterns by filtering out irrelevant and noisy patterns, and (4)
demonstrating practical applicability through a case study focused on interpretability.
First, we introduce a novel depth-first search approach to overcome the limitations
of traditional methods, achieving substantial improvements in speed and memory
efficiency, particularly in sparse datasets, and thus establish a new standard for rare
pattern extraction. To address redundant pattern generation, we propose a method
for identifying maximal rare patterns, providing a concise output that enhances
analysis efficiency. In addition, we introduce a model that isolates interesting
patterns by effectively filtering out irrelevant and noisy data, ensuring that only
impactful patterns are highlighted, thereby enhancing interpretability and reducing
information overload.

The practical implications of these contributions are demonstrated in a healthcare
case study focused on heart disease, where interpretability and transparency are
essential. By analyzing patient data, our methods not only reveal critical risk factors
but also identify vulnerability patterns in asymptomatic individuals, enabling early
intervention and improved health outcomes. This case study underscores the value
of model transparency and interpretability, particularly in high-stakes applications.

Through these contributions, this thesis makes significant advances in the efficiency,
relevance, and interpretability of rare pattern mining. The proposed methods provide
robust, actionable insights across various domains, providing a foundation for more
effective data-driven decision-making.





Zusammenfassung

In der Datenanalyse spielt die Identifikation seltener Muster eine entscheidende Rolle
bei der Gewinnung wertvoller Erkenntnisse, da solche ungewöhnliche Muster häufig
von herkömmlichen Methoden übersehen werden. Trotz bemerkenswerter Fortschritte
im Bereich des Deep Learning bestehen weiterhin Herausforderungen im Hinblick
auf Erklärbarkeit und Interpretierbarkeit, insbesondere bei der Identifikation und
dem Verständnis seltener, aber bedeutender Muster. Das Mining seltener Muster,
insbesondere das Assoziationsregel-Mining, bietet einen interpretierbaren Ansatz, der
Einblicke liefert, die für fundierte Entscheidungsprozesse unerlässlich sind.

Diese Doktorarbeit befasst sich mit den zentralen Herausforderungen im Mining
seltener Muster durch vier wesentliche Beiträge: (1) die Entwicklung einer effizienten
Methode zur Entdeckung seltener Muster, (2) die Bestimmung einer kompakten
Darstellung seltener Muster zur Reduzierung von Redundanz, (3) die Aufdeckung
interessanter Muster durch das Herausfiltern irrelevanter und störender Muster und (4)
die Demonstration der praktischen Anwendbarkeit durch eine Fallstudie mit Fokus auf
Interpretierbarkeit. Zunächst wird ein neuartiger Tiefensuchansatz vorgestellt, der die
Einschränkungen traditioneller Methoden überwindet und deutliche Verbesserungen
in Bezug auf Geschwindigkeit und Speichereffizienz, insbesondere in dünn besetzten
Datensätzen, erzielt, wodurch ein neuer Standard für die Extraktion seltener Muster
gesetzt wird. Um die Erzeugung redundanter Muster zu vermeiden, schlagen wir eine
Methode zur Identifikation maximal seltener Muster vor, die eine kompakte Ausgabe
liefert und die Analyseeffizienz erhöht. Darüber hinaus führen wir ein Modell ein,
das interessante Muster isoliert, indem es irrelevante und störende Daten effektiv
herausfiltert, sodass nur wirkungsvolle Muster hervorgehoben werden, wodurch die
Interpretierbarkeit verbessert und die Informationsüberlastung reduziert wird.

Die praktischen Implikationen dieser Beiträge werden in einer Fallstudie im Gesund-
heitswesen, die sich auf Herzerkrankungen konzentriert, veranschaulicht, bei der
Interpretierbarkeit und Transparenz wesentlich sind. Durch die Analyse von Pa-
tientendaten enthüllen unsere Methoden nicht nur kritische Risikofaktoren, sondern
identifizieren auch spezielle Faktoren bei asymptomatischen Personen, was eine
frühzeitige Intervention und verbesserte Gesundheitsprognosen ermöglicht. Diese
Fallstudie unterstreicht den Wert von Modelltransparenz und Interpretierbarkeit,
insbesondere in Anwendungen mit hohen Anforderungen.

Durch diese Beiträge macht diese Arbeit bedeutende Fortschritte in der Effizienz,
Relevanz und Interpretierbarkeit des Mining seltener Muster. Die vorgeschlagenen
Methoden bieten robuste, umsetzbare Einblicke in verschiedenen Bereiche und bilden
eine Grundlage für eine effektivere, datengetriebene Entscheidungsfindung.
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1. Introduction

Data mining is a crucial process for uncovering patterns and gaining insights from
datasets. It plays a significant role in fields such as data analysis, machine learning,
and business intelligence because it enables the discovery of connections, associations,
correlations, and trends that would otherwise remain hidden. A key technique in data
mining is pattern mining, which involves identifying and extracting recurring patterns
or structures within datasets to obtain meaningful, interesting, and actionable
knowledge [Luna et al., 2019]. Depending on the data being analyzed, this process
can uncover various types of patterns, including sequential patterns, frequent patterns,
and graphs.

In recent years, deep learning (DL) has gained significant attention because of
its ability to learn complex patterns from vast datasets. Despite their impressive
performance, DL models have been criticized for their lack of explainability and
interpretability [Rudin, 2019]. These models typically operate as “black boxes,”
making it difficult for practitioners and domain experts to understand the rationale
behind their decisions or derive actionable insights from underlying patterns. This
lack of transparency poses critical challenges in fields such as healthcare, finance, and
security, where trust in and understanding of the decision-making process is critical.

In contrast, Association Rule Mining (ARM) [Troncoso-Garćıa et al., 2023] provides a
more transparent and interpretable approach to knowledge discovery. ARM uncovers
relationships between variables and reveals not only frequent patterns but also
rare patterns that may be of particular significance. Rare pattern mining within
ARM is particularly valuable because it focuses on identifying less common yet
highly impactful patterns that are often overlooked by traditional frequent pattern
mining and black-box DL models. These rare patterns can provide critical insights
into exceptional behaviors or anomalies such as early signs of disease, fraudulent
transactions, and emerging trends in large datasets.

The ability to identify rare patterns is vital because these infrequent occurrences often
represent anomalies or outliers that can have significant implications. ARM provides
clear and interpretable results, making it particularly suitable for applications in which
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understanding the rationale behind discovered patterns is essential. By capturing
both frequent and rare patterns, ARM addresses some of the key limitations of DL
models and provides valuable, actionable insights that enhance decision-making in
complex, data-rich environments.

Thus, the shift toward ARM, with a particular emphasis on rare pattern mining,
presents a transparent and powerful alternative for knowledge discovery. This
approach not only mitigates the limitations associated with DL models but also
enables the extraction of valuable, interpretable insights that are crucial in fields
where transparency and trust in the decision-making process are crucial.

1.1 Frequent pattern mining
Frequent pattern mining (FPM) is a widely utilized pattern mining technique aimed
at discovering recurring patterns and connections within datasets. This method can
be employed to detect associations or correlations between various items in a dataset,
such as products purchased by customers, symptoms experienced by patients, or
keywords found in documents. One of the primary challenges of FPM is to efficiently
uncover frequent patterns, which are subsets of items that co-occur in a dataset with
a frequency exceeding a predefined minimum support threshold. To address this issue,
various algorithms for FPM, such as Apriori, FP-growth, Eclat, and PrefixSpan, have
been developed, which employ different strategies to reduce the search space and
improve performance [Luna et al., 2019].

Although FPM is a widely used method for identifying frequent patterns, it faces
several challenges that hinder its usefulness and applicability. One of the challenges
in pattern mining is the potential for a large number of patterns to emerge when a low
minimum support threshold is used, including rare interesting patterns. Therefore,
when the threshold is extremely low, the analysis becomes computationally intractable.
However, setting the constraint too high can limit the analysis to a small number
of common patterns, potentially missing more subtle and valuable rare patterns.
Therefore, identifying the optimal balance between constraints and extraction is
critical for real-world applications that require the discovery of meaningful and
surprising patterns. This is particularly relevant in areas such as fraud detection,
insurance and healthcare analytics, and fault detection in safety-critical systems,
where rare patterns may indicate critical events.

Another challenge associated with FPM lies in its tendency to generate patterns
that mainly align with expected phenomena, leading to a focus on widely recognized
occurrences. The drawback of this tendency becomes evident when it may result
in overlooking patterns that occur less frequently but offer valuable insights and
meaningful information. In certain situations, it is more efficient and desirable to
emphasize the exploration and extraction of less common patterns, as they allow for
the identification of outliers, anomalies, or hidden correlations that may be essential
for a thorough understanding of the underlying data. Hence, common (frequent)
patterns may already be well known and therefore cannot provide new insights.
To achieve a more comprehensive and meaningful analysis of datasets, greater
emphasis should be placed on less frequently occurring patterns that generate new
and interesting insights rather than focusing solely on well-established occurrences of
FPM.
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1.2 Rare pattern mining
Rare pattern mining is a sophisticated method that is increasingly used to address
these challenges. Rare pattern mining has emerged as a pivotal methodology in the
field of data mining, distinguished by its specialized focus on uncovering infrequent
yet substantial patterns within datasets. Unlike traditional mining techniques that
predominantly target frequent occurrences, rare pattern mining seeks to identify
events or patterns that may be sparse but possess considerable importance. The
main objective of rare pattern mining is to uncover hidden rare events, outliers, or
exceptional associations that might otherwise remain undetected by conventional
mining methods [Akdas et al., 2024; Darrab et al., 2021b; Gui et al., 2024; Liu et al.,
2023].

Rare patterns do not occur frequently and are crucial for a number of applications due
to their unique capabilities, such as fraud detection, medicine, anomaly detection, and
security. In fraud detection, rare pattern mining can be used to identify fraudulent
transactions or activities that deviate from normal behavior or patterns. For example,
rare pattern mining can detect credit card fraud by identifying unusual combinations
of items or amounts purchased by cardholders. Healthcare leverages this methodology
to diagnose rare diseases and ensure a comprehensive understanding of diverse
medical conditions. For example, rare pattern mining can detect drug reactions by
identifying rare associations between drugs and symptoms. Rare pattern mining
can be used to detect anomalies or outliers in data, which may indicate errors,
faults, or malicious attacks. For example, rare pattern mining can detect network
intrusions by identifying uncommon patterns in network traffic or packets. Beyond
these, safety-critical systems find rare pattern mining essential for detecting faults
and uncommon events, contributing to improved system reliability. The versatility of
rare pattern mining is underscored by its applicability in domains where uncovering
unusual associations is vital for informed decision making [Akdas et al., 2024; Borah
and Nath, 2020; Darrab et al., 2021b].

This innovative approach targets infrequent patterns with the potential to produce
significant outcomes, making it an effective tool for understanding and adapting to
the intricacies of diverse domains. Rare pattern mining offers an in-depth under-
standing of patterns by overcoming the limitations of conventional frequent pattern
mining, thereby enriching insights and fostering more effective outcomes. Through-
out this thesis, we employ the expressions ”infrequent patterns” and ”rare patterns”
interchangeably.

1.3 Challenges of rare pattern mining
In contrast to conventional frequent pattern mining, rare pattern mining focuses
on less common events, allowing for a more in-depth understanding of datasets
and the discovery of unknown relationships that might otherwise go undetected.
Consequently, specialized algorithms and evaluation metrics are required to address
the unique characteristics of these infrequent patterns. The extraction of infrequent
patterns from data is a complex process because of the large size and noisy nature of
data, which can hinder the identification of useful patterns and relationships [Borah
and Nath, 2019; Darrab et al., 2021b]. Considering the complexities inherent in
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mining rare patterns, several key challenges must be addressed to ensure the efficacy
and relevance of the extracted insights. This thesis focuses on various challenges,
such as performance, redundancy, interpretability, and interestingness.

• Performance: This remains a foremost concern, given the computational demands
involved in identifying rare patterns within vast datasets. Because of the sparsity
and irregularity characteristics of rare patterns, traditional pattern mining
algorithms may have difficulty handling them efficiently, which necessitates the
development of novel approaches capable of mining rare patterns efficiently.

• Redundancy: The issue of redundancy is a significant obstacle to the effective
mining of rare patterns. These results can be cluttered and obscured by redundant
patterns that convey redundant information or provide little additional insight.
Therefore, it is imperative for rare pattern mining endeavors to be optimized
by filtering redundant patterns and prioritizing those that contain unique or
actionable insights.

• Interestingness: Identifying statistically significant patterns is not sufficient; it is
critical to identify patterns that are both statistically significant and unexpected.
By incorporating measures of interestingness into the mining process, we can
prioritize patterns that offer the greatest potential to yield novel insights or drive
meaningful actions.

• Interpretability: It emerges as another critical challenge in the context of rare
pattern mining. As pattern complexity increases, it becomes more difficult
to interpret its implications and derive actionable insights. Ensuring that the
extracted patterns are interpretable to domain experts is essential for facilitating
informed decision making and deriving value from the mining process.

For rare pattern mining to succeed, we must address these diverse challenges and
enable it to exploit its full potential to uncover valuable information from rarely
occurring data.

1.4 Goal of this thesis
This thesis aims to provide efficient solutions to the challenges associated with rare
pattern mining. The focus of this thesis is to identify the limitations of current
methods in generating interesting rare patterns to prevent negative outcomes in
a variety of areas. This thesis aims to develop effective methods for discovering
rare patterns while considering issues such as the generation of a large number of
rules, redundancy, interpretability, and level of interest. To examine rare patterns
in a real-world problem, the proposed methods are applied to a case study analysis,
specifically focusing on heart disease within the healthcare sector. This thesis aims
to answer the following questions through pattern mining:

1. What are the current methods available for mining rare patterns, and how do
they differ in their effectiveness?

2. How can we generate rare patterns efficiently to optimize processing time and
resources?
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3. How can we focus on identifying meaningful rare patterns while minimizing
redundancy?

4. Among the many unpredictable rare patterns, how can we filter out the most
interesting and unexpected insights?

5. How can rare pattern mining be effectively applied in a real-world case study to
demonstrate its practical importance and validate its impact?

1.5 Main contributions
In this subsection, we summarize the contributions made in response to the five
questions outlined in the previous subsection.

For Question 1, we conducted a literature review [Darrab et al., 2021b] and published
a survey that answers: What are the current methods available for mining rare
patterns, and how do they differ in their effectiveness?

This section highlights our contributions to the challenges addressed in this thesis,
focusing on the discovery of new, unexpected, and meaningful patterns in response
to Questions 2 through 5.

1.5.1 Developing an efficient method for discovering rare pat-
terns

The task of extracting unusual patterns from data has been the subject of extensive
research. Existing methods can be divided into two categories based on their original
approach: apriori-based [Agrawal and Srikant, 1994] and FP-based [Wang et al.,
2002]. Both of these methods have limitations when addressing rare-pattern problems.
Apriori-based methods are time consuming and require a large amount of memory
because of the need to rescan the entire dataset and use a generate-test approach.
To overcome this limitation, tree-based methods have been proposed for mining rare
patterns using a depth-first approach. However, these methods are difficult to scale
when mining sparse datasets, which commonly contain unusual patterns. Therefore,
designing an algorithm to mine interesting rare patterns from sparse datasets remains
a significant challenge. To address this challenge, we propose a novel pre-post rare
method for rare pattern mining called the Rare Pre-Post(RPP) algorithm. The
experimental results demonstrate that our RPP algorithm outperforms state-of-
the-art methods for rare pattern mining [Darrab et al., 2020]. The details of this
contribution and the proposed method are discussed in Chapter 4.

1.5.2 Discovering the concise representation of rare patterns

Although our proposed algorithm, which was discussed in the previous subsection, is
designed to efficiently generate rare patterns, one drawback of the existing methods
for rare pattern mining is that they often produce a large number of redundant
patterns. This poses problems in terms of improving the efficiency and effectiveness of
the process. Rare pattern mining is highly sensitive to the support threshold, because
a low value can result in an excessive number of patterns. Mining a large number
of patterns can overwhelm decision makers, and many of the generated patterns
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may be redundant, making it necessary to aggregate them for subsequent analysis.
This problem is particularly severe when dealing with rare events, as it is crucial to
identify them as early as possible to avoid unfavorable outcomes. To address this
issue, it is desirable to extract a concise representation of rare patterns to provide
more meaningful results. Generating a concise representation of rare patterns often
involves summarizing the entire set of patterns, which can be significantly smaller
than the complete set of patterns. In addition, discovering concise representations
is often faster than discovering a complete set of rare patterns. Although several
methods have been proposed to extract maximal and closed frequent patterns, there
is no known method for mining concise representations of rare patterns. Therefore,
designing a method to identify condensed rare patterns without redundant patterns
is an important research topic. To address this challenge, we developed an algorithm
called MaxRI, which can discover maximal rare patterns [Darrab et al., 2021a]. We
provide details of this contribution and the method proposed in Chapter 5.

1.5.3 Interestingness of patterns
Pattern mining is crucial in data analysis to unearth valuable insights from datasets.
However, sifting through vast amounts of data to identify meaningful patterns
is challenging. Rare pattern mining has emerged as a solution that focuses on
extracting non-conforming patterns that yield actionable insights. Existing methods,
although abundant, often flood decision makers with an overwhelming number of
rules complicate the analysis. For instance, a pattern with d items can generate
2d − 1 rules, which necessitates extensive downstream analysis. To streamline this
process, it is imperative to extract fewer yet more meaningful rules. A clustering-
based approach utilizing DBSCAN [Bui-Thi et al., 2020] was proposed to identify
unexpected rare rules. However, this method has notable limitations, including
suboptimal performance due to its reliance on the Apriori algorithm, potential
oversight of nested cluster structures, and sensitivity to DBSCAN’s hyperparameters.

To address these challenges, we propose OPECUR, an efficient model based on
OPTICS clustering of ECLAT-generated unexpected rules. The experimental results
demonstrate OPECUR’s superiority of OPECUR in terms of the F1-score, AUC, and
speed compared with DBSCAN-based methods, providing faster and more insightful
rule recovery [Darrab et al., 2022a].

Clustering models such as DBSCAN and OPECUR provide end users with manageable
rule sets. However, these models suffer from limitations, including performance
degradation and the need for parameter adjustment. In addition, they failed to
discover a complete set of rare patterns. To address this challenge, we proposed
UCRP-miner: Mining patterns that matter, a model that utilizes frequent patterns to
identify unexpected rules. This approach allows for efficient retrieval of complete set
of unexpected rules and produces actionable rules that are both new and interesting.
To evaluate the effectiveness of our model, we conducted experiments using real-life
datasets and found that it outperformed the state-of-the-art model in terms of both
time and accuracy, generated usable patterns, and produced non-redundant rules
that significantly reduced the effort required to generate interesting patterns [Darrab
et al., 2022b]. Chapters 6 and 7 provide a detailed explanation of the contributions
and the proposed methodologies.
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1.5.4 A case study with interpretability focus

Heart disease affects a significant proportion of the population and is a leading
cause of mortality worldwide. Data mining methods, such as logistic regression,
neural networks, and random forests [Singh and Kumar, 2020], have been utilized
to detect and predict heart diseases by analyzing patient data, uncovering patterns,
and forecasting outcomes. However, these methods often lack interpretability, which
makes it difficult to understand the decision-making process of the model. It is crucial
that the model’s predictions are explainable to provide insights into its reasoning
and enhance trust.

Association rule mining offers a promising approach to address interpretability by
identifying the relationships between variables and the risk of heart disease. This
method can reveal influential factors and their relationships with model-predicted
outcomes, which aids in understanding heart disease risks. However, traditional
association rule mining faces challenges, including generating an overwhelming
number of rules, many of which may be uninformative or irrelevant, and potentially
overlooking rare yet significant patterns with low support.

To address these limitations, we propose Exploring the Predictive Factors of Heart
Disease using Association Rule Mining (EPFHD-RARMING), a model designed to
generate only relevant, interpretable rules. This approach highlights key factors
and their relationships, supporting the early detection of cardiovascular diseases.
Our model provides a deeper understanding of heart disease etiology based on
experimental findings, uncovering both common and rare patterns, including those
with low support, which may be crucial for early diagnosis [Darrab et al., 2024]. The
details of our contribution and methodology are explained in Chapter 8.

1.6 Corresponding publications
This dissertation is based on a collection of peer-reviewed articles presented at
conferences and workshops and published in journals. The articles were ordered
according to their appearance in this dissertation.

1. Sadeq Darrab, David Broneske, and Gunter Saake. RPP algorithm: A method
for discovering interesting rare itemsets, volume 1234 CCIS. Springer Singapore,
2020.

2. Sadeq Darrab, David Broneske, and Gunter Saake. MaxRI: A method for
discovering maximal rare itemsets. In 2021 4th International Conference on
Data Science and Information Technology, pp. 334–341, 2021.

3. Sadeq Darrab, David Broneske, and Gunter Saake. Modern applications and
challenges for rare itemset mining. International Journal of Machine Learning
(IJML), 11(3):208–218, 2021.

4. Sadeq Darrab, Priyamvada Bhardwaj, David Broneske, and Gunter Saake.
OPECUR: An enhanced clustering-based model for discovering unexpected rules.
At the International Conference on Advanced Data Mining and Applications,
pages 29–41. Springer, 2022.
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5. Sadeq Darrab, David Broneske, and Gunter Saake. UCRP-Miner: Mining
patterns that matter. At the 2022 5th International Conference on Data Science
and Information Technology (DSIT), pages 1–7. IEEE, 2022.

6. Sadeq Darrab, David Broneske, and Gunter Saake. Exploring the predictive
factors of heart disease using rare association rule mining. Scientific Reports,
14(1):18178, 2024.

1.7 Outline of this thesis
The remainder of this dissertation is structured as follows. Chapter 2 provides a
comprehensive background on rare pattern mining. Chapter 3 presents a survey
of the existing rare pattern mining approaches. In Chapter 4, we address the first
challenge of this thesis and propose an efficient algorithm to identify rare patterns.
Chapter 5 addresses the second challenge, focusing on reducing redundancy in rare
pattern mining. Chapters 6 and 7 explore the third challenge, identifying unexpected
and interesting rules. In Chapter 8, we apply these findings to the healthcare domain,
particularly in the discovery of rare patterns associated with heart diseases. Finally,
Chapter 9 concludes the thesis and outlines the future research directions.



2. Background

This chapter explores the development and significance of rare pattern mining, focus-
ing on Association Rule Mining (ARM) and clustering as foundational unsupervised
techniques. These methods are crucial for rare pattern mining because they enable
the discovery of previously undetected structures and relationships within data,
without relying on predetermined labels or targets. A thorough understanding of
these foundational principles is essential for recognizing their importance and role in
contemporary data analysis [Hassija et al., 2024].

Association Rule Mining (ARM) is a vital area within data mining that focuses on
uncovering subtle, nontrivial, and significant patterns from extensive datasets. The
primary objective of ARM is to identify the relationships between variables in large
databases, forming the basis for a wide range of applications, including market basket
analysis, bioinformatics, and recommendation systems [Fournier-Viger et al., 2017;
Zhang and Wu, 2011]. Traditionally, ARM has concentrated on frequent patterns,
that is, patterns that commonly co-occur within a dataset above a certain threshold.
However, this focus on frequency often overlooks rare patterns, which despite their
infrequent occurrence, can offer profound insights [Borah and Nath, 2017; Lu et al.,
2020].

Rare pattern mining is a specialized subfield of ARM that focuses on identifying
infrequent patterns and recognizing their potential to reveal unforeseen connections
and provide substantial value across a wide range of domains, including healthcare,
retail, and banking [Ninoria and Thakur, 2020; Shrivastava and Johari, 2016]. Mining
rare patterns presents particular challenges due to their low support values, meaning
they do not frequently appear in datasets. However, as noted by Lu et al. [2020],
these rare patterns represent novel and valuable knowledge.

Although traditional frequent pattern mining has been extensively studied and
applied, rare pattern mining has emerged as a crucial complement, enabling a more
comprehensive understanding of data by uncovering the full spectrum of associations.
This approach addresses the limitations of focusing solely on frequent patterns by
emphasizing the significance of rare occurrences, which can lead to actionable insights
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across various fields, as demonstrated by Borah and Nath [2017]; Ninoria and Thakur
[2020]; Shrivastava and Johari [2016]. The continued development of algorithms and
techniques for rare pattern mining is essential for advancing the field of data mining,
ensuring that both frequent and infrequent phenomena are captured and analyzed,
as highlighted by Lu et al. [2020].

Rare pattern mining has received considerable attention in recent years because of
its wide-ranging implications across a variety of sectors. It is increasingly important
for informed decision making and the extraction of practical insights to identify
uncommon yet valuable patterns. An overview of rare pattern mining is provided in
this chapter, setting the stage for a more detailed examination of ARM, clustering,
and the specific challenges and opportunities within rare pattern mining in the
following sections.

2.1 Problem description
In this section, we explore the tasks of frequent and rare pattern mining, along
with related concepts integral to these processes. We discuss the fundamental ideas
behind pattern mining, particularly focusing on the identification of frequent and
rare patterns, and the extraction of interesting association rules between patterns
within transactional datasets. To elucidate these concepts, we present the following
motivating example:

Motivating Example

Consider the transaction dataset provided in Table 2.1, where the minimum support
threshold is set to 50%.

Table 2.1: A toy transaction dataset

id Transaction
t1 a, b, c, d

t2 b, d

t3 a, b, c, e

t4 c, d, e

t5 a, b, c

Figure 2.1 shows a comprehensive subset lattice corresponding to the five items listed
in Table 2.1. This lattice captures all the possible patterns that can be extracted
from the toy transaction dataset. The structure of the lattice is organized such that
each level contains patterns of the same length, with the lattice culminating at the
top with the null set. The diagram also explicitly annotates the frequencies of each
pattern, as they occur within the dataset. This systematic representation facilitates
a clearer understanding of the distribution and relationships of the patterns within
the given transactional data.

In this example, frequent patterns appear in at least 50% of the transactions as per
the minimum support threshold. Patterns such as {a, b, c}, which appear in three
of the five transactions, are considered frequent. In contrast, patterns such as {e},
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Figure 2.1: A lattice structure illustrating a hierarchical arrangement of patterns
and their corresponding frequencies. In this lattice, square-shaped elements represent
frequent patterns, while oval-shaped ones signify rare patterns.

which appear less frequently, are categorized as rare. Identifying both frequent and
rare patterns provides valuable insights into the underlying data structure, enabling
the discovery of significant associations that might otherwise go unnoticed.

The lattice structure in Figure 2.1 effectively demonstrates the organization and
visualization of frequent and rare patterns, making it easier to analyze and interpret
the data. By examining this lattice, one can observe how patterns are interconnected
and how their frequencies vary, which is essential for understanding pattern mining
dynamics in transactional datasets. This understanding lays the groundwork for
further exploration of the methods and challenges involved in frequent and rare
pattern mining.

Definition 2.1: Support of a Pattern

Support of a Pattern: The support of a pattern X in a dataset D is the number
of transactions within D that contain X. It quantifies the absolute frequency of
the occurrence of a pattern in a dataset [Luna et al., 2019]. Mathematically, it
can be expressed as

sup(X) = |{t ∈ D | X ⊆ t}|.

where | · | denotes the cardinality of the set.

Following our motivating example presented in Table 2.1, which is illustrated in
the lattice shown in Figure 2.1, the numbers above each node represent the pattern
support. For example, ’a: 3’, ’ac: 3’, and so forth.



16 2. Background

Definition 2.2: Relative Support of a Pattern

The relative support for a pattern X in a dataset D is the proportion of transac-
tions within D that contain X relative to the total number of transactions in D.
This measure provides an understanding of the pattern’s prevalence relative to
the dataset size [Luna et al., 2019]. It is given by:

relSup(X) =
sup(X)

|D|
,

where |D| denotes the total number of transactions in the dataset.

For example, the relative support of pattern bc is 3
5
, where five represents the total

number of transactions in Table 2.1.

Definition 2.3: Frequent Patterns

A pattern X whose support sup(X) satisfies a user-specified support threshold
minSup is called a frequent pattern [Luna et al., 2019]. Formally, this can be
expressed as

sup(X) ≥ minSup,

Patterns such as ’a: 3’, ’c: 4’, ’ac: 3’, and ’ab: 3’ are considered frequent patterns,
as their support is no less than the threshold minSup of 50%.

2.2 Compact representations of patterns
Mining all the patterns in the previous section can result in a large number of
patterns. To overcome these challenges, various methods have been developed to
uncover condensed patterns. An interesting aspect of generating these patterns is to
generate a few patterns that compress the entirety of the generated patterns. These
patterns are called closed and maximal frequent patters [Wu et al., 2021].

Definition 2.4: Closed Frequent Patterns

A closed frequent pattern is a frequent pattern for which no proper superset
has the same support as the patterns itself. A pattern C is a closed frequent
pattern if it is frequent and there are no patterns C ′ such that C ⊂ C ′ and
sup(C) = sup(C ′) [Rodŕıguez-González et al., 2018]:

∀C ′ ⊃ C, sup(C ′) > sup(C) or sup(C ′) < sup(C)

These are subsets of frequent patterns that do not have a larger set with identical
frequency, representing complete and non-redundant item sets. For example, as
illustrated in Figure 2.1, the pattern ’ac: 3’ is not a closed pattern because it has
a superset, ’abc: 3’, with the same support level. In contrast, a closed pattern like
’b: 4’ does not have any superset sharing the same support, making it a unique and
closed frequent item set within the dataset. Identifying such patterns is crucial for
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minimizing redundancy in the data mining process and ensuring that only the most
significant sets are considered. Closed patterns are important because they generate
complete information without loss. This is because subsets of patterns with the same
support can be derived from their superset, which shares the same support level.
By focusing on closed patterns, we ensure that all relevant information is captured
efficiently while also simplifying the dataset by eliminating redundant patterns. This
efficiency is critical in data mining, where the goal is to extract the most meaningful
insights from large datasets without overlooking significant details.

Definition 2.5: Maximal Frequent Patterns

A maximal frequent pattern is a frequent pattern for which no proper superset is
frequent. It aims to identify the largest sets of patterns that frequently appear
together while ensuring that none of their supersets meet the minimum support
threshold [Yang, 2004].
A pattern M is a maximal frequent pattern if it is frequent, and there is no
patterns M ′ such that M ⊂M ′ and M ′ is frequent:

∀M ′ ⊃M, sup(M ′) < minsup

Maximal frequent patterns are subsets of frequent patterns that do not have a larger
set in which they are frequent. Such patterns are also known as maximal frequent
patterns. They comprise complete and non-redundant patterns. For example, in
Figure 2.1, ’abc: 3’ is a maximal frequent pattern since it has no frequent superset;
its superset ’abcd: 1’ is infrequent as its support drops below 3. The maximal pattern
set is the largest set of frequent patterns. These patterns represent the most concise
representations of the data and lie at the boundary where rare patterns may occur.

To understand the structure and organization of patterns, it is essential to understand
the relationships between Frequent Patterns (FPs), Closed Frequent Patterns (CFPs),
and Maximal Frequent Patterns (MFPs). Given a dataset D and minimum support
threshold σ, the relationships can be defined as follows:

MFPs ⊆ CFPs ⊆ FPs

where:

• FPs = {I | s(I) ≥ σ} represents the set of all patterns that are frequent, meeting
or exceeding the minimum support threshold.

• CFPs = {I ∈ FPs | ∄J ⊃ I, s(J) = s(I)} includes those patterns that are closed,
meaning no superset of I has the same support as I.

• MFPs = {I ∈ CFPs | ∄J ⊃ I, s(J) ≥ σ} contains those patterns that are
maximal, as no superset of these patterns is frequent.

Visual representation can enhance our understanding of hierarchical structures. The
following diagram illustrates the relationships between these subsets:
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FPs
CFPs
MFPs

Frequent, closed frequent, and maximal frequent patterns represent well-known
phenomena and situations that commonly occur within datasets and typically generate
no surprise. These patterns are often predictable and, while useful, do not offer new
insights into the less understood aspects of the data.

Focusing on rare patterns can reveal unexpected insights and more meaningful results.
This matters greatly in situations where detecting rare patterns early can avoid
negative outcomes. In healthcare, for example, identifying unusual patient reactions
to treatment allows timely intervention.

Exploring these rare patterns requires innovative data analysis techniques that can
distinguish between noise and genuinely insightful anomalies. By focusing on the
nuances of these less frequent occurrences, we can uncover valuable insights that
remain hidden when analyzing only the most common patterns. This approach
not only enriches our understanding, but also enhances decision-making processes,
especially in high-stakes environments where the cost of missing such patterns is
significant.

2.3 Rare patterns
Frequent pattern mining is pivotal for identifying patterns within a dataset that
meets a specific support threshold. As illustrated in Figure 2.1 and detailed in
Table 2.1, with n = 5, there is the potential to generate 2n = 32 patterns, including
null patterns. Of these, only 10 patterns, highlighted with rectangular shapes, were
classified as frequent because they met or exceeded a support threshold of 3. The
remaining 22 patterns, depicted with circular shapes, were initially disregarded as
infrequent and were potentially treated as noise. However, these patterns can offer
critical insights, particularly in areas where rare events are key indicators.

In practical domains, such as security monitoring, healthcare analytics, system failure
detection, and credit card fraud prevention, recognizing these infrequent patterns is
crucial for identifying potential threats or anomalies. For example, consider frequent
patterns such as ’abc: 3’, ’ab: 3’, and ’ac: 3’ where the numbers indicate their
support, while ’abcd: 2’ is excluded from frequent mining. This exclusion prompts
an inquiry into whether this pattern is merely noise or if it could indicate underlying
insights. The pattern ’abcd’ might represent a sequence of events or transactions
that, although infrequent, could reveal unique behavior or an unforeseen threat.

Analyzing infrequent (rare) patterns is vital for gaining a comprehensive under-
standing of complex systems and datasets and ensuring their proactive management.
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Identifying these overlooked patterns can lead to the discovery of hidden insights, risk
mitigation, and enhancement of decision-making processes in various fields [Bhatt
and Patel, 2015; Borah and Nath, 2020; Gui et al., 2024; Kataria et al., 2019; Liu
et al., 1999; Lu et al., 2020; Szathmary et al., 2007; Tsang et al., 2011; Vanamala
et al., 2021].

Understanding the different types of patterns is crucial for effective analysis. Here,
we define three key types of patterns: rare patterns, interesting rare patterns, and
maximal rare patterns, each playing a unique role in uncovering insights from the
data, particularly when frequent pattern analysis may overlook significant but less
common phenomena.

Definition 2.6: Rare Patterns

Rare patterns are patterns X that do not meet the minimum support thresh-
old minSup. Despite their infrequent occurrence in a dataset, these patterns
may provide valuable insights [Darrab et al., 2021b]. Mathematically, they are
expressed as

sup(X) < minSup.

