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Abstract

Face recognition stands as the superior biometric technique for identity authentication,
finding extensive applications in our daily lives, like access control, finance, entertain-
ment, and public security. Despite the widespread integration of face biometrics, most
current face recognition systems are tailored for environments where accurate control
governs the process of capturing facial images.

In recent years, rapid advancements in face recognition techniques have unfolded
across both academic and industrial sectors. This transformation has been driven
by key factors, including the availability of substantial annotated training datasets,
the rise of convolutional neural network based deep architectures, the affordability and
power of computational resources, and the emergence of refined loss functions. Despite
the considerable strides and achievements, persistent challenges await resolution.

This thesis makes significant contributions to in-the-wild face recognition, partic-
ularly concerning human-robot interaction, from three perspectives: model enhance-
ment, loss function innovation, and network design. By enhancing current face recog-
nition framework capabilities, designing novel loss functions, and carefully developing
network architectures, this thesis aims to navigate the challenges of recognizing faces
within dynamic and uncontrolled environments, where humans and robots interact.

Firstly, we address the complexities of human-robot interaction (HRI), highlighting
the challenges of real-time face recognition. Emphasizing the need for fast process-
ing and high accuracy, we adopt lightweight convolutional neural networks for our
proposed face recognition framework. The integration of the state-of-the-art ArcFace
loss function and the RetinaFace method for face detection, combined with an online
real-time face tracker, empowers our system to adeptly handle challenges such as vary-
ing illumination, different head poses, and occlusions. By merging tracking data with
recognized identities, we enhance the system’s performance in unconstrained settings,
resulting in improved recognition accuracy and processing speed. Evaluations within
our HRI system, "RoSA," showcase significant advancements while also highlighting
areas for further refinement.

Secondly, we explore the transformative role of margin-based softmax loss func-
tions in face recognition. Traditional methods, which rely on a static, single margin,
may not effectively address diverse real-world data. In response, we introduce the
JAMsFace loss function, which offers flexible margin settings based on the class distri-
bution. Harnessing joint adaptive margins in both angle and cosine spaces, JAMsFace
refines feature discernibility and effectively addresses the challenge of class imbalance.
Comprehensive evaluations across various datasets validate the efficacy of JAMsFace,
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Abstract

signaling a shift towards more adaptive face recognition methodologies.
Finally, we present RobFaceNet, a network specifically designed for face recogni-

tion. Balancing computational efficiency with accuracy, RobFaceNet employs a multi-
feature approach and integrates the modified h-swish activation function. We further
enhance RobFaceNet with an attention-based bottleneck, incorporating either a CA
or SE attention module, to boost its facial feature discernment capabilities. Rigor-
ous evaluations against state-of-the-art face recognition models confirm RobFaceNet’s
superior performance, underscoring the potential of lightweight models in real-world
scenarios.

In conclusion, this thesis encapsulates a comprehensive journey through the complex
landscape of face recognition in dynamic and uncontrolled environments, specifically
within the context of human-robot interactions. Addressing fundamental challenges,
innovating within the scope of loss functions, and devising efficient network designs
underscores a clear roadmap toward achieving more seamless and natural interactions
between humans and robots.
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Deutsche Kurzfassung

Gesichtserkennung gilt als überlegene biometrische Technik zur Identitätsauthentifi-
zierung und findet umfangreiche Anwendungen in unserem täglichen Leben, wie Zu-
gangskontrolle, Finanzen, Unterhaltung und öffentliche Sicherheit. Trotz der weit ver-
breiteten Integration von Gesichtsbiometrie sind die meisten aktuellen Gesichtserken-
nungssysteme für Umgebungen maßgeschneidert, in denen eine genaue Steuerung den
Prozess der Erfassung von Gesichtsbildern bestimmt.

In den letzten Jahren haben rasante Fortschritte in den Techniken zur Gesichts-
erkennung sowohl im akademischen als auch im industriellen Bereich stattgefunden.
Diese Transformation wurde durch Schlüsselfaktoren vorangetrieben, darunter die Ver-
fügbarkeit umfangreicher annotierter Trainingsdatensätze, der Aufstieg von tiefen Ar-
chitekturen auf der Grundlage von Convolutional Neural Networks, die Erschwing-
lichkeit und Leistungsfähigkeit von Rechenressourcen und das Auftreten raffinierter
Verlustfunktionen. Trotz der erheblichen Fortschritte und Erfolge warten weiterhin
anhaltende Herausforderungen auf Lösungen.

Diese Dissertation trägt zur Gesichtserkennung unter realen Bedingungen bei, ins-
besondere im Zusammenhang mit der Interaktion zwischen Mensch und Roboter, aus
drei Perspektiven: der Verbesserung von Modellen, der Innovation von Verlustfunk-
tionen und dem Design von Netzwerken. Durch die Verbesserung der Fähigkeiten des
aktuellen Gesichtserkennungsrahmens, die Entwicklung innovativer Verlustfunktionen
und die sorgfältige Gestaltung von Netzwerkarchitekturen zielt diese Arbeit darauf ab,
die Herausforderungen bei der Erkennung von Gesichtern in dynamischen und unkon-
trollierten Umgebungen zu bewältigen, in denen Menschen und Roboter interagieren.

Erstens behandeln wir die Komplexitäten der Mensch-Roboter-Interaktion (HRI)
und betonen die Herausforderungen der Echtzeit-Gesichtserkennung. Mit Schwerpunkt
auf schneller Verarbeitung und hoher Genauigkeit verwenden wir leichte Convolutional
Neural Networks für unseren vorgeschlagenen Gesichtserkennungsrahmen. Die Inte-
gration der hochmodernen ArcFace-Verlustfunktion und der RetinaFace-Methode zur
Gesichtserkennung, kombiniert mit einem online Echtzeit-Gesichts-Tracker, ermöglicht
es unserem System, Herausforderungen wie unterschiedliche Beleuchtung, verschiedene
Kopfpositionen und Verdeckungen geschickt zu bewältigen. Durch die Zusammenfüh-
rung von Tracking-Daten mit erkannten Identitäten verbessern wir die Leistung des
Systems in nicht eingeschränkten Umgebungen und erzielen eine verbesserte Erken-
nungsgenauigkeit und Verarbeitungsgeschwindigkeit. Bewertungen innerhalb unseres
HRI-Systems, "RoSA", zeigen signifikante Fortschritte und weisen gleichzeitig Bereiche
für weitere Verbesserungen auf.
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Zweitens untersuchen wir die transformative Rolle von margenbasierten Softmax-
Verlustfunktionen in der Gesichtserkennung. Traditionelle Methoden, die auf einem
statischen, einzelnen Margin basieren, können vielfältige realweltliche Daten mögli-
cherweise nicht effektiv bewältigen. Als Reaktion darauf führen wir die JAMsFace
Verlustfunktion ein, die flexible Margin-Einstellungen basierend auf der Klassenvertei-
lung bietet. Durch die Nutzung gemeinsamer anpassbarer Margen sowohl im Winkel-
als auch im Cosinus-Raum verfeinert JAMsFace die Merkmalsunterscheidbarkeit und
bewältigt effektiv die Herausforderung der Klassenungleichgewicht. Umfassende Be-
wertungen in verschiedenen Datensätzen bestätigen die Wirksamkeit von JAMsFace,
was auf eine Verschiebung hin zu adaptiveren Methoden in der Gesichtserkennung
hinweist.

Schließlich präsentieren wir RobFaceNet, ein speziell für die Gesichtserkennung ent-
wickeltes Netzwerk. RobFaceNet balanciert Recheneffizienz und Genauigkeit aus und
verwendet einen multi-feature Ansatz und integriert die modifizierte h-swish Akti-
vierungsfunktion. Wir verbessern RobFaceNet weiter mit einem aufmerksamkeitsba-
sierten Engpass, der entweder ein CA- oder SE-Aufmerksamkeitsmodul enthält, um
seine Fähigkeiten zur Merkmalsunterscheidung im Gesicht zu steigern. Rigorose Be-
wertungen im Vergleich zu modernsten Gesichtserkennungsmodellen bestätigen die
überragende Leistung von RobFaceNet, was das Potenzial von leichten Modellen in
realen Szenarien unterstreicht.

Zusammenfassend fasst diese Dissertation eine umfassende Reise durch das komplexe
Gebiet der Gesichtserkennung in dynamischen und unkontrollierten Umgebungen zu-
sammen, insbesondere im Kontext der Interaktion zwischen Mensch und Roboter. Die
Bewältigung grundlegender Herausforderungen, die Innovation im Rahmen von Ver-
lustfunktionen und die Entwicklung effizienter Netzwerke unterstreichen einen klaren
Weg zur Erreichung nahtloserer und natürlicherer Interaktionen zwischen Menschen
und Robotern.
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1 Introduction

As the convergence of artificial intelligence and robotics continues to redefine the
boundaries of technological innovation, face recognition (FR) represents a key pillar
that bridges human-computer interactions (HCI). While FR, considered a behavioral
biometric, inherently possesses lower accuracy than physiological biometrics such as
fingerprint and iris recognition, its contactless nature has pushed it to the forefront
of biometric techniques. This advanced form of biometric recognition has evolved
from a science fiction concept to a widespread reality, impacting numerous sectors,
including mobile technology, surveillance systems, and, more prominently, human-
robot interactions (HRI).

FR refers to the technology that compares a human face in an image with a database
of facial images. This ability is typically divided into two primary tasks: face iden-
tification and face verification. The former, as depicted in Fig. 1.1a, the objective is
to identify the subject of a given face image by comparing it with a gallery set. In
contrast, the latter, illustrated in Fig. 1.1b, involves assessing a pair of facial images
to determine if they represent the same individual.

(a) Face Identification (b) Face Verification

Figure 1.1: Face Recognition Tasks. (a)Identification: Assigning an identity to a provided
face image. (b) Verification: Ascertain if two provided face images represent the
same subject.

With the advent of robots entering our daily lives, whether as assistants, compan-
ions, or collaborators, the ability of these robots to accurately recognize and respond to
humans in diverse settings becomes paramount. However, FR is not without its chal-
lenges, primarily arising from the dynamic, unpredictable real-world scenarios where

1



1 Introduction

traditional methods often fall short.
This chapter delves deep into defining these challenges, outlines clear objectives to

address them, and elucidates the contributions made by this research in enhancing
deep FR, especially within the vibrant and complex landscape of HRIs.

1.1 Motivation

In the dawn of the digital age, as technologies have rapidly evolved, FR has emerged
as a beacon of technological advancement. It is no longer the stuff of science fiction;
it is now an integral aspect of our daily digital interactions.

Evolution of Face Recognition. Our day-to-day technologies highlight our in-
creasing dependence on FR, from the simplicity of unlocking smartphones with a
glance to the complexities of advanced security systems. This widespread adoption
is powered by an array of state-of-the-art open-source techniques addressing FR’s
various components [48]. Its pivotal role in fields like security applications, criminal
investigations, and searching for missing persons emphasizes its societal significance
[100].

Human-Robot Interaction. Beyond identification, FR serves as a bridge for
mutual understanding between humans and machines. As robots evolve into potential
partners, caregivers, and colleagues, their ability to recognize and interpret human
facial cues becomes critical. This pivotal role of FR signifies its potential to enable
more intuitive HRIs.

The Challenge of the ’Wild’. Real-world environments are unpredictable. They
present challenges not seen in controlled lab settings: dynamic lighting conditions,
diverse facial expressions, occlusions, pose variation, and other complexities like hats,
glasses, and varying image quality [66, 67]. As robots step out of controlled envi-
ronments and into our homes, streets, and workplaces, the imperative for robust FR
capabilities in HRI becomes paramount. However, realizing this objective carries its
own technical challenges, especially when accounting for the resource constraints in-
herent to robotic platforms.

Motivated by these observations, this thesis seeks to address the challenges of
real-world FR, particularly in the dynamic environment of HRI.

1.2 Problem Definition

Face Recognition and Computational Complexity. Traditionally, the path to op-
timal FR involves training a model of considerable capacity on extensive datasets, as
MS1M [71]. This approach also leverages cutting-edge classification loss functions,
including but not limited to, CosFace [204], ArcFace [37], and Adaptiveface [132].
While models trained this way perform impressively on face benchmarks like LFW

2



1.2 Problem Definition

[90], CFP-FP [178], AgeDB-30 [154], IJB-C [149], and MegaFace [104], they require
significant computational resources and time due to the volume of training data and
the complexity of parameter tuning.

For real-world applications, many FR systems are deployed on devices with lim-
ited resources, from mobile phones to HRI platforms. Accommodating deep learning
models, primarily designed for high-resource environments, on such platforms poses
challenges. There is an inherent conflict between the computational and storage de-
mands of these sophisticated models and the capabilities of HRI platforms.

In light of this, while large datasets undoubtedly boost the performance of FR sys-
tems, striking a balance between efficiency and accuracy is crucial. This has catalyzed
research towards the development of lightweight networks for FR without compromis-
ing performance. Concurrently, innovating methods to speed up processing for each
component of FR is of paramount importance.

Face Recognition and Global Representations. Various factors like pose, illumina-
tion, occlusion, resolution, and aging influence FR performance. Despite CNN-based
representations achieving state-of-the-art performance, many existing models focus on
global representations, treating entire faces as inputs [37, 136, 164, 217].

In HRI environments, where large pose variations and significant occlusions are
common, global face appearances can vary drastically. Nevertheless, certain local
patches remain consistent and play pivotal roles in FR.

Approaches for extracting discriminative local features often categorize into landmark-
based and attention-based methods. Landmark-based techniques entail training dis-
tinct networks on facial components delineated by landmarks [42, 186]. However, the
detection of these landmarks may falter under specific conditions, such as extreme
poses or occlusions. On the other hand, attention-based methods, not reliant on facial
landmarks, autonomously identify discriminative facial parts [99, 209]. However, these
methods often focus on similar facial regions, overlooking other essential areas.

Therefore, capturing comprehensive local representations is vital. It ensures that
even if certain facial features are obscured or are similar across subjects, other features
can contribute effectively to recognition. Achieving this with minimal computational
complexity is essential, especially considering the constraints of HRI platforms.

Face Recognition and Long-tail Data. The quality of feature descriptors signifi-
cantly influences FR performance. Training and testing images often feature different
identities. Distance metrics directly interact with these features to ascertain if they
correspond to the same identity. While there has been significant advancement in FR
recently, a persistent challenge is the generalization of learned features. These fea-
tures often excel in the same domain as the training set but falter in unseen domains,
a challenge especially pronounced in wild settings due to domain shifts.

3
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Figure 1.2: Visualization of the long-tailed distribution in the MS-Celeb-1M dataset [71].

Real-world face datasets often exhibit a long-tailed distribution, as shown in Fig. 1.2.
Only a few identities are frequent (head data), with the majority being infrequent
(tail data). Training on such datasets often results in well-trained head identities, but
tail identities get overlooked, hindering the development of robust and generalizable
features, as shown in Fig. 1.3.

Earlier studies often tackled the long-tail distribution challenge by trimming the tail,
aiming for a more uniform class distribution. Nevertheless, this approach sometimes
inadvertently led to the loss of numerous valuable identities. According to Zhang et
al.’s research [260], preserving 40% of the tail data has been observed to significantly
enhance performance. However, this selective data retention approach has its down-
sides. Discarding tail classes poses a risk of missing out on essential information. It
is noteworthy that although tail classes are often trimmed, they can provide unique
insights that are not present in the head classes. These insights can play a critical role
in improving the performance of trained models.

Given this context, a pivotal challenge in this domain is determining an adaptive
margin penalty tailored to each class, which would greatly aid in creating robust and
generalizable features, thereby leading to superior FR models.
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Wrong Classification

Class distribution

Training samples distribution
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Training and testing samples of tail class
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Figure 1.3: Effects of Long-tailed Distribution on Face Recognition [108]. In the presence
of a static additive margin, the model is prone to errors when encountering new
test samples from a tail class. Specifically, tail classes necessitate a larger margin
(represented by m1) for accurate classification, whereas head classes require a
smaller margin (represented by m2).

1.3 Goal and Contributions
This thesis presents a series of significant contributions that collectively address the
challenges of deep FR within real-world scenarios. The key contributions are as follows:

1. Enhanced FR via Integrated Face Tracking for HRI (Model Enhance-
ment): One of the cornerstone contributions of this work is the introduction of
a state-of-the-art framework that cohesively incorporates FR and tracking within
the environment of HRI. Motivated by the dual goals of reducing computational
complexity and increasing recognition accuracy, this framework leverages the
power of data obtained from tracked faces, merging it with recognized identities.
Such integration enables the direct retrieval of user identity in sequential frames
from the face tracker’s metadata, eliminating the redundancy of reinitiating the
detection and recognition processes. Consequently, this enhances both the ef-
ficiency and performance of real-time HRIs. This innovative approach directly
addresses the challenge of FR and Computational Complexity, opening the door
to more responsive and resource-efficient interactive experiences.

2. Adaptive Feature Learning for Enhanced Face Recognition (Loss Func-
tion Design): A defining contribution of this work is the formulation of a novel
loss function, named JAMsFace. Rooted in the challenges presented by real-
world face datasets, characterized by their long-tailed distributions, JAMsFace
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is designed with precision to handle the disparities between frequently appearing
identities (the head data) and the vast majority of identities that are rarely seen
(the tail data). This is achieved through the incorporation of adaptive margins
in both angular and cosine spaces. This adaptive approach dynamically adjusts
penalty values based on the distribution of each class. The direct implication is
a faster model convergence and a marked enhancement in the model’s ability to
discriminate between classes, even in those under-represented domains. Through
this, JAMsFace directly addresses the challenges inherent in FR and Long-tail
Data, ensuring a balanced and efficient recognition capability across all identity
distributions.

3. Efficient and Robust Face Recognition Network (Network Design): A
seminal contribution of this work lies in the introduction of a lightweight and
robust CNN architecture designed to capture comprehensive and diverse local
face representations, striking an optimal balance between accuracy and computa-
tional efficiency. Our proposed RobFaceNet network employs a multi-feature ap-
proach and attention mechanisms, leveraging local and global features extracted
from input face images. This integration significantly enhances the accuracy of
FR tasks in various challenging conditions like pose variations and occlusions.
Additionally, we present a novel bottleneck structure with integrated attention
mechanisms to enforce the model to extract diverse local features, bolstering the
network’s robustness and elevating its facial feature extraction capabilities. This
architecture is primed to resolve the problems tied to FR and Global Represen-
tations while concurrently addressing the challenge of FR and Computational
Complexity.

In essence, by integrating our key contributions, the optimized network design (Rob-
FaceNet), the adaptive loss function (JAMsFace), and the model enhancement through
face tracking, we have developed a FR system that effectively balances computational
efficiency with high performance. This streamlined system directly addresses the main
challenges inherent in real-world FR, especially within HRI settings. With these inno-
vations, we aim to enable smooth, efficient, and accurate interactions between robots
and humans in different real-world scenarios.
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1.5 Outline

Our research journey begins with the design and implementation of a comprehensive
FR framework, specifically crafted for real-world HRI environments. The objective
of this initial phase is to assess the effectiveness and limitations of SOTA models in
real-world human-robot interaction (HRI) scenarios. Through empirical investigation,
we aim to gain valuable insights and findings that will facilitate the development of
novel approaches to address the identified challenges.

As the research progresses, we will explore the complexities of FR within HRI,
continuously refining and expanding our framework. This exploration covers a range
of advancements, from enhanced face tracking to the development of innovative loss
functions and network designs. Each development phase is carefully structured to
build upon the previous one, ensuring systematic and incremental advancement. The
primary objective of our research is to create sophisticated solutions that significantly
enhance robot capabilities in human-centric environments, focusing on everything from
tracking accuracy to computational efficiency. The detailed descriptions and outcomes
of these progressive enhancements, spanning the full range from improved face tracking
to sophisticated network design, will be extensively covered in the following chapters
of this thesis.

The thesis outline is illustrated in Fig. 1.4 as follows:

• Chapter 2 provides a comprehensive review of existing methodologies relevant
to our thesis, encompassing face detection, face alignment, face tracking, and
feature learning methods and face representation networks as well. This chapter
introduces representative approaches from each category, offering insights into
the prevailing trends within the field.

• Chapter 3 proposes an explanation of our FR system designed for optimiz-
ing HRI applications. Built on the solid foundations of lightweight CNNs, this
framework adeptly integrates face tracking methodologies to enhance real-time
recognition in HRI scenarios. Modularly packaged for easy HRI system integra-
tion, our design employs the ArcFace loss function combined with RetinaFace
for detection and a uniquely developed face tracker. Preliminary tests on our
HRI system, "RoSA", and the Wizard-of-Oz study dataset highlight a significant
improvement in recognition robustness. However, as our studies illuminate areas
of potential refinement, particularly in complex scenes, our future endeavors are
directed toward refining architectural elements to further enhance intuitive HRIs.

• Chapter 4 delves deep into our second major contribution: Adaptive Feature
Learning for Enhanced FR. Central to this chapter is the introduction of JAMs-
Face, our innovative loss function designed for FR. Instead of adhering to the
traditional fixed margins, JAMsFace dynamically adjusts margins based on the
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distribution of each class. This approach ensures a more nuanced understanding
of intra-class variations and a clearer differentiation between different classes. We
rigorously test and validate JAMsFace using esteemed benchmarks such as LFW,
CALFW, and MegaFace, with the results substantiating its superior efficacy and
robustness. This chapter underscores the importance of utilizing adaptable and
data-driven approaches in the field of FR, thereby suggesting potential avenues
for future investigation.

• Chapter 5 introduces our innovative contribution: the RobFaceNet architec-
ture, tailored for efficient and robust FR. Leveraging the foundational principles
of mobile network design, RobFaceNet ensures efficiency without compromising
performance. Central to its effectiveness is the integration of an attention-driven
bottleneck, which pinpoints and elevates robust facial features. Through its
multi-feature approach, the architecture excels in extracting comprehensive local
and global facial representations, enhancing its resilience and precision in FR
tasks. Such a design allows RobFaceNet to achieve a perfect harmony between
computational speed and superior accuracy. To validate the efficacy of Rob-
FaceNet, we subjected it to intensive evaluations against esteemed benchmarks.
The outcomes clearly approve its standing as a state-of-the-art FR solution op-
timized for real-world scenarios.

• Chapter 6 provides a comprehensive summary of all proposed approaches dis-
cussed in the preceding chapters, highlighting their key contributions and find-
ings. Furthermore, the chapter delves into potential avenues for future study in
the field of deep FR in unconstrained environments.
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Figure 1.4: Thesis Outline.
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2 Background and Literature Review

This chapter delves into the foundational principles and key scholarly works underpin-
ning our research on deep face recognition, with a particular focus on its application
within human-robot interaction (HRI). We start by exploring the development of face
recognition (FR) systems, beginning with basic preprocessing stages and progressing
to more sophisticated concepts like face tracking. This sequential investigation offers
insights into the complexities and challenges of developing and deploying modern FR
technologies. Throughout our journey, our objective is to provide the reader with a
comprehensive understanding, equipping them with the essential background neces-
sary to comprehend the innovative approaches presented in subsequent chapters.

2.1 Evolution of Face Recognition Systems

In the era of rapid technological advancement, the significance of biometric recognition
i.e. biometrics, has grown exponentially in modern security. Biometrics focuses on
the analysis and statistical evaluation of distinctive physical and behavioral attributes
exhibited by individuals [96]. Spanning a spectrum of techniques, ranging from finger-
print analysis and retinal scanning to voice identification and DNA recognition, FR
stands out as a leading contender. FR has attracted considerable attention from both
industry and academia [207], due to its notable advantages, such as:

1. Ease of Implementation: FR stands out for its straightforward deployment,
making it accessible and user-friendly.

2. Contactless and Passive Capture: This technology captures facial data with-
out requiring physical contact, enhancing convenience and hygiene.

3. Robust Tracking Capability: FR exhibits a strong aptitude for accurately
tracking and identifying individuals, bolstering its reliability.

4. Affordable Data Acquisition Devices: The equipment used for acquiring
facial data is cost-effective. This cost-effectiveness contributes to the overall
feasibility and accessibility of the approach.

At its core, FR aims to match a given human face with a stored facial profile by
evaluating differences in feature embeddings [90]. This versatile technology has found
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its footprints across diverse sectors, from the glitz of entertainment and precision-
targeted marketing campaigns to the critical realms of health diagnostics and national
security [100].

Replicating the human ability to recognize faces in machines has historically been a
challenge. This effort has evolved from early algorithms based on simple computations
to today’s advanced models powered by artificial intelligence and deep learning [118,
213].

FR is an intricate domain that encompasses a suite of related technologies synergisti-
cally working together to build a robust system. The overarching goal of these systems
is to identify or verify an individual based on their facial features. To accomplish this,
the system must process and analyze facial data, ensuring that the given input is
primed for optimal recognition. These technologies include image preprocessing, face
detection, face alignment, face representation, and feature extraction.

2.2 Preprocessing

In uncontrolled environments, individuals might not be consciously aware of a recog-
nition system operating in the background, automatically processing their facial data.
In such scenarios, image capturing devices, like surveillance cameras, autonomously
detect individuals from a distance, capture their face features, and then match these
against a database for identification. The success of this recognition process largely
depends on the quality of the captured image, which in turn is influenced by various
factors. These factors encompass the camera’s efficiency, the distance between the
subject and the camera, ambient lighting conditions, and the orientation of the indi-
vidual’s face relative to the camera, among others [72, 73]. Given these challenges,
preprocessing the captured image becomes paramount for improving recognition ac-
curacy.

There exists a multitude of image processing techniques tailored to enhance the
quality of captured images, subsequently boosting recognition rates [270]. Notable
methods include image normalization, denoising, filtering, histogram equalization, im-
age resizing and cropping. Leveraging these techniques can considerably augment the
quality of images and thus enhance the overall recognition accuracy [113, 155, 167, 196].

Typical preprocessing steps include noise reduction [196], which helps in eliminating
random variations or ’noise’ in images, and contrast enhancement [155] that improves
image visibility by adjusting the brightness and contrast levels. Image normalization
[113, 167] is another crucial step that ensures that all images fed into the system are
of a consistent size and scale, making it easier for subsequent algorithms to perform
their tasks effectively.

With the advent of deep learning, some preprocessing steps have been incorporated
directly into the network architecture, ensuring that the system learns the optimal
transformations required for high-performance recognition [102].
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2.3 Face Detection and Tracking

2.3.1 Face Detection

Face detection is the first step in the recognition pipeline, localizing faces within
images or video frames. The algorithm isolates regions of interest (ROIs) where faces
are likely present, directing subsequent procedures to focus on these regions. Face
detection techniques have evolved over the years, progressing from the traditional
Viola-Jones algorithm [200] to contemporary deep learning-based methods like the
Single Shot MultiBox Detector (SSD) [135] and RetinaFace [36].

2.3.1.1 Traditional Methods

The groundbreaking work by Viola and Jones [200] set the stage for many face detec-
tion techniques that followed [14, 125]. Their method harnessed Haar-like features,
utilizing AdaBoost to train a cascade of classifiers. The Deformable Part Models
(DPM) technique, another stalwart in traditional face detection, is elaborated upon
by Forsyth [56]. Its efficacy in face detection has been corroborated by Yan et al.
[238].

Despite their successes, traditional methods often grapple with challenges presented
by intricate real-world scenarios. Their primary shortcomings arise from a reliance
on hand-crafted features and the employment of shallow classifiers. These lack the
nuanced depth and adaptability essential for grappling with diverse conditions [152].

2.3.1.2 Deep Learning-Based Methods

The advent of CNNs revolutionized face detection, with numerous pioneering works
significantly enhancing its efficacy [21, 36, 120, 156, 253, 258]. Broadly, these ad-
vancements can be categorized into three groups based on their seminal technical con-
tributions: Cascade-CNN based models, Region-CNN (R-CNN) based models, and
single-shot detector models.

Cascade-CNN Based Models Cascade-CNN models adopt a cascade architecture
similar to Viola-Jones but substitute traditional classifiers with small CNN models.
These compact models are trained in stages to distinguish between face and non-face
regions, gradually removing non-face areas with increasing resolution.

Li et al. [120] introduced an early deep-learning model for face detection based
on the cascade-CNN architecture. This cascade-CNN functions across various reso-
lutions, rapidly eliminating background zones in low-resolution stages while meticu-
lously evaluating a limited set of candidates at the final high-resolution stage. To
bolster localization precision and curtail the candidate count in subsequent stages, a
CNN-based calibration phase post each detection stage was incorporated. Relative
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to state-of-the-art methods available at that time, their face detector was both adept
and efficient, boasting a processing speed of 14 FPS on a CPU for VGA-resolution
images and surging to 100 FPS with GPU support. This methodology was further
refined by Zhang et al. [253], who focused on joint face detection and alignment. They
pinpointed two deficiencies in Li et al.’s model: the ancillary computational overhead
during calibration and the overlooked correlation between face detection and align-
ment. To counteract these gaps, Zhang et al. postulated a novel online hard sample
mining strategy that enhances performance, eliminating the need for manual sample
selection. During the training phase, they introduced a data routing mechanism that
allows different layers to be trained with different types of samples. This allows the
deeper layers to concentrate on more challenging samples compared to the shallower
layers.

Qi et al. [168] also leveraged a cascaded architecture but used three stages of deep
convolutional networks to further improve both detection performance and model
generalization. Zeng et al. [249] sped up the cascade CNN face detector by generating
multi-scale face proposals using a pyramid network.

To conclude, the advantage of cascade-CNN models lies in their ability to strike a
good balance between speed and accuracy. The classifiers at earlier stages effectively
reduce the background while retaining the faces, and they do so with relatively low
computational cost. However, computational complexity can increase significantly
during the inference stage when processing images containing a large number of faces.

Region-Based CNN Models The region-Based CNN (R-CNN) models involve a
range of frameworks that incorporate generic R-CNN object detection algorithms.These
include but are not limited to Fast R-CNN [58], R-FCN [32], Faster R-CNN [173], and
Mask R-CNN [77].

Models such as Face R-CNN [203] and FDNet [250], are built upon the Faster R-CNN
[173] framework, a more advanced version of the original R-CNN that combines the
region proposal network (RPN) and Fast R-CNN into a single network, thus enhancing
efficiency. The RPN proposes candidate object bounding boxes, while Fast R-CNN
uses these proposals to classify the objects and refine their bounding boxes. By directly
applying the Faster R-CNN algorithm, both models can more effectively and efficiently
detect faces in images.

In addition to these models, the authors in [242] developed a different approach by
creating a specialized set of CNNs with varying structures based on the Faster R-CNN
[173] framework. This approach addresses the limitations of traditional face detection
models, which often struggle with detecting faces of varying sizes and orientations.
The different structures of the CNNs in this approach enable the detection of faces at
multiple scales, thereby improving the overall detection performance.

Another innovative model, CMS-RCNN [269], integrates contextual reasoning into
the detection process. Traditional object detection models often generate false posi-
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tives by incorrectly classifying non-face regions as faces. CMS-RCNN minimizes these
false positives by considering the surrounding context of each region proposal. For
example, if a region proposal is surrounded by other regions that are highly likely to
be faces, it increases the probability that the proposal is also a face.

The FA-RPN [157] model introduces an optimized anchor placement strategy to
face detection. Anchors are pre-defined boxes of different sizes and aspect ratios used
as starting points for detecting objects in an image. Traditional models use a dense
set of anchors, which increases the computational load. The optimized anchor place-
ment strategy of FA-RPN reduces the number of anchors required for face detection,
thereby decreasing the computational load and improving detection speed while still
maintaining high detection accuracy.

Face R-FCN [212], applies the R-FCN [32] algorithm directly. R-FCN is an object
detection algorithm that divides an object into several parts and then aggregates the
score of each part to get the final detection score. This approach allows Face R-FCN
to achieve high detection accuracy while maintaining a relatively low computational
load compared to other models that do not divide the object into parts. While [268],
develops an Expected Max Overlapping (EMO) score to explain the capability of an-
chors in capturing faces. The EMO score considers the balance between recall and
precision to optimize the anchor settings. This optimization leads to better detec-
tion performance by reducing the number of false positives and improving detection
accuracy.

