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Abstract
We revisit two types of constrained vector optimization problems driven by set-valued maps,
where the domination structure is defined by a cone-valued map. Within the framework of
variable domination structures, we demonstrate that the approaches used in the literature
cover each other. This observation enables us to design unified methods for deriving nec-
essary optimality conditions in both cases. Our results rely on key concepts such as the
Extremal Principle and the inherent incompatibility between openness and efficiency, en-
compassing several well-known assertions in this area of research.

Keywords Variable domination structure · Unifying approach · Extremal principle ·
Openness

Mathematics Subject Classification 49J53 · 49K27 · 46G05

1 Introduction

The research area of Pareto optimization with set-valued maps acting between normed
vector spaces extends the classical Pareto optimization framework involving single-valued
maps. Over the past 30 years, this field has undergone significant development. Recently,
researchers have explored a further generalization of the classical case, where the order is
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defined by a fixed convex cone, to a more dynamic scenario in which the order is defined by
a set-valued map. In this context, two main approaches have been considered: one in which
the domination map acts between the same spaces as the objective set-valued map (see [11]),
and another where the set-valued domination map has the same input and output space, co-
inciding with the range of the objective map (see [13]). Nevertheless, it can be said that the
second approach (which was developed first, chronologically) has garnered more attention
within the research community (see, e.g., [4, 17], and the references therein). Moreover,
several applications of this type of variable domination structure have been described (see
[15]).

The primary goal of this work is to demonstrate that, from a theoretical perspective, each
approach encompasses the other. However, when addressing optimality conditions, there
are two standard methodologies to consider. On one hand, the Extremal Principle can be
employed (see [33]); on the other hand, an alternative principle – referred to here as the
incompatibility principle – can be used. This principle highlights the opposition between
the openness of a map at a point and the efficiency of that point (see, e.g., [9]). While other
specialized tools may be applicable in certain cases, the two principles discussed here are
highly general and can be applied to a broad range of optimization problems. This versatility
suggests the possibility of embedding the first type of variable domination into the second,
and vice versa. Once these embeddings are achieved, these naturally lead to the development
of a unified framework for investigation.

The paper is organized as follows. After a preliminaries section introducing the main
concepts and tools of investigation, Sect. 3 describes how both types of variable domination
structures can be viewed in a unified way. Specifically, we show that, through meaningful
modifications of the involved set-valued maps, each of the approaches discussed earlier can
be interpreted as a particular case of the other. Section 4 focuses on deriving necessary op-
timality conditions using the Extremal Principle. The reduction method introduced in the
previous section leads to similar proofs for both types of domination cone maps. Section 5
presents openness results tailored to sums of set-valued maps from multiple perspectives,
with the ultimate goal of applying the incompatibility principle to derive optimality condi-
tions. Finally, Sect. 6 integrates all these tools, offering alternative proofs and assumptions
for the main results of the paper. Additionally, several strategies are outlined, and the derived
assertions are compared with corresponding results in the existing literature. A short final
section presents some further possible directions of research.

2 Preliminaries

For a nontrivial Banach space X over the real field R, we denote by B(x, ε) and B(x, ε)

the open ball and the closed ball, respectively, with center x ∈ X and radius ε > 0; BX , BX ,
SX are the open unit ball, the closed unit ball, and the unit sphere of X, respectively. The
notation X∗ stands for the topological dual space of X. If Ω ⊆ X, we denote the indicator
function of Ω by δΩ (that is, δΩ(x) := 0 if x ∈ Ω and δΩ(x) := ∞, if x /∈ Ω). As usual,
clΩ, intΩ, bdΩ denote the topological closure, the topological interior, and the topological
boundary of Ω, respectively. A set Ω is called closed around a point x ∈ Ω if there exists a
closed neighborhood U of x such that Ω ∩ U is closed. If Ω ⊆ X is a cone, we denote its
positive polar by

Ω+ := {x∗ ∈ X∗ | x∗ (x) ≥ 0,∀x ∈ Ω
}
.
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Some tools of variational analysis and generalized differentiation, mainly taken from
[33], are presented next. Although the mathematical objects are constructed on Banach
spaces, the full calculus holds on a special class of spaces, i.e., the Asplund spaces: a Banach
space X is Asplund if, and only if, every continuous convex function on any nonempty open
convex subset U of X is Fréchet differentiable on a dense Gδ-subset of U . One of the most
useful properties of the Asplund spaces, exploited also in this work, is that every bounded
sequence from the topological dual admits a weak∗ convergent subsequence.

Firstly, we recall the concepts of normals to sets. For a nonempty subset Ω of the Asplund
space X and x ∈ Ω, the Fréchet normal cone to Ω at x is

N̂(Ω,x) :=
{

x∗ ∈ X∗ | lim sup
u

Ω→x

x∗(u − x)

‖u − x‖ ≤ 0

}

, (2.1)

where u
Ω→ x means that u → x and u ∈ Ω. If x /∈ Ω, we let N̂(Ω,x) := ∅. If Ω is closed

around x, the limiting (Mordukhovich) normal cone is given by

N(Ω,x) :=
{
x∗ ∈ X∗ | ∃xn

Ω→ x, x∗
n

∗→ x∗, x∗
n ∈ N̂(Ω,xn),∀n ∈N

}
, (2.2)

where
∗→ means the convergence in the weak∗ topology.

Next, we present the associated coderivative constructions for set-valued maps. Let F :
X ⇒ Y be a set-valued map with the domain and the graph defined by

DomF := {x ∈ X | F(x) �= ∅} and GrF := {(x, y) | y ∈ F(x)},
and (x, y) ∈ GrF . Then the Fréchet coderivative at (x, y) is the set-valued map D̂∗F(x, y) :
Y ∗ ⇒ X∗ given by

D̂∗F(x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N̂(GrF, (x, y))}, (2.3)

while the Mordukhovich coderivative of F at (x, y) is the set-valued map D∗F(x, y) : Y ∗ ⇒
X∗ given by

D∗F(x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N(GrF, (x, y))}. (2.4)

Moreover, we will work also with the mixed coderivative D∗
MF(x, y) : Y ∗ ⇒X∗, given by

D∗
MF(x, y)(y∗) := {x∗ ∈ X∗ | ∃ (xn, yn)

GrF→ (x, y) , x∗
n

∗→ x∗, y∗
n → y∗

s.t. x∗
n ∈ D̂∗F(xn, yn)

(
y∗

n

)
,∀n ∈ N}. (2.5)

If Ω ⊆ X, we denote its associated indicator set-valued map from X to the implied output
space by ΔΩ (ΔΩ (x) := {0} if x ∈ Ω and ΔΩ (x) := ∅ if x /∈ Ω).

For a function f : X → R∪ {+∞} finite at x ∈ X and lower semicontinuous around x,
the Fréchet subdifferential of f at x is the set

∂̂f (x) := {x∗ ∈ X∗ | (x∗,−1) ∈ N̂(epif, (x,f (x)))},
where epif denotes the epigraph of f , while the limiting (Mordukhovich) subdifferential
of f at x is given by

∂f (x) := {x∗ ∈ X∗ | (x∗,−1) ∈ N(epif, (x,f (x)))}.
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It is well-known that if f is a convex function, then ∂̂f (x) and ∂f (x) coincide with the
Fenchel subdifferential. However, in general, ∂̂f (x) ⊆ ∂f (x), and the following generalized
Fermat rule holds: if x ∈ X is a local minimum point for f : X → R∪ {+∞}, then 0 ∈
∂̂f (x). Some other properties of these subdifferentials will be reminded and used when
needed.

Let us recall also some generalized compactness notions. For a set Ω ⊆ X closed around
x ∈ Ω, one says that Ω is sequentially normally compact (SNC, for short) at x if

[
xn

Ω→ x, x∗
n

∗→ 0, x∗
n ∈ N̂(Ω,xn)

]
⇒ x∗

n → 0.

Remark that in the case where Ω := C is a proper closed convex cone, the SNC property at
0 is equivalent to

[
(x∗

n) ⊆ C+, x∗
n

∗→ 0
]

⇒ x∗
n → 0.

In particular, if intC �= ∅, then C is SNC at 0.
Let X, Y be normed vector spaces and Γ : X ⇒ Y be a set-valued map closed around

(x, y) ∈ GrΓ (that is, GrΓ is closed around (x, y)). One says that Γ is SNC at (x, y) if GrΓ
is SNC at (x, y), i.e.,

[
(xn, yn)

GrΓ→ (x, y), (x∗
n, y

∗
n)

∗→ (0,0) , (x∗
n, y

∗
n) ∈ N̂(GrΓ, (xn, yn))

]
⇒ (x∗

n, y
∗
n) → (0,0) .

Moreover, following [33, pages 76, 266], one says that Γ : X ⇒ Y is partially sequentially
normally compact (PSNC, for short) at (x, y) if

[
(xn, yn)

GrΓ→ (x, y), x∗
n

∗→ 0, y∗
n → 0, (x∗

n, y
∗
n) ∈ N̂(GrΓ, (xn, yn))

]
⇒ x∗

n → 0.

We next present the celebrated Extremal Principle. Let Ω1, . . . ,Ωp be nonempty subsets
of the Asplund space X with p ≥ 2, and let x be a common point of them. We say that x is
a local extremal point for the system {Ω1, . . . ,Ωp} if there exist some sequences (ain) ⊂ X,
ain → 0 for any i = 1, . . . , p, and a neighborhood U of x such that

p⋂

i=1

(Ωi − ain) ∩ U = ∅ for n sufficiently large.

In this case {Ω1, . . . ,Ωp, x} is called an extremal system in X. In the proof of our main
results, we will use the following (approximate) Extremal Principle (see Mordukhovich’s
monograph [33, Definition 2.5 (ii) and Theorem 2.20]).

Theorem 2.1 (The Extremal Principle) Let {Ω1, . . . ,Ωp, x} be an extremal system in the
Asplund space X. Then, for every ε > 0 there exist xi ∈ Ωi ∩ B(x, ε) and x∗

i ∈ X∗ such that

x∗
i ∈ N̂(Ωi, xi) + εBX∗ , i = 1, . . . , p, (2.6)

x∗
1 + · · · + x∗

p = 0,
∥∥x∗

1

∥∥+ · · · + ∥∥x∗
p

∥∥= 1. (2.7)

We end this section of preliminaries by briefly considering some topological and some
regularity notions for set-valued maps.
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We say that F is lower semicontinuous at (x, y) ∈ GrF if for every sequence (xn) → x,
there exists a sequence (yn) → y with (xn, yn) ∈ GrF for every n, and we say that F is
lower semicontinuous at x ∈ X with F(x) �= ∅ if it is lower semicontinuous at every (x, y)

with y ∈ F(x).
A set-valued map F : X ⇒ Y is said to be open at (x, y) ∈ GrF if the image through F of

every neighborhood of x is a neighborhood of y. Another, more useful openness property, is
the openness at linear rate: one says that F : X ⇒ Y is open at linear rate L > 0 (or L-open)
around (x, y) ∈ GrF if there exist ε > 0 and two neighborhoods U of x, and V of y such
that, for every (x, y) ∈ GrF ∩ (U × V ) and every ρ ∈ (0, ε),

B(y,ρL) ⊆ F(B(x,ρ)).

Moreover, F is said to be open at linear rate L > 0 or (L-open) at (x, y) if there exists a
positive number ε > 0 such that, for every ρ ∈ (0, ε),

B(y,ρL) ⊆ F(B(x,ρ)).

A well-known closely related property is the following one: The set-valued map F is said to
have the Aubin property around (x, y) with constant M > 0 if there exist two neighborhoods
U of x and V of y such that, for every x,u ∈ U ,

F(x) ∩ V ⊆ F(u) + M ‖x − u‖BY .

The infimum for all constants M satisfying the above inclusion is denoted by lipF (x, y). It
became classical that the latter property is equivalent to the openness at linear rate for F−1

around (y, x). If F has the Aubin property around (x, y) ∈ GrF , it easily follows that it is
lower semicontinuous at (x, y). For more details and other topological interpretations, see,
for instance, [1].

It is well-known that the mixed coderivative, combined with the PSNC property, are
useful for characterizing the Aubin property of a set-valued map (see [33, Theorem 4.10]).

Lemma 2.2 (Mordukhovich Criterion) Let X, Y be Asplund spaces, G : X ⇒ Y be a closed-
graph set-valued map and (x, y) ∈ GrG. Then the following properties are equivalent:

(a) G has the Aubin property around (x, y).
(b) G is PSNC at (x, y) and D∗

MG(x, y) (0) = {0}.

3 A Unifying Approach

Let us start with the following set-valued optimization problem:

(P ) minimize F(x), subject to x ∈ Ω,

where F : X ⇒ Y is a set-valued map, and Ω ⊆ X is a closed set. Consider a proper closed
and convex cone C ⊆ Y , which induces a reflexive preorder on Y by the equivalence y1 ≤C

y2 if and only if y2 −y1 ∈ C. We are using the vector approach to define the solution concept
for the set-valued optimization problem such that the optimality is understood in the sense
of Pareto, as given in the next definition.