Similar to the example illustrated in the 2.1, patterns such as ’bd: 2’, ’cd: 2’, and
’abcd: 1’ are examples of rare patterns, as their support levels fall below the minimum
support threshold minSup = 3.

Definition 2.7: Interesting Rare Patterns

A rare pattern X [Darrab et al., 2021b] is considered interesting if it satisfies
both the condition of rarity Sup(X) < minSup and a minimum support threshold
minRare, ensuring that the pattern is substantial enough to warrant further
analysis:

Sup(X) < minSup ∧ Sup(X) ≥ minRare

where Sup(X) represents the support of the item set X, minSup defines the upper
limit for maintaining rarity, and minRare sets the lower boundary of interest.
Suppose minRare = 1, then patterns such as ’bd: 2’, ’cd: 2’, ’ade:1’ are considered
interesting rare patterns.

Definition 2.8: Maximal Rare Patterns

A Maximal Rare Pattern X is termed a maximal rare pattern if it qualifies as an
interesting rare pattern, as per Definition 2.3, and there is no other interesting
rare pattern Y such that X ⊂ Y . These patterns represent the largest of the rare
patterns that maintain their properties of interest without being overshadowed
by a larger pattern. The complete set of maximal rare patterns in the motivating
example is {’abcd: 1’, ’acde: 1’}.
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2.4 Challenges in mining interesting rare patterns
Identifying interesting rare patterns [Darrab et al., 2021b; Koh and Ravana, 2016; Lu
et al., 2020; Tsang et al., 2011] within large datasets is a complex task that presents
several substantial challenges, as discussed in the introduction chapter. Although
most of these patterns may be uninteresting or simply represent noise within the
data, a small subset can hold considerable significance. The successful identification
of these rare but valuable patterns is crucial for deriving meaningful insights for
practical applications. For clarity, in this section and the entire thesis, the terms
rare patterns, infrequent patterns, and low-support patterns are used interchangeably
to refer to patterns with low support.

• Volume of Patterns: The combinatorial nature of pattern generation in large
datasets leads to an exponential increase in the number of possibilities, resulting
in a combinatorial explosion. This vast search space complicates the process
of distinguishing meaningful patterns from an overwhelming number of poten-
tial candidates, making the identification of truly valuable but rare patterns
exceedingly challenging.

• Low support: Patterns identified during the mining process often exhibit very
low support, meaning they occur infrequently within the dataset. Traditional
data mining approaches tend to disregard these low-support patterns, assuming
that their rarity diminishes their significance. However, infrequent patterns
can still offer critical insights, especially in domains where rare events are of
significant interest, such as fraud detection or rare disease identification.

• Distinguishing noise from significant patterns: A core challenge in rare pattern
mining is differentiating between noise and genuinely valuable patterns. Noise
can easily overshadow significant rare patterns, making it difficult to focus on
data that holds the most potential for actionable insights. The ability to filter
out noise while retaining important patterns is crucial for the success of rare
pattern mining.

• Effective identification of rare patterns: Identifying rare patterns that are both
meaningful and actionable requires advanced analytical techniques and often a
deep understanding of the domain. Standard techniques may fail to detect these
patterns, necessitating the use of more sophisticated methods that can not only
identify rare patterns, but also evaluate their relevance within a specific context.

Addressing these challenges necessitates the application of advanced data mining
techniques specifically designed to efficiently navigate the expansive search space
and isolate patterns of true significance. Techniques such as lowering the support
thresholds, utilizing supplementary measures such as confidence and lift, and in-
tegrating domain-specific expertise into the mining process are imperative. These
methodologies not only reduce the complexity of the search space but also increase
the probability of uncovering rare patterns that may signify atypical yet crucial
phenomena. The insights derived from these patterns are particularly valuable in
fields where the timely identification of rare events is paramount, such as in healthcare
for the detection of rare diseases, finance for the identification of fraudulent activities,
or cybersecurity for the recognition of anomalies.
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Although the detection of meaningful rare patterns is inherently challenging, their
potential benefits are substantial. The successful identification and exploitation of
these rare, yet insightful patterns can lead to significant advancements in the under-
standing and management of complex systems and environments. Upon identification
of these patterns, analysis of the relationships between them is a critical step in the
data mining process. This procedure, known as association rule mining, is pivotal
for uncovering underlying associations within large datasets.

The following section will explore association rule mining in greater detail, with a
particular emphasis on the importance of recognizing not only frequent patterns, but
also often-overlooked rare patterns. The identification of rare patterns is essential
because they can reveal critical insights that might otherwise remain undiscovered,
such as anomalies in security data or rare medical conditions. These insights are
indispensable for informed decision-making and for enhancing predictive accuracy.

2.5 Association rule mining
Association rule mining, as defined by Agrawal and Srikant [1994], is a foundational
unsupervised learning technique designed to uncover hidden patterns within a dataset.
This technique employs ”if-then” logic, known as association rules, where each rule
comprises two components: an antecedent (the ”if” part) and a consequent (the ”then”
part), both of which are sets of items. For instance, in the heart disease dataset
utilized in our research, an example of an association rule might be: if ’asymptomatic’,
’fasting blood sugar’ = 1, and ’male’, then heart disease. This suggests that patients
with ’asymptomatic’ chest pain, fasting blood sugar level of 1, and male sex are more
likely to develop heart disease. Association rule mining consists of two steps.

• Identifying interesting patterns: Patterns are sets of items that appear together
in a dataset and are deemed interesting if they satisfy a predefined threshold
constraint.

• Generating association rules: Once interesting patterns are identified, rules are
generated by dividing these patterns into an antecedent and a consequent. These
rules are then evaluated using metrics such as support, confidence, and lift.

A review of the fundamental concepts and definitions of association rule mining is
necessary to fully understand the scope and significance of our proposed work. The
following formal definition is provided by Agrawal and Srikant [1994]:

Let I = {i1, i2, . . . , in} be a set of n unique items and let DB = {T1, T2, . . . , Tm}
represent a set of m transactions that collectively form the dataset. Each transaction
Ti ⊆ I includes one or more items from I. An association rule is an implication of
form X → Y , where X ⊆ I, Y ⊆ I, and X ∩ Y = ∅. Here, X is the antecedent of
the rule and Y is the consequent.

The quality of an association rule is commonly assessed using the following two
metrics.
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• Support (Supp): This metric measures the frequency or proportion of transac-
tions that contain both X and Y . It is defined as:

Supp(X → Y ) =
σ(X ∪ Y )

m

where σ(X ∪ Y ) denotes the number of transactions that include both X and Y .

• Confidence (Conf): This metric measures the conditional probability or strength
of the rule, defined as:

Conf(X → Y ) =
σ(X ∪ Y )

σ(X)

where σ(X) is the number of transactions containing X.

A high support value indicates that the rule is generally applicable across the dataset,
whereas a high confidence value suggests that the rule is reliable.

Next, we review some key definitions related to association rule mining (ARM)
to better understand and interpret the results and implications of our proposed
approaches:

Definition 2.9: Strong Association Rule

An association rule X → Y is considered strong if its support (Supp) and
confidence (Conf) measures meet specified minimum thresholds (minSup and
minConf, respectively) Aggarwal [2015].

Definition 2.10: Unexpected Association Rule

An association rule (rare) X → Y is unexpected with respect to a known
(frequent) rule A→ B if the following conditions are met [Bui-Thi et al., 2020;
Darrab et al., 2024]:

1. Antecedent Similarity: The antecedents of the rules (i.e., A and X) exhibit
statistical significance within the dataset and demonstrate high similarity,
surpassing a predefined similarity threshold.

2. Consequence Exclusivity: The consequences of the rules (i.e., B and Y ) are
mutually exclusive or oppositely related.

To illustrate these concepts, consider the following example from a heart disease
dataset. Let us assume that we derive two rules from the data.

The first rule (A) suggests that a combination of factors—such as ’high heart rate’,
’male’, ’normal fasting blood sugar’, and ’no exercise-induced angina’—typically
indicates a lack of heart disease (Y= ’no’). This rule is considered strong if it satisfies
certain thresholds for support (minSup) and confidence (minConf).

Now, consider another rule (X) that includes an additional factor—’high old-
peak’—which is a less common symptom. This rule indicates that, with this rare
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combination of factors, there is a higher likelihood of heart disease (Y= ’yes’). Despite
being rare, the statistical significance and similarity to frequent rule (A) make this
association unexpected.

Moreover, the consequences of these rules—reduced risk of heart disease for rule A
and the presence of heart disease for rule X—are oppositely related, meeting the
condition for consequence exclusivity. This unexpected finding suggests a need for
further investigation by medical professionals.

The conventional support-confidence model for generating frequent patterns has
gained widespread popularity due to its simplicity. Raw frequency counts and condi-
tional probabilities are crucial for supporting claims and for determining confidence
levels. However, as highlighted in Aggarwal [2015], the frequency of patterns does
not always correlate with the most interesting patterns.

We address this limitation by evaluating the generated rules using additional metrics
such as lift, leverage, and conviction [Tew et al., 2014]. By incorporating these
statistical measures into our analysis, we can identify rules that are not only frequent
but also meaningful. The definitions of these metrics are as follows:

• Lift Tew et al. [2014]: This metric measures how much more likely the antecedent
and consequent of a rule are to occur together than would be expected if they
were statistically independent. Mathematically, it is defined as the ratio of the
observed support of the rule to the expected support if the antecedent and
consequent are independent.

Lift(X → Y ) =
Supp(X → Y )

Supp(X) · Supp(Y )

• Leverage Tew et al. [2014]: Leverage quantifies the difference between the
observed support of a rule and the expected support if the antecedent and
consequent were independent. It is computed as:

Leverage(X → Y ) = Supp(X → Y )− (Supp(X) · Supp(Y ))

• Conviction Tew et al. [2014]: Conviction measures the degree to which the
consequent of a rule is dependent on the antecedent. It is interpreted as the ratio
of the expected frequency that the antecedent occurs without the consequent
if they are independent to the observed frequency of the antecedent occurring
without the consequent:

Conviction(X → Y ) =
1− Supp(Y )

1− Conf(X → Y )

These metrics provide deeper insights into the strength and reliability of association
rules, beyond what support and confidence alone can offer. By incorporating these
advanced measures into our analysis, we enhance our ability to discern truly significant
patterns from those that are frequent, but may not necessarily be meaningful in
practical applications.
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Figure 2.2: A comparison of the number of frequent and rare rules generated from
the heart disease dataset.

Contrary to the assertions of numerous studies suggesting that the generation of
association rules from patterns is a straightforward process, in actuality, the task
is considerably complex. The primary challenge does not reside in rule generation
itself, but rather in ensuring the production of meaningful rules. The potential
number of rules derived from the patterns can be substantial, rendering the analysis
both computationally expensive and impractical. This issue becomes particularly
pronounced when attempting to identify interesting rules among the rare ones. For
instance, in our heart disease dataset, which comprises only 1,190 transactions, a
substantial 448,981 rare and frequent rules are generated, as illustrated in Figure 2.2.
Our proposed solution addresses this challenge by focusing solely on the generation of
interesting and unexpected rules that can assist clinicians in assessing the likelihood
of heart disease based on the presented symptoms.

As we investigate the complexities of association rule mining, a significant challenge
emerges: the generation of an immense number of rules. This issue becomes increas-
ingly problematic when addressing rare patterns because each rare pattern with
length n can potentially generate 2n - 2 rules [Zaki, 2000a]. This exponential growth
in the number of possible rules exacerbates the difficulty of analyzing vast datasets
to obtain valuable insights.

The management of a large number of potential rules presents a fundamental challenge,
particularly regarding rare patterns. Although rare patterns are rare, they have
substantial impacts despite their infrequency. The proliferation of the derived
rules associated with these patterns can quickly become unmanageable, making the
identification of valuable insights similar to the search for needles in a haystack.

Addressing this challenge is the primary objective of this thesis. We aim to refine the
rule-generation process to ensure that only the most salient and potentially impactful
rules are considered. This approach involves sophisticated filtering techniques and
criteria that prioritize relevance and significance over quantities. By focusing on
generating a manageable set of interesting rules, we enhance the practical utility
of our findings and ensure that the rules we consider are those most likely to offer
genuine insights.
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Mining association rules from large datasets presents several significant challenges,
including the substantial volume of potential rules, complexity in identifying mean-
ingful patterns, and heterogeneous distribution of data points across the rule space.
To address these challenges, researchers have increasingly adopted advanced ana-
lytical strategies that facilitate effective management and extraction of valuable
insights from complex datasets. Among these strategies, clustering-based methods
have demonstrated particular efficacy in reducing complexity and enhancing rule
manageability by aggregating similar data points. Consequently, these methods have
become indispensable tools for processing large datasets and deriving actionable
insights.

2.6 Clustering-based methods for mining patterns
Density-based clustering approaches are most commonly employed to manage the
overwhelming number of rules generated from rare patterns. These methods identify
clusters of similar rules based on their densities in feature space. Two prominent
algorithms in this context are Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [Ester et al., 1996] and Ordering Points To Identify the Clustering
Structure (OPTICS) [Ankerst et al., 1999], which are defined and discussed below.

Definition 2.11: DBSCAN

DBSCAN identifies clusters based on the density of data points in the feature
space. It groups points that are closely packed together, while marking outliers
that lie alone in low-density regions. The algorithm requires the following two
parameters.

• eps (ϵ): The maximum distance between two points for one to be considered
as in the neighborhood of the other.

• minPts: The minimum number of points required to form a dense region (a
cluster).

DBSCAN is particularly useful in datasets where the clusters are irregular or inter-
twined, as it does not assume any prespecified cluster shape. However, its performance
is highly dependent on the distance threshold ϵ, which can limit its effectiveness in
datasets with varying densities, potentially causing it to miss significant clusters or
to create too many small clusters.

Definition 2.12: OPTICS

OPTICS extends the capabilities of DBSCAN to better handle data with varying
density levels. Unlike DBSCAN, OPTICS does not require a global distance
threshold (ϵ) for all the points. Instead, it uses a method to vary this parameter,
allowing it to identify meaningful clusters in the data that would otherwise be
too sparse when using a single threshold:

• Core Distance: For a point in the dataset, the core distance is the smallest
distance such that the point is a core point, with minPts within this distance.
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• Reachability Distance: Defined for a point p to point o as the maximum of
the core distance of p and the Euclidean distance between p and o.

This approach enables OPTICS to create an ordered list of points representing
the structure of the data based on reachability distances, which facilitates the
identification of clusters with varying densities. It effectively addresses the
shortcomings of DBSCAN by adapting it to changes in data density, making it
more flexible and capable of revealing smaller and more significant clusters that
DBSCAN might overlook.

DBSCAN and OPTICS are two well-known clustering algorithms that are renowned
for their effectiveness in handling data-clustering tasks by focusing on the density of
data points. A recent approach utilizing a clustering-based model was proposed to
mine unexpected rare rules using the DBSCAN clustering technique [Bui-Thi et al.,
2020]. This model, after clustering association rules, uses DBSCAN to determine
whether the rules are either noise or unexpected based on a contradiction check.

Although DBSCAN is effective in reducing the number of rules for analysis and
concentrating on those that are densely grouped and potentially informative, this
approach has several notable limitations.

1. Performance issues: DBSCAN’s effectiveness is somewhat limited by its reliance
on the Apriori algorithm for rule mining, which may not be the most efficient
method, especially for large datasets.

2. Missed opportunities: The algorithm may overlook interesting, unexpected rules
due to its inability to detect nested cluster structures. This limitation means
that subtle yet potentially significant patterns can be missed.

3. Parameter sensitivity: The outcomes of DBSCAN heavily depend on the choice
of hyperparameters, such as ϵ and minPts. Proper tuning is crucial because inap-
propriate values can lead to suboptimal clustering, affecting both the detection
of genuine clusters and the identification of noise.

The ”noise” identified by OPTICS, as illustrated in Figure 2.3, may not merely
represent outliers but could signify rare, critical instances or patterns within the
dataset. This feature of OPTICS is particularly valuable in association rule mining,
where these noise points might represent rare yet crucial events such as fraud in
financial transactions, anomalies in network security, or unusual patient responses in
healthcare. By effectively isolating and analyzing these points, OPTICS enables the
generation of nuanced, rare, and actionable rules from what might initially appear
as noise, providing significant insights and opportunities for intervention in various
applications.

Although existing models address some of the challenges associated with generating
large numbers of rules and extracting unexpected patterns, they exhibit several
critical limitations. First, the performance of these models in terms of both time and
memory is significantly impeded by their reliance on traditional methods aimed at
recovering the complete set of patterns with low support. Although these approaches
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Figure 2.3: Comparative Performance of DBSCAN and OPTICS on the ’make blobs’
Dataset from Scikitlearn.

are intended to capture both frequent and rare patterns, they are inefficient and
resource intensive [Singh et al., 2014]. Second, clustering-based models often generate
redundant patterns, which diminishes the clarity and utility of the results. Third,
parameter tuning in clustering-based models, particularly for parameters such as ϵ
and minPts, is inherently challenging. Suboptimal parameter settings can lead to
failure in identifying the desired patterns. Finally, although some techniques have
succeeded in reducing the number of patterns by orders of magnitude, they still fail
to produce a comprehensive set of interesting patterns, particularly when the focus is
on recovering the most promising, anomalous, or unexpected patterns in real-world
applications.

These limitations highlight the need for more efficient and effective models to overcome
these challenges. To address this need, we propose an unexpected closed rare-pattern
miner (UCRP-Miner) [Darrab et al., 2022b], a model specifically designed to efficiently
extract a comprehensive set of unexpected patterns. UCRP-Miner leverages frequent
patterns, conceptualized as well-established co-occurring phenomena or beliefs, to
generate unexpected patterns. This approach directly addresses the limitations of
clustering-based methods by focusing on the extraction of meaningful rules without
generating an excessive number of candidate patterns, thereby enhancing the efficiency
and relevance of the mining process.

This novel approach surpasses conventional clustering techniques by focusing on
extracting significant rules while reducing excessive and redundant patterns. The
model effectively isolates the most informative and actionable patterns in large
datasets, especially rare occurrences often overlooked by existing methods.

To validate the effectiveness of our model, we conducted comprehensive case studies
including those published in a peer-reviewed journal [Darrab et al., 2024]. This
study emphasizes the practical implications of mining rare patterns in the context of
heart disease, demonstrating the capacity of the model to identify patients who are
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currently asymptomatic but may be at risk of developing heart disease in the future.
Such insights are crucial for preventive healthcare and offer a proactive approach to
managing potential health risks.

In conclusion, the advancements presented in this thesis contribute significantly to the
field of data mining, particularly to the analysis of rare patterns. The methodologies
developed show substantial potential for uncovering critical insights across various
domains, including healthcare, finance, and cybersecurity.



3. Related Work on Rare Pattern
Mining

In Chapter 2, we discuss the foundational concepts and definitions that serve as the
basis of this dissertation, with a particular focus on association rule- and clustering-
based techniques. These methodologies are crucial for identifying significant patterns
within data, especially in the context of rare pattern mining. In this chapter, we
present a comprehensive review of existing approaches that address the challenges
associated with rare pattern mining. Much of the material presented here is derived
from our previously published survey [Darrab et al., 2021b], which has been thoroughly
revised and updated to incorporate recent advancements, including findings from our
own research. Our aim is to provide an exhaustive and current overview, contributing
to the broader discourse on advanced data mining techniques and their application
in discovering rare patterns.

3.1 Introduction
Data mining is a sophisticated process aimed at uncovering hidden patterns and
latent knowledge from large datasets, which once extracted should be interpretable
to support human decision making. The core tasks of data mining can be broadly
categorized into three primary areas: clustering, classification, and association rule
mining (ARM) [Han et al., 2022]. Although clustering and classification have been
extensively studied, ARM remains an area of active research due to its evolving
nature and diverse applications. ARM identifies significant relationships between
groups of items that frequently co-occur within a dataset. For instance, in a retail
dataset, the association {beer → chips} suggests that customers who purchase beer
are more likely to purchase chips. Such associations provide valuable insights for
business decision making, enabling managers to implement strategies such as targeted
promotions to boost sales.

One of the primary advantages of ARM is its inherent explainability and ease of
understanding. Unlike more complex models [Hassija et al., 2024], such as deep
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learning, which often function as ”black boxes,” ARM provides clear, interpretable
rules that directly describe the relationships in the data, making it easier for domain
experts and decision-makers to grasp the rationale behind the insights. This feature
of ARM addresses the critical challenge of explainability and interpretability in
advanced models, particularly in deep learning, where the inner workings of models
can be difficult to understand. Consequently, ARM is particularly valuable in fields
where interpretability is essential for human decision making. Consequently, ARM
has gained significant attention across various fields, including bioinformatics, network
traffic analysis, medical diagnosis, and market basket analysis [Fournier-Viger et al.,
2017].

Association rule mining (ARM) consists of two critical steps: (1) frequent pattern
mining (FPM), which identifies frequent patterns, and (2) extracting association rules
from these patterns. Most studies [Agrawal and Srikant, 1994; Han et al., 2000; Pei
et al., 2001; Zaki, 2000b] have focused on FPM because of its computational intensity,
as generating association rules is straightforward. FPM aims to discover patterns
that frequently co-occur within a dataset, thereby providing valuable insights for
decision-making. Although frequent patterns offer useful information, they often
represent predictable or well-established phenomena. Consequently, recent research
has increasingly shifted toward the discovery of rare patterns, which may reveal less
obvious but potentially valuable insights.

Rare pattern mining (RPM) was introduced to address this challenge [Borah and
Nath, 2020; Gui et al., 2024; Kataria et al., 2019; Lu et al., 2020; Szathmary et al.,
2007; Tsang et al., 2011; Vanamala et al., 2021], with the goal of discovering patterns
that occur infrequently but hold significant value, particularly in fields such as
medical research, fraud detection, and security. Conventional approaches face the
”rare item problem,” where reducing the minimum support threshold to capture rare
patterns results in an excessive number of frequent patterns, leading to substantial
computational inefficiencies. Conversely, increasing the minimum support threshold
risks missing valuable rare patterns. This ongoing challenge remains unresolved [Bhatt
and Patel, 2015; Darrab et al., 2021b; Koh and Ravana, 2016].

In recent years, rare pattern mining (RPM) has received increasing attention due to
its critical role in real-world applications such as medical research, DNA analysis, and
homeland security. For instance, identifying rare patterns of passenger behavior at
airports can facilitate the detection of suspicious activities and help mitigate potential
security threats [Troiano and Scibelli, 2014]. Despite their increasing importance,
conventional RPM methodologies continue to face challenges related to scalability
and performance.

Several comprehensive surveys on Rare Pattern Mining (RPM), such as those by
[Darrab et al., 2021b; Koh and Ravana, 2016], offer in-depth reviews of the field.
Despite significant advancements in RPM, key challenges persist, including efficient
extraction of rare patterns, addressing redundancy issues, minimization of noise in
identifying meaningful patterns, and emphasis on the novelty of mined patterns.

The primary contributions of this chapter are as follows:
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• A thorough and critical review of current methodologies for rare pattern mining,
accompanied by a detailed comparison and evaluation of existing techniques in
the field.

• The introduction of recent advancements and innovative extensions to established
rare pattern mining methods, with an emphasis on their significance and potential
to impact both research and practice.

• A comprehensive discussion on the practical applications of rare patterns across
multiple domains, illustrating their utility in addressing complex real-world
challenges.

• The identification of key challenges associated with rare pattern mining, along
with informed suggestions for future research directions aimed at overcoming
these challenges and advancing the state of the art in the field.

The remainder of this chapter is organized as follows. Section 3.1 discusses the
limitations of frequent pattern mining when applied to rare patterns, identifies
their inadequacies, and establishes a foundation for exploring more specialized
approaches. Section 3.2 analyzes the Breadth-First Search (BFS) and Depth-First
Search (DFS) methodologies in the context of rare pattern mining, emphasizing how
these traversal algorithms aid in efficiently identifying rare patterns. Section 3.3
examines techniques for mining frequent patterns that also encompass rare patterns,
and addresses the intersection between frequent and rare pattern mining strategies.
Section 3.4 provides an in-depth examination of rare pattern mining methodologies,
focusing on techniques specifically designed for the identification and management of
rare patterns. Section 3.5 introduces advanced techniques in rare pattern mining,
highlighting recent innovations that address the challenges related to scalability
and computational efficiency. Section 3.6 explores the practical applications of rare
pattern mining and demonstrates its significance through case studies across various
domains. Section 3.7 identifies the current research opportunities and challenges
within the field and offers insights into unresolved issues and potential directions
for future research. Section 3.8 focuses on the specific challenges addressed in this
thesis, detailing how the proposed methods contribute to advancements in this field.
Finally, Section 3.9 presents a summary of key points.

3.2 Shortcomings of frequent pattern mining for rare
patterns

Frequent pattern mining [Agrawal and Srikant, 1994; Han et al., 2000] is a fundamental
technique in data mining that is widely used to identify frequently occurring patterns
within datasets, based on a user-defined minimum support threshold. This approach
has proven effective in various domains, including market basket analysis, web usage
mining, and bioinformatics, where frequent patterns provide valuable insights for
decision-making processes, such as product recommendations, customer behavior
analysis, and inventory management.

Despite their success in uncovering frequent patterns, traditional frequent pattern
mining algorithms struggle to detect rare patterns that occur infrequently but may
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carry significant importance. This inherent bias toward frequent patterns presents a
major limitation, as rare patterns often reveal critical insights into applications such
as anomaly detection, fraud prevention, and medical research. For instance, in market
basket analysis, a rare combination of items can indicate niche customer preferences
that can be exploited in targeted marketing strategies. In medical research, rare
patterns may represent subtle correlations, leading to novel discoveries or early disease
indicators. However, adjusting the support threshold to capture these rare patterns
often results in an exponential increase in the number of frequent patterns, which
not only increases computational complexity, but also creates challenges in result
interpretation. However, increasing the support threshold to control complexity may
inadvertently exclude valuable rare patterns from the analysis, further compounding
this issue.

Rare patterns, although infrequent, it signifies outliers, anomalies, or emerging
trends, which are elements that are often more significant than the more commonly
occurring patterns that dominate traditional analyses. Detecting these rare patterns
requires specialized techniques that go beyond conventional frequent pattern mining
algorithms because these methods must balance the trade-off between computational
efficiency and the need to uncover rare but highly relevant insights.

In the following subsections, we explore advanced methods developed to address the
limitations of frequent pattern mining, with a particular focus on approaches that
are capable of identifying rare patterns. These techniques aim to reduce bias towards
frequent patterns, enabling the discovery of rare patterns that are of substantial
importance in various real-world applications.

3.3 Structural insights for effective rare pattern min-
ing

Rare pattern mining is a crucial task in association rule learning, where the chosen
traversal strategy can significantly influence the efficiency of mining algorithms. A
breadth-first search (BFS) is a commonly used approach that explores all nodes
at the current depth level before progressing to the next level. This strategy is
particularly effective for datasets where the desired patterns are located closer to the
root of the search tree. However, BFS often requires multiple scans of the dataset
and candidate pattern generation, which can be both time-consuming and memory
intensive, particularly for larger datasets.

To address the limitations of the Breadth-First Search (BFS), Depth-First Search
(DFS) was implemented. DFS explores each branch of the search tree to its maximum
depth before backtracking, rendering it more memory-efficient by storing only the
current path and a limited portion of the tree. In contrast to BFS, DFS typically
requires a maximum of two scans of a dataset, which enhances its efficiency in
specific tasks. However, the DFS presents several challenges. In algorithms such
as FP-Growth, the construction of conditional trees for rare patterns can be both
computationally intensive and memory demanding, particularly when processing
sparse datasets in which infrequent patterns are dispersed throughout the search
space.
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Figure 3.1: A schematic representation of BFS and DFS in pattern mining, starting
from the root (the empty set) and progressing through successive levels of complexity,
from 1-patterns to 3-patterns [Titarenko et al., 2019].

Figure 3.1 illustrates the differences between the two approaches. On the left, DFS
is depicted, where the nodes are explored deeply before backtracking. The BFS is
shown on the right, where nodes at the same depth level are explored before moving
deeper into the tree.

3.4 Mining frequent patterns including rare ones
Traditional frequent pattern mining (FPM) algorithms often face challenges in
capturing rare patterns because they typically rely on a single or fixed minimum
support threshold. This approach fails to account for the fact that items in real-
world datasets often appear at vastly different frequencies. Consequently, rare
but potentially significant patterns may be overlooked. To address this limitation,
extensive research has been conducted on mining frequent patterns, including rare
patterns, by introducing multiple minimum support thresholds [Chen et al., 2014;
Gupta and Chandra, 2020; Telikani et al., 2020; Xu and Dong, 2013]. These methods
assign varying minimum support thresholds to individual items based on their
frequency, thereby enabling the discovery of correlations between frequent and rare
items in a more nuanced manner. Thus, patterns are considered interesting if their
support satisfies or exceeds the minimum support threshold for the rarest item in
the pattern.

Two common algorithmic strategies are employed for mining frequent patterns that
include rare patterns: breadth-first and depth-first searches. In the following sections,
we first examine breadth-first search algorithms and their applications in mining both
frequent and rare patterns, followed by a discussion of depth-first search algorithms.

3.4.1 Breadth-first search methods

A key breadth-first search algorithm for mining frequent patterns, including rare ones
under multiple minimum support thresholds, is the MSapriori algorithm introduced
by [Liu et al., 1999]. This algorithm extends the original Apriori algorithm [Agrawal
and Srikant, 1994] by assigning a unique minimum item support (MIS) value to
each item, allowing it to capture patterns involving both frequent and rare items.
MSapriori begins by generating candidate 1-patterns and retains only those with a
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support greater than or equal to their individual MIS. It then generates candidate 2-
patterns from the frequent 1-patterns, considering those patterns whose support meets
the lowest MIS among their constituent items. This process continues iteratively
until no additional candidate patterns are generated. The resulting patterns are
considered interesting if their support exceeds the lowest MIS value of the items in
the pattern.

Several enhancements to MSapriori have been proposed to improve its perfor-
mance [Kiran and Reddy, 2009; Lee et al., 2005; Xu and Dong, 2013]. For example, [Xu
and Dong, 2013] introduced the MSB apriori method, which, like MSapriori, assigns
a distinct MIS value to each item. A pattern is considered frequent if it satisfies
the lowest MIS among all its items. Unlike MSapriori, which introduces specific
modifications to the Apriori steps, MSB apriori follows the basic Apriori procedure
in two phases: (1) mining all potential patterns using a unified minimum support and
(2) filtering these patterns based on multiple minimum supports to identify desired
patterns. A pattern X is classified as frequent if its support sup(X) is greater than
or equal to the MIS of its least frequent item.

In [Kiran and Reddy, 2009], the IMSApriori algorithm was proposed, which enhances
MSapriori by incorporating a Support Difference (SD) to adjust the minimum support
for items. This SD allows for small deviations in item frequency while keeping rare
patterns relevant. The MIS for each item is defined as

MIS(i) =

{
S(i)− SD if S(i)− SD > LS

LS otherwise
(3.1)

where S(i) is the support of item i and LS is the lowest minimum support. The SD
is computed as:

SD = λ(1− α) (3.2)

where λ is the maximum support among all items, and α is a user-defined parameter
between 0 and 1. This approach reduces the number of frequent patterns involving
rare items while preserving their relevance.

Other algorithms have extended Apriori to mine both frequent and rare patterns
using multiple minimum support thresholds [Bansal et al., 2013; Lee et al., 2005]. Lee
et al. [2005] proposed an algorithm that identifies all frequent 1-patterns, including
rare ones, by comparing each item’s support to its predefined MIS. For k-patterns to
be considered interesting, their support is compared to the maximum MIS values
for the items in the pattern. Similarly, Bansal et al. [2013] introduced a method to
adjust the MIS of each item i using the following equation:

MIS(i) =

{
βS(i) if βS(i) > LS

S(i) otherwise
(3.3)

where β is a user-specified parameter between zero and one, S(i) is the support of
item i, and LS is the least minimum support threshold. This equation ensures that
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frequent patterns involving rare items are discovered while pruning frequent patterns
composed primarily of common items.

While these methods address the rare item problem by identifying both frequent
and rare patterns, they depend on a breadth-first search strategy that employs a
candidate generation-and-test approach. This method is computationally expensive
in terms of time and memory, particularly for long patterns.

3.4.2 Depth-first search methods for mining patterns

Depth-first search algorithms have been developed to overcome the limitations of
apriori-like algorithms, particularly their inefficiency in handling large datasets due
to repeated scans and pattern generation. A prominent depth-first approach is
the multiple-item support tree (MIS-Tree) proposed by Hu and Chen [2006]. The
MIS-tree structure addresses the inefficiencies of generate-and-test methods, such
as those used in MSapriori, by storing critical information about frequent patterns,
including rare items, in a compact tree structure. This significantly reduces the
number of dataset scans required, offering improved performance over traditional
breadth-first methods.

Building on the MIS tree concept, the CFP-growth algorithm was introduced in Hu
and Chen [2006]. This algorithm enhances the FP-growth approach by incorporating
an initial dataset scan to construct an MIS-Tree, followed by a pruning and merging
phase to eliminate non-contributory items. This pruning process results in a more
compact MIS tree, facilitating the efficient mining of both frequent and rare patterns.
However, CFP-growth has certain limitations, notably the initial inclusion of non-
contributory items that continue to be examined until their respective conditional
pattern bases are fully processed, often without yielding valuable patterns.

To address these shortcomings, an improved version called CFP-growth++ has
been proposed [Kiran and Reddy, 2011]. This enhanced algorithm utilizes the
lowest minimum support threshold (LMS) for pruning, as opposed to the least item
support (MIN) used in CFP-growth. In addition, it introduces a mechanism for
removing leaf nodes that cannot generate valuable patterns and applies a conditional
closure property, enabling the discovery of all relevant patterns without requiring
full exhaustion of the conditional pattern base. These improvements reduce both the
execution time and search space, thereby significantly enhancing the efficiency of the
algorithm.

Further advancements include the MS-FP-growth algorithm [Taktak and Slimani,
2014], which employs variable minimum support thresholds at different pattern levels
and dynamically adjusts the support values. This flexibility allows the algorithm to
increase or decrease the threshold depending on the level of the patterns (K-patterns),
thereby enabling the identification of rare patterns at specific levels with tailored
support values.

Another significant development involves the use of statistical methods to determine
item support values as demonstrated in Chen et al. [2014]. By applying the central
limit theorem, they calculated the mean item support (MIS) values to refine the
pattern generation. The formula for calculating the mean support is as follows:



36 3. Related Work on Rare Pattern Mining

µ(ij) =
1

n

n∑
j=1

sup(ij) (3.4)

MIS(ij) = µ(ij)−

√√√√ 1

n

n∑
j=1

(sup(ij)− µ(ij))
2 (3.5)

where µ(ij) represents the average frequency of items at the same level, allowing for
the automated adjustment of support thresholds to optimize the mining process for
both frequent and rare patterns.