MaskFace [243] model leverages the Mask R-CNN [77] framework to detect faces and
predict facial landmarks. The Mask R-CNN model is an enhanced version of the Faster
R-CNN model, which has a branch for the purpose of predicting segmentation masks
alongside bounding boxes. By using Mask R-CNN, MaskFace can not only detect
faces but also predict the location of facial landmarks, such as the eyes, nose, and
mouth. This capability is pivotal for various applications, including facial expression
recognition and face alignment.

To conclude, while R-CNN based face detection models have significantly advanced
in reducing false positives and predicting facial landmarks, they still face challenges
in real-time applications due to high computational requirements [169, 247], and in
accurately detecting faces in challenging conditions such as low light, occlusions, and
extreme poses.

Single Shot Detector Models As object detection methodologies evolved, the realm
of face detection witnessed a transformative shift with the advent of Single Shot Detec-
tor (SSD) and RetinaNet [127] models. Their architecture is fundamentally different
from two-stage detectors. Instead of relying on subsequent R-CNN, single shot detec-
tors directly locate faces after the RPN, resulting in a more streamlined and efficient
process. Moreover, while the computational complexity of two-stage detectors can
be greatly influenced by the number of faces in an image, the single-shot framework
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maintains consistent computational efficiency during inference.
Utilizing the SSD architecture, the Single Shot Scale-invariant Face Detector (S3FD)

[258] effectively detects small faces. This is accomplished by employing a face detection
strategy that ensures fairness in scale, utilizing a scale compensation anchor matching
technique to improve the accuracy of identifying small faces, and including a max-out
background label to minimize false positives associated with small faces.

FaceBoxes [257] serves as another SSD-based face detection model that real-time
detection, even on CPU-based systems. This model also innovates an anchor identifi-
cation strategy, ensuring a balanced anchor distribution across different layers. This
balance proves particularly effective in improving the detection of smaller faces.

EXTD [245] distinguishes itself in the realm of compact models by employing an
iterative approach that involves the reuse of a common lightweight and shallow back-
bone network. This approach enables the reduction of model size while maintaining
optimal performance. Meanwhile, SSH (Single Stage Headless face detection) [156]
achieves both speed and compactness by removing the fully connected (FC) layers
from the classification network. It also boasts scale invariance, detecting multi-scale
faces in one pass and employing filters on each prediction head to broaden receptive
fields and assimilate context information.

To enhance detection accuracy specifically for faces that are partially obscured,
FAN [205] incorporates an anchor-level attention mechanism into the RetinaNet [127]
framework. DSFD [121] introduces an innovative feature enhancement module com-
bined with an improved anchor matching technique, aiming to boost discernibility and
provide a superior starting point for the regressor. SFPD [55] utilizes a joint convo-
lutional neural network backbone that incorporates shared feature maps to provide
real-time detection of both faces and humans.

RetinaFace [36] excels in pixel-wise face localization across diverse scales. It com-
bines face bounding box prediction, 2D facial landmark localization, and 3D vertex
regression into a unified multi-level face localization task. This integration benefits
from mutual feedback among these tasks during training, resulting in a significant
accuracy improvement for face detection. Moreover, its lightweight backbone, enables
RetinaFace to achieve real-time performance even on a single CPU core.

To conclude, Single Shot Detector models represent a significant advancement in the
field of face detection. Their ability to maintain consistent computational efficiency
regardless of the number of faces in an image makes them particularly promising
for real-world applications. However, continuous innovation is crucial to overcome
persistent challenges in detecting faces under diverse and challenging conditions.

2.3.2 Face Tracking

Face tracking, a subset of Multiple Object Tracking (MOT), has garnered substantial
attention within the realm of computer vision. In domains such as surveillance or HRI,
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where the primary input is often a video stream capturing one or multiple faces, it is
imperative to accurately track each face to extract information critical for FR. Real-
izing the intrinsic connection between tracking and recognition, some methodologies
have sought to unify these operations, yielding a more cohesive process [109].

To provide more detail, face tracking revolves around pinpointing a moving face or
faces across a temporal span. It is initiated by face detection, which can be either
human-assisted or automated. Once detected, the system traces the face’s movement
across succeeding video frames by evaluating its motion patterns. It is worth distin-
guishing this from face detection, which merely ascertains the location and dimensions
of a face within a single frame. Conversely, face tracking maintains a continuous focus
on the same face through numerous frames, preserving its identity [111].

At its core, face tracking is anchored by three distinct methodologies: feature-based,
model-based, and learning-based. The feature-based face tracking is rooted in the prin-
ciple of distinguishing the target (in this case, a face) from its background based on
various discriminative features. Recognizing the inherent nature of video sequences,
where deviations between consecutive frames are usually slight, this method exploits
attributes like points, colors, textures, edges, and shapes. Each of these attributes
consistently exhibits fluid motion dynamics across frames, ensuring a stable repre-
sentation of the target face. Illustrating this, Wei et al.’s research [215] introduced
an innovative technique that utilized particle filtering with the mean-shift algorithm
tailored for face tracking. By leveraging motion segmentation, this method rectifies
estimation errors in the particle filter, especially with non-rigid targets. A subsequent
technique by Hwang et al. [93] utilized the mean shift algorithm to pursue face tracking
via color distribution, thereby addressing challenges like occlusions, lighting changes,
and similar background color distributions. Contreras et al. [27] and Huang et al. [88]
also made significant strides in this domain, presenting novel methodologies. However,
despite these advancements, the feature-based approach can sometimes grapple with
intricacies in motion patterns, leading to suboptimal tracking results.

On the other hand, model-based face tracking achieves its aim via model match-
ing. It encompasses models spanning from one-dimensional line graphs to intricate
three-dimensional solid models [5, 26, 81, 126, 194]. Tewari et al. [194] introduced
a deep convolutional autoencoder for model-based face tracking that accurately en-
codes and reconstructs 3D facial features from color images. Despite its popularity,
the MeanShift model [26] struggles to adaptively adjust the tracking window size,
leading to potential target loss. The CamShift model [5], an extension of MeanShift,
incorporates color to refine tracking over continuous image sequences and dynami-
cally modifies its tracking window size. Meanwhile, the Kalman filter predicts target
motion based on a Gaussian distribution [126]. Shifting focus to Henriques et al.’s
work [81], they formulated the Kernelized Correlation Filter (KCF) algorithm. This
algorithm amalgamates correlation filters, multi-channel HOG features, and Gaussian
kernel functions. By employing cyclic shift combined with the fast Fourier transform
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during classifier training, KCF significantly bolsters realtime tracking performance.
While KCF is proficient in tracking targets with deformations, motion blurs, complex
backgrounds, and rotations, it grapples with challenges posed by swift motion and
scaling changes. Despite the accuracy of model-based methods, the complexity of
human faces necessitates extensive computation, impacting realtime performance.

Recently, several deep learning (DL)-based techniques have emerged, treating face
tracking as a binary classification task: distinguishing faces from non-faces. Wang et
al. [208] utilized a stacked auto-encoder model to learn facial feature variations and
incorporated an additional classifier for tracking. Meanwhile, Doulamis et al. [47]
offered a multi-layered DL model, updating its parameters dynamically to suit chang-
ing conditions. Despite these advances, challenges persist due to uncertainties in face
positions, lighting, and occlusions, often resulting in reduced accuracy. In addressing
these challenges, the SORT (Simple Online and Realtime Tracking) [10] algorithm
presents a pragmatic approach by using a Kalman filter to predict the movement of
bounding boxes between frames. Its successor, Deep SORT [220], enhances this by
incorporating deep learning features to associate detection responses between frames.
This integration assists in managing short-term occlusions or other challenges in the
visual domain.

To conclude, achieving a balance between the performance of face tracking algo-
rithms and the demand for low-latency responses remains a pressing concern.

2.3.3 Effect on the Face Recognition Systems

Face detection serves as the primary step in any FR system, paving the way for subse-
quent stages such as face alignment and representation. The accuracy of the bounding
box generated during detection can profoundly influence the efficiency of the subse-
quent alignment phase. Two primary challenges arise in this context: the potential
omission of parts of the facial region and the inclusion of excessive background context
within the bounding box. These discrepancies can compromise the subsequent steps
in the process. Comprehensive research, as indicated by studies such as [234] and [36],
attests to the overarching influence of face detection on face alignment and recogni-
tion. Specifically, [234] demonstrates that misaligned bounding boxes can deteriorate
the performance of landmark localization. Concurrently, [36] emphasizes the role of a
resilient face detector in enhancing FR accuracy.

In essence, the efficacy of face detection deeply linked to the subsequent phases of
face alignment and representation. As such, ensuring the precision of face detection
is paramount when striving to develop a robust FR system.
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2.4 Face Alignment

Upon detection, face alignment becomes the next crucial stage. It is a significant field
of study within the realm of computer vision [229]. The process of face alignment
plays a vital role in facilitating several advanced facial analysis tasks, including FR
[148], expression recognition [123], and facial attributes analysis [264]. Face alignment
is a commonly employed technique in FR systems [37, 106] to enhance their resilience
against variations in face orientation, position, and scale. The face alignment pro-
cedure autonomously determines the precise location of contextual facial landmarks,
such as the eyes, nose, and mouth, within a provided facial image or video frame.

The field of face alignment in 2D images boasts a rich history within computer vision.
Numerous methods have been introduced to address this challenge, each achieving
varying levels of success. For example, holistic approaches leverage the entirety of a
facial image to predict landmarks, typically using Active Appearance Models (AAM)
[28] or Active Shape Models (ASM) [29] for facial shape recognition.

In contrast, Constrained Local Models (CLM) [30] treat each landmark, or a set of
landmarks, as distinct entities, predicting each one based on its localized appearance.
These models also implement spatial constraints to yield coherent results. While both
holistic and CLM methodologies have proven successful in facial landmark localiza-
tion within constrained contexts, they face hurdles in unconstrained scenarios. These
challenges arise due to various facial appearance variations, such as pose, expression,
illumination, image blur, and occlusion.

To address these challenges, the Cascaded Shape Regression (CSR) technique [43,
54], equipped with handcrafted features, has gained prominence. CSR functions it-
eratively, progressively refining shape or landmark predictions. Each iteration aims
to rectify errors from the preceding steps. While CSR-based models [18] can achieve
precise facial landmark localization, they are often limited by their reliance on hand-
engineered features like SIFT (Scale-Invariant Feature Transform) [142], HOG (His-
togram of Oriented Gradients) [33], and LBP (Local Binary Patterns) [2].

With deep learning’s advent, CNNs and other advanced architectures, such as auto-
encoder [218, 252] and recurrent neural networks (RNN) [231], have been employed
in face alignment, demonstrating enhanced efficacy by extracting hierarchical features
for robust landmark prediction. From an overall perspective, these deep learning
approaches to face alignment can be divided into coordinate regression-based and
landmark heatmap-based.

2.4.1 Coordinate Regression-based Methods

Coordinate regression-based models aim to directly predict the coordinates of facial
landmarks from the input face image. Leveraging deep architectures allows these
methods to abstract rich hierarchical features, which leads to robust landmark predic-
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tions even under challenging scenarios. These models, in essence, view face alignment
as a regression problem where the objective is to map the input facial features to a
set of continuous coordinate values representing landmark positions [59].

To ensure precision, many methodologies follow a coarse-to-fine strategy. Promi-
nently, cascaded regression techniques [144, 184, 252] and RNN [195, 231] are uti-
lized to incrementally refine landmark coordinate predictions. Furthermore, multi-task
learning is often harnessed, synergizing landmark localization with associated facial
tasks. This includes but is not limited to, face detection [36, 170, 237, 253] and facial
attribute recognition [170, 235].

Coordinate Regression-based face alignment techniques can be divided into two
primary categories: local-based and global-based models.

Local-based approaches can be visualized as an advanced iteration of shape-index
features built on deep learning paradigms. An illustrative example is the mnemonic de-
scent method presented by [195]. This approach efficiently utilizes information across
all cascade levels by integrating a memory unit that shares information among them.
Consequently, the network can extract features tailored for predicting facial land-
marks. However, these methods have a drawback, as the local shape-index features
anchored in deep learning are still vulnerable to inaccuracies arising from initial land-
mark estimates or the predefined mean shape

On the flip side, global-based models take a more encompassing approach. An entire
facial region, captured as an image patch, is presented to the regression CNN, which
outputs the 2D coordinates of facial landmarks. One of its benefits is that it prevents
the need for pre-defined landmark initialization. For instance, Sun et al. [184] laid
out a meticulously structured three-level network. The overarching principle here is
to process the entire image as an input and yield facial key points as the output. By
doing so, they managed to harness both the textural context and inherent geometric
constraints in the image, making it conducive for pinpointing each key point. The
obtained model remains resilient against challenges such as occlusions, significant face
orientations, and extreme lighting variations. In addition to these models, regression
methodologies tend towards employing loss functions such as L2 [46, 144]. Although
they’re known for their precision, they are sensitive to outliers.

In response to these challenges, Rashid et al. [172] used the smooth L1 loss function
instead of L2. Feng et al. [53] introduced the "Wing loss" function, specifically designed
to enhance the influence of samples with minor to moderate errors. While many of
the mentioned techniques focus on facial landmark localization in still images, there
is an evident need to harness temporal information across frames when dealing with
video-based face landmarks. Addressing this, the Two-Stream Transformer Networks
(TSTN) [131] crafted a dual-stream architecture. This design not only identifies the
landmark in an individual frame but also maintains temporal consistency across frames
for refined results. Additionally, Dong et al. [46] presented a novel unsupervised
strategy termed Supervision-by-Registration (SBR). This method capitalizes on the
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optical flow consistency of identified landmarks during video data training.

2.4.2 Heatmap Regression-based Methods

Rather than directly predicting landmark coordinates as in coordinate regression, the
heatmap regression-based methods predict heatmaps for each landmark instead of the
direct x,y coordinates on the input image.

Newell et al. [159] introduced a stacked hourglass (HG) network for human pose
estimation, which achieved significant success. Recognizing the similarities between
human pose estimation and facial landmark localization, several studies [15, 39, 91,
211, 240] have leveraged the stacked HG network for facial landmark localization,
resulting in notable performance improvements. Bulat et al. [15] replaced the basic
block with a multi-scale version, enabling the network to capture more information
and further enhance its performance.

Various effective architectures have been developed for heatmap regression, as demon-
strated in studies such as [34, 45, 151, 206]. For example, DeCaFA [34] integrates
stacked U-nets with landmark-wise attention maps to preserve spatial resolution while
extracting local information. Another noteworthy approach is the High-Resolution
Network (HR-Net) [206], which is specifically tailored to maintain high-resolution rep-
resentations, offering advantages for tasks involving landmarks.

Wang et al. [211] proposed the adaptive wing loss to address the limitations of wing
loss [53], namely the issue of pixel distribution discrepancy between the foreground and
background in heatmap regression. This variant adjusts to the ground-truth heatmap
pixels, penalizing foreground pixels more than the background. Additionally, PropNet
[91] introduces a variation termed "focal wing loss". It adapts the penalty for incorrect
predictions and adjusts the loss weight for each sample in every batch during training,
thereby addressing data imbalance concerns.

Multiple techniques have been devised to tackle the difficulties presented by specific
facial landmarks caused by their unclear definitions or occlusions [22, 115, 139, 226,
272]. For instance, Wu et al. [226] introduced the facial boundary heatmap, which
offers a clear representation of facial geometric structure, helping to reduce semantic
ambiguities. In their work [227], they advocate for the use of boundary lines as
geometric structures for human faces, effectively mitigating the inherent ambiguities
associated with facial landmark definitions. Another approach to tackle semantic
ambiguities, treated as noisy annotations, is proposed by Liu et al. [139]. They
present a probabilistic model to estimate the actual landmark location.

Recent advancements in facial landmark detection have focused on predicting de-
tection reliability [22, 115]. For instance, LUVLi [115] introduces a framework that
not only determines the landmark position but also estimates uncertainty and vis-
ibility simultaneously. This comprehensive approach utilizes additional information
from uncertainty and visibility factors, resulting in improved accuracy across various

22



2.5 Face Recognition

datasets.

2.4.3 Effect on the Face Recognition Systems

Face alignment is pivotal in optimizing FR systems. The primary purpose of alignment
is to adjust facial images to predefined spatial coordinates using predicted landmarks,
ensuring the face representation model learns from an organized layout. However, the
alignment process can be compromised if these landmarks are inaccurately predicted,
causing the facial image to shift from its optimal layout. Studies conducted by Guo
et al. [68] and Deng et al. [36] underscore this concern, noting that poor landmark
localization can lead to shift variations. Conversely, recognition accuracy is markedly
improved when alignment is robust across different facial poses.

Additionally, the strategy for face alignment, encompassing elements like the count
of facial landmarks, the dimensions to which an image is cropped, and the extent of
vertical adjustments, plays a significant role in determining FR performance. [236]
suggests that a well-conceived alignment approach can enhance recognition across
various contexts. It is also worth noting that the right degree of spatial transforma-
tion is crucial during alignment. Insufficient and excessive adjustments can introduce
potential disturbances, as findings in [214] indicate.

2.5 Face Recognition

FR, a fundamental task in pattern recognition and machine learning, aims to identify
individuals based on their unique facial features. This topic encompasses two primary
tasks: face verification and face identification. Face verification is the process of
determining if two face images belong to the same person. Face identification, on the
other hand, goes farther by recognizing a specific face (known as the probe) within a
set of known faces (known as the gallery). Additionally, the process of open-set face
identification introduces complexity by initially determining if the face is a member
of the gallery.

Despite its significance, FR faces numerous challenges, from low-resolution images
and varying poses to complex lighting conditions and motion blur. These complica-
tions can significantly degrade recognition accuracy.

The journey of FR, depicted in Figure 2.1, began earnestly in the early ’90s with
the introduction of the Eigenface method [197]. Early efforts took a holistic approach,
attempting low-dimensional representations through techniques like linear sub-space
[9, 153] and sparse representation [224, 254]. However, these struggled with unpre-
dictable facial changes.

By the turn of the millennium, there was a noticeable shift to local feature-based
recognition. Methods utilizing Gabor [129] and LBP [2] gained prominence, offering
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Figure 2.1: Evolution of face recognition techniques [207]. Holistic approaches were preva-
lent in the 1990s, giving way to handcrafted local descriptors in the early 2000s
and local feature learning in the late 2000s. A significant paradigm shift oc-
curred in 2014 with the introduction of DeepFace [191] and DeepID [186].

greater robustness against variances. However, the limitations of these handcrafted
features became evident in their precision.

The 2010s marked another paradigm shift, this time towards learning-based local
descriptors [19, 20, 119]. The focus shifted from solely feature extraction to refining
local filters and building more effective encoding codebooks for better compactness.
Despite these advances, challenges persisted, especially with complex facial variations.

In summary, while traditional methods have incrementally improved accuracy, they
have often proven inadequate when confronting the wide range of facial changes en-
countered in real-world scenarios.

In 2012, the advent of AlexNet’s victory in the ImageNet competition marked a
pivotal moment in computer vision, highlighting the capability of deep learning [114].
By 2014, the surge of deep convolutional neural networks changed the dynamics of the
FR domain. DeepFace [191], utilizing a 9-layer CNN on a vast dataset of 4 million
facial images, achieved state-of-the-art (SOTA) performance on the LFW benchmark
[90] and, for the first time, rivaled human-level recognition in uncontrolled conditions.
This breakthrough catalyzed a comprehensive shift towards deep-learning research in
FR [177, 185–187, 217].

In the following sections, we provide a comprehensive review of deep face represen-
tation learning methods, focusing on two primary dimensions: network architectures
and discriminative loss functions.

2.5.1 Network Architecture

The evolution of network architectures in deep FR has largely paralleled the strides
made in deep object classification. From the inception of AlexNet to the rise of
SENet, the transformation has been rapid and remarkable. Figure 2.2 chronologically
illustrates the seminal architectures that have influenced both deep object classification
and FR, emphasizing their symbiotic progression.
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2013 2014 2015 2016 2017

AlexNet
(12/2012)

DeepFace
(7/2014)

VGGNet
(9/2014)

VGGFace
(9/2015)

FaceNet
(6/2015)

GoogleNet
(6/2015)

ResNet
(6/2016)

2018 2019

SphereFace
(7/2017)

SENet
(9/2017)

VGGFace2
(11/2017)

ArcFace
(6/2019)

CosFace
(6/2018)

2020

FANFace
(2/2020)

MobileNetV2
(6/2018)

MobileFaceNet
(MobileNetV2)

SqueezeNet
(6/2016)

2021 2022 2023

SqueezeFaceNet
(SqueezNet)

ShuffleNets
(6,9/2018)

ShuffleFaceNet
(ShuffleNetV2)

VarGNet
(7/2019)

VarGFaceNet
(VarGNet)

GhostNet
(6/2020)

GhostFaceNets
(GhostNet)

PocketNet
(4/2022)

MixConv
(7/2019)

MixFaceNets
(MixConv)

2024

RobFaceNet
(6/2024)

Figure 2.2: Evolution of network architectures in object classification and face recognition
(FR). The top row displays common network architectures used in object classi-
fication, while the bottom row shows FR models that apply these architectures.
FR models utilizing the same architecture are consistently represented by rect-
angles of the same color.

Initially, deep FR architectures were relatively straightforward with fewer convolu-
tional layers, as seen in VGGFace [164]. The landscape shifted with the advent of
GoogleNet [190], a more sophisticated 22-layer architecture. Its inception structure
amalgamated multiple feature maps, a concept later adopted by FaceNet [177] for FR.

The Residual Network (ResNet) [79] marked another significant evolution. With
its novel residual connections, ResNet enabled the training of much deeper networks,
often ranging from 18 to an astounding 152 layers. ResNet soon established itself as
an essential tool in many visual tasks, FR being a primary application. The introduc-
tion of the Squeeze and Excitation network (SENet) [86] was another leap forward.
It seamlessly integrated the SE block, thereby facilitating the automatic weighting of
convolution channels. Notably, the SE block amplifies model efficacy without intro-
ducing considerable complexity. However, the quest for deeper architectures brings
its own challenges, primarily the exorbitant computational demands and increasing
memory requirements. Consequently, deploying SOTA deep CNN models in real-time
contexts, especially on resource-limited platforms like autonomous vehicles, robots,
healthcare devices, and mobile devices, remains a formidable challenge.

In response, research pivoted towards creating efficient deep networks without sac-
rificing accuracy. This resulted in the emergence of more lightweight architectures, in-
cluding MobileNets [83, 84, 174], SqueezeNet [94], ShuffleNets [145, 259], CondenseNet
[89], EfficientNet [192], VarGNet [256], Ghostnet [74] and MobileOne [199]. These
networks reduced memory and computational demands via strategies like convolution
factorization, bottleneck convolution introduction, and parameter adjustments. Simul-
taneously, there is an increasing focus on improving existing networks by employing
methods such as compressing pre-trained networks, training of smaller networks, or
knowledge distillation using techniques like Huffman coding, quantization, and prun-
ing [24, 50, 60, 75, 225, 255].

The recent wave in the deep learning arena underscores a momentum towards craft-
ing efficient neural networks expressly for FR, and these networks have demonstrated
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impressive accuracy [3, 6, 23, 146, 228, 239]. Without compromising the number of
parameters in the model, several researchers are breaking new ground with compact
embeddings from large face datasets [239]. Others have adapted proven lightweight
mobile architectures, infusing them with significant alterations to enhance both their
discriminative power and generalization capabilities in FR tasks [3, 6, 23, 146]. These
cutting-edge FR models strike a balance between compactness and computational
efficiency, addressing the shortcomings of traditional mobile networks by elevating
accuracy in FR tasks.

Presently, the research objective emphasizes the development of innovative blocks
to elevate network representation by capitalizing on feature maps. Simultaneously,
there is an overarching trend towards engineering lightweight designs that harmonize
efficiency and performance, ensuring adaptability even on resource-limited platforms.

2.5.2 Discriminative Loss Functions

2014 2015 2016 2017 2018

DeepFace
(softmax)

2019 2020 2022

DeepID
(softmax)

DeepID2
(contrastive loss)

DeepID2+
(contrastive loss)

FaceNet
(triplet loss)

DeepID3
(contrastive loss)

VGGFace
(triplet+softmax)

L-softmax
(large margin)

Center loss
(center loss)

TPE
(triplet loss)

TSE
(triplet loss)

Marginal loss

L2 softmax
(feature

normalization)

COCO loss
(feature

normalization)

Range loss

A-softmax
(large margin)

N-pair loss
(N-pair loss)

AMS loss
(large margin)

ArcFace
(large margin)

CosFace
(large margin)

Ring loss
(feature

normalization)

2021

CurricularFace
(mv-softmax loss)

Circle loss
(circle loss)

MV-softmax

SphereFace2
(large margin)

MagFace
(large margin)

SFace
(large margin)

ElasticFace
(large margin)

GB-CosFace
(large margin)

2023

JAMsFace
(large margin)

AdaCos
(large margin)

NormFace
(feature

normalization)

AdaptiveFace
(large margin)

RegularFace
(large margin)

Fair loss
(large margin)

Figure 2.3: Timeline of Loss Function Evolution in Deep Face Recognition. Beginning
in 2014 with the introduction of DeepFace [191] and DeepID [186], we ob-
served the dominant role of Euclidean-distance-based losses, including con-
tractive loss, triplet loss, and center loss. 2016 and 2017 marked the rise of
large-margin feature learning, prominently with L-softmax [137] and A-softmax
[136]. Subsequently, 2017 also saw a surge in performance using feature and
weight normalization, leading to innovations in softmax variations. The figure’s
color-coded rectangles categorize these advancements: deep methods employing
softmax (red), Euclidean-distance-based losses (green), angular/cosine-margin-
based losses (yellow), and modified softmax approaches (blue).

Despite the improvements in accuracy achieved through CNNs, one of the critical
components determining their effectiveness remains the choice of the loss function.
Particularly in FR, loss functions serve a dual purpose: they guide the optimization
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of network weights and crucially shape the discriminative capability of the extracted
features. This ensures that facial features from the same identity are clustered closely
while distinctly separating those from different identities. Recent advancements in
this domain have been marked by introducing specialized loss functions tailored for
FR, as illustrated in Fig. 2.3.

2.5.2.1 Euclidean-distance-based Loss

In deep metric learning, the contrastive loss [182, 183, 187, 188, 244] and the triplet loss
[41, 134, 164, 175, 177] stand out as pivotal Euclidean-distance-based loss functions.

The contrastive loss operates on pairs of face images. Its primary objective is to
decrease the distance between images of the same identity (positive pairs) and increase
the distance between images of different identities (negative pairs). The formulation
for the contrastive loss is as follows:

Lcontra = yij max
(
0, ∥xi − xj∥2 − ε+

)
+ (1− yij) max

(
0, ε− − ∥xi − xj∥2

)
, (2.1)

where yij = 1 means xi and xj are matching samples and yij = 0 means non-matching
samples. x is the feature embedding, ε+ and ε− are margin parameters of positive pairs
and negative pairs, respectively. DeepID2 [182] adeptly merges the softmax loss (em-
ployed for face identification) with the contrastive loss (utilized for face verification),
creating a more discriminative face embedding suitable for FR tasks. This approach
was later enhanced in DeepID2+ [187] and DeepID3 [183]. Nevertheless, a primary
challenge in using contrastive loss remains: selecting appropriate margin parameters
can be intricate and non-intuitive.

On the other hand, the triplet loss goes a step further by considering triplets of
images: an anchor, a positive sample (same identity as the anchor), and a negative
sample (different identity from the anchor). The objective is to ensure that the anchor
is closer to the positive sample than the negative one in the embedding space. The
triplet loss is formulated as:

Ltriplet = ∥xa
i − xp

i ∥
2
2 − ∥x

a
i − xn

i ∥
2
2 + ε, (2.2)

where xa
i , xp

i and xn
i denote the anchor, positive and negative samples, respectively. x

is the feature embedding and ε is the margin.
Google introduced the triplet loss in FaceNet [177] to train feature embeddings

within a Euclidean space. They later refined this approach with various triplet se-
lection strategies to enhance performance. Building on FaceNet’s foundation, [175]
and [176] developed a linear projection for constructing the triplet loss. Additionally,
[41, 134, 267] and [31] have combined the strengths of triplet loss and softmax loss.
Typically, this involves initially training networks with softmax and then fine-tuning
them using triplet loss to achieve improved convergence.
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The contrastive and triplet losses can occasionally face high training complexity and
instability issues, primarily arising from the selection of effective training samples. In
response to these issues, researchers have sought simpler and more direct alternatives.
One notable approach is the Center loss [217]. Its primary purpose is to identify a
central point for each identity and subsequently impose penalties for any deviations
of the features from their corresponding class centers. It can be expressed as:

Lcenter = ∥xa
i − xp

i ∥
2
2 − ∥x

a
i − xn

i ∥
2
2 + ε, (2.3)

where cyi represents the center of deep features for the yi-th class, while xi refers to the
i-th deep feature that belongs to the yi-th class. Building on the concept introduced
by the center loss, various similar auxiliary loss functions [40, 230, 260] have been
developed to address specific challenges. For instance, the Range loss [260] focuses on
the harmonic mean of samples with the most extensive intra-class range, addressing
issues related to long-tailed data. To stabilize the training of centers, the center-
invariant loss [230] was introduced, penalizing discrepancies between centers. Deng et
al. [40] devised a margin loss targeting the most distant intra-class and the closest
inter-class samples. However, a common challenge with the center loss and its variants
is the introduction of numerous additional parameters. This can lead to a substantial
increase in GPU memory usage, particularly as the count of identity labels expands
during the training process.

2.5.2.2 Margin-based Loss

FR can be viewed as a multi-class classification problem in the training phase. Each
class represents an identity, with multiple face samples corresponding to the same
identity. A prevalent approach for classification tasks is the categorical cross-entropy
loss, commonly coupled with a softmax activation, known as the Softmax loss. This
loss is mathematically expressed as:

Lsoftmax = − 1
N

N∑
i=1

log Pi = − 1
N

N∑
i=1

log eW T
yi

xi+byi∑n
j=1 eW T

j xi+bj
. (2.4)

Here, the primary goal of the training process is to optimize the probability variable
Pi, which represents the projected probability that the embedded feature xi corre-
sponds to the true classification. Within the training dataset, the aggregate count of
classes is denoted as n, the dimension of the embedding feature is represented as d,
and the batch size is denoted as N . The i-th training sample contains an embedded
feature denoted as xi ∈ Rd, which corresponds to the class yi. The weight W ∈ Rd×n

has its j-th column represented by Wj ∈ Rd. The bias is denoted as bj.
Building on the Softmax (Eq.2.4), NormFace [202] and COCO loss [138] emphasized

the importance of normalization, employing L2 normalization constraints on both
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feature vectors and weights, while omitting the bias term bj. The insertion of a scaling
factor s effectively re-scales the cosine similarity, transforming Eq.2.4 to:

Lnorm = − 1
N

N∑
i=1

log es cos(θyi)

es cos(θyi) + ∑n
j=1,j ̸=yi

es cos θj
, (2.5)

where θj signifies the angle between weight Wj and feature xi.