9 Page 6 of 36 M. Durea et al.

Definition 3.1 (Pareto minimum) A point (x, y) ∈ GrF ∩ (Ω × Y ) is called a local Pareto
minimum point for F , or for problem (P ), if there exists a neighborhood U of x such that

(F (U ∩ Ω) − y) ∩ (−C) ⊆ C. (3.1)

Remark that we do not suppose that C is pointed (i.e., C ∩ (−C) = {0}), for some techni-
cal reasons we will clarify a few lines below. This general framework was previously studied
in literature (see, e.g., [2, 9]), and of course, under pointedness of C, the relation “≤C” be-
comes a partial order, and the definition of Pareto minimality for (P ) is the classical one,
that is, relation (3.1) collapses into:

(F (U ∩ Ω) − y) ∩ (−C) = {0} .

A natural question that arose in the context of Pareto minimality was the possibility to
consider that the preorder relation given by the cone C is not fixed anymore. Consequently,
other set-valued maps were considered for the appropriate definition of optimality. Let us
denote these new, order-oriented set-valued maps by K and Q, respectively. At this point,
two main approaches were developed: on the one hand, the set-valued map K is cone-valued
and acts between the same spaces as F , i.e., K : X ⇒ Y , and on the other hand, Q : Y ⇒ Y ,
also cone-valued, gives a domination structure by the equivalence:

v ≤Q y ⇔ y ∈ v + Q(v) \ (−Q(v)) ∪ {0} . (3.2)

The corresponding optimality concepts are as follows.

Definition 3.2 (nondominated solutions) Let F : X ⇒ Y be a set-valued map, Ω ⊆ X be a
closed set, and (x, y) ∈ GrF ∩ (Ω × Y ).

(I) Consider K : X ⇒ Y and suppose that, for any x ∈ X, the set K(x) is a closed, convex
and proper cone in Y . One says that (x, y) is a local nondominated point of type I for F with
respect to K on Ω if there is a neighborhood U of x such that, for every x ∈ U ∩ Ω,

(F (x) − y) ∩ (−K(x)) ⊆ K (x) . (3.3)

(II) Consider Q : Y ⇒ Y and suppose that, for any y ∈ Y , the set Q(y) is a closed, convex
and proper cone in Y . One says that (x, y) is a local nondominated point of type II for F

with respect to Q on Ω if there is a neighborhood U of x such that, for every x ∈ U ∩ Ω,

∀y ∈ F (x) \ {y} , y /∈ y + Q(y) \ (−Q(y)) ∪ {0} . (3.4)

If Ω := X, we say that (x, y) is a local nondominated point for F with respect to K or
Q, respectively, and if the neighborhood U is the whole space, we obtain the global variants
of the above definitions.

Remark 3.3 Notice that relation (3.4) is equivalent to

∀y ∈ F (x) \ {y} , y /∈ y + Q(y) \ (−Q(y)) . (3.5)

Remark 3.4 Let us point out some elements of comparison between the two types. For in-
stance, note that, according to (3.3), the choice of the variable x influences how vectors in
the space Y are compared via K , thereby intertwining the spaces X and Y . In contrast, under
(3.4), any changes in the partial order on Y appear to be an intrinsic property of Y alone.
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Remark 3.5 Observe that, in case that the cones given by K (x) and Q(y) are also pointed,
the relations (3.3) and (3.4) become, respectively,

(F (x) − y) ∩ (−K(x)) ⊆ {0} (3.6)

and

∀y ∈ F (x) \ {y} , y /∈ y + Q(y) , (3.7)

and this corresponds to the usual definitions from literature (see, e.g., [11, 15]). Furthermore,
in the case of fixed ordering cone, under pointedness, both nondominations recover the
classical definition of Pareto minima.

Remark 3.6 The main reason for which we choose to study the more general case is the pos-
sibility of reduction of type I nondominated solutions to the second type (see Remark 3.7),
which is available only if one drops the pointedness of the involved cones in the definitions.

For references concerning optimization problems with respect to variable domination
structure, see [28].

Remark that the first approach (the domination map acts between the same spaces as
the objective map) was introduced in [11], and subsequently studied in [12, 27], while the
second setting (when the domination map is defined and takes values in the output space
of the objective map) was introduced by Yu [39, 40]. Yu defined a domination structure
as a family of cones, whereas Engau [20] considered it as a set-valued map. Furthermore,
problems with variable domination structure are investigated by Eichfelder and her collab-
orators (see, e.g., [13, 15, 17, 18]), and attracted more attention in the optimization com-
munity (see, e.g., [4, 8, 21, 26, 27, 30] and the references therein). We mention as well
that for both approaches, a variety of possible applications are given in the literature (see
[2–7, 14–16, 19, 22–24, 30, 31, 34, 35, 37, 38, 41]). At the first glance, these two variants
seem to be independent, and, actually, this is the way they are treated, up to now, in litera-
ture. However, the main point of this work is to show that the each setting can be reduced to
the other one, by means of the simple devices which we describe next.

Remark 3.7 Suppose that we are in the case (II) in Definition 3.2, i.e., (x, y) is a local
nondominated point of type II for F with respect to Q.

If we consider F̃ , K̃ : X × Y ⇒ Y the set-valued maps given by

F̃ (x, y) :=
{ {y} if y ∈ F (x)

∅ otherwise,
(3.8)

K̃ (x, y) := Q(y) for all y ∈ Y, (3.9)

remark that ((x, y) , y) ∈ Gr F̃ is a local nondominated point of type I for F̃ with respect
to K̃ on Ω × Y if there is a neighborhood U × V of (x, y) such that, for every (x, y) ∈
(U ∩ Ω) × V ,

(
F̃ (x, y) − y

)∩ (−K̃(x, y)
)⊆ K̃(x, y),

so in the case V = Y , this reduces to: for any x ∈ U ∩ Ω,

∀y ∈ F (x) , {y − y} ∩ (−Q(y)) ⊆ Q(y) ,

which is exactly (3.4).
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Remark 3.8 Suppose that we are in the case (I) in Definition 3.2, i.e., (x, y) is a local non-
dominated point of type I for F with respect to K .

If we consider F : X ⇒X × Y , Q : X × Y ⇒ X × Y the set-valued maps given by

F (x) := {x} × F (x) for all x ∈ X (3.10)

Q(x,y) := X × K (x) for all (x, y) ∈ X × Y, (3.11)

observe that, via Remark 3.3, (x, (x, y)) ∈ GrF is a local nondominated point of type II for
F with respect to Q on Ω if there is a neighborhood U of x such that, for every x ∈ U ∩ Ω,

∀ (u, y) ∈ F (x) \ {(x, y)} , (x, y) /∈ (u, y) + Q(u,y) \ (−Q(u,y)
)
,

which is equivalent to: for any x ∈ U ∩ Ω,

∀ (x, y) ∈ ({x} × F (x)) \ {(x, y)} , (x, y) /∈ (x, y) + (X × K (x)) \ (X × (−K (x)))

= (x, y) + X × (K (x) \ (−K (x))) .

This is equivalent to

∀y ∈ F (x) , y /∈ y + K (x) \ (−K (x)) ,

which is exactly (3.3).
Of course, as one can immediately see from (3.11) in the previous reduction scheme,

Q(x,y) is never pointed. Therefore, it is necessary to work in a general setting where the
dominance structure is given by maps whose images are closed, convex and proper cones.

As a consequence of the previous remarks, it is enough to get optimality results for one
type of nondominated solutions, and then one can extend these assertions to those of the
other type. Moreover, there are several paths to study optimality conditions, and our concern
is to investigate such possibilities, to compare the final conditions which are derived, and to
cover and expand in both types I and II approaches the results from literature.

The first method to obtain necessary optimality conditions is to use, for type I nondom-
inated solutions, the Extremal Principle (Theorem 2.1). On this basis, we can apply, by the
reduction method given above, similar arguments that lead to optimality conditions for type
II nondominated solutions. Moreover, the necessary optimality conditions for the type II
nondominated solutions directly imply, by the reduction given by Remark 3.8, the corre-
sponding ones for type I nondominated solutions.

The second method, used, for instance, in [9] for the case of classical Pareto efficiency,
employs the incompatibility between openness of some set-valued map and optimality. No-
tice that this incompatibility is, actually, a principle, since it works in several contexts. In the
case of vector optimization problems, this method can be traced back at least to the paper
[36]. The adaptation of this method to the current settings involves a serious technical effort,
and we propose two ways for getting our results.

The diagram from Fig. 1 underlies this program.

4 Optimality Conditions by Extremality

We start the investigation of optimality conditions by a technical lemma that asserts the
positiveness of the argument of the Fréchet as well as the Mordukhovich coderivatives (see
(2.3) and (2.4)) of the cone-valued map K (see [11, Lemma 4.9]).
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Fig. 1 General overview of the results

Lemma 4.1 Let X, Y be Banach spaces, K : X ⇒ Y a cone-valued set-valued map and
(x, k) ∈ GrK .

(i) If D̂∗K(x, k)(k∗) �= ∅, then k∗ ∈ K(x)+.
(ii) If X, Y are Asplund spaces, GrK is closed around (x, k), K is lower semicontinuous

at
(
x, k
)

and D∗K(x, k)(k∗) �= ∅, then k∗ ∈ K(x)+.

Using the Extremal Principle in Theorem 2.1, we derive the following necessary condi-
tion for local nondominated points of type I.

Theorem 4.2 Let X, Y be Asplund spaces, Ω ⊆ X be a closed set, F,K : X ⇒ Y be closed-
graph set-valued maps, and (x, y) ∈ X × Y be a local nondominated point of type I for F

with respect to K on Ω. Moreover, assume that:
(i) there is a neighborhood U of x such that

⋂

x∈(Ω∩U)∩DomF

(K(x) \ (−K (x))) �= ∅;

(ii) K is SNC at (x,0), and either Ω is SNC at x, or F is PSNC at (x, y);
(iii) the following assumptions are satisfied:

D∗K(x,0)(0) = {0} , (4.1)

D∗
MF(x, y)(0) ∩ (−N (Ω,x)) = {0} . (4.2)

Then there exists y∗ ∈ K(x)+ \ {0} such that

0 ∈ D∗F(x, y)(y∗) + D∗K(x,0)(y∗) + N (Ω,x) . (4.3)
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Proof Let us prove that, in our assumptions, (x, y,0) is a local extremal point for the system
{C1,C2,C3}, where

C1 := {(x, y, k) ∈ X × Y 2 | (x, y) ∈ GrF
}
,

C2 := {(x, y, k) ∈ X × Y 2 | (x, k) ∈ GrK
}
,

C3 := {(x, y, k) ∈ X × Y 2 | x ∈ Ω,k = y − y
}
.

For this, observe that x ∈ (Ω ∩ U) ∩ DomF , and take k ∈
⋂

x∈(Ω∩U)∩DomF

(K(x) \ (−K (x))),

where U is a neighborhood of x such that (i) and the nondomination condition hold. Since
(x, y,0) ∈ C1 ∩ C2 ∩ C3, it suffices to show

C1 ∩ (C2 + n−1
(
0,0, k

))∩ C3 ∩ (U × Y × Y ) = ∅, ∀n ∈ N\ {0} .

Indeed, if we suppose by contradiction that there exists (x, y, k) in the above intersection,
then x ∈ Ω ∩ U , y ∈ F (x), k ∈ K (x) + n−1k ⊆ K (x), k = y − y, hence

−k ∈ (F (x) − y) ∩ (−K (x)) .

By the nondomination condition, k = −K (x), which shows that k ∈ −K (x), a contradic-
tion.