Additionally, [Darrab and Ergenç, 2016; Wang and Chang, 2019] extended the FP-
growth algorithm to support mining under multiple minimum supports without
requiring tree reconstruction, thus preserving efficiency. Similarly, the MISeclat
[Darrab and Ergenc, 2017] algorithm employs different data structures and support
mechanisms to improve rare pattern mining. These advancements have demonstrated
the ongoing evolution of mining algorithms to better handle the complexities of
diverse and large datasets.

Although these methods successfully uncover both frequent and rare patterns by
assigning distinct minimum support thresholds to each item, they present certain
challenges. Although this strategy facilitates the discovery of rare patterns, it
also substantially increases the number of generated patterns, thereby intensifying
computational demands and prolonging analysis time. Furthermore, determining
an appropriate minimum support for each individual item introduces additional
complexity. Given these limitations, there is an increasing need for approaches
tailored specifically to focus on mining rare patterns alone, thereby reducing the
computational overhead and simplifying the analysis. The following section examines
methods developed to meet this need by concentrating exclusively on rare pattern
discovery.

3.5 Rare pattern mining
As discussed in the previous section, traditional frequent pattern mining algorithms
that attempt to mine both frequent and rare patterns face significant challenges,
particularly when determining an appropriate minimum support threshold. One
major limitation of these methods is the implicit assumption that all items in the
dataset exhibit similar frequency behavior, which is rarely the case in practice.
Item frequencies often vary greatly depending on their role or value within specific
contexts. For example, in retail, items such as bread are purchased more frequently
than higher-margin items such as saucepans, which are purchased less frequently but
are essential to profitability. This disparity highlights the ”rare item problem,” where
valuable patterns involving infrequent items are often overlooked because they fail
to meet a predefined frequency threshold [Darrab et al., 2021b; Liu et al., 1999; Lu
et al., 2020; Selvarani and Jeyakarthic, 2021].

Mining both frequent and rare patterns simultaneously tends to produce an over-
whelming number of patterns, many of which represent well-known phenomena and
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provide limited insights. Frequent patterns typically capture common behaviors that
are already understood, offering little unexpectedness. In contrast, rare patterns,
despite their low frequency, can be of greater significance, particularly in fields where
identifying anomalies or uncovering uncommon associations is crucial. For example,
in airport security, rare patterns may signal unusual behaviors that could indicate
potential threats. In telecommunications, rare events may predict equipment failure,
and in medical diagnostics, identifying rare genetic markers can lead to breakthroughs
in disease understanding. Similarly, rare transaction patterns in credit card data can
help detect fraudulent activities that traditional frequent pattern mining techniques
may miss [Adda et al., 2007; Bhatt and Patel, 2015; Borah and Nath, 2020; Koh and
Ravana, 2016; Szathmary et al., 2012].

Recognizing the importance of rare patterns, recent research has shifted towards the
development of specialized techniques for rare pattern mining [Borah and Nath, 2019;
Darrab et al., 2021b]. These methods explicitly focus on identifying rare patterns
rather than mining both frequent and rare patterns together, thereby reducing the
explosion of redundant patterns and concentrating on uncovering meaningful, often
unexpected insights.

Rare pattern mining techniques [Akdas et al., 2024] are specifically designed to
capture patterns that occur infrequently but hold significant values. These methods
overcome the limitations of traditional algorithms by employing advanced search
strategies that are typically categorized into breadth-first and depth-first approaches.
These strategies enhance the efficiency of search space exploration by filtering out
the noise generated by frequent patterns, while focusing on the discovery of rare yet
valuable insights. In the following sections, we examine these methods in detail and
explore their practical applications across various domains.

3.5.1 Breadth-first search methods
The breadth-first search (BFS) in rare pattern mining employs a level-wise exploration
strategy, as illustrated on the right side of Figure 3.1. The method begins with simple
patterns (e.g., 1-patterns) and progresses to more complex patterns (e.g., 2-patterns,
3-pattetc.). In each iteration, candidate patterns are generated and evaluated against
a predefined minimum support threshold. The process continues until no further
patterns are generated, ensuring a comprehensive exploration of the pattern space
and identifying both frequent and rare patterns, without prematurely excluding
infrequent patterns.

A notable contribution to BFS in rare pattern mining is the work of [Sadhasivam
and Angamuthu, 2011], that introduced two automated support thresholds: AvgSup
and MedianSup. These thresholds adjust for item frequency variations and enhance
rare pattern detection. AvgSup represents the average support of all unique items
in the dataset, while MedianSup is calculated from the median between the highest
and lowest supports. Based on these thresholds, patterns are classified into three
categories: Most Interesting Group (MiG) for patterns with support above AvgSup,
Somewhat Interesting Group (SiG) for patterns between MedianSup and AvgSup,
and Rare Interesting Group (RiG) for patterns below both thresholds.

The RiG category is crucial in rare pattern mining as it targets infrequent yet
valuable patterns, often overlooked by traditional frequent pattern mining approaches.
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This stratified approach ensures a more thorough exploration of the pattern space,
capturing both frequent and rare patterns.

In another study, [Szathmary et al., 2007] introduced the MRG-Exp and ARIMA
methods to improve rare pattern discovery. These methods distinguish between
Minimal Generators (MGs), Minimal Rare Generators (MRGs), and Minimal Zero
Generators (MZGs). MRG-Exp exploits the properties of MRGs to generate new
patterns from the bottom-up, while ARIMA uses MRGs to limit the exploration
space, reducing computational overhead while maintaining precision.

Similarly, [Koh and Rountree, 2005] advanced the traditional Apriori algorithm with
Apriori-Inverse, which employs dual-thresholds (maxsup and minsup) to capture
rare patterns effectively. Through this modification, patterns that fall between these
thresholds can be identified, thereby overcoming the limitations of the traditional
frequent pattern mining.

[Troiano et al., 2009] proposed AfRIM, a top-down algorithm that starts with the
largest patterns and works downward, particularly effective in datasets where signifi-
cant patterns encompass smaller rare ones. In addition, [Tummala et al., 2018] refined
clustering techniques to group similar patterns, thereby improving the efficiency
of mining both frequent and rare patterns in large datasets. As the data volume
increases, traditional methods face scalability challenges. To mitigate this, [Padillo
et al., 2017] introduced Apriori-Inverse-MR, a MapReduce-based algorithm designed
for big data. By leveraging distributed processing, this approach efficiently discovers
rare patterns and mines association rules, optimizing performance in large datasets.

Despite the effectiveness of BFS in exploring the search space, its computational
cost in terms of memory usage and repeated database scans presents significant
challenges. The generation of numerous candidate patterns, many of which do not
lead to meaningful insights, further contributes to resource consumption. These
limitations underscore the need for more efficient strategies to minimize unnecessary
candidate generation while prioritizing rare but valuable patterns.

In the next subsection, we explore DFS as a more resource-efficient solution to BFS.
By focusing on specific branches of the pattern space, DFS reduces memory and
computational demands, accelerating the identification of rare patterns.

3.5.2 Depth-first search methods

To address the limitations of breadth-first search approaches, [Han et al., 2000]
introduced a depth-first approach that eliminates the need for multiple scans and
avoids the generate-and-test mechanism, providing a more efficient method for mining
rare patterns.

Building on this idea, [Tsang et al., 2011] introduced RP-Tree, the first tree-based
algorithm specifically designed for rare pattern mining. Similar to the FP-growth
algorithm [Han et al., 2000], RP-Tree employs a tree structure to store key information
for the mining process. The algorithm performs two scans: the first to count the
support of individual items and the second to construct the RP-Tree. This tree
includes only transactions that contain at least one rare item. By focusing exclusively
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on rare items, RP-Tree efficiently reduces computational overhead, making rare
pattern discovery more effective.

To further optimize rare pattern mining, [Bhatt and Patel, 2015] introduced the
Maximum Constraint RP-Tree (MCRP-Tree). This enhanced version assigns varying
Minimum Item Support (MIS) values to items based on their frequency, ensuring
that a pattern is only considered interesting if it meets the highest MIS value of
its constituent items. Similar to RP-Tree, MCRP-Tree excludes transactions with
only frequent items, refining the mining process to focus on rare but significant
patterns. This method not only improves computational efficiency but also minimizes
the generation of redundant or unimportant patterns, making it highly effective for
discovering actionable insights.

In response to the challenges of large-scale datasets, recent innovations have incor-
porated distributed computing platforms such as Apache Spark. For instance, [Liu
et al., 2016] developed a spark-based extension of RP-Tree for big data environments.
This approach partitions the dataset into frequent and rare vertical segments to
efficiently count candidate pattern support. As with RP-Tree, it discards patterns
that lack rare items, optimizing performance for large datasets. Similarly, [Liu and
Pan, 2018] introduced SRAM, an algorithm designed to mine rare patterns in wireless
networks. By analyzing Network Performance Counters (NPCs), SRAM identifies
rare patterns that contribute to Key Quality Indicator (KQI) degradation, helping
to pinpoint the root causes of abnormal events in wireless networks.

A number of depth-first search strategies, especially tree-based structures like RP-
Trees and MCRP-Trees, have been shown to reduce the computational burden
associated with rare pattern mining. When combined with the scalability of modern
big data platforms, these methods are well equipped to handle the growing complexity
of datasets across a wide range of domains, enabling efficient discovery of rare yet
valuable patterns.

However, although RP-Tree and its variants have delivered promising results, they
encounter challenges in mining rare patterns in sparse datasets, where such patterns
are often predominant. RP-Tree’s inefficiency in these cases highlights the need for a
new structure optimized for rare pattern mining in sparse data environments.

In this dissertation, we propose a novel structure specifically designed to enhance
the mining of rare patterns in sparse datasets. Our approach aims to overcome the
limitations of current methods, such as RP-Tree, providing a more efficient solution
for discovering rare patterns in complex, sparsely populated data environments.

3.6 Advanced techniques in rare pattern mining
The rare pattern mining methods mentioned in the previous section primarily rely
on frequency as the main metric for identifying interesting patterns. However, in
practical scenarios, factors such as utility, data fuzziness, continuous data streams, and
item weights play significant roles in extracting meaningful patterns. Consequently,
several advanced techniques have been developed that incorporate dimensions beyond
frequency to better capture rare but valuable insights. This section explores four
advanced approaches to rare pattern mining: High Utility Rare Pattern Mining, Fuzzy
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Rare Pattern Mining, Rare Pattern Mining in Data Streams, and Rare Weighted
Pattern Mining.

3.6.1 High utility rare pattern mining

Identifying rare patterns that also provide high utility is crucial in contexts where
utility, rather than frequency alone, drives decision making. To address this gap,
researchers [Arunkumar et al., 2020; Chan et al., 2003; Goyal et al., 2015] introduced
the concept of utility as a metric to assess the value of a pattern.

In many scenarios, identifying rare patterns with high utility yields valuable insight.
For example, a sales manager might prioritize infrequent purchase patterns that
generate substantial profits over frequently purchased, low-margin products. To
support such use cases, [Pillai et al., 2013] proposed the High Utility Rare Itemset
(HURI) algorithm, which consists of two main steps:

• Identifying rare patterns that do not satisfy the maximum support threshold.

• Selecting high utility rare patterns whose utility values meet or exceed a prede-
fined minimum utility threshold.

Additionally, [Ryang et al., 2014] introduced the MHU-Growth (Multiple Item Sup-
ports with High Utility Growth) method, which incorporates both utility factors and
multiple minimum support levels. This technique utilizes the MHU-tree, constructed
in a single scan of the dataset, to store transactional and utility-related information.
It employs four pruning conditions to reduce the search space and candidate patterns,
thereby improving the efficiency of high-utility rare pattern mining.

Although research on utility-based rare pattern mining remains limited [Arunkumar
et al., 2020], these approaches highlight the importance of integrating utility metrics
into rare pattern discovery. This is particularly relevant in industries such as retail,
finance, and healthcare, where utility-driven insights can significantly impact decision
making and profitability.

3.6.2 Fuzzy rare pattern mining

Fuzzy rare pattern mining [Cui et al., 2022] addresses the limitations of traditional
rare pattern mining by incorporating fuzzy logic into the mining process, enabling
the analysis of data that is inherently imprecise or vague. This technique was first
introduced by Kuok et al. [1998], who developed a method for discovering quantitative
frequent patterns by assigning fuzzy membership values to items within transactions.
Fuzzy pattern mining can handle uncertainties and ambiguities in real-world data by
allowing varying degrees of membership rather than binary inclusion.

Fuzzy rare pattern mining is particularly effective when the data are not strictly
binary or when it is difficult to categorize the data precisely. To identify uncommon
learning behaviors, it may be necessary to process data that are imprecise or difficult
to quantify in the field of education. Although common student behaviors are
relatively straightforward to capture, rare or atypical behaviors may require more
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nuanced detection techniques. Studies such as [Chen and Chang, 2016; Cui et al.,
2022; Weng, 2011] have successfully integrated fuzzy set theory with data mining
techniques to uncover rare patterns in educational datasets. These studies have
provided valuable insights into outlier behaviors, such as uncommon learning patterns,
which are likely to go undetected using conventional mining methods.

3.6.3 Rare pattern mining in data streams

The continuous generation of vast volumes of data in fields such as telecommunications,
sensor networks, and online platforms presents unique challenges for traditional rare
pattern mining algorithms. These algorithms are typically designed for static datasets
and often require multiple scans of the data, making them unsuitable for mining
patterns from dynamic, continuous data streams.

To address these challenges, rare pattern mining techniques specifically tailored to
data streams have been developed. These methods aim to process transactions in
real-time, capturing approximate sets of interesting patterns without the need for
re-scanning the data. For example, [Huang et al., 2012] introduced the Streaming
Rare Pattern Tree (SRP-tree) algorithm, which processes data in a single pass using
a sliding window technique. The SRP-tree efficiently maintains essential information
for mining while a connection table tracks items within the window. Once an item’s
support falls below the minimum threshold, the SRP-tree generates all subsets of
infrequent items, making it a highly efficient solution for real-time rare pattern
mining in continuous data streams.

Rare pattern mining in data streams is crucial in applications where timely detection
of unusual patterns is essential, such as network monitoring, fraud detection, and
real-time sensor data analysis.

3.6.4 Rare weighted pattern mining

Rare weighted pattern mining assigns weights to items based on their local significance
within transactions. This approach enables the discovery of patterns that, although
infrequent, may carry substantial importance due to the assigned weights, reflecting
the varying significance of items in different contexts.

An early method for weighted pattern mining was proposed by Wang et al. [2000],
introducing the concept of Weighted Association Rules (WAR). This method consists
of two main steps:

• Generate frequent patterns using traditional approaches.

• Apply the weight parameter during rule generation to create weighted association
rules, ensuring that the significance of item quantities is considered in the
discovered patterns.

Although the discovery of rare weighted patterns is a less explored area, it has gained
attention due to its potential to provide deeper insights. For instance, [Cagliero and
Garza, 2013] introduced an algorithm to mine infrequent weighted patterns using
two key measures:
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• IWI-support-min: Measures a pattern based on the least interesting item’s
weight within the transaction.

• IWI-support-max: Measures a pattern based on the most interesting item’s
weight.

These measures help identify a meaningful subset of rare weighted patterns, which are
particularly valuable in domains such as retail, healthcare, and targeted marketing,
where identifying high-weight rare patterns can lead to more informed decision-making
and more precise targeting of resources.

3.7 Applications of rare pattern mining
Rare pattern mining has gained considerable attention for its capacity to uncover
infrequent yet highly valuable insights across various fields. Many real-world ap-
plications require the identification of rare events or associations, as they often
carry critical, actionable information. The ability to detect such rare patterns has
proven instrumental in solving complex problems, improving decision-making, and
identifying anomalies that might otherwise go unnoticed. In this section, we explore
key domains in which rare pattern mining has been effectively applied, highlighting
its impact on enhancing operational efficiency, risk management, and predictive
accuracy across diverse industries.

3.7.1 Fraud detection

Anomaly detection is one of the most prominent applications of rare pattern mining,
particularly in fields such as cybersecurity, fraud detection, and network management.
Anomalies, by definition, represent rare events that can have significant consequences
if left undetected. Rare pattern mining is a powerful tool for identifying these
anomalies, enabling early detection and mitigation.

In fraud detection, rare pattern mining has been extensively applied to identify
fraudulent activities in financial transactions. For example, algorithms developed
by Awoyemi et al. [2017]; Seeja and Zareapoor [2014] have successfully utilized
rare pattern mining to uncover infrequent but suspicious credit card transactions,
enhancing the accuracy and efficiency of fraud detection systems. Rare transaction
patterns that deviate from a customer’s usual spending behavior can be flagged for
further investigation, allowing financial institutions to reduce the risk of financial
losses.

In network management, rare pattern mining has proven invaluable for detecting
performance anomalies in wireless networks. The Spark-based Rare Association Rule
Mining (SRAM) approach proposed by Liu et al. [2016] linked network performance
counters (NPCs) to key quality indicators (KQIs), allowing network service providers
to rapidly identify the root causes of performance degradation. This method sig-
nificantly improves network reliability and service quality by addressing rare but
critical system faults. Similarly, [He et al., 2004] introduced the Frequent Pattern
Outlier Factor (FPOF), which employs rare pattern detection to identify outliers in
transactional data, further enhancing anomaly detection across diverse domains.
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In insurance, rare pattern mining used to detect fraudulent claims by identifying
unusual patterns that deviate significantly from typical claims. These applications
demonstrate the capability of rare pattern mining to not only mitigate financial
losses but also strengthen security measures across multiple sectors.

3.7.2 Medical diagnostics

In the healthcare sector, the ability to detect rare patterns within large datasets,
such as those generated by electrocardiograms (ECG), positron emission tomography
(PET), and magnetic resonance imaging (MRI), holds significant potential for early
disease diagnosis and prevention. Rare pattern mining facilitates the identification of
subtle and infrequent correlations that may indicate early onset of diseases, thereby
enabling timely intervention. For instance, early detection of rare arrhythmic patterns
in ECG data can prevent severe cardiac events. Recent studies [Borah and Nath,
2018; Piri et al., 2018] have demonstrated the efficacy of rare pattern mining in
uncovering significant yet infrequent correlations between patient attributes and
diseases such as breast cancer and hepatitis, thereby enhancing early detection and
intervention strategies.

Furthermore, [Darrab et al., 2024] employed machine learning techniques enhanced
by rare pattern mining to predict the onset of heart disease prior to the appearance of
clinical symptoms. This early prediction strategy demonstrates the potential of rare
pattern mining to support preventative healthcare through timely risk assessment
and targeted intervention.

3.7.3 Network security

Network security is another domain in which rare pattern mining is invaluable.
Malicious attacks, such as denial-of-service (DoS) attacks, are relatively rare events
compared with regular network traffic. Detecting these rare attacks is critical for
maintaining the security and integrity of computer networks. Rare pattern mining
techniques can be employed to analyze network traffic data and identify unusual
patterns that may indicate ongoing attacks or security breaches [Huang et al., 2012].

In telecommunications and sensor networks, rare pattern mining is similarly applied
to detect rare events such as equipment failures, anomalies in data transmission, or
unusual sensor readings. Although these events are infrequent, they often signal
critical issues that require immediate attention, such as infrastructure failure or
abnormal environmental conditions.

For example, in wireless networks, rare pattern mining can be used to monitor
network performance indicators and detect early signs of equipment malfunction
or service quality degradation [Liu and Pan, 2018]. Similarly, in sensor networks
deployed for industrial or environmental monitoring, rare pattern mining facilitates
the detection of irregular sensor readings, which may indicate hazardous conditions
or malfunctioning equipment.

Furthermore, rare sequences of network packets or atypical communication patterns
can serve as early indicators of potential threats. By focusing on these rare pat-
terns, network administrators can take proactive measures to prevent or mitigate
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cyberattack. In addition, rare pattern mining enables the identification of emerging
threats that may not conform to known attack patterns, thereby enhancing the
overall resilience and effectiveness of cybersecurity systems.

3.7.4 Education systems
In educational systems, rare pattern mining has proven instrumental in uncovering
hidden but significant student behaviors within large-scale datasets, offering educators
valuable insight into student engagement and performance. For example, [Romero
et al., 2010] developed a method for mining rare patterns from student interactions
on online learning platforms such as Moodle, identifying atypical behaviors that may
signify academic disengagement or learning difficulties. These insights enable timely
interventions aimed at improving student outcomes.

Moreover, [Weng, 2011] introduced a fuzzy apriori-based rare pattern mining (FARIM)
approach to detect rare learning behaviors in quantitative educational data. This
method provides a robust framework for identifying unique challenges encountered by
specific student groups, thereby supporting more personalized educational strategies.

Through the application of rare pattern mining, educational systems can more
effectively identify and address uncommon but critical student behaviors, ultimately
enhancing personalized learning and educational outcomes.

3.8 Research opportunities and challenges

Many algorithms have facilitated the search for interesting rare patterns. However,
significant challenges remain in improving the efficiency, accuracy, and applicability
of rare pattern mining for real-world applications. In this section, we discuss some
of the major challenges and areas that require further exploration in rare pattern
mining. These challenges provide promising opportunities for future research [Borah
and Nath, 2020; Darrab et al., 2021b; Gui et al., 2024].

3.8.1 Efficient discovery of rare patterns
It has been previously noted that rare pattern mining is computationally costly,
particularly in terms of memory consumption and execution time. Despite the
effectiveness of existing algorithms, many require multiple dataset scans and complex
computations, particularly when dealing with large datasets. To improve efficiency,
it is imperative to develop more sophisticated algorithms to minimize resource con-
sumption without compromising accuracy. This may require the development of new
data structures, improvement of search space pruning techniques, and introduction
of more effective constraints.

3.8.2 Concise representation of rare patterns to avoid redundancy
The generation of redundant patterns is a major challenge in rare pattern mining. An
overwhelming number of rare patterns may obscure important insights because many
are not useful or meaningful. To address this issue, there is a need to develop more
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sophisticated methods that focus on mining only meaningful and non-redundant rare
patterns. Techniques such as mining rare closed patterns and maximal rare patterns
have been explored to reduce redundancy, but there is still room for improvement.
Future research should investigate advanced methods for filtering rare patterns to
ensure that only those with practical significance are retained.

3.8.3 Focusing on interesting rare patterns

Another significant challenge is differentiating genuinely interesting rare patterns from
infrequent patterns. Not all rare patterns hold value and mining all rare occurrences
can result in the discovery of irrelevant or trivial patterns. A critical research direction
involves developing new measures of ”interestingness” to better identify the most
valuable rare patterns. These measures can incorporate domain-specific insights,
anomaly detection principles, or integration of utility and weight into the mining
process. By prioritizing truly interesting rare patterns, the results become more
actionable and applicable to real-world scenarios.

3.8.4 Handling noise in rare pattern mining

Datasets often contain noise, which can significantly affect the quality of mined
patterns. In the context of rare pattern mining, noise can lead to the discovery
of patterns that do not represent true correlations, thereby reducing the quality
of results. Development of techniques that can effectively handle noise is a key
challenge. These techniques may include robust statistical methods, noise filtering,
or integration of noise tolerance directly into mining algorithms. Future research
could focus on creating noise-resilient algorithms that can uncover meaningful rare
patterns in noisy datasets.

3.8.5 Enhancing explainability and interpretability

Despite remarkable advancements in deep learning (DL) and machine learning (ML)
in recent years, the discovery of rare association rules remains crucial in applications
where rare patterns hold significant value. Although DL and ML models have
demonstrated exceptional performance in various tasks, their inherent complexity
often results in ”black box” models that lack transparency, making it challenging to
elucidate or interpret the underlying decision-making processes. This limitation is
particularly problematic in fields where explainability and interpretability are critical,
such as healthcare, cybersecurity, and finance.

Rare association rules offer a complementary approach that ensures greater trans-
parency and comprehensibility in the analysis of rare but impactful patterns. Unlike
complex DL and ML models, rare association rules provide clear, interpretable rela-
tionships between infrequent patterns and their associated outcomes. These rules
offer actionable insights, rendering them more suitable for real-world applications,
where understanding the rationale behind a decision is as important as the decision
itself.

For instance, in medical diagnostics, rare association rules can reveal subtle correla-
tions between rare symptoms and diseases, which can subsequently be used to inform
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personalized treatment plans. Similarly, in cybersecurity, rare association rules can
aid in identifying atypical sequences of events that signal potential threats, enabling
security teams to implement proactive measures. While DL and ML can uncover
complex patterns, the interpretability of rare association rules ensures that these
insights can be effectively communicated and acted upon by domain experts.

The challenge lies in developing hybrid approaches that incorporate explainability
and interpretability provided by rare association rules. Future research should focus
on algorithms that seamlessly integrate these methods, enabling the discovery of rare
patterns that are not only accurate but also easily understood and actionable. By
ensuring that these rules are interpretable and explainable, researchers can bridge
the gap between cutting-edge machine learning technologies and practical, real-world
applications where rare patterns are critical.

3.8.6 Case studies in rare pattern mining

Although rare pattern mining has shown significant promise in theoretical research,
there is a pressing need for empirical case studies to demonstrate its practical
applicability. Case studies are essential to illustrate how rare pattern mining can
effectively address critical challenges in domains such as healthcare, cybersecurity,
and finance. By providing concrete examples of rare but impactful patterns, case
studies can showcase the utility of these techniques in solving real-world problems
and offer insights into how rare pattern mining methods can be refined and adapted
for specific applications.

For instance, in healthcare, case studies can highlight the early detection of rare
symptoms or unusual patient behaviors, leading to improved diagnosis and treatment
outcomes. In cybersecurity, case studies may demonstrate how rare pattern mining
can be used to identify anomalous network activities that signal potential threats.
Additionally, in finance, case studies can explore how rare pattern mining aids in
detecting fraudulent transactions. These examples underscore the importance of
grounding theoretical advancements in practical applications, reinforcing the value
of rare pattern mining in addressing complex real-world problems.

3.8.7 Addressing the scalability challenge

As data continues to grow in volume and complexity, rare pattern mining must be
adapted to meet the demands of big data. Scalability is a significant challenge, as
traditional algorithms may not be able to handle the massive datasets generated in
fields such as genomics, financial analysis, and social media. Research on distributed
and parallelized mining algorithms, which leverage modern computing frameworks
such as MapReduce and Spark, is crucial for improving the scalability of rare pattern
mining. These approaches can help process large-scale data efficiently and uncover
rare patterns in real time, thus providing timely insights in fast-paced environments.

3.8.8 Diversity of data

Data come in various forms and formats, such as spatio-temporal, sequential, and
continuous data. Each of these data types presents unique challenges for rare
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pattern mining. There is a need to develop methods that can handle diverse data
formats while considering factors such as the quantity, utility, weight, and dynamic
nature of data. Research could focus on adapting rare pattern mining techniques to
work effectively across different data types, ensuring that meaningful patterns are
discovered even in complex datasets.

3.9 Challenges addressed in this dissertation
Despite advancements in rare pattern mining, methods still face several limitations,
particularly in effectively identifying rare yet valuable patterns. These limitations
often result in inefficiencies and the generation of redundant patterns that obscure
meaningful insight. This dissertation addresses these challenges by developing efficient
methods for mining rare patterns, with a focus on reducing redundancy and enhancing
the interestingness of the discovered patterns. Our approach is motivated by the
need for more targeted and relevant rare pattern discovery in complex, evolving
datasets, with a specific application in heart disease, one of the leading causes of
death globally.

A key focus of this thesis is the development of techniques that ensure the discovery
of non-redundant, interesting rare patterns. In the context of heart disease, where
identifying subtle yet critical patterns could significantly improve early diagnosis and
treatment, our methods are designed to capture patterns that are both informative
and actionable. Additionally, we explore the use of rare association rules to enhance
the explainability of the patterns, ensuring they are not only detected but also
interpretable by healthcare professionals.

The primary challenges addressed in this dissertation encompass most of the limita-
tions discussed in the previous section, particularly in Sections 3.8.1 through 3.8.6.
The remaining limitations, which are covered in Sections 3.8.7 and 3.8.8, are beyond
the scope of this study and will be considered in future work. The major challenges
addressed in this thesis are as follows.

• Efficient mining of rare patterns: This challenge addresses the limitation dis-
cussed in Subsection 3.8.1 of the previous section. Timely discovery of rare
patterns is essential for various applications. This dissertation tackles the chal-
lenge of improving the efficiency of rare pattern mining by introducing a novel
technique that optimizes the discovery process and reduces both the computation
time and resource usage.

• Reducing redundancy in rare pattern mining: In this challenge, we deal with
the the limitation discussed in Subsection 3.8.2 of the previous section. One
of the main challenges in rare pattern mining is the proliferation of redundant
patterns, which complicates the mining process and diminishes practical utility.
This dissertation focuses on minimizing redundancy by developing methods that
efficiently prune irrelevant patterns while retaining the most meaningful ones.

• Interestingness of patterns: This challenge addresses the limitations discussed
in Subsections 3.8.3 and 3.8.4 of the previous section. Rare patterns are highly
susceptible to noise, which can obscure valuable insights and result in irrelevant
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patterns. This thesis tackles this issue by implementing noise-filtering measures
that enhance the quality of discovered patterns, ensuring that only the most
significant and relevant patterns are retained.

• Interpretability in critical applications: A case study on heart disease: In this
challenge, we focus on limitations in Subsections 3.8.5 and 3.8.6 in the previous
section. To illustrate the practical applicability of our proposed methods, we
conduct a case study focused on heart disease in the healthcare sector. This
study demonstrated the effectiveness of the proposed models in addressing real-
world challenges, offering actionable insights that support early detection and
treatment, ultimately enhancing health outcomes. Using rare association rules
in heart disease analysis enhances interpretability by uncovering subtle patterns
and relationships, making insights more transparent and easier to understand
for healthcare practitioners focused on early detection and intervention.

3.10 Chapter summary
This chapter provides a comprehensive overview of rare pattern mining and its
significance, challenges, and applications across various domains. It begins with an
examination of the limitations of traditional frequent pattern mining methods in
capturing valuable rare patterns, leading to the exploration of specialized rare pattern
mining algorithms developed to address contemporary data challenges, including
scalability, computational efficiency, and dynamic dataset management.

Key applications of rare pattern mining are presented, illustrating its utility in fields
such as medical diagnosis, education, and cybersecurity. These examples demonstrate
how rare pattern identification can enable early disease detection, improve student
performance monitoring, and enhance security threat mitigation.

The chapter also addresses several critical research challenges, such as developing
more efficient algorithms, minimizing redundant patterns and avoiding noise. A
central focus remains on improving methods for assessing the interestingness of
rare patterns, enabling the distinction between valuable insights and trivial findings,
particularly in high-dimensional datasets.

Furthermore, the discussion highlights the critical importance of scalability and
adaptability in rare pattern mining to effectively manage heterogeneous data types,
including temporal, spatial, and sequential data. This underscores the necessity
for robust algorithmic frameworks capable of addressing the inherent complexities
associated with large-scale data environments.

While substantial progress has been achieved in this domain, several fundamental
challenges and open research questions persist. Addressing these issues remains
essential to advancing the field and unlocking the full potential of rare pattern mining
for generating meaningful insights and practical innovations across diverse application
areas.



4. Mining Rare Patterns Efficiently

This chapter addresses the first challenge by proposing a novel method for mining rare
patterns. In the previous chapter, we reviewed related work and examined various
methods for rare pattern mining, emphasizing tree-based approaches as superior in
performance. Despite being considered the most efficient method for rare pattern
generation, the RP-growth algorithm [Tsang et al., 2011] exhibits performance
limitations on sparse datasets and requires substantial computational time and
memory resources, particularly when mining with low user-defined thresholds.

To address these limitations, we introduce the Rare Pre Post (RPP) algorithm
[Darrab et al., 2020], whcih is a more efficient approach for rare pattern mining.
RPP overcomes the generation of unnecessary candidate patterns and eliminates
the requirement for constructing conditional trees, thereby significantly reducing the
computational overhead. This method employs a novel data structure, N-list, to
further optimize the mining process. Experimental evaluations conducted on both
sparse and dense datasets demonstrate that the proposed method, RPP, outperforms
RP-growth, offering an improvement in performance of approximately an order of
magnitude.

4.1 Introduction
Rare pattern mining (RPM) is the discovery of infrequent patterns that provides
valuable insights despite their rarity. RPM identifies less obvious patterns in datasets
that are significant, as opposed to frequent pattern mining (FPM), which identifies
common patterns in datasets. As an example, RPM can significantly improve patient
safety and treatment outcomes by detecting rare complications or side effects earlier,
which can significantly enhance patient safety and treatment outcomes.

RPM is also significant in domains such as predicting telecommunication equipment
failures [Bhatt and Patel, 2015], detecting fraudulent credit card transactions [Weiss,
2004], and monitoring adverse drug reactions [Ji et al., 2012]. The early identification
of rare yet consequential events in these fields facilitates more effective decision-making
and timely interventions. For instance, recognizing rare patterns in transaction data



50 4. Mining Rare Patterns Efficiently

can help prevent significant financial losses by uncovering fraudulent activities that
deviate from normal behavior.

However, RPM often depends on a user-defined support threshold to filter out
uninteresting patterns, which introduces a fundamental trade-off. Lowering the
support threshold captures rare patterns but generates an overwhelming number
of patterns, many of which are irrelevant, thereby increasing computational costs
and complicating the analysis. Conversely, raising the support threshold to reduce
computational overhead excludes potentially valuable rare patterns, diminishing
the effectiveness of the mining process. This challenge, known as the rare item
problem [Borah and Nath, 2020; Darrab et al., 2021b], underscores the difficulty in
balancing comprehensive pattern discovery with computational efficiency.

To address these challenges, various RPM approaches have been proposed and
categorized according to their search strategies: breadth-first search (BFS) and
depth-first search (DFS) [Darrab et al., 2021b]. BFS methods, such as the Apriori
algorithm [Agrawal and Srikant, 1994], systematically explore the search space but
suffer from drawbacks such as generating excessively large candidate sets and requiring
multiple data scans, making them unsuitable for RPM, especially with large datasets.

In response to these limitations, DFS-based methods have been developed, utilizing
more sophisticated data structures such as the FP-tree [Han et al., 2000]. A notable
advancement is the RP-growth algorithm [Tsang et al., 2011], which reduces the
need for repeated data scans and enhances memory efficiency by compressing the
dataset into an FP-tree. This compression allows for faster pattern mining without
generating excessive candidate sets.

Despite these improvements, RP-growth still faces challenges. Specifically, it tends to
generate numerous unnecessary conditional trees, significantly increasing the search
time and memory usage, particularly in sparse datasets where rare patterns are
more widespread. Sparse datasets pose substantial difficulties for RPM algorithms
due to the uneven distribution of patterns, with rare patterns often obscured by
noise. Studies have shown that the performance of existing RPM methods degrades
significantly in such environments [Borah and Nath, 2019] because they struggle to
efficiently navigate sparse data and isolate patterns of interest.