To enhance both intra-class compactness and inter-class distinction, L-softmax [137]
introduced an angular multiplier m > 1 to the cosine term, expanding the decision
boundary. Additionally, it utilizes a piece-wise function to address the non-monotonic
nature of the cosine function. On the other hand, A-softmax [136] normalized weight
vectors |W | = 1 by L2 norm, ensuring they are situated on a hypersphere, thus
addressing boundary imbalances between classes. The A-softmax loss (SphereFace)
can be written as:

Lsphereface = − 1
N

N∑
i=1

log es cos (mθyi)

es cos(mθyi) + ∑n
j=1,j ̸=yi

es cos θj
. (2.6)

While L-softmax [137] and Sphereface [136] pioneered the integration of margin into
the softmax loss, they employed an integer-based multiplicative angular margin. This
approach made the target logit curve steeper, posing challenges for model convergence.
Recognizing this challenge, researchers sought alternative methods to stabilize the
training process. CosFace [204] built upon the foundations laid by SphereFace [136],
emphasizing the use of cosine similarity over angular losses by introducing an additive
cosine margin. Meanwhile, ArcFace [37] proposed a novel approach by incorporating
an additive angular margin, targeting the dual objectives of maximizing intra-class
similarity while also ensuring inter-class diversity.

Pushing the boundaries further, AdaptiveFace [132] and Fair loss [128] introduced
class-wise adaptive margins during training to handle the long-tailed data distribution.
Innovations continued with the emergence of ring loss [265], AdaCos [261], MagFace
[150], Anchorface [133], and KappaFace [162].

Contrasting with deep metric learning methodologies such as triplet loss [177],
margin-based softmax techniques globally compare class centers, but at the expense
of increased memory consumption. The comparison of samples to classes proves to be
more efficient and stable because the number of classes is significantly less than the
sample count, and each class can be represented by a dynamically updated center vec-
tor. Consequently, margin-based softmax methods have garnered more attention than
their metric-learning counterparts in addressing large-scale real-world FR challenges.
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2.6 Evaluation Metrics and Datasets

2.6.1 Metrics

FR is often benchmarked across two primary tasks: verification and identification.
Both tasks employ distinct metrics and rely on gallery and probe samples. The gallery
encompasses registered faces with known identities, whereas the probe set includes
faces awaiting recognition.

Before delving into the specific metrics, we need to comprehend a few basic terms.
The recognition system determines the similarity between a probe face and a gallery
face, matching them if their similarity surpasses a predefined threshold. TA, TR, FA,
and FR emerge as fundamental concepts based on this threshold [62–64].

• True Acceptance (TA): When a probe and a gallery face of the same identity
have a similarity surpassing the threshold.

• False Rejection (FR): When a probe and a gallery face of the same identity
do not meet the threshold similarity.

• True Rejection (TR): When a probe and a gallery face of different identities
have a similarity below the threshold.

• False Acceptance (FA): When a probe and a gallery face of different identities
surpass the threshold similarity.

Verification Task: In most biometric access control systems, face verification is a
common application where a user presents their face and claims a specific identity.
The system’s task is to confirm or deny this claim, making the verification process a
one-to-one face-matching task. In this scenario, assessing the system’s performance
relies on metrics like the False Accept Rate (FAR) and True Accept Rate (TAR). By
adjusting the similarity threshold, different TAR and FAR values can be obtained,
leading to the creation of a Receiver Operating Characteristic (ROC) curve. This
curve depicts TAR against FAR at various thresholds, and its Area Under the Curve
(AUC) serves as a comprehensive performance indicator. Generally, a higher AUC
suggests better verification performance.

• False Accept Rate (FAR): This metric evaluates the frequency with which an
impostor, someone not enrolled in the system, gets incorrectly verified. Specifi-
cally, FAR is computed as F A

F A+T R .

• True Accept Rate (TAR): Conversely, TAR measures how often genuine users,
those enrolled, get rightly accepted. It is mathematically expressed as T A

F A+T R .
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Identification Task: While verification focuses on a one-to-one match, identification
involves a one-to-N matching scenario. In identification, a probe face is compared
against every face in the gallery to determine a match or determine its absence. This
one-to-N face matching process encompasses two main sub-tasks: open-set and closed-
set identification.

In the open-set identification, the probe face might not align with any gallery
identity. Two primary metrics emerge for open-set identification: TPIR and FPIR. We
obtain an ROC curve derived from TPIR vs. FPIR points by adjusting the threshold
with a fixed rank. This curve evaluates open-set identification efficacy.

• True Positive Identification Rate (TPIR): Within this task, when a probe
face does have a corresponding gallery identity (mate probe), the TPIR quantifies
the frequency with which these mates get correctly matched.

• False Positive Identification Rate (FPIR): On the flip side, when a probe
does not have a corresponding gallery identity (non-mate probe), FPIR measures
how often such probes get incorrectly matched to any gallery face.

Conversely, in closed-set identification, every probe face has a specific identity
in the gallery, making it more constrained than open-set identification. The Cumu-
lative Matching Characteristic (CMC) curve emerges as the evaluation metric.
This curve visualizes the ratio of accurately identified probe faces (identification rate)
against rank. Essentially, the CMC curve conveys the percentage of successful matches
within a specified rank, with the rank-one identification rate frequently cited as the
primary performance indicator. Notably, CMC becomes a TPIR subset when thresh-
olds are disregarded.

2.6.2 Datasets

Datasets play a pivotal role in FR research, determining the robustness and reliability
of any developed algorithm. A comprehensive overview of major training and testing
datasets widely adopted in the FR field is presented in this section.

Training Datasets: Modern deep FR mandates the availability of an expansive and
precise training dataset. For instance, DeepID models [182, 185–187] were trained
using CelebFace [141], encompassing 0.2M images from 10K individuals. Initial meth-
ods for deep FR often relied on proprietary large-scale datasets. Facebook’s DeepFace
[191] was trained using 4M images of 4K individuals, while Google’s FaceNet [177]
utilized a vast dataset of 200M images from 3M people. Though both tech giants
achieved revolutionary outcomes, replicating such models using publicly accessible
datasets remains challenging.
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Recognizing this limitation, CASIA [244] released a public dataset sourced from
the web, comprising 0.5M images of 10K celebrities. Its relatively moderate size,
paired with a balanced distribution, has made it a popular choice for fair academic
comparisons. Concurrently, UMDFace [7] gathered 367,888 face images from 8,277
subjects paired with human-annotated bounding boxes. This dataset also includes
estimated poses, twenty-one keypoint locations, and gender details, all discerned by
a pre-trained neural network. In comparison, VGGFace2 [17] offers a more expansive
dataset with a similar subject count but more images for each subject, pushing the
model to tackle diverse intra-class discrepancies such as varying lighting, aging, and
postures.

However, datasets like CASIA, UMDFace, and VGGFace2 primarily feature around
10K identities, failing to showcase the potential of cutting-edge deep learning tech-
niques. Recently, databases like MS1M [71], Celeb-500K [16], and MegaFace2 [158]
have emerged, championing the significance of extensive training datasets. Despite
their expansive scope, these datasets often grapple with high noise ratios and a long
tail distribution. Notably, the noise rates for MS1M and Celeb-500K hover around
50% [201], while MegaFace2 surpasses 30%.

Highlighting the significant impact of noisy labels on accuracy, Wang et al. [201]
introduced the IMDB-Face dataset, a curated collection of 1.7M images from 59K
celebrities. Nevertheless, refining this dataset required a concerted effort from 50
annotators over a month, underscoring the challenges of curating vast, clean datasets.
To mitigate noise, Deng et al. [37] utilized an automated cleaning approach, releasing
an improved MS1M dataset and a novel Asian celebrity dataset.

Testing Datasets: Beyond training datasets, testing datasets serve as instrumental
tools in measuring the performance and efficacy of FR models. Over the years, sev-
eral benchmarks have gained prominence in the research community. LFW [90], for
instance, is revered for evaluating uncontrolled face verification capabilities. In con-
trast, datasets like CFP-FP [178] and CPLFW [262] are tailored for pose-invariant face
verification. AgeDB-30 [154], and CALFW [263] for age-invariance face verification.

In addition to specialized datasets, the research landscape has seen the emergence
of large-scale testing datasets, facilitating evaluations on an unprecedented scale, of-
ten involving multi-million face pair comparisons. For example, the MegaFace dataset
[104] comprises 1 million images, with the gallery set representing 690,000 unique indi-
viduals, and 100,000 photos from 530 unique individuals sourced from the FaceScrub
dataset [160] serving as the probe set. The IJB-B dataset [219] includes 1,845 subjects
with 21,800 still images and 55,000 frames extracted from 7,011 videos. Expanding
on IJB-B, the IJB-C dataset [149] incorporates 1,661 new subjects, totaling 3,531
individuals, with 31,300 still images and 117,500 frames sourced from 11,779 videos.

The Trillion-Pairs dataset [38] has significantly broadened the evaluation spectrum
by providing a vast array of image pairings for thorough testing. It includes 1.58
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million images sourced from Flickr as the gallery set and 274,000 images from 5,700
LFW [90] identities as the probe set. To highlight its scale, the Trillion-Pairs dataset
facilitates a total of 0.4 trillion pair evaluations.

In addition to image-based FR, the YouTube Faces (YTF) dataset [221] stands
out for video-based recognition. It comprises 3,425 videos sourced from YouTube,
featuring 1,595 subjects, thereby offering a unique dimension for evaluations.

2.7 Challenges and Limitations in Face Recognition
FR, while making significant strides over the years, still encounters challenges that
limit its efficacy across diverse real-world scenarios. Understanding these challenges
is pivotal in the quest for advancements in the field.

• Variability in Lighting Conditions: Dramatic changes in illumination can
severely affect the performance of FR systems. Shadows can distort facial fea-
tures, and excessive lighting can lead to overexposure. Though some modern
systems have robustness against lighting variations, they remain a challenge in
uncontrolled environments.

• Facial Occlusions: Objects such as glasses, hats, scarves, or even hands can
occlude parts of the face. Additionally, facial hair, like beards or mustaches, can
introduce variability. These occlusions can impede accurate face detection and
recognition.

• Pose Variations: Faces can be presented in multiple orientations as frontal,
profile, or tilted. Recognizing faces in extreme profiles or at acute angles remains
a challenging task for many systems.

• Expression Variability: Facial expressions can significantly alter the appear-
ance of facial features. A broad smile or a scowl can look dramatically different
from a neutral face, adding complexity to the recognition process.

• Aging Effects: The human face undergoes changes over time due to aging.
These changes can affect the shape, texture, and overall appearance, posing
challenges for systems trained on younger versions of faces.

• Low Resolution and Quality: Often, surveillance cameras or certain sensors
capture low-resolution images, making it difficult to discern finer facial details.
Image blur, noise, or compression artifacts further compound this issue.

• Cross-Dataset and Domain Adaptability: Models trained on one dataset
might struggle when deployed on data from a different source. This discrepancy
underscores the need for models that can generalize well across various datasets
and real-world scenarios.
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• Ethical and Bias Concerns: Recent discussions in the community highlight
potential biases in FR models, where performance might vary across different
ethnicities, genders, or age groups. Addressing these biases is crucial for the fair
and ethical application of the technology.

2.8 Summary
While FR has achieved remarkable accuracy in controlled settings, these challenges
highlight the complexities of real-world applications. Addressing these challenges paves
the way for more robust and universally applicable systems, a focus of ongoing research
and the subsequent chapters of this thesis.
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3 Face Recognition and Tracking Framework for
Human-Robot Interaction

In the dynamic field of human-robot Interaction (HRI), where robotics and artificial
intelligence converge, there is a critical need to precisely assess the adaptability and
effectiveness of current state-of-the-art (SOTA) face recognition (FR) models in the
real-world HRI settings. Our research is driven by the objective of ensuring robots can
accurately and promptly recognize and interpret human facial features, an essential
component of seamless human-robot coexistence.

Our research begins with the design and implementation of a comprehensive FR
framework tailored specifically for real-world HRI environments. This initial phase
serves as a platform to evaluate the performance and limitations of existing SOTA
models in practical HRI scenarios. The insights and findings from this empirical anal-
ysis will pave the way for developing innovative approaches to address the identified
challenges.

The goal of this research is to enhance human-robot interaction by improving face
recognition in dynamic, real-world settings. To achieve this, we present a face recogni-
tion (FR) framework [106] that integrates state-of-the-art techniques across all critical
stages of face recognition: detection, alignment, and feature extraction. To ensure the
effectiveness and robustness of these techniques, particularly when integrated within
our framework, we conduct an empirical study within a real-world human-robot inter-
action context. This study not only evaluates the performance of current state-of-the-
art approaches but also uncovers novel insights that advance the application of FR and
tracking in HRI. Specifically, we demonstrate how integrating continuous face tracking
into real-time FR systems can enhance accuracy under challenging conditions.

3.1 Introduction

The intersection between practical HRI and the theoretical objectives of achieving
efficient FR and tracking opens a complex and exploratory quest. Our inspiration
evolves within varied and complex real-world contexts, including homes, schools, hos-
pitals, and workplaces, where robots are increasingly integrated. Such integration
surfaces new challenges in areas such as security, automation, and recognition [246].

Humans possess the remarkable ability to remember and recognize individuals based
on facial and speech features, enabling them to interact and cooperate smoothly and
safely. To integrate robots into this collaboration and foster a seamless HRI envi-
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ronment, we need to equip them with more sophisticated systems, such as face and
speech recognition. Fortunately, recent advancements in face detection and recogni-
tion (FR) powered by deep neural networks have made it possible for robots to rapidly
approach human-level performance and handle various challenging conditions. These
conditions include large pose variations, occlusions, challenging lighting settings, and
poor-quality images with significant motion blur [36, 37].

However, challenges persist in enabling real-world applications to function effec-
tively in unconstrained environments, such as limitations in computing power and the
scarcity of training data for user-specific face identification. Recently, the levels of
interaction between humans and robotics have become increasingly complex. In order
to obtain a more comprehensive understanding of the key determinants that impact
behavior in HRIs, a study was done using the Wizard-of-Oz framework [180]. The
objective of this study was to examine the prevalent communication intuitions among
individuals who engage in new interpersonal interactions, as seen in Fig. 3.1. Fig. 3.1
illustrates the real-world study setup, capturing the interactions between the subjects
and the industrial robot. This visual aids in understanding the complexities of human-
robot interaction, including how varying participant positions and lighting conditions
affect face recognition performance.

Figure 3.1: Wizard-of-Oz field study [180]. A video summary can be found here: https:
//youtu.be/JL409R7YQa0 (accessed on 02 February 2025).

The empirical insights gained from this research facilitated the development of the
comprehensive multi-modal robotic system, RoSA (Robot System Assistant) [181].
RoSA was designed to overcome the complexities associated with intuitive and user-
centered HRI by integrating multiple interaction modalities, including speech, gesture,
object, body, and FR. Utilizing this advanced system, a real-world study on HRI was
conducted to assess the effectiveness and robustness of state-of-the-art approaches
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within an integrated FR framework. While the theoretical framework and RoSA de-
sign provide insights into the operational challenges of human-robot interaction, the
experimental findings highlighted a key challenge in face recognition during actual
interactions with RoSA. This challenge stemmed from face orientation during interac-
tions with RoSA. Participants frequently deviated from the expected positioning for
FR due to the necessity of looking away from the camera to perform tasks effectively,
as elaborated in Section 3.3. This undesirable head orientation, specifically, the vary-
ing face pitch angle, prevents the overhead camera’s ability to capture optimal face
poses for the FR module. Additionally, the accuracy of FR was found to be influ-
enced by the viewpoint, with variations across different axes (pitch, yaw, and roll)
impacting recognition performance. Notably, pitch rotations were observed to notably
compromise recognition accuracy [51], as illustrated in Fig. 3.2.

Front      Pitch

Yaw

Figure 3.2: The effects of changes in yaw and pitch angles on head pose [106]. Alterations
in pitch angle significantly influence facial features, with deviations from the
frontal pose leading to reduced distinctiveness in these features.

To improve interaction smoothness and recognition accuracy, we propose an en-
hanced FR system with tracking capabilities. This enhanced system handles contin-
ual variations in subject appearance and lighting conditions. Moreover, it equips the
robot with the capacity to acquire new facial characteristics and authenticate them
instantaneously, facilitating a more inclusive form of social cognition.

The remainder of this chapter is structured as follows: Section 3.2 surveys the state-
of-the-art on face detection, alignment, recognition, and tracking algorithms. The
RoSA study is detailed in Section 3.3. Our proposed methodology and framework are
detailed in Section 3.4. The empirical aspects, encompassing experiments and their
subsequent evaluations, are explored in Section 3.5. In a bid to provide an overall
view, potential limitations associated with our approach are discussed in Section 3.6.
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Finally, Section 3.7 concludes this chapter, paving the way for subsequent explorations
and discussions.

3.2 State of the Art

Most current deep FR systems typically comprise three primary stages: Firstly, face
detection, where faces are localized in an input image. This is followed by face align-
ment, where the detected faces are transformed into a canonical 2D or 3D represen-
tation. The final stage is the FR, where the aligned faces are classified into different
identities.

Each of these components has been the focal point of various research, resulting in
performance metrics that closely mirror human capabilities across a myriad of bench-
mark datasets [4, 36, 37]. Subsequently, we present a brief overview of the latest
advancements associated with each of these stages, emphasizing the merits of the
chosen methodologies and their integration into our proposed framework.

3.2.1 Face Detection Algorithms

Face detection algorithms play a critical role in identifying and locating the primary
facial region within input images or video sequences, enabling robots to distinguish
humans from other entities within a scene.

Historically, before the emergence of deep learning, cascade-based techniques and
deformable part models (DPM) led the field of face detection. However, these meth-
ods often struggled with unconstrained facial images due to various challenges such as
diverse resolutions, lighting conditions, expressions, skin tones, postures, and occlu-
sions [152].

Deep learning techniques, specifically convolutional neural networks, have demon-
strated exceptional achievements in the fields of computer vision and pattern recogni-
tion in recent times. As a result, numerous face identification methods based on CNN
have been suggested in order to address the constraints associated with conventional
approaches [36, 55, 58, 135, 156, 173]. The conventional approach generally consists of
two distinct phases: firstly, the extraction of features using a CNN-backbone network,
and secondly, the prediction of bounding box positions [98]. The majority of detection
algorithms comprise either multiple stages or a single stage.

Primarily inspired by Faster R-CNN [173], two-stage algorithms adopt a two-phase
approach. During the initial phase, a sliding window is employed to suggest candidate
bounding boxes at a specific scale. This is followed by a phase dedicated to eliminating
false positives and refining the candidate bounding boxes [157, 250, 253]. While these
models offer high precision, they come with increased computational complexity.

On the other hand, single-stage algorithms, largely influenced by the single-shot
multi-box detector (SSD) [135], treat object detection as a simple regression problem.
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They derive classifications and bounding box coordinates directly from feature maps
in a singular stage, without additional proposal stages [36, 156]. While these models
offer expedited processing speeds, they may slightly compromise on accuracy.

Among the various single-stage variants, RetinaFace [36] stands out as a top-performing
model, setting benchmarks in face detection performance. RetinaFace features a multi-
tasking design, predicting bounding boxes, facial landmarks, and 3D face poses concur-
rently. Leveraging advanced techniques such as deformable convolution, dense regres-
sion, and a Pyramid Feature Attention Module, it effectively addresses faces of varied
scales. Additionally, the MobileNet-based version of RetinaFace offers lightweight ef-
ficiency, making it suitable for real-time performance in FR frameworks. Hence, we
integrated this lightweight RetinaFace variant into our system to enhance detection
speed.

3.2.2 Facial Landmarks and Face Alignment Algorithms

Face alignment plays a pivotal role in various computer vision tasks, enhancing the
robustness of FR against in-plane rotations and pose variations [90]. The core of align-
ment involves identifying the geometric structure of detected faces and normalizing
them to a canonical pose by determining the position and shape of facial elements
like the eyes, nose, mouth, and eyebrows. Facial landmarks, central to many align-
ment algorithms, aid in a similarity transformation to achieve the optimal facial shape,
making their localization essential for alignment.

Methods for face alignment can be broadly categorized into model-based and regression-
based techniques [229]. Regression-based methods, known for their superior precision,
efficiency, and robustness, have outperformed model-based approaches [59]. Model-
based approaches often struggle to capture the complex appearance of individual land-
marks.

Recent advancements in regression-based strategies are noteworthy. Trigeorgis et
al. [195] introduced a unified convolutional recurrent neural network architecture that
combines training across stages by incorporating a shared memory unit. Address-
ing the sensitivity of initialization in face alignment, Valle et al. [198] proposed the
Deeply-initialized Coarse-to-Fine Ensemble (DCFE) methodology, refining a CNN-
driven initialization phase using an Ensemble of Regression Trees (ERT) to predict
landmark location probability maps. In their study, Feng et al. [52] tackled align-
ment accuracy against diverse facial poses by leveraging a cascade of experts in their
Random Cascaded Regression Copse (R-CR-C), employing three parallel cascaded
regressions. Further refining this approach, Zhu et al. [271] applied a probabilistic
technique to implement coarse-to-fine shape searching.

Deep learning has seen notable advancements in face alignment. Kumar and Chel-
lapa [116] introduced the Pose Conditioned Dendritic Convolution Neural Network
(PCD-CNN), fusing a classification network with a subsequent modular one to pin-
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point landmark positions with enhanced accuracy. Expanding on this, Wu et al. [116]
unveiled a boundary-sensitive face alignment algorithm that interprets facial geometric
structure through boundary lines, optimizing landmark positioning.

In recent works, Guo et al. proposed a more efficient compact model called the Prac-
tical Facial Landmark Detector (PFLD) [70]. It employs a network branch to estimate
geometric information for each face sample, enhancing model robustness. Impressively,
the PFLD’s compactness ensures a size of 2.1 Mb, delivering over 140 fps per face on
mobile devices. Its adeptness in handling complex facial nuances—including variable
poses, expressions, lighting, and occlusions—makes it especially suitable for HRI ap-
plications. Leveraging these advantages, we have seamlessly integrated PFLD into our
proposed framework.

3.2.3 Face Recognition Algorithms

FR systems play a pivotal role in identifying or verifying individuals from images or
video frames. Recent advances in machine learning have led to the dominance of
deep learning-based FR systems, particularly those leveraging convolutional neural
networks [107]. These systems have achieved remarkable accuracy, revolutionizing the
field with several innovative models [37, 122, 177, 191, 204, 266].

Central to these models is the concept of face embeddings, unique mathematical
representations of facial features. These embeddings are extracted and compared
against a database to verify a person’s identity. Each embedding is distinct, encoding
the features of each human face into a discernible signature.

One seminal work in this domain is DeepFace, proposed by Taigman et al. [191].
This multi-stage methodology, influenced by the AlexNet architecture [114], begins
with aligning faces to a generic 3D model, followed by feature extraction using a nine-
layer neural network. Utilizing a Siamese network trained via standard cross-entropy
loss, DeepFace focuses on face verification tasks.

Building on DeepFace foundation, Sun et al. [187] introduced DeepID2+, an en-
hanced deep convolutional neural network for FR. It achieved superior results by
integrating additional supervisory signals into the earlier layers and expanding the
feature representation space.

In a different innovative approach, Schroff et al. presented FaceNet [177], drawing
on the GoogleNet architecture [190]. FaceNet uniquely optimizes the embedding space
itself, employing a triplet loss function to refine the features extracted by the deep
convolutional network, ensuring greater accuracy in capturing facial variances.

The need for optimal feature discrimination has prompted the development of sev-
eral specialized loss functions [37, 40, 136, 204, 266]. For instance, SphereFace [136]
introduced angular margin optimization but faced challenges with training stability.
CosFace [204] improved upon this by enforcing a decision margin in cosine space, en-
hancing performance stability and ease of implementation. ArcFace [37], also known
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as Additive Angular Margin Loss, improves discriminative feature learning by empha-
sizing the angle between facial feature vectors, leading to separated embeddings in
the feature space. This approach not only ensures robustness and higher accuracy
but also guarantees a stable training process, outperforming many state-of-the-art
methods [57, 85, 107]. Given these advantages, ArcFace becomes a natural choice
for integration into our proposed framework. Its robust and discriminative feature
learning ensures that our system can effectively recognize and differentiate faces even
in challenging and dynamic environments typical of HRIs. Moreover, its stable train-
ing process guarantees that our model remains reliable and consistent throughout its
operational life. The heightened accuracy provided by ArcFace is crucial for real-
world applications in HRI, where precision is critical, and errors can have significant
consequences.

Recognizing practical computational constraints, especially in real-time applications
like HRI, the research community has focused on developing lightweight network ar-
chitectures [48]. Models like SqueezeNet [94], MobileNets [84], MobileNetV2 [174],
and others have emerged as leading lightweight architectures for FR. Among these,
MobileFaceNets [23] stand out for their robust performance and efficiency. Inspired
by the MobileNets framework, MobileFaceNets employ depthwise separable convolu-
tions to reduce computational cost, making them well-suited for resource-constrained
environments. With a compact design and significant accuracy, MobileFaceNets en-
sure quality FR capabilities even with limited computational resources. Given the
advantages offered by MobileFaceNets [23], we have chosen it as the feature extrac-
tion backbone for our proposed framework. Its architecture aligns with our goals of
ensuring efficient and accurate FR, making it an ideal choice for our system.

3.2.4 Face Tracking Algorithms

Visual object tracking, especially face tracking, has been a focal point in computer
vision research due to its numerous applications and inherent challenges. Fundamen-
tally, face tracking involves determining the position of a human face within digital
video frames, typically based on the initial detected face location. This task is chal-
lenging because faces can vary in pose, view, illumination, occlusion, and posture
changes over time, making it a complex problem.

Despite these complexities, face tracking offers various advantages. It enables the
enumeration of human faces in video feeds, tracking specific face movements, and offers
computational savings by reducing the processing time associated with face detection
and recognition.

Numerous visual object tracking techniques have been introduced, including tradi-
tional methods like the Kalman filter [87] and template matching [130]. However, a
standout approach in this domain is the SORT (Simple Online and Real-time Track-
ing) algorithm by Bewley et al. [10]. SORT efficiently associates multiple objects
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in real-time scenarios using the Kalman filter coupled with the Hungarian method,
achieving excellent performance at an impressive frame rate of 260 Hz. Deep-SORT,
an enhancement by Wojke et al. [220], integrates appearance information through a
trained CNN, further optimizing tracking accuracy and reducing the number of iden-
tity switches, even during occlusions.

While deep learning methods in face tracking show promise, the simplicity, efficiency,
and robustness of SORT [10] make it an ideal foundation for further innovation. Rec-
ognizing this potential, we have built upon the foundation established by SORT to
develop our tracking algorithm. However, our innovation doesn’t stop there; we have
seamlessly integrated this improved tracking algorithm into our FR framework. This
integration promises not only enhanced tracking but also optimized FR, bringing to-
gether the best of both worlds for superior performance and real-world applicability.

3.3 Human-Robot Interaction Study

While the conceptual framework provides a foundational understanding of the interac-
tion dynamics, the real-world application of these principles is equally crucial. In the
following section, we examine the RoSA system [181], a multi-modal system dedicated
to facilitating contactless human-machine interactions. Harnessing speech, gesture,
and facial recognition, RoSA encapsulates our vision for intuitive and seamless col-
laborations between humans and machines. This practical implementation highlights
the challenges and innovations encountered in deploying our FR framework in a live
environment.

At the heart of RoSA effectiveness lies its FR module. The variability of human-
machine interaction settings presents inherent challenges, particularly in accurately
recognizing faces amidst variable lighting conditions and changing subject orienta-
tions and appearances. Viewing these challenges as opportunities for innovation, we
enhanced RoSA’s FR module by integrating advanced tracking capabilities. This in-
tegration is crafted to adapt to continuous changes in a subject’s appearance and
ambient illumination. Thus, RoSA stands resilient against these variable conditions,
ensuring unparalleled recognition accuracy.

To validate RoSA’s superiority, we conducted a comprehensive evaluation of our
system. Our study involved multiple subjects, assessing the system’s user experience
and interaction efficiency. Our empirical findings not only affirm RoSA’s capabilities
but also underscore the efficacy of its FR module, highlighting its pivotal role in the
system’s overall performance.

In this section, we provide a brief overview of RoSA and our associated study, with
particular emphasis on the innovations of the FR module.
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3.3.1 Concept

Our vision was to merge disparate information streams, creating a cohesive and syn-
ergistic network. The overall structure of this conceptual framework is visually rep-
resented in Fig. 3.3. The system architecture comprises seven distinct modules: face,
attention, speech, gesture, robot, scene, and cube. These modules, each specializ-
ing in processing specific information types, exchange data through middle-ware to a
central unit: the interaction module. This pivotal module coordinates the system’s
logic and drives its actions. Adopting a modular design enhances flexibility, allowing
independent development and evaluation of each module.
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Figure 3.3: Schematic representation of the RoSA conceptual framework. Seven distinct
modules intercommunicate through middle-ware to the central interaction mod-
ule. This modular architecture facilitates synchronized and synergistic human-
machine interactions. The interaction module, serving as the system’s heart,
coordinates the logic and actions based on inputs from the surrounding mod-
ules.

3.3.2 Features

In the previous study by Strazdas et al. [180], RoSA functioned as a system that
relied on the expertise of the “wizard”, an operator controlling the robot, to recognize
various human cues, including speech, gestures, facial expressions, body language,
and attention. While this model showcased the potential for dynamic human-machine
interactions, its operation was primarily dependent on manual control, thus limiting
scalability and real-time responsiveness.

In our endeavor to overcome these constraints and propel RoSA into the realm of
automation, we integrated the cobot (collaborative robot) with artificial intelligence.
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This fusion endowed RoSA with a new array of features aimed at automating its func-
tions, rendering it more self-reliant and adaptable to real-time interactions. Table 3.1
delineates the comprehensive list of these newly incorporated features, while Fig. 3.4
illustrates an exemplary user’s interaction with the system, showcasing the detected
features in action.

Table 3.1: Extracted feature stream [181].

Stream Feature Description Methods

Face

Face embedding
Facial expression
Face box
Face center
Facial landmark
No. detected faces
Face Id

512 features ∈ [0, 1]
7 features ∈ [0, 1]
4 features for each ∈ (x, y) (in pixels)
1 features for each ∈ (x, y) (in pixels)
5 features for each ∈ (x, y) (in pixels)
1 feature ∈ Z>0
1 feature ∈ Z>0

ArcFace [37]
Residual Masking Network [143]
RetinaFace [36]
post processed
RetinaFace [36]
post processed
post processed (cosine similarity)

Head Head angles 3 features [yaw, pitch, roll] (in degrees) Img2pose [4]

Gaze Gaze direction
Attention visual

2 features [yaw, pitch] (in degrees)
1 feature ∈ 0, 1

Gaze360 [103]
post processed

Speech

Wakeword
VAD
Speech-to-text
NLU

1 feature ∈ 0, 1
1 feature ∈ 0, 1
n features ∈"spoken text"
2 features ∈ [intent, entity]

Piccovoice [166]
Deepspeech [76]
WebRCT [61]
RASA [171]

Distance 3D head position
Face distance

3 features [x, y, z]
1 feature (in meter)

post processing using kinect
post processed

Gesture Hand Pose 4 Features (Open, Closed, Finger, None) Kinect SDK

Body Body Joints 26 Features [x,y,z] Kinect SDK

Object Cube Location 4 Features (Letter, Color, Bounding Box, Angle) CubeDetector [80]

3.3.3 Setup and Workflow

The RoSA framework, depicted in Fig. 3.5, is a network of interconnected components
and workstations, each playing a unique role in facilitating seamless HRI.

System Infrastructure. The system comprises two main workstations: Workstation
1 (WS1) and Workstation 2 (WS2). These are integrated with seven dedicated mod-
ules, each responsible for different aspects of interaction: face, speech, gesture, atten-
tion, robot, cube, and scene. Communications within this complex network are coor-
dinated using the Robot Operating System (ROS) infrastructure, specifically utilizing
ROS network and ROS messages for intra- and inter-workstation communication.