Apply now the Extremal Principle (Theorem 2.1) to the system {C1,C2,C3, (x, y,0)},
and obtain that there exist the sequences (xin, yin, kin) ⊂ X × Y 2 and

(
x∗

in, y
∗
in, k

∗
in

)⊂ X∗ ×
(Y ∗)2 such that, for any n ∈N,

(xin, yin, kin)
Ci−→ (x, y,0) , i = 1,2,3

(
x∗

1n,−y∗
1n, k

∗
1n

) ∈ N̂ (C1, (x1n, y1n, k1n)) ⇔ x∗
1n ∈ D̂∗F (x1n, y1n)

(
y∗

1n

)
, k∗

1n = 0 (4.4)
(
x∗

2n, y
∗
2n,−k∗

2n

) ∈ N̂ (C2, (x2n, y2n, k2n)) ⇔ x∗
2n ∈ D̂∗K (x2n, k2n)

(
k∗

2n

)
, y∗

2n = 0
(
x∗

3n, y
∗
3n, k

∗
3n

) ∈ N̂ (C3, (x3n, y3n, k3n)) ⇔ x∗
3n ∈ N̂ (Ω,x3n) , y∗

3n = k∗
3n,

and, moreover, satisfying the conditions

∥∥(x∗
1n,−y∗

1n,0
)+ (x∗

2n,0,−k∗
2n

)+ (x∗
3n, y

∗
3n, y

∗
3n

)∥∥≤ n−1, (4.5)

1 − n−1 ≤ ∥∥(x∗
1n,−y∗

1n,0
)∥∥+ ∥∥(x∗

2n,0,−k∗
2n

)∥∥+ ∥∥(x∗
3n, y

∗
3n, y

∗
3n

)∥∥≤ 1 + n−1. (4.6)

Condition (4.6) shows that all sequences are bounded, so we may suppose without loss
of generality, since the unit ball in Asplund spaces is weakly∗ sequentially compact, that all
sequences weakly∗ converge to corresponding limits, i.e.,

(
x∗

1n,−y∗
1n,0

) ∗→ (
x∗

1 ,−y∗
1 ,0
)
,

(
x∗

2n,0,−k∗
2n

) ∗→ (
x∗

2 ,0,−k∗
2

)
,
(
x∗

3n, y
∗
3n, y

∗
3n

) ∗→ (
x∗

3 , y∗
3 , y∗

3

)
for n → ∞. But this shows,

also using (4.5), that

x∗
1 ∈ D∗F (x, y)

(
y∗

1

)
, x∗

2 ∈ D∗K (x,0)
(
k∗

2

)
, x∗

3 ∈ N (Ω,x) ,

x∗
1 + x∗

2 + x∗
3 = 0, y∗

1 = k∗
2 = y∗

3 .

It follows that condition (4.3) holds for y∗ := y∗
3 . It remains to prove that y∗ ∈ K(x)+ \ {0}.
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Because K is SNC at (x,0), and (4.1) holds, we deduce by Lemma 2.2 that K has the
Aubin property around (x,0), so it is lower semicontinuous at (x,0). Hence, the fact that
y∗ ∈ K(x)+ follows from Lemma 4.1.

Let us deduce that y∗ �= 0. If y∗ = 0, then by (4.1) it follows x∗
2 = 0, and since

(x2n, k2n)
GrK−→ (x,0) ,

(
x∗

2n, k
∗
2n

) ∗→ (0,0) , x∗
2n ∈ D̂∗K (x2n, k2n)

(
k∗

2n

)
, using the SNC prop-

erty of K at (x,0), it follows that
(
x∗

2n, k
∗
2n

)→ (0,0). By relation (4.5), we deduce that
y∗

1n, y
∗
3n → 0, and hence

−x∗
3 = x∗

1 ∈ D∗
MF(x, y)(0) ∩ (−N (Ω,x)) .

Using now the qualification condition (4.2), we obtain x∗
3 = x∗

1 = 0.

If Ω is SNC at x, since x3n

Ω−→ x, x∗
3n

∗→ x∗
3 = 0 and x∗

3n ∈ N̂ (Ω,x3n), we obtain that
x∗

3n → 0, hence by (4.5) also x∗
1n → 0, and this contradicts the left-hand side inequality in

relation (4.6). If F is PSNC at (x, y), then since (x1n, y1n)
GrF−→ (x, y) , x∗

1n

∗→ 0, , y∗
1n → 0,

x∗
1n ∈ D̂∗F (x1n, y1n)

(
y∗

1n

)
, we get that x∗

1n → 0, so by (4.5) also x∗
3n → 0, and again we

contradict relation (4.6).
In conclusion, y∗ �= 0 and the proof is complete. □

In the unconstrained case (i.e., Ω := X) we obtain the following consequence.

Corollary 4.3 Let X, Y be Asplund spaces, F,K : X ⇒ Y be closed-graph set-valued maps,
and (x, y) ∈ X × Y be a local nondominated point of type I for F with respect to K . More-
over, assume that:

(i) there is a neighborhood U of x such that
⋂

x∈U∩DomF

(K(x) \ (−K (x))) �= ∅;

(ii) K is SNC at (x,0);
(iii) D∗K(x,0)(0) = {0}.
Then there exists y∗ ∈ K(x)+ \ {0} such that

0 ∈ D∗F(x, y)(y∗) + D∗K(x,0)(y∗). (4.7)

Remark 4.4 For an illustrative example of the optimality conditions we derived above for
nondominated points of type I, we refer the reader to [11, Example 4.12].

Let us come back to the nondominated solutions of type II (see Definition 3.2 (II)). We
start with a simple lemma, which asserts the formulae for the Fréchet and Mordukhovich
coderivatives of the set-valued maps involved in the reduction technique described in Re-
mark 3.7.

Lemma 4.5 Let X, Y be Asplund spaces, F : X ⇒ Y,Q : Y ⇒ Y be set-valued maps, and
suppose that F̃ , K̃ : X × Y ⇒ Y are given by (3.8), (3.9). We have:

(
x∗, y∗) ∈ D̂∗F̃ (x, y, y)(z∗) ⇔ x∗ ∈ D̂∗F(x, y)(z∗ − y∗), (4.8)
(
x∗, y∗) ∈ D̂∗K̃(x, y, z)(z∗) ⇔ x∗ = 0, y∗ ∈ D̂∗Q(y, z)(z∗). (4.9)

Moreover, if F and Q are closed-graph, then F̃ , K̃ are also closed-graph, and

(
x∗, y∗) ∈ D∗F̃ (x, y, y)(z∗) ⇔ x∗ ∈ D∗F(x, y)(z∗ − y∗), (4.10)
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(
x∗, y∗) ∈ D∗

MF̃ (x, y, y)(z∗) ⇐ x∗ ∈ D∗
MF(x, y)(z∗ − y∗), (4.11)

(
x∗, y∗) ∈ D∗K̃(x, y, z)(z∗) ⇔ x∗ = 0, y∗ ∈ D∗Q(y, z)(z∗). (4.12)

Proof The formulae (4.8), (4.9), (4.12) and the direct implication in (4.10) immediately
follow from definitions. For the converse implication in (4.10), take x∗ ∈ D∗F(x, y)(z∗ −
y∗). Then there exist (xn, yn)

GrF−→ (x, y), and
(
x∗

n, v
∗
n

) ∗→ (x∗, z∗ − y∗) such that x∗
n ∈

D̂∗F(xn, yn)(v
∗
n), which imply that (xn, yn, yn)

Gr F̃−→ (x, y, y),
(
x∗

n, y
∗, v∗

n + y∗) ∗→ (x∗, y∗ ,

z∗) and

(
x∗

n, y
∗) ∈ D̂∗F̃ (xn, yn, yn)(v

∗
n + y∗),

so the conclusion follows. For (4.11), from v∗
n → z∗ − y∗ it follows that

(
y∗, v∗

n + y∗)→
(y∗, z∗). □

We obtain the following necessary condition for local nondominated points of type II.

Theorem 4.6 Let X, Y be Asplund spaces, Ω ⊆ X be a closed set, F : X ⇒ Y,Q : Y ⇒ Y

be closed-graph set-valued maps, and (x, y) ∈ X ×Y be a local nondominated point of type
II for F with respect to Q on Ω. Moreover, assume that:

(i) there is a neighborhood U of x such that
⋂

y∈F(Ω∩U)

(Q(y) \ (−Q(y))) �= ∅;

(ii) Q is SNC at (y,0), and either Ω is SNC at x, or F is PSNC at (x, y);
(iii) the following assumptions are satisfied:

D∗Q(y,0)(0) = {0} , (4.13)

D∗
MF(x, y)(0) ∩ (−N (Ω,x)) = {0} . (4.14)

Then there exist z∗ ∈ Q(y)+ \ {0} and y∗ ∈ D∗Q(y,0)(z∗) such that

0 ∈ D∗F(x, y)(z∗ + y∗) + N (Ω,x) . (4.15)

Proof Taking into account Remark 3.7, we observe that ((x, y) , y) ∈ Gr F̃ is a local non-
dominated point of type I for F̃ (see (3.8)) with respect to K̃ (see (3.9)) on Ω × Y , and sup-
pose, without loss of generality, that the neighborhood involved in the definition is U × Y ,
i.e., for any x ∈ U ∩ Ω, y ∈ Y

(
F̃ (x, y) − y

)∩ (−K̃(x, y)
)⊆ K̃(x, y).

Observe that Dom F̃ = GrF , hence
⋂

(x,y)∈(Ω×Y)∩(U×Y)∩Dom F̃

(
K̃(x, y) \ (−K̃(x, y)

)) �= ∅ ⇔
⋂

y∈F(Ω∩U)

(Q(y) \ (−Q(y))) �= ∅.

This allows us to deduce, as in the proof of Theorem 4.2, for the sets

C1 = {(x, y, y, k) ∈ X × Y 3 | (x, y, y) ∈ Gr F̃
}
,

C2 = {(x, y, z, k) ∈ X × Y 3 | (x, y, k) ∈ Gr K̃
}
,

C3 = {(x, y, z, k) ∈ X × Y 3 | x ∈ Ω,k = y − y
}
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and the point ((x, y) , y,0), the existence of (xin, yin, zin, kin) ⊂ X × Y 3 and
(
x∗

in, y
∗
in, z

∗
in ,

k∗
in

)⊂ X∗ × (Y ∗)3 such that, for any n ∈ N,

(xin, yin, zin, kin)
Ci−→ (x, y, y,0) , i = 1,2,3,

(
x∗

1n, y
∗
1n,−z∗

1n, k
∗
1n

) ∈ N̂ (C1, (x1n, y1n, z1n, k1n))

⇔ x∗
1n ∈ D̂∗F (x1n, y1n)

(
z∗

1n − y∗
1n

)
, k∗

1n = 0,
(4.16)

(
x∗

2n, y
∗
2n, z

∗
2n,−k∗

2n

) ∈ N̂ (C2, (x2n, y2n, z2n, k2n))

⇔ x∗
2n = 0, z∗

2n = 0, y∗
2n ∈ D̂∗Q(y2n, k2n)

(
k∗

2n

)
,

(
x∗

3n, y
∗
3n, z

∗
3n, k

∗
3n

) ∈ N̂ (C3, (x3n, y3n, z3n, k3n)) ⇔ x∗
3n ∈ N̂ (Ω,x3n) , z∗

3n = 0, y∗
3n = k∗

3n,

and, moreover, such that
∥∥(x∗

1n, y
∗
1n,−z∗

1n,0
)+ (0, y∗

2n,0,−k∗
2n

)+ (x∗
3n, y

∗
3n,0, y∗

3n

)∥∥≤ n−1, (4.17)

1 − n−1 ≤ ∥∥(x∗
1n, y

∗
1n,−z∗

1n,0
)∥∥+ ∥∥(0, y∗

2n,0,−k∗
2n

)∥∥+ ∥∥(x∗
3n, y

∗
3n,0, y∗

3n

)∥∥

≤ 1 + n−1.
(4.18)

Relations (4.17), (4.18) and the fact that X, Y are Asplund imply that
(
x∗

1n, y
∗
1n

) ∗→
(
x∗

1 , y∗
1

)
, z∗

1n → 0,
(
y∗

2n, k
∗
2n

) ∗→ (
y∗

2 , k∗
2

)
,
(
x∗

3n, y
∗
3n

) ∗→ (
x∗

3 , y∗
3

)
, hence

x∗
1 ∈ D∗F (x, y)

(−y∗
1

)
, y∗

2 ∈ D∗Q(y,0)
(
k∗

2

)
, x∗

3 ∈ N (Ω,x) ,

x∗
1 + x∗

3 = 0, y∗
1 + y∗

2 + y∗
3 = 0, k∗

2 = y∗
3 .

Denoting z∗ := y∗
3 and y∗ := y∗

2 , we get y∗ ∈ D∗Q(y,0)(z∗) and

0 = x∗
1 + x∗

3 ∈ D∗F (x, y)
(
z∗ + y∗)+ N (Ω,x) .

Observe that, by (4.9), the SNC of K̃ at (x, y,0) is equivalent to the SNC of Q at (y,0).
Also, the SNC property of Ω × Y at (x, y) trivially reduces to the SNC property of Ω at x.
By Lemma 2.2, assumption (4.13) and the SNC property of Q at (y,0) imply that Q is
lower semicontinuous at (y,0), hence z∗ ∈ Q(y)+ by Lemma 4.1.