The purpose of this chapter is to address these shortcomings by introducing the Rare
Pre Post(RPP) algorithm, a novel approach for efficiently discovering rare patterns.
The RPP algorithm leverages the N-list data structure [Deng et al., 2012], which has
demonstrated its potential to enhance pattern mining efficiency in other contexts.
The primary innovation of the RPP algorithm is its ability to bypass the generation
of unnecessary candidate patterns and avoid the construction of conditional trees,
thereby mitigating the inefficiencies of previous approaches.

The key contributions of the proposed method are as follows:

• RPPC-tree Construction: We propose the RPPC-tree, a new data structure
that captures essential information for rare pattern extraction. By focusing on
transactions containing rare items, the RPPC-tree effectively reduces the dataset
to its most relevant components, streamlining the mining process.
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• RN-list Creation: We introduce the RN-list, a novel representation of significant
rare items that forms the backbone of the mining process. This data struc-
ture enables efficient intersection operations and facilitate the comprehensive
identification of rare patterns with minimal computational overhead.

• Efficient Mining Process: The RPP algorithm utilizes RN-lists to systematically
intersect them, generating rare patterns while significantly reducing computa-
tional costs in terms of both time and memory. This approach ensures that no
relevant patterns are missed, offering a highly efficient and scalable solution for
rare pattern mining.

The RPP algorithm presents a promising approach for addressing the challenges of
rare pattern mining, especially in sparse datasets where existing methods often fall
short. By enhancing both efficiency and accuracy, the proposed algorithm provides a
method for more effective real-world applications of rare pattern mining.

In the following sections, we present the proposed method, experimental results, and
conclusions. To avoid redundancy, related work is not revisited here, as it has been
thoroughly covered in the introduction and previous chapters.

4.2 Proposed approach: RPP algorithm
In Chapter 3, we reviewed various approaches for rare pattern mining, including
level-wise methods such as Apriori-Inverse and Apriori-Rare [Darrab et al., 2021b;
Liu et al., 1999; Lu et al., 2020; Selvarani and Jeyakarthic, 2021]. These methods
use a bottom-up traversal strategy but are computationally intensive due to multiple
dataset scans. Depth-wise methods, such as RP-growth, CFP-growth, and mis-eclat,
improve efficiency by addressing the limitations of level-wise methods, specifically
repeated scans and candidate generation [Borah and Nath, 2020; Darrab et al., 2021b].
Among these, the RP-tree structure has shown superior performance with promising
results. However, challenges remain, particularly with algorithms such as RP-growth,
which face inefficiencies in sparse datasets because of the repeated construction of
conditional trees.

To address these limitations, we propose the RPP algorithm, described in Algorithm 1
and illustrated in Figure 4.1. The RPP algorithm eliminates the need for conditional
tree construction, candidate generation, and multiple dataset scans by leveraging
RN-lists, as introduced in [Deng et al., 2012]. This approach significantly reduces
computational overhead while ensuring accurate rare pattern extraction. Inspired
by the method in [Deng et al., 2012], which targets frequent patterns, our approach
focuses specifically on rare patterns. By overcoming the inefficiencies of the RP-
tree, particularly in sparse datasets where rare patterns are more prevalent, our
method is highly effective for mining rare patterns. Moreover, by completely avoiding
conditional tree construction, greater efficiency is achieved.

4.2.1 Step-by-step process of the proposed approach

The purpose of this section is to demonstrate the functionality of the proposed
RPP method through an illustrative example that clarifies its three essential phases:
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Algorithm 1 The Proposed RPP Algorithm for Mining Rare Patterns

Input: Dataset D of transactions, minSup, maxSup
Output: Set of rare patterns Rare Patterns

1: procedure RPP
2: Step 1: Construct RPPC-tree
3: Initialize an empty RPPC-tree
4: for each transaction T in dataset D do
5: if T contains at least one rare item then
6: Add T to the RPPC-tree
7: Set current node to root
8: for each item x in T do
9: if node for x exists as a child of current node then
10: Increment the count of node x
11: else
12: Create new node for item x, set count = 1
13: Assign pre-order value
14: end if
15: Move current node to child node representing x
16: end for
17: end if
18: end for
19: Perform post-order traversal to assign post-order values

20: Step 2: Generate RPP-Codes and Construct RN-lists
21: Initialize empty lists for RPP-codes and RN-lists
22: for each node X in RPPC-tree (pre-order traversal) do
23: Generate RPP-code for X: {(Xpre-order, Xpost-order), count}
24: Store RPP-code associated with each item
25: end for
26: Sort RPP-codes in ascending order of pre-order values
27: Construct RN-lists from sorted RPP-codes

28: Step 3: Mine Rare Patterns using RN-lists
29: Initialize Rare Patterns← ∅
30: for each pair of RN-lists (RN listX , RN listY ) do
31: RN Intersection← RN listX ∩RN listY
32: if RN Intersection ̸= ∅ then
33: Compute support(RN Intersection)
34: if minSup ≤ support(RN Intersection) < maxSup then
35: Rare Patterns← Rare Patterns ∪ {RN Intersection}
36: end if
37: end if
38: end for
39: Repeat intersections iteratively for increasing pattern length k
40: Terminate when no further intersections can occur
41: end procedure
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Figure 4.1: The RPP method workflow

construction of the RPPC-tree, creation of RN-lists for items, and generation of rare
patterns.Thee phases are described in detail in the following sections. subsections.

Motivating Example: Given the transaction dataset DB in Table 4.1, let the
maximum support threshold (maxSup) and rare support threshold (minSup) be 4
and 2, respectively. The task of rare pattern mining is to extract a set of all rare
patterns with support not less than minSup and no more than maxSup.

Table 4.1: A simple dataset

TID Items Ordered Items
1 a, b, c, d b, c, a, d
2 b, d b, d
3 a, b, c, e b, c, a, e
4 c, d, e, h c, d, e
5 a, b, c, g b, c, a

4.2.2 Construction of the RPPC-tree

The initial phase of the RPP method consists of the construction of the RPPC-tree,
which stores critical information from the dataset, as illustrated in Figure 4.2 and in
lines 1-19 of Algorithm 1. The tree is constructed using two sequential scans of the
dataset:

• First Scan: The support of 1-items is calculated, and items with support less
than minSup are discarded.

• Second Scan: Transactions containing at least one rare item (items with support
between minSup and maxSup) are added to the RPPC-tree.

The RPPC-tree consists of a root node labeled “null” and child nodes representing
patterns. Each node contains the following fields:

• item-name: The name of the item represented by the node.
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• count: The number of transactions that reach this node.

• pre-order and post-order: The positions of the node during pre-order and
post-order traversal of the tree.

The RPPC-tree differs from the traditional RP-tree by omitting node links and
incorporating pre-order and post-order fields for each node. This structure is used to
form the NL-list, which is discussed in the following subsections. Once the RN-lists
are generated, the RPPC-tree is discarded.

In our motivating example, as shown in Table 4.1, the RPPC-tree is constructed by
scanning the dataset and removing items with support less than minSup = 2. For
example, items {g, h} are discarded. The remaining items are sorted in descending
support order and are used to construct the RPPC-tree during the second scan.
Figure 4.2 shows the resulting RPPC-tree, where each node contains the item, count,
and pre-post rank. For example, node c has RPP-code {((2, 3): 3)}, meaning c has
a count of 3 and a pre-post rank of (2, 3).

Figure 4.2: The RPPC-tree constructed from the transactions in Table 4.1.

4.2.3 Generating RN-lists of items

The second phase of the RPP method aims to generate RN-lists from the RPPC-tree,
as illustrated in Figure 4.1 and lines 20–27 in Algorithm 1. An RN-list comprises
RPP-codes for each item in a tree. The RN-list of item X encompasses all RPP-codes
of nodes representing X, arranged in ascending order of their pre-order values. The
support of X is computed as the sum of the counts in its corresponding RN-list.
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Based on the RPPC-tree shown in Figure 4.2, the RN-lists for the interesting 1-
patterns can be generated. For instance, the RN-list of item e contains two RPP-codes:
{((5, 1): 1), ((9, 6): 1)}. The support of e is calculated as 1 + 1 = 2. Table 4.2 shows
the RN-lists of all interesting items from the motivating example.

Table 4.2: RN-lists of interesting rare items

Item RPP-codes Support
b {(1, 5): 4} 4
c {(2, 3): 3, (7, 8): 1} 4
a {(3, 2): 3} 3
d {(4, 0): 1, (6, 4): 1, (8, 7): 1} 3
e {(5, 1): 1, (9, 6): 1} 2

4.2.4 Generation of rare patterns
The final phase, as shown in Figure 4.1 and lines 28 through 40 in Algorithm 1,
involves generating rare patterns by comparing the RN-lists of two items, X and Y .
Pattern XY can be generated if X is an ancestor of Y , which is determined when
X.pre-order < Y.pre-order and X.post-order > Y.post-order.

Consider generating a rare pattern {ce}. The RN-list of c is {((2, 3): 3), ((7, 8): 1)},
and the RN-list of e is {((5, 1): 1), ((9, 6): 1)}. The comparison proceeds as follows.

• The RPP-code of c {((2, 3): 3)} is compared with {((5, 1): 1)}, and since 2 < 5
and 3 > 1, the ancestor-descendant relation holds. We add {((2, 3): 1)} to the
RN-list of {ce}.

• The next RPP-code of c {((7, 8): 1)} is compared with {((9, 6): 1)}, and since
7 < 9 and 8 > 6, the ancestor-descendant relation holds again. We add {((7, 8):
1)} to the RN-list of {ce}.

The final RN-list of {ce} is {((2, 3): 1), ((7, 8): 1)}, and its support is 1 + 1 = 2.
Because 2 ≤ Sup(ce) = 2 < 4, {ce} is a valid rare pattern.

By repeating this process, we can generate the following rare patterns for our
motivating example:

{a : 3, e : 2, d : 2, ba : 3, bd : 2, ca : 3, cd : 2, ce : 2, bca : 3}.

We generate rare patterns only from rare items {a, d, e} because items with support
greater than maxSup are excluded from consideration.

4.3 Experimental results
To evaluate the performance of the RRP algorithm, we compared it with the most
efficient algorithm for mining rare patterns, RP-growth [Deng et al., 2012]. Several
experiments were conducted on four real-world datasets: Mushroom, Retail, Pumsb,
and Kosarak. Both sparse datasets (Kosarak and Retail) and dense datasets (Mush-
room and Pumsb) were used in the evaluation process. The characteristics of the
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datasets are summarized in Table 4.3. The last column in Table 4.3 shows the density
of the datasets, calculated as the ratio of the average transaction size to the total
number of distinct items.

For each dataset, the number of transactions, number of distinct items, and average
transaction size are denoted by # of Trans, # of Items, and AvgTrans, respectively.
All datasets were downloaded from the FIMI repository [FIMI Repository]. The
experiments were conducted on a Windows 10, 64-bit operating system with an
Intel Core i7-7700HQ CPU at 2.80 GHz, 16 GB of RAM, and a 1 TB hard disk.
Both algorithms were implemented in Java to ensure a consistent implementation
environment. The source code for the RPgrowth algorithm was obtained from
[Fournier-Viger et al., 2016].

Table 4.3: Characteristics of the Datasets

Dataset Size (MB) # of Items # of Trans AvgTrans minSup (%) maxSup Density
Mushroom 19.3 119 8,124 23 {0.1, 0.2, . . . , 0.9} 0.01 19.3

Retail 4.2 16,470 88,126 10.3 {0.1, 0.2, . . . , 1} 0.1 0.006
Pumsb 16.3 2,113 49,046 74 {52.5, 55, . . . , 70} 0.8 3.5
Kosarak 30.5 41,271 990,002 8.1 {0.1, 0.2, . . . , 0.9} 0.01 0.002

Table 4.3 provides key information about each dataset, including size in megabytes
(MB), the number of distinct items, the number of transactions, the average number of
items per transaction (AvgTrans), and the support thresholds (minSup and maxSup)
used. Additionally, the density of each dataset is provided, which is a critical factor
for assessing performance, especially when comparing sparse and dense datasets.

The primary performance metrics evaluated were runtime, memory consumption,
and scalability. These metrics were analyzed across both sparse and dense datasets
to assess the scalability and efficiency of the RPP algorithm in comparison with the
RP-growth method.

4.3.1 Execution time

To assess the performance of the RPP algorithm, we compared it to the RP-growth
algorithm across all datasets listed in Table 4.3. Each experiment was conducted
using two support thresholds: maxSup (maximum support) and minSup (minimum
rare support). While maxSup remained fixed, minSup was varied as indicated in
Table 4.3.

The goal of these experiments was to extract rare patterns with support values less
than maxSup but greater than or equal to minSup. Figures 4.3a through 4.3d show
the runtime performances of the RPP and RP-growth algorithms across all datasets.
In these figures, the X-axis represents minSup values, and the Y-axis shows execution
time in seconds. The results clearly indicate that the RPP algorithm consistently
outperformed RP-growth across all datasets in terms of execution time.

The enhanced efficiency of the RPP algorithm can be attributed to its use of RN-lists,
which significantly reduces the computational overhead involved in generating rare
patterns. In contrast, RP-growth incurs higher overhead due to the construction of
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conditional trees for each rare item. This difference becomes particularly noticeable
at lower minSup values, where the number of rare patterns increases significantly.

For example, when mining the Kosarak dataset with a minSup threshold of 0.1%,
759,391 rare patterns are generated, whereas with a minSup of 0.9%, only 32 rare
patterns are produced. Despite the significant increase in rare patterns at lower
minSup values, the RPP algorithm maintains high efficiency and achieves significantly
faster execution times compared to RP-growth

As minSup increases, the performance gap between RPP and RP-growth narrows.
This is expected, as higher minSup values reduce the number of rare patterns,
resulting in more comparable performance between the two algorithms.

Overall, the results demonstrate that the RPP algorithm is significantly more efficient,
particularly when dealing with large datasets and low minSup values, where the
number of rare patterns is substantial.

Our analysis compares the performance of the RPP and RP-growth algorithms
across four datasets, as shown in Figure 4.3. The runtime shows significant variation
depending on the dataset characteristics. The RPP algorithm provides strong
performance in both sparse and dense datasets. For instance, in the sparse datasets
Retail and Kosarak, as illustrated in Figures 4.3a and 4.3b, the RPP algorithm
consistently outperforms the RP-growth algorithm in terms of runtime efficiency.

Interestingly, despite being optimized for sparse datasets, where rare patterns are
more prevalent, the RPP algorithm also performs competitively in dense datasets.
In the Mushroom and PUMSB datasets, shown in Figures 4.3c and 4.3d, the RPP
algorithm achieves better runtime performance compared to RP-growth, even though
tree-based methods tend to work well with dense patterns due to their compressed
nature. This ability of the RPP algorithm to maintain superior runtime performance,
regardless of dataset density, underscores its efficiency and adaptability across varying
data characteristics.

4.3.2 Memory consumption
To evaluate memory consumption, we utilized the same support thresholds (maxSup
and minSup) as outlined in Table 4.3. Comprehensive experiments were conducted
using the datasets listed in Table 4.3. Figures 4.4a - 4.4d illustrate the memory usage
of the RPP and RP-growth algorithms across varying minSup values. As in the
runtime experiments, the maxSup threshold was fixed, while the minSup threshold
was varied. In these figures, the X-axis represents the minSup values, and the Y-axis
represents the memory consumption for both algorithms.

The RPP algorithm demonstrates greater memory efficiency on sparse datasets.
Figures 4.4a and 4.4b show that, on sparse datasets like Retail and Kosarak, RPP
generally consumes less memory than RP-growth. Sparse datasets contain fewer rare
patterns, but the search space is large. RPP effectively reduces this search space by
utilizing RN-lists to directly extract rare patterns without constructing conditional
trees. In contrast, RP-growth generates a large RP-tree on sparse datasets, leading
to the creation of numerous conditional trees, which significantly increases memory
usage. In the Retail dataset, RPP consumes less memory when minSup exceeds
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(a) Retail dataset (b) Kosarak dataset

(c) Mushroom dataset (d) PUMSB dataset

Figure 4.3: Runtime comparisons between RPP and RP-growth across four datasets

0.3%, although it marginally surpasses RP-growth’s memory usage at higher minSup
values (above 0.6%).

For dense datasets, such as Mushroom and PUMSB, as shown in Figures 4.4c and
4.4d, RPP consumes more memory than RP-growth. Since most items in dense
datasets frequently co-occur, the RP-tree remains compact, allowing RP-growth to
generate rare patterns without the overhead associated with multiple conditional
trees. In contrast, RPP consumes more memory due to additional data structures,
specifically the maintenance of pre-order and post-order information for each node
in the RPPC-tree and the larger RN-lists, as more items must be processed during
mining. Additionally, dense datasets often have larger average transaction sizes,
further contributing to the increased memory usage in RPP.

Overall, while the RPP algorithm performs efficiently in terms of memory usage
for sparse datasets, it requires more memory than RP-growth when mining dense
datasets due to its handling of more extensive data structures.

4.3.3 Scalability

To evaluate the scalability of the proposed RPP algorithm compared with RP-
growth, we conducted experiments on the largest dataset, Kosarak, which contains
approximately 1 million transactions. The dataset was evenly divided into ten
parts, and for each experiment, 10% of the dataset was incrementally added to the
previous accumulative parts. Figures 4.5a and 4.5b present the experimental results,
highlighting the scalability of both algorithms in terms of execution time and memory
consumption.



4.3. Experimental results 59

(a) Retail dataset (b) Kosarak dataset

(c) Mushroom dataset (d) PUMSB dataset

Figure 4.4: Memory consumption comparisons between RPP and RP-growth across
four datasets

The results indicate that the RPP algorithm scales more efficiently than the RP-
growth as the dataset size increases. RPP requires less time and memory due to
its use of RN-lists during the mining process, allowing it to focus exclusively on
rare patterns. In contrast, RP-growth must traverse a much larger search space and
generate a substantial number of conditional trees, leading to significantly higher
execution time and memory usage.

As shown in Figure 4.5a, the RPP algorithm consistently outperforms RP-growth
in terms of execution time across all dataset sizes. This efficiency is attributed to
RPP’s ability to narrow down the mining process by directly leveraging RN-lists,
thereby reducing computational overhead. Conversely, RP-growth needs to repeatedly
construct conditional trees, which becomes increasingly computationally expensive
as the dataset size increases.

In terms of memory consumption, the RPP algorithm demonstrates better scalability
than RP-growth when processing sparse datasets, requiring less memory as dataset
size increases, as illustrated in Figure 4.5b. However, as noted earlier, RPP tends to
consume more memory on dense datasets due to the need to manage pre-order and
post-order information in the RPPC-tree, as well as larger RN-lists. Nevertheless, the
scalability advantage of RPP remains evident as dataset size increases, particularly
in sparse datasets such as Kosarak.

4.3.4 Discussion
The experimental results demonstrate that the RPP algorithm consistently outper-
forms RP-growth in terms of execution time, particularly for sparse datasets with
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(a) Kosarak dataset - Time Scalability

(b) Kosarak dataset - Memory Scalability

Figure 4.5: Scalability comparisons between RPP and RP-growth for the Kosarak
dataset in terms of time and memory

low minSup values, where the number of rare patterns significantly increases. The
advantage of RPP stems from its use of RN-lists, which eliminates the need for con-
ditional tree generation, thereby reducing computational overhead and accelerating
the mining process. In contrast, RP-growth encounters difficulties due to larger
search spaces and the repetitive construction of conditional trees, leading to slower
execution times, especially at lower minSup values. However, as minSup increases
and the number of rare patterns decreases, the performance gap between the two
algorithms shrinks.

In terms of memory consumption, the behavior of the two algorithms varies based
on dataset characteristics. RPP demonstrates superior memory efficiency in sparse
datasets such as Retail and Kosarak, as it avoids the creation of large conditional trees,
which are a significant memory burden for RP-growth. However, in dense datasets
such as Mushroom and PUMSB, RP-growth proves more memory-efficient due to the
compact nature of the RP-tree, minimizing the need for additional conditional trees.
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In contrast, RPP incurs higher memory costs in dense datasets due to the overhead
of maintaining pre-order and post-order information in the RPPC-tree, along with
the larger RN-lists required to handle the frequent co-occurrence of items and larger
transaction sizes typical of dense datasets.

When considering scalability, RPP exhibits clear advantages over RP-growth, par-
ticularly in large datasets such as Kosarak. As dataset size increases, RPP scales
efficiently in both execution time and memory usage, benefiting from its reliance
on RN-lists for direct rare pattern extraction. In contrast, RP-growth suffers from
scalability limitations as the dataset grows, requiring substantial memory and com-
putational resources to manage the increasing number of conditional trees and
expanding search space. Though RP-growth performs adequately on smaller datasets,
its efficiency declines sharply with larger datasets, positioning RPP as a more scalable
and effective solution for large-scale rare pattern mining.

4.4 Chapter summary
The experimental results highlight the RPP algorithm’s strengths and weaknesses in
comparison to RP-growth for rare pattern mining. RPP consistently outperforms RP-
growth in execution time, particularly for sparse datasets with low minimum support
thresholds (minSup), by leveraging RN-lists, which eliminates the need for conditional
tree generation and reduces computational overhead. Memory consumption varies
based on dataset density: RPP is more memory efficient for sparse datasets as it
avoids the burden of constructing large conditional trees, whereas RP-growth is more
efficient in dense datasets because of its compact RP-tree structure. Additionally,
RPP demonstrates superior scalability, handling larger datasets with lower memory
and time requirements compared to RP-growth, which struggles with increased
dataset size due to its reliance on extensive conditional tree construction. Overall,
RPP presents a more scalable and effective approach for large-scale rare pattern
mining, especially in scenarios with sparse datasets and low support thresholds.





5. Efficient Discovery of Compact
Rare Patterns

In the previous chapter, we explored the RPP algorithm and its ability to identify
rare patterns within datasets. Despite its effectiveness, RPP algorithm generates
an exhaustive number of patterns, many of them are redundant. This redundancy
increases computational complexity, consumes more time and memory, and ultimately
limits the scalability and practicality of the algorithm, especially in large datasets or
time-sensitive applications.

To address these inefficiencies, this chapter introduces the Maximal Rare Pattern
(MaxRI) algorithm, which refines rare pattern mining by focusing on maximal rare
patterns—the longest rare patterns in a dataset. These patterns act as concise
representatives of the full rare pattern set, significantly reducing redundancy and
improving the efficiency and interpretability.

The proposed MaxRI algorithm narrows the search space, leading to faster processing
and lower memory usage, making it particularly valuable in real-world scenarios with
limited computational resources. In addition, we present the Recover Rare Patterns
(RRI) method, which allows users to extract rare patterns of any specified length
from the maximal rare patterns, providing flexibility without unnecessary complexity.

Together, MaxRI and RRI offer a more efficient approach to rare pattern mining,
outperforming traditional methods in terms of speed and memory usage. These
algorithms are particularly suited for applications such as anomaly detection, where
the discovery of rare yet meaningful patterns is essential.

5.1 Introduction
Frequent pattern mining has been extensively studied in the field of data mining,
resulting in the development of numerous methods aimed at generating condensed
representations of frequent patterns such as closed and maximal patterns [Gouda
and Zaki, 2001; Luna et al., 2019]. These methods efficiently reduce redundancy
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and improve scalability and interpretability. In contrast, rare pattern mining, which
seeks to uncover infrequent but significant patterns, has received comparatively less
attention.

Although several methods have been proposed to address rare pattern mining [Darrab
et al., 2020; Koh and Rountree, 2005; Tsang et al., 2011], many suffer from the
generation of overly large and redundant sets of patterns. Rare pattern mining is par-
ticularly sensitive to the choice of minimum support thresholds; setting the threshold
too low can result in an overwhelming number of patterns, particularly in dense
datasets. This challenge is especially critical in domains where the early detection of
rare events is vital, such as anomaly detection and predictive diagnostics. Thus, the
development of approaches that generate concise, non-redundant representations of
rare patterns is an important and timely research problem.

In frequent pattern mining, methods for identifying closed and maximal patterns have
been well established [Burdick et al., 2005; Gouda and Zaki, 2001; Lu et al., 2020;
Mi, 2022; Wu et al., 2022], and offer compact representations of frequent phenomena.
However, to our knowledge, no corresponding methods have been developed for
mining concise representations of rare patterns, such as maximal rare patterns. This
represents a significant gap in literature. Maximal rare patterns represent subsets
of any other rare patterns, provide a non-redundant, concise representation of rare
events. Mining these patterns would reduce computational overhead and improve
interpretability, making them particularly useful in fields where rare events are more
insightful than frequent ones, such as fraud detection and medical diagnosis.

To address these challenges, this chapter introduces the Maximal Rare Itemset
(MaxRI) algorithm, which aims to recover a compressed and non-redundant represen-
tation of rare patterns. By extracting maximal rare patterns, the algorithm reduces
the computational time and memory usage, making the results more manageable
and facilitating expert analysis. This approach addresses the inefficiencies of existing
methods by eliminating redundancy and enhancing the overall performance.

Furthermore, to support deeper analysis, we propose a Recovering Rare Itemsets
(RRI) procedure. This method enables users to extract rare patterns of a specified
length k from a set of maximal rare patterns, providing flexibility for targeted
exploration without the need to generate a full set of patterns. This added capability
significantly enhances the practical applicability of the proposed methods

The key contributions of this chapter are as follows.

• Introduction of the MaxRI algorithm for discovering non-redundant maximal
rare patterns, overcoming limitations of existing approaches.

• Efficient extraction of maximal rare patterns using the MRI-tree structure.

• Extensive experimental validation on real-world dense datasets, showing that
MaxRI significantly outperforms state-of-the-art algorithms in both time and
memory efficiency.

• Introduction of the RRI algorithm for retrieving rare patterns of specified lengths,
enabling targeted exploration.
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The remainder of this chapter is organized as follows. Section 5.2 introduces the
MaxRI algorithm, along with a motivating example to illustrate its functionality. Sec-
tion 5.3 presents the experimental results and provides insights into the performance
of the algorithm. Finally, Section 5.4 summarizes the key findings and concludes the
chapter.

5.2 Proposed approach: MaxRI algorithm
In this section, we describe the proposed approach, called the Maximal Rare Itemset
(MaxRI) algorithm, which is designed to mine a concise representation of rare patterns,
specifically focusing on maximal rare patterns. The goal of MaxRI is to extract
representative rare patterns that reduce runtime, minimize memory consumption,
and facilitate expert analysis. In addition, we introduce the RRI algorithm, which
enables users to retrieve interesting rare patterns of a specified length k from the
concise representation generated by MaxRI.

The MaxRI algorithm utilizes an FP-tree structure [Borgelt, 2005] to identify a
comprehensive set of long rare patterns. The process begins with a preprocessing
phase that eliminates unpromising items (i.e., items with support below the min-
Sup threshold). Subsequently, the dataset is compressed into a compact structure
termed the Maximal Rare Itemset Tree (MRI-tree). Finally, the algorithm extracts
representative rare patterns directly without employing a candidate-test approach
or conditional trees. The detailed process is illustrated in Figure 5.1 and outlined
in Algorithm 2. To better understand the operation of the MaxRI algorithm, we
explain its three phases using a motivating example.

Motivating Example: Given the transaction dataset DB shown in Table 5.1, the
maximum support threshold (maxSup) is set to 4, and the rare support threshold
(minSup) is set to 2. The goal of maximal rare pattern mining is to extract a set of
maximal rare patterns whose support is greater than or equal to minSup, but less
than maxSup.

Table 5.1: Original dataset

TID Items Sorted Items
1 1, 3, 4 3, 1, 4
2 2, 3, 5 2, 3, 5
3 1, 2, 3, 5 2, 3, 5, 1
4 2, 5 2, 5
5 1, 2, 3, 5 2, 3, 5, 1

Table 5.2: Support of 1-items

Item Support
5 4
3 4
2 4
1 3
4 1

5.2.1 Preprocessing phase

This step in the proposed algorithm, as illustrated in Figure 5.1 and described in
lines 3 to 8 of Algorithm 2, involves scanning the dataset to compute the support
count of each 1-item. Unpromising items, whose support does not meet the minimum
threshold, are removed from the dataset. The remaining transactions are then sorted
in descending order based on item support. The resulting dataset is shown in the
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Table 5.3: Tidset of items

Item Tidset
1 T1, T3, T5
2 T2, T3, T4, T5
3 T1, T2, T3, T5
4 T1
5 T2, T3, T4, T5

right column of Table 5.1, and the corresponding support values of the 1-patterns
are presented in Table 5.2.

In addition, this phase generates a Tidset (a set of transaction IDs) to facilitate the
calculation of support for rare subset patterns derived from maximal rare patterns,
as demonstrated in Table 5.3. This step is critical for efficiently managing the mining
process, ensuring that only relevant patterns are retained for further analysis. Tidset
is used in the RRI algorithm to extract rare patterns of length k from the concise
representation generated by MaxRI.

5.2.2 Construction of the MRI-tree

In this phase, the second step of the MaxRI algorithm is executed, as shown in the
workflow in Figure 5.1 and detailed in lines 1–5 of Algorithm 2. The MRI-tree is
constructed using the transactions in the right column of the preprocessed dataset in
Table 5.2. Similar to the FP-tree construction process, the dataset is scanned again
to build the MRI-tree. Initially, the tree contains a root node labeled null.

The transactions in the right column of Table 5.2 are then inserted into the MRI-tree
in descending order of their support. If an inserted transaction shares a prefix with
previously inserted transactions, the count of all nodes along the shared path is
incremented by one. Otherwise, new nodes are created and initialized with a count
of one. Each node in the tree contains the following information: the item’s name,
count, children, parent, and link to other nodes with the same item name.

For example, consider node (2:4) in the tree, where numbers 2 and 4 represent the
item’s name and its occurrence on path {1532}, respectively. Node (2:4) has two
children (3 and 5), and its parent is the root of the tree. The compact MRI tree for
our motivating example is shown in Figure 5.1.

To facilitate efficient traversal of the tree, a rare header table is created to store only
rare items that are eligible for generating maximal rare patterns. By reordering the
items in descending order of their support, the resulting compact tree ensures that
the most relevant rare items are placed at the bottom of the tree.

5.2.3 Mining process for the MaxRI algorithm

This phase represents the final phase of the MaxRI algorithm, as illustrated in
Figure 5.1, with detailed steps outlined in lines 6-39 of Algorithm 2. The mining
process follows a bottom-up approach, starting from the lowest item in the rare
header table. For each rare item, the MaxRI algorithm retrieves the corresponding
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Figure 5.1: The compact MRI-tree after adding all transactions.

paths for item i from the compact MRI tree. The support count of a retrieved path
is set as the occurrence of item i within that path.

It is important to note that the support count of the prefix items cannot exceed that
of the suffix item, as the items are inserted in descending order of their support. This
ensures that the mining process effectively identifies the most relevant maximal rare
patterns.

Condition 1: Criteria for adding patterns to the result set

A pattern X is added to the result set SetMRI only if both of the following conditions
are satisfied:

• The support of X lies within the minimum and maximum thresholds:

minSup ≤ Support(X) ≤ maxSup.

• There is no pattern Z already in path P such that X ⊂ Z (i.e., X is not a subset
of any existing pattern in SetMRI).

Let SetMRI be a set of retrieved maximal rare patterns. For each item i in the rare
header table, the mining process can be summarized as follows:

Case 1: Single Path X

• If only one path X is retrieved for an item i, first check whether Condition 1 is
satisfied. If it is, add this path to the result set, SetMRI. Otherwise, skip mining
for this item and continue with the remaining items in the rare header table.

Case 2: Multiple Paths X and Y
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• If multiple paths X and Y are retrieved, choose the longest path. Let X be the
longest.

1. For the longest path X: Add X to the result set SetMRI, similar to Case
1. This ensures that the longest maximal rare pattern is added as early as
possible.

2. For path subsets: If two paths Y ⊂ Z are found, add Z (the superpat-
tern) along with its support to the result set SetMRI, provided it satisfies
Condition 1.

3. For identical paths: If two paths are identical, select one and update its
support by summing the supports of both paths and add it along with its
support to the result set SetMRI, provided it satisfies Condition 1. The
updated support for X is:

X.count← X.count + Y.count.

4. For independent paths: For any path K that is not a subset of any other
path, add it to the result set SetMRI if it satisfies Condition 1.

• This process is repeated for the remaining items in the rare header table.

Preprocessing 
Construction 

of a 
MRI-tree

Maximal Rare 
Patterns

Single 
path X

YesCase 1

No

Case 2

Yes

Next item

Yes

Next item

Mining process 

Dataset

Figure 5.2: Workflow of the MaxRI algorithm

To illustrate the mining process of the MaxRI algorithm, let us consider a motivating
example. Given the compact MRI tree and rare header table shown in Figure 5.1,
the task is to discover the complete set of maximal rare patterns.
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Algorithm 2 MaxRI: Mining Maximal Rare Patterns

Input: Dataset D, minSup, maxSup
Output: Set of maximal rare patterns SetMRI

1: procedure MaxRI(D, minSup, maxSup)
2: SetMRI ← {}

▷ Phase 1: Preprocessing
3: preprocess dataset, remove items <minSup , generate Tidsets
4: construct MRI-tree from preprocessed dataset
5: build rare header table ordered by descending support

6: function Valid(X) ▷ Check pattern validity
7: return support(X)≥minSup and support(X)<maxSup and no super-

pattern of X in SetMRI
8: end function
9: for each item i in header table do
10: retrieve paths containing item i
11: if single path X then
12: if Valid(X) then
13: add X to SetMRI
14: end if
15: else
16: select longest path X
17: if Valid(X) then
18: add X to SetMRI
19: end if
20: for each pair (Y, Z), Y ⊂ Z do
21: if Valid(Z) then
22: add Z to SetMRI
23: end if
24: end for
25: for identical paths (X,X ′) do
26: support(X) ← support(X) + support(X ′)
27: if Valid(X) then
28: add X to SetMRI
29: end if
30: end for
31: for remaining paths K do
32: if Valid(K) then
33: add K to SetMRI
34: end if
35: end for
36: end if
37: end for
38: return SetMRI
39: end procedure
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Algorithm 3 RRI Algorithm for Refining Rare Patterns

Input: Set of maximal rare patterns SetMRI, Tidsets, subset length k
Output: Set of refined rare patterns SetRRI

1: procedure RRI(SetMRI, Tidsets, k)
2: SetRRI ← {} ▷ Initialize the set of refined rare patterns

3: for each maximal rare pattern X in SetMRI do
4: if length(X) ≥ k then ▷ Check if maximal pattern length is at least k
5: for each subset Y of X where length(Y ) = k do
6: TidsetY ← intersect Tidsets of items in Y
7: calculate support(Y ) from TidsetY
8: if support(Y ) satisfies minSup and maxSup then
9: add Y to SetRRI
10: end if
11: end for
12: end if
13: end for
14: return SetRRI
15: end procedure

The MaxRI algorithm begins with the lowest rare item, 4, from the rare header table,
as in Figure 5.1. For item 4, there is a single prefix path from the root to suffix
item 4, which is represented as {1 : 1, 3 : 1}. Here, the number following the colon
indicates the count of the respective item on the path. The only pattern that can be
generated from item 4 is {413 : 1}, because the support of {413}, Sup(413) = 0.20,
is less than the maximum support threshold (maxSup = 0.80) and greater than or
equal to the minimum support threshold (minSup = 0.20). Thus, the maximal rare
pattern {413 : 1} is added to the set of representative rare patterns, SetMRI.