WS1: Interaction & Collaboration Hub. WS1 serves as the core of the human-
robot interactive experience. At its center is the industrial robot UR5e, equipped
with an RG6 gripper, mounted on a robust metal table, ready to execute collaborative
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Figure 3.4: User pointing at a letter Cube. Multiple detected features are displayed for
clarification [181].

tasks. Monitoring the environment from above is a time-of-flight (ToF) Kinect V2
camera, providing a real-time feed of ongoing activities. Additionally, there is a set
of black and white lettered cubes, serving as mission objects and elements that can
be manipulated by the robot gripper. For enhanced visualization and feedback, a
projector illuminates the cubes and the workspace.

WS2: Registration & Feedback Console. WS2 serves dual purposes: subject reg-
istration and feedback acquisition. A smart touchscreen interface, complemented by
built-in speakers, aids the registration process. Users input data via a graphic user
interface, while the system captures their facial features from both frontal and pro-
file views. This collected information and face embeddings are stored in a dedicated
database. After participating in the human-robot collaborative tasks at WS1, users
return to WS2, where they provide feedback on their experience via structured ques-
tionnaires. RoSA then aids in the collection of additional data appropriate for module
assessment and benchmarking.

Face Recognition. The RoSA framework heavily relies on its FR module. Maintain-
ing an active session crucially depends on the face module’s capability to consistently
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Figure 3.5: Robot System Assistant (RoSA) setup, showing the proposed framework is in-
tegrated as the face module.

recognize and track the subject’s identity during the experiment. The operational en-
vironment presents numerous challenges, from unpredictable lighting shifts to diverse
facial orientations and potential occlusions, making consistent FR a significant chal-
lenge. Our proposed enhancements aim to improve the FR system, equipping RoSA
to adeptly navigate these complexities and deliver unparalleled interaction accuracy.

3.4 Methodology and Proposed Framework

In our proposed framework, we aim to redefine FR by seamlessly integrating advanced
tracking algorithms, ensuring real-time adaptability and heightened accuracy. The
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system’s core begins by processing the current frame through the face detection mod-
ule, responsible for localizing faces within each video frame. Upon successful detection,
a dedicated face tracker is initiated for each identified face, ensuring continuous and
smooth tracking across the entire video sequence.

Simultaneously, each detected face undergoes an accurate alignment process. Lever-
aging detected facial landmarks, these faces are aligned to a canonical face structure,
ensuring standardization and enhancing the accuracy of subsequent processes.

Once aligned, the faces proceed to the centerpiece of our framework: the FR module.
This module delves deep into each face’s unique features, extracting identity embed-
dings and matching them against a robust database. Upon successful recognition, the
identified face’s identity is associated with its dedicated face tracker. This associative
step is crucial, ensuring not only the face’s recognition but also seamless mapping of
its movements and interactions within the frame. Concluding the process, these iden-
tified identities are seamlessly published to RoSA’s other modules, enabling cohesive
and unified interaction within the overall system.

A visual representation of this comprehensive approach can be viewed in Fig. 3.6.
The framework is structured around three pivotal modules:

1. Face Detection and Alignment

2. Face Recognition

3. Face Tracking

Each of these modules represents a specific aspect of our recognition process, and their
collaborative work is central to the system’s effectiveness. In the subsequent sections,
we will delve into the details of each module.

3.4.1 Face Detection and Alignment

Face Detection with RetinaFace. For the face detection task, we utilize Reti-
naFace [36], a deep CNN-based face detector that employs a single-shot, multi-level
face localization method. RetinaFace stands out for its ability to integrate three di-
verse face localization tasks: predicting the face box, pinpointing 2D facial landmarks,
and regressing 3D vertices. Notably, all regression tasks are executed directly on the
image plane.

At the core of RetinaFace’s success is its multi-task loss function, formulated in
Equation 3.1. This function effectively merges these tasks into a unified objective,
with balanced parameters ensuring equal importance for each task. This approach
guarantees comprehensive and proficient face detection.

L = Lcls(pi, p∗
i ) + λ1p

∗
iLbox(ti, t∗

i ) + λ2p
∗
iLpts(li, l∗i ) + λ3p

∗
iLmesh(vi, v∗

i ), (3.1)
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Figure 3.6: The proposed face recognition and tracking framework [106]. The face bound-
ing box and identity predictions are disseminated to the ROS network for the
purpose of broadcasting to RoSA workstations and modules.

where ti, li, vi represent the predictions for box coordinates, five landmarks, and 1,000
vertices, respectively. t∗

i , l∗i , v∗
i denote the corresponding ground-truth values. pi is the

predicted probability of anchor i being a face, while p∗
i equals 1 for positive anchors

and 0 for negative anchors. The classification loss Lcls refers to the softmax loss for
binary classes (face/not face). Furthermore, the loss-balancing parameters are set as
λ1 = 0.25 and λ2 = 0.1.

Face Landmarks and Alignment with PFLD. After face detection, the next crucial
step is alignment, where we employ the Practical Facial Landmark Detector (PFLD)
proposed by Guo et al. [70]. PFLD utilizes a dedicated network branch to estimate ge-
ometric information for each detected face, ensuring precise and regularized landmark
localization. A notable feature of PFLD is its multi-scale fully connected (MS-FC)
layer, which expands the receptive field to capture the global essence of facial structure
more effectively.

In order to achieve a harmonious equilibrium between precision and efficiency, PFLD
integrates the MobileNet network [84] as its backbone. This integration results in ef-
ficient processing speeds exceeding 140 frames per second (fps) for individual face
processing on mobile devices, with a compact model size of just 2.1 Mb. Remarkably,
despite its efficiency, the system maintains excellent accuracy, handling a wide range
of facial complexities, including challenging poses, varied expressions, lighting condi-
tions, and potential occlusions. This integration underscores the framework’s ability
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to address real-time applications without sacrificing precision.

Operational Flow. In our face detection and alignment module, each frame first un-
dergoes RetinaFace detection. Detected faces are then paired with bounding boxes,
five crucial facial landmarks (representing the eyes, nose, and mouth), and a confi-
dence score. To ensure real-time performance, we utilize MobileNet-0.25 [84] as the
backbone. This choice strikes a balance between processing speed and performance
efficacy, with the compact model achieving real-time speeds of 40 fps on a GPU for
4K images without compromising performance.

Following detection, only faces with high confidence scores proceed to the alignment
phase. Here, the lightweight PFLD model aligns the detected faces to a canonical
view and crops them to 112× 112 pixels, preparing them for subsequent face feature
extraction in the FR phase.

3.4.2 Face Recognition

As previously highlighted, our FR approach is rooted in the state-of-the-art additive
angular margin loss model, also known as ArcFace, introduced by Deng et al. [37].
ArcFace improves both intra-class compactness and inter-class discrepancy by intro-
ducing an additive angular margin penalty m between the face feature xi and the
target weight Wyi. It is defined as follows:

Larc = − 1
N

N∑
i=1

log es(cos (θyi+m))

es(cos θyi+m)) + ∑n
j=1,j ̸=yi

es cos θj
, (3.2)

where, n denotes the number of classes in the training dataset, while N denotes the
batch size. xi ∈ Rd denotes the deep feature of the i-th sample, belonging to the yi-th
class. Wj ∈ Rd denotes the j-th column of the weight W ∈ Rd×n. The embedding
feature dimension d, the feature scale s, and the angular margin m are set to 512, 64,
and 0.5, respectively, as in [37].

The process of extracting facial features involves using aligned and normalized face
images with the ArcFace model. The employed backbone extracts the face features,
producing the feature vector xi that encapsulates the unique facial characteristics of
the subject. This feature vector is normalized so that it resides on a hypersphere.
Recognizing the processing and size challenges posed by the deep backbone network,
especially during testing, we effectively employed the lightweight MobileFaceNet net-
work [23] for the feature extraction backbone.

The embedding phase then computes the logit cos θj for each class as W T
j xi. Then,

the angle between the extracted feature and its corresponding ground truth weight
Wyi is calculated as arccos θyi. An additive angular margin penalty m is introduced to
this angle, aiming to decrease angles for the correct class and widen them for incorrect
classes. This ensures features are more compact within the same class while being
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distinct between different classes. After that, we calculate cos(θyi + m) and multiply
all logits by the feature scale s. These logits or the scaled angular embeddings are
then transformed via a modified softmax function, turning them into class probabilities
that inherently emphasize correct class prediction due to the earlier introduced angular
margin.

For real-time recognition tasks, as in our online experiments, the FR module out-
puts 512-dimensional feature vectors (embeddings). These embeddings are compared
with stored features in the database by measuring the cosine similarity [161]. The
identity corresponding to the most similar feature is assigned to the recognized face.
Finally, this recognized identity is published, and the database is updated with newer
or superior-quality face embeddings.

It is essential to highlight the empirical success of ArcFace. A comprehensive abla-
tion study conducted by Deng et al. [37] showcased ArcFace’s superiority over 11 other
established loss functions, including powerful functions such as Softmax, Center Loss,
SphereFace, and CosFace. The benchmarking results on datasets like LFW, CALFW,
and CPLFW show ArcFace’s effectiveness, with impressive accuracy scores of 99.82%,
95.45%, and 92.08%, respectively. This empirical success underscored our decision to
incorporate ArcFace into our FR module.

3.4.3 Improved Face Recognition Using Face Tracking

In HRI applications, the primary challenge of FR is to find the right balance between
speed and accuracy. This necessitates the invention of novel solutions. Traditional
approaches to face detection and recognition often prove computationally intensive,
especially when constantly detecting and recognizing faces in a dynamic environment.
To tackle this, our proposal adeptly integrates face tracking using the principles from
the Simple Online and Real-Time Tracking (SORT) methodology [10].

SORT primarily employs the Kalman filter to estimate the face current location
based on its position in the preceding frame. For instance, once a face is detected in a
given frame, let is term it as frame i, the Kalman filter predicts its location in the next
frame (i + 1). However, this estimation is an approximation and requires fine-tuning.
To optimize this, we utilize the Hungarian algorithm, which excels at both pinpointing
the face accurate location and associating it across frames.

One notable shortcoming in FR is the degradation of feature quality when a face
deviates from a direct frontal pose. Recognizing this, our methodology pivots from
continuous detection to efficient tracking. After the initial detection, each face is as-
signed a unique tracker. This means that instead of repeated detections in each frame,
the position of the face is now tracked. This approach not only saves computational
resources but also enhances recognition accuracy, especially for faces in non-frontal
poses.

For every new tracker, the system inferred the face embedding and matched it
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against existing embeddings through cosine similarity. The outcome of this is the
determination of a user’s identity (ID) that is subsequently stored in the tracker’s
metadata. In the frames that follow, the system can instantly fetch the user ID from
the tracker, negating the need to redo the recognition procedure, thereby ensuring
rapid and effective recognition.

Our advanced face tracking approach, described in Algorithm 1, and visually
illustrated in Fig. 3.6, integrates face detection and recognition into a seamless proce-
dure. For every input frame, face detection is performed using RetinaFace as described
in Section 3.4. Subsequently, a new tracker is established for each detected face box
using the SORT method [10]. The SORT model utilizes both the Kalman filter and
the Hungarian algorithm to predict face locations in real-time, leveraging information
from the current frame and its predecessor.

After the detection and initialization of the trackers, identification is crucial. Our
methodology utilizes the ArcFace model described in Section 3.4 for FR. Once a face
is recognized, we assign a unique user ID, linking it directly to the ongoing tracker.
This user-centric approach is central to expediting recognition in subsequent frames,
ensuring rapid and accurate identification.

But, the process does not end with identification. Continuous verification is essen-
tial. With each frame progression, we update the tracker to validate the alignment
of each face within its designated tracker boundary to improve the tracking quality.
If discrepancies arise and a face is not where it is expected to be, that tracker is ter-
minated. This dual strategy not only optimizes operational efficiency by preventing
unbounded growth in the number of trackers but also guarantees that each active
tracker, embedded with a unique user ID, remains a key player in rapid FR.

By combining tracking and FR, our method achieves heightened computational ef-
ficiency and unmatched recognition accuracy, even for faces at oblique angles.

3.5 Experiments and Analysis

The crucial components of the FR and tracking framework are the face detection and
FR models. To thoroughly assess the effectiveness of the proposed tracking approach,
we trained and evaluated these two models separately.

3.5.1 Face Detection.

For face detection, aiming to achieve the optimal balance between computational
efficiency and accuracy, we trained the RetinaFace model from scratch on the compre-
hensive WIDER FACE dataset [241]. WIDER FACE dataset comprises 32,203 images
and 393,703 face bounding boxes, reflecting significant variability in aspects such as
scale, pose, expression, occlusion, and illumination. This dataset is partitioned into
training (40%), validation (10%), and testing (50%) subsets by randomly sampling
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Algorithm 1: The Proposed Face Tracking Algorithm
Inputs : Video, Detections, KalmanFilter, HeadJoints, SubjectIDs
Output: Recognized Tracked Faces
Initialize KalmanFilterTracker;
foreach frame fi ∈ V ideo do

Trackers← Predict();
Trackers← Assign(Detections, Trackers);
TrackersID ← Attach(Trackers, SubjectIDs);
TrackersID ← Assign(TrackersID, HeadJoints);
Update KalmanFilterTracker;
foreach tracker ti ∈ TrackersID do

ROS ← Publish(ti);
end

end

from 61 scene categories. For validation and testing, three levels of difficulty are de-
fined: Easy, Medium, and Hard, where each successive level incrementally introduces
hard samples.

We carefully evaluated the performance of RetinaFace using four diverse neural
network architectures: ResNet50 [79], MobileNets [84], MobileNetV3 [83], and Ghost-
Net [74]. The results of these evaluations are detailed in Table 3.2. Notably, the
reduced MobileNet backbone with a multiplier of 0.25 stood out, yielding a total av-
erage precision of 83% and resulting in a model size of just 1.7 Mb. These findings
underscore that the MobileNet0.25 configuration offers the most favorable trade-off
between speed and accuracy for real-time face detection in our application.

Table 3.2: Performance comparison of RetinaFace trained on WIDER FACE dataset using
different neural network architectures. The evaluation was conducted on images
with VGA resolution at 640 × 480. All metrics and processing speeds reported
are based on a CPU backend. MobileNet0.25 model achieves the best balance
between computational efficiency and accuracy. The models are ordered based
on the run time.

Backbone Run Time Size Average Precision (%)

(ms) (MB) Easy Medium Hard

ResNet50 1571 106 95.48 94.04 84.43
MobileNetV3 576 8 92.95 90.73 78.39

GhostNet 403 12 93.35 90.84 76.11

MobileNet0.25 187 1.7 90.70 88.16 73.82
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3.5.2 Face Recognition

For training our FR models, we utilize the MS1M-RetinaFace dataset [37]. This
dataset is a semi-automatically refined version of the MS1M dataset [71], comprising
5.1M images from 93K identities. Each face image in this dataset has been detected
and aligned using five facial landmarks as predicted by RetinaFace [37]. Post align-
ment, images are resized to dimensions of 112 x 112. These images undergo nor-
malization into the range [1, 1] by subtracting a mean pixel value of 127.5 and are
subsequently divided by 128.

To ensure a robust and fair performance assessment, our benchmark models include
ResNet50, VarGFaceNet [239], AirFace [124], and ShuffleFaceNet [146]. In addition to
these, our selected MobileFaceNet model. All these models are trained from scratch
using the MS1M-RetinaFace dataset [37] and the ArcFace loss function [37]. Such a
uniform training process promises a fair performance comparison across all the models.

Throughout the training phase, parameters remain consistent across models. The
weight decay parameter is set at 4e-5. Leveraging the SGD optimizer with a momen-
tum of 0.9, we set our batch size at 512. Our learning rate starts at 0.1, and we reduce
it by a factor of 10 at specified iteration milestones: 36K, 52K, and 58K. The complete
training ends at 60K iterations.

To assess the effectiveness of our lightweight face models, we conducted tests us-
ing various benchmarks that exemplify the principal characteristics of FR scenarios.
These benchmarks include LFW [90], cross-pose datasets (CFP-FP [178] and CPLFW
[262]), and cross-age datasets (AgeDB-30 [154] and CALFW [263]). Our findings, as
summarized in Table 3.3, indicate that the MobileFaceNets model strikes the optimal
balance between computational efficiency and recognition accuracy.

Table 3.3: Performance comparison of ArcFace trained on MS1MV2 dataset using different
neural network architectures. The models are ordered based on the number of
FLOPs. Results are in % and higher values are better. MobileFaceNets model
achieves the best balance between computational efficiency and accuracy.

Cross-Age Cross-Pose

Model #FLOPs #Params. Size LFW CA-LFW AgeDB-30 CP-LFW CFP-FP
(M) (M) (MB) (%) (%) (%) (%) (%)

ResNet50 [37] 24211 65.2 261.22 99.82 95.45 98.15 92.08 98.40
VarGFaceNet [239] 1022 5 20.0 99.85 95.15 98.15 88.55 98.50

AirFace [124] 1000 4.23 - 99.27 - 93.25 - 94.11
ShuffleFaceNet [146] 577.5 2.60 10.5 99.67 95.05 97.32 88.5 97.26

MobileFaceNets [23] 439.8 0.99 8.2 99.55 95.20 96.07 89.22 96.90

3.5.3 Overall System

The metrics utilized to assess the overall system performance include precision, recall,
F-score, and recognition rate. Predictions are categorized into True Positives (TP),
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False Positives (FP), False Negatives (FN), and True Negatives (TN). A True Positive
in recognition occurs when the model accurately predicts the subject class (i.e., subject
ID), matching the ground truth, while a False Positive prediction indicates otherwise.

Similarly, a True Negative is recorded in recognition when the model correctly ab-
stains from predicting a subject not present in the database, while a False Negative
occurs when a valid subject is not correctly recognized.

Precision represents the probability of correctly identifying a subject relative to the
ground truth identity, calculated as follows:

Precision = TP

TP + FP
. (3.3)

Recall measures the likelihood of correctly recognizing subjects among the ground
truth, calculated as follows:

Recall = TP

TP + FN
. (3.4)

The F-score, a harmonic mean of precision and recall, provides insight into the
overall performance of the model, calculated as follows:

F -score = Precision ∗Recall

Precision + Recall
∗ 2. (3.5)

The FR rate FRR indicates the ratio of correctly recognized faces to the total
detected or tracked faces, calculated as follows:

FRR = TP

Totalfaces
∗ 100. (3.6)

To evaluate the proposed framework, we conducted two types of evaluations: dataset-
based evaluations and online evaluations.

3.5.3.1 Dataset Evaluation

We evaluate the proposed framework using the ChokePoint dataset [222], a compre-
hensive video dataset specifically designed for experiments on person identification
and verification in real-world surveillance scenarios. This dataset comprises videos
featuring 25 subjects, including six females and 19 males. It encompasses 48 video
sequences and a total of 64,204 face images, capturing variations in illumination, pose,
sharpness, and misalignment resulting from automatic face localization and detection.

The experimental analysis assesses the tracking performance across all 25 subjects
in the ChokePoint dataset. To demonstrate the refinement in recognition, we compare
the proposed FR framework with and without tracker assistance. Table 3.4 presents
the average results obtained from these experiments. Additionally, we visualize the
Receiver Operating Characteristic (ROC) curve in Fig. 3.7, illustrating how the track-
ing approach enhances the recognition rate, particularly at high false positive rates,
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while simultaneously reducing the false classification rate.

Table 3.4: The average results of precision, recall, and F-score on ChokePoint dataset.

Tracking Precision Recall F-Score

No 0.83 0.79 0.81
Yes 0.96 0.93 0.94
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Figure 3.7: ROC Curve of ChokePoint Dataset for the Proposed Framework.

3.5.3.2 Online Evaluation

We apply the proposed framework in a real-time HRI study [181] to further assess its
performance and robustness in practical HRI scenarios. During the study, data for
evaluation were collected from 11 subjects, including two females and nine males, aged
between 20 and 34 years.

The experimental analysis showcases the tracking performance and recognition rate
for the 11 subjects during interactions with RoSA [181]. To illustrate the refinement
in recognition, we compare the proposed FR framework with and without tracker as-
sistance. With tracking, the proposed framework achieves a FR rate of 94%, whereas
without tracking, it achieves 76%. Fig. 3.8 illustrates the impact of tracking on the
precision of the proposed framework, while Fig. 3.9 depicts its impact on recall. Ad-
ditionally, Fig. 3.10 presents the F-score results of the proposed framework with and
without tracker assistance.
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Fig. 1. Impact of Tracking on Precision of the Proposed Framework.Figure 3.8: Impact of Tracking on Precision of Face Recognition.
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Fig. 2. Impact of Tracking on Recall of the Proposed Framework.Figure 3.9: Impact of Tracking on Recall of Face Recognition.

The proposed framework exhibits faster processing times compared to the standard
FR framework, achieving frame rates ranging from 25 to 40 frames per second (fps).
Fig. 3.11 illustrates some results obtained from the proposed framework during real
HRI experiments conducted with our RoSA system [181].

To validate the obtained results, we conducted additional experiments using recorded
videos from the Wizard-of-Oz study [180], yielding consistent outcomes. This dataset
comprises videos featuring 36 subjects performing tasks similar to those in the RoSA
study, recorded on various days under different lighting conditions.

For each subject (video), we selected three exemplary face images with distinct poses
and added the extracted embeddings to the database for comparison with the faces in
the videos. The precision and recall results for 37 subjects, delineated by the top ten
outcomes, are presented in Table 3.5.
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Fig. 3. F-score results of the proposed framework with tracker-assisted and
without tracking.

Figure 3.10: F-score results of the proposed framework with tracker-assisted and without
tracking.

3.5.4 Computational Efficiency Assessment

Lightweight face networks demonstrate promising results in FR, often performing com-
parably to state-of-the-art deep face models across various scenarios. For instance,
ResNet100-ArcFace, proposed by Deng et al. [37], ranks among the top-performing
models in different evaluation scenarios, however demanding significant computational
resources. Notably, in the challenging DeepGlint-Image dataset (one of the most chal-
lenging databases), ResNet100-ArcFace exhibits an 8% accuracy difference compared
to MobileFaceNet, our chosen network. However, in other datasets, this margin is
less than 3%. Despite its superior accuracy, ResNet100-ArcFace requires significantly
more resources, requiring 19 times more storage space and involving 26 times more
FLOPs and 32 times more parameters than MobileFaceNet.

Incorporating face tracking into our framework offers the advantage of avoiding face
detection and recognition for every input frame. To enhance the accuracy of our
framework and minimize tracking errors, we conduct the entire recognition process
once every fifth frame.

To evaluate the computational efficiency of the proposed framework, we tested it on
videos collected during both the RoSA study [181] and the Wizard-of-Oz study [180]
(total of 47 videos). The average processing time for each FR module was recorded
using a hardware setup featuring a NVIDIA GeForce GTX 1080 Ti Desktop GPU
(12 GB GDDR5, 3584 CUDA cores). Table 3.6 presents the average execution time
of individual methods utilized in the proposed framework. In summary, the average
execution time per frame for the entire process is approximately 6.7 milliseconds, with
an average frame rate of around 35 frames per second.
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Figure 3.11: Online experimental results, showing the framework’s stability in different head
pose and lighting conditions.

3.6 Discussions and Limitations

The study conducted in this research entails a complex setting involving two syn-
chronized workstations (WS1 and WS2) interconnected through the robot operating
system. Despite encountering challenges such as varying illumination conditions, ex-
treme head pose angles, and occlusions, the framework demonstrated effectiveness
in extracting face features and recognizing subjects’ identities within a multi-person
environment.

Although the framework exhibited promising results, instances of misidentification
were observed. These were primarily attributed to incomplete registration processes
and suboptimal face feature embeddings lacking sufficient discriminability. Addressing
this challenge necessitated certain subjects to undergo re-registration to enhance model
recognition accuracy.

One notable benefit of our approach is its utilization of lightweight CNNs for all
stages of FR, including face detection, alignment, and feature extraction. This ensures
compliance with real-time requirements in HRI systems. Furthermore, the framework
effectively identified collaborating participants in various positions, facial expressions,
lighting conditions, and even when participants were wearing face masks during the
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Table 3.5: Result of precision and recall for the proposed framework.

No ID
Precision Recall

Tracking No
Tracking Tracking No

Tracking

1 4 0.97 0.76 0.81 0.70
2 7 1 0.84 0.92 0.59
3 11 1 0.68 1 0.73
4 16 1 1 1 0.66
5 18 0.96 0.88 1 0.81
6 24 0.98 0.65 0.95 0.77
7 25 0.89 0.53 0.92 0.63
8 29 0.98 0.83 0.98 0.79
9 32 0.99 0.68 0.98 0.60
10 36 0.95 0.76 0.97 0.75

Table 3.6: Average execution time of individual methods used in the proposed framework.

Method Average Time (ms)

Detection 3.2
Alignment 1.4
Tracking 0.8
Recognition (Embedding Inference) 1.3
Identification (Similarity) 0.08
Visualization & Delays 7.5

experiment.
Nevertheless, it is crucial to recognize that while our framework demonstrates strong

performance across various scenarios, it may not be entirely optimal. As the number
of faces within a scene increases, there is a rise in computational demands, sometimes
resulting in system delays that can hinder the fluidity and intuitiveness of HRI.

Moreover, in certain scenarios, particularly with challenging poses, the facial embed-
dings extracted may lack the robustness required for consistent differentiation between
subjects. Overcoming these limitations necessitates progress in two crucial areas.
Firstly, the introduction of a robust loss function capable of generating more discrim-
inative features becomes essential. This would ensure that individual features remain
distinct even under challenging conditions, thereby facilitating accurate identification.
Secondly, refining the current CNN architecture into a more streamlined and efficient
design is paramount. This enhancement would enable real-time FR capabilities and
mitigate computational strain as the number of subjects in a scene increases. These
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two challenges will be addressed in Chapters 4 and 5, respectively.
Through these enhancements, our goal is to further strengthen the framework’s capa-

bilities, rendering it more adaptable and efficient for real-world scenarios, particularly
in intuitive HRIs.

3.7 Summary
In our pursuit of optimizing HRI dynamics, we introduced a FR system enhanced
by advanced face tracking techniques, leveraging deep convolutional neural networks.
The inherent challenges posed by real-time HRI, such as the need for fast processing,
led us to base our framework on lightweight CNNs. This ensured proficiency across all
integral stages of FR, from detection to alignment, tracking, and feature extraction.

Our design approach was further streamlined for HRI system compatibility. By
encapsulating our methodology within a modular ROS package, we facilitated its
seamless integration into varied HRI systems. Preliminary evaluations suggest that
incorporating face tracking along with FR significantly boosts the recognition rate.

At the core of our FR framework lies the SOTA ArcFace loss function, coupled
with the RetinaFace detection method and an intuitive real-time face tracker. This
comprehensive system adeptly tackles challenges such as varying illumination, diverse
head poses, and occlusions.

We further augmented this framework with a tailored face tracker, designed to inte-
grate tracking data with recognized identities. This fusion of tracking and recognition
markedly enhances processing speed and recognition accuracy, particularly for faces
in wild environments.

To assess the effectiveness of our framework, we conducted real-time tests within our
HRI system RoSA, involving 11 participants interacting with the robot to accomplish
various tasks. To ensure the reliability of our findings, we extended our evaluations
to recorded videos from the Wizard-of-Oz study. This dataset comprises videos of
36 subjects engaging with RoSA, mirroring the tasks and outcomes of our real-time
tests. Our results underscored the framework’s significant enhancement of FR robust-
ness. On average, the system exhibited a 25% improvement in real-time recognition,
achieving precision, recall, and F-score values of 99%, 95%, and 97%, respectively.

However, amidst these achievements, our studies revealed limitations, particularly
in complex scenes. As number of faces increased, computational demands escalated,
leading to occasional system lags detrimental to HRI fluidity. Additionally, under
challenging conditions, facial feature extraction occasionally lacked the robustness
required for consistent differentiation. Addressing these challenges is pivotal for the
next phase of our research. A focused effort on refining the loss function and CNN
architecture aims to optimize the framework for seamless, intuitive HRIs.
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4 Towards Adaptive Feature Learning For Face
Recognition

The field of large-scale face recognition (FR) has witnessed a significant transforma-
tion with the advent of deep feature learning, where margin-based loss functions have
played a pivotal role. These functions expand the feature margin between disparate
classes, aiming to improve the discriminative capability of the softmax loss. A fun-
damental assumption in many existing methodologies is the balance among classes,
assuming a one static margin that uniformly reduces intra-class variations, thereby
treating all classes equally.

However, a thorough examination of numerous real-face datasets reveals a differ-
ent reality. These datasets often follow a long-tail distribution, where a small subset
of identities (the ’head’) is over-represented, while a larger number of identities (the
’tail’) are under-represented. In such scenarios, a static margin becomes less effec-
tive, potentially constraining the discriminative and generalization capabilities of FR
models. This imbalance poses unique challenges, especially in learning from the less
frequent tail identities.

Conventional margin-based strategies, while concentrating on improving differenti-
ation within cosine or angular spaces, may overlook the nuances inherent in diverse
class representations. This underscores the significance of our innovative approach,
the Joint Adaptive Margins Loss Function (JAMsFace). Departing from uniform mar-
gin assumptions, JAMsFace dynamically calibrates adaptive margins tailored to the
distinct characteristics of each class. This adaptive approach effectively addresses the
critical challenges posed by long-tail data distributions in FR.

Building upon the framework established in Chapter 3, this chapter presents a de-
tailed geometric analysis of JAMsFace, demonstrating its adaptability and effective-
ness through extensive empirical evaluations across several FR benchmarks. The re-
sults are compelling: JAMsFace not only holds its ground but often surpasses existing
FR losses. Its performance is validated through testing on benchmarks like CPLFW,
LFW, CFP-FP, and even in the more challenging environments of IJB-C and IJB-B
datasets.

This chapter aims to offer a comprehensive exploration of the transformative po-
tential of adaptive margin methodologies in FR. It specifically addresses the inherent
problems posed by long-tail data distributions and underscores the necessity for adap-
tive, class-specific approaches within the FR landscape.
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Figure 4.1: Impact of class imbalance [108]. (a) The model exhibits errors on new test sam-
ples from underrepresented classes (poor classes) with a fixed additive margin.
(b) Adaptive margins offer a more suitable solution to these errors, wherein
an underrepresented class requires a relatively larger margin, while a well-
represented class (rich class) requires a relatively smaller margin.

4.1 Introduction

The advancement of deep learning, particularly through deep convolutional neural
networks (DCNNs), has led to remarkable progress across various domains, including
speech recognition, natural language processing, and notably, computer vision. Among
these, FR models have gained significant benefits, as the auto-encoding capability of
these techniques allows for the extraction of feature vectors with highly discriminative
power [177]. This progress in FR techniques has resulted in their incorporation into
various applications, spanning from security protocols and surveillance systems to
human-robot interactions and mobile devices [95, 101, 106].

The importance of loss functions in the optimization of DCNNs cannot be overem-
phasized. While the softmax loss is commonly employed, it fails to fully meet the
demands of FR tasks, as it struggles to produce feature vectors with highly discrim-
inative power [37, 136, 204]. In response to this limitation, several enhanced loss
functions have been developed, with the goal of balancing between inter-class sepa-
rability and intra-class compactness. Ultimately, these advancements aim to enhance
generalization and accuracy of the trained FR models [12, 37, 107, 132, 136, 204, 217].

The current peak of FR largely relies on margin-based softmax loss techniques. Ap-
proaches like SphereFace [136], CosFace [204], and ArcFace [35, 37] embed margins
into identity features to enhance class separation. However, these methods implicitly
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assume class balance, which is often not the case in public facial datasets. As illus-
trated in Fig. 4.1, while some classes may be well represented, others are sparse. This
imbalance highlights the necessity for adaptive margins, allowing for flexibility in mar-
gin values based on class-specific sampling distributions [132]. Moreover, the exclusive
focus of these methods on either cosine or angle area may overlook the other dimen-
sion, potentially impairing performance. To address these limitations, this chapter
proposes the Joint Adaptive Margins Loss (JAMsFace), a loss function designed for
dynamic margin adjustments that maximize discrimination across cosine and angular
dimensions.