It remains to prove that z∗ �= 0. Suppose, by contradiction, that z∗ = 0. Then by (4.13),

y∗ = 0, and since (y2n, k2n)
GrQ−→ (y,0),

(
y∗

2n, k
∗
2n

) ∗→ (0,0), y∗
2n ∈ D̂∗Q(y2n, k2n)

(
k∗

2n

)
, by

the fact that Q is SNC at (y,0), we get
(
y∗

2n, k
∗
2n

)→ (0,0). Using (4.17), we know that

x∗
1n + x∗

3n → 0,

y∗
1n + y∗

2n + y∗
3n → 0,

− k∗
2n + y∗

3n → 0,

hence we deduce that y∗
3n → 0 and, furthermore, that y∗

1n → 0. Then, since z∗
1n − y∗

1n → 0,
we obtain by (4.14) that

x∗
1 = −x∗

3 ∈ D∗
MF(x, y)(0) ∩ (−N (Ω,x)) = {0} ,

hence x∗
1n, x∗

3n

∗→ 0.
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If Ω is SNC at x, since x3n

Ω−→ x, x∗
3n

∗→ 0 and x∗
3n ∈ N̂ (Ω,x3n), we obtain that

x∗
3n → 0, hence x∗

1n → 0, a contradiction to the left-hand side inequality in (4.18).

If F is PSNC at (x, y), since (x1n, y1n)
GrF−→ (x, y) , x∗

1n

∗→ 0, z∗
1n − y∗

1n → 0, x∗
1n ∈

D̂∗F (x1n, y1n)
(
z∗

1n − y∗
1n

)
, we get that x∗

1n → 0, hence also x∗
3n → 0, again a contradiction

to (4.18). The conclusion holds. □

Remark 4.7 A variant of the previous result, for single-valued maps, is given in [4, Theo-
rem 4.2]. Notice that, in the case of set-valued maps, Theorem 4.6 substantially improves
the corresponding results from [30] and [27] in the sense that our result avoids the use of
auxiliary objects, employing directly the maps defining the problem under study. Notice as
well that in [27] necessary conditions are derived also for solution concepts defined with
respect to set relations.

Remark 4.8 Observe that PSNC property of F at (x, y) does not imply the PSNC property
of F̃ at (x, y, y), and also that relation (4.14) does not imply

D∗
MF̃ (x, y, y)(0) ∩ (−N (Ω × Y, (x, y))) = {(0,0)} .

So, Theorem 4.2 cannot be applied directly to obtain the conclusion of Theorem 4.6 in full
generality. The assumptions in Theorem 4.6 should be modified, respectively, in F to be
SNC at (x, y), and D∗F(x, y)(0) ∩ (−N (Ω,x)) = {0}. This was the reason for repeating
above some parts of the proof of Theorem 4.2.

Now, we study the way the optimality conditions for type II nondominated solutions
obtained in Theorem 4.6 imply, by the reduction from Remark 3.8, the optimality conditions
for type I in Theorem 4.2. In order to do that, we present in a lemma the relationships
between the coderivatives of F and K and those of F and Q, respectively.

Lemma 4.9 Let X, Y be Asplund spaces, F : X ⇒ Y,K : X ⇒ Y be set-valued maps, and
suppose that F : X ⇒X × Y , Q : X × Y ⇒ X × Y are given by (3.10), (3.11). We have:

x∗ ∈ D̂∗F(x, x, y)(u∗, y∗) ⇔ x∗ − u∗ ∈ D̂∗F(x, y)(y∗), (4.19)
(
x∗, y∗) ∈ D̂∗Q(x,y,u, v)(u∗, v∗) ⇔ y∗ = 0, u∗ = 0, x∗ ∈ D̂∗K(x, v)(v∗). (4.20)

Moreover, if F and K are closed-graph, then F , Q are also closed-graph, and

x∗ ∈ D∗F(x, x, y)(u∗, y∗) ⇔ x∗ − u∗ ∈ D∗F(x, y)(y∗), (4.21)

x∗ ∈ D∗
MF(x, x, y)(u∗, y∗) ⇔ x∗ − u∗ ∈ D∗

MF(x, y)(y∗), (4.22)
(
x∗, y∗) ∈ D∗Q(x,y,u, v)(u∗, v∗) ⇔ y∗ = 0, u∗ = 0, x∗ ∈ D∗K(x, v)(v∗). (4.23)

Proof The equivalences (4.19), (4.20), (4.23) and the implications in (4.21), (4.22) im-
mediately follow from definitions. For the reverse implication in (4.21), take x∗ −
u∗ ∈ D∗F(x, y)(y∗), which means that there exist (xn, yn)

GrF−→ (x, y), and
(
x∗

n, y
∗
n

) ∗→
(x∗ − u∗, y∗) such that x∗

n ∈ D̂∗F(xn, yn)(y
∗
n), which imply that (xn, xn, yn)

GrF−→ (x, x, y),
(
x∗

n + u∗, u∗, y∗
n

) ∗→ (x∗, u∗, y∗) and

x∗
n + u∗ ∈ D̂∗F(xn, xn, yn)(u

∗, y∗
n).
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For the reverse implication in (4.22), the proof is similar to the above, since
(
u∗, y∗

n

)→
(u∗, y∗). This ends the proof. □

Proof of Theorem 4.2 by Theorem 4.6 If (x, y) is a local nondominated point of type I for F

with respect to K , using Remark 3.8, it follows that (x, (x, y)) ∈ GrF is a local nondomi-
nated point of type II for F with respect to Q on Ω.

Observe that:

• The following equivalences hold

⋂

(x,y)∈F(Ω∩U)

(
Q(x,y) \ (−Q(x,y)

)) �= ∅ ⇔
⋂

x∈DomF∩(Ω∩U)

((X × K (x)) \ (X × (−K (x)))) �= ∅ ⇔
⋂

x∈DomF∩(Ω∩U)

(K (x) \ (−K (x))) �= ∅.

• Using (4.23), one has that K is SNC at (x,0) iff Q is SNC at (x, y,0,0).
• PSNC property of F at (x, y) implies the PSNC property of F at (x, x, y).

Indeed, suppose that we have (xn, xn, yn)
GrF→ (x, x, y), x∗

n

∗→ 0, (u∗
n, y

∗
n) → (0,0), such

that x∗
n ∈ D̂∗F(xn, xn, yn)(u

∗
n, y

∗
n). This means that (xn, yn)

GrF→ (x, y), x∗
n −u∗

n

∗→ 0, y∗
n → 0

and x∗
n − u∗

n ∈ D̂∗F(xn, yn)(y
∗
n). By the PSNC property of F at (x, y), we have that x∗

n −
u∗

n → 0, and since u∗
n → 0, we finally obtain that x∗

n → 0.

• By (4.23), it follows

D∗K(x,0)(0) = {0} ⇔ D∗Q(x,y,0,0) (0,0) = {(0,0)} .

• Using (4.22), we have

D∗
MF(x, y)(0) ∩ (−N (Ω,x)) = {0} ⇔ D∗

MF(x, x, y)(0,0) ∩ (−N (Ω,x)) = {0} .

Hence, all the assumptions of Theorem 4.6 are satisfied, so there exist (u∗, v∗) ∈
Q(x,y)+ \ {(0,0)} = {0} × (K (x)+ \ {0}) and (x∗, y∗) ∈ D∗Q(x,y,0,0)(u∗, v∗) such that

0 ∈ D∗F(x, x, y)(u∗ + x∗, v∗ + y∗) + N (Ω,x) .

This means that u∗ = 0, y∗ = 0, x∗ ∈ D∗K (x,0) (v∗) and there exists t∗ ∈ D∗F(x, x, y)(x∗,
v∗), hence by (4.21) t∗ −x∗ ∈ D∗F(x, y)(v∗), such that −t∗ ∈ N (Ω,x). Finally, we get that
there is v∗ ∈ K (x)+ \ {0} with

0 ∈ t∗ + N (Ω,x) = (t∗ − x∗)+ x∗ + N (Ω,x)

⊆ D∗F(x, y)(v∗) + D∗K (x,0)
(
v∗)+ N (Ω,x) .

The proof is complete. □

Remark 4.10 Notice that the proof of Theorem 4.2 by Theorem 4.6 is much more direct than
the opposite implication, and this shows, once more, the utility of considering nonpointed
preordering cones.
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In the unconstrained case, we have the following necessary condition for local nondom-
inated points of type II (Definition 3.2 (II)).

Corollary 4.11 Let X, Y be Asplund spaces, F : X ⇒ Y,Q : Y ⇒ Y be closed-graph set-
valued maps, and (x, y) ∈ X×Y be a local nondominated point of type II for F with respect
to Q. Moreover, assume that:

(i) there is a neighborhood U of x such that
⋂

y∈F(Ω∩U)

(Q(y) \ (−Q(y))) �= ∅;

(ii) Q is SNC at (y,0);
(iii) D∗Q(y,0)(0) = {0}.
Then there exist z∗ ∈ Q(y)+ \ {0} and y∗ ∈ D∗Q(y,0)(z∗) such that

0 ∈ D∗F(x, y)(z∗ + y∗). (4.24)

Both Theorems 4.2 and 4.6 reduce, in case that the cone-valued map K or Q is a constant
cone, to the well-known necessary optimality conditions for Pareto minima (see, e.g., [2,
Theorem 5.3]).

Corollary 4.12 Let X, Y be Asplund spaces, Ω ⊆ X be a closed set, F : X ⇒ Y be a closed-
graph set-valued map, C ⊆ Y be a proper closed and convex cone and (x, y) ∈ X × Y be a
local Pareto minimal point for F on Ω. Moreover, assume that (4.2) holds, that C is SNC at
0, and either Ω is SNC at x, or F is PSNC at (x, y). Then there exists y∗ ∈ C+ \ {0} such
that

0 ∈ D∗F(x, y)(y∗) + N (Ω,x) . (4.25)

Furthermore, in the unconstrained case, the previous corollary reduces to the well-known
necessary optimality conditions for Pareto solutions (see, e.g., [2, Theorem 5.1], [9, Theo-
rem 3.11]).

At the end of this section, we illustrate the optimality conditions for nondominated points
of type II.

Example 4.13 Consider the objective map F : R⇒R
2 given by

F(t) := [(0,0), (cos t, sin t)] .

As in [11, Example 4.12], we have that

N(GrF, (0,0,0)) = {(x, y, z) ∈ R
3 | x = 0, y ≤ 0}.

Moreover, following [4, p. 364], we particularize the Bishop-Phelps ordering structure
by considering Q : R2 ⇒R

2 given by

Q(a,b) := {(u, v) ∈R
2 | |u| + |v| ≤ 2

(
e|a| · u + e|b| · v)} .

Take x := 0, y := (0,0). Remark that (x, y) is a nondominated point of type II for F with
respect to Q. We have

Q(y) = {(u, v) ∈R
2 | |u| + |v| ≤ 2 (u + v)

}
,

Q(y)+ = {(u, v) ∈R
2 | u ≤ 3v, v ≤ 3u

}
,
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and we consider z∗ := (2,2) ∈ Q(y)+ \ {(0,0)}. Moreover, z∗ ∈ R+ ((2,2) + SR2), so, ac-
cording to [4, Proposition 3.12],

D∗Q(y, (0,0))
(
z∗)= {(0,0)} .

Now it is obvious that

0 ∈ D∗F(x, y)(z∗ + y∗),

with y∗ = (0,0). Of course, the assumptions (i)-(iii) of Corollary 4.11 are satisfied.

5 Openness

In this section, we derive the openness results fitted in our context, in the sense that, putted in
relationship with the nondominated solutions of first and second type (Definition 3.2 (I) and
(II)), they provide, by the incompatibility principle between openness and nondomination,
the necessary optimality conditions.

We remark that there are at least two possible ways to follow this program. First of all,
we extend a linear openness result for compositions of two set-valued maps given in [10]
to a finite number of set-valued maps, and then we particularize it for sum maps. Next,
we prove a new openness result, which gives yet another way to proceed in getting the
optimality conditions and, moreover, gives some new alternatives in the formulation of the
assumptions of the main results, which are not obvious in the context of the other variants
(see Remark 6.6 and Corollary 6.7).

5.1 Openness of Compositions and Sums

If S1, . . . , Sp are subsets of a normed vector space X, closed around x ∈ S1 ∩ · · · ∩ Sp ,

one says that they are allied at x (for the Fréchet normal cones) whenever (xin)
Si→ x, x∗

in ∈
N̂(Si, xin), i = 1,p, the relation (x∗

1n + · · · + x∗
pn) → 0 implies (x∗

in) → 0 for every i = 1,p

(for more details and historical comments, see [10]).
In what follows, we extend a linear openness result for compositions of two set-valued

maps from [10] to a corresponding result for a finite number of set-valued maps defined on
T in order to apply it to our current framework.