Next, for rare item 1, there are two prefix paths from the root to suffix item 1:
{5 : 3, 3 : 3, 2 : 4} and {3 : 1}. The longest maximal rare pattern in this case is
{1532}, with a support count equal to the relative support count of item 1 across
these paths, which is 0.40. Consequently, {1532} with support 0.40 is added to
SetMRI, as it is not a subset of any maximal rare pattern already in SetMRI. On
the other hand, path {31} is discarded because {1532}, already in SetMRI, contains
{31} as a subset.

Thus, the concise set of maximal rare patterns is {413 : 0.20, 1532 : 0.40}. These
patterns provide an efficient and interpretable representation of the entire set of rare
patterns. The resulting rare patterns are discovered with computational efficiency
and can be easily understood by domain experts.

In contrast, if we apply traditional methods, such as the RP-Tree or RPP algorithms,
to the same dataset with identical maxSup and minSup thresholds, the complete
set of rare patterns is as follows: {(4 : 0.20), (41 : 0.20), (43 : 0.20), (413 : 0.20), (1 :
0.60), (15 : 0.40), (13 : 0.40), (12 : 0.40), (153 : 0.40), (152 : 0.40), (132 : 0.40), (1532 :
0.40), (53 : 0.60), (32 : 0.60), (532 : 0.60)}.
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Generating a complete set of rare patterns through traditional methods significantly
degrades the performance, making both the discovery and analysis of these patterns
computationally expensive.

5.2.4 Recovering k-length rare patterns from maximal rare pat-
terns

This phase is classified as post-processing, in which we extract the complete set
of rare patterns from the maximal rare patterns generated in the preceding step.
Additionally, it allows for the selection of patterns based on desired lengths. The steps
and workflow of this procedure are presented in Algorithm 3. While the generated
maximal rare patterns are easily interpretable, their subset patterns support is not
retained upon generation. In practice, an expert may require certain subsets of
these maximal rare patterns for further analysis. To address this, we propose the
Recover Rare Patterns from Maximal Rare Patterns (RRI) algorithm, which retrieves
interesting subset rare patterns of length k from a set of maximal rare patterns.

The RRI algorithm operates as follows: it takes as input the Tidset of items (as
shown in Table 5.3), which is generated during the preprocessing phase, the desired
length k of the rare patterns, and the set of maximal rare patterns with lengths
greater than or equal to k. The output of the RRI algorithm is the complete set of
rare k-patterns. For each maximal rare pattern X, the RRI algorithm intersects the
Tidset of the rare pattern with Tidsets of length k − 1 of the other items in X.

To demonstrate the operation of the RRI algorithm, consider the Tidsets presented
in Table 5.3. Let the desired subset rare pattern length be 3. Assume there is one
maximal rare pattern, {1532}, with a length greater than 3. The Tidset of item
1 is then intersected with the Tidsets of 2-subsets from the remaining items (i.e.,
{53}, {52}, {32}). The result of intersecting the Tidset of 1 with that of {53} is
{T3, T5}, indicating that Items 1, 5, and 3 co-occur in transactions T3 and T5. The
relative support of pattern {153} is computed as:

|Tidset(153)|
|Total Transactions|

=
2

5
= 0.40

This process is repeated for Rare Item 1 with the remaining subsets. The resulting
subset of rare patterns for rare item 1 is {153 : 0.40, 152 : 0.40, 132 : 0.40}. This
process terminates when no further rare patterns are produced. The final result is
{153 : 0.40, 152 : 0.40, 132 : 0.40, 532 : 0.60}.

5.3 Experimental results
In this section, we present an experimental evaluation of the proposed MaxRI and RRI
methods for mining representative rare patterns. The experiments were conducted
on two real-world datasets: Mushroom and Accidents [FIMI Repository]. These
datasets were selected due to their complexity and high density. Table 5.4 provides
a summary of the key characteristics of these datasets, where #Trans denotes the
number of transactions and Avg represents the average transaction length.
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The experiments were performed on a system operating Windows 10 (64-bit),
equipped with an Intel Core i7-7700HQ CPU at 2.80 GHz, 16 GB of RAM, and a 1
TB hard drive. This configuration was chosen to represent a typical environment
for algorithm benchmarking in terms of computational resources. The performance
of the proposed algorithms was evaluated against well-known algorithms, namely
RP-growth and RPP [Darrab et al., 2020; Deng et al., 2012], both of which are
well-established in the field of rare pattern mining for their efficiency.

All algorithms were implemented in Java, providing a uniform execution environment
for performance evaluation. The comparison focused on two key metrics: runtime
efficiency and memory consumption. The results, which measure both execution
time and peak memory usage, demonstrate the superior performance of MaxRI and
RRI, with significant improvements.

Table 5.4: Characteristics of the datasets used in the experiments

Name #Trans #Items Avg Transaction Length
Mushroom 8,416 119 23
Accidents 340,183 468 33.8

5.3.1 Execution time

To evaluate the execution time of the proposed methods, MaxRI and RRI, we
compared their performance with two algorithms, RPP and RP-growth, using the
datasets described in Table 5.4. To limit the number of generated rare patterns, the
maximum support threshold (maxSup) was set to 10%, and the minimum support
threshold (minSup) was varied from 0.1% to 1% across all experiments. This range
was selected to explore how different levels of rare patterns affect performance. The
rare patterns considered in these experiments have support values below maxSup

and greater than or equal to minSup. In each graph, the X-axis represents different
minSup values, while the Y-axis corresponds to the execution time in seconds.

For the Mushroom dataset, Figure 5.3 presents the runtime of the proposed algorithms,
MaxRI and RRI, compared with RPP and RP-growth. As shown, MaxRI and RRI
consistently outperformed state-of-the-art methods across all minSup values. The
performance improvement is significant, with the proposed methods achieving up
to 1000 times faster execution than traditional approaches for mining rare patterns.
This improvement is largely due to the ability of MaxRI to effectively reduce the
search space by avoiding the generation of candidate patterns and the use of projected
conditional trees. Instead, MaxRI directly identifies representative rare patterns
(i.e., long rare patterns) without intermediate steps, leading to faster runtimes.
RRI further optimizes performance by focusing on discovering specific subsets of
rare patterns, leveraging Tidsets and maximal rare patterns to perform targeted
intersections between items.

For the Accidents dataset, Figure 5.4 illustrates the runtime of MaxRI and RRI.
Interestingly, RP-growth and RPP are not shown in the graph because they failed to
complete their execution within a two-hour limit. Even after adjusting the minSup
threshold to 1%, the competitor algorithms took approximately 1000 seconds to
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complete, while generating millions of rare patterns. In contrast, MaxRI identified
only 91 representative rare patterns under the same conditions, demonstrating its
ability to drastically reduce the number of patterns while maintaining interpretability
and relevance. This result highlights the advantage of focusing on representative rare
patterns, which provide more meaningful insights and faster responses to abnormal
events, while also being more manageable for post-processing.

From Figure 5.4, it is clear that the execution times for MaxRI and RRI remain
low, with runtimes capped at approximately 25 and 43 seconds, respectively. This
represents a significant improvement over traditional methods, further confirming
the scalability and efficiency of the proposed approaches.

Figure 5.3: Execution time comparison on the Mushroom dataset.

Figure 5.4: Execution time comparison the Accidents dataset.

5.3.2 Memory consumption

The memory consumption of the proposed methods, MaxRI and RRI, was evaluated
and compared with algorithms, RPP and RP-growth, using the datasets presented in
Table 5.4. The same experimental setup as the previous execution time experiment
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was applied here, with the X-axis representing different minSup values and the Y-axis
denoting the memory cost.

For the Mushroom dataset, Figure 5.5 presents the memory consumption of the
proposed algorithms, MaxRI and RRI, in comparison with RPP and RP-growth. As
shown, the proposed methods, MaxRI and RRI, consistently consume less memory
than the RPP and RP-growth algorithms. The RRI algorithm consumes slightly
more memory than MaxRI, primarily because RRI needs to retain the Tidset of
items in memory during the intersection process. In contrast, both RP-growth
and RPP are memory-intensive, because they generate a large number of rare
patterns. Additionally, RP-growth requires memory for conditional trees, which
further increases memory usage. The RPP algorithm is particularly memory-hungry,
as it must maintain pre-order and post-order nodes in the tree, as well as RN-lists of
items for intersection operations.

For the Accidents dataset, the memory consumption of the proposed methods is
depicted in Figure 5.6. As noted earlier in the execution time analysis, the memory
costs of the RP-growth and RPP algorithms are not displayed, as these methods were
unable to complete their execution within the two-hour runtime limit. Figure 5.6
demonstrates that, similar to the Mushroom dataset, the RRI algorithm consumes
more memory than MaxRI due to the necessity of storing Tidsets for intersection
operations.

Figure 5.5: Memory cost comparison for the Mushroom dataset.

5.3.3 Discussion
The empirical results demonstrate that rare pattern mining from dense datasets
yields an unmanageable number of rare patterns. The large volume of these patterns
complicates downstream analysis, and the performance of traditional methods, such
as RP-growth and RPP algorithms, incurs significant costs in terms of both runtime
and memory usage. Our proposed methods effectively address these limitations by
generating representative rare patterns more efficiently in terms of both time and
memory consumption.

As shown in Figures 5.3–5.6, the runtime and memory efficiency of the proposed
methods are markedly superior, especially for highly dense datasets such as Mushroom



5.4. Chapter summary 75

Figure 5.6: Memory cost comparison for the Accidents dataset.

and Accidents. These results indicate that our algorithms outperform state-of-the-art
approaches, particularly in time and memory costs. The MaxRI algorithm excels by
recovering a concise set of representative rare patterns, specifically the maximal rare
patterns, which retain all the necessary information without redundancy.

In the context of rare patterns, maximal rare patterns are information-preserving
because the rare item (i.e., the item with the lowest support count in each maximal
rare pattern) dictates the support of any subset pattern containing that item. For
instance, in the motivating example, rare item 1 leads to the generation of the
maximal rare pattern {1532 : 0.40}. Any subset of this maximal rare pattern that
contains rare item 1 will have a support of 0.40. This ensures that, from the resulting
representative rare patterns, we can derive meaningful insights without producing a
vast number of redundant and irrelevant patterns.

Furthermore, the proposed methods demonstrate a significant speed advantage, being
approximately 1000 times faster than the traditional algorithms compared in this
study. This dramatic improvement highlights the effectiveness of MaxRI and RRI in
reducing both computational complexity and memory overhead.

5.4 Chapter summary
In this chapter, we addressed the challenges of rare pattern mining in dense datasets,
specifically focusing on the limitations of traditional methods such as RP-growth and
RPP. These methods often generate an excessive number of rare patterns, resulting
in substantial computational overhead in both memory usage and runtime. This
inefficiency arises because traditional approaches struggle to prune the search space
effectively, particularly for dense datasets containing numerous infrequent patterns.
To overcome these challenges, we propose the MaxRI algorithm, which efficiently
retrieves representative rare patterns while reducing redundancy. Additionally, the
RRI algorithm was introduced to extract meaningful subset rare patterns from
representative patterns generated by MaxRI. Our experimental results demonstrated
substantial improvements in runtime and memory efficiency, with performance gains
of up to 1000 times faster than those achieved by traditional methods.
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With the generation of representative rare patterns that are now optimized, the next
logical progression is to derive meaningful association rules from these patterns. In the
following chapters, we focus on generating rare association rules that are interpretable,
unexpected, and actionable. These rare rules are of particular interest because of
their potential to reveal valuable insights, support decision-making processes, and
uncover hidden but significant relationships within data.



6. Discovering Unexpected Rules

In previous chapters, we addressed rare pattern generation as a foundational step in
discovering association rules. This chapter shifts the focus to the generation of rare
association rules that quantify the relationships between these patterns. Such rules
are increasingly relevant in critical domains, including medicine, fraud detection,
and malware analysis, where they uncover unexpected yet valuable insights often
missed by more common patterns. For these insights to be actionable, the generated
rules must not only be rare but also exhibit high utility, requiring both high user
confidence and models that are interpretable with minimal tuning complexity.

A key challenge in rare pattern mining is data imbalance, as seen in medical datasets
where the proportion of ill patients is significantly smaller than that of healthy
individuals. This imbalance complicates the discovery of rare patterns. Although
recent clustering models have attempted to address this issue, their performance
often suffers in terms of time efficiency and accuracy.

In this chapter, following the identification of rare patterns, we address the next
critical step: generating association rules that are both unexpected and interesting.
We propose an efficient model to assess the quality of these rare rules. By applying
our model to three real-world medical datasets, we demonstrate that it outperforms
existing models in terms of both speed and precision, yielding more accurate results.
This ensures that users are presented with only the most relevant and compact rules,
thereby reducing the effort required for post-processing and making insights more
actionable.

6.1 Introduction
Pattern mining is a well-established technique for identifying patterns that occur
together within a dataset. These patterns often form association rules, which are
typically represented by X → Y , where X and Y are sets of patterns. For instance, in
market basket analysis, the rule milk → bread suggests that customers who purchase
milk are also likely to buy bread. This process, known as Association Rule Mining
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(ARM), has numerous applications across domains such as retail, medical diagnosis,
and web usage mining [Agrawal and Srikant, 1994; Ahmed and Barkat Ullah, 2018].

A significant advantage of ARM is its interpretability, which provides clear and
actionable insights for decision-making. However, a major limitation is the large
number of rules generated. For a pattern with d items, the number of possible
rules can reach 2d − 2 [Zaki, 2000a], which leads to a flood of redundant, noisy,
and irrelevant rules. This challenge is particularly pronounced for rare patterns,
which, despite their infrequency, can still generate numerous rules, many of which
are irrelevant or noisy. Consequently, identifying the most unexpected and insightful
rules from a large set is challenging.

Rare association rules possess considerable value because they uncover hidden insights
that are often overlooked when focusing on frequent patterns. Despite their rarity,
these rules can provide critical insights into fields such as fraud detection, medical
research, and network security. However, the primary challenge lies in distinguishing
meaningful rules from irrelevant or redundant ones. Effective filtering of these less
useful rules is crucial for retaining only those that provide novel and actionable
insights, ensuring that the results are both valuable and applicable for real-world
applications.

Clustering-based techniques have been introduced to address the issue of rule explosion
in ARM. These methods group similar rules to reduce the overall rule set and improve
interpretability [Gupta et al., 1999; Lent et al., 1997; Toivonen et al., 1995]. One
prominent approach, DBSCAN, clusters rules based on their similarity, thereby
facilitating the interpretation of results [Bui-Thi et al., 2020]. However, DBSCAN
and similar techniques primarily focus on frequent patterns and often neglect rare
association rules. Rare-pattern mining, also known as unexpected rule mining, seeks
to bridge this gap by identifying rare but valuable association rules [Borah and
Nath, 2019; Darrab et al., 2021b]. Despite advances in this field, current state-of-
the-art methods such as DBSCAN have several limitations. These shortcomings are
high computational costs, sensitivity to parameter settings (e.g., ϵ and minPts in
DBSCAN), and reliance on single-class metrics, such as the F1-score, which can lead
to misleading results in imbalanced datasets [Jeni et al., 2013].

Consequently, more efficient and interpretable models for rule generation are required,
particularly when addressing rare patterns. These models should address both
computational complexity and interpretability to ensure that the insights generated
are actionable and valuable in real-world applications.

To address these limitations, we propose a novel model called OPECUR (OPTICS-
based Clustering of ECLAT-Generated Unexpected Rules), which is designed to
enhance the discovery of rare and unexpected association rules. Our primary contri-
butions are as follows:

• We utilize the FP-growth and ECLAT algorithms to efficiently generate a
comprehensive set of association rules, mitigating the time and memory overhead
associated with Apriori-based methods.

• We implement the OPTICS algorithm for clustering, a density-based method
that minimizes the need for extensive parameter tuning. Unlike DBSCAN,
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OPTICS can identify clusters of varying densities, facilitating the discovery of
more accurate and unexpected association rules.

• We evaluate the quality of the generated rules using three machine learning
classifiers: Support Vector Machines (SVM), Random Forest (RF), and a Neural
Network-based Multi-Layer Perceptron (MLP).

• Our experimental results demonstrate that OPECUR consistently outperforms
state-of-the-art DBSCAN-based models in terms of F1-score and Area Under
the Curve (AUC). Furthermore, OPECUR generates unexpected rules more
efficiently by identifying a larger number of interesting and novel rules.

The structure of this chapter is organized as follows: Section 6.2 introduces the
proposed model in detail, Section 6.3 presents the experimental results, and Section
6.4 concludes the chapter with a summary of key findings.

6.2 Proposed method: OPECUR Model

In this chapter, we introduce the Optimized Clustering for Unexpected Rare Rules
(OPECUR) model, an advanced clustering framework for effectively discovering
unexpected and valuable rare association rules. The OPECUR model workflow
illustrated in Figure 6.1 outlines an approach that surpasses current state-of-the-art
methods in terms of both accuracy and efficiency.

The workflow begins by generating a comprehensive set of association rules from
the dataset with a low minimum support threshold to ensure that even rare but
insightful patterns are captured. Once generated, the rules are transformed into
feature vectors based on item correlations within the dataset. A contradiction check
function is then applied to the noise points identified in the clustering phase, which
is a critical step for isolating the final set of unexpected association rules, setting
OPECUR apart from comparable methods.

The OPECUR model comprises two primary phases: association rule generation
and clustering, as shown in Figure 6.1. In the first phase, efficient algorithms such
as FP-growth and ECLAT generate a complete set of patterns, optimizing time
and computational resources. The second phase employs the OPTICS clustering
technique [Ankerst et al., 1999] to group rules and detect outliers as potentially
unexpected patterns. This technique effectively distinguishes dense clusters and
isolates unexpected rule patterns from outliers, thereby enhancing the discovery of
rare and valuable rules.

Figure 6.1: OPECUR workflow for generating unexpected rare rules.
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6.2.1 Generating association rules
The state-of-the-art approach [Bui-Thi et al., 2020] utilizes the Apriori algorithm to
generate association rules. However, Apriori’s requirement for generating numerous
candidate sets and performing multiple dataset passes results in significant computa-
tional inefficiencies. Our proposed model, OPECUR, overcomes these limitations by
employing more efficient and scalable FP-growth and ECLAT algorithms.

FP-growth [Han et al., 2004] constructs a compact tree structure, FP-Tree, which
captures essential information for mining without the overhead of candidate generation
and testing. This algorithm requires at most two scans of the dataset: the initial
scan constructs the FP-Tree by incrementally adding transactions and filtering them
to exclude irrelevant items. Once the tree is constructed, the mining process utilizes
a divide-and-conquer approach to enhance the efficiency.

The ECLAT algorithm [Zaki et al., 1997] employs a depth-first search strategy to
generate a comprehensive set of patterns. By operating in a vertical data format,
ECLAT avoids multiple scans and calculates pattern support through set intersections,
significantly improving computational performance.

The use of FP-growth and ECLAT is advantageous over apriori-based methods, which
are commonly used in comparative models. Furthermore, to ensure the discovery of
rare patterns, we set a low support threshold, an approach that is viable given the
manageable size of the dataset.

6.2.2 Clustering-based approach
In our proposed model, the second phase focuses on a clustering-based approach for
identifying interesting rare rules. In this phase, similar association rules are grouped
using the density-based clustering algorithm OPTICS [Ankerst et al., 1999]. The
OPECUR algorithm sorts data points based on the reachability distance, defined as
the maximum distance from a point p to another point and p’s core distance. Here,
the core distance is the distance to the nth nearest neighbor, where n is a user-defined
parameter minPts. This method ensures that points within the reachability distance
are clustered.

One advantage of using the reachability distance is the reduced need to pre-define
an eps value, as this is automatically derived from minPts. This flexibility enables
OPTICS to effectively handle datasets with varying cluster densities and identify
nested clusters. As shown in Figure 6.2 and 6.3, the OPECUR model generates a
greater number of clusters than DBSCAN. Because OPTICS dynamically adjusts
eps, it can discover clusters that may be missed by DBSCAN, which relies on a fixed
eps parameter. In both figures, the red points represent noise points that are not
part of any cluster.

To extract unexpected rules, we focused on analyzing these noise points because they
often contain hidden and interesting patterns. To determine whether a noise rule is
unexpected, we use a process similar to that in [Bui-Thi et al., 2020] with an important
modification. In our approach, the OPECUR algorithm first generates clusters, and
the contradiction check function is applied only afterward to the noise points. This
contrasts with the method in [Bui-Thi et al., 2020], in which the contradiction check
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is embedded within the clustering process. By separating these steps, our method
reduces the parameter tuning complexity and prevents additional constraints from
influencing the clustering outcome. Consequently, the OPECUR model improves the
detection of unexpected rules while minimizing the risk of overlooking important
patterns.
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Figure 6.2: Clusters in the Breast Cancer Dataset using DBSCAN

If all these conditions are satisfied, the noise ruleX → Y is identified as an unexpected
rule that contradicts the clustered rule X ′ → Y ′.

1. Y ̸= Y ′

2. High cosine similarity between X and X ′

3. High confidence for both rules

4. The rule X → Y is identified as a noise point

If all these conditions are met, the noise rule X → Y is flagged as an unexpected
rule that contradicts the clustered rule X ′ → Y ′.

6.3 Experimental evaluation

In this section, the performance of our proposed model is compared with that of
the state-of-the-art model introduced in [Bui-Thi et al., 2020]. In the following, we
introduce the evaluation setup and then explain the results of our experiments.
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Figure 6.3: Clusters in the Breast Cancer Dataset using OPECUR

6.3.1 Experimental setup

To evaluate our proposed model, OPECUR, we compared it with the state-of-the-art
model introduced in [Bui-Thi et al., 2020], using three real-world medical datasets:
Breast Cancer, Cleveland Heart Disease, and Hepatitis, all obtained from the UCI
repository [Kelly et al.]. Table 6.1 provides an overview of the main characteristics of
datasets. The Cleveland Heart Disease dataset has five target classes for prediction:
0 (absence) and 1, 2, 3, 4 (presence) 1. Both the Hepatitis and Cleveland datasets
contain a mix of real-valued and categorical attributes, whereas the Breast Cancer and
Hepatitis datasets exhibit imbalanced distributions, with minority classes comprising
29% and 25% of instances, respectively. This skewed distribution poses a significant
challenge for extracting representative and meaningful rare rules from these datasets.

To assess the effectiveness of our approach, we conducted the following experiments:

• Scalability: In the first experiment, we compare the time required by OPECUR
and the DBSCAN-based model to generate the complete set of rules, providing
insights into scalability.

• Clustering Quality: In the second experiment, we evaluate the quality of clus-
tered association rules produced by OPECUR in comparison to those from the
DBSCAN-based model.

• Rule Quality for Classification: Lastly, we examine the quality of rare rules
generated by our clustering model, OPECUR, against those produced by DB-
SCAN based model. We trained a classifier using these rules to assess their
utility for decision-making, specifically in identifying individuals as healthy or ill.

1For simplicity, we convert this to a binary classification: 0 (absence) and 1 (presence).
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All experiments were conducted on Google Colab with 12GB RAM, allowing us to
evaluate the scalability of our models in a constrained environment. The experimental
results are presented in the following subsections.

Table 6.1: Dataset Details

Dataset Instances Classes Attributes % Minority Class

Breast Cancer 286 2 9 0.29
Hepatitis 155 2 20 0.25
Cleveland 303 2 14 0.44

*All datasets are obtained from the UCI Machine Learning Repository.

6.3.2 Experiment 1: execution time comparison
This experiment evaluated the execution time of our proposed OPECUR model in
comparison to a state-of-the-art DBSCAN-based model for generating a complete set
of association rules. While the DBSCAN-based model utilizes the Apriori algorithm,
we employ FP-growth and ECLAT algorithms to generate the same rule set. For
each experiment, the minimum support threshold (minSup) was varied from 0.01 to
0.4 to ensure consistency in the output rules.

Figures 6.4a to 6.4c illustrate the performance of each algorithm across all datasets.
As shown in the graphs, FP-growth and ECLAT significantly reduce execution time
compared to Apriori. In particular, even at low minSup values, FP-growth and
ECLAT efficiently retrieve patterns, underscoring their effectiveness in generating
comprehensive rule sets that include rare and meaningful patterns.

Based on these results, our algorithm adopts ECLAT for rule generation because it
demonstrates superior performance when mining patterns at low support thresholds,
which is essential to effectively uncovering rare patterns.

6.3.3 Experiment 2: clustering process comparison
In this experiment, we compared the clustering results of our proposed model,
OPECUR, with those of the state-of-the-art DBSCAN-based model. To ensure a
fair comparison, we set the parameters consistent with those used in the DBSCAN-
based model [Bui-Thi et al., 2020]: specifically, minPts is set to 10, with delta1
and delta2 (contradiction check parameters) set to 1 and -1, respectively. Table 6.2
presents the clustering results for OPECUR and DBSCAN. The results indicate that
OPECUR generates more unexpected rare rules than DBSCAN, and successfully
identifies interesting rare patterns that DBSCAN misses. This improvement is due
to OPECUR’s automatic calculation of the minEps parameter, which enables it
to detect more clusters and yield fewer noise rules than DBSCAN. These findings
suggest that OPECUR is more effective at identifying unexpected rare rules that
may be overlooked by DBSCAN; however, evaluating the meaningfulness of these
rules still needs more investigation.

To evaluate the quality of unexpected rare rules generated by OPECUR, we adopted
an evaluation strategy similar to that in [Bui-Thi et al., 2020], which measures the
impact of rare rules using machine learning classifiers. Their approach assumes that
a rule is meaningful if it enhances the decision boundary of a classifier and, thus, its
performance. We modified this approach as follows:
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(a) Breast Cancer Dataset
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(b) Cleveland Heart Disease Dataset
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(c) Hepatitis Dataset

Figure 6.4: Runtime Performance Comparison Across Datasets
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• Cross-Validation: Instead of using an independent hold-out method, we apply
3-fold cross-validation on the datasets. For each iteration, rules from two folds
are used for training, while the remaining fold serves as the test set. This
process is repeated until each fold has served as an independent test set, and
the average scores are reported across all folds to provide a robust estimate of
the generalization error.

• Classification Task: We employ three classifiers, Random Forest (RF), Support
Vector Machine (SVM), and Multi-Layer Perceptron (MLP), implemented in the
Sklearn library [Pedregosa et al., 2011] with default settings. The models are
evaluated using the F1 and AUC metrics. The F1 score balances precision and
recall, whereas the Area Under the Curve (AUC) offers insights into the balance
between true-positive and false-positive rates.

Table 6.2: Comparison of Clustering Algorithms

Algorithm Noise Rare Clusters

Breast Cancer Dataset
DBSCAN 748 3 20
OPECUR 386 23 54

Cleveland Dataset
DBSCAN 17,269 415 4
OPECUR 15,291 1,650 17

Hepatitis Dataset
DBSCAN 11,925 0 3
OPECUR 7,289 4 10

* All values are based on minpoints = 10 for all datasets. This table describes the number of clusters, noise points,
and rare rules generated by each algorithm for each dataset.

Figures 6.5 and 6.6 show the performance of our proposed model, OPECUR, compared
with the DBSCAN-based model across all three datasets. For both evaluation
metrics, our model, OPECUR, demonstrated consistently better performance than
the DBSCAN-based model [Bui-Thi et al., 2020] on all datasets. This improvement
stems from OPECUR’s ability to identify a greater number of clusters while generating
fewer noise rules that satisfy the contradiction check. This is a clear advantage over
the DBSCAN model, which can only identify a limited subset of actual clusters.
Consequently, rules that should ideally be classified as noise are still assigned to
a cluster by DBSCAN and are thus considered frequent rules. Consequently, our
model generates a higher number of unexpected rare rules and achieves superior
performance in terms of the F1 and AUC scores.

Notably, the OPECUR model achieved its highest performance on the hepatitis
dataset. This is attributed to the large number of attributes in the dataset, which
enhances the detection of correlations within these attributes. Furthermore, an
in-depth analysis of the rules and clusters reveals that the DBSCAN model struggles
with this dataset, as it fails to identify nested clusters within the hepatitis data.

6.3.4 Experiment 3: evaluation of unexpected rules

In this experiment, we evaluated the unexpected rules generated by our model using
two key criteria. First, we apply the contradiction check approach used in the
comparative model [Bui-Thi et al., 2020] with identical parameter settings. This
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F1-Score and AUC-Score of SVM, RF, and MLP classifiers using rules derived from DBSCAN- and Optics-based
models. ”DBSCAN” and ”Optics” refer to models built on rules extracted from the outputs of the respective
clustering models, not the original clustering algorithms.

evaluation demonstrates that our OPECUR model produces more insightful and
unexpected association rules. For example, the rule ’age=50-59’, ’breast=left’,
’deg-malig=3’, ’irradiat=no’, ’menopause=ge40’, ’tumor size=30-34’ → class=yes
is identified by OPECUR as unexpected. This rule contradicts the following two
rules:

• ’age=50-59’, ’breast=left’, ’irradiat=no’, ’menopause=ge40’ → class=no

• ’breast=left’, ’irradiat=no’, ’menopause=ge40’ → class=no

Second, we compared the unexpected rules generated by our model with those
identified by the rare-pre-post-order (RPP) algorithm [Darrab et al., 2020], which
was recently introduced to discover the complete set of rare rules. Our results indicate
that the unexpected association rules generated by OPECUR are a meaningful subset
of the rare rules found by RPP, providing a more concise and targeted set of insights.

For instance, RPP generates the following rare rule: ’tumor size=30-34’, ’inv-
nodes=3-5’, ’node-caps=no’, ’menopause=ge40’, ’deg-malig=3’, ’irradiat=no’ →
class=yes. This rule indicates an increased risk of cancer recurrence among patients
characterized by a tumor size of 30–34 mm, involvement of 3–5 lymph nodes, absence
of node caps, malignancy grade 3, postmenopausal status, and no prior radiation
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therapy. Similarly, OPECUR identifies the rule ’menopause=ge40’, ’inv-nodes=3-5’,
’node-caps=no’, ’irradiat=no’ → class=yes as rare. These findings highlight that
our proposed model captures insights similar to RPP while offering a more concise
rule set.

Hence, the unexpected association rules generated by OPECUR are informative and
meaningful. They represent a refined subset of rare patterns previously identified by
the RPP algorithm [Darrab et al., 2020], providing clearer insight into the underlying
structure of the data.

6.4 Chapter summary
The discovery of unexpected (rare) rules has gained increasing attention because of its
potential to uncover valuable hidden knowledge in domains such as medical diagnosis,
fault detection, and fraud prevention. However, existing state-of-the-art models often
suffer from degraded performance and fail to capture a complete set of unexpected
association rules. To address these challenges, we developed a clustering-based model,
OPECUR, that efficiently identifies unexpected association rules from real-world
datasets. Our model surpasses the many limitations of previous approaches by
generating a comprehensive set of unexpected rules and autonomously setting the
parameters during the clustering process. This functionality enables the model to
identify a wider range of clusters, yielding more unexpected rules that enhance the
decision boundaries of machine learning classifiers.

The unexpected rules generated by OPECUR were evaluated based on criteria
such as contradiction checks, classifier performance, and comparisons with the RPP
algorithm. The experimental results indicate that our model is scalable and capable
of generating reliable and insightful unexpected rules. However, although OPECUR
demonstrates strong capabilities in discovering a diverse set of interesting rules, the
clustering-based approach may still limit its ability to identify a truly complete set
of unexpected rules. This potential limitation will be the focus of the following
chapter, in which we explore strategies to mitigate this effect and further enhance
rule discovery.





7. Exploring Meaningful and
Unexpected Patterns

In the previous chapter, we introduced methods for discovering interesting rare rules
using clustering-based techniques. Although effective, these clustering methods have
inherent limitations that often result in an incomplete set of unexpected rules. This
incompleteness restricts the discovery of potentially valuable insights within the data,
as certain rare patterns that deviate significantly from the norm remain undetected.

In this chapter, we propose a novel model designed to address these limitations
by capturing a comprehensive set of interesting rare rules. The core concept of
our approach is grounded in utilizing frequent patterns as a baseline or set of
”beliefs.” Frequent patterns represent common co-occurrences within the dataset,
encapsulating known and predictable behaviors. By treating these frequent patterns
as normative behaviors, we aim to uncover rare rules that diverge from this baseline,
highlighting unexpected and potentially insightful deviations. This approach enables
the identification of a more complete and non-redundant set of rare rules, thereby
significantly enhancing the depth of insight derived from pattern mining. The content
of this chapter is based on our paper published in [Darrab et al., 2022b].

7.1 Introduction
In recent years, deep learning (DL) models have achieved impressive success in pattern
recognition and predictive analytics due to their high accuracy and scalability with
large datasets. Despite these strengths, DL models frequently operate as ”black boxes,”
lacking the interpretability needed for critical applications involving rare or infrequent
phenomena. In contrast, data mining techniques, particularly association rule mining
(ARM), offer a more transparent approach by revealing significant relationships
between patterns. This interpretability makes ARM particularly valuable in domains
where explainability and actionable insights are essential, such as fraud detection,
disease diagnosis [Altaf et al., 2017], and road traffic accident prediction [Joshi et al.,
2020].
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To address the need for comprehensive rule discovery, a range of methods have
been developed within ARM [Aljehani and Alotaibi, 2024; Darrab and Ergenç, 2016;
Kamepalli and Bandaru, 2019]. Algorithms such as Apriori and FP-growth [Singh
et al., 2014], along with numerous extensions, are widely used to generate association
rules. However, although these methods effectively capture a complete set of patterns,
they frequently produce an excessive number of rules. This overabundance not only
presents scalability challenges but also complicates analysis, particularly when the
objective is to identify rare and unexpected rules. The resulting surplus of rules can
obscure the critical rare patterns that are most valuable for decision makers, such
as atypical transaction behaviors in fraud detection or indicators of rare diseases in
medical diagnostics.

To overcome this challenge, clustering-based methods have been introduced to
reduce the number of generated rules by grouping similar rules into clusters [Dahbi
et al., 2016; Lent et al., 1997; Toivonen et al., 1995]. For example, the approach
in [Toivonen et al., 1995] prunes undesirable association rules while grouping others
into clusters [Lent et al., 1997]. Although clustering-based models improve efficiency
by focusing on frequent events, they may overlook less frequent but potentially more
valuable patterns. For real-world applications, especially in fields such as fraud
detection and medical diagnosis, capturing these infrequent patterns, such as unusual
spending behaviors or rare disease patterns, can provide crucial insights.