This chapter illustrates our contributions in FR feature learning, which include:

• The crafting of the Joint Adaptive Margins Loss (JAMsFace), formulated to
recalibrate decision boundaries and yield more refined facial feature representa-
tions.

• The innovative design of JAMsFace enables superior feature differentiation by
judiciously operating in both cosine and angular dimensions, elevating the overall
FR performance.

• Comprehensive experimentations across several FR benchmarks, revealing that
JAMsFace sets new standards in FR across a majority of the mainstream bench-
marks.

4.2 Relationship to Previous Work

Our approach is linked to margin-based loss functions tailored for the FR task. In the
context of FR, loss functions guide models in discerning unique features and enhancing
overall performance. Selecting an appropriate loss function is crucial and can signif-
icantly influence the efficacy of FR models. The loss functions commonly employed
in FR models may be branched into two main types: metric-based approaches and
margin-based methods [207]. Each of these methods plays a distinct role in enhancing
the accuracy of the models. The margin-based techniques maximize the separation
between two feature vectors, while metric-based techniques focus on quantifying the
distance between them.

4.2.1 Metric-based Methods

During the initial stages of FR research, metric-based methods were predominant.
These strategies leverage deep metric learning networks to learn a similarity metric
between images [65], aiming to cluster images with similar visual characteristics in an
embedding manifold while concurrently distancing dissimilar ones. The most prevalent
metric-based methods losses are triplet and contrastive losses.
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Contrastive loss, introduced by Chopra et al. [25], focuses on decreasing the separa-
tion between positive pairs and boosting the separation between negative ones, hence
its alternative name, distance metric learning. The utilization of this methodology
played a pivotal role in the initial advancements of FR, hence greatly enhancing our
comprehension of inter-sample associations. However, it faces limitations such as slow
convergence, as it compares only one negative class per update. Triplet loss, another
metric-based method, was first employed in FaceNet by Parkhi et al. [164]. Unlike con-
trastive loss, triplet loss uses a tripartite structure comprising negative, positive, and
anchor samples. Its objective is to reduce the distance between positive and anchor
samples while simultaneously increasing the distance between negative and anchor
samples. This approach marked a significant advancement in metric-based methods,
demonstrating a more sophisticated means of learning facial features.

However, the adaptability and scalability of these techniques have been hindered
by the inherent challenges of optimization against a single negative class, resulting in
slow convergence and model instability [40, 179, 217]. To overcome these challenges,
innovations like the (N + 1)-tuplet loss were introduced [179]. While achieving im-
proved convergence, the (N + 1)-tuplet loss significantly expands the samples batch
in quadratic behavior. Center loss [217], aimed to navigate around these challenges
by learning the center of features for each class and penalizing deviations. However,
when tested against the open set protocol, center loss exhibits limited discrimination
[40].

4.2.2 Margin-based Methods

Recently, there have been several innovations in adjusting the decision boundaries of
softmax loss to enhance discriminative feature learning, as demonstrated by studies
such as [12, 37, 92, 97, 132, 136, 137, 162, 204].

The L-softmax loss function [137], improves upon the conventional softmax loss
function by incorporating a large margin and utilizing a piecewise function. These
improvements help maintain the monotonicity of the cosine function while enhancing
both the separability between classes and the compactness within each class.

Their subsequent work, SphereFace [136], expands on L-softmax approach by intro-
ducing a multiplicative angular margin that allows for quantitative control. However,
this enhancement also complicates the training process.

To address this challenge, CosFace [204] advocates for an additive cosine margin,
striking a balance to ensure both inter-class separability and intra-class compactness.
Similarly, ArcFace by Deng et al. [37] boosts recognition accuracy through the intro-
duction of an additive angular margin, emphasizing its geometric interpretation.

Further innovations like AdaptiveFace [132], and Dyn-arcFace [97] addressed data
imbalance by incorporating adaptive margins, demonstrating the versatility and adapt-
ability of margin-based methods in varying data landscapes. Similarly, methods like
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Figure 4.2: General face recognition training framework using softmax-based loss.

CurricularFace [92] and KappaFace [162] have enriched the domain by adaptively
modulating margins and recalibrating the importance of samples, respectively. In-
corporating image quality considerations, AdaFace [110] introduced quality adaptive
margins, indicating a trend toward holistic approaches considering varied aspects of
data for improved model performance.

In summation, while metric-based methods laid the foundational stone, margin-
based techniques have advanced the SOTA FR performance. Building upon this com-
prehensive review, the following sections introduce a novel loss function, JAMsFace,
and explore its efficacy across contemporary FR datasets [90, 149, 154, 178, 219, 262,
263].

4.3 Our Approach to Adaptive Feature Learning For Face
Recognition

4.3.1 Preliminary

FR, as a critical domain of computer vision, has witnessed rapid advancements in
training mechanisms and feature representation. The general FR training framework
using softmax-based loss, depicted in Fig. 4.2, can be deconstructed into three pivotal
modules.

Firstly, datasets play a foundational role in training, validating, and testing FR
models. These datasets consist of facial instances captured under various conditions,
serving as the basis upon which facial feature extraction algorithms are trained and
tested. The training dataset facilitates model learning by iteratively adjusting its
parameters. The validation dataset provides an interim evaluation mechanism, crucial
for hyperparameter tuning. Lastly, the testing dataset offers an objective measure of
the model’s performance under generalized conditions.

Following the datasets is the backbone, which consists of a CNN network. Its pri-
mary function is to transform raw facial images into a compact, representative feature
space. These feature vectors, inherently high-dimensional, encapsulate distinguishing
facial attributes crucial for recognition tasks. With the continuous progress of deep
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CNN architectures, these networks have improved in capturing subtle facial nuances,
thereby enhancing recognition accuracy.

The last component comprises the loss function and its associated prototypes. It
assesses the variance between the model’s predictions and the ground truth. In FR, this
function gauges the likeness or disparity among sample feature vectors. Prototypes
are representative exemplars for each unique class in the training dataset. During
forward propagation, the final layer computes a correlation measure between an input
feature vector and the prototypes. Subsequently, these measures are refined during
backpropagation using gradients derived from the loss function, thereby enhancing
both the backbone and the classifier.

4.3.2 Method

The major goal of our loss function is to improve the discrimination power across both
cosine and angular domains, while also tackling the common issue of long-tail data.
In pursuit of this goal, we present an innovative approach that encompasses dynamic
additive penalties for cosine and angular margins. Instead of proposing an entirely
novel loss, our JAMsFace loss adopts the foundations of extant cosine and angular
margin-based loss methods, seamlessly integrating adaptive margin penalties. This
integration not only enhances the model’s sensitivity to nuances in sample distribu-
tion but also strengthens its inherent discriminative power. Through the integration of
these flexible penalties, our methodology successfully achieves a harmonious equilib-
rium between the compactness within each class and the separability across different
classes, leading to enhanced performance in FR.

4.3.2.1 Revisiting the Softmax Loss

In classification problems, the softmax loss function is commonly employed as the
principal loss function. The fundamental nature of this concept resides in its capacity
to maximize the probability of accurately categorizing a given sample into the right
class. The mathematical expression can be expressed as follows:

Lsoftmax = − 1
N

N∑
i=1

log Pi = − 1
N

N∑
i=1

log eW T
yi

xi+byi∑n
j=1 eW T

j xi+bj
, (4.1)

where xi is the embedded feature of i-th training sample, and its probability of being
correctly classified as class yi is represented by Pi. Wj ∈ Rd is the j-th column of the
weight W ∈ Rd×n. The bias is denoted as bj, and the batch size is represented as N .
The training dataset consists of n classes, and the dimensionality of the embedded
feature is d.

In practical applications, it is common to assign a bias value of bj = 0, as demon-
strated in [37]. Subsequently, the weight vector W T

j xi + bj is transformed into W T
j xi,
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which is then expressed as W T
j xi = ∥Wj∥∥xi∥cos θj. Here, θj represents the angle

created between the weight vector Wj and the feature vector xi. In order to enhance
the process of feature learning, the weight assigned to each individual is adjusted to
∥Wj∥ = 1 using l2 normalization techniques [37, 136, 202, 204]. To enhance the effi-
ciency of the classification outcome, the deep feature ∥xi∥ is additionally normalized
by l2 and re-scaled to a constant value s. The original softmax can be altered, as
shown in Eq. 4.2. This modified version is referred to as the Normalized Softmax loss
(NSL).

Lnsl = − 1
N

N∑
i=1

log es(cos θyi)

es(cos θyi) + ∑n
j=1,j ̸=yi

es cos θj
. (4.2)

Nevertheless, the normalized softmax loss exhibits a restricted capacity to distin-
guish features optimally for real-world FR applications. In order to address this con-
straint, several margin-based variations have been suggested [37, 136, 137, 204]. The
aforementioned variant methods incorporate a margin in order to establish the bound-
ary between target scores and their non-target entities. The systematic incorporation
of this margin not only improves the level of detail in distinguishing features, but also
strengthens the overall effectiveness of FR systems. The margin-based variations can
be generalized, with each incorporating the margin function g(m, θyi) that reflects the
introduced margin. The general form of these variations can be expressed as follows:

Lgeneral = − 1
N

N∑
i=1

log es g(m, θyi)

es g(m, θyi) + ∑n
j=1,j ̸=yi

es cos θj
. (4.3)

The function g(m1, θy) = cos(m1θy) is introduced by SphereFace [136]. In this
function, m1 represents a multiplicative angular margin, m1 ≥ 1, and is an inte-
ger. The idea of CosFace, as described by Wang et al. [204], is given by the equa-
tion g(m2, θy) = cos(θy) − m2, where m2 represents an additive cosine margin, and
m2 ≥ 0. In the study conducted by Deng et al. [37] on ArcFace, the equation
g(m3, θy) = cos(θy + m3) is presented, where m3 ≥ 0 represents an additive angular
margin. Therefore, the incorporation of margin penalties in the softmax loss resulted
in improved distinguishing characteristics compared to the initial softmax loss. Ulti-
mately, the margin-based variations can be combined into a unified expression, denoted
as g(m, θy) = cos(m1θy + m3)−m2.

However, implementing a consistent margin across all classes, as exemplified by
the aforementioned margin techniques, poses difficulties, particularly when confronted
with imbalanced datasets. Universally applying the same margin may fail to consider
the intrinsic variations in class distribution within the training data, potentially result-
ing in mediocre performance [128, 132]. Moreover, these margin techniques exhibit a
tendency to prioritize either angular or cosine spaces, thereby overlooking the possible
advantages associated with the other.

In order to tackle these challenges, we propose a novel methodology that adapts to
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Figure 4.3: Decision margins for various loss functions are illustrated in the context of binary
classification. The decision boundary is represented by the dashed line, while
the decision margins are denoted by the white areas. Class 1 is associated
with underrepresented samples (poor class), while Class 2 is associated with
well-represented samples (rich class). JAMsFace assigns a greater joint margin
to the poor class to achieve more compactness, thereby implicitly optimizing
the underlying feature space. It is important to note that ma1 represents the
angular margin for class 1, mc1 represents the cosine margin for class 1, and
θ3 = θ1 + ma1 .

the diverse distribution of classes in the training data. At the core of our approach is
the integration of a dynamic penalty specifically designed to account for both cosine
and angular margins. By incorporating both cosine and angular dimensions, this
technique not only ensures comprehensive differentiation across the feature space but
also significantly enhances the effectiveness of the FR process.

4.3.2.2 Joint Adaptive Margins Softmax Loss

Building upon existing methodologies, rather than creating an entirely novel loss func-
tion, our research proposes an intuitive methodology aimed at concurrently incorpo-
rating both cosine and angular dynamic margins. For a clearer explanation of the
foundational mechanics of our approach, we present a binary-class illustrative exam-
ple.

In a binary classification scenario (with two classes C1 and C2), the angle between
the learned feature vector x and the ground truth weight vector Wi associated with
class Ci (i = 1, 2) is represented by θi. A conventional normalized softmax loss requires
that cos(θ1) > cos(θ2) for correct classification of x as C1, and similarly for C2 requires
cos(θ2) > cos(θ1) for correct classification of x as C2. However, this decision boundary,
as illustrated in Fig. 4.3(a), has limited discrimination power for practical FR tasks.

To navigate this challenge, CosFace [204] advocates for a classifier with an aug-
mented large margin. The correct classification criterion for x as C1 becomes cos(θ1)−
m > cos(θ2), and reciprocally for correct classification of x as C2, it requires cos(θ2)−
m > cos(θ1). In a divergent approach, ArcFace [37] proposes to enhance the dis-
criminative power by adding an additive angular margin, refining the target logit to
cos(θi + m). The resultant classification boundaries for classes C1 and C2 are defined
as s(cos(θ1 + m)− cos θ2) = 0, and s(cos(θ2 + m)− cos θ1) = 0, respectively. The
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angular margin limitations enhance separability and classification performance by re-
ducing the gap between feature vectors belonging to the same class and increasing the
distance between feature vectors belonging to separate classes.

The aforementioned margin methodologies predominantly focus their efforts on am-
plifying discrimination within either the angular or cosine dimensions, prioritizing
one domain to the potential expense of the other. For example, methodologies such
as CosFace and ArcFace employ a pre-established margin m that remains constant
throughout the entire training procedure. These static single-margin approaches in-
advertently hinder the ability of the techniques to accurately capture the intrinsic
complexity of facial data. Furthermore, it is important to note that these methods
may not fully leverage the ability of the feature space to differentiate between different
classes, particularly when considering the diverse variances within each class.

In light of these challenges, our methodology endorses the incorporation of adaptive
margins that flexibly adjust across both the cosine and angular domains. Instead of
relying on a static margin, our approach allows the margins to evolve in accordance
with the data distribution, resulting in superior discriminative capabilities and en-
hanced FR performance. In formal terms, the Joint Adaptive Margins Softmax Loss
(JAMsFace) is defined as:

LJAMs = − 1
N

N∑
i=1

log
( es (cos(θyi+mayi

)−mcyi
)

es(cos(θyi+mayi
)−mcyi

) + ∑n
j=1,j ̸=yi

es cos θj

)
, (4.4)

where mayi
is the angular margin corresponding to the target class yi, which denotes

the extent of the angle increase, while mcyi
is the cosine margin corresponding to the

target class yi and denotes the degree of increment of the cosine.
Illuminating the essence of these joint adaptive margins, the previously discussed

binary classification paradigm serves as an optimal illustration. The fundamental
condition for accurate classification of a sample x as C1 defines that cos(θ1) > cos(θ2).
Nonetheless, in the ambit of joint adaptive margins, the required condition evolves to
(cos(θ1 + ma)−mc) > cos(θ2) with the constraints ma, mc > 0. This results in a more
stringent decision, since both cos(θ + ma) and cos(θ)−mc are lesser than cos(θ). In
essence, this approach refines the decision boundary between classes, blessing it with
specificity and flexibility, thereby amplifying the model’s discriminative powers.

To provide a graphical intuition, Fig. 4.4 visually contrasts our proposed JAMsFace
with other prevailing margin-based softmax losses in a geometric context. This repre-
sentation is grounded in a geometric interpretation: methods like CosFace, ArcFace,
and JAMsFace can be interpreted as projections of face features onto a hyperspherical
surface. In this high-dimensional spatial interpretation, each facial feature finds repre-
sentation as a distinct point. The goal of FR is to establish a decision boundary that
effectively separates these points into their respective classes. This decision boundary,
akin to a hyperplane in this scenario, divides the hypersphere into distinct zones, each
corresponding to a specific facial class. While each method aims to enhance FR by
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Table 4.1: Decision boundaries for class 1 under binary classification. Note that, θi, i = 1, 2
is the angle between Wi and x. s is the scale factor, and m is the constant margin.
mc1 and ma1 are the cosine and angular margins of class 1, respectively.

Loss Functions Decision Boundaries

Norm-Softmax ∥ x ∥ (cos θ1 − cos θ2) = 0
SphereFace [136] ∥ x ∥ (cos mθ1 − cos θ2) = 0
CosFace [204] s(cos θ1 −m− cos θ2) = 0
ArcFace [37] s(cos(θ1 + m)− cos θ2) = 0
JAMsFace (Ours) s(cos(θ1 + ma1)−mc1 − cos θ2) = 0

determining an optimal hyperplane that emphasizes inter-class disparity and reduces
intra-class variance, JAMsFace stands out. It assigns a larger joint margin that further
compresses the underrepresented class (poor class in orange arc), resulting in implicit
optimization within the dimensional space.

4.3.3 Comparison with other Loss Functions

In this section, we delve deeper into the comparative nuances between the proposed
method, JAMsFace, and other prevalent margin-based softmax loss functions, high-
lighting the main distinctions in the respective decision boundaries formed by these
methods. Fundamentally, the differentiation among various margin-based softmax loss
functions revolves around the configuration and adaptability of margins. This can be
analyzed into two key facets:

1. Placement of Margin: This aspect concerns the spatial arrangement of the margin
within the feature space. The margin acts as a buffer or protective barrier around
decision boundaries. Its primary role is to prevent potential misclassification,
particularly for features situated close to these boundaries. By positioning this
margin adeptly, certain loss functions ensure that the decision boundary exhibits
enhanced discriminative capacity.

2. Uniformity vs. Adaptiveness: Another crucial aspect of distinction lies in whether
the margin remains static and uniform across all classes or dynamically adapts
to the specific characteristics of each class. Uniform margins treat each class
equivalently, imposing a consistent buffer irrespective of the class’s distribution
or inherent complexities. Conversely, adaptive margins demonstrate flexibility by
adjusting themselves based on the properties of each class. This adaptiveness can
prove particularly advantageous for classes with long-tail distributions, ensuring
that the decision boundary for underrepresented classes is as robust as that for
well-represented ones.
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Margin  Margin Margin

(c) ArcFace(b) CosFace (d) JAMsFace(a) Modified Softmax

Figure 4.4: Geometric analysis of various loss functions. The feature space of the poor Class
1 is represented by the orange area, while the feature space of the rich Class 2
is depicted by the green area. (a) Modified softmax loss. (b, c) CosFace and
ArcFace assign an equal margin m to both classes, resulting in low compactness
for the poor class. (d) JAMsFace assigns a greater joint margin to further
compress the poor class, optimizing the underlying feature space. Note that,
the angular margin for Class 1 is denoted as ma1 , the cosine margin for Class 1
is denoted as mc1 , and θ3 is defined as θ1 + ma1 .

4.3.3.1 Decision Boundaries

Understanding the intricacies of decision boundaries formed by margin-based softmax
loss functions requires illustrative comparisons. Referencing Table 4.1 and the vi-
sual representation in Fig. 4.3, we can observe how different loss functions shape the
decision boundaries.

The original softmax loss simply divides the feature space, resulting in a basic di-
viding line as shown in Fig. 4.3(a). However, this simplistic boundary might falter
when confronted with closely situated samples, leading to potential misclassifications
due to its limited discriminatory power.

In contrast, methods like CosFace and ArcFace adopt a reformative approach by
introducing uniform margins to enhance the decision boundary’s discriminative capa-
bility, creating a margin between classes as depicted in Fig. 4.3(b) and 4.3(c). Never-
theless, the inherent limitation of a uniform approach is its disregard for the sample
distribution of each class, which can result in poor generalization, especially in the
presence of class imbalances in real-world datasets. Thus, a uniform strategy is not
always optimal.

Recognizing this limitation, JAMsFace introduces an innovative approach: class-
specific adaptive margins in both cosine and angular spaces. Unlike static margins,
these adaptive margins dynamically adjust to the distributions of each class. For
underrepresented classes, such as class 1, a significantly larger margin is introduced.
This not only leads to more compact feature extraction but also pushes the boundary
of class 1 further from class 2. The result is a model with enhanced discriminatory
power tailored to the specific needs of each class.
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(a) Softmax (b) CosFace (c) ArcFace (d) JAMsFace

Figure 4.5: Feature distribution visualization of several loss functions.

4.3.3.2 Toy Example

In order to better illustrate the effectiveness and adaptability of the proposed JAMs-
Face in contrast to other loss functions, a toy experiment was designed, focusing on
the feature distributions produced by each loss function.

Experimental Design: For this experiment, a toy dataset was synthesized using
face images from eight distinct identities derived from the MS1MV2 dataset [37].
Subsequently, several 10-layer ResNet models were trained to produce 3-dimensional
feature vectors. This dataset’s composition is designed to mimic a common real-
world distribution, with some classes rich in samples while others significantly less so.
Specifically:

• Class 0 (represented in red): Boasts the richest distribution with over 500 sam-
ples.

• Classes 1 & 2 (illustrated in yellow and blue respectively): Possess a substantial
number of samples, with a count close to 250 for each.

• Classes 3 to 7: These are the poorly represented classes with approximately 60
samples each.

For effective visualization, the extracted 3-dimensional features from the model were
normalized and subsequently plotted on a spherical coordinate system.

Analysis and Interpretations: Fig. 4.5 illustrates the distinct behaviors exhibited
by various loss functions.

Softmax Loss Function: One of the primary observations is the distinct bias of the
softmax loss function towards richer classes, namely classes 0, 1, and 2. This prefer-
ence towards richer classes is displayed in the form of ambiguous decision boundaries.
Consequently, this could compromise the model’s discriminative capacity, potentially
leading to misclassification, especially for instances located near these boundaries.
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CosFace and ArcFace: Both these loss functions exhibit a principled approach aim-
ing for an equitable feature space allocation. Through a reduction of intra-class vari-
ances, CosFace and ArcFace endeavor to provide a symmetrical distribution of feature
space to every class. This is irrespective of the underlying sample distribution to each
class. However, while this might seem reasonable at first glance, practical implications
emerge. Notably, for classes like those delineated in pink and yellow in Fig. 4.5(b) and
4.5(c), despite having different sample sizes, they are accorded almost indistinguish-
able feature spaces. This could potentially hinder the generalization capacity of models
trained with such a loss function, especially when faced with real-world imbalanced
datasets.

JAMsFace Function: The JAMsFace function showcases a behavior that is both nu-
anced and distinct from its counterparts. Its core premise revolves around optimizing
the feature space allocations across all classes, irrespective of their respective sample
counts. When one examines Fig. 4.5(d), it is apparent that the feature space dedicated
to the extensively rich class 0 (marked in red) remains relatively unaltered across Cos-
Face, ArcFace, and JAMsFace. However, the transformative capability of JAMsFace
comes to the fore with sparser classes. Classes represented by colors of pink, green,
orange, and purple exhibit enhanced compactness and separation, underscoring the
adaptability and efficacy of the JAMsFace function. This sharp calibration ensures
optimal representation and discernibility across classes, addressing the main challenge
of imbalanced datasets.

4.4 Experiments and Analysis

In this section, experimental results of our proposed Joint Adaptive Margins Soft-
max Loss are presented to provide a comprehensive understanding of its efficacy and
robustness. Initially, we delineate the implementation and training specifics. Sub-
sequently, we undertake an ablation study, illustrating the impact of joint adaptive
margins within our loss function. Ultimately, we benchmark our JAMsFace model
against contemporary state-of-the-art FR models to underscore its comparative per-
formance.

4.4.1 Implementation and Training Details

Data Preprocessing. Central to the effectiveness of any deep learning model is
the quality and preparation of the input data. We follow the standard practices
in FR as in recent works [12, 37, 266]. Each face image undergoes a systematic
preprocessing pipeline: First, it is cropped to a dimension of 112 × 112. This cropping
leverages a similarity transformation based on five pivotal facial landmarks (two eyes,
the nose, and the two extremities of the mouth). The detection of these landmarks
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Figure 4.6: Illustration of improved residual unit in ArcFace [37]: BN-Conv-BN-PReLU-
Conv-BN.

is facilitated by the MTCNN framework [253]. Subsequent to this, the RGB pixel
values are normalized from their conventional range [0, 255] to [−1, 1], priming them
for neural processing.

Learning Strategy. To ensure consistency and reproducibility in our experiments,
we anchored our model implementation on the publicly accessible code provided by
[37]. For a fair comparison, we utilized the same ResNet architecture as outlined in
ArcFace [37]. Notably, this differs from the conventional ResNet [79] block, but rather
an improved version, visualized in Fig. 4.6, offers unique modifications for the FR
domain. These modifications, as showcased in [37], have empirically demonstrated
superior results in FR benchmarks compared to the conventional ResNet [79] variant.

Our training operations harnessed the computational capabilities of an NVIDIA
Quadro RTX 8000. Each training cycle processed batches of 512 images. The op-
timization strategy adopted was the Stochastic Gradient Descent (SGD) algorithm
[105], configured with a momentum of 0.9 and a weight decay parameter set to 5e−4.
For the CASIA-WebFace [244] and VGGFace2 [17] datasets, the learning rate was ini-
tialized at 0.001. This rate was subsequently scaled down by a factor of ten at distinct
epoch milestones: the 20th, 28th, and 32nd epochs. The training was concluded after
34 epochs. For datasets of a more expansive scale, the learning rate was adjusted at
the 10th, 18th, and 22nd epochs, concluding the training process after the 24th epoch.

In the context of our memory buffer settings, we designated the momentum coeffi-
cient, α, with a value of 0.3. Depending on the dataset scale - smaller or larger - the
γ parameter was calibrated to 0.5 and 0.7, respectively. This granularity ensured that
our model was finely tuned to the peculiarities of each dataset. Our experimental im-
plementations were realized using the PyTorch platform [165], chosen for its flexibility,
efficiency, and broad support for deep learning operations.
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Table 4.2: Face datasets for training and testing

Dataset #subjects #imgs/videos Task Metrics Key features

CASIA [244] 10K 0.5M/- train - Unconstrained images
VGGFace2 [17] 9.1K 3.3M/- train - Unconstrained images
MS1MV2 [37] 85K 5.8M/- train - Unconstrained images

LFW [90] 5,749 13,233/- 1:1 Acc Unconstrained images
CFP-FP [178] 500 2,000/- 1:1 Acc Cross-pose
CPLFW [262] 3,968 11,652/- 1:1 Acc Cross-pose
CALFW [263] 4,025 12,174/- 1:1 Acc Cross-age
AgeDB-30 [154] 568 16,488/- 1:1 Acc Cross-age

MegaFace [104] 690,572 1M/- 1:1 VR@FAR Large-scale,
1:N Rank-1 Full pose variation

IJB-B [219] 1,845 21.8K/7,011 1:1 TAR@FAR Large-scale,
1:N TPIR@FPIR Full pose variation

IJB-C [149] 3,531 31.3K/11,779 1:1 TAR@FAR Large-scale,
1:N TPIR@FPIR Full pose variation

Training data. We utilized several publicly available datasets for our experiments,
each with unique characteristics. These datasets have been widely used in FR research,
making them suitable for a comprehensive and fair evaluation against other state-of-
the-art methods. Table 4.2 provides an overview of these datasets.

MS1MV2 [37] was central to most of our experiments. Originating from the MS-
Celeb-1M dataset [71], a semi-automatically refinement process led to the creation of
MS1MV2. This dataset is among the largest for FR in unconstrained environments,
encompassing 98,685 celebrities and a total of 10 million images. After refinement,
about 5.8 million images spanning 85k identities remain. An essential dataset in
our training is VGGFace2 [17]. As an enhancement over its predecessor, VGGFace
[164], VGGFace2 is a diverse collection with 3.31M images representing 9,131 subjects.
This dataset captures a broad spectrum of facial attributes and conditions, such as
different poses, age groups, lighting conditions, ethnicities, and even professions. For
our ablation studies, VGGFace2 was primarily used. Further evaluations with models
trained on this dataset were conducted on benchmarks like LFW [90], AgeDB-30 [154],
CALFW [263], and CPLFW [262]. The CASIA-Webface dataset [244] is another
dataset in our training process. It comprises 0.49M face images from a diverse group
of 10,575 subjects. While it might not be as vast as MS1MV2, CASIA-Webface’s
diversity serves as a crucial asset for training FR models.

Using multiple datasets in our research was a strategic choice. The wide-ranging
facial images and attributes from these datasets aim to provide our model with robust-
ness, adaptability, and superior generalization abilities for various real-world scenarios.
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Test Settings. During the testing phase, we process each face image, ensuring it is
cropped and aligned to a size of 112 × 112 pixels. Once preprocessed, the image is
fed into our trained model, which produces a 512-dimensional feature vector. This
vector encapsulates the unique characteristics and attributes of the face image. For
consistency and to enhance the robustness of subsequent comparisons, we normalize
this feature vector to unit length. Once we have the normalized feature vector, we
proceed to classification. Here, the cosine similarity metric plays a pivotal role. This
metric measures the cosine of the angle between two vectors, making it particularly
suitable for high-dimensional feature comparisons in FR. For every image in the test
dataset, we compute its cosine similarity with feature vectors from our reference set
(or gallery). This similarity score aids in determining the category or identity of the
face.

Benchmarks. FR benchmarks play an instrumental role in evaluating the perfor-
mance of various FR models. In the initial testing phase, we turn to efficient face
verification datasets such as LFW [90], CFP-FP [178], and AgeDB-30 [154]. These
datasets were chosen for their capacity to facilitate rapid evaluations, enabling us to
assess the effectiveness of different training settings and hyperparameters quickly. Af-
ter satisfactory preliminary evaluations, we advance to more challenging datasets. In
addition to LFW [90] and AgeDB-30 [154], we evaluate our model’s performance on
datasets specifically designed to challenge FR systems with pronounced pose varia-
tions and age differences, such as CPLFW [262] and CALFW [263]. To determine
the scalability and robustness of our model, we test it on extensive image datasets
like IJB-B [219] and IJB-C [149]. These benchmarks pose considerable challenges due
to their wide variations in pose, illumination, expression, and occlusion. Employing
these benchmarking strategies is essential to gauge how effectively our model performs
in large-scale, real-world scenarios encompassing diverse challenges.

4.4.2 Ablation Study

In our ablation study, we present results from LFW, AgeDB-30, CALFW, CPLFW,
and the merged dataset from [216], which combines the four constituent validation
datasets.

We demonstrate the effectiveness of the joint adaptive margins in our proposed loss
function, JAMsFace, through a comparative analysis with competing approaches that
utilize distinct static/adaptive margin configurations. Equation 4.3 outlines three cate-
gories of margins: multiplicative angular margin (MA), additive angular margin (AA),
and additive cosine margin (AC). Our experimental analysis evaluates the impact of
these joint adaptive margins.

Table 4.3 provides an initial assessment of the performance of static joint alternatives
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Table 4.3: The impacts of varying joint margins. A 64-CNN architecture was employed to
train all models on VGGFace2. The abbreviations MA, AA, and AC represent
multiplicative angular margin, additive angular margin, and additive cosine mar-
gin, respectively. Static or adaptive settings are denoted by F and A.

MA AA AC LFW AgeDB-30 CALFW CPLFW Combined

Static
✓ ✗ ✓ 99.317 88.367 90.650 90.433 91.949
✓ ✓ ✗ 99.250 87.700 90.450 89.783 91.527
✗ ✓ ✓ 99.300 86.217 89.133 88.833 90.690

Mixed

✗ F A 99.567 93.300 93.150 92.233 94.324
A F ✗ 99.483 92.250 92.283 91.800 93.798
A ✗ F 99.400 90.350 91.633 89.317 90.525
✗ A F 99.633 93.733 93.250 92.183 94.468

Adaptive
✓ ✗ ✓ 99.383 91.100 92.250 89.450 90.460
✓ ✓ ✗ 99.283 90.883 90.183 89.133 90.325
✗ ✓ ✓ 99.667 94.383 93.683 92.300 94.883

to examine the effects of employing joint static margins. We then incorporate adaptive
margins in conjunction with static margins. Finally, static margins are replaced with
adaptive margins to dynamically adjust to the data distribution.