Let T ,Y1, . . . , Yp,Z be normed vector spaces, and consider Fi : T ⇒ Yi , i = 1,p and
Ψ : Y1 × · · · × Yp ⇒ Z, (t, y1, . . . , yp, z) ∈ T × Y1 × · · · × Yp × Z such that (t, yi) ∈ GrFi ,
i = 1,p, ((y1, . . . , yp), z) ∈ GrΨ . We denote

Ci := {(t, y1, . . . , yp, z) ∈ T × Y1 × · · · × Yp × Z | yi ∈ Fi(t)}, i = 1,p, (5.1)

Cp+1 := {(t, y1, . . . , yp, z) ∈ T × Y1 × · · · × Yp × Z | z ∈ Ψ(y1, . . . , yp)},

and remark that (t, y1, . . . , yp, z) ∈
p+1⋂

i=1

Ci . Also, we consider the set-valued map H : T ⇒Z

given by

H (t) :=
⋃

yi∈Fi (t)

i=1,p

Ψ(y1, . . . , yp). (5.2)
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If all the involved graphs are closed around the reference points, the alliedness prop-

erty of C1, . . . ,Cp+1 at (t, y1, . . . , yp, z) reads as follows: for any sequences (tin, yin)
GrFi−→

(t, yi), i = 1,p, (b1n, . . . , bpn, cn)
GrΨ−→ (y1, . . . , yp, z) and every t∗in ∈ D̂∗Fi(tin, yin)(y

∗
in),

i = 1,p, (b∗
1n, . . . , b

∗
pn) ∈ D̂∗Ψ(b1n, . . . , bpn, cn)(c

∗
n), the relations (t∗1n + · · · + t∗pn) → 0,

(
y∗

in + b∗
in

)→ 0, i = 1,p,
(
c∗
n

)→ 0 imply

(t∗in) → 0, (y∗
in) → 0, (b∗

in) → 0, i = 1,p.

Theorem 5.1 Suppose T ,Y1, . . . , Yp and Z are Asplund spaces, Fi : T ⇒ Yi, i = 1,p,
Ψ : Y1 × · · · × Yp ⇒ Z are closed-graph set-valued maps, and (t, y1, . . . , yp, z) ∈ T ×
Y1 × · · · × Yp × Z is such that z ∈ Ψ(y1, . . . , yp), yi ∈ Fi(t), i = 1,p. Assume that the
sets C1, . . . ,Cp+1 defined by (5.1) are allied at (t, y1, . . . , yp, z) and

0 < c

:= lim inf
δ↓0, (ui ,vi )

GrFi→ (t,yi ), i=1,p

(y1,...,yp,w)
GrΨ→ (y1,...,yp,z)

⎧
⎪⎪⎨

⎪⎪⎩
‖t∗1 + · · · + t∗p‖ |

t∗i ∈ D̂∗Fi(ui, vi)(y
∗
i ), i = 1,p,

(z∗
1 + y∗

1 , . . . , z∗
p + y∗

p)

∈ D̂∗Ψ(y1, . . . , yp,w)(w∗),
‖w∗‖ = 1,‖z∗

i ‖ < δ, i = 1,p

⎫
⎪⎪⎬

⎪⎪⎭
.

(5.3)

Then for every a ∈ (0, c), H given by (5.2) is a-open at (t, z).

Since the proof of the above result is similar to the one of [10, Theorem 4.2], we leave it
for the interested reader.

In the context of summation, i.e., all the spaces Yi and Z coincide, and the set-valued
map Ψ : Y p → Y is the sum Ψ(y1, . . . , yp) := y1 + · · · + yp , the alliedness of the sets
C1, . . . ,Cp+1 defined by (5.1) translates into the alliedness of the sets

Di := {(t, y1, . . . , yp) ∈ T × Y p | yi ∈ Fi(t)}, i = 1,p. (5.4)

Indeed, in this context,

D̂∗Ψ(y1, . . . , yp,w)(w∗) = (w∗, . . . ,w∗) ,

so if (b∗
1n, . . . , b

∗
pn) ∈ D̂∗Ψ(b1n, . . . , bpn, cn)(c

∗
n) and

(
c∗
n

)→ 0, we have successively that

(b∗
in) → 0, i = 1,p, and then (y∗

in) → 0, i = 1,p. So the alliedness property reduces to: for

any sequences (tin, yin)
Fi−→ (t, yi), i = 1,p and every t∗in ∈ D̂∗Fi(tin, yin)(y

∗
in), i = 1,p,

the relations (t∗1n + · · · + t∗pn) → 0,
(
y∗

in

)→ 0, i = 1,p, imply (t∗in) → 0, i = 1,p. But this
is exactly the alliedness of the sets D1, . . . ,Dp given by (5.4).

Also, the set-valued map H : T ⇒ Y becomes the sum set-valued map

H (t) =
p∑

i=1

Fi (t) . (5.5)

Consequently, the previous theorem becomes the following one (see, for the case p = 2, [11,
Theorem 4.6]).

Theorem 5.2 Suppose T and Y are Asplund spaces, Fi : T ⇒ Y, i = 1,p are closed-graph
set-valued maps, and (t, y1, . . . , yp) ∈ T × Y p is such that yi ∈ Fi(t), i = 1,p. Assume that
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the sets D1, . . . ,Dp defined by (5.4) are allied at (t, y1, . . . , yp) and

0 < c := lim inf
(ui ,vi )

GrFi→ (t,yi ), i=1,p, δ↓0

{
‖t∗1 + · · · + t∗p‖ | t∗i ∈ D̂∗Fi(ui, vi)(w

∗ − z∗
i ),

‖w∗‖ = 1,‖z∗
i ‖ < δ, i = 1,p

}
. (5.6)

Then for every a ∈ (0, c), H given by (5.5) is a-open at (t, y1 + · · · + yp).

Remark 5.3 The openness asserted in the previous two theorems can be extended to around-
point linear openness, using the so-called composition stability, or sum stability of the in-
volved set-valued maps, respectively. For more details, see [10, 11].

Let us formulate the result for the particular case when F1 := F,F2 := K,F3 := ΔΩ.

Corollary 5.4 Let X, Y be Asplund spaces, Ω ⊆ X be a closed set, F : X ⇒ Y,K : X ⇒ Y

be closed-graph set-valued maps, and (x, y, z) ∈ X × Y × Y such that x ∈ Ω, (x, y) ∈ GrF
and (x, z) ∈ GrK . Suppose that the sets

D1 := {(x, y, z,w) ∈ X × Y 3 | y ∈ F(x)},
D2 := {(x, y, z,w) ∈ X × Y 3 | z ∈ K(x)}, (5.7)

D3 := {(x, y, z,w) ∈ X × Y 3 | w ∈ ΔΩ (x)}
are allied at (x, y, z,0), and

0 < c := lim inf
δ↓0, (x1,y1)

GrF→ (x,y),

(x2,y2)
GrK→ (x,z), x3

Ω→x

⎧
⎪⎪⎨

⎪⎪⎩
‖x∗

1 + x∗
2 + x∗

3‖ |
x∗

1 ∈ D̂∗F(x1, y1)(w
∗ − z∗

1),

x∗
2 ∈ D̂∗K(x2, y2)(w

∗ − z∗
2),

x∗
3 ∈ N̂(Ω,x3),

‖w∗‖ = 1,‖z∗
i ‖ < δ, i = 1,2

⎫
⎪⎪⎬

⎪⎪⎭
. (5.8)

Then for every a ∈ (0, c), H given by

H (x) :=
{

F (x) + K (x) if x ∈ Ω

∅ otherwise
(5.9)

is a-open at (x, y + z).

An interesting observation is that Theorem 5.2 can furnish an openness result even in the
case when the set-valued maps involved in summation are defined on different spaces, using
a similar idea to the one of extending the type I nondominated solutions to the second type,
as described next.

Suppose X, Y are normed vector spaces, and consider the closed set Ω ⊆ X and the
set-valued maps F : X ⇒ Y , G : Y ⇒ Y . Then we take T := X × Y , and we denote by
F1,F2,F3 : X × Y ⇒ Y the set-valued maps given by

F1 (x, y) :=
{ {y} if y ∈ F (x)

∅ otherwise,

F2 (x, y) := G(y) for all y ∈ Y, (5.10)

F3 (x, y) := ΔΩ (x) for all x ∈ X.
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Then the set-valued map H defined by (5.5) becomes

H (x,y) =
{ {y} + G(y) if y ∈ F (x) , x ∈ Ω

∅ otherwise.
(5.11)

In this case, the Fréchet coderivatives of F1, F2, F3 in the corresponding points from the
graphs become

(
x∗, y∗) ∈ D̂∗F1(x, y, y)(z∗) ⇔ x∗ ∈ D̂∗F(x, y)(z∗ − y∗),
(
x∗, y∗) ∈ D̂∗F2(x, y, z)(z∗) ⇔ x∗ = 0, y∗ ∈ D̂∗G(y, z)(z∗), (5.12)
(
x∗, y∗) ∈ D̂∗F3(x, y,0)(z∗) ⇔ x∗ ∈ N̂ (Ω,x) , y∗ = 0, z∗ ∈ Y ∗.

Moreover, the sets Di (for i = 1,2,3) given by (5.4) are

E1 = {(x, y, z,w,v) ∈ X × Y 4 | z ∈ F1(x, y)} = {(x, y, y,w,v) ∈ X × Y 4 | y ∈ F(x)},
E2 = {(x, y, z,w,v) ∈ X × Y 4 | w ∈ F2(x, y)}

= {(x, y, z,w,v) ∈ X × Y 4 | w ∈ G(y)},
(5.13)

E3 = {(x, y, z,w,v) ∈ X × Y 4 | v ∈ F3(x, y)} = {(x, y, z,w,0) ∈ X × Y 4 | x ∈ Ω}
and their alliedness takes a simpler form, as proven in the next result.

Proposition 5.5 The sets E1, E2, E3 are allied at (x, y, y, z,0) if and only if the sets

A1 := {(x, y, z) ∈ X × Y 2 | y ∈ F(x)},
A2 := {(x, y, z) ∈ X × Y 2 | z ∈ G(y)}, (5.14)

A3 := {(x, y, z) ∈ X × Y 2 | x ∈ Ω}
are allied at (x, y, z).

Proof The alliedness of E1, E2, E3 at (x, y, y, z,0) means that for any (xin,

yin, zin,win, vin)
Ei−→ (x, y, y, z,0), i = 1,2,3 and every

(
x∗

in, y
∗
in, z

∗
in,w

∗
in, v

∗
in

) ∈ N̂ (Ei ,

(xin, yin, yin,win, vin)) the relation (x∗
1n + x∗

2n + x∗
3n, y

∗
1n + y∗

2n + y∗
3n, z

∗
1n + z∗

2n + z∗
3n,w

∗
1n +

w∗
2n + w∗

3n, v
∗
1n + v∗

2n + v∗
3n) → (0,0,0,0,0) imply

(x∗
in) → 0, (y∗

in) → 0, (z∗
in) → 0, (w∗

in) → 0, (v∗
in) → 0, i = 1,2,3.

Using (5.12), we have y1n = z1n, v3n = 0, and
(
x∗

1n, y
∗
1n, z

∗
1n,w

∗
1n, v

∗
1n

) ∈ N̂ (E1, (x1n, y1n ,

y1n,w1n)) if and only if w∗
1n = v∗

1n = 0 and
(
x∗

1n, y
∗
1n

) ∈ D̂∗F1 (x1n, y1n, y1n)
(−z∗

1n

)
,

which means that x∗
1n ∈ D̂∗F(x1n, y1n)(−z∗

1n − y∗
1n). Moreover,

(
x∗

2n, y
∗
2n, z

∗
2n,w

∗
2n, v

∗
2n

) ∈
N̂ (E2, (x2n, y2n, z2n,w2n, v2n)) iff z∗

2n = v∗
2n = 0,

(
x∗

2n, y
∗
2n

) ∈ D̂∗F2 (x2n, y2n, z2n)
(−w∗

2n

)
,

hence x∗
2n = 0, y∗

2n ∈ D̂∗G(y2n, z2n)(−w∗
2n), and (v∗

3n) → 0. Furthermore,
(
x∗

3n, y
∗
3n, z

∗
3n ,

w∗
3n, v

∗
3n

) ∈ N̂ (E3, (x3n, y3n, z3n,w3n,0)) iff x∗
3n ∈ N̂ (Ω,x3n), y∗

3n = z∗
3n = w∗

3n = 0. It fol-
lows that

(
z∗

1n

)→ 0,
(
w∗

2n

)→ 0.

In conclusion, the alliedness of E1, E2, E3 reduces to: for any (x1n, y1n)
GrF−→ (x, y),

(y2n, z2n)
GrG−→ (y, z), and any x∗

1n ∈ D̂∗F(x1n, y1n)(−z∗
1n −y∗

1n), y
∗
2n ∈ D̂∗G(y2n, z2n)(−z∗

2n),
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x∗
3n ∈ N̂ (Ω,x3n), given the relations (x∗

1n + x∗
3n) → 0,

(
y∗

1n + y∗
2n

) → 0,
(
z∗
in

) → 0, i =
1,2,3 one must prove that (x∗

in) → 0, (y∗
in) → 0, i = 1,2,3 but this means the alliedness of

the sets A1, A2, A3 at (x, y, z). □

Furthermore, in the case Ω := X, the alliedness of the sets A1, A2, A3 at (x, y, z) trivially
reduces to the alliedness of A1, A2 at (x, y, z). We derive the next openness result.