Efforts to address the need to mine unexpected rare rules have led to the development
of models such as DBSCAN and OPECUR [Bui-Thi et al., 2020; Darrab et al., 2022a],
which employ clustering to capture rare events. These models operate by generating
a comprehensive set of patterns with a low support threshold and then clustering
similar rules. However, despite their utility, these approaches have several limitations.
First, their reliance on a low support threshold results in a performance bottleneck
because generating the full set of patterns (including rare ones) is computationally
intensive. Second, rare patterns are often clustered with frequent patterns based on
distance similarity, which can result in missed rare rules that are critical for specific
applications. Moreover, these models are highly sensitive to hyperparameter settings;
improper tuning of parameters, such as ϵ and minPts can lead to suboptimal results,
further complicating the detection of unexpected patterns.

In real-world applications, accurately identifying the most promising rare patterns,
often representing anomalous or unexpected behaviors, is crucial; however, current
clustering-based methods are unable to achieve this goal comprehensively. These
limitations underscore the need for an efficient model that can capture the entire
set of interesting rare rules without excessive redundancy. To address this gap, we
propose the Unexpected Closed Rare Pattern Miner (UCRP-miner), a novel model
designed to effectively retrieve unexpected patterns. The UCRP-miner considers
frequent patterns as a foundation or set of ”beliefs” (representing expected patterns),
from which it identifies rare patterns that deviate from these norms, offering a
structured way to extract insightful deviations. This approach ensures that both
frequent and rare patterns are captured while minimizing redundancy and enhancing
interpretability.

The principal contributions of this chapter are as follows:
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• To address the challenges of redundancy and performance degradation, we
propose a method that recovers a compact representation of patterns, specifically
through closed rare patterns.

• We use frequent patterns as a baseline ”belief” set to identify unexpected rules.
By comparing closed rare patterns with frequent ones, we flag rare patterns that
deviate from these baseline ”beliefs” as potentially insightful, uncovering novel
findings.

• Experimental results demonstrate that UCRP-miner significantly outperforms
existing methods, delivering precise and insightful results with improved effi-
ciency.

The remainder of this chapter is organized as follows. Section 7.2 describes the
proposed model. Section 7.3 provides an analysis of the experimental results. Finally,
Section 7.4 concludes the chapter.

7.2 Proposed method: UCRP-Miner
In this chapter, we introduce UCRP-Miner, a novel approach designed to uncover
patterns that yield new, unknown, and unexpected insights within datasets. As
illustrated in Figure 7.1, UCRP-Miner first preprocesses the data and prepares it for
the mining process to ensure efficiency and accuracy. Following this, a complete set
of closed (both frequent and rare) patterns is generated. Among these, rare patterns
exhibiting high similarity to common (frequent) patterns based on a predefined
threshold are identified as candidates for interesting patterns.

The UCRP-Miner framework is structured into two main phases: identifying closed
patterns and extracting interesting patterns. In the first phase, the model generates
closed patterns that serve as a compact representation of the dataset, ensuring
minimal information loss. In the second phase, UCRP-Miner identifies interesting
patterns by leveraging frequent closed patterns as a baseline (or set of beliefs). This
comparison isolates rare patterns that deviate significantly from expected behaviors,
thereby capturing meaningful and actionable insights that are likely to be of high
interest to users.

Through these phases, UCRP-Miner efficiently retrieves rare patterns that are
unexpected relative to frequent patterns, thereby enhancing interpretability and
focusing on the most insightful deviations. The following subsections detail the steps
involved in extracting these valuable patterns from datasets.

7.2.1 Preprocessing phase
In this phase, we removed useless transactions from a given dataset. A transaction is
considered in the mining process if none of the following conditions occur.

• A transaction includes only one item.

• A transaction is a duplicate of another.

Thus, we consider only meaningful transactions in the preprocessing phase, and those
that do not generate knowledge while mining interesting patterns are discarded.
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Figure 7.1: UCRP-Miner workflow for mining meaningful patterns

7.2.2 Generation of patterns

A significant challenge in frequent pattern mining, known as pattern explosion, arises
from the overwhelming number of generated patterns, which often exceed the dataset
size by orders of magnitude. Many of these patterns are redundant and provide
repetitive information. Various methods, such as closed or maximal frequent patterns,
have been developed to reduce the pattern count. Despite these attempts, frequent
patterns remain too extensive for expert analysis, emphasizing patterns that are
predictable and commonly occurring, often overlooking less common, yet insightful
patterns. Thus, discovering rare, unexpected patterns that diverge from the general
trends (frequent ones) within the data is valuable, as they may reveal previously
unexplored phenomena.
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Existing state-of-the-art models, such as those presented by Bui-Thi et al. [2020];
Darrab et al. [2022a] apply clustering techniques to generate unexpected rules. They
utilized traditional pattern-mining methods (e.g., Apriori, FP-growth, and Eclat) at
lowered support thresholds to capture rare patterns, generating a complete set of
rules before clustering them. Subsequently, noisy rules are filtered out by comparing
the clustered rules, retaining those that satisfy the constraints (e.g., contradiction
checking and similarity) as unexpected rules. However, these methods have certain
limitations. First, they generate an extensive number of patterns and rules, often
orders of magnitude greater than the dataset size, leading to high time and memory
consumption, particularly with large datasets. Second, clustering-based methods
may inadvertently group rare patterns with high similarities, limiting the discovery
of truly unexpected patterns.

Our proposed frequent-based model, UCRP-Miner, addresses these issues by im-
plementing faster, more scalable, and efficient techniques to generate a concise
representation of both frequent and rare patterns, thereby reducing redundancy in
the pattern set.

UCRP-Miner avoids generating redundant patterns by creating a compact representa-
tion rather than producing the entire set of patterns. Representing frequent patterns
in a condensed form, such as closed patterns, significantly reduces the number of
patterns needing extraction. Closed patterns provide a lossless and compact repre-
sentation of all complete patterns, making them ideal for our purposes. Therefore, in
UCRP-Miner, we focus on generating closed patterns.

Figure 7.1 illustrates the UCRP-Miner workflow, where the method generates two
primary types of patterns: frequent and rare closed patterns. To create frequent
closed patterns, we used an Eclat-based approach called NEclatClosed [Aryabarzan
and Minaei-Bidgoli, 2021], which leverages a depth-first search strategy. This method
operates in a vertical data format, which eliminates the need for multiple dataset
scans using intersections to determine pattern support counts.

For mining rare closed patterns, we introduce the RNEclatClosed method, an adapta-
tion of the NEclatClosed algorithm with the following key distinctions: 1) in contrast
to NEclatClosed, RNEclatClosed orders items by decreasing support; 2) it employs
two constraints, MaxSup and MinSup, which serve as user-defined thresholds to
delineate frequent and rare patterns; and 3) items with support values below MinSup
are excluded to ensure that they do not influence the generation of rare closed
patterns. Consequently, UCRP-Miner utilizes both frequent and rare patterns to
produce insightful and interesting patterns, as detailed in the subsequent section.

7.2.3 Interesting patterns

In the second stage of our UCRP-Miner model, we identify interesting patterns that
can be used to generate meaningful and unexpected patterns. Figure 7.1 illustrates
how this stage builds on the patterns generated in the first phase to produce insightful
patterns. This model classifies patterns into frequent (common) and infrequent
(rare) closed patterns. Frequent patterns identified through NEclatClosed represent
typical phenomena and generally reflect known and expected knowledge. These
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frequent patterns serve as a foundational set of beliefs against which we identify
deviations—rare patterns that potentially lead to novel insights.

In UCRP-Miner, interesting patterns are those that deviate from established norms,
offering knowledge that was not previously considered. To discover these patterns,
we compared the foundational beliefs (frequent closed patterns) with the set of closed
rare patterns generated by RNEclatClosed. Each rare pattern is evaluated against the
frequent patterns, disregarding noise, to identify deviations from beliefs as follows.

Consider two patterns, P and P ′, where P is a frequent closed pattern and P ′ is a
rare closed pattern. A rare pattern P ′ is deemed interesting if it satisfies the following
conditions:

• P ′ is a closed rare pattern such that MinSup ≤ Sup(P ′) < MaxSup.

• P is a closed frequent pattern where Sup(P ) ≥MaxSup.

• P ′ and P have a high similarity, meeting a user-defined similarity threshold, such
as a cosine measure.

The identified interesting patterns are then used to generate unexpected rules,
providing valuable insights beyond the expected patterns found in the dataset.

7.3 Experimental evaluation
The performance of our proposed model, UCRP-miner, is compared in this section
with the state-of-the-art models introduced in [Bui-Thi et al., 2020; Darrab et al.,
2022a]. Our next step is to describe the evaluation setup and discuss the results of
the experiments that we conducted.

7.3.1 Datasets and experimental setup
To evaluate our proposed model, UCRP-miner, we compared it with the state-of-the-
art models, DBSCAN and OPECUR, introduced in [Bui-Thi et al., 2020; Darrab et al.,
2022a] by utilizing four real-life datasets. The datasets are BMSWebView2, Kddcup99,
Mushrooms, and Accidents from the UCI repository [Kelly et al.]. The datasets,
BMSWebView2, Kddcup99, Mushrooms, and accidents represent click-stream data,
a wide variety of intrusions simulated in a military network environment, data of
different physical activities, and traffic accident data, respectively. In Table 7.1,
#Trans, AT,#Items, MaxSup, and MinSup indicate the number of transactions, av-
erage transactions, number of unique items, user-defined minimum support threshold
for mining frequent patterns, and user-defined minimum threshold for mining rare
patterns, respectively.

To evaluate the efficiency and effectiveness of the proposed method, three experiments
were conducted. The first is to compare closed frequent patterns with infrequent
ones. The second experiment compared the interesting patterns produced by the
UCRP-miner model with those produced by clustering-based models. NEclatClosed’s
source code is available on Java [Fournier-Viger et al., 2016]. The experiments were
all run on Google Colab with a limited amount of RAM (12GB) to evaluate the
scalability and ease of use of the models. The results are discussed in the following
subsections.
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Table 7.1: Dataset Details

Dataset #Trans AT #Items MinSup MaxSup
BMSWebView2 77,512 4.62 3,340 0.0005 0.1
Kddcup99 1,000,000 16 135 0.2 0.4
Mushrooms 8,564 23 119 0.01 0.1
Accidents 340,183 33 468 0.2 0.4

All datasets were taken from the UCI Machine Learning Repository.

7.3.2 Experiment 1: pattern generation

This experiment evaluated the output generated by the proposed UCRP-Miner
model, distinguishing between the two types of patterns. The patterns produced by
NEclatClosed represent known and expected knowledge and are hence regarded as
frequent patterns or beliefs. Conversely, infrequent patterns with low support are
generated by the proposed extension, RNEclatClosed. Because many patterns are
redundant and can often be inferred from other patterns, we focus on closed patterns
to provide a condensed and concise representation, thereby reducing redundancy.
Closed frequent patterns (CFPs) and closed rare patterns (CRPs) are shown in
Figure 7.2. For all datasets in Table 7.1, CFPs are patterns with support values
exceeding the MaxSup threshold, whereas CRPs satisfy the MinSup threshold without
surpassing MaxSup.

Figure 7.2 (a)–(c) displays the CFPs and CRPs derived from the NEclatClosed and
RNEclatClosed algorithms across all datasets. Information in CFPs pertains to fre-
quently occurring patterns, representing predictable and well-known phenomena. In
contrast, CRPs consist of patterns with lower support, which may reveal unexpected
and potentially valuable insights. The figure illustrates that in most datasets, the
number of CRPs exceeds that of CFPs. This is attributed to the fact that mining
with a lower support threshold generates more patterns than mining with a higher
support threshold. Rare patterns (CRPs) are of particular interest in research, as
they can uncover non-obvious details. Although rare, patterns may contain noise
and often reveal unforeseen and intriguing information.

Identifying patterns within CRPs that differ from the norm (CFPs) is essential for
generating a comprehensive set of interesting patterns. The following experiment,
discussed in Experiment 2, explored these types of patterns in greater depth.

7.3.3 Experiment 2: interesting patterns

Our experiment compared the results of our proposed model, UCRP-miner, with the
state-of-the-art clustering models, OPECUR and DBSCAN, to generate interesting
patterns. The goal is to find interesting patterns contained in rare ones that are
similar to a set of beliefs (frequent patterns) but have lower support. We used
cosine similarity to quantify the similarity between rare and frequent patterns. The
similarity thresholds ranged from 40% to 80%. Figure 7.3 illustrates that only a few
sets of rare patterns are considered interesting in all the datasets, with a similarity
threshold of 40%. Figure 7.4 shows the meaningful patterns generated for all datasets.
The number of valuable patterns decreased as the similarity threshold increased.

We evaluated the quality of the unexpected patterns generated by our proposed
UCRP-miner model by comparing them with clustering models [Bui-Thi et al., 2020;
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Figure 7.2: Closed (frequent and rare) patterns

Darrab et al., 2022a]. Figure 7.5 shows the interesting patterns produced by our new
model, UCRP-miner, compared with state-of-the-art models [Bui-Thi et al., 2020;
Darrab et al., 2022a]. For all datasets in Table 7.1, the graph shows that our model
generates a complete set of interesting patterns, whereas the clustering-based model
does not. Models based on clustering do not produce all the interesting patterns
because they calculate the distance between rare and frequent patterns and group
those with a high degree of similarity together. Because clustering considers noise
patterns as the source of unexpected patterns, interesting patterns are not found in
clustering-based models, as they may reside together with the frequent ones in the
same cluster. For example, if we consider two patterns: a frequent pattern [a,b,c]
with high support and a rare pattern [a, b, c, d] with low support, our model will
suggest the rare pattern as interesting because it is rare and likely to be similar to the
frequent pattern. On the other hand, rare patterns may still be assigned to a cluster
by clustering and, thus, be considered frequent. According to the proposed model,
UCRP-miner, this is a clear advantage compared to clustering models, which identify
only a limited number of interesting patterns from noise. We use mushrooms as an
example from the real dataset to highlight our model’s ability to detect interesting
patterns that lead to generating novel knowledge from our experimental results. Let
us take a frequent pattern, FCP = {’121’, ’38’, ’36’, ’94’, ’90’, ’128’, ’23’, ’57’, ’31’,
’104’, ’1’, ’56’, ’71’, ’67’, ’41’, ’97’: 864} which we consider as a belief since it is
common with high relative frequency support = 0.10. Alternatively, let us take the
rare pattern with low relative support = 0.01, RCP = {’121’, ’38’, ’36’, ’94’, ’90’,
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’128’, ’23’, ’57’, ’31’, ’104’, ’1’, ’56’, ’71’, ’67’, ’41’, ’97’, ’51’, ’107’: 108}. To calculate
the cosine similarity between these patterns, we convert them to 0s or 1s based on
their occurrences. Hence, FCP and RCP will be {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0} and {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, respectively. In
our model, UCRP-miner, we can detect that RCP is an interesting pattern because
it deviates from FCP and has 94% similarity to FCP. For further investigation,
these types of patterns will be introduced to domain experts. The importance of
detecting these patterns arises from the proposed model’s ability to successfully
discover interesting patterns with several characteristics, including little support and
deviation from normal behavior (set of beliefs), while producing unexpected, new, or
novel knowledge. The state of are models [Bui-Thi et al., 2020; Darrab et al., 2022a]
fail to produce such patterns because RCP and FCP may reside in the same cluster.
Figure 7.5 also shows that cluster-based models fail to generate interesting patterns
from the accident dataset. The accident dataset is very dense; therefore, there are
no noise patterns that can generate interesting patterns. Thus, the experimental
results indicate that our proposed model can detect more interesting patterns than
state-of-the-art clustering-based models. Consequently, our proposed model can
create a complete set of patterns that matter.
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Figure 7.3: Interesting patterns versus all rare patterns for 40% similarity
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Figure 7.5: Interesting patterns generated by the proposed model, UCRP-miner, and
the state-of-the-art models DBSCAN and OPECUR

7.4 Chapter summary
The discovery of interesting rare patterns has received considerable attention for its
ability to uncover hidden insights within data. Although various methods have been
developed to identify these patterns, existing clustering-based models often struggle
to reliably generate a meaningful and diverse set of patterns and sometimes fail to
capture the full scope needed for comprehensive analysis.
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To address these limitations, we developed UCRP-Miner, a novel model designed
to retrieve a comprehensive set of meaningful patterns from real-world datasets.
By focusing on closed patterns, UCRP-Miner effectively reduces redundancy and
captures deviations from the expected behavior, resulting in a concise and infor-
mative representation of the data. This approach makes UCRP-Miner particularly
valuable for applications such as anomaly detection in healthcare, industrial damage
monitoring, traffic analysis, and criminal investigations.

The experimental results demonstrate the effectiveness of UCRP-Miner in generating
novel and unexpected patterns, highlighting its potential for uncovering valuable
insights. However, certain limitations remain, particularly regarding the applicability
of the model to real-world scenarios to demonstrate its full efficiency. In the following
chapter, we address these limitations through a case study in the health sector,
specifically focusing on heart disease. This case study provides a foundation for
evaluating UCRP-Miner in a real-world context and directing future improvements.





8. Discovering Hidden Risk Factors
for Heart Disease Using Rare
Association Rule Mining: A Case
Study

In previous chapters, we addressed the primary challenges of this dissertation,
including generating rare patterns and deriving interesting rare rules. This chapter
focuses on the applicability of the proposed methods and highlights the importance
of rare pattern mining in the health sector. Our model demonstrates its capacity
to uncover rare, unexpected rules that tackle explainability and interpretability
challenges in predictive modeling, with a specific emphasis on cardiovascular disease,
a leading cause of mortality worldwide. Although predictive models such as logistic
regression, neural networks, and random forests have been effective, they often lack
transparency and interpretability [Hassija et al., 2024]. In this chapter, we introduce
Exploring the Predictive Factors of Heart Disease using Association Rule Mining
(EPFHD-RARMING), an innovative approach that employs rare association rule
mining to enhance the understanding and prediction of heart disease. By uncovering
unexpected rules, EPFHD-RARMING identifies critical factors that contribute to
heart disease, detects high-risk patterns even in asymptomatic individuals, and
facilitates early intervention.

This case study underscores the value of rare pattern mining in revealing impactful
relationships that might otherwise remain hidden. The objective of this method
extends beyond rule identification, aiming to discover surprising and meaningful
patterns that offer actionable insights for healthcare professionals. Effectively inte-
grated with established feature engineering techniques, EPFHD-RARMING enhances
practical utility, enabling medical professionals to manage patient care more proac-
tively. This chapter illustrates the effectiveness of EPFHD-RARMING in providing
deeper insights into heart disease, and offers significant advancements in medical
analytics and patient outcomes. Moreover, its applicability extends beyond health
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care, demonstrating the importance of identifying rare and meaningful patterns in
other fields.

8.1 Introduction
According to the World Health Organization (WHO), heart disease is a significant
global health concern [World Health Organization, 2021]. Annually, approximately
17.9 million people lose their lives due to cardiovascular disease (CVDs), which is the
leading cause of mortality. In 2017, approximately 10.6 million new cases of coronary
heart disease were reported worldwide, resulting in the loss of 8.9 million lives. The
WHO estimates that by 2030, CVD death rates will increase to 23.66 million due
to heart disease. This pandemic has substantial economic implications. Medical
expenses linked to heart disease are expected to increase by 41% in the United States,
from 126.2 $ billion in 2010 to 177.5 $ billion by 2040 [Bhatt et al., 2023].

The diagnosis of certain medical conditions can be challenging for physicians, necessi-
tating both expeditious and accurate assessments. In the case of heart diseases, the
utilization of computerized technologies is imperative to assist doctors in providing
more precise and timely diagnoses [Abdelhamid et al., 2023]. Various machine learn-
ing techniques have been proposed to support the early detection and diagnosis of
heart diseases, including random forests, logistic regression, support vector machines,
and IOT networks [Arumugam et al., 2023; Jindal et al., 2021; Yashudas et al.,
2024]. However, these models are often difficult to interpret, which can impede the
understanding of the underlying rationale for their predictions, leading to a lack of
confidence in the outcomes for both clinicians and patients.

Association rule mining (ARM) [Luna et al., 2019] is a widely recognized and highly
interpretable data mining technique that reveals hidden patterns and correlations
among various factors. Its prominence, ease of interpretation, and ability to extract
valuable knowledge make it an excellent tool for real-world applications, such as
market basket analysis and web traffic analysis. Despite their potential, ARM have not
been widely adopted in the field of medicine. This is unfortunate because association
rules can identify every pattern in a given dataset, which is highly beneficial for clinical
data analysis. Using association rules, clinicians can expeditiously and automatically
make well-informed diagnoses, extract valuable information, and develop essential
knowledge bases. Despite the advantages of ARM [Brin et al., 1997], it presents
several challenges. A significant challenge is the generation of numerous irrelevant
and repetitive rules. Moreover, the most interesting rules often have low support
values and are referred to as rare rules. Low support thresholds can result in an
overwhelming number of rules, which complicates their management and analysis.
Consequently, appropriate methods are necessary to determine the usefulness of the
rules and identify the most relevant ones.

To address these challenges, we propose EPFHD-RARMIN, a model designed to
identify factors contributing to heart disease while minimizing the generation of
redundant or uninformative rules. The model focuses on producing only relevant and
meaningful rules by integrating both frequent and rare patterns. Frequent patterns
capture established associations consistent with prior knowledge or common trends.
In contrast, rare patterns highlight deviations that emerge when additional features
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are considered but exhibit significantly lower support. By combining both types,
EPFHD-RARMIN model enables the discovery of rare rules that challenge dominant
patterns, offering deeper insights into predictive factors and associated symptoms of
heart disease.

Feature selection has gained extensive attention in recent years due to its significant
role in identifying the most important features for model predictions [Chen et al.,
2024a,b]. However, focusing solely on features and their impact on model predictions
neglects the importance of determining the patterns associated with these features
that lead to predictions. Therefore, in our proposed model, we emphasize not
only feature selection but also the patterns that may indicate the development of
heart disease when these features (symptoms, in our case study of heart disease) are
present. To the best of our knowledge, this study is the first attempt to use simple yet
powerful rule-mining algorithms to extract symptoms and identify patterns indicative
of future heart diseases. The rules generated by our model have the potential to
assist clinicians in making informed decisions for the early detection and treatment
of heart diseases. Our primary objective in this study is to generate rules that are
both insightful and applicable for predicting heart disease, thereby enhancing the
explainability and transparency of predictive models. The main contributions of this
chapter are summarized as follows:

• Innovative rule extraction: Our model, EPFHD-RARMING, specifically ad-
dresses the challenge of traditional association rule mining, which often produces
an excessive number of low-support rules. It extracts a meaningful set of associ-
ation rules from this extensive rules, focusing on those that are truly insightful
and relevant, thus mitigating the common issue of the overwhelming quality of
rule quantities.

• Critical factor identification: Our model is highly effective in uncovering pivotal
factors and symptoms of heart disease, utilizing advanced analytics to priori-
tize the most significant variables associated with cardiovascular risks, thereby
enhancing early detection and intervention strategies.

• Predictive vulnerability analysis: This approach diverges from conventional
models by identifying not only conditions directly linked to heart disease but
also seemingly healthy states that may predispose individuals to future health
risks. This predictive analysis of vulnerability provides a more comprehensive
and nuanced understanding of potential health trajectories.

• Comprehensive data exploration through unsupervised learning: Utilizing
the unsupervised tool of Association Rule Mining (ARM), our methodology
offers a more thorough exploration of datasets to identify overlooked patterns
and factors. This comprehensive analysis aids in understanding the complex
interactions between variables and heart disease. Furthermore, the rule-based
approach enhances interpretability and usability, particularly in clinical settings,
making the findings accessible and actionable to medical professionals.

8.2 Related work
Despite the significant challenges presented by heart disease, which remains the
leading cause of death worldwide, machine learning techniques have greatly assisted
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in the analysis of clinical data. These techniques make use of the vast amount of
readily available healthcare data and have become powerful decision-making and
forecasting tools.

Various studies have explored the potential of machine learning for predicting heart
disease. In [Motarwar et al., 2020], the Random Forest algorithm emerged as the most
accurate method for predicting heart disease. Another study [Mohan et al., 2019]
proposed an innovative approach that combined various features and classification
techniques to enhance prediction accuracy. In [Katarya and Meena, 2021], machine
learning techniques for heart disease prediction were reviewed, revealing a variety of
data mining strategies with varying degrees of effectiveness and accuracy. Similarly,
a study [Marimuthu et al., 2018] performed a comprehensive review of different
machine learning techniques, including artificial neural networks, decision trees, fuzzy
logic, K-nearest neighbors, näıve Bayes, and support vector machines, in the context
of heart disease prediction.

Furthermore, extensive research has been conducted to predict and evaluate the
risk factors associated with heart disease. In [Jindal et al., 2021], various machine
learning algorithms, such as logistic regression and KNN, were used to predict and
classify patients with heart disease. Another study [Yang et al., 2023] utilized an
optimized LightGBM classifier with improved hyperparameters and a focal loss
function optimized using OPTUNA. This model, evaluated using CVD data from
the Framingham Heart Institute, achieved an AUC value of 97.8%, outperforming
other comparative models in terms of accuracy.

A novel Recommendation System for CVD Prediction Using an IoT Network (DEEP-
CARDIO) was proposed in another study [Yashudas et al., 2024], which offers
prior diagnosis, treatment, and dietary recommendations for cardiac diseases. This
system collected data from four biosensors (ECG, pressure, pulse, and glucose) and
processed them using an Arduino controller. The BiGRU attention model diagnosed
and classified CVD into five categories and achieved an overall accuracy of 99.90%.
Furthermore, the QMBC technique, which employs the Quine McCluskey method to
derive the Minimum Boolean expression for a target feature, was introduced [Kapila
et al., 2023]. By combining the predictions from the seven classifiers, the ensemble
model forms a comprehensive dataset to apply the minimum Boolean equation with
an 80:20 train-to-test ratio. The proposed QMBC model demonstrated superior
performance compared to current state-of-the-art models and previously suggested
methods, indicating its potential for improved cardiovascular disease prediction.

Although many machine learning techniques have been proposed for the early detec-
tion and diagnosis of heart disease, clinicians often struggle to trust these models
because of their lack of interpretability. This difficulty in understanding the basis of
the predictions compromises the reliability and acceptance of the models. To address
this issue, it is essential to focus on developing transparent and interpretable models
that enable clinicians and patients to comprehend underlying mechanisms and gain
confidence in their predictions. Several studies have investigated the utilization of
rule-based methods, particularly association rule mining, in the domain of heart
disease detection.
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A novel methodology and algorithm for mining distributed medical data sources using
association rules, specifically focusing on predicting heart diseases, were presented
in [Khedr et al., 2021]. Another study [Sonet et al., 2017] utilized association rule
mining to uncover concealed patterns related to frequently occurring heart diseases
in the Bangladeshi population. Associative classification mining was employed in
another study [Lakshmi and Reddy, 2015] to construct a classifier using rules of
high interest for an accurate heart disease prediction. An enhanced association rule
mining approach for detecting coronary artery disease using a heart disease dataset
was introduced in a previous study [Yadav et al., 2014].

While current methods focus on improving prediction accuracy and identifying factors
that contribute to cardiac disease, several limitations persist. One significant challenge
is managing unlabeled data, which is crucial for developing robust and comprehensive
models. Additionally, these approaches often fail to explore the relationships between
various symptoms and heart disease-causing factors, potentially overlooking critical
indicators.

Many recent studies [Fournier-Viger et al., 2017] have generated rules based on
frequent patterns, resulting in predictable and well-known outcomes. Despite their
utility, these studies often produce an overwhelming number of rules, making analysis
and interpretation costly. To address this limitation, we introduce a novel modeling
approach designed to generate a limited number of insightful and interesting rules,
thereby enhancing both the efficiency and effectiveness of rule analysis.

Association rule mining, particularly for rare patterns, is essential for making decisions
regarding heart disease. In this work, we propose a novel method that not only
identifies factors leading to heart disease but also uncovers patterns that may indicate
future disease development. Our approach uses frequent patterns as a foundation
for discovering interesting patterns associated with heart diseases. We developed a
model to identify these patterns and their potential to lead to heart disease when
combined with specific risk factors.

8.3 Dataset: heart disease
This section provides an overview of the heart disease datasets used in this study. Our
approach aims to identify predictive factors for heart disease and analyze patterns
in healthy individuals who may be at risk of developing the condition in the future.
The dataset obtained from IEEE DataPort [Siddhartha, 2020] was constructed by
combining several popular heart disease datasets to create a comprehensive resource
that was previously unavailable to researchers. This newly assembled dataset contains
1,190 instances and 12 common features, making it the largest heart disease dataset
currently available for research. The data were curated from five sources: Cleveland,
Hungarian, Swiss, Long Beach VA, and Statlog (Heart). By integrating these datasets,
we aim to advance machine learning and data mining applications related to heart
disease. This consolidated dataset enables researchers to develop more accurate and
effective methods for the early detection and prevention of heart disease.

Tables 8.1 and 8.2 present the dataset characteristics. Table 8.1 summarizes several
key characteristics and Table 8.2 provides a description of the nominal attributes.
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Table 8.1: Heart Disease Dataset Characteristics

S.No. Attribute Description Unit Data Type
1 Age Age Years Numeric
2 Sex Gender 1 = Male, 0 = Female Binary
3 Chest Pain Type Type of chest pain 1, 2, 3, 4 Nominal
4 Resting Blood Pressure Resting blood pressure mm Hg Numeric
5 Serum Cholesterol Serum cholesterol level mg/dl Numeric
6 Fasting Blood Sugar Fasting Blood Sugar (>120 mg/dL) 1 = High, 0 = Normal Binary
7 Resting ECG Results Resting electrocardiogram results 0, 1, 2 Nominal
8 Maximum Heart Rate Achieved Maximum heart rate achieved {min=60, max=202} Numeric
9 Exercise Induced Angina Exercise-induced angina 0 = No, 1 = Yes Binary
10 Oldpeak ST depression induced by exercise relative to rest depression Numeric
11 Slope of the Peak Exercise ST Segment Slope of the peak exercise ST segment 1, 2, 3 Nominal
12 Class Diagnosis of heart disease 0 = No, 1 = Yes Binary

Table 8.2: Description of Nominal Attributes

Attribute Description

Sex
1 = Male
0 = Female

Chest Pain Type

1: Typical angina
2: Atypical angina
3: Non-anginal pain
4: Asymptomatic

Fasting Blood Sugar (Fasting blood sugar > 120 mg/dl) 1 = True, 0 = False

Resting ECG Results
0: Normal

1: Having ST-T wave abnormality (> 0.05 mV)
2: Showing left ventricular hypertrophy by Estes’ criteria

Exercise Induced Angina
1 = Yes
0 = No

Slope of the Peak Exercise ST Segment
1: Upsloping

2: Flat
3: Downsloping

Class
1 = Heart disease

0 = Normal

To ensure the highest level of data quality and consistency, a rigorous preprocessing
pipeline was developed, which included several crucial steps, such as handling missing
values and standardizing the representation of data. Our dataset did not contain any
missing or null values, and a value of zero was found only once in an instance where
the St slope was 0. Because it did not contribute to pattern or rule generation, we
removed it, resulting in 1189 transactions. However, because our proposed method
involves unsupervised techniques rather than classification tasks, it is crucial to
perform preprocessing and feature selection tailored to our objectives. The processes
are described in detail in the following sections.

8.4 The proposed model: EPFHD-RARMING
Our proposed model, EPFHD-RARMING, builds on previous work [Darrab et al.,
2022b] and aims to generate rules that aid in the early detection of heart disease and
predict the factors contributing to its development. This was achieved through a three-
phase process specifically designed as a case study of heart disease. Our approach
allows for the identification of rare but significant associations that traditional
methods often overlook, providing deeper insights into the factors leading to conditions
such as heart disease. The workflow of this model is illustrated in Figure 8.1.
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Utilizing our method to enhance rule-based machine learning in medical datasets, we
developed and implemented the Mine Interesting Rules algorithm 4. This algorithm
systematically mines interesting rules from a dataset in three main phases, ensuring
comprehensive analysis and interpretation.

Dataset
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Data Transformation

Pattern 
Generation 

RPP & FP-growth 
Algorithms

AR Generation Interesting Rules Explainability

Visualization  SimilarityFrequent and Rare 
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Figure 8.1: EPFHD-RARMING model for detecting heart disease risk factors

Algorithm 4 Mine Interesting Rules

1: Input: DB (dataset), minSup (minimum support), minRare (minimum rareness),
simT (similarity threshold)

2: Output: List of interesting rules
3: ds cleaned ← clean data(DB) ▷ Clean the dataset
4: ds transformed ← transform data(ds cleaned) ▷ Perform Feature Selection and

Data Transformation
5: FPs ← find patterns(ds transformed, minS) ▷ Find Frequent Patterns
6: f rules ← generate rules(FPs, metrics=[confidence, leverage, lift, conviction]) ▷

Generate Frequent Rules
7: f rules yes ← filter rules(f rules, consequent=”Yes”)
8: f rules no ← filter rules(f rules, consequent=”No”)
9: r patterns ← find patterns(ds transformed, maxSup=minSup, min-

Sup=minRare) ▷ Find Rare
Patterns

10: r rules ← generate rules(r patterns, metrics=[confidence, leverage, lift, convic-
tion]) ▷ Generate Rare
Rules

11: r rules yes ← filter rules(r rules, consequent=”Yes”)
12: r rules no ← filter rules(r rules, consequent=”No”)
13: interesting rules ← []
14: for each rule r rule in r rules yes do
15: for each rule f rule in f rules no do
16: similarity ← calculate similarity(r rule.antecedents, f rule.antecedents)
17: if similarity > simT and r rule.consequent ̸= f rule.consequent then
18: interesting rules.append((r rule, f rule))
19: end if
20: end for
21: end for
22: return interesting rules
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8.4.1 Algorithm for mining interesting rules in heart disease pre-
diction

In this subsection, we describe the proposed algorithm and demonstrate its function-
ality.