The examination of Table 4.3 reveals that employing a hybrid methodology, which
integrates adaptive and static margins, leads to enhanced performance across all
datasets in comparison to the static margin alternatives. It is worth mentioning that
in comparison to hybrid alternatives with an adaptive multiplicative margin, mixed
alternatives with adaptive additive angular or cosine margins demonstrate greater per-
formance. To further boost performance, the integration of adaptive algorithms for
both cosine and angular margins surpasses all other alternative approaches.

These findings provide compelling evidence that the adaptive versions outperform
the static versions, highlighting the effectiveness of adaptive margins in enhancing the
distinguishing capability of our methodology.

In summary, our methodology demonstrates superior verification performance across
various datasets, surpassing alternative techniques that utilize either joint static mar-
gins or adaptive margins alone. Our results indicate that our combined adaptive
margin technique successfully balances inter-class separability and intra-class com-
pactness, resulting in exceptional performance in FR tasks.

4.4.3 Comparison with State-of-the-Art

FR has witnessed remarkable advancements over the years, leading to the introduction
of numerous algorithms and approaches. Evaluating these algorithms against estab-
lished benchmarks provides valuable insights into their strengths and potential areas
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Table 4.4: Verification comparison with state-of-the-art methods on LFW benchmark re-
ported in terms of accuracy (%). JAMsFace consistently extend state-of-the-art
performances.

Method Training Data LFW

NormFace [202] 0.5M 98.28
Center Loss [217] 0.7M 98.75
SphereFace [136] 0.5M 99.55
CosFace [204] 5M 99.73
ArcFace [37] 5.8M 99.82
AdaptiveFace [132] 5M 99.62
CurricularFace [92] 5.8M 99.80
Dyn-arcFace [97] 5.8M 99.80
SFace [266] 5.8M 99.82
ElasticFace [12] 5.8M 99.80
AdaFace [110] 5.8M 99.82

JAMsFace (Ours) 5.8M 99.86

of improvement. In this section, we compare our approach with several state-of-the-
art methods using widely recognized FR benchmarks, including IJB-B [219], IJB-C
[149], MegaFace [104], LFW [90], CFP-FP [178], CPLFW [262], CALFW [263], and
AgeDB-30 [154].

For every experiment, we ensured fair comparison standards, referencing perfor-
mance metrics of prior methods directly from their original publications. It is note-
worthy that our approach consistently demonstrated competitive, if not superior, per-
formance across these benchmarks, underscoring its robustness and adaptability in
diverse scenarios.

4.4.3.1 LFW Dataset

We conducted comparisons with other methodologies using the LFW dataset [90],
which comprises 13,233 web-collected images across 5,749 individuals. Among the
most common nuisance transformations are illumination, pose, color jittering, and
aging. With the evolution of methodologies and the standardization of protocols,
the LFW dataset, while foundational, has been noted to exhibit minor differentials
in performance. This observation, particularly discernible in the last few percent of
accuracy, is attributed to the dataset’s limited volume. As such, while it remains
an invaluable reference, drawing categorical conclusions about the generalizability of
models solely from their LFW performance can be problematic.

Nevertheless, for the purpose of completeness and adherence to traditional bench-
marks, we undertook a comparative evaluation using the LFW dataset. Adhering to
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Table 4.5: Verification comparison with state-of-the-art methods on cross-age benchmarks
reported in terms of accuracy (%). JAMsFace scores comparable results to the
state-of-the-art.

Method CALFW AgeDB-30

NormFace [202] 85.61 88.63
Center Loss [217] 85.48 -
SphereFace [136] 92.55 92.88
CosFace [204] 95.76 98.11
ArcFace [37] 95.45 98.28
AdaptiveFace [132] 95.05 97.68
MagFace [150] 96.15 98.17
Dyn-arcFace [97] - 97.76
SFace [266] 96.07 -
ElasticFace [12] 96.17 98.35
AdaFace [110] 96.08 98.05

JAMsFace (Ours) 96.18 98.26

the unrestricted protocol augmented by external labeled data, as delineated in [90], we
present the performance evaluations of our model on 6,000 face pairs from the LFW
dataset in Table 4.4. The results show that our JAMsFace model outperforms the
state-of-the-art on the LFW dataset. This underscores that the joint adaptive mar-
gins penalty significantly enhances the discriminative capabilities of deeply learned
features, thereby underlining the robustness and capability of JAMsFace in FR tasks.

4.4.3.2 Cross-Age Datasets: CALFW and AgeDB-30

Age-invariant FR remains a topic of significant interest due to its profound implica-
tions in real-world scenarios, such as identifying missing individuals over the years.
The challenges posed by the natural aging process, which brings about considerable
morphological changes to facial features, often complicate the recognition task. Besides
the LFW dataset [90], we also present a comparative analysis of the proposed JAMs-
Face against the state-of-the-art models, focusing primarily on age-related datasets
CALFW [263] and AgeDB-30 [154]. The Cross-Age LFW (CALFW) dataset [263] has
been collected to include images of LFW [90] spanning different ages with the same
identities, making it a robust testing ground for age-invariant models. AgeDB-30 [154]
further intensifies the challenge by introducing a more concentrated age variation set
over a 30-year span.

In the realm of open-source FR models, our JAMsFace model stands out as the lead-
ing model on the CALFW benchmark [263], as demonstrated in Table 4.5. When eval-
uated on the AgeDB-30 dataset [154], JAMsFace obtains accuracy of 98.26% closely
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Table 4.6: Verification comparison with state-of-the-art methods on cross-pose benchmarks
reported in terms of accuracy (%). JAMsFace consistently extend state-of-the-
art performances.

Method CPLFW CFP-FP

NormFace [202] 78.71 90.21
Center Loss [217] 77.48 -
SphereFace [136] 81.40 -
CosFace [204] 92.28 98.12
ArcFace [37] 92.08 98.27
AdaptiveFace [132] 88.80 94.96
CurricularFace [92] 93.13 98.37
Dyn-arcFace [97] - 94.25
SFace [266] 92.88 -
ElasticFace [12] 93.27 98.67
AdaFace [110] 93.30 98.49

JAMsFace (Ours) 93.40 98.73

aligned with the state-of-the-art. However, it falls marginally short of the leading
98.35% accuracy achieved by the ElasticFace model [12]. Notwithstanding this minor
discrepancy, the overall results underscore the robustness of the JAMsFace model and
its intrinsic ability to adeptly handle the complexities presented by cross-age facial
variations.

4.4.3.3 Cross-Pose Datasets: CPLFW and CFP-FP

In line with our comprehensive evaluation strategy, we extended our focus beyond
cross-age datasets to delve into evaluations centered around a model’s resilience to
pose variations, specifically targeting the CFP-FP [178] and CPLFW [262] datasets.
This emphasis is crucial since, in real-world scenarios, faces are rarely perfectly aligned
or frontal. The Celebrities Frontal-Profile (CFP) dataset [178] serves as a vital and
rigorous benchmark in this domain. The unique aspect of this dataset is its design,
where algorithms are subjected to stringent evaluations based on matches between
frontal and profile faces. The dataset contains roughly 7,000 matches, evenly split be-
tween genuine and impostor matches. Collectively, it encompasses around 500 unique
subjects. To elaborate, the Frontal-Profile (FP) face verification experiment within
the CFP dataset [178] includes 350 same-person pairs and 350 different-person pairs,
iterated over ten splits. Notably, each probe image in the dataset is almost entirely in
profile, amplifying the challenge by introducing extreme pose, lighting, and expression
variations. Furthermore, our JAMsFace model was precisely evaluated on the CPLFW
dataset [262]. CPLFW, synonymous with pose variations, complements our evaluation
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spectrum by further magnifying the challenges associated with pose discrepancies.
The results from these evaluations, as detailed in Table 4.6, underscore that JAMs-

Face significantly outperforms all other approaches by a clear margin, highlighting the
effectiveness of JAMsFace. Several factors contribute to the superior performance of
JAMsFace. Primarily, its design emphasizes learning intricate facial details across a
range of poses. This ensures that the extracted features are both representative and
discriminative, even in the face of extreme pose variations. Moreover, the adaptive
margins penalty ensures that the deeply learned features are effectively separated in
the embedding space, making recognition tasks more accurate.

4.4.3.4 IJB-B and IJB-C Datasets

In order to thoroughly assess the effectiveness of our loss function, JAMsFace, we
employ two highly demanding FR benchmarks, specifically IJB-B and IJB-C. In or-
der to guarantee an even comparison, we use additional SOTA techniques, such as
SphereFace, CosFace, ArcFace, and Circle loss. In order to maintain uniformity, we
train all the implemented models on the extensively utilized VGGFace2 dataset using
the identical CNN architectures as described in [136, 204, 216]. Therefore, VGGFace2
consists of 3.1 million photos derived from 8.6 thousand distinct identities. Through
the utilization of this testing methodology, we can objectively assess the effectiveness
of JAMsFace in comparison to other contemporary alternatives.

The dataset IJB-B [219] involved a total of 1,845 participants and included 21.8K
still photos (11.8K faces and 10k non-faces) as well as 55K frames from 7K videos.
The experiments employ the conventional 1:1 verification and 1:N identification tech-
niques. There are 12,115 templates and a list of 8,010,270 comparisons defined by
the protocol. More precisely, the 1:1 verification process generates 10,270 authentic
matches and 8 million imposter matches, while the 1:N identification approach gen-
erates 10,270 probes and 1,875 galleries. IJB-C, as described by Maze et al. [149],
is an expansion of IJB-B that employs comparable assessment procedures. The IJB-
B dataset is expanded by 1,661 subjects, encompassing a combined total of 31.3K
still photos (21.3K faces and 10k non-faces) and 117.5K frames extracted from 11.8K
videos.

The evaluations are displayed in Table 4.7 and Table 4.8, measuring the true accept
rates (TAR) at different false accept rates (FAR) for verification and the true positive
identification rates (TPIR) at different false positive identification rates (FPIR) for
identification. In comparison to the baseline methods SphereFace, CosFace, ArcFace,
and Circle loss, the proposed JAMsFace loss demonstrates superior performance in
both identification and verification tasks. The IJB-B benchmark (Table 4.7) revealed
that myLoss achieved a TAR at FAR 1e–4 of 89.09%, surpassing the performance
of CosFace [204] and ArcFace [37] with TARs of 86.75% and 88.79%, respectively.
Similarly, the IJB-C benchmark (Table 4.8) demonstrated that JAMsFace achieved
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Table 4.7: Results on IJB-B. We cite the results from the original papers for [17, 232, 233].
For the reimplemented methods, we use the hyperparameters that lead to the
best results on the validation set. Results are in % and higher values are better.

1:1 Veri. TAR@FAR 1:N Iden. TPIR@FPIR

Method 1e-5 1e-4 1e-3 rank-1 1e-2 1e-1

VGGFace2 (SENet) [17] 67.10 80.00 88.80 90.10 70.60 93.90
MN-vc [233] - 83.10 90.90 - - -
Comparator Nets [232] - 84.90 93.70 - - -

SphereFace 79.10 88.45 93.72 92.83 71.63 86.40
CosFace 76.22 86.75 93.35 92.39 69.01 84.73
ArcFace 80.35 88.79 94.26 93.21 74.39 87.32
Circle Loss 75.15 86.69 93.18 91.71 69.14 84.36
JAMsFace (Ours) 81.66 89.09 94.46 93.49 74.72 87.82

Table 4.8: Results on IJB-C. We cite the results from the original papers for [17, 232, 233].
For the reimplemented methods, we use the hyperparameters that lead to the
best results on the validation set. Results are in % and higher values are better.

1:1 Veri. TAR@FAR 1:N Iden. TPIR@FPIR

Method 1e-5 1e-4 1e-3 rank-1 1e-2 1e-1

VGGFace2 (SENet) [17] 74.70 84.00 91.00 91.20 74.60 84.20
MN-vc [233] - 86.20 92.70 - - -
Comparator Nets [232] - 88.50 94.70 - - -

SphereFace 84.53 90.96 95.29 94.13 80.46 87.92
CosFace 82.08 89.55 94.93 93.66 76.84 85.89
ArcFace 86.02 91.47 95.45 94.51 82.22 88.93
Circle Loss 81.40 89.19 94.67 92.94 76.40 85.33
JAMsFace (Ours) 86.79 91.81 95.91 94.63 83.19 89.17

a Target Accuracy Rate (TAR) at FAR1e–4 of 91.81%. This performance surpassed
that of CosFace and ArcFace, which reached TARs of 89.55% and 91.47% respectively.

Visually, the prowess of JAMsFace is evident from the Receiver Operating Charac-
teristic (ROC) curves depicted in Fig. 4.7 for IJB-B and Fig. 4.8 for IJB-C. Notably,
JAMsFace continues to demonstrate exceptional performance even at the challenging
FAR=1e-5 setting, underscoring its robustness.
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Figure 4.7: The ROC curves of JAMsFace and other start-of-art methods on IJB-B dataset.
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Figure 4.8: The ROC curves of JAMsFace and other start-of-art methods on IJB-C dataset.

4.4.3.5 MegaFace Dataset

Finally, we turn our attention to the MegaFace Challenge to demonstrate the efficacy
of the proposed JAMsFace loss function. MegaFace [104] is a particularly demanding
benchmark that serves as a stress test for evaluating FR performance at million-
level distractors. The MegaFace gallery set consists of 1 million images spanning
690,000 unique subjects, and the probe set, named FaceScrub [160], includes 100,000
photos from 530 distinct individuals. To maintain the quality and reliability of the
evaluation, we adopted the refinement strategy from [37], where mislabeled face images
are cleaned, ensuring a more refined dataset for performance benchmarking.

The comprehensive results of our evaluation, as well as those of other leading meth-
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Table 4.9: Face identification and verification results on MegaFace Challenge 1 using Face-
Scrub as the probe set. Identification refers to rank-1 face identification accuracy
with 1M distractor and Verification refers to face verification TAR (True Accep-
tance Rate) at 10−6 FAR (False Acceptance Rate).

Method Identification (%) Verification (%)

NormFace [202] 89.24 90.76
SphereFace [136] 97.91 97.91
CosFace [37, 204] 97.91 97.91
ArcFace [37] 98.35 98.48
AdaptiveFace [132] 95.02 95.61
MV-Softmax [210] 97.76 97.80
CurricularFace [92] 98.71 98.64
Circle Loss [189] 98.50 98.73
GroupFace [112] 98.74 98.79

JAMsFace (Ours) 98.71 98.95

Table 4.10: Verification performance results reported in terms of accuracy (%).

Method LFW AgeDB-30 CALFW CPLFW CFP-FP VGG2-FP

CosFace 99.533 93.533 93.100 91.983 96.374 93.540
ArcFace 99.583 92.417 92.367 91.733 96.569 93.476
AdaptiveFace 99.333 90.983 91.900 89.850 94.929 93.400
ArcPlusCos 99.300 86.217 89.133 88.833 94.411 90.656
JAMsFace (Ours) 99.667 94.383 93.683 92.300 97.286 94.700

ods, are detailed in Table 4.9. Two major tasks are considered: identification and
verification. For the identification task, the prowess of JAMsFace shines through, as
it narrowly trails the benchmark’s best performance. Notably, it falls short by a mini
margin of 0.03% when compared with the top performance, GroupFace [112]. This
demonstrates that JAMsFace is adept at recognizing individuals across various images
and is virtually on par with the best models available. However, it is the verification
task where JAMsFace truly showcases its superior discriminative capability. It sur-
passes all other SOTA methods with a clear margin. This underscores the method’s
capacity to consistently verify the authenticity of facial identities, even in an extensive
dataset like MegaFace.
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4.5 Discussion

This chapter presents a novel loss function that provides substantial versatility in
determining margins according to the distribution of classes. In contrast to previ-
ous approaches like CosFace [204], ArcFace [37], and AdaptiveFace [132], the JAMs-
Face employs joint adaptive margins in both the angle and cosine spaces to decrease
intra-class variation and enhance inter-class variance. This methodology promotes
the acquisition of more distinguishing characteristics by the model, hence enhancing
the accuracy of FR. Moreover, the incorporation of joint adaptive margins not only
increases the depiction of faces but also optimizes overall performance.

In order to confirm the efficacy of the suggested loss function, we introduced a mod-
ified version of our JAMsFace denoted as ArcPlusCos loss, which has a static margin.
Additionally, we re-implemented three other cutting-edge loss functions: CosFace, Ar-
cFace, and AdaptiveFace. In order to achieve equitable comparisons, the losses that
were implemented and the JAMsFace function were trained on the VGGFace2 model
[17] using a 64-CNN architecture derived from the works in [136, 204]. The cosine
and angular margins were established using the optimal values documented in prior
studies [37, 204]. The verification performance results, measured in terms of accuracy
score, on many widely used benchmark datasets are presented in Table 4.10. The find-
ings indicate that our suggested approach exhibits superior performance compared to
both the static margin variations and the single adaptive margin variant across all
evaluation datasets. This underscores the notable enhancement attained with the
incorporation of joint adaptive margins.

In addition to its performance advantages, the JAMsFace provides practical benefits
by efficiently resolving the issue of class imbalance in FR. Furthermore, it addresses
the issues provided by unconstrained environments by using both cosine and angular
margins. The proposed approach offers resilience against class imbalance as well as the
long-tail problem, unrestricted contexts, the ability to generalize to unfamiliar classes,
and the potential for integration into pre-existing FR frameworks. Nevertheless, it is
crucial to thoroughly investigate the computational complexity and take into account
the specific requirements of the application when evaluating the feasibility of utilizing
the JAMsFace.

However, it is important to acknowledge that our proposed methodology still neces-
sitates a significant quantity of training data in order to attain optimal performance.
The computing complexity of the training process is increased by the combined penalty
imposed by the cosine and angular margins in the JAMsFace function. In order to
mitigate these constraints, future investigations may delve into methodologies aimed
at enhancing the computational efficacy of margin-based softmax losses, particularly
in practical contexts encompassing mobile devices or cloud-based systems. Further-
more, although JAMsFace has demonstrated superior performance on the cross-pose
CPLFW dataset, there remains room for enhancement in this domain. Additional
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investigation can be conducted to examine different loss functions that possess im-
proved capabilities in managing cross-pose FR and augmenting the model’s capacity
to accommodate pose fluctuations.

4.6 Summary
Building upon the foundational framework established in Chapter 3, this chapter
delves into the design and implementation of a novel loss function tailored to enhance
FR accuracy.

Our motivation is based on the observation that a fixed margin, applied uniformly
across different classes, may not comprehensively capture the variations and distinc-
tions inherent within and between classes, particularly in the context of diverse and
heterogeneous real-world data. Real-face datasets often exhibit a long-tail distribu-
tion, which can hinder model learning when using fixed margin loss functions.

Additionally, traditional margin-based methods, while effective in many contexts,
tend to prioritize improvements in either angle or cosine space discrimination, po-
tentially neglecting the other dimension. This singular focus limits the model’s com-
prehensive discriminative capabilities. Addressing these gaps, we introduce the Joint
Adaptive Margins Loss Function (JAMsFace), which employs an adaptive cosine mar-
gin along with angular margin penalties to avoid relying on a single constant penalty
margin. JAMsFace not only enhances discrimination in both spaces but also dynam-
ically adjusts the margin for each class. This dual advantage ensures that the model
is sensitive to intra-class nuances while maintaining robustness in inter-class discrim-
ination.

Empirical evaluations and extensive experimentation across several benchmarks vali-
date the effectiveness and robustness of JAMsFace. Significantly, our proposed method
demonstrates advancements on benchmarks such as LFW, CALFW, CPLFW, and
CFP-FP datasets, as well as competitive results on the AgeDB-30 benchmark. The
adaptability and effectiveness of JAMsFace are further demonstrated on challenging
datasets, achieving state-of-the-art outcomes on IJB-B, IJB-C, and MegaFace datasets.

Beyond its empirical successes, the introduction of an adaptive, class-sensitive mar-
gin underscores the importance of nuanced, data-responsive methodologies in FR. It
emphasizes the need to move away from rigid structures and towards more flexible,
data-driven designs.

Future directions for this research could explore the extension and adaptation of
JAMsFace or similar adaptive loss functions across various tasks within computer
vision. The results presented here advocate strongly for the broader adoption of such
adaptive methodologies not only in FR but also in other domains within computer
vision and beyond.
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Traditional face recognition (FR) models often struggle to balance performance and
efficiency, especially when deployed in resource-constrained environments like human-
robot interaction (HRI) systems. These models, typically comprising millions of pa-
rameters, struggle with complex computational demands. Furthermore, their reliance
on global facial representations limit their effectiveness in various conditions, such
as significant pose variations or occlusions, which are common in HRI scenarios. To
address these dual challenges of high computational requirements and dependence
on global face representations, this chapter introduces our proposed network, Rob-
FaceNet.

Drawing inspiration from the insights gained in previous chapters, RobFaceNet is
designed to efficiently extract both local and global facial features, thereby enhancing
robustness and accuracy in varied and unpredictable settings. Its architecture, fea-
turing an innovative attention-enhanced bottleneck, adeptly identifies and prioritizes
crucial facial features at different levels. This strategic design significantly reduces
computational complexity and the number of model parameters, without sacrificing
the accuracy and robustness crucial for effective FR.

Furthermore, we have integrated the JAMsFace loss function, introduced in Chap-
ter 4, into our network architecture. This integration forms a comprehensive FR
framework, combining the strengths of an adaptive loss function with an efficient and
robust network. JAMsFace, with its unique class-specific adaptive margins, optimizes
the feature space for enhanced class separability and discriminability, thus amplifying
RobFaceNet’s capability to process the intricate details of diverse facial features.

Collectively, RobFaceNet and JAMsFace create a complete FR framework ideally
suited for HRI environments. This system not only tackles the challenges of high com-
putational demands and the necessity for comprehensive feature extraction but also
offers a balanced, practical, and highly effective solution for real-world applications.
Our extensive empirical evaluations demonstrate RobFaceNet’s exceptional efficiency
and its competitive performance against state-of-the-art accuracy across various FR
datasets.
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5.1 Introduction

Convolutional Neural Networks (CNNs) have distinctly delineated their impact in the
area of computer vision, attaining notable achievements in various visual recognition
tasks by adeptly discerning and analyzing relevant visual attributes from images [1, 44].
Particularly in the domain of FR, they have facilitated a paradigm shift, substantively
enhancing the fidelity with which facial features are recognized and interpreted [42,
177].

Concurrently, FR technology has opened new horizons in various application realms,
including, but not limited to, security [117], video surveillance [8], and most pivotally,
HRI [106, 181]. In the realm of HRI, there is a crucial demand for the deployment
of robust and efficient FR mechanisms, aiming to enable seamless and personalized
interactions between robots and humans. Nevertheless, this necessitates addressing
the challenge posed by the low computational constraints inherent to robotic systems,
particularly those relevant to power and processing capabilities.

Contemporary FR methodologies, despite their demonstrated performance, predom-
inantly hinge on the computational extensiveness of deep CNNs [37, 48, 177], thus pos-
ing significant challenges in resource-limited, real-time contexts. This computational
complexity becomes particularly prominent in dynamic HRI environments, where real-
time processing and interpretation of facial data are pivotal for facilitating meaningful
and interactive engagements.

The imperative to develop lightweight neural networks without compromising ac-
curacy is evident. A spectrum of strategies, including network pruning, knowledge
distillation, and depth-wise convolutions, has emerged to navigate the challenge of
reducing computational demands without significantly attenuating performance [50,
75, 83, 84, 140, 174, 255]. Despite their exploration in image classification and object
detection contexts, a substantial research gap persists regarding FR tasks, highlighting
a tangible need for further scholarly investigation.

A limited number of studies have presented accurate and lightweight architectures
tailored specifically for FR purposes [49, 124, 146, 228, 239]. Moreover, these lightweight
architectures frequently ignore essential low-level, local details, as they predominantly
capitalize on the semantic-rich high-level features derived from the last convolution
layer. This consequently suppresses the model’s capacity to leverage vital low-level
information, thereby necessitating a balanced approach that concurrently harnesses
both local and high-level information to enhance FR capabilities, particularly within
the context of HRI.

In light of these considerations, this chapter introduces RobFaceNet, an innovative
CNN architecture uniquely crafted for adept FR, yet carefully conscious of computa-
tional and resource limitations. RobFaceNet seeks to harmonize high-level semantic
and low-level feature extraction, ensuring a comprehensive extracting of critical facial
information whilst aligning with the computational confines of resource-restricted plat-

88



5.2 Relationship to Previous Work

forms such as robotic systems. Generally, RobFaceNet embeds the bottleneck resid-
ual block from MobileNetV2 [174], augmented with attention mechanisms, thereby
enhancing its capacity to discern and prioritize salient features within varied face
regions.

This chapter illustrates our contributions in FR network design, which can be sum-
marized as follows:

• Multi-feature approach: We devise an efficient and accurate lightweight FR ar-
chitecture that adopts a multi-feature approach. This approach facilitates the
extraction of comprehensive feature information, enhancing the network’s FR
capabilities while ensuring the feasibility of real-time processing.

• Enhanced bottleneck with attention: Our approach involves the integration of
various attention blocks (Channel Attention and Squeeze-and-Excitation) within
the bottleneck, tailored to specific layers. This augmentation significantly im-
proves the discriminative power of RobFaceNet.

• Nonlinearity activation function: In RobFaceNet, we employ the h-swish function
as the nonlinearity activation function, replacing PReLU. The implementation
of this substitution greatly improves the performance of the model while also
reducing the computational burden.

• Comprehensive experimental evaluation: We evaluate our method on a series of
popular FR benchmarks and demonstrate that our proposed model consistently
outperforms other SOTA counterparts, even when compared to other models
with similar or larger parameter sizes.

To further illustrate the significance of our approach, the rest of this chapter is
organized into the following sections: first, we review related work in Section 5.2, then
we introduce our proposed architecture in Section 5.4, followed by detailed experiments
and performance analysis in 5.5. Finally, we conclude our work in Section 5.7.

5.2 Relationship to Previous Work
FR has gained immense popularity, especially in mobile devices and robotic systems.
This surge has amplified the need to develop computationally efficient models without
compromising accuracy, particularly in real-world, dynamic environments where real-
time processing is crucial. Although numerous advancements have sought to develop
FR systems that are not only accurate and robust across various environments and
lighting conditions but also lightweight and computationally efficient, the challenge
persists.

Various lightweight network architectures have been proposed for common visual
tasks, including SqueezeNet [94], MobileNets [84], MobileNetV2 [174], ShuffleNet [259],
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MobileNetV3 [83], and MobileOne [199]. Moreover, efficient lightweight network ar-
chitectures (Table 5.1) have adapted these networks for FR by designing compact
convolution building blocks, such as SqueezerFaceNet [6], MobileFaceNets [23], Air-
Face [124], VarGFaceNet [239], ShuffleFaceNet [146], Mixfacenets [11], and PocketNet
[13].

These models draw inspiration from the advancements in deep image classification
models and the evolution of depthwise separable convolutions [174, 193, 256, 259].
These models address the specific challenge of the high number of parameters in fully
connected (FC) layers. To overcome this issue, these efficient FR models replace FC
layers with global depthwise convolutions (GDC). The GDC layer weights different
units of the feature map differently, providing a more effective architecture for FR
tasks. The GDC layer has a computational cost of only W ×H×C, where W, H, and
C represent the width, height, and channels of the input feature map. Moreover, this
approach effectively reduces the parameter count while maintaining or even improving
performance.

For instance, the MobileFaceNets architecture [23] is built upon the residual bottle-
necks introduced by MobileNetV2 [174], incorporating approximately 1M parameters
with 439M FLOPs. The authors finetuned the MobileNetV2 architecture by incor-
porating a GDC layer instead of a global average pooling (GAP) layer. Additionally,
they opted to use the PReLU [78] function as the nonlinearity in all convolutional
layers. These design choices have yielded improved performance in facial recogni-
tion tasks. While MobileFaceNets demonstrate improved performance across various
datasets, they encounter limitations when applied to the MegaFace dataset, where
accuracy experiences a slight decrease.

ShuffleFaceNet [146] proposed a compact FR model by finetuning ShuffleNetV2
[145]. This approach replaced the last GAP layer with a GCD layer and the Rectified
Linear Unit (ReLU) activation function with PReLU. ShuffleFaceNet is slightly larger
than MobileFaceNet; however, it offers better accuracy.

Following a similar pattern as in [23] and [146], the VarGFaceNet [256] and Mix-
facenets [11] model architectures adopted the VarGNet [256] and MixNets [193], re-
spectively. In [256], the authors introduced modifications to the VarGNet block,
including incorporating a squeeze and excitation block (SE), replacing ReLU with
PReLU, and introducing variable group convolutions before the FC layer. These mod-
ifications significantly reduced the number of parameters to 5M and the computational
cost to 1G FLOPs. Recursive knowledge distillation was also employed to enhance
the model’s generalization capability. VarGFaceNet achieved an impressive accuracy
of 99.85% on the LFW dataset. However, the computational cost of VarGFaceNet is
still higher compared to ShuffelFaceNet and MobileFaceNet. Similarly, in [11], the au-
thors introduced a family of efficient FR models (MixFaceNets) by incorporating the
MixConv block [193] with a channel shuffle operation, which enhances the discrimina-
tive ability of the model. With 3.95M parameters and 626M FLOPs, the MixFaceNets
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Table 5.1: Proposed lightweight models in the literature for face recognition

Network Vector Size Base Architecture

MobileFaceNets [23] 256 MobileNetv2
AirFace [124] 512 MobileFaceNets

VarGFaceNet [239] 512 VarGNet
ShuffleFaceNet [146] 128 ShuffleNet

Mixfacenets [11] 512 MixNets
PocketNet [13] 128-256 PocketNet

RobFaceNet(Ours) 512 MobileNets

model achieved an accuracy of 99.68% on the LFW dataset.
Inspired by the successes of MobileFaceNets [23], Li et al. [124] developed AirFace,

a lightweight FR model based on the deeper MobileFaceNet(y2) [37] architecture.
In their approach, they increased the network width and depth to further improve
the model’s performance. Additionally, they incorporated the Convolutional Block
Attention Module (CBAM) [223] into every bottleneck within the network. However,
the model still expensive in terms of computational complexity.

In [13], Boutros et al. introduced a family of lightweight FR models called Pocket-
Nets. They utilized Neural Architecture Search (NAS) techniques to automatically
discover an FR-specific lightweight architecture, optimizing it for performance and
computational efficiency. In addition to the architectural design, Boutros et al. pro-
posed a novel KD paradigm to address the challenges arising from the significant
performance gap between the teacher and student models.

Among the previously mentioned works, MobileFaceNets [23] and MixFaceNets [11]
have particularly shined in achieving impressive accuracy with minimal computational
costs. However, our proposed RobFaceNet architecture surpasses these by delivering
superior results with even fewer computational demands. It stands as a potential
solution of optimizing both accuracy and efficiency in FR tasks.

5.3 Preliminaries

5.3.1 Efficient Mobile/Light Building Blocks

Depthwise Separable Convolutions have emerged as pivotal building blocks within nu-
merous efficient neural network architectures, underscored by works such as [83, 84,
174, 259]. Our work also leverages depthwise separable convolutions, mainly motivated
by their computational and parameter efficiency. Depthwise separable convolutions
strategically substitute a full convolutional operator with a factorized version, effec-
tively splitting the convolution into two discrete layers, as illustrated in Fig. 5.1(a).
The first layer involves a depthwise convolution, which executes lightweight filtering
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Figure 5.1: Comparative visualization of convolutional blocks across different architectures.
(a) MobileNetV1 [84]. (b) MobileNetV2 [174], where each block features narrow
input and output (bottleneck) dimensions, devoid of nonlinearity, subsequently
expanding into a higher-dimensional space before projecting to the output. No-
tably, the residual connection links the bottleneck stages, bypassing the ex-
panded dimension and only applied when the stride is equal to 1.

by applying a singular convolutional filter per input channel. Subsequent to this, the
second layer, termed a 1× 1 convolution or pointwise convolution, focuses on crafting
new features through the computation of linear combinations of the input channels.