Theorem 5.6 Suppose X, Y are Asplund spaces, F : X ⇒ Y , G : Y ⇒ Y are closed-graph
set-valued maps, and (x, y, z) ∈ X × Y × Y is such that x ∈ Ω, (x, y) ∈ GrF and (y, z) ∈
GrG. Assume that the sets A1, A2, A3 defined by (5.14) are allied at (x, y, z) and

0 < c

:= lim inf
δ↓0, (x1,y1)

GrF→ (x,y),

(y2,z2)
GrG→ (y,z), x3

Ω−→x

⎧
⎪⎪⎨

⎪⎪⎩
‖ (x∗

1 + x∗
3 , y∗

1 + y∗
2

)‖ |
x∗

1 ∈ D̂∗F(x1, y1)(w
∗ − y∗

1 − z∗
1),

y∗
2 ∈ D̂∗G(y2, z2)(w

∗ − z∗
2),

x∗
3 ∈ N̂ (Ω,x3) ,

‖w∗‖ = 1,‖z∗
i ‖ < δ, i = 1,2

⎫
⎪⎪⎬

⎪⎪⎭
.

(5.15)

Then for every a ∈ (0, c), H given by (5.11) is a-open at (x, y, y + z).

Again, in case Ω := X, the openness result becomes the following one.

Corollary 5.7 Suppose X, Y are Asplund spaces, F : X ⇒ Y , G : Y ⇒ Y are closed-graph
set-valued maps, and (x, y, z) ∈ X × Y × Y is such that (x, y) ∈ GrF and (y, z) ∈ GrG.
Assume that the sets A1, A2 defined by (5.14) are allied at (x, y, z) and

0 < c := lim inf
(x1,y1)

F→(x,y),

(y2,z2)
G→(y,z), δ↓0

⎧
⎨

⎩
‖ (x∗

1 , y∗
1 + y∗

2

)‖ |
x∗

1 ∈ D̂∗F(x1, y1)(w
∗ − y∗

1 − z∗
1),

y∗
2 ∈ D̂∗G(y2, z2)(w

∗ − z∗
2),

‖w∗‖ = 1,‖z∗
i ‖ < δ, i = 1,2

⎫
⎬

⎭
. (5.16)

Then for every a ∈ (0, c), H given by (5.11) is a-open at (x, y, y + z).

5.2 Openness of a Special Sum

In the following, as explained at the beginning of the section, we explore another useful
set-valued map. More exactly, for F : X ⇒ Y , G : Y ⇒ Y , we consider the set-valued map
R : X ⇒ Y given by

R (x) :=
{ {y + z | y ∈ F (x) , z ∈ G(y)} if x ∈ Ω

∅ otherwise.
(5.17)

Note that the set-valued map R given by (5.17) is somehow similar to H given by (5.11),
with the subtle and important difference that acts between different spaces.

Applying Ekeland Variational Principle, we show the following openness result concern-
ing the set-valued map R.

Theorem 5.8 Let X, Y be Asplund spaces, Ω ⊆ X be a closed set, F : X ⇒ Y , G : Y ⇒ Y

be closed-graph set-valued maps, and (x, y, z) ∈ X × Y × Y such that x ∈ Ω, (x, y) ∈
GrF and (y, z) ∈ GrG. Suppose that the sets A1, A2, A3 given by (5.14) are allied at
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(x, y, z), and there exist c, r > 0 such that for every (x1, y1) ∈ GrF ∩ [B(x, r) × B(y, r)],
(y2, z2) ∈ GrG ∩ [B(y, r) × B(z, r)], x3 ∈ Ω ∩ B(x, r) and every z∗ ∈ SY ∗ , t∗ ∈ 2cBY ∗ ,
y∗ ∈ D̂∗G(y2, z2)(z

∗), x∗ ∈ D̂∗F(x1, y1)(z
∗ + y∗ + t∗), u∗ ∈ N̂ (Ω,x3)

c
∥∥z∗ + t∗

∥∥≤ ∥∥x∗ + u∗∥∥ . (5.18)

Then for every a ∈ (0, c), R given by (5.17) is a-open at (x, y + z).

Proof Fix a ∈ (0, c). Our aim is to prove that there exists ε > 0 such that, for every ρ ∈
(0, ε),

B(y + z,ρa) ⊆ R (B (x,ρ)) . (5.19)

Surely, we can find b > 0 and ε > 0 such that b−1aε < r such that

(a + 1)−1a < b < b + ε < (c + 1)−1c. (5.20)

Fix ρ ∈ (0, ε) and take w ∈ B(y + z,ρa). Denote A := A1 ∩ A2 ∩ A3. We endow the
space X × Y × Y with the sum norm and define the function

f : A → R, f (x, y, z) := ‖y + z − w‖ .

Using the closedness of Ω, GrF and GrG, it follows that the set A is closed. We apply the
Ekeland Variational Principle for f and (x, y, z) ∈ domf to find (xb, yb, zb) ∈ A such that

‖yb + zb − w‖ ≤ ‖y + z − w‖ − b(‖x − xb‖ + ‖y − yb‖ + ‖z − zb‖) (5.21)

and

‖yb + zb − w‖ ≤ ‖y + z − w‖ + b(‖x − xb‖ + ‖y − yb‖ + ‖z − zb‖) for all (x, y, z) ∈ A.

(5.22)
From (5.21), we have

‖x − xb‖ + ‖y − yb‖ + ‖z − zb‖ ≤ b−1 ‖y + z − w‖ < b−1aρ ≤ b−1aε, (5.23)

hence (xb, yb, zb) ∈ B (x, r) × B (y, r) × B (z, r). If w = yb + zb , then

b ‖x − xb‖ ≤ ‖y + z − w‖ − b(‖y − yb‖ + ‖z − zb‖)
≤ ‖y + z − w‖ − b ‖(y + z) − (yb + zb)‖
= (1 − b)‖y + z − w‖
< (1 − b)aρ < bρ,

hence xb ∈ B(x,ρ), and since xb ∈ Ω, we obtain

w = yb + zb ∈ {yb + G(yb) | yb ∈ F (xb)} = R (xb) ⊆ R(B(x,ρ)),

which is exactly the conclusion (5.19).
We want to prove that w = yb + zb is the only possible situation. For this, suppose that

w �= yb + zb and consider the function

h : X × Y × Y → R, h(x, y, z) := ‖y + z − w‖ + b(‖x − xb‖ + ‖y − yb‖ + ‖z − zb‖).
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From the second relation of the Ekeland Variational Principle (5.22), we have that the point
(xb, yb, zb) is a minimum point for h on the set A, or, equivalently, (xb, yb, zb) is a global
minimum point for the function h + δA. Applying the generalized Fermat rule, we have that

(0,0,0) ∈ ∂̂(h(·, ·, ·, ·) + δA(·, ·, ·, ·))(xb, yb, zb).

Using the fact that h is Lipschitz and δA is lower semicontinuous, we can apply the fuzzy
calculus rule for the Fréchet subdifferential (see [33, Sect. 2.4]). Since, from (5.23), we have
that (xb, yb, zb) ∈ B(x, b−1aε) × B(y, b−1aε) × B(z, b−1aε), we can choose γ ∈ (0,2−1ρ)

such that

B(xb,2γ ) ⊆ B(x, b−1aε),

B(yb,2γ ) ⊆ B(y, b−1aε),

B(zb,2γ ) ⊆ B(z, b−1aε),

w /∈ B(yb + zb,4γ )

and obtain that there exist

(x1, y1, z1) ∈ B(xb, γ ) × B(yb, γ ) × B(zb, γ ),

(x2, y2, z2) ∈ A ∩ [B(xb, γ ) × B(yb, γ ) × B(zb, γ )
]

such that

(0,0,0) ∈ ∂̂h(x1, y1, z1) + ∂̂δA(x2, y2, z2) + γ (BX∗ × BY ∗ × BY ∗). (5.24)

Observing that h is the sum of four convex functions, Lipschitz on X × Y × Y , ∂̂h

coincides with the sum of the Fenchel subdifferentials. Also, defining the linear operator
Φ : Y × Y → Y by Φ(y, z) := y + z, we obtain that

∂ ‖· + · − w‖ (y1, z1) = Φ∗(∂ ‖· − w‖ (y1 + z1)),

where Φ∗ : Y ∗ → Y ∗ × Y ∗ denotes the adjoint of Φ and ∂ the Fenchel subdifferential. Re-
marking also that w �= y1 + z1 ∈ B(yb + zb,2γ ) and using that Φ∗(y∗) = (y∗, y∗) for every
y∗ ∈ Y ∗, we obtain

∂ ‖· + · − w‖ (y1, z1) = {(y∗, y∗) | y∗ ∈ SY ∗ , y∗(y1 + z1 − w) = ‖y1 + z1 − w‖}.

Consequently, we have from (5.24) that

(0,0,0) ∈ {0} × {(y∗, y∗) | y∗ ∈ SY ∗
}

+ bBX∗ × {0} × {0} + {0} × bBX∗ × {0} + {0} × {0} × bBY ∗

+ N̂(A1 ∩ A2 ∩ A3, (x2, y2, z2)) + γ (BX∗ × BY ∗ × BY ∗)

= {0} × {(y∗, y∗) | y∗ ∈ SY ∗
}

+ N̂(A1 ∩ A2 ∩ A3, (x2, y2, z2)) + (b + γ ) (BX∗ × BY ∗ × BY ∗).
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Now, use the alliedness of A1, A2, A3 at (x, y, z) to get that

N̂(A1 ∩ A2 ∩ A3, (x2, y2, z2)) ⊆ N̂(A1, (x3, y3, z3)) + N̂(A2, (x4, y4, z4))

+ N̂(A3, (x5, y5, z5)) + γ (BX∗ × BY ∗ × BY ∗),

where

(x3, y3, z3) ∈ [B(x2, γ ) × B(y2, γ ) × B(z2, γ )] ∩ A1

⊆ [B(xb,2γ ) × B(yb,2γ ) × B(zb,2γ )
]∩ A1

⊆ {[B(x, r) × B(y, r)
]∩ GrF

}× Y,

(x4, y4, z4) ∈ [B(x2, γ ) × B(y2, γ ) × B(z2, γ )] ∩ A2 (5.25)

⊆ X × {[B(y, r) × B(z, r)
]∩ GrG

}
,

(x5, y5, z5) ∈ [B(x2, γ ) × B(y2, γ ) × B(z2, γ )] ∩ A3

⊆ [B(x, r) ∩ Ω
]× Y × Y.

Hence,

(0,0,0) ∈ {0} × {(y∗, y∗) | y∗ ∈ SY ∗
}+ N̂(A1, (x3, y3, z3))

+ N̂(A2, (x4, y4, z4)) + N̂(A3, (x5, y5, z5)) + (b + 2γ ) (BX∗ × BY ∗ × BY ∗).

In conclusion, there exist

y∗
0 ∈ SY ∗ ,

(x∗
3 , y∗

3 ,0) ∈ N̂(A1, (x3, y3, z3)) ⇔ x∗
3 ∈ D̂∗F(x3, y3)(−y∗

3 ),

(0, y∗
4 , z∗

4) ∈ N̂(A2, (x4, y4, z4)) ⇔ y∗
4 ∈ D̂∗G(y4, z4)(−z∗

4),

(x∗
5 ,0,0) ∈ N̂(A3, (x5, y5, z5)) ⇔ x∗

5 ∈ N̂(Ω,x5)

(x∗
6 , y∗

6 , z∗
6) ∈ BX∗ × BY ∗ × BY ∗

such that

x∗
3 + x∗

5 + (b + 2γ )x∗
6 = 0,

y∗
0 + y∗

3 + y∗
4 + (b + 2γ )y∗

6 = 0,

y∗
0 + z∗

4 + (b + 2γ ) z∗
6 = 0.

Observe that
∥∥y∗

0 + (b + 2γ )z∗
6

∥∥≥ ∥∥y∗
0

∥∥− (b + 2γ )
∥∥z∗

6

∥∥≥ 1 − (b + 2γ ) > 0,

hence by denoting

v∗ := y∗
0 + (b + 2γ )z∗

6,

z∗ := ∥∥v∗∥∥−1
v∗,
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y∗ := ∥∥v∗∥∥−1
y∗

4 ,

t∗ := ∥∥v∗∥∥−1
(b + 2γ )

(
y∗

6 − z∗
6

)
,

x∗ := ∥∥v∗∥∥−1
x∗

3 ,

u∗ := ∥∥v∗∥∥−1
x∗

5 ,

we have

z∗ ∈ SY ∗ ,

x∗ ∈ D̂∗F(x3, y3)
(
z∗ + y∗ + t∗

)

y∗ ∈ D̂∗G(y4, z4)
(
z∗) ,

u∗ ∈ N̂ (Ω,x5) ,

∥∥t∗
∥∥≤ (b + 2γ )

1 − (b + 2γ )

∥∥y∗
6 − z∗

6

∥∥< 2c.