Algorithm 4 outlines the process of mining interesting rules from a dataset in three
main phases. In the data preparation and cleaning phase, the dataset (ds) is prepared
to handle missing values, outliers, and noise, followed by feature selection and data
transformation to make it suitable for association rule mining. In lines 1-2, the
algorithm starts by defining the inputs (ds, minSup, minRare, simT ) and the
expected output, which is a list of interesting rules, where ds stands for dataset,
minSup for minimum support threshold, minRare for minimum rare support, and
simT for similarity threshold. In line 3, the dataset was cleaned to handle missing
values, outliers, and noise, thus ensuring the data quality for further analysis. After
data cleaning, the dataset undergoes feature selection and transformation to enhance
its suitability for Association Rule Mining (ARM), facilitating the discovery of
meaningful patterns. From lines 5 to 12, the second phase, pattern discovery and
rule extraction, was performed. In line 5, the FPs are identified using a minimum
support threshold (minSup). From lines 6 to 8, frequent rules are generated and
filtered based on specified metrics and categorized into two types of rules based on
their consequent values (”Yes” for heart disease and ”No” for healthy). Similarly,
rare patterns were found using both the minimum support (minSup) and minimum
rareness (minRare) thresholds, and the corresponding rare rules were generated
and filtered from lines 9 to 12. In the final phase, lines 13 to 22, insightful rule
identification and interpretation, and interesting rules are identified by comparing
rare and frequent rules. The similarity between the antecedents of rare rules (with
a ”Yes” consequent) and frequent rules (with a ”No” consequent) was calculated. If
the similarity exceeds a specified threshold (simT ) and the consequences differ, the
pair of rules is considered interesting and is added to the list of interesting rules.
Ultimately, the algorithm returns a list of rules of interest. Following these steps,
the algorithm effectively cleans and transforms the data, discovers frequent and
rare patterns, generates and filters rules, and identifies rules of interest for further
analysis.

In the following subsections, a thorough explanation of each phase of the model is
provided, including data preparation and transformation, pattern discovery and rule
extraction, and insightful rule identification and interpretation phases. The ultimate
goal of this model is to provide a comprehensive understanding of its operation, with
the aim of aiding the early detection of heart disease and predicting the factors that
contribute to its development.

8.4.2 Data preparation and transformation phase
In this subsection, we focus on the preprocessing phase, which involves converting
the dataset from a supervised classification task to an unsupervised association rule
mining task. The preprocessing phase is critical for preparing a heart disease dataset
for the mining process. We discuss the two primary steps of the preprocessing phase
in detail, as outlined in the first phase of our workflow and described in lines 1 and 2
of the proposed algorithm 4.
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• Selection of features: In this step, we employ multiple techniques to identify the
most relevant factors contributing to heart disease. This process involves selecting
a subset of the most informative features for the mining process. Selecting
appropriate features can enhance the quality and efficiency of subsequent mining
processes. Consequently, the feature selection process helped to identify the
most important attributes related to heart disease.

• Dataset transformation: The heart disease dataset must be transformed into a
suitable format for mining association rules. The preferred format for mining
association rules is a Boolean transactional representation, where each instance
is represented as a set of items and each item represents a selected feature. The
value for each item was either present (1) or absent (0). This transformation
prepares a dataset for further mining to generate association rules.

The details of the above steps for the heart disease dataset used in this study are as
follows.

8.4.2.1 Selection of features

The cardiac disease dataset comprises 12 features, as presented in Table 8.1. We
implemented a reliable feature selection process involving five distinct approaches to
identify the crucial features that contribute to cardiac disease. To comprehensively
understand this condition, it is imperative to include all relevant features that impact
cardiac disease. Using the following selection methods, we derived a final set of 10 of
the 12 features in the heart disease dataset. To select the most significant feature for
the mining process, we utilized the following scikit-learn feature selection methods:

• Feature selection using the chi-squared statistic.

• Feature selection using ANOVA F-value.

• Features selected through mutual information.

• Features selected via Recursive Feature Elimination with logistic regression.

• Features selected based on random forest feature importance.

Figure 8.2 illustrates the significance of the selected features using all approaches
employed in this study. According to the graph, the features ’ST slope’ and ’oldpeak’
appear to have the greatest influence on the outcome variable, as they are included
by all approaches. ’Max heart rate’, ’exercise angina’, and ’chest pain type’ occupy a
secondary position in terms of importance, being favored by four out of five applied
methods. The selection of ’cholesterol’ is made by three of the five methods, while
the selection of ’age’ and ’sex’ is made by two methods, and the selection of ’fasting
blood sugar’ is made by a single method.

All of these features were incorporated into our approach to comprehensively address
the majority of important factors. Therefore, the following features were chosen for
this proposed model: {’ST slope’, ’age’, ’chest pain type’, ’cholesterol’, ’exercise
angina’, ’fasting blood sugar’, ’max heart rate’, ’oldpeak’, and ’sex’}. These
features represent the union of the top six features of each feature selection method.
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In addition, the class feature ’target’ was included. Consequently, 10 out of the 12
features were used in our study.

By implementing rigorous feature selection methods and conducting a comprehensive
analysis of all selected features, this study aims to achieve a thorough understanding
of the key factors influencing the prevalence of heart disease.

Figure 8.2: Significance of Selected Features Using Different Approaches

8.4.2.2 Dataset transformation

For the mining process to be effective, all features in the dataset related to heart
disease must be presented in a binary format. There are four continuous attributes,
namely ’age’, ’cholesterol’, ’max heart rate’, and ’oldpeak’, which must be discretized
to convert continuous data into discrete categories or bins. This process is performed
as follows for these four features:

• The ’age’ feature is divided into three bins: ’young’, ’middle-aged’, and ’elderly’.
The bin edges are specified as [0, 30, 60, np.inf], where ’np.inf’ represents infinity.

• The ’cholesterol’ feature is discretized into three bins: ’chollow’, ’cholnormal’,
and ’cholhigh’. The bin edges are defined as [-1, 200, 240, np.inf].

• The ’max heart rate’ feature is discretized into three bins: ’heartratelow’,
’heartratenormal’, and ’heartratehigh’. The bin edges were specified as [0,
100, 160, np.inf].

• The ’oldpeak’ feature is discretized into three bins: ’oldpeaklow’, ’oldpeakmod-
erate’, and ’oldpeakhigh’. The bin edges are specified as [- np.inf, 1.0, 2.0,
np.inf].

Discretizing these continuous variables into discrete categories simplifies the data
representation and facilitates subsequent analysis during the mining process. To
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Figure 8.3: Dataset after preprocessing phase

prepare the dataset for analysis, the data must be transformed into a binary format,
either [0,1] or true/false. The TransactionEncoder() method was employed for one-
hot encoding, resulting in a final dataset consisting of 1189 rows and 28 dimensions. A
representation of the first five rows of the preprocessed dataset is shown in Figure 8.3.

8.4.3 Pattern discovery
In the pattern discovery phase, a formalized approach is employed to identify signifi-
cant patterns that are subsequently used to generate association rules. This process
involves the exploration of both frequent and rare patterns within a dataset using
specialized algorithms designed for each pattern type.

To uncover FPs, the FP-growth algorithm [Han et al., 2000] was employed, which is
renowned for its efficiency in discovering patterns that meet a predefined support
threshold. This enables the detection of frequent patterns that occur regularly within
a dataset and possesses a significant value. These patterns often correspond to
well-established phenomena or widely anticipated information.

For the discovery of rare patterns, the Rare Pre-Post (RPP) algorithm [Darrab
et al., 2020] was applied, which facilitates the identification of patterns that occur
infrequently but offer unique and valuable insights. Rare patterns, although less com-
mon, can provide important information that is often overlooked by more traditional
frequent pattern mining approaches.

A comprehensive set of patterns is generated by integrating FP-growth for frequent
pattern mining with the RPP algorithm for rare pattern mining. This dual approach
allows for the generation of a complete set of association rules encompassing both
frequent and rare patterns. Consequently, meaningful insights and valuable knowledge
can be extracted from the data to enhance our understanding of the underlying
patterns.

8.4.4 Rule generation
Following the generation of frequent and rare patterns, we can derive association
rules. The analysis of these rules provides valuable insights into the relationships and
dependencies between different items and attributes within a dataset. By examining
these rules, we can gain a comprehensive understanding of the underlying patterns
and associations in the data.

Our model generates two types of rules: frequent and rare. Frequent rules represent
beliefs or associations within a dataset that are considered significant, and we identify
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rules that are highly supported and satisfy several statistical metrics. In this study,
we were particularly interested in rules in which the consequent represents healthy
patients without heart disease. Health attributes or factors associated with good
health and absence of heart disease were revealed by these frequent rules.

In contrast, rare patterns lead to rules with low support but still possess statistical
significance based on the metrics we employed. Examination of these rare rules
provides insights into the unique factors associated with heart disease, which is of
particular interest. In this study, we used rare rules to represent non-healthy patients,
specifically those with heart disease.

It is possible to gain a comprehensive understanding of the associations and depen-
dencies present in the data by considering both frequent and rare rules. By doing so,
we can determine which attributes or factors contribute to good health, as well as
those that indicate heart disease. Combining frequent and rare rules allows us to
extract valuable knowledge from the data and make informed decisions based on the
patterns found in the data.

8.4.5 Insightful rule identification and interpretation
The final phase of our proposed model, detailed in lines 13–22 of Algorithm 4, focuses
on generating and interpreting interesting rules. This important phase emphasizes
identifying the features that cause heart disease and uncovering interesting rules. By
setting a set of beliefs—in our case, frequent rules that represent healthy patients with
no heart disease—we aimed to identify those with heart disease whose characteristics
differ slightly from those of healthy patients.

8.4.5.1 Interesting rules

By identifying rare rules with low support that satisfy all statistical metrics based
on the background information provided, we can further refine the set of interesting
association rules. In this study, we aimed to identify rare rules that deviate from
the common (frequent) rules that represent healthy individuals. For this phase, we
consider the following factors to determine the interestingness and unexpected nature
of the rule.

• Similarity of antecedents: We determine the similarity between the rare rule’s
antecedents and the known frequent rule’s antecedents using a similarity measure,
such as the Jaccard similarity approach.

• Contrasting consequences: We compare the frequent and rare rules to see if
they have contrasting consequences. In this case, the consequences of the two
rules should oppose each other to be considered interesting.

• Low support: The rare rule, denoted as Rrule, must satisfy all predefined metrics.
In particular, its support should be low, indicating that it deviates from the
normal rule (Frule).

Incorporating these conditions allows us to filter and prioritize rare rules that lack
support, deviate from normal patterns, exhibit similar antecedents, and contrast
consequences with frequent rules. The refined rules provide valuable insights into
the underlying patterns and deviations from the norm of the dataset, allowing us to
further understand exceptional cases and unexpected associations.
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8.4.5.2 Explainability

The application of association rule mining, a rule-based data-mining technique, is
essential because of its interpretability and ease of understanding. Therefore, we
summarized the interesting rules generated by our model, focusing on the factors
that contribute to heart disease. Our proposed model includes comprehensive
documentation supported by tables, examples, and illustrations to enhance the
clarity and interpretation of association rules. By identifying the factors within the
rare rules that deviate from our established beliefs, represented by the frequent rules,
we gained deeper insight into the specific factors contributing to heart disease. This
understanding can significantly aid in deciphering the causes of heart disease and
ultimately support its prevention and treatment.

8.5 Experimental results
In this section, we present the outcomes of our proposed model for generating rules
that are not only interesting and concise, but also highly valuable. We provide a
detailed explanation of the results, demonstrating the effectiveness and efficiency
of our model in producing rules that possess the desired characteristics without
generating a large number of rules. In the following subsections, we present the
experimental results of the proposed EPFHD-RARMING model.

8.5.1 Experimental setup

The experiments were conducted on Google Colab using the following commonly
used parameters and constraints: When mining both frequent and rare patterns for
pattern generation, it is essential to adhere to the following constraints:

• To obtain frequent patterns, a minimum support threshold, minSup, of 0.01 is
established in order to identify frequent patterns. This signifies that a pattern is
classified as frequent only when it occurs in no fewer than 0.01 of the instances
within the dataset.

• Rare patterns are identified by focusing on patterns with support below this
minimum support, minSup, and above the minimum support, minRar, of 0.001,
denoted as minRar = 0.001. Therefore, we aim to identify rare patterns with
support of less than minSup and support equal to or greater than minRar.

Regarding rule generation, it is necessary to adhere to several conditions to determine
the criteria for compelling rules within the proposed model. These conditions are
applicable to both frequent and rare situations. Thus, only the rules that met these
stringent criteria were recognized in our proposed model.

Minimum support of rules: Frequent rules must have a minimum support of minSup.
Similarly, for rare rules, we consider rules with support less than minSup but still
exceeding minRar.

Metric requirements: To be considered a strong rule, whether frequent or infrequent,
the below popular metrics must be met.



114 8. Heart Disease Risk Factors via Rare Rule Mining

Table 8.3: Column Name Mapping

No Original Name Shortened Name No Original Name Shortened Name
1 asymptomatic asym 15 heart rate high hrhigh
2 atypical angina atangina 16 heart rate low hrlow
3 cholhigh hcol 17 heart rate normal hrnoraml
4 chollow lcol 18 middle-aged maged
5 cholnormal ncol 19 non anginal pain napain
6 downsloping dsloping 20 oldpeakhigh peakhigh
7 elderly elderly 21 oldpeaklow peaklow
8 exercise angina0 exangina0 22 oldpeakmoderate peakmoderate
9 exercise angina1 exangina1 23 typical angina tangina
10 fasting blood sugar0 fbsugar0 24 upsloping usloping
11 fasting blood sugar1 fbsugar1 25 young young
12 female F 26 heart disease yes
13 man M 27 no heart disease no
14 flat flat

• Confidence: Confidence score must exceed 0.80.

• Lift: Lift must be greater than 1.

• Leverage: Leverage should be greater than 0.

• Conviction: Conviction should be greater than 1.

In addition, for brevity, we have replaced the names of the columns with abbreviations,
as shown in Table 8.3. By equalizing full column names with their abbreviated
counterparts (e.g., ’asymptomatic’ to ’asym’ and ’heart disease’ to ’yes’), the mapping
provides clarity and brevity in data representation.

8.5.2 Patterns generation

To identify frequent patterns, we utilized the FP-growth algorithm presented in [Han
et al., 2000]. Furthermore, we employ the RPP algorithm [Darrab et al., 2020] to
detect rare patterns that may result in unexpected outcomes. Figure 8.4 shows the
results of our case study dataset for heart diseases. The graph shows a significant
number of rare patterns due to the use of very low support levels. There are 81,632
patterns in this phase of pattern generation, of which 22,178 are frequent and 59,454
are rare.

Following the generation of both frequent and rare patterns, we derived the association
rules. Our approach is significant for identifying the most valuable and noteworthy
rules while filtering out the majority of less-relevant rules produced by rare patterns.
The subsequent section explains the process of uncovering these intriguing and
insightful rules from a comprehensive set of patterns.

8.5.3 Rule generation

After the generation of frequent and rare patterns, as shown in Figure 8.4, the
subsequent step involves the formulation of an exhaustive set of rules. As shown
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Figure 8.4: A comparison of the number of frequent and rare patterns generated
from the heart disease dataset.

in Figure 2.2, the number of rules generated from frequent patterns is considerably
high, amounting to 55,307, where the antecedent support is equal to or exceeds the
specified minimum support threshold minSup = 0.01. In addition, a considerably
larger number of rules, totaling 389,531, were derived from rare patterns, where
their support fell below the minSup threshold. This substantial number of rules
highlights a significant limitation within the domain of association rule mining and
underscores the need for a methodology that enables effortless identification of
insightful association rules. Consequently, the purpose and challenges of this study
revolve around developing a methodology that enables the identification of rules
leading to the discovery of factors that contribute to the detection of heart disease.
Within the scope of this study, we concentrated on rules that are relevant to this
objective.

To mitigate the growth of rules and address the aforementioned challenge, extensive
exploration of rule generation has been conducted. To facilitate understanding, the
rules were organized based on their outcomes, specifically distinguishing between
those that indicated the presence or absence of heart disease. Consequently, our
attention is solely directed towards rules that relate to the presence or absence of
heart disease, as it aligns with our primary objective. As shown in Figure 8.5, these
rules can be classified into four categories.

• Frequent rules leading to the occurrence of heart disease.

• Frequent rules that emphasize health in the absence of heart disease.

• Rare rules indicating the presence of heart disease.

• Rare rules suggesting the absence of heart disease.

It is important to emphasize that all the rules under consideration are deemed reliable,
as they fulfill all the requisite conditions within the experimental configuration.
Consequently, we can classify the rules into the following four categories:

• Type 1: There are 2,624 rules that are frequent and have the consequence ”no
heart disease”. Here is an example for such kind of rules: {’maged’, ’fbsugar0’,
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Figure 8.5: A comparison of the number of frequent and rare rules generated from
the heart disease dataset.

’usloping’, ’peaklow’ ⇒ ’No’}. The rule’s various evaluation metrics are as
follows: support (0.24), confidence (0.86), lift (1.81), leverage (0.11), and
conviction (3.73).

• Type 2: There are 3,293 frequent rules with ”heart disease” as their consequent.
Here is an example of such kind of rule: {hrnoraml’, ’exangina1’, ’asym’, ’M’
⇒ ’Yes’}. The rule’s various evaluation metrics are as follows: support (0.21),
confidence (0.92), lift (1.7), leverage (0.08), conviction (6.02).

• Type 3: A total of 7,530 rules are rare and have ”no heart disease” as an outcome.
For example, the rule: {’fbsugar0’, ’tangina’, ’hrnoraml’, ’exangina0’, ’dsloping’,
’M’} ⇒ ’No’ indicates there is no presence of heart disease. The rule’s various
evaluation metrics are as follows: support (0.001), confidence (1.0), lift (2.11),
leverage (0.0008), conviction (Infinity).

• Type 4: A total of 9,381 rare rules indicate the presence of ”heart disease”. In
the case of this type of rule, for example, {’asym’, ’exangina1’, ’hrnoraml’,
’flat’, ’ncol’, ’elderly’, ’M’ ⇒ ’Yes’}. The rule’s various evaluation metrics
are as follows: support (0.009), confidence (1.0), lift (1.89), leverage (0.004),
conviction (Infinity) .

8.5.3.1 Type 1 and 2 (frequent rules)

As shown in Figure 8.5, Type 1 rules consist of 2,624 frequent rules associated
with the consequence ”no heart disease.” These rules represent healthy patients and
indicate that the symptoms exhibited by patients do not indicate the presence of a
heart disease. In contrast, Type 2 rules indicate frequent rules with high support
that represent patients with heart disease. These rules are representative of a well-
established phenomenon, in which frequent rules exhibit a high level of support and
express specific expectations.

The insights gained from these rule types are widely recognized and can be readily
interpreted by domain experts. Numerous studies have extensively examined this
category of rules [Fournier-Viger et al., 2017], leading us to regard them as a set of
prevailing beliefs because they encapsulate the most common patterns.

Our analysis focuses on Type 1 rules, which we use as the foundation for identifying
unexpected and intriguing rules. We elaborate on this endeavor in the following
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section titled ”Interesting Rules,” which constitutes the principal contribution of our
novel model, EPFHD-RARMING.

8.5.3.2 Type 3 and 4 (rare rules)

Typically, traditional approaches primarily emphasize the analysis of rules that fall
into Categories 1 and 2, whereas rules of Types 3 and 4 are often overlooked when
using conventional approaches. However, it is essential to recognize that these rules
within Categories 3 and 4 have the potential to yield interesting results. Consequently,
the identification of interesting rules among this plethora of rules poses a substantial
challenge, particularly when seeking unexpected and significant rules related to
the occurrence of heart disease. As part of our research endeavor, we conducted a
comprehensive examination of these rules to rectify analytical oversight. Our primary
focus remains on rules of type 4, which constitute a set of 9,381 rare rules indicative
of the presence of ”heart disease.” Considering these rules, we are looking for factors
that contribute to heart disease. In contrast, we chose to omit the rules of Type 3,
which typically indicate the presence of healthy patients and display low levels of
support in our dataset. An extensive analysis of these rules would result in excessive
costs, without providing substantial insights into our primary objective of identifying
patients with heart disease.

8.5.4 Interesting rules

The primary objective of this subsection is to identify and analyze rare patterns that
contrast with those observed in patients without cardiac conditions. A unique aspect
of these patterns is the similarity in their antecedents, while their consequences differ,
often contradicting one another and resulting in unexpected outcomes. Accordingly,
we examined both Type 4 rules, which represent rare patterns associated with heart
disease, and Type 1 rules, which reflect frequent patterns indicative of healthy
patients.

To determine the rules of interest, we employed objective metrics such as lift,
confidence, leverage, and conviction, as defined in Definitions 2 and 3. These rules,
whether frequent or rare, must satisfy these metrics to be considered strong rules
and demonstrate their objective interest.

Moreover, we explore rare rules that deviate from the normal rules (i.e., frequent
rules without heart disease) due to symptoms that reduce the support of the rules.
To identify such rules, we used the Jaccard metric and set the similarity threshold to
0.80. This allowed us to identify patterns that are associated with the absence of
heart disease and become rare in the presence of heart disease when another factor
is introduced. Hence, we identified a total of only 163 interesting rules using the
proposed model. Analyzing these rules can provide valuable insights for medical
experts, particularly in identifying symptoms that may be indicative of heart disease.

Let us analyze two specific rules, denoted as ”frequent” and ”rare”. The first rule,
represented as ’heartrate = normal’, ’oldpeak = high’, ’exercise angina = 0’, ’fasting
blood sugar = 0’, ’cholesterol = high’, ’sex = female’ ==> ’Yes’ (heart disease),
is classified as a rare rule. Conversely, the second rule, expressed as ’heartrate =
normal’, ’exercise angina = 0’, ’fasting blood sugar = 0’, ’cholesterol = high’, ’sex=
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female’ ==> ’No’ (no heart disease), is categorized as a frequent rule. The two
rules demonstrated a substantial degree of similarity (0.83). This similarity indicates
that when a seemingly healthy patient exhibits specific characteristics, including a
normal heart rate, absence of exercise-induced angina, normal fasting blood sugar
levels, high cholesterol levels, and female sex, a flag is raised, suggesting a potential
risk of heart disease, particularly if the old peak value is high. In other words, it is
important to note that a patient may develop heart disease if their oldpeak value
becomes high if they have symptoms, as indicated in the frequent rule.

The visualization presented in Figure 8.6 illustrates two critical rules derived from
the heart disease dataset. These rules highlight the importance of identifying rare
but significant patterns that can drastically alter prediction outcomes. The first
rule, with a consequent ’No heart disease,’ has antecedents that include ’Oldpeak =
low,’ ’Middle age,’ ’High heart rate,’ ’Low cholesterol,’ and ’Fasting blood sugar =
0.’ This rule has a support value of 0.02 and a confidence of 0.82, indicating that it
is relatively common and reliable in predicting the absence of heart disease under
these conditions.

The second rule, which includes the additional antecedent ’Asymptomatic,’ changes
the prediction to ’Heart disease.’ Despite having a lower support value of 0.004, this
rule boasts a higher confidence value of 0.83. The transformation from a ’No heart
disease’ to a ’Heart disease’ consequent upon adding the ’Asymptomatic’ condition
underscores the critical nature of this rare pattern. The similarity in antecedents
between these two rules, differing only by the presence of ’Asymptomatic,’ makes
the second rule particularly intriguing and significant for heart disease detection.

This analysis highlights how our proposed model effectively identifies interesting
rare rules by examining this example and demonstrating the primary results of our
study. By focusing on such rare but valuable rules, healthcare professionals can
better identify and manage patients who might otherwise be overlooked because
of the rarity of these conditions. This approach not only enhances the accuracy
of heart disease predictions but also contributes to a more nuanced understanding
of the various factors involved. The ’Asymptomatic’ feature, when combined with
other symptoms, can change the risk assessment from no heart disease to high risk,
emphasizing its role in medical diagnostics.

Our EPFHD-RARMING model successfully extracted 163 relevant rules from a large
number of rules. These rules can provide valuable insights for medical experts in the
investigation of symptoms that may indicate cardiovascular disease.

8.5.5 Explanation and interpretation of interesting rules
This section provides a thorough and comprehensive explanation of the intriguing
rules generated, ensuring that they are clearly communicated and understood by the
end user. In total, 163 interesting rules were identified using the proposed model,
and their visual representations are shown in Figure 8.7. It is worth noting that the
graph indicates a high similarity between frequent and rare rules, with a similarity
score exceeding 0.80. Our focus is on rare rules that deviate from frequent rules by
introducing additional symptoms, resulting in the formation of new rules with lower
support but yielding more unexpected insights. For example, the labeled rules in
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the graph showcase both frequent and rare rules that diverge from them. Figure 8.7
shows the relationship between frequent and rare rules in terms of their support and
similarity. The plot uses three dimensions to represent the key metrics:

• X-axis (frequent rule support): This axis represents the support values of
frequent rules, indicating how often these rules occur within the dataset.

• Y-axis (rare rule support): This axis represents the support values of rare rules,
showing how often these less common rules appear within the dataset.

• Z-axis (Jaccard similarity) This axis represents the Jaccard similarity between
the antecedents of frequent and rare rules. A higher similarity value indicates a
greater overlap between the sets of conditions that define the rules.

Figure 8.6: Rule visualization showing how the ’asym’ feature changes prediction
from ’No’ to ’Yes’ for heart disease. The model highlights rare rules by changes in
support and confidence.

The points in the plot are color-coded according to their similarity values, with a color
bar on the side serving as a reference for the similarity scale. The plot’s interactive
features allow users to scroll over individual points to view detailed information,
including the rule pair ID, antecedents, consequences, support, confidence for both
frequent and rare rules, and the similarity value for each rule pair.

In the highlighted example, point represents a pair of rules with the following details.

• Frequent rule: {Antecedents: ’Middle age’, ’Male’, ’Fast blood suger =0, ’Upslop-
ing ST slope’, ’Non-anginal pain’, ’Exercise-induced angina = 0’}, Consequent:
’No heart disease’, Support: 0.048, and Confidence: 0.89.
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Figure 8.7: 163 interesting rules plotted in 3D

• Rare rule: {Antecedents: ’Middle age’, ’Male’, ’Fast blood suger =0, ’Upsloping
ST slope’, ’Non-anginal pain’, ’Exercise-induced angina = 0’, ’OldPeak high’},
Consequent: ’heart disease’, Support: 0.003, and Confidence: 1.

• Similarity (Jaccard): 0.857.

This specific pair of rules is significant because the addition of the antecedent
’OldPeak High’ in the rare rule changes the consequent from ’No heart disease’ to
’Heart disease.’ Despite the rare rule having a much lower support value, the high
Jaccard similarity (0.86) with the frequent rule indicates that the conditions for both
rules are very similar. This insight is crucial as it highlights how a slight change
in conditions can alter the outcome, emphasizing the importance of considering
rare rules in heart disease prediction and diagnosis. The confidence levels of both
rules also suggest their reliability, making them valuable for further analysis and
application in medical diagnostics.

Table 8.4 presents the most interesting rules based on similarity measures. It is
important to note that all these rules are frequent and correspond to healthy patients,
becoming rare and indicative of heart disease when an additional symptom is included.
A possible explanation for the occurrence of interesting rare rules in the dataset is
that adding another factor or symptom to the frequent rules reduces their support
and makes them rare.

Let us consider rule number 7 in Table 8.4 to illustrate how interesting rules are
generated. In the absence of the red symptom oldpeak with a high value, the frequent
rule with the factors ’middle-aged’, ’high heart rate’, ’male’, ’fasting blood sugar
= 0’, ’upsloping ST slope’, ’no exercise-induced angina’ ==> ’no heart disease’
suggests that individuals with these factors are generally free from heart disease.
However, when a new rule, a rare one, is formed by including a high ’oldpeak’ value,
the generated rule ’high oldpeak’, ’middle-aged’, ’high heart rate’, ’male’, ’fasting
blood sugar = 0’, ’upsloping ST slope’, ’no exercise-induced angina’ ==> ’heart
disease’ identifies patients at risk of heart disease. Although the support of the
frequent rule is 0.06 out of 1189, indicating that approximately 71 patients with these
factors are healthy, the support of this new rare rule decreases to 0.002, implying
that only two patients with these factors actually have heart disease.
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Table 8.4: Top 10 most interesting rare rules that

No Uncommon rules (heart disease)
1 {’peaklow’, ’maged’, ’hrhigh’, ’M’, ’lcol’, ’fbsugar0’, ’usloping’, ’exangina0’, ’asym’ }

2 {’ncol’, ’maged’, ’hrhigh’, ’fbsugar0’, ’usloping’, ’napain’, ’exangina0’, ’peakhigh’}

3 {’hrnoraml’, ’peaklow’, ’maged’, ’lcol’, ’fbsugar0’, ’napain’, ’exangina0’, ’flat’}

4 {’atangina’, ’hcol’, ’maged’, ’F’, ’usloping’, ’hrnoraml’, ’exangina0’, ’fbsugar1’}

5 {’hrnoraml’, ’peaklow’, ’maged’, ’M’, ’lcol’, ’napain’, ’exangina0’, ’flat’}

6 {’atangina’, ’hcol’, ’peaklow’, ’maged’, ’F’, ’usloping’, ’exangina0’, ’fbsugar1’}

7 {’maged’, ’hrhigh’, ’M’, ’fbsugar0’, ’usloping’, ’napain’, ’exangina0’, ’peakhigh’}

8 {’atangina’, ’hcol’, ’peaklow’, ’maged’, ’F’, ’fbsugar0’, ’hrnoraml’, ’flat’}

9 {’peaklow’, ’maged’, ’hrhigh’, ’M’, ’lcol’, ’usloping’, ’exangina0’, ’asym’}

10 {’atangina’, ’hcol’, ’peaklow’, ’maged’, ’F’, ’hrnoraml’, ’exangina0’, ’fbsugar1’}

The following section provides an in-depth analysis of the factors that contribute to
the development of heart disease. Our findings underscore the significance of these
factors and their impact on the prediction of heart disease, further validating the
proposed EPFHD-RARMING model. This analysis not only offers deeper insights
into the relationship between these factors and heart disease but also enhances the
interpretability and explainability of our findings.

It is imperative to emphasize that the rules outlined in Tables 8.5 through 8.10 pertain
to healthy individuals, as they represent the most frequent rules associated with no
heart disease (set of beliefs) and high support when the crucial ”red feature” is absent.
This ”red feature” serves as the pivotal element that transforms these common
rules—characterized by their high support and absence of cardiac disease—into
uncommon rules with reduced support when cardiac disease is present. In the
following subsections, we provide a thorough examination of these contributing
factors.

8.5.5.1 ST depression induced by exercise relative to rest (Oldpeak)

The significance of the old peak value in the examination of noteworthy rules cannot
be overstated, as it was present in 69 of the 163 rules under investigation. The
transformation from a state of good health to one of rarity with heart disease is
strongly indicative of heart disease, as the transition occurs when the old peak is
high and is combined with these 69 common rules.

Our model places a high emphasis on the importance of a high peak value because
it is associated with nearly 40% of the interesting rules. This suggests a strong
connection between a high peak value and an increased risk of heart disease. This
information is valuable in identifying healthy rules that include these factors and
serves as a significant alarm for potential heart disease in patients with high peak
values.

The presence of a high oldpeak value (indicated as ’peakhigh’) is a critical factor that
triggers the transition from frequent, benign patterns to rare, high-risk patterns. This
shift highlights the importance of closely monitoring old peak values, as they can serve
as early warning signs for the onset of cardiovascular disease. The transformation
from frequent to rare rules not only underscores the predictive power of the old peak
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but also demonstrates the utility of our model in identifying these crucial changes in
health status.

In Table 8.5, we present the top 10 rules that demonstrate the transformation of
frequent rules (common in healthy patients) into rare rules because of the high
old-peak values, signifying the development of heart disease. These rules illustrate
the significant impact of Oldpeak on cardiovascular risk and the value of our model
in uncovering these patterns.

To illustrate how unexpected rare rules are generated, we consider Rule 1 in Table 8.5.
This rule indicates that if the cholesterol level is within the normal range, the patient’s
age falls within the middle range, there is a high heart rate, fasting blood sugar
levels are normal, the ST depression on the Resting Electrocardiogram presents an
upsloping pattern, the chest pain type is non-anginal pain, and exercise-induced
angina is absent, then a diagnosis of heart disease is made when the ”Oldpeak” value
is high.

This example underscores the importance of analyzing various factors in conjunction
with the old peak to make early and accurate diagnoses. Effective treatments aimed
at reducing mortality associated with cardiovascular diseases can be developed by
understanding these contributing factors. The availability of such frequent rules,
particularly for individuals at high risk of developing heart disease when ”Oldpeak”
(ST depression induced by exercise relative to rest), is highly important. Hence, high
oldpeak values often indicate ischemia or reduced blood flow to the heart muscle,
which is a critical factor in the development of cardiovascular disease. By identifying
patterns in which high oldpeak values correlate with other risk factors, healthcare
providers can develop more targeted interventions to manage and mitigate these
risks.

The insights provided by our model highlight the need for a comprehensive evaluation
that considers the interplay between multiple factors. By identifying these critical
patterns, healthcare professionals can better assess and manage at-risk patients,
ultimately improving outcomes and reducing the burden of cardiovascular diseases.

Overall, the presence of a high oldpeak value as a significant marker in our model
underscores the importance of detailed cardiovascular assessment and proactive
management strategies. The rules identified by our model provide a roadmap for
clinicians to follow, ensuring that at-risk patients receive the necessary care to
prevent the progression of heart disease. This proactive approach can lead to earlier
interventions, better patient outcomes, and a reduction in the overall incidence of
cardiovascular events.

Please note that this explanation is applicable to the remaining rules found in
Table 8.5, emphasizing the broad applicability and significance of our findings across
different patient profiles.

8.5.5.2 The Slope of the peak exercise ST segment (ST Slope)

The experimental results of the proposed model demonstrate that the ST Slope
plays a significant role in the onset of cardiovascular disease, particularly when its
value is (’flat’). According to the results, 28 out of 163 significant rare rules indicate
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Table 8.5: Top 10 Rare Heart Disease Rules with High Oldpeak Values

No Uncommon rules (heart disease)
1 {’ncol’, ’maged’, ’hrhigh’, ’fbsugar0’, ’usloping’, ’napain’, ’exangina0’, ’peakhigh’ }

2 {’maged’, ’hrhigh’, ’M’, ’fbsugar0’, ’usloping’, ’napain’, ’exangina0’, ’peakhigh’ }

3 {’ncol’, ’maged’, ’M’, ’fbsugar0’, ’usloping’, ’napain’, ’exangina0’, ’peakhigh’ }

4 {’ncol’, ’M’, ’fbsugar0’, ’usloping’, ’napain’, ’exangina0’, ’peakhigh’ }

5 {’maged’, ’hrhigh’, ’M’, ’usloping’, ’napain’, ’exangina0’, ’peakhigh’ }

6 {’maged’, ’hrhigh’, ’M’, ’fbsugar0’, ’usloping’, ’exangina0’, ’peakhigh’ }

7 {’maged’, ’hrhigh’, ’M’, ’fbsugar0’, ’usloping’, ’napain’, ’peakhigh’ }

8 {’maged’, ’M’, ’lcol’, ’usloping’, ’napain’, ’exangina0’, ’peakhigh’ }

9 {’ncol’, ’maged’, ’hrhigh’, ’M’, ’usloping’, ’napain’, ’peakhigh’ }

10 {’maged’, ’M’, ’fbsugar0’, ’usloping’, ’ncol’, ’exangina0’, ’peakhigh’ }

cardiovascular disease when their ST Slope is ’flat’, compared to healthy patients
(frequent rules without cardiovascular disease). This transition from frequent to rare
rules signifies an increased likelihood of cardiovascular disease, indicating a critical
shift in health status.