In a standard convolution, an input tensor Tin of dimensions h×w×cin is subjected
to a convolutional kernel K ∈ Rk×k×cin×cout, producing an output tensor Tout with
dimensions h×w× cout. The computational cost of standard convolutional layers can
be formulated as:

h · w · k · k · cin · cout (5.1)

Conversely, depthwise separable convolutions, a key efficiency gain in RobFaceNet,
offer a significantly lower computational cost than traditional convolutions. The com-
putational cost for depthwise separable convolutions is:

h · w · cin(k2 + cout), (5.2)

which reduces the overall model complexity and accelerates processing by representing
the cumulative cost of the depthwise and 1×1 pointwise convolutions. This mechanism
allows depthwise separable convolution to notably reduce computational demand in
comparison to traditional layers, diminishing it by nearly a factor of k2. MobileNetV1
[84], employing k = 3, manages to reduce computational costs by a factor of 8 to 9,
compared to standard convolutions, while only marginally sacrificing accuracy [84].

MobileNetV2 [174] introduced the linear bottleneck and inverted residual structure,
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leveraging the low-rank nature of neural networks to foster even more efficient layer
structures. As illustrated in Fig. 5.1(b), this structure is characterized by a 1 × 1
expansion convolution, succeeded by depthwise convolutions and a 1 × 1 projection
layer. A residual connection connects the input and output if and only if they have an
identical number of channels. This methodology preserves a compact representation at
both the input and output while internally expanding to a higher-dimensional feature
space to augment the expressiveness of nonlinear per-channel transformations.

Building upon the foundation of MobileNetV2 [174], MobileNetV3 [83] integrates
lightweight attention modules into the bottleneck structure, based explicitly on the
squeeze and excitation approach. It’s imperative to note that the integration point
of the squeeze and excitation module deviates from the location used in ResNet-
based modules as proposed in [86]. In MobileNetV3, the module is situated after the
depthwise filters within the expansion, facilitating the application of attention to the
most voluminous representation.

In developing our approach, we harness a combination of these layers as foundational
building blocks to construct models of optimum efficacy. Layers are further enhanced
with modified hswish nonlinearities, a nuance introduced in MobileNetV3 [83]. Beyond
merely employing attention modules based on squeeze and excitation, our strategy
also embraces the utilization of a coordinate attention mechanism, as elaborated in
Section 5.4.

5.3.2 Attention Mechanisms

Inspired by humans’ intrinsic capability to adeptly identify salient regions within com-
plex scenes, we introduce attention mechanisms into our proposed model, aiming to
emulate this particular facet of the human visual system. The attention mechanism
can be understood as a variable process of adjusting weights, which is dependent on
the characteristics of the input facial image. In this endeavor, we employ two distinct
categories of attention mechanisms: channel attention and a combined form of channel
and spatial attention. Specifically, the Squeeze-and-Excitation (SE) [86] mechanism
is utilized to facilitate channel attention, while Coordinate Attention (CA) [82] is
employed to manage both channel and spatial attention.

Squeeze-and-Excitation Attention (SE). The Squeeze-and-Excitation (SE) block,
introduced by Hu et al. [86], improves the network’s performance by enabling it to
capture channel-wise dependencies and enhance the representational capacity. This
mechanism is essential for optimizing feature extraction and classification. As illus-
trated in Fig. 5.2(a), SE block is divided into two main segments: a squeeze module
and an excitation module. The compression module captures spatial information on
a global spatial by utilizing global average pooling. Conversely, the excitation module
employs fully-connected layers and non-linear layers (ReLU and sigmoid) to capture
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Figure 5.2: Attention mechanisms utilized in our approach.

channel-wise dependencies and generate an attention vector as output. Subsequently,
the input feature’s different channels are adjusted by multiplying them by the relevant
element in the attention vector. SE blocks enhance important channels while simulta-
neously reducing noise. We incorporate the SE block into our work due to its minimal
computational resource demands.

Coordinate Attention (CA). While an SE block aggregates global spatial informa-
tion via global pooling and subsequently models cross-channel relationships, it over-
looks the criticality of positional information. Although Convolutional Block Attention
Module (CBAM) [223] and Bottleneck Attention Module (BAM) [163] utilize convolu-
tions to capture local associations, they fall short in modeling long-range dependencies.
To address these limitations, Hou et al. [82] proposed the Coordinate Attention (CA),
an innovative attention mechanism that incorporates positional information into chan-
nel attention, enabling the network to concentrate on substantial, important regions
with minimal computational cost.

In Fig. 5.2(b), we illustrate the coordinate attention mechanism, which unfolds
through two phases: first, embedding coordinate information, followed by coordinate
attention generation. This approach allows the network to focus on important spatial
regions in facial images. Initially, two spatial extents of pooling kernels encode each
channel horizontally and vertically. The process of the coordinate attention mechanism
consists of two sequential phases: coordinate information embedding and coordinate
attention generation. The initial step involves encoding each channel horizontally and
vertically using two spatial extents of pooling kernels. Following this, a convolutional
transformation function with dimensions of 1times1 is applied to the combined outputs
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of the two pooling layers. The network, utilizing coordinate attention, can precisely
ascertain the position of a targeted object. This method expands the receptive field
compared to BAM and CBAM, and, similar to the SE block, it models cross-channel
relationships to enhance the expressive power of the features. Owing to its lightweight
design and versatility, it is integrated into the building blocks of our approach.

5.4 Our Approach to Efficient and Robust Face Recognition

FR technologies have been incorporated into many applications, spanning from secure
authentication to HRI. The design imperatives for constructing robust and efficient
deep learning models have significantly evolved. These models require a refined un-
derstanding that model architectures must be both computationally optimized and
capable of nuanced feature discernment. Consequently, we present our approach to an
efficient and robust FR network. This network architecture not only draws inspira-
tion from prevailing mobile network design strategies but also infuses a series of solid
enhancements to augment its proficiency in FR tasks.

Detailed exploration of our architectural design is pivotal to understanding the func-
tionality and efficacy of our approach. Anchoring our discussion in Section 5.3, it is
crucial to note that the elementary building block of our architecture is rooted in
the bottleneck depth-separable convolution. Initiating the architectural cascade of
RobFaceNet, an introductory fully convolutional layer with 64 filters takes the stage,
which is sequentially followed by 16 enhanced residual bottlenecks and three branches
of depthwise convolution layers, as described in Table 5.2 and visually represented
in Fig. 5.3. We have opted for the modified h-swish activation function as the non-
linearity, primarily attributable to its demonstrated robustness in scenarios employing
low-precision computation [83]. A kernel size of 3× 3 is employed, aligning with con-
temporary network design norms. Lastly, we establish a hyperparameter s to control
the stride within the model’s head and stages, offering the option to apply a rapid
downsampling strategy at the network’s beginning or not. If s = 2, then the fast
downsampling is activated.

The layers within RobFaceNet incorporate innovative connections, capitalizing on
the deep features encoded in both low- and high-level representations of face regions.
This integration facilitates the extraction of a broader spectrum of informative fea-
tures, substantially enhancing the network’s ability to capture and represent facial
characteristics. While the proposed network adopts the depthwise separable convo-
lutions utilized by numerous efficient neural network architectures [83, 84, 174, 259]
to ensure model efficiency, it distinguishes itself by embodying an enhanced version.
This version integrates strategic refinements, precisely optimized to simultaneously
boost computational efficiency and promote robust performance across a variety of
FR applications and scenarios. Subsequent sections illuminate the enhancements and
architecture integral to our approach.
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Figure 5.3: Architecture of the proposed network. The RobFaceNet architecture incorpo-
rates multi-feature networks that consider both low-level and high-level features
in the embedding process. This information is extracted from the middle blocks
of the network.

5.4.1 Enhanced Bottleneck

In the context of using CNNs for facial feature extraction, it is crucial to assign
more weight to the most recognizable face regions. Similarly, channel features that
convey pivotal distinguishing information should be assigned more weight [69]. To
achieve superior performance, we adeptly synthesize these principles by introducing an
attention-based enhanced bottleneck into our approach, as illustrated in Fig. 5.4. We
comprehensively explore the impact of this attention mechanism approach in Section
5.5.3.

The enhanced attention-based bottleneck is characterized as an inverted bottle-
neck that smoothly integrates either a Coordinate Attention (CA) or Squeeze-and-
Excitation (SE) attention module subsequent to the depthwise convolution layer. This
combination of attention modules augments the network’s proficiency in decoding both
channel and spatial features, enhancing its capability to differentiate between various
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Table 5.2: The proposed network architecture. Each line describes a sequence of operators,
repeated n times with stride s. All layers in the same sequence have the same
number c of output channels

Input Operator n s c Attention

1122 × 3 conv3× 3 1 2 64 No
562 × 64 depthwise conv3× 3 1 1 64 No
562 × 64 bottleneck 3 1 64 CA
562 × 64 bottleneck 1 2 64 CA
282 × 64 bottleneck 2 1 64 CA
282 × 64 depthwise branch1 1 4 256 CA
282 × 64 bottleneck 2 1 64 CA
282 × 64 bottleneck 1 2 128 CA
142 × 128 depthwise branch2 1 2 256 SE
142 × 128 bottleneck 5 1 128 SE
142 × 128 bottleneck 1 2 256 SE
72 × 256 bottleneck 1 1 256 SE
72 × 1024 linear GDConv7× 7 1 1 1024 No
12 × 1024 linear conv1× 1 1 1 512 No

Features

1x1 Conv

Output

3x3 Dwise Conv

1x1 Conv, Linear

PReLU

PReLU
stride=1

(a) MobileFaceNet

Features

1x1 Conv

Output

3x3 Dwise Conv

1x1 Conv, Linear

hswish

hswish

stride=1Attention Block
CA or SE

x

(b) RobFaceNet

Figure 5.4: Comparison of the bottlenecks used in (a) MobileFaceNet and (b) RobFaceNet.
MobileFaceNet incorporates MobileNetV2 [174] bottlenecks, replacing ReLU
with PReLU. RobFaceNet utilizes MobileNetV2 bottlenecks along with atten-
tion mechanisms, such as the Squeeze-and-Excite block or coordinate attention.
Unlike [23, 174], we apply the squeeze and excite block or coordinate attention
in the residual layer and use hswish as the nonlinearity. The dashed blocks are
only applied when the stride is equal to 1.
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facial characteristics. A significant aspect of our approach is the discerning applica-
tion of attention modules, the selection of which is dictated by the specific layer, as
delineated in Table 5.2.

The CA module, deployed in the initial layers, captures dependencies and correla-
tions among different positions within a feature map. This boosts the network’s ability
to differentiate a wide array of facial attributes and structures adeptly. The inclusion
of the CA block in our network architecture ensures that the model effectively identi-
fies and prioritizes pertinent spatial and channel information throughout the network,
thereby facilitating a more nuanced understanding of spatial hierarchies and channel-
wise dependencies within the facial features being analyzed. This detailed attention
to spatial and channel aspects guarantees that pivotal facial features are optimally
captured during the feature extraction process.

Conversely, the SE module, employed in subsequent layers, focuses on channel-
wise interactions, deftly selecting the most fitting representation through a process of
channel weight recalibration. The SE blocks assert their importance by emphasizing
channels with high-variance features while simultaneously mitigating the influence of
channels encompassing redundant or non-informative features, thus ensuring a cleaner,
more focused forward propagation of useful information through the network.

Precisely deploying these attention modules across diverse network layers boosts the
model’s overall performance and allows the network to concentrate on pivotal features
at varying stages, thereby enhancing its proficiency for FR tasks. Furthermore, the
incorporation of these attention mechanisms enables RobFaceNet to extract facial
features with heightened proficiency, achieving superior recognition accuracy without
compromising computational efficiency.

5.4.2 RobFaceNet

Multi-feature CNN. Existing methodologies commonly exhibit a singular depen-
dency on high-level features, primarily extracted from the last convolutional layer,
while occasionally neglecting the potential comprehensiveness of the features extracted
by individual layers [251]. Such an approach, although frequently effective, may over-
look the valuable insights offered by low- and mid-level features. In pursuit of a
more encompassing, informed feature extraction methodology, we introduce a nuanced,
multi-feature strategy within our proposed model.

Our approach integrates features from various network layers to extract a rich and
informative feature pool. Consequently, RobFaceNet adeptly extracts, processes, and
leverages a broad, insightful feature scope that is especially relevant for FR tasks,
where recognizing and understanding fine-grained features and subtle variations are
imperative for achieving high recognition precision.

Specifically, as illustrated in Fig. 5.5, we merge the outputs from the block3, block5,
and block7 layers in RobFaceNet through separate network branches. To align the
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Figure 5.5: Schematic Representation of the Multi-Feature Extraction and Concatenation
Process. The diagram illustrates the intricate process of extracting features from
various network layers and concatenating them to form a comprehensive and
rich feature map, adept for subsequent processing and analysis in our proposed
model.

dimensions of the feature maps, we introduce branch1 and branch2 depthwise convo-
lutional layers. Subsequently, the outputs of these layers are concatenated with the
output of block8, resulting in feature maps of dimensions 7 × 7 × 1024 that are fed
into the following global depthwise convolution layer, GDCConv7x7.

Our strategy hinges on insightful feature integration. By amalgamating information
from distinct network layers, our model not only encapsulates high-level abstractions
generally derived from deeper layers but also retains and utilizes subtler, detailed
feature information evident in the network’s earlier and mid-layers. This ensures that
the extracted features, now representative of a wider, more insightful feature spectrum,
serve as a robust and detailed foundation for recognizing and differentiating faces, even
in nuanced and challenging recognition scenarios.

By integrating both low-level and mid-level features besides the high-level features,
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our model becomes proficiently equipped for accurate and effective facial characteris-
tic recognition. Moreover, our multi-feature approach adeptly balances between the
richness of information and computational efficiency, ensuring the model’s practical
applicability across a spectrum of FR scenarios, thereby enhancing its versatility and
overall effectiveness as a promising solution for various applications.

Nonlinearities. Traditional mobile and lightweight networks, ranging from SqueezeNet
[94] to the iterations of MobileNets and ShuffleNet [84, 174, 259], have primarily an-
chored their architectures around the ReLU activation function [248] as a nonlinearity.
This widespread adoption can be attributed to ReLU’s simplistic implementation and
its capacity to mitigate vanishing gradient issues. Nonetheless, the ReLU function is
not without its limitations, notably its restriction of activations to non-negative val-
ues, which could potentially inhibit the network when navigating through the complex
and intricate landscape of facial feature representations.

In light of these challenges, mainly when focusing on lightweight FR networks [6, 11,
13, 23, 124, 146, 239], PReLU [78] emerges as a potent alternative. PReLU, allowing
for the propagation of negative activation values, augments the network’s ability to
learn more intricate feature representations by introducing a degree of asymmetry into
the activation function. Empirically, this asymmetry has demonstrated a propensity
to elevate performance metrics across various FR tasks and scenarios, making it a
valuable addition to the model’s architecture.

Navigating a different trajectory from established works, we opt for the modified h-
swish activation function, unveiled in MobileNetV3 [83], as the nonlinearity function
of choice for RobFaceNet. This pivotal decision is fueled by two critical factors: firstly,
the h-swish activation function has demonstrated a remarkable ability to attenuate
computational expenses while maintaining a competitive performance in our model
for diverse FR tasks, ensuring that the network remains both precise and effective.
Secondly, the efficient piece-wise implementation of h-swish minimizes memory access
and, consequently, reduces latency costs [83], thereby strengthening its alignment with
the computational and resource sensitivities inherent in lightweight, mobile-oriented
applications.

By adopting h-swish, our ambitions extend towards refining both the computational
efficiency and effectiveness of our network, making it ideally suited for FR tasks,
especially within resource-limited environments and embedded systems. The modified
h-swish function is defined as:

H-Swish(x) = x
ReLU6(x + 3)

6 , (5.3)

where, ReLU6(x) = min(max(x, 0), 6).
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Figure 5.6: Structure of the Global Depthwise Convolution (GDC) layer utilized in the
proposed approach, with the embedding size set to 512.

Embedding Setting. In traditional lightweight networks, with MobileNetV2 as an
outstanding exemplar, the global average pooling layer is commonly employed to derive
an embedding vector. Although prevalent, the GAP layer reveals certain inefficiencies
when applied to FR tasks [23, 37, 146, 228], predominantly arising from its equal
treatment of every unit within the output feature map, thereby neglecting the varied
discriminative power inherent to different units during face feature extraction.

As we delve deeper into the intricacies of FR, it becomes evident that the differ-
ent units mapped across the feature map correlate to distinct facial features. These
units, in turn, render disparate contributions toward the network’s discriminative ca-
pability. Therefore, creating a feature vector necessitates an approach that precisely
weights these units based on their specific contribution to discrimination. However,
a straightforward replacement of the GAP layer with a fully connected layer, while
facilitating the learning of specific weights for each unit, introduces significant com-
putational overhead and enlarges the model size, which is not suitable for lightweight
and mobile architectures.

To mitigate these challenges, our proposed approach adopts an alternative inspired
by MobileFaceNet [23], wherein we replace the GAP layer with a Global Depth-wise
Convolution (GDC) layer. The GDC layer in our model harmonizes the need to weight
feature map units differently with the imperative to maintain a streamlined model.
Unlike GAP, which applies a single scalar coefficient across all units, GDC employs a
depth-wise convolution to generate a weighted sum of the feature map units, thereby
constructing the embedding. The weights learned during the training process allow
the network to accentuate or attenuate the contribution of specific feature map units
in the embedding, depending on their relevance to the task. This approach promotes
a model that is both discerning in its feature extraction and computationally efficient.
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Table 5.3: Face datasets for training and testing

Input #Identity #Image/Videos Task Key features

MS1MV2 [37] 85K 5.8M/- train Unconstrained images
MS1MV3 [38] 91K 5.1M/- train Unconstrained images

LFW [90] 5,749 13,233/- 1:1 Unconstrained images
CFP-FP [178] 500 2,000/- 1:1 Cross-pose
AgeDB-30 [154] 568 16,488/- 1:1 Cross-age
CPLFW [262] 3,968 11,652/- 1:1 Cross-pose
CALFW [263] 4,025 12,174/- 1:1 Cross-age

IJB-B [219] 1,845 21.8K/7,011 1:1 Large-scale,
1:N Full pose variation

IJB-C [149] 3,531 31.3K/11,779 1:1 Large-scale,
1:N Full pose variation

The comprehensive structure of the GDC layer is illustrated in Fig. 5.6.
The incorporation of the GDC layer, together with strategic refinements across our

model architecture, formulates a model proficiently balanced between computational
efficiency and perceptive feature extraction, yielding a network finely tuned for FR
tasks, especially within resource-constrained environments.

5.5 Experiments and Analysis

In this section, experimental results of our proposed Efficient and Robust FR Network
(RobFaceNet) are presented. We first present preprocessing methods and then the
implementation details. After that, we conduct an ablation study to analyze the
impacts of various settings in our model, focusing on how they influence accuracy and
computational efficiency. Next, we visually demonstrate the efficiency of our approach.
Finally, the proposed model is compared with state-of-the-art methods for FR

5.5.1 Preprocessing

For data preprocessing, we adhere to the widely employed methodology as described
in previous studies [12, 37, 266]. This involves cropping each face image to dimensions
of 112 × 112, employing a similarity transformation that relies on the five face land-
marks identified by MTCNN [253]. Ultimately, the resolution of the RGB pixel values
is normalized from the range of [0, 255] to [−1, 1]. The RobFaceNet model utilizes
aligned and cropped facial images with dimensions of 112×112×3 to generate feature
embeddings with a dimensionality of 512.
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5.5.2 Implementation Details

Training Datasets. Our RobFaceNet model was trained using the MS1MV2 dataset
[37], and for the ablation study, we utilized the VGGFace2 dataset [17]. The MS1MV2
dataset is an improved version of MS-Celeb-1M [71], with around 5.8M images belong-
ing to approximately 85k identities. On the other hand, VGGFace2 comprises 3.14M
face images that cover a wide range of poses, ages, and ethnicities.

Validation and Test Datasets. We used the LFW [90], CFP-FP [178], and AgeDB-
30 [154] datasets for validation purposes to assess the improvements achieved with
different settings. Additionally, we used different benchmarks to evaluate the effec-
tiveness of our proposed lightweight face model in various FR tasks, highlighting their
main characteristics in Table 5.3. In addition to efficient face verification datasets like
LFW, we also evaluated the performance of our lightweight networks on larger-scale
image datasets, such as IJB-B [219] and IJB-C [149]. Furthermore, we extensively
tested our models on cross-pose datasets, including CFP-FP [178] and CPLFW [262],
as well as cross-age datasets, such as AgeDB-30 [154] and CALFW [263]. These evalu-
ations demonstrate the robustness and effectiveness of our lightweight FR RobFaceNet
in various challenging scenarios.

Training Setup. The models introduced in this work are implemented using Py-
Torch. For a fair performance comparison with other SOTA models, all models are
trained using the ArcFace loss [37] with an angular margin of m = 0.5 and a feature
scale of s = 64. During training, we set the batch size to 512 and utilized an NVIDIA
Quadro RTX 8000 GPU. The optimization is performed using the Stochastic Gradient
Descent (SGD) optimizer [105] with an initial learning rate of 1e-1, momentum of 0.9,
and weight decay parameter of 5e-4. The learning rate is reduced by a factor of ten
at 80k, 140k, 210k, and 280k training iterations. To monitor the model’s performance
during training, we evaluate it on LFW, CFP-FP, and AgeDB datasets after every
5000 training iterations. The training process is stopped after 300k iterations. For
verification, we use the cosine distance between feature vectors in all experiments.

5.5.3 Ablation Study

5.5.3.1 Impact of Attention Mechanisms

The infusion of attention modules into deep learning architectures, specifically into an
inverted bottleneck configuration in our context, is driven by an overarching objec-
tive: to confer the network with the adaptive capability to prioritize the learning and
extraction of pivotal features, while simultaneously attenuating the influence of less
informative elements.
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In this experiment, we emphasize our focus on two distinguished attention mech-
anisms: Channel Attention and Squeeze-and-Excitation, as discussed in section 5.3.
These mechanisms are examined both individually and in pairs to deduce their respec-
tive and collective impacts on FR capabilities, as detailed in Table 5.4.

Phase 1: Individual Application of Attention Mechanisms. Initially, a singular at-
tention mechanism, either CA or SE, is infused throughout all layers of the network.
This approach is undertaken to derive insights into the inherent capabilities and po-
tential limitations of each attention mechanism when applied uniformly across the
architecture.

Phase 2: Hybrid Application of Attention Mechanisms. Subsequent investigations
involve a hybrid strategy, incorporating both CA and SE attention modules. In this
phase, we intersperse the attention mechanisms, embedding CA in the initial layers
and SE in the latter and reciprocally, aiming to find an optimal configuration that
harmonizes the benefits offered by both mechanisms.

Table 5.4 encapsulates the empirical outcomes, revealing a compelling result: the
architecture that incorporates CA modules within the initial layers and SE modules
in the succeeding ones displays a superior recognition performance across all investi-
gated datasets. This configuration not only enhances performance in a generic setting
but also sustains this elevated performance across datasets that introduce additional
complexities, such as age and pose variations.

This substantive performance enhancement is not merely an empirical observation
but a testament to the effective learning and representative capabilities bestowed upon
our network by the amalgamated attention-based bottleneck. Consequently, the re-
sults emphasize the strategic significance of employing a precisely configured attention
mechanism, one that is not arbitrarily incorporated, but is architecturally harmonious
with the learning nuances demanded by diverse FR scenarios and datasets.

These outcomes not only validate but also illuminate the pivotal role of our enhanced
attention-based bottleneck in amplifying FR performance, offering a versatile solution
adept at navigating through a myriad of scenarios and conditions prevalent in real-
world applications.

5.5.3.2 Impact of Nonlinearities

The role of nonlinear activation functions in deep neural networks is pivotal, acting
as a determinant in the learning capabilities and computational demands of the net-
work. Within the context of our experimentation, we build a systematic exploration
of various nonlinear functions, namely the Rectified Linear Unit (ReLU), Parametric
Rectified Linear Unit (PReLU), and the modified Hard Swish (h-swish), highlighting
their implications on the FR performance of our proposed model. Our experimentation
begins with a pragmatic evaluation of h-swish nonlinearities, an activation function
renowned for its balanced trade-off between computational efficiency and model capa-
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Table 5.4: Effects of different attention modules. F and L denote the application of attention
modules to the first and last layers of the network, respectively. All models are
trained on VGGFace2 [17]. The last row indicates the RobFaceNet settings

SE CA MFLOPs LFW AgeDB-30 CALFW CPLFW CFP-FP

✗ ✗ 333.7 99.56 93.98 93.25 91.28 96.94
✓ ✗ 335.4 99.50 94.11 93.50 91.65 97.42
✗ ✓ 339.0 99.61 94.08 93.40 92.00 97.51
F L 336.6 99.55 93.92 93.40 92.13 97.35

L F 337.3 99.65 94.53 93.66 92.33 97.79

bility. Refer to Table 5.5 for a quantitative delineation of our findings.
The initial phase of our experimentation adopts a conventional approach, substitut-

ing ReLU with PReLU, attributed to the latter’s capability to learn negative activation
values, an attribute which has been correlated with improved performance in FR tasks
[78]. Following this, we delve into the domain of h-swish nonlinearities, replacing ReLU
and contrasting the impacts. This analytical comparison, encompassing single-type
nonlinearity adjustments, paves the way for our subsequent exploration into the realm
of mixed nonlinearities.

In the pursuit of refined performance and computational balance, we explore a hy-
brid nonlinearity configuration, incorporating both h-swish and PReLU or ReLU in
different network layers. This approach derives from the hypothesis that different
network depths may benefit variably from distinct nonlinearities, thereby enriching
the feature extraction and representation capabilities of RobFaceNet. Our experimen-
tations with various configurations of these mixed nonlinearities clarify their direct
impact on the network’s FR prowess.

A precise examination of the results (Table 5.5) reveals significant insights into the
interplay between nonlinear activation functions and FR performance. A discernable
improvement is noted with the consistent deployment of h-swish across all layers of
RobFaceNet, signifying not only an enhancement in recognition accuracy but also a
commendable reduction in computational demand when compared with other config-
urations.

Our findings emphasize the salient benefits of harnessing the h-swish nonlinearity,
shedding light on its efficacy in not only preserving but enhancing both the computa-
tional efficiency and effectiveness of our network across diverse FR tasks.

5.5.4 Performance versus Computational Complexity

Navigating the intricate intersections between model performance and computational
complexity constitutes a captivating challenge, particularly in domains such as FR,
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(a) CALFW (b) AgeDB-30

(c) CPLFW (d) CFP-FP

(e) LFW

Figure 5.7: Illustrating the Balance: Computational Complexity, Performance, and Model
Size Across Benchmarks. Model size is proportionally represented by marker
area. RobFaceNet, highlighted with a blue circle, exemplifies a leading trade-
off between FR performance, FLOPs, and compactness, consistently occupying
the top-left corner and compared with the top-performing compact models from
recent literature on each benchmark.
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Table 5.5: Effects of different nonlinearities. All models are trained on VGGFace2 [17]. The
last row indicates RobFaceNet settings

ReLU PReLU HSwish MFLOPs LFW AgeDB-30 CALFW CPLFW CFP-FP

✓ ✗ ✗ 341.4 99.60 94.21 93.40 92.20 97.27
✗ ✓ ✗ 341.4 99.60 94.35 93.61 92.11 97.65
✓ ✗ ✓ 340 99.53 94.13 93.26 92.17 97.20
✗ ✓ ✓ 340 99.50 94.40 93.60 92.10 97.51

✘ ✘ ✔ 337.3 99.65 94.53 93.66 92.33 97.79

where precision and efficiency are paramount. In our quest to uncover an optimal bal-
ance, Fig. 5.7 offers a visual exposition, clarifying the computational efficiency of our
model compared to its verification performance, with quantitative results summarized
in Tables 5.6, 5.7, and 5.8.

To carve a holistic representation and further deepen the insights derived from our
analysis, we introduce model size, an essential determinant of deployment feasibility
in resource-constrained environments, as an additional evaluative metric. In Fig. 5.7,
the size of each marker is directly proportional to the model size, seamlessly weaving
this dimension into our comparative visualization and providing a multi-faceted view
of the models under consideration.

Our analysis integrates a diverse array of models, particularly emphasizing the top
ten compact models that have demonstrated exceptional performance in recent liter-
ature across each benchmark. Each model is encapsulated by a distinct colored circle
within the visual representation, its precise position reflecting its respective computa-
tional complexity and performance. Within this context, the upper-left corner of the
graph represents the coveted ‘sweet spot,’ symbolizing a model of high performance
coupled with minimal computational cost.

As delineated by Fig. 5.7, our model RobFaceNet consistently anchors itself in this
aspirational position, illustrating a compelling narrative of optimal symbiosis between
reduced model complexity and elevated FR performance. This not only underscores
the robust accuracy achieved by our model but also shines a spotlight on its minimal
computational demands.

In summary, the compelling efficacy of our approach, evidenced through its delicate
balance of precision and computational cost, establishes it as a highly pragmatic and
potent solution for FR tasks. This is especially relevant in scenarios constrained by
resources, such as embedded systems and robotic deployments, where the ability to
perform with a minimal computational footprint is pivotal.

5.5.5 Comparison with State-of-the-Art

To guarantee fairness and impartiality in our comparative analysis, we’ve implemented
stringent measures to align the experimental conditions for RobFaceNet and the state-
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(a) LFW

(b) CFP-FP

(c) CPLFW

(d) CALFW

(e) AgeDB-30

(f) IJB-B

(g) IJB-C

Figure 5.8: Example face images derived from various benchmarks utilized in the evalua-
tions, illustrating the distinct challenges associated with (a) LFW, (b, c) Cross-
Pose, (d, e) Cross-Age, (f) IJB-B, and (g) IJB-C datasets. LFW predominately
explores variations in lighting and expressions, Cross-Pose introduces challenges
in head pose variations, Cross-Age provides a spectrum of age variations, while
IJB-B and IJB-C introduce a diverse and complex array of real-world condi-
tions.
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of-the-art lightweight models under comparison. Specifically, RobFaceNet and all
comparably examined models are trained using the MS1MV2 dataset [37] and utilize
the ArcFace [37] loss function, maintaining consistent training settings to assure an
unbiased comparison.

In our comparisons, we categorize models based on computational complexity (MFLOPs),
with results reported as shown in related works. For context regarding the current
state-of-the-art (SOTA) performance in large-scale deep FR, we initially report the
results for the prevailing SOTA ReNet100 model [37]. The table is subsequently orga-
nized into three parts: the first section showcases results for models with complexities
above 1000M FLOPs, while the second and third sections present results for models
with less than 1000M and 500M FLOPs, respectively. This structured approach fa-
cilitates a comprehensive comparison between RobFaceNet and models with varying
complexities, accentuating RobFaceNet’s efficiency and performance within the FR
domain. This organizational strategy is applied across all comparative tables. No-
tably, among all models with computational complexity less than 500M FLOPs, our
RobFaceNet surpasses all the listed models, including MobileFaceNets [23]. This un-
derscores the efficiency and effectiveness of our proposed RobFaceNet architecture for
FR tasks.

Subsequent sections will unveil insights and observations from this comprehensive
comparison, highlighting the arenas where our model excels and where it encounters
stiff competition from other models. Through this in-depth examination, we aim not
only to underscore the strengths and distinctive advantages of our approach but also
to spotlight areas that warrant further research and optimization in the multifaceted
and perpetually evolving domain of FR.

5.5.5.1 Evaluation on LFW Dataset

LFW [90] comprises 13,233 web-collected images, capturing a wide spectrum of 5749
unique identities, featuring a substantial range of poses, expressions, and lighting
conditions, thereby reflecting a multitude of real-world scenarios. LFW’s evaluation
methodology hinges upon 6000 face pairs, systematically partitioned into ten subsets,
each containing 300 positive and 300 negative pairs.