Using now (5.25) and the assumption (5.18), we obtain
∥∥∥−∥∥v∗∥∥−1

(b + 2γ )x∗
6

∥∥∥= ∥∥x∗ + u∗∥∥≥ c
∥∥z∗ + t∗

∥∥

= c

∥∥∥
∥∥v∗∥∥−1 (

v∗ + (b + 2γ )
(
y∗

6 − z∗
6

))∥∥∥ ,

b + ε > b + 2γ ≥ ∥∥−(b + 2γ )x∗
6

∥∥≥ c
∥∥v∗ + (b + 2γ )

(
y∗

6 − z∗
6

)∥∥

≥ c (1 − (b + 2γ )) > c (1 − (b + ε)) ,

in contradiction with (5.20). □

Another interesting aspect is that the set-valued map R defined by (5.17), via reduction
given by Remark 3.8, has a form very close to the sum of F , K and ΔΩ. More precisely,
given F,K : X ⇒ Y , without supposing K to be cone-valued, if one constructs the set-
valued maps F : X ⇒ X × Y and Q : X × Y ⇒ X × Y by relations (3.10) and (3.11), then
the associated R : X ⇒X × Y by (5.17) is

R (x) = X × (F + K + ΔΩ) (x) , for all x ∈ X. (5.26)

In this way, Theorem 5.8 gives yet another way to obtain sufficient conditions for the linear
openness of the sum.

Corollary 5.9 Let X, Y be Asplund spaces, Ω ⊆ X be a closed set, F : X ⇒ Y,K : X ⇒ Y

be closed-graph set-valued maps, and (x, y, z) ∈ X × Y × Y such that x ∈ Ω, (x, y) ∈ GrF
and (x, z) ∈ GrK . Suppose that the sets D1, D2, D3 given by (5.7) are allied at (x, y, z,0),
and there exist c, r > 0 such that for every (x1, y1) ∈ GrF ∩ [B(x, r) × B(y, r)], (x2, y2) ∈
GrK ∩ [B(x, r) × B(y, r)], x3 ∈ Ω ∩ B(x, r) and every z∗ ∈ SY ∗ , (t∗, v∗) ∈ 2cBX∗×Y ∗ , x∗

1 ∈
D̂∗F(x1, y1)(z

∗ + v∗), x∗
2 ∈ D̂∗K(x2, y2)(z

∗), x∗
3 ∈ N̂ (Ω,x3)

c
∥∥(t∗, z∗ + v∗)∥∥≤ ∥∥x∗

1 + x∗
2 + x∗

3 + t∗
∥∥ .

Then for every a ∈ (0, c), H given by (5.9) is a-open at (x, y + z).
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Proof. First of all, observe that the sets A1, A2, A3 given by (5.14), corresponding to F ,
Q and Ω are

B1 := {(x,u, v,p, q) ∈ X × (X × Y )2 | u = x, y ∈ F(x)}
B2 := {(x,u, v,p, q) ∈ X × (X × Y )2 | q ∈ K(u)} (5.27)

B3 := {(x,u, v,p, q) ∈ X × (X × Y )2 | x ∈ Ω}.

Their alliedness means that for arbitrary (xin, uin, vin,pin, qin)
Bi−→ (x, x, y, z,0) and

(
x∗

in, u
∗
in, v

∗
in,p

∗
in, q

∗
in

) ∈ N̂ (Bi, (xin, uin, vin,pin, qin)) , i = 1,2,3

such that

(x∗
1n + x∗

2n + x∗
3n, u

∗
1n + u∗

2n + u∗
3n, v

∗
1n + v∗

2n + v∗
3n,p

∗
1n + p∗

2n + p∗
3n, q

∗
1n + q∗

2n + q∗
3n)

→ (0,0,0,0,0) ,

we have
(
x∗

in, u
∗
in, v

∗
in,p

∗
in, q

∗
in

)→ (0,0,0,0,0), i = 1,2,3.
According to Lemma 4.9 and usual calculus rules, one has that p∗

1n = 0, q∗
1n = 0, x∗

2n = 0,
v∗

2n = 0, p∗
2n = 0, u∗

3n = 0, v∗
3n = 0, p∗

3n = 0, q∗
3n = 0, and x∗

1n + u∗
1n ∈ D̂∗F(x1n, y1n)(−v∗

1n),
u∗

2n ∈ D̂∗K(u2n, q2n)(−q∗
2n), x∗

3n ∈ N̂ (Ω,x3n). So, the alliedness of B1, B2, B3 reduces to

(x∗
1n + x∗

3n, u
∗
1n + u∗

2n) → (0,0) ⇒ x∗
1n, x

∗
3n, u

∗
1n, u

∗
2n → 0.

Under the assumption that the sets D1, D2, D3 given by (5.7) are allied at (x, y, z,0), by
denoting x∗

1n := x∗
1n + u∗

1n, x∗
2n := u∗

2n, x∗
3n := x∗

3n, since

x∗
1n + x∗

2n + x∗
3n = x∗

1n + u∗
1n + u∗

2n + x∗
3n → 0,

it follows that x∗
1n +u∗

1n → 0, u∗
2n → 0, x∗

3n → 0. Using also u∗
1n +u∗

2n → 0, we have u∗
1n → 0

and x∗
1n → 0.

The sufficient conditions from Theorem 5.8, adapted for F and Q are: there ex-
ist c, r > 0 such that for every (x1, x1, y1) ∈ GrF ∩ [B(x, r) × B(x, r) × B(y, r)],
(u2, v2, x2, y2) ∈ GrQ ∩ [B(x, r) × B(y, r) × B(x, r) × B(y, r)], x3 ∈ Ω ∩ B(x, r) and
every (u∗, z∗) ∈ SX∗×Y ∗ , (t∗, v∗) ∈ 2cBX∗×Y ∗ ,

(
x∗

2 , y∗
2

) ∈ D̂∗Q(u2, v2, x2, y2)(u
∗, z∗), x∗

1 ∈
D̂∗F(x1, x1, y1)((u

∗, z∗) + (x∗
2 , y∗

2

)+ (t∗, v∗)), x∗
3 ∈ N̂ (Ω,x3)

c
∥∥(u∗, z∗)+ (t∗, v∗)∥∥≤ ∥∥x∗

1 + x∗
3

∥∥ .

Using again Lemma 4.9, and also noting that u∗ = 0, y∗
2 = 0, this reduces to: there ex-

ist c, r > 0 such that for every (x1, y1) ∈ GrF ∩ [B(x, r) × B(y, r)], (u2, y2) ∈ GrK ∩
[B(x, r) × B(y, r)], x3 ∈ Ω ∩ B(x, r) and every z∗ ∈ SY ∗ , (t∗, v∗) ∈ 2cBX∗×Y ∗ , x∗

2 ∈
D̂∗K(u2, y2)(z

∗), x∗
1 − x∗

2 − t∗ ∈ D̂∗F(x1, y1)(z
∗ + v∗), x∗

3 ∈ N̂ (Ω,x3)

c
∥∥(t∗, z∗ + v∗)∥∥≤ ∥∥x∗

1 + x∗
3

∥∥ .

The obtained form is equivalent to the assumption, hence by Theorem 5.8, the set-valued
map R given by (5.26) is a-open at (x, y + z), which is equivalent to the conclusion. □

Remark 5.10 Observe that the sufficient conditions of Corollary 5.9 are slightly different
than those from Corollary 5.4.
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6 Optimality Conditions Using the Incompatibility
Openness-Nondomination

6.1 First Strategy

The first method is to apply the incompatibility between openness and nondomination, in
both cases, and then to apply Corollary 5.4 for type I and Theorem 5.8 for type II.

6.1.1 Nondominated Points of Type I

The next result asserts the incompatibility between openness of a sum of set-valued maps
and nondomination of type I (Definition 3.2 (I)). Some results of this type are given in
[9, 11], the novelty here being the fact that the third set-valued map is also involved.

Lemma 6.1 Suppose that exists a neighborhood U of x such that
⋂

x∈(Ω∩U)∩DomF

(K(x)\
(−K (x))) �= ∅. If (x, y) is a local nondominated point of type I for F with respect to K

on Ω, then the set-valued map F + K + ΔΩ is not open at (x, y).

Proof We suppose that for every x ∈ Ω ∩ U ,

(F (x) − y) ∩ (−K(x)) ⊆ K (x) .

This is equivalent to the fact that for every x ∈ U ,

(F (x) + K(x) + ΔΩ (x) − y) ∩ (−K(x)) ⊆ K (x) .

Suppose, by contradiction, that F + K + ΔΩ is open at (x, y). Then, for the neighbor-
hood U chosen before, there is an open set V such that y ∈ V ⊆ (F +K +ΔΩ)(U). Choose
y ∈ V . Then there is u ∈ U such that y ∈ (F + K + ΔΩ) (u), hence u ∈ Ω and u ∈ DomF ,
otherwise the right-hand side set would be empty, and

y − y ∈ (F (u) + K(u) + ΔΩ (u) − y) ⊆ K (u) ∪ (Y \ −K(u))

⊆ K (u) ∪
⎛

⎝Y \
⋂

x∈(Ω∩U)∩DomF

− K(x)

⎞

⎠ .

But this means that V − y ⊆ K (u) ∪
⎛

⎝Y \
⋂

x∈(Ω∩U)∩DomF

− K(x)

⎞

⎠, and since the left-

hand side set is absorbing, and right-hand side set is a cone, we deduce that

Y = K (u) ∪
⎛

⎝Y \
⋂

x∈(Ω∩U)∩DomF

− K(x)

⎞

⎠ ,

which implies
⋂

x∈(Ω∩U)∩DomF

− K(x) ⊆ K (u). Take k ∈
⋂

x∈(Ω∩U)∩DomF

(K(x) \ (−K (x))).

Then −k ∈
⋂

x∈(Ω∩U)∩DomF

− K(x) and −k /∈ K (u), and this is a contradiction. □



9 Page 28 of 36 M. Durea et al.

The next, novel result is crucial in the sequel, showing that the alliedness property re-
quired in the openness theorem (that is, Theorem 5.2) is satisfied under the assumptions of
Theorem 4.2.

Lemma 6.2 Let X, Y be Asplund spaces, Ω ⊆ X be a closed set, F,K : X ⇒ Y be closed-
graph set-valued maps, and (x, y,0) ∈ X × Y × Y such that x ∈ Ω, (x, y) ∈ GrF , (x,0) ∈
GrK . Moreover, suppose that assumptions (ii) and (iii) in Theorem 4.2 hold. Then the sets
D1, D2, D3 given by (5.7) are allied at (x, y,0,0).

Proof Consider arbitrary (xin, yin, zin,win)
Di−→ (x, y,0,0) and

(
x∗

in, y
∗
in, z

∗
in,w

∗
in

) ∈ N̂ (Di, (xin, yin, zin,win)) , i = 1,2,3

such that

(x∗
1n + x∗

2n + x∗
3n, y

∗
1n + y∗

2n + y∗
3n, z

∗
1n + z∗

2n + z∗
3n,w

∗
1n + w∗

2n + w∗
3n) → (0,0,0,0) . (6.1)

Remark that
(
x∗

1n, y
∗
1n, z

∗
1n,w

∗
1n

) ∈ N̂ (D1, (x1n, y1n, z1n,w1n))

⇔ x∗
1n ∈ D̂∗F(x1n, y1n)(−y∗

1n), z
∗
1n = w∗

1n = 0,

(
x∗

2n, y
∗
2n, z

∗
2n,w

∗
2n

) ∈ N̂ (D2, (x2n, y2n, z2n,w2n))

⇔ x∗
2n ∈ D̂∗K(x2n, z2n)(−z∗

2n), y
∗
2n = w∗

2n = 0,

(
x∗

3n, y
∗
3n, z

∗
3n,w

∗
3n

) ∈ N̂ (D3, (x3n, y3n, z3n,w3n))

⇔ x∗
3n ∈ N̂ (Ω,x3n) , y∗

3n = z∗
3n = 0,w∗

3n ∈ Y ∗.

(6.2)

By (6.1) and (6.2), it follows immediately that y∗
in → 0, z∗

in → 0, w∗
in → 0, i = 1,2,3.