The flat ST Slope is particularly noteworthy because it reflects a significant modifi-
cation of the underlying factors or conditions. A flat ST Slope during peak exercise
typically indicates an abnormal response to physical stress, which can be a precursor
to serious cardiovascular issues. The occurrence of rarity, along with specific rule
attributes such as a flat ST Slope, may act as a strong marker of cardiovascular risk.
Further investigation of the causes and consequences of this transformation on health
outcomes is required.

The top 10 interesting rules, displayed in Table 8.6, illustrate how this factor de-
termines the rules that lead to cardiovascular disease. These rules deviate from
norms as their support falls and are often missed during frequent pattern mining.
For example, a rule might indicate that a patient with normal cholesterol levels and
no other significant symptoms, when combined with a flat ST Slope, suddenly falls
into a high-risk category for heart disease.

Our proposed model identifies these critical deviations and uncovers hidden patterns
that are not apparent in traditional analyses. The identification of a flat ST Slope
as a significant risk factor for cardiovascular disease highlights the importance of
this symptom in clinical assessments. By recognizing the importance of a flat ST
Slope, healthcare professionals can better assess the risk of cardiovascular disease in
patients who might otherwise appear healthy.

As a result, the presence of a flat ST Slope is a vital factor in our model for detecting
rare but significant rules that indicate cardiovascular disease. This insight underscores
the importance of considering the ST Slope in comprehensive cardiovascular risk
assessments. The exceptional rules identified by our model, as shown in Table 8.6,
provide a deeper understanding of the factors contributing to cardiovascular risk.
These findings emphasize the necessity for thorough evaluations that include the ST
Slope, enabling early detection and improved management of heart disease.
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Table 8.6: Top 10 Rare Heart Disease Rules: (ST Slope) with Flat Values

No Uncommon rules (heart disease)
1 {’hrnoraml’, ’peaklow’, ’maged’, ’lcol’, ’fbsugar0’, ’napain’, ’exangina0’, ’flat’}

2 {’hrnoraml’, ’peaklow’, ’maged’, ’M’, ’lcol’, ’napain’, ’exangina0’, ’flat’}

3 {’atangina’, ’hcol’, ’peaklow’, ’maged’, ’F’, ’fbsugar0’, ’hrnoraml’, ’flat’}

4 {’atangina’, ’hcol’, ’peaklow’, ’maged’, ’M’, ’fbsugar0’, ’hrnoram’, ’flat’}

5 {’atangina’, ’hcol’, ’peaklow’, ’maged’, ’fbsugar0’, ’hrnoraml’, ’exangina0’, ’flat’}

6 {’atangina’, ’hcol’, ’peaklow’, ’M’, ’hrnoraml’, ’exangina0’, ’flat’}

7 {’peaklow’, ’M’, ’lcol’, ’napain’, ’hrnoraml’, ’exangina0’, ’flat’}

8 {’atangina’, ’hcol’, ’peaklow’, ’F’, ’fbsugar0’, ’hrnoraml’, ’flat’}

9 {’atangina’, ’hcol’, ’peaklow’, ’maged’, ’hrnoraml’, ’exangina0’, ’flat’}

10 {’atangina’, ’hcol’, ’peaklow’, ’maged’, ’fbsugar0’, ’hrnoraml’, ’flat’}

8.5.5.3 Type of chest pain: asymptomatic

The type of chest pain experienced by the patients was a significant factor identified
using our proposed model. Our experimental results demonstrate that chest pain
plays a crucial role in the development of heart disease. Specifically, among the 163
significantly rare rules in otherwise healthy patients, 23 have been found to be at risk
for heart disease when chest pain is (’asymptomatic (asym)’). This indicates that
the presence of asymptomatic chest pain, when combined with other common health
indicators, significantly alters patient’s health status, suggesting a high likelihood of
heart disease.

The presence of asymptomatic chest pain is particularly concerning because it often
goes unnoticed by patients, delaying diagnosis and treatment. Our findings underscore
the importance of identifying subtle yet critical symptoms. The transition from
frequent to rare rules signifies a substantial shift in health status, in which the
addition of asymptomatic chest pain to an otherwise benign condition increases the
risk of heart disease.

The top 10 interesting rules, shown in Table 8.7, illustrate how this factor deviates
from the norms and leads to rules that express patients with heart disease, despite
their rarity. These rules highlight the critical nature of asymptomatic chest pain as
a determinant of cardiovascular disease onset. For instance, a rule might indicate
that a middle-aged individual with normal cholesterol levels and no other significant
symptoms, when combined with asymptomatic chest pain, suddenly falls into the
high-risk category for heart disease.

Our proposed model is effective in identifying the important factors that contribute
to the development of heart disease. By focusing on the presence of asymptomatic
chest pain, our model uncovered hidden patterns that are not evident in traditional
analyses. This insight is invaluable for early detection and intervention, as it identifies
patients who might otherwise be overlooked due to the absence of more obvious
symptoms.

Therefore, the identification of asymptomatic chest pain as a significant risk factor
for heart disease was a major finding of the proposed model. The exceptional rules
identified by our model, as shown in Table 8.7, provide a deeper understanding of the
factors contributing to cardiovascular risk. These rules emphasize the importance of
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Table 8.7: Top 10 Rare Heart Disease Rules: Chest pain type as asymptomatic

No Uncommon rules (heart disease)
1 {’peaklow’, ’maged’, ’hrhigh’, ’M’, ’lcol’, ’fbsugar0’, ’usloping’, ’exangina0’, ’asym’}

2 {’peaklow’, ’maged’, ’hrhigh’, ’M’, ’lcol’, ’usloping’, ’exangina0’, ’asym’}

3 {’maged’, ’hrhigh’, ’M’, ’lcol’, ’fbsugar0’, ’usloping’, ’exangina0’, ’asym’}

4 {’hcol’, ’peaklow’, ’elderly’, ’F’, ’fbsugar0’, ’usloping’, ’exangina0’, ’asym’}

5 {’peaklow’, ’hrhigh’, ’M’, ’lcol’, ’fbsugar0’, ’usloping’, ’exangina0’, ’asym’}

6 {’hrhigh’, ’M’, ’lcol’, ’fbsugar0’, ’usloping’, ’exangina0’, ’asym’}

7 {’peaklow’, ’hrhigh’, ’M’, ’lcol’, ’usloping’, ’exangina0’, ’asym’}

8 {’maged’, ’hrhigh’, ’M’, ’fbsugar1’, ’usloping’, ’exangina0’, ’asym’}

9 {’hcol’, ’elderly’, ’F’, ’fbsugar0’, ’usloping’, ’exangina0’, ’asym’}

10 {’hcol’, ’peaklow’, ’elderly’, ’F’, ’fbsugar0’, ’exangina0’, ’asym’}

thorough clinical assessments, including the evaluation of subtle symptoms, such as
asymptomatic chest pain. By incorporating these insights, healthcare professionals
can improve early diagnosis and treatment, ultimately reducing the incidence and
severity of heart disease.

8.5.5.4 Max heart rate

The importance of the maximum heart rate in identifying unusual rules that diverge
from typical frequent rules, which serve as standard beliefs, cannot be overstated. Our
findings reveal that when the maximum heart rate is low, 12 out of 163 significantly
rare rules have been linked to cardiovascular disease in otherwise healthy individuals.
These deviations from the norm occur when the maximum heart rate (’hrlow’) is
low. Consequently, these 12 unusual rules represent deviations from the expected
patterns and are indicative of cardiovascular disease in patients.

Our proposed model successfully uncovered these unique rules, highlighting critical
contributors to the onset of cardiovascular disease, despite their rarity. It is essential
to note that these rules apply to women. Furthermore, six of these distinctive rules
are relevant to elderly women, specifically rules 1, 2, 8, 9, 11, and 12, as shown in
Table 8.8. This suggests that elderly women with a low maximum heart rate are at
a particularly heightened risk of developing cardiovascular disease, emphasizing the
need for targeted interventions and monitoring of this demographic.

In contrast, when the maximum heart rate was high, our model did not identify any
distinct rules directly linking this symptom to cardiovascular disease. However, it is
crucial to emphasize that a high maximum heart rate is associated with 59 interesting
and rare rules. Although not directly caused by a high maximum heart rate, these
rules are linked to other significant factors that contribute to the development of
cardiovascular disease. These factors include a high peak, asymptomatic chest pain,
and various other symptoms. This indicates that while a high maximum heart rate
alone may not be a direct indicator, its presence along with other risk factors can
significantly increase the likelihood of cardiovascular disease.

This dual insight, which highlights the critical role of both low and high maximum
heart rates in different contexts, demonstrates the robustness of the proposed model.
This underscores the importance of considering the maximum heart rate in compre-
hensive cardiovascular risk assessments. By identifying these rare but critical rules,
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Table 8.8: Rare Heart Disease Rules: Max heart rate as low

No Uncommon rules (heart disease)
1 {’hcol’, ’elderly’, ’F’, ’fbsugar0’, ’napain’, ’exangina0’, ’hrlow’}

2 {’peakmoderate’, ’elderly’, ’F’, ’fbsugar0’, ’flat’, ’exangina0’, ’hrlow’}

3 {’F’, ’fbsugar0’, ’flat’, ’napain’, ’exangina0’, ’hrlow’}

4 {’peakmoderate’, ’F’, ’fbsugar0’, ’flat’, ’exangina0’, ’hrlow’}

5 {peakmoderate’, ’hcol’, ’F’, ’fbsugar0’, ’exangina0’, ’hrlow’}

6 {’peakmoderate’, ’F’, ’fbsugar0’, ’napain’, ’exangina0’, ’hrlow’}

7 {’hcol’, ’F’, ’fbsugar0’, ’napain’, ’exangina0’, ’hrlow’}

8 {’hcol’, ’elderly’, ’F’, ’fbsugar0’, ’napain’, ’hrlow’}

9 {’hcol’, ’elderly’, ’F’, ’napain’, ’exangina0’, ’hrlow’}

10 {’peaklow’, ’maged’, ’fbsugar1’, ’ncol’, ’exangina0’, ’hrlow’}

11 {’elderly’, ’F’, ’fbsugar0’, ’napain’, ’exangina0’, ’hrlow’}

12 {’peakmoderate’, ’elderly’, ’F’, ’fbsugar0’, ’exangina0’, ’hrlow’}

our model provides valuable information that can aid in early diagnosis and targeted
intervention, ultimately contributing to better patient outcomes and personalized
healthcare strategies.

In summary, the presence of a low maximum heart rate is a vital factor in our
model for detecting rare but significant rules that indicate cardiovascular disease,
particularly in women and elderly women. Conversely, a high maximum heart rate,
although not directly causal, is associated with other risk factors that collectively
indicate an increased risk of heart disease. These insights from our model emphasize
the importance of a holistic approach to cardiovascular risk assessment, considering
various interrelated factors to improve the accuracy and effectiveness of disease
prediction and management.

8.5.5.5 Exercise-induced angina

Our research highlights the critical role of exercise-induced angina in identifying
exceptional and atypical rules that deviate from established norms. Exercise-induced
angina, indicated by a value of 1, is a condition in which chest pain occurs during
physical activity due to reduced blood flow to the heart. This factor was proven to
be significant in our study.

Our findings indicate that when (’exercise-induced angina (’exangina1’) is present,
13 of the 163 rare rules exhibit a strong association with cardiovascular diseases
in otherwise healthy individuals. These 13 unusual rules, detailed in Table 8.9,
contrast sharply with conventional norms and are effective in identifying patients
with cardiovascular disease. These rules indicate that the presence of exercise-induced
angina, combined with other factors, significantly alters a patient’s health status,
leading to a higher risk of cardiovascular disease.

A detailed analysis of these rules revealed that the presence of exercise-induced
angina, when combined with other health indicators, serves as a critical marker
for cardiovascular disease. This demonstrates the power of our innovative model
to uncover important health insights that may be missed by conventional analysis.
Despite their rarity, these rules provide valuable information for the early diagnosis
and prevention of heart disease.
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Table 8.9: Rare Heart Disease Rules: exercise-induced angina is present

No Uncommon rules (heart disease)
1 {’hcol’, ’peaklow’, ’maged’, ’fbsugar0’, ’usloping’, ’hrnoraml’, ’exangina1’}

2 {’peakmoderate’, ’elderly’, ’F’, ’fbsugar0’, ’flat’, ’hrnoraml’, ’exangina1’}

3 {’atangina’, ’hcol’, ’peaklow’, ’maged’, ’fbsugar0’, ’hrnoraml’, ’exangina1’}

4 {’peaklow’, ’M’, ’elderly’, ’fbsugar0’, ’usloping’, ’ncol’, ’exangina1’}

5 {’peaklow’, ’maged’, ’hrhigh’, ’lcol’, ’fbsugar0’, ’usloping’, ’exangina1’}

6 {’maged’, ’F’, ’fbsugar0’, ’flat’, ’napain’, ’exangina1’}

7 {’peakmoderate’, ’elderly’, ’F’, ’fbsugar0’, ’hrnoraml’, ’exangina1’}

8 {’peaklow’, ’M’, ’elderly’, ’usloping’, ’ncol’, ’exangina1’}

9 {’peaklow’, ’elderly’, ’fbsugar0’, ’usloping’, ’ncol’, ’exangina1’}

10 {’peaklow’, ’maged’, ’hrhigh’, ’lcol’, ’fbsugar0’, ’exangina1’}

11 {’peaklow’, ’hrhigh’, ’lcol’, ’fbsugar0’, ’usloping’, ’exangina1’}

12 {’maged’, ’M’, ’fbsugar1’, ’usloping’, ’ncol’, ’exangina1’}

13 {’peaklow’, ’maged’, ’hrhigh’, ’lcol’, ’usloping’ ,’exangina1’}

In contrast, our study found that when exercise-induced angina was absent (denoted
by a value of 0), no exceptionally rare rules were generated. This absence indicates
that the lack of exercise-induced angina does not contribute to significant deviations
from the norm and thus does not highlight any unusual patterns or risk factors for
cardiovascular disease.

Thus, the presence of exercise-induced angina is a vital factor in our model for
detecting rare but critical rules that point to cardiovascular disease. This insight
underscores the importance of exercise-induced angina in clinical assessments and
highlights its role in the early detection and management of heart disease. The
exceptional rules identified by our model, as shown in Table 8.9, provide a deeper
understanding of the factors contributing to cardiovascular risk.

8.5.5.6 Presence of fasting blood sugar

The experimental results revealed the crucial function of (’fasting blood sugar (’fb-
sugar1’) in identifying exceptional and unconventional rules that diverge from es-
tablished norms, especially those associated with frequently occurring rules without
heart disease. Notably, all these rare rules apply to women, as shown in the top
10 interesting rules illustrated in Table 8.10. Our findings demonstrate that when
fasting blood sugar is present (indicated by a value of 1), 23 of 163 rare rules exhibit
a considerable association with cardiovascular disease in otherwise healthy women.

The presence of elevated levels of fasting blood sugar often coincides with other risk
factors such as high cholesterol and angina, particularly in women. This correlation
underscores the heightened risk of heart disease in the presence of these factors. For
example, women with high cholesterol levels and positive fasting blood sugar test
results are at a significantly increased risk, especially if they also experience symptoms,
such as angina or exercise-induced angina. This highlights the multifaceted nature
of cardiovascular risk, in which the interaction between multiple factors compounded
the overall risk.

Our analysis showed that these rare rules deviate significantly from conventional
norms, effectively identifying female patients at risk for cardiovascular disease. This
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Table 8.10: Rare Heart Disease Rules: fast blood suger is present

No Uncommon rules (heart disease)
1 {’atangina’, ’hcol’, ’peaklow’, ’maged’, ’F’, ’usloping’, ’hrnoraml’, ’exangina0’, ’fbsugar1’}

2 {’atangina’, ’hcol’, ’maged’, ’F’, ’usloping’, ’hrnoraml’, ’exangina0’, ’fbsugar1’}

3 {’atangina’, ’hcol’, ’peaklow’, ’maged’, ’F’, ’usloping’, ’exangina0’, ’fbsugar1’}

4 { ’atangina’, ’hcol’, ’peaklow’, ’maged’, ’F’, ’hrnoraml’, ’exangina0’, ’fbsugar1’}

5 {’hcol’, ’peaklow’, ’maged’, ’F’, ’usloping’, ’hrnoraml’, ’exangina0’, ’fbsugar1’}

6 {’atangina’, ’hcol’, ’peaklow’, ’F’, ’usloping’, ’hrnoraml’, ’exangina0’, ’fbsugar1’}

7 {’atangina’, ’hcol’, ’F’, ’usloping’, ’hrnoraml’, ’exangina0’, ’fbsugar1’}

8 {’atangina’, ’hcol’, ’peaklow’, ’F’, ’usloping’, ’exangina0’, ’fbsugar1’}

9 {’hcol’, ’peaklow’, ’maged’, ’F’, ’hrnoraml’, ’exangina0’, ’fbsugar1’}

10 {’atangina’, ’hcol’, ’maged’, ’F’, ’hrnoraml’, ’exangina0’, ’fbsugar1’}

deviation from frequent patterns signifies a substantial change in health status,
indicating a critical shift towards disease when fasting blood sugar levels are high.
The presence of high fasting blood sugar, as highlighted by our novel model, is a
crucial determinant in uncovering the pivotal factors that contribute to the onset of
cardiovascular disease in women. Despite their rarity and deviation from conventional
norms, these rules provide essential insights into early diagnosis and intervention.

Conversely, the absence of a positive fasting blood sugar test result (denoted by a
value of 0) did not generate any exceptional rare rules. This suggests that normal
fasting blood sugar levels do not significantly contribute to deviations from the norm,
thereby not highlighting any unusual patterns or risk factors for cardiovascular disease.
The absence of this factor indicates a lower-risk profile aligned with conventional
medical understanding.

In summary, the presence of fasting blood sugar is a vital factor in our model for
detecting rare but critical rules that point to cardiovascular disease in women. This
insight underscores the importance of considering fasting blood sugar levels in clinical
assessments and highlights their role in the early detection and management of heart
disease. The exceptional rules identified by our model provide a deeper understanding
of the factors contributing to cardiovascular risk, particularly in female patients.

8.6 Discussion
In our EPFHD-RARMING model, we aim to uncover and highlight rare rules that
contradict expectations, thereby leading to remarkable discoveries. Our novel method
is successful because it can extract interesting rules from a large number of rules.
Within this model, we employ well-established frequent rules as our grounding truth,
representing widely accepted beliefs due to their high frequency of co-occurrence.

Our model identifies specific factors that account for the transformation of common
rules into rare ones, even with low support. These findings are particularly noteworthy,
as demonstrated in our experiments. Several significant factors play a crucial role in
the development of heart disease, including ST depression induced by exercise relative
to rest (Oldpeak), slope of the peak exercise ST segment (ST Slope), asymptomatic
chest pain, low heart rate, exercise-induced angina, and fasting blood sugar. Figure 8.8
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Figure 8.8: Factors contributing to the generation of interesting rules with heart
disease as an outcome.

illustrates the factors associated with the generation of unexpected rules which lead
to heart disease. The graph shows that a high Oldpeak is the most prominent
indicator, followed by a flat ST segment slope and asymptomatic chest pain. Detailed
explanations of these six factors are provided in Subsections 8.5.5.1 through 8.5.5.6.

The EPFHD-RARMING model not only unveils these previously unknown associa-
tions but also illuminates the intricate interplay of these factors, providing valuable
insights into the development of heart disease in otherwise healthy individuals.

The factors identified by our model were further validated by applying multiple
feature selection algorithms that consistently identified the same variables as critical
contributors. The convergence of methodologies across multiple approaches demon-
strates the reliability and robustness of the factors identified in our model. According
to our model, the factors contributing to heart disease include ’oldpeak’, ’ST slope’,
’chest pain type’, ’max heart rate’, ’exercise angina’, and ’fasting blood sugar’.
Figure 8.2 illustrates the key features that contribute to the prediction of heart
disease, as identified by multiple feature selection methods. According to the graph,
the factors generated by the proposed solution are extremely important. Additionally,
a recent study Ozcan and Peker [2023] confirmed the significance of these factors,
further attesting to their substantial impact on predictive modeling. This external
corroboration strongly supports the accuracy and relevance of the proposed solution.

Our results were compared with those of a recent study Ozcan and Peker [2023]
that used a classification and regression tree algorithm for heart disease prediction,
focusing primarily on model accuracy. Although their approach identified key
risk factors through supervised learning, our novel method leveraged rare rules
to analyze unsupervised datasets, emphasizing interpretability and explainability.
Unlike the supervised approach, our model uncovered detailed patterns and provided
a comprehensive view of the factors leading to heart disease, making our findings
more actionable for healthcare professionals. Additionally, our model identifies
patterns that may indicate future heart disease development, aiding early detection
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and intervention. Our holistic and unsupervised approach makes our method highly
adaptable to various domains and offers a more comprehensive understanding of
cardiovascular health.

Notably, our model utilizes an unsupervised method, specifically Association Rule
Mining (ARM), which enhances the credibility of our findings. The unsupervised
nature of the proposed approach underscores the independence and objectivity of
the model, allowing it to uncover patterns without predefined labels. This aspect
of our model makes it highly adaptable and applicable to various domains beyond
health, such as finance, marketing, and other fields in which identifying rare patterns
is crucial.

The alignment of our model’s findings with established feature selection algorithms,
together with supporting evidence from recent studies, provides substantial evidence
of the accuracy and correctness of our proposed solution. The utilization of an
unsupervised method further emphasizes the ability of the model to autonomously
identify and validate crucial factors in the absence of labeled data. In contrast to
conventional approaches for identifying factors that play a major role in prediction,
our proposed model effectively identifies a diverse set of notable rules, which can be
summarized as follows:

• Frequent rules relating to heart disease: These rules closely reflect those derived
from traditional methodologies, representing well-established rules associated
with patients affected by heart disease.

• Frequent rules facilitating early detection of heart disease: Among the vast
number of rules, our proposed model, EPFHD-RARMING, identified 163 in-
teresting frequent rules that represent healthiness. The identification of these
frequent rules that deviate to rare and interesting patterns upon the occurrence
of one of the critical factors (such as ’oldpeak’, ’ST slope’, ’chest pain type’,
’max heart rate’, ’exercise angina’, and ’fasting blood sugar’) helps medical
experts detect patients who may be at risk of developing heart disease. These
vulnerable frequent patterns aid in the early determination of potential heart
disease development.

• Identifying risk factors: Our model has been successful in identifying risk factors
that contribute to the onset of heart disease.

The results of our model should be further investigated by domain experts and tested
using additional datasets to fully ascertain its effectiveness and importance. Such
validation will help establish its generalizability and potential for broader applications.
Thus, we can ensure that the insights provided by our model are robust and reliable,
paving the way for its application in real-world scenarios.

Consequently, our proposed EPFHD-RARMING model effectively identifies and
prioritizes rare association rules characterized by low support, distinct differences
from common rules, shared antecedents, and contrasting outcomes compared to
prevalent rules. The identified rules offer critical insights into exceptional cases and
unexpected associations within the dataset, thus enhancing our understanding of
deviations from typical patterns. Unlike conventional methods, which often overlook
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essential risk indicators and fail to capture complex factor relationships, our model
leverages the unsupervised ARM approach to conduct a comprehensive analysis. This
innovative methodology yields novel insights into cardiovascular health dynamics,
identifying patterns indicative of both healthy conditions and potential risks. Hence,
our approach represents a substantial advancement, contributing significantly to the
deeper comprehension of the intricate mechanisms underlying heart disease.

8.7 Chapter summary
This paper presents EPFHD-RARMING, an unsupervised model designed to identify
the key factors leading to heart disease. Unlike traditional supervised methods, our
approach uses rare association rule mining to improve the efficiency and specificity of
identifying predictive indicators. By defining frequent rules as foundational beliefs,
we isolated rare but significant rules that shed light on the onset of heart disease. In
addition, our method identifies sensitive frequent rules that correspond to symptoms
present in healthy individuals who may develop heart disease if the factors identified
by our model are triggered. This predictive capability allows for early intervention.
Our approach overcomes the limitations of traditional association rule mining, which
often produces a large volume of rules. Instead, EPFHD-RARMING selects a
manageable set of 163 rules from thousands, focusing on rare, divergent factors with
low support and highlighting unique patterns and deviations within the dataset.
This approach confirms the utility of our model in detecting key contributors to
heart disease and enhances our understanding of exceptional and unforeseen cases in
medical data.





9. Conclusion and Future Work

This section concludes by summarizing the core contributions of our study and
providing a detailed outline of potential future research directions. We highlight the
significance of our findings and discuss their broader implications in the field of rare
pattern mining, specifically focusing on interpretability, performance, redundancy,
and interestingness. These contributions offer substantial insight into their potential
applicability across diverse domains. Future research will aim to refine our proposed
methods to efficiently manage large-scale and complex datasets, integrate them with
advanced machine learning techniques, and explore new application areas where
rare pattern mining could yield actionable and interpretable insights, particularly in
high-stakes real-world contexts.

9.1 Conclusion
In recent years, deep learning achieved remarkable advancements in various fields.
However, the interpretability and explainability of these models remain challenging,
especially in high-stakes domains, such as healthcare and finance, where understanding
a model’s decision-making rationale is crucial. To address these challenges, we
employed rare pattern mining as a complementary approach, providing insights that
are often overlooked by traditional deep learning models. Below, we detail the key
contributions of this research, each designed to address specific limitations within
rare pattern mining and interpretability.

9.1.1 Efficient discovery of rare patterns
A primary contribution is the development of an algorithm called the Rare Pre
Post(RPP) algorithm [Darrab et al., 2020], which efficiently discovers rare patterns
and outperforms existing methods, particularly in sparse datasets where rare patterns
may otherwise be undetectable. The RPP algorithm addresses the computational
challenges of identifying rare patterns and optimizing the retrieval process to recover
patterns that are often missed by conventional state-of-the-art techniques. By
targeting the unique challenges presented by sparsity, RPP contributes to the field
by enhancing the reliability and efficiency of rare pattern mining and by setting a
new benchmark for the identification of rare yet meaningful patterns.
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9.1.2 Concise representation of rare patterns

Generating a concise representation of rare patterns often involves summarizing the
entire set, creating a representation that is significantly smaller yet equally informative.
Although methods exist for mining maximal and closed frequent patterns, no method
is available for generating concise representations of rare patterns using maximal
rare patterns. To address this, we developed the Maximal Rare Itemsets (MaxRI)
algorithm [Darrab et al., 2021a] that identifies condensed rare patterns by eliminating
redundant and irrelevant information. MaxRI offers a concise view of rare patterns,
ensuring a faster discovery process, while reducing the complexity of the results. This
contribution establishes a foundation for future research on condensed rare pattern
mining, providing a practical tool for applications in which interpretability and data
efficiency are critical.

9.1.3 Identification of interesting rare patterns

To reduce noise and irrelevant patterns, we designed methods to discover interest-
ing rare patterns by emphasizing the actionable and interpretable results. This
contribution includes the following two models.

• OPECUR: An efficient model based on OPTICS clustering of ECLAT algorithm
to generate unexpected rules [Darrab et al., 2022a]. The OPECUR model
significantly outperformed the existing DBSCAN-based methods in terms of
F1-score, AUC, and speed. This performance gain allows quicker and more
insightful rule discovery, providing end users with a manageable and useful set
of rules.

• UCRP-Miner: we introduce UCRP-Miner to retrieve a complete set of unex-
pected rules [Darrab et al., 2022b]. UCRP-Miner employs frequent patterns
to identify unexpected rules, thereby generating actionable insights that are
both novel and meaningful. By testing UCRP-Miner on real-world datasets, we
demonstrated its ability to outperform the state-of-the-art models in terms of
time efficiency and accuracy. In addition, UCRP-Miner produces non-redundant
usable patterns, significantly reducing the effort required to discover actionable
rules.

These methods collectively provide a robust framework for identifying rare pat-
terns that are relevant and manageable, thereby addressing the key challenges of
performance degradation and parameter sensitivity.

9.1.4 Predictive factors of heart disease: a case study on heart
disease

A notable application of our method is in the healthcare domain, particularly
in identifying factors associated with heart disease. We developed a specialized
model, EPFHD-RARMING [Darrab et al., 2024], designed to identify both common
and rare factors that may contribute to the onset of heart disease. This model
generates interpretable rules that highlight critical factors, support early diagnosis,
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and potentially improve health care outcomes. By uncovering patterns with low
support, EPFHD-RARMING contributes to a deeper understanding of cardiovascular
disease causes, revealing patterns that may otherwise remain hidden yet are essential
for preventive care.

9.1.5 Summary

In summary, our dissertation presents several significant contributions that bridge the
gap between rare pattern mining and its practical applications in real-world contexts.
By addressing issues related to performance, redundancy, and interestingness, our
contributions provide actionable insights that can be applied to critical decision-
making processes, particularly in domains where interpretability is essential. The
patterns identified are not only interpretable and explainable but also contribute
valuable, actionable knowledge that enhances the decision-making process across
various crucial applications.

9.2 Future Work

Our future work will aim to expand the capabilities of rare pattern mining across
several critical areas, thereby improving both its scalability and applicability to
diverse data structures and domains. Below, we outline specific directions for future
research.

9.2.1 Scalability of rare pattern mining in big data

The primary objective of future research is to adapt rare pattern mining algorithms
to handle the vast amounts of data generated in fields such as social media and
healthcare. To achieve this, we will utilize the proposed algorithms, RPP and MaxRI,
in distributed systems [Kumar and Mohbey, 2022], such as Apache Flink, Spark,
and Hadoop. These systems are equipped to manage large-scale data, providing a
scalable solution that can efficiently mine rare patterns in high-dimensional datasets,
while maintaining performance and interpretability. This approach is intended to
enhance the ability of rare pattern mining to process big data, making it applicable
in real-world crucial environments.

9.2.2 Mining rare patterns in complex data types

Rare pattern mining can be extended to more complex data types, particularly
sequential [Huang et al., 2024] and stream data [Kumar and Mohbey, 2022], where
rare patterns hold significant values. Sequential data, often found in bioinformatics,
and stream data, common in real-time monitoring applications, pose unique challenges
due to the dynamic relationships and temporal dependencies between data points.
Developing novel methods that address these challenges will allow rare pattern mining
to capture critical insights within these datasets while preserving interpretability.
This direction will enable the discovery of meaningful patterns in fields where the
structure of the data is as crucial as the data itself.
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9.2.3 Integrating causality for enhanced rare pattern discovery
To further improve the discovery and interpretability of rare patterns, we plan
to integrate rare pattern mining with causality analysis. By incorporating causal
relationships, we can go beyond simple correlations to reveal patterns that suggest
potential cause-and-effect dynamics, enhancing the significance and applicability of
the results [Nogueira et al., 2022]. This combined approach will yield more meaningful
and actionable insights, especially in fields such as healthcare, finance, and the social
sciences, where understanding causal mechanisms is essential. In addition, integrating
causal inference and machine learning will refine our methodologies, making them
suitable for large-scale, complex datasets. This approach will allow rare pattern
mining to deliver insights that are not only interpretable but also causally relevant,
thus supporting informed decision-making in critical scenarios.

9.2.4 Expanding applicability across diverse domains
Rare pattern mining offers significant potential across a variety of domains where
detecting uncommon patterns can yield crucial insights [Akdas et al., 2024; Darrab
et al., 2024]. For instance, in healthcare, rare pattern detection can serve as an early
warning system for diseases by identifying unusual combinations of symptoms or
genetic markers. Beyond healthcare, rare pattern mining can be instrumental in
high-risk domains such as finance, where anomalies in transaction data may indicate
fraudulent activity.

Each domain presents distinct challenges and demands tailored methodologies; how-
ever, the shared advantage of uncovering significant yet infrequent patterns can
improve preventative measures, bolster risk management, and enable more precise
interventions. For example, in cybersecurity, identifying unusual patterns in network
traffic can reveal potential cyber-attacks by highlighting anomalies in logs, network
flows, or user behavior. Similarly, in manufacturing, the detection of rare patterns in
sensor data or production logs can signal equipment malfunctions or product defects,
facilitating proactive maintenance and quality control to prevent costly issues.

9.2.5 Importance of privacy preserving rare pattern mining
The future of research is significantly dependent on ensuring privacy in rare pattern
mining [Gui et al., 2024], particularly as data collection expands into sensitive
domains such as healthcare, finance, and personal behavior analysis. Although
traditional data mining techniques are robust, they frequently compromise sensitive
information when identifying and analyzing infrequent patterns, potentially revealing
distinctive individual characteristics. Consequently, it is imperative to implement
privacy-preserving methodologies in rare pattern mining to ensure data confidentiality
and compliance with privacy regulations. Future research should focus on developing
advanced cryptographic and anonymization techniques to protect individual privacy
while maintaining the accuracy and interpretability of rare pattern discoveries. By
integrating privacy measures into rare pattern mining, researchers can extend its
application to privacy-sensitive domains without compromising ethical standards
or data security, thereby fostering greater trust and facilitating wider adoption in
critical sectors such as healthcare, cybersecurity, and personalized services. This
approach will enable stakeholders to leverage the full potential of rare pattern insights
while adhering to robust data protection standards.
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Francisco Padillo, José Maŕıa Luna, and Sebastián Ventura. Mining perfectly rare
itemsets on big data: an approach based on apriori-inverse and mapreduce. In
Intelligent Systems Design and Applications: 16th International Conference on
Intelligent Systems Design and Applications (ISDA 2016) held in Porto, Portugal,
December 16-18, 2016, pages 508–518. Springer, 2017. (cited on Page 38)

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: machine learning
in python. Journal of Machine Learning Research, 12:2825–2830, 2011. (cited on

Page 85)

Jian Pei, Jiawei Han, Hongjun Lu, Shojiro Nishio, Shiwei Tang, and Dongqing
Yang. H-mine: Hyper-structure mining of frequent patterns in large databases. In
Proceedings 2001 IEEE International Conference on Data Mining, pages 441–448.
IEEE, 2001. (cited on Page 30)



Bibliography 145

Jyothi Pillai, OP Vyas, and Maybin Muyeba. Huri - a novel algorithm for mining
high utility rare itemsets. In Advances in Computing and Information Technology:
Proceedings of the Second International Conference on Advances in Computing
and Information Technology (ACITY) July 13-15, 2012, Chennai, India-Volume 2,
pages 531–540. Springer, 2013. (cited on Page 40)

Saeed Piri, Dursun Delen, Tieming Liu, and William Paiva. Development of a new
metric to identify rare patterns in association analysis: The case of analyzing
diabetes complications. Expert Systems with Applications, 94:112–125, 2018. (cited

on Page 43)
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