Adhering to the standard protocol, specifically the unrestricted with labeled outside
data approach, our evaluations pivot around the verification accuracy across these
6000 face pairs. Detailed results and insights into the network and model sizes are
delineated in Table 5.6, illuminating the performance and efficiency of the models
under comparison.

VarGFaceNet [239], achieving a top verification accuracy of 99.85%, occupies the
prime position in the LFW benchmark. However, this superior accuracy comes at the
cost of substantial computational demand, registering at 1022M FLOPs.

Conversely, RobFaceNet stands out not just as a competitor but as a benchmark in
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Table 5.6: Comparative Analysis of Face Recognition Models on the LFW Benchmark. The
models are ordered based on the number of FLOPs. Results and the number of
decimal points are reported as in the respective works. Our model is highlighted
to underscore its proficient balance between high accuracy and computational
efficiency in the challenging face verification task amidst real-world conditions
encapsulated in the LFW benchmark. Results represent the accuracy (%), with
higher values indicating better performance. The best performance in each cat-
egory on each benchmark is emphasized in bold.

Model #FLOPs #Params. Size LFW
(M) (M) (MB) (%)

ArcFace (ResNet100) [37] 24211 65.2 261.22 99.82

MobileFaceNetV1 [147] 1100 3.40 13.1 99.40
PocketNetM-256 [13] 1099.15 1.75 7.0 99.58
PocketNetM-128 [13] 1099.02 1.68 6.7 99.65

ShuffleFaceNet 2x [146] 1050 4.5 18.0 99.62
VarGFaceNet [239] 1022 5 20.0 99.85

AirFace [124] 1000 4.23 - 99.27

MobileFaceNet [147] 933.30 2 4.0 99.70
ProxylessFaceNAS [147] 900 3.20 12.5 99.20

MixFaceNet-M [11] 626.1 3.95 15.8 99.68
ShuffleMixFaceNet-M [11] 626.10 3.95 15.8 99.60

PocketNetS-256 [13] 587.22 0.99 3.9 99.66
PocketNetS-128 [13] 587.11 0.92 3.7 99.58

ShuffleFaceNet 1.5x [146] 577.5 2.60 10.5 99.67

MixFaceNet-S [11] 451.7 3.07 12.28 99.60
ShuffleMixFaceNet-S [11] 451.7 3.07 12.28 99.58

MobileFaceNets [23] 439.8 0.99 8.2 99.55
ShuffleFaceNet 1x [146] 275.8 1.40 5.6 99.45

MixFaceNet-XS [11] 161.9 1.04 4.2 99.60
ShuffleMixFaceNet-XS [11] 161.9 1.04 4.2 99.53

Ours 337.3 1.90 7.27 99.75

computational efficiency. With a verification accuracy of 99.75% on LFW, it closely
matches the top-performing VarGFaceNet while achieving an impressive 67% reduction
in computational complexity, with just 337M FLOPs.

This comparison highlights RobFaceNet as a model that effectively balances high-
precision recognition with computational efficiency, demonstrating its potential as a
practical solution for face recognition, particularly in resource-constrained environ-
ments.
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5.5.5.2 Evaluation on Cross-Age Datasets

Amid the complexities of face appearance alterations that grow over time, cross-age
variations stand as a particularly hard challenge within the FR community due to
the myriad of subtle and nonlinear changes introduced by aging. To analyze these
complexities, focused evaluations on cross-age FR are executed, utilizing the Cross-Age
LFW (CALFW) [263] and AgeDB-30 [154] datasets, specifically chosen for their robust
testing capabilities in navigating the nuanced challenges posed by age variance in FR
tasks. Fig. 5.8 presents selected face images from these datasets, offering visual insights
into the varied age-related face changes and the challenges they pose to recognition
models, thereby emphasizing the need for efficient cross-age FR systems.

Like the original LFW dataset, CALFW defines an evaluation protocol divided
into ten distinct subsets of image pairs, each subset with 300 positive and 300 neg-
ative pairs. Meanwhile, AgeDB-30, recognized as the most challenging group of the
AgeDB [154], enforces a minimum age gap of 30 years. It formulates an age-invariant
face verification protocol, divided into ten splits of face images, each incorporating 300
positive and 300 negative examples. We adhere to the ’Accuracy’ metric for face verifi-
cation evaluations across both datasets, aligning with the same benchmark established
by LFW.

Table 5.7 presents a detailed comparison of the verification accuracy of lightweight
networks against state-of-the-art results reported in the literature. A discerning explo-
ration reveals our model clearly dominates the CALFW dataset, not only surpassing
the deep learning model ArcFace-ReNet100 [37] and all lightweight models but also
achieving this while preserving a reduced computational complexity. When examined
against the challenging benchmark of the AgeDB-30 dataset, our model not only gained
a peak of performance amongst lightweight models with computational complexity
under 900M FLOPs but also firmly held its ground, showcasing strongly competitive
results against both deep models and those exceeding 930M FLOPs in computational
complexity. Specifically, our model achieved verification accuracies of 95.95% and
97.42% on the CALFW and AgeDB-30 datasets, respectively, with a computational
cost of 337M FLOPs. In contrast, the very deep ArcFace-ReNet100 model recorded
verification accuracies of 95.45% and 98.15% on the CALFW and AgeDB-30 datasets,
respectively, but at a computational cost 71 times that of our model. Concerning
the best results from lightweight models, PocketNetM-128 [13] achieved 95.67% on
CALFW, while VarGFaceNet [239] recorded 98.15% on the AgeDB-30 dataset, each
with computational complexities triple that of our model.

5.5.5.3 Evaluation on Cross-Pose Datasets

Evaluations on the cross-pose datasets underscore the significant effectiveness and
resilience of our proposed RobFaceNet model, especially in addressing the intrinsic
challenges associated with varying face poses. In this context, two datasets, specif-
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Table 5.7: Comparative Analysis of Face Recognition Models on the CALFW and AgeDB-30
Datasets. The models are ordered based on the number of FLOPs. Results and
the number of decimal points are reported as in the respective works. Our model
notably outperforms competitors on CALFW and maintains commendable results
on AgeDB-30, all while ensuring reduced computational complexity. Results
represent the accuracy (%), with higher values indicating better performance.
The best performance in each category on each benchmark is highlighted in bold.

Model #FLOPs #Params. Size CALFW AgeDB-30
(M) (M) (MB) (%) (%)

ArcFace (ResNet100) [37] 24211 65.2 261.22 95.45 98.15

MobileFaceNetV1 [147] 1100 3.40 13.1 94.47 96.40
PocketNetM-256 [13] 1099.15 1.75 7.0 95.63 97.17
PocketNetM-128 [13] 1099.02 1.68 6.7 95.67 96.78

ShuffleFaceNet 2x [146] 1050 4.5 18.0 - 97.28
VarGFaceNet [239] 1022 5 20.0 95.15 98.15

AirFace [124] 1000 4.23 - - 93.25

MobileFaceNet [147] 933.30 2 4.0 95.20 97.60
ProxylessFaceNAS [147] 900 3.20 12.5 92.55 94.40

MixFaceNet-M [11] 626.1 3.95 15.8 - 97.05
ShuffleMixFaceNet-M [11] 626.10 3.95 15.8 95.75 96.98

PocketNetS-256 [13] 587.22 0.99 3.9 95.50 96.35
PocketNetS-128 [13] 587.11 0.92 3.7 95.48 96.10

ShuffleFaceNet 1.5x [146] 577.5 2.60 10.5 95.05 97.32

MixFaceNet-S [11] 451.7 3.07 12.28 - 96.63
ShuffleMixFaceNet-S [11] 451.7 3.07 12.28 95.67 97.05

MobileFaceNets [23] 439.8 0.99 8.2 95.20 96.07
ShuffleFaceNet 1x [146] 275.8 1.40 5.6 - 96.33

MixFaceNet-XS [11] 161.9 1.04 4.2 - 95.85
ShuffleMixFaceNet-XS [11] 161.9 1.04 4.2 94.93 95.61

Ours 337.3 1.90 7.27 95.95 97.42

ically CFP-FP [178] and Cross-Pose LFW (CPLFW) [262], have been employed for
assessment. Fig. 5.8 for a visual exhibit of some face images extracted from these
datasets, showcasing a spectrum of poses and angles intended to rigorously evaluate
the robustness of FR models against cross-pose challenges. We also adhere to the
’Accuracy’ metric for face verification evaluations across both datasets, aligning with
the same benchmark established by LFW.

CFP-FP, originating from the Frontal-Profile (FP) face verification experiment of
the CFP dataset [178], encompasses 3,500 face pairs, divided into ten subsets, and
showcases a stark contrast between frontal and profile views, providing a challeng-
ing environment for assessing model robustness against pose variations. Within this
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Table 5.8: Comparative Analysis of Face Recognition Models on the CPLFW and CFP-
FP Datasets. The models are ordered based on the number of FLOPs. Results
and the number of decimal points are reported as in the respective works. Our
model notably outperforms competitors on CPLFW and maintains commendable
results on CFP-FP, all while ensuring reduced computational complexity. Results
represent the accuracy (%), with higher values indicating better performance.
The best performance in each category on each benchmark is highlighted in bold.

Model #FLOPs #Params. Size CPLFW CFP-FP
(M) (M) (MB) (%) (%)

ArcFace (ResNet100) [37] 24211 65.2 261.22 94.20 95.60

MobileFaceNetV1 [147] 1100 3.40 13.1 87.17 95.80
PocketNetM-256 [13] 1099.15 1.75 7.0 90.03 95.66
PocketNetM-128 [13] 1099.02 1.68 6.7 90.00 95.07

ShuffleFaceNet 2x [146] 1050 4.5 18.0 - 97.56
VarGFaceNet [239] 1022 5 20.0 88.55 98.50

AirFace [124] 1000 4.23 - - 94.11

MobileFaceNet [147] 933.30 2 4.0 89.22 96.90
ProxylessFaceNAS [147] 900 3.20 12.5 84.17 94.70

MixFaceNet-M [11] 626.1 3.95 15.8 - -
ShuffleMixFaceNet-M [11] 626.10 3.95 15.8 89.97 94.96

PocketNetS-256 [13] 587.22 0.99 3.9 88.93 93.34
PocketNetS-128 [13] 587.11 0.92 3.7 89.63 94.21

ShuffleFaceNet 1.5x [146] 577.5 2.60 10.5 88.5 97.26

ShuffleMixFaceNet-S [11] 451.7 3.07 12.28 89.85 94.10
MobileFaceNets [23] 439.8 0.99 8.2 89.22 96.90

ShuffleFaceNet 1x [146] 275.8 1.40 5.6 - 96.04
ShuffleMixFaceNet-XS [11] 161.9 1.04 4.2 86.93 91.25

Ours 337.3 1.90 7.27 92.23 97.63

complex scenario, RobFaceNet achieved a remarkable verification accuracy of 97.63%,
confirming its adept cross-pose recognition capabilities while maintaining a computa-
tional efficiency of 337M FLOPs.

Conversely, CPLFW, adhering to a structured evaluation protocol that mirrors the
original LFW dataset, seeks to challenge face verification models with its disparate
pose variations. Nevertheless, RobFaceNet unambiguously showcased its prowess by
securing a stellar 92.23% verification accuracy, highlighting its robustness amidst di-
verse face orientations.

The quantitative comparison underscores the competitive advantage encapsulated
by RobFaceNet. Specifically, when contrasted with the very deep ArcFace-ReNet100
model, which secured 94.20% and 95.60% accuracies on CPLFW and CFP-FP respec-
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5 Towards Efficient and Robust Face Recognition Network

tively, RobFaceNet not only demonstrates compelling performance parity but also
achieves this with a significantly reduced computational demand of 337M FLOPs,
approximately 71 times less than its deep-model counterpart, thereby enhancing its
practicality, especially in resource-limited deployments.

In comparison with lightweight models, RobFaceNet outperforms PocketNetM-256 [13],
which secured a comparable accuracy of 90.03% on CPLFW. In addition, our model
offers commendable competition to VarGFaceNet [239], which achieved a 98.50% ac-
curacy on CFP-FP, all while maintaining a computational complexity of just one-third
of these models.

In essence, RobFaceNet not only establishes a distinguished position as a proficient,
resource-efficient FR model amidst pose variations but also sets a new benchmark.
It melds robust recognition capabilities with resource-efficient deployment, thereby
holding the potential to redefine the metrics for evaluating and deploying lightweight,
highly accurate FR models in real-world scenarios. This highlights not just the theoret-
ical capabilities of RobFaceNet, but also its practical utility across various applications
and deployment contexts.

5.5.5.4 Evaluation on IJB-B and IJB-C Datasets

Navigating through the complex environments of the IARPA Janus Benchmark-B
(IJB-B) and IJB-C datasets [149, 219], RobFaceNet demonstrates robust face verifi-
cation capabilities amidst a wide variety of still images and video frames. The IJB-B
dataset encapsulates data from 1,845 subjects, spread across 21,798 images and 55,026
video frames, while IJB-C expands this further, encompassing 3,531 subjects, 31,334
images, and a notable 117,542 video frames. Both benchmarks encapsulate myr-
iad operational FR scenarios, establishing a complex evaluation benchmark to depict
RobFaceNet’s prowess clearly.

Subjected to the stringent 1:1 verification protocol within these comprehensive
datasets, our model faced challenges against IJB-B’s 12,115 templates (10,270 gen-
uine, 8M impostor matches) and IJB-C’s 23,124 templates (19,557 genuine, 15,639
impostor matches). The pivotal metric was the True Acceptance Rate (TAR) at vary-
ing False Acceptance Rate (FAR), providing a rigorous evaluation framework.

The evaluation results detailed in Table 5.9 indicate that our model, securing a
commendable 93.86% TAR at 1e-4 FAR on the IJB-C dataset, with a mere 1.9M
parameters and 337.3M FLOPs, substantiates its ability to efficiently and effectively
verify faces. This capability is pivotal in real-world applications where computational
resources may be limited, yet a high degree of accuracy in face verification remains
paramount.

In a clear contrast, while MobileFaceNet [147] and VarGFaceNet [239] marginally
outperform with a 94.7% TAR, they do so at the cost of significantly higher com-
putational and parameter demands, 933.3M/1022M FLOPs and 2M/5M parameters,
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Table 5.9: Comparative Analysis of Face Recognition Models on IJB-B and IJB-C Datasets.
Models are arranged based on FLOP count, with results and decimal points
reported as per original works. Our model, highlighted for emphasis, exemplifies
an optimal balance between high performance and computational efficiency in the
demanding task of face verification amidst the real-world scenarios encapsulated
by the IJB-B and IJB-C benchmarks. Results represent the TAR at FAR 1e–4
(%), with higher values indicating better performance. The best performance in
each category on each benchmark is emphasized in bold.

Model #FLOPs #Params. Size IJB-B IJB-C
(M) (M) (MB) (%) (%)

ArcFace (ResNet100) [37] 24211 65.2 261.22 89.90 92.10

MobileFaceNetV1 [147] 1100 3.40 13.1 92.00 93.90
PocketNetM-256 [13] 1099.15 1.75 7.0 90.74 92.70
PocketNetM-128 [13] 1099.02 1.68 6.7 90.63 92.63

ShuffleFaceNet 2x [146] 1050 4.5 18.0 - -
VarGFaceNet [239] 1022 5 20.0 92.90 94.70

AirFace [124] 1000 4.23 - - -

MobileFaceNet [147] 933.30 2 4.0 92.80 94.70
ProxylessFaceNAS [147] 900 3.20 12.5 87.10 89.70

MixFaceNet-M [11] 626.1 3.95 15.8 91.55 93.42
ShuffleMixFaceNet-M [11] 626.10 3.95 15.8 91.47 93.5

PocketNetS-256 [13] 587.22 0.99 3.9 89.31 91.33
PocketNetS-128 [13] 587.11 0.92 3.7 89.44 91.62

ShuffleFaceNet 1.5x [146] 577.5 2.60 10.5 92.30 94.30

MixFaceNet-S [11] 451.7 3.07 12.28 90.17 92.30
ShuffleMixFaceNet-S [11] 451.7 3.07 12.28 90.94 93.08

MobileFaceNets [23] 439.8 0.99 8.2 - -
ShuffleFaceNet 1x [146] 275.8 1.40 5.6 - -

MixFaceNet-XS [11] 161.9 1.04 4.2 88.48 90.73
ShuffleMixFaceNet-XS [11] 161.9 1.04 4.2 87.86 90.43

Ours 337.3 1.90 7.27 92.08 93.86

respectively. This comparison illuminates the computational efficiency aspect of Rob-
FaceNet without a significant compromise on the performance, marking it as a viable
option in resource-constrained environments.

When RobFaceNet is contrasted against other lightweight models, its performance
becomes particularly notable, demonstrating not only the capability to deliver compa-
rable results but also its capability to outperform its counterparts. It not only holds
its ground in comparison with contemporaries but, crucially, does so with a finely

115



5 Towards Efficient and Robust Face Recognition Network

Table 5.10: Comparison of very deep SOTA FR models, SOTA FR models with computa-
tion complexity under 500M FLOPs, and our proposed RobFaceNet. The best
performance in each category for each benchmark is highlighted in bold

Cross-Age Cross-Pose IJB MegaFace

Model #FLOPs #Params. Size LFW CA-LFW AgeDB-30 CP-LFW CFP-FP IJB-B IJB-C Rank-1 Ver.
(M) (M) (MB) (%) (%) (%) (%) (%) (%) (%) (%) (%)

FaceNet [37] 451.7 3.07 - 99.63 - - - - - - 70.49 86.47
SphereFace [136] 24211 65.2 261.22 99.42 90.30 92.88 81.40 - - - 72.73 85.56

CosFace [204] 24211 65.2 261.22 99.73 95.76 98.11 92.19 98.12 94.80 96.36 80.56 96.56
ArcFace [37] 24211 65.2 261.22 99.82 95.45 98.15 92.08 98.40 94.20 95.60 81.03 96.98

RobFaceNet (Ours) 337.3 1.90 7.27 99.75 95.95 97.42 92.23 97.63 92.08 93.86 80.20 96.38

MixFaceNet-S [11] 451.7 3.07 12.28 99.60 - 96.63 - - 90.17 92.30 76.49 92.23
ShuffleMixFaceNet-S [11] 451.7 3.07 12.28 99.58 95.67 97.05 89.85 94.10 90.94 93.08 77.41 93.60

MobileFaceNets [23] 439.8 0.99 8.2 99.55 95.20 96.07 89.22 96.90 - - - 90.16
MixFaceNet-XS [11] 161.9 1.04 4.2 99.60 - 95.85 - - 88.48 90.73 74.18 89.40

ShuffleMixFaceNet-XS [11] 161.9 1.04 4.2 99.53 94.93 95.61 86.93 91.25 87.86 90.43 73.85 89.24
GhostFaceNetV2-2 [3] 76.51 6.84 13.66 99.71 95.70 96.55 89.58 93.07 91.76 93.03 79.31 95.21
RobFaceNet (Ours) 337.3 1.90 7.27 99.75 95.95 97.42 92.23 97.63 92.08 93.86 80.20 96.38

balanced trade-off between computational efficiency and verification accuracy.
This evaluation underscores RobFaceNet’s adeptness in balancing efficiency and

accuracy, confirming its prominence as a powerful model in real-world FR tasks and
highlighting its promising utility in future resource-conscious applications.

5.6 Discussions

In this chapter, we introduced a novel lightweight, efficient, and robust neural network
explicitly tailored for FR tasks. Unlike existing lightweight FR networks such as
MobileFaceNets [23], VarGFaceNet [239], and PocketNet [13], our proposed model,
RobFaceNet, leverages both low-level and high-level features to enable the extraction
of diverse and comprehensive feature information. This approach results in more
robust and accurate FR performance across various conditions, including differences
in lighting, poses, and occlusions.

Furthermore, RobFaceNet has been designed with a focus on efficiency without com-
promising performance. This is achieved through the careful selection of architectural
components and attention mechanisms, allowing RobFaceNet to achieve competitive
performance while maintaining low computational complexity.

To further demonstrate the effectiveness of the proposed network, we recorded the
verification performance results, measured in terms of accuracy, on several popular
benchmark datasets. Table 5.10 compares the performance of RobFaceNet against
the SOTA deep FR baseline models and lightweight FR models (< 500M FLOPs).
The results indicate that our proposed model outperforms the lightweight FR mod-
els in all evaluation datasets, highlighting the significant improvement achieved by
incorporating multi-feature and attention mechanisms.

Moreover, our proposed model outperforms the very deep baseline models on two
datasets, namely CA-LFW and CP-LFW, and achieves comparable results on the re-
maining benchmarks. This is accomplished with a more lightweight model complexity.
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For instance, in terms of computation cost, RobFaceNet has 337M FLOPs compared
to ArcFace’s 24211M, with only 3% of the parameters.

In addition to its performance benefits, RobFaceNet offers practical advantages by
effectively addressing the limitations of the traditional lightweight networks and al-
lowing for more reliable and accurate recognition.

A limitation of this work is that the study mainly focused on standard face images
and did not extend to low-resolution facial images. The lack of information in low-
resolution images poses a challenge for effective recognition compared to standard face
images. This limitation underscores the need for further research in developing network
architectures that can effectively bridge the representation gap between low-resolution
images and their high-resolution counterparts. Furthermore, although RobFaceNet has
demonstrated robust performance on the cross-pose CP-LFW dataset, there remains
scope for improvement in this domain. Future research opportunities could explore
alternative network architectures capable of extracting more relevant features for cross-
pose FR, thereby enhancing the model’s ability to handle variations in pose.

5.7 Summary
In the pursuit of efficient and effective FR solutions for HRI applications, this chapter
introduces RobFaceNet, a novel lightweight, efficient, and robust network specifically
designed for FR. Despite its simplicity, RobFaceNet excels in both accuracy and com-
putational efficiency. For example, RobFaceNet achieves 95.95% and 92.23% accuracy
on the CA-LFW and CP-LFW datasets, respectively, compared to 95.45% and 92.08%
for the much deeper ArcFace model. Simultaneously, RobFaceNet maintains a lighter
model complexity, with only 337M FLOPs, a 67% reduction compared to ArcFace’s
24,211M FLOPs, and just 3% of the parameters.

When compared to other lightweight FR models (less than 500M FLOPs), Rob-
FaceNet outperforms state-of-the-art models across all evaluation datasets. It achieves
99.75%, 97.42%, and 97.63% accuracy on the LFW, AgeDB-30, and CFP-FP datasets,
respectively, while MobileFaceNets [23] achieves 99.55%, 96.07%, and 96.9% accuracy
at a higher computational cost of 439.8M FLOPs.

The architecture of RobFaceNet incorporates a novel multi-feature approach, which
leverages features from various network levels, and utilizes a modified h-swish acti-
vation function to balance computational cost with performance. Additionally, the
attention-enhanced bottleneck improves the network’s ability to prioritize crucial fea-
tures, enhancing its FR capabilities. Through extensive experimentation on compre-
hensive public face verification benchmarks, we demonstrate RobFaceNet’s competi-
tive performance against deeper FR networks. These results underscore RobFaceNet
as a robust and efficient solution for FR tasks, particularly in dynamic HRI envi-
ronments where real-time processing and interpretation of facial data are crucial for
meaningful interactions.
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6.1 Summary of Thesis Achievements

In this thesis, we undertook a transformative journey, revisiting the intersections of
artificial intelligence, robotics, and face recognition (FR). At the core of our explo-
ration was the realm of human-robot interaction (HRI), a rapidly advancing field that
binds humans and robots in complex patterns of collaboration, companionship, and
connection. Our pursuit ventured beyond the mere identification of faces; it sought to
harness the power of FR to enhance HRI, especially in real-world settings characterized
by unpredictable variables. From understanding the importance of FR in daily life,
such as unlocking smartphones and supporting security systems, to dealing with the
challenges of ’in-the-wild’ scenarios, full of variable lighting, occlusions, and diverse
facial expressions, our ambition was clear: develop a robust and efficient FR
system tailored for HRI in-the-wild scenarios. As we reflect on the research
undertaken, let us recap the milestones achieved in each chapter, understanding the
significance of our contributions and the path forward.

In Chapter 3, the main objective revolves around enhancing the capabilities of
HRI. Recognizing the challenges posed by FR in real-time HRI, most notably, the
need for fast and efficient processing with high precision. We leveraged the power of
convolutional neural networks (CNNs), particularly lightweight variants to design and
develop our proposed FR framework. The driving force behind this choice was to en-
sure rapid processing while maintaining accuracy, two attributes crucial for seamless
interactions between humans and robots. Central to our FR system is the integration
of the state-of-the-art ArcFace loss function, which enhances recognition capabilities.
This, combined with the RetinaFace method for face detection and a specially de-
signed online real-time face tracker, equips our system to handle common challenges
like varying illumination conditions, various head poses, and occlusions. However, our
framework offers more than just recognition capabilities. By integrating a face tracker
designed to merge tracking data with recognized identities, we have ensured that the
system is adept at recognizing faces in unconstrained settings. This merger promises
a boost in recognition accuracy and processing speed. To ascertain the real-world
efficacy of our framework, we introduced it to our HRI system, aptly named "RoSA".
A total of 11 participants took part in real-time interactions with the robot, and their
experiences offered crucial insights into the system’s performance. Additionally, by
evaluating our system using videos from the Wizard-of-Oz study, we further bolstered
the reliability of our findings, yielding an impressive 25% improvement in real-time
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recognition. While the research highlighted impressive results, it also identified chal-
lenges, such as system lags in dense face scenes, which form the cornerstone of our
future improvements. The conclusion of this chapter sets the stage for future research,
where we aim to further fine-tune the architecture and loss function to achieve seamless
and natural HRI.

In Chapter 4, we highlight the profound impact of margin-based softmax loss func-
tions on current achievements. Historically, many methodologies in this domain have
relied on the presumption of a static, constant margin. However, such an approach
might not be the most effective, especially when handling heterogeneous real-world
data. To address this gap, we proposed the JAMsFace loss function. Contrary to
existing methodologies such as CosFace [204], ArcFace [37], and AdaptiveFace [132],
JAMsFace introduces greater flexibility in margins based on class distribution, setting
it apart from existing models. By concurrently harnessing joint adaptive margins in
both angle and cosine spaces, JAMsFace ambitiously seeks to reduce intra-class vari-
ance while enhancing inter-class variance. This duality ensures the model’s ability
to extract significantly discriminative features, thereby enhancing FR accuracy. The
effectiveness of JAMsFace does not terminate at feature discernibility. This loss func-
tion also addresses the longstanding challenge of class imbalance in FR, an issue that
many contemporary techniques have faced. The utilization of joint adaptive margins
champions not just improved face representation but an overall improvement in perfor-
mance, especially in the scenarios of unconstrained settings. This flexibility is useful
in providing robustness against challenges like class imbalance, unconstrained envi-
ronments, and the task of generalizing to unseen classes. We undertook an extensive
empirical evaluation to ascertain the capabilities of JAMsFace. The results were pro-
found, with our method redefining benchmarks across datasets like LFW [90], CFP-FP
[178], CPLFW [262], CALFW [263], and AgeDB-30 [154]. Moreover, JAMsFace show-
cased its robustness on more challenging datasets like IJB-B [219], IJB-C [149], and
MegaFace [104]. Beyond empirical success, this chapter underscores a paradigm shift
in how we perceive loss function design for FR. It advocates a move away from rigid
structures, emphasizing the necessity for more adaptive, responsive methodologies.

In Chapter 5, we delved into network design, presenting RobFaceNet, a novel
lightweight, efficient, and robust network designed specifically for FR. It demonstrates
remarkable performance in both accuracy and computational efficiency. A keystone in
RobFaceNet’s design is its multi-feature modality. Our approach precisely intertwines
features from various network layers, navigating beyond mere fusion to extract a rich
and informative feature pool. Consequently, RobFaceNet adeptly extracts, processes,
and leverages a broad, insightful feature scope that is especially relevant for FR tasks,
where recognizing and understanding fine-grained features and subtle variations are
imperative for achieving high recognition precision. However, the innovation does not
end here. We have incorporated the modified h-swish activation function, a strategic
move that decreases computational demands while preserving high-performance stan-
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dards. Furthermore, we enhanced RobFaceNet by combining it with an innovative
attention-based bottleneck, aimed to highlight the most distinct facial regions and
feature channels. This enhancement employs an advanced inverted bottleneck, inte-
grating either a CA [82] or SE [86] attention module, after the depthwise convolution
layer. Such an integration improves the network’s ability to interpret both channel and
spatial features, thereby boosting its ability to discriminate between different facial
characteristics. The positioning of attention modules throughout the network enables
RobFaceNet to capture complex facial attributes early on with the CA module and
refine feature representation in later stages using the SE module. This nuanced ap-
proach not only elevates the network’s FR capabilities but also retains computational
efficiency. To assess the effectiveness of RobFaceNet, we conducted a comprehensive
experimental evaluation comparing it to contemporary lightweight FR models, using
various face verification benchmarks. The findings were promising, as RobFaceNet
not only met but often surpassed the performance criteria of deeper networks. These
results provide compelling evidence that lightweight models like RobFaceNet can effec-
tively address the complexities of real-world applications despite their compact nature.

As illustrated in Figure 6.1, our proposed face recognition system integrates Rob-
FaceNet as the feature extraction network with the JAMsFace loss function to optimize
facial feature representation. Coupled with the recognition-tracking approach, this
system achieves a robust and efficient solution for face recognition in unconstrained,
real-world environments, such as human-robot interaction (HRI) scenarios.

Robust FR with
Tracking

Margin

JAMsFaceRobFaceNet

Efficient and Robust Face Recognition
in the Wild

Figure 6.1: Proposed Complete Face Recognition System for Human-Robot Interaction.
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6.2 Future Directions
There are plenty of possible directions to explore to extend the research in this thesis.

Pose-invariant face recognition. While there has been significant advancement in
the field of FR, with many solutions now integrated into everyday applications, a
glaring limitation remains. These solutions mostly excel at recognizing near-frontal
facial orientations. As highlighted in [178], a shift from frontal-frontal to frontal-
profile verification sees many existing methods experience a performance drop of over
10%. This underscores the challenge of achieving truly pose-invariant FR, which
is still an unresolved problem and provides opportunities for further research. Our
future endeavors will delve into the theoretical aspects of facial orientations, aiming to
uncover the inherent connections between images of an individual from diverse angles.
Based on the theoretical support, our goal is to conceptualize and train a novel network
adept at extracting pose-invariant features.

Data-free face recognition. Deep FR’s success relies heavily on the vast annotated
data it employs. However, the online publishing of these datasets presents a spot of
privacy concerns. This has led to the withdrawal of pivotal datasets, such as MegaFace,
from the web. Similarly, while many social media giants possess in-house datasets that
enhance performance, they often withhold them, cautious of assorted concerns. A
promising solution is "deep inversion", which involves retrieving the original training
image from a model’s features. Though this approach has found some traction in
general object classification, its applicability to FR remains largely unexplored, mainly
due to the optimization complexities involved. Should we overcome this problem, it
would enable the extraction of datasets directly from pre-trained models, facilitating
their use in new model training. Thus, exploring face inversion could pave the way
for a partnership between academia and the tech industry in advancing FR.

Low-resolution facial images face recognition. Real-world scenarios often result
in facial images captured at distances that yield a much lower resolution compared to
those obtained under controlled conditions. This holds true even with high-definition
1080P cameras, where facial segments might measure as small as 20×20 pixels. These
small image patches sparsely contain very little information. Compared with standard
face images, the information insufficiency in low-resolution hinders effective classifica-
tion. Conventional algorithms falter when tasked with comparing these low-resolution
images to their high-resolution counterparts, given the absence of shared feature rep-
resentation. As such, the quest for a novel network architecture that adeptly bridges
this representation gap in low-resolution facial recognition datasets is a compelling
avenue for exploration.
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