Using condition (4.1) and the fact that K is SNC at (x,0), we know that K has the
Aubin property around (x,0), hence, since z∗

2n → 0, we deduce that x∗
2n → 0. So, we know

that x∗
1n + x∗

3n → 0, and it remains to prove that x∗
1n → 0 and x∗

3n → 0.
If one of the sequences

(
x∗

1n

)
,
(
x∗

3n

)
is bounded, since x∗

1n + x∗
3n → 0, we obtain that the

other one is bounded, and because X is Asplund,
(
x∗

1n

)
,
(
x∗

3n

)
admit some subsequences,

denoted the same, weak∗ convergent to x∗
1 , x∗

3 , respectively. We obtain x∗
1 ∈ D∗

MF(x, y)(0),
x∗

3 ∈ N (Ω,x), x∗
1 + x∗

3 = 0, hence by (4.2), x∗
1 = x∗

3 = 0. Now, if Ω is SNC at x, from

x∗
3n

∗→ 0 we get x∗
3n → 0, so x∗

1n → 0, and similarly, if F is PSNC at (x, y), from x∗
1n

∗→ 0
and y∗

1n → 0 we get x∗
1n → 0, hence also x∗

3n → 0.
Suppose, by contradiction, that both sequences

(
x∗

1n

)
,
(
x∗

3n

)
are unbounded, and hence,

on a subsequence denote the same, rn := max
{∥∥x∗

1n

∥∥ ,
∥∥x∗

3n

∥∥}→ ∞. Denoting

u∗
1n := x∗

1n

rn

, u∗
3n := x∗

3n

rn

, v∗
1n := y∗

1n

rn

,

the sequences
(
u∗

1n

)
,
(
u∗

3n

)
are bounded, v∗

1n → 0, u∗
1n + u∗

3n → 0, and u∗
1n ∈ D̂∗F(x1n,

y1n)(v
∗
1n), u∗

3n ∈ N̂ (Ω,x3n), so this situation reduces to the case previously analyzed, hence
u∗

1n → 0, u∗
3n → 0, contradicting the fact that max

{∥∥u∗
1n

∥∥ ,
∥∥u∗

3n

∥∥}= 1. □

Remark 6.3 The end of the proof is similar to the proof of [32, Proposition 16].
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We are ready to provide a third proof for Theorem 4.2. We remark that, instead of allied-
ness, one may use, at least in some instances, some weaker variants of relations between the
involved sets, as done, for instance, in [32], where the concept of synergetic collection of
sets is used. We leave the details for the interested reader.

Third proof of Theorem 4.2 By Lemma 6.1, we know that F + K + ΔΩ is not open at
(x, y), so it is not linearly open at (x, y). By Lemma 6.2, in the assumptions of Theo-
rem 4.2, we have that the sets given by (5.7), corresponding to the three set-valued maps
F1 := F , F2 := K , F3 := ΔΩ, are allied at (x, y,0,0). Hence, by Corollary 5.4, relation
(5.8) cannot hold for the set-valued maps mentioned before. Hence, for any n ∈ N \ {0}, we

find (x1n, y1n)
GrF→ (x, y), (x2n, y2n)

GrK→ (x,0), x3n

Ω→ x, and also w∗
n ∈ SY ∗ , y∗

1n, y
∗
2n, y∗

3n ∈
n−1BY ∗ , x∗

1n ∈ D̂∗F(x1n, y1n)(w
∗
n − y∗

1n), x∗
2n ∈ D̂∗K(x2n, y2n)(w

∗
n − y∗

2n), x∗
3n ∈ N̂ (Ω,x3n)

such that

x∗
1n + x∗

2n + x∗
3n → 0.

As above, using the assumptions made, we have that K has the Aubin property around
(x,0), and since (w∗

n − y∗
2n) is bounded, we deduce that (x∗

2n) is bounded.
By contradiction, suppose that both sequences (x∗

1n), (x∗
3n) are unbounded. Then, for

every n, there exists kn ∈N sufficiently large such that

n < min
{∥∥x∗

1kn

∥∥ ,
∥∥x∗

3kn

∥∥} . (6.3)

For simplicity, we denote the sequences (x∗
1kn

), (x∗
3kn

) by (x∗
1n), (x∗

3n), respectively. We ob-
serve now that

n−1
(
w∗

n − y∗
1n

)→ 0, n−1
(
w∗

n − y∗
2n

)→ 0, n−1
(
w∗

n − y∗
3n

)→ 0,

and using the positive homogeneity of the Fréchet coderivatives, we have that

n−1x∗
1n ∈ D̂∗F(x1n, y1n)

(
n−1

(
w∗

n − y∗
1n

))
,

n−1x∗
2n ∈ D̂∗K(x2n, y2n)

(
n−1

(
w∗

n − y∗
2n

))
,

n−1x∗
3n ∈ D̂∗ΔΩ(x3n,0)

(
n−1

(
w∗

n − y∗
3n

))
,

and also

n−1x∗
1n + n−1x∗

2n + n−1x∗
3n → 0.

By the alliedness of the sets (5.7), we get n−1x∗
1n → 0, n−1x∗

2n → 0 and n−1x∗
3n → 0, and

this contradicts relation (6.3).
As a consequence, at least one sequence from (x∗

1n), (x∗
3n) is bounded, and since (x∗

2n) is
bounded and x∗

1n + x∗
2n + x∗

3n → 0, we obtain that all three sequences are bounded.
Because X, Y are Asplund spaces, we deduce that (x∗

1n), (x∗
2n), (x∗

3n), (w∗
n − y∗

1n), (w∗
n −

y∗
2n) are weak∗ convergent to some elements x∗

1 , x∗
2 , x∗

3 , y∗
1 , y∗

2 , respectively. Because (y∗
1n),

(y∗
2n) strongly converge to 0, it follows y∗

1 = y∗
2 = y∗. We get

x∗
1 ∈ D∗F (x, y)

(
y∗) , x∗

2 ∈ D∗K (x, y)
(
y∗) , x∗

3 ∈ N (Ω,x) ,

x∗
1 + x∗

2 + x∗
3 = 0,

so the conclusion of Theorem 4.2 follows if we show that y∗ ∈ K (x)+ \ {0}.
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The fact that y∗ ∈ K(x)+ follows, as above, from Lemma 4.1.
It remains to prove that y∗ �= 0. Suppose, by contradiction, that y∗ = 0. By (4.1) it follows

x∗
2 = 0, and, repeating the reasoning from the proof of Theorem 4.2,

(
x∗

2n,w
∗
n − y∗

2n

)→
(0,0), which means that w∗

n → 0, but this is impossible since
∥∥w∗

n

∥∥= 1 for any n. □

6.1.2 Nondominated Points of Type II

Now, we prove also an incompatibility result in the framework of nondominated points of
type II, for a set-valued map of the form given by (5.17).

Lemma 6.4 Suppose that (x, y) ∈ GrF is a local nondominated point of type II for F with
respect to Q on Ω, and there exists a neighborhood V of x such that

⋂

y∈F(V ∩Ω)

(Q(y)\
(−Q(y))) �= ∅. Then the set-valued map R : X ⇒ Y given by (6.4) for G := Q

R (x) =
{ {y + z | y ∈ F (x) , z ∈ Q(y)} if x ∈ Ω

∅ otherwise.
(6.4)

is not open at (x, y).

Proof We only give a sketch of the proof. Suppose, by contradiction, that for ε > 0 such that⋂

y∈F(B(x,ε)∩Ω)

(Q(y) \ (−Q(y))) �= ∅ and (3.4) holds for U := B (x, ε), there exists δ > 0

such that B (y, δ) ⊆ R (B (x, ε)). Then for every v ∈ B (y, δ), there exist x ∈ B (x, ε) ∩ Ω,
y ∈ F (x) such that

v ∈ y + Q(y) . (6.5)

We obtain that

v − y ∈ Q(y) ∪ (Y \ (−Q(y))) ⊆ Q(y) ∪
⎛

⎝Y \
⋂

t∈F(B(x,ε)∩Ω)

− Q(t)

⎞

⎠ . (6.6)

Indeed,

v − y = (v − y) + (y − y) .

We know that v − y ∈ Q(y). If y − y ∈ Q(y), then v − y ∈ Q(y). Consider now that
y − y /∈ Q(y), i.e., y − y /∈ −Q(y). In this case, we prove that v − y ∈ Y \ (−Q(y)). If
it would not be the case, then y − v ∈ Q(y), and since v − y ∈ Q(y), then y − y ∈ Q(y),
hence y − y ∈ Q(y) \ (−Q(y)), contradicting the nondomination property (3.4). From this
point, we obtain, similarly to the proof of Lemma 6.1, that

⋂

t∈F(B(x,ε)∩Ω)

−Q(t) ⊆ Q(y), and

the contradiction follows. □

Similar to Lemma 6.2, one proves that assumptions (ii) and (iii) in Theorem 4.6 imply
the alliedness of the sets E1, E2, E3 given by (5.13), which in turn by Proposition 5.5 is
equivalent to the alliedness of the sets A1, A2, A3 defined by (5.14).
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Lemma 6.5 Let X, Y be Asplund spaces, Ω ⊆ X be a closed set, F : X ⇒ Y,Q : Y ⇒ Y be
closed-graph set-valued maps, and (x, y,0) ∈ X × Y × Y such that x ∈ Ω, (x, y) ∈ GrF ,
(y,0) ∈ GrQ. Moreover, assume that (ii) and (iii) in Theorem 4.6 hold. Then the sets A1,
A2, A3 defined by (5.14) are allied at (x, y,0).

Proof Take (x1n, y1n, z1n)
GrF×Y−→ (x, y,0), (x2n, y2n, z2n)

X×GrQ−→ (x, y,0), (x3n, y3n ,

z3n)
Ω×Y×Y−→ (x, y,0),

(
x∗

in, y
∗
in, z

∗
in

) ∈ N̂ (Ai, (xin, yin, zin)) for i = 1,2,3 such that
(
x∗

1n + x∗
2n + x∗

3n, y
∗
1n + y∗

2n + y∗
3n, z

∗
1n + z∗

2n + z∗
3n

)→ (0,0,0) . (6.7)

This means that

(x1n, y1n)
GrF−→ (x, y), (y2n, z2n)

GrQ−→ (y,0), x3n

Ω−→ x

z∗
1n = 0, x∗

2n = 0, y∗
3n = z∗

3n = 0,

x∗
1n ∈ D̂∗F(xn, y1n)(−y∗

1n), y
∗
2n ∈ D̂∗Q(y2n, zn)(−z∗

2n), x
∗
3n ∈ N̂(Ω,x3n),

hence from (6.7) we have that z∗
2n → 0. Moreover, since Q has Aubin property around (y,0),

using [33, Theorem 1.43] we get that for any α > lipQ(y,0),
∥∥y∗

2n

∥∥≤ α
∥∥−z∗

2n

∥∥ ,

hence y∗
2n → 0, and since y∗

1n + y∗
2n → 0, also y∗

1n → 0.
As in the end of the proof of Lemma 6.2, one uses assumptions (iii) and (iv) from The-

orem 4.6 to obtain that at least one of the sequences (x∗
1n), (x∗

3n) is bounded, and to deduce
the conclusion. □

The next theorem gives another variant of necessary optimality conditions for nondomi-
nated points of second type.

Second proof of Theorem 4.6 Using Lemma 6.5, we know that the sets A1, A2, A3 defined by
(5.14) are allied at (x, y,0). By Lemma 6.4, R is not open at (x, y), hence it is not linearly
open at (x, y). It follows that the final assumption from Theorem 5.8 is not satisfied, which
means that for any n ∈ N\ {0}, we can find (x1n, y1n) ∈ GrF ∩ [B(x,n−1) × B(y,n−1)],
(y2n, z2n) ∈ GrQ ∩ [B(y,n−1) × B(z,n−1)], x3n ∈ Ω ∩ B(x,n−1), z∗

n ∈ SY ∗ , t∗n ∈ 2n−1BY ∗ ,
y∗

n ∈ D̂∗Q(y2n, z2n)(z
∗
n), x∗

n ∈ D̂∗F(x1n, y1n)(z
∗
n + y∗

n + t∗n ), u∗
n ∈ N̂(Ω,x3n) such that

n−1
∥∥z∗

n + t∗n
∥∥>

∥∥x∗
n + u∗

n

∥∥ .

We get

(x1n, y1n)
GrF−→ (x, y), (y2n, z2n)

GrQ−→ (y,0), x3n

Ω−→ x

t∗n → 0, x∗
n + u∗

n → 0.

By the Aubin property of Q, it follows that
(
y∗

n

)
is bounded. Since Y is an Asplund space,

the sequences
(
y∗

n

)
, (z∗

n) are weakly∗ convergent (on a common subsequence, if necessary)
towards y∗, z∗ ∈ Y ∗, respectively.

As in the third proof of Theorem 4.2, using the alliedness of the sets A1, A2, A3, we
obtain that the sequences (x∗

n), (u∗
n) are also bounded, so we may suppose that they weakly∗

converge (on subsequences, denoted the same) to some x∗, u∗, respectively.
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This means that

x∗ ∈ D∗F(x, y)(z∗ + y∗),

y∗ ∈ D∗Q(y,0)(z∗),

u∗ ∈ N (Ω,x) ,

and by the uniqueness of the limit, x∗ + u∗ = 0, hence (4.15) holds. By Lemma 4.1, z∗ ∈
Q(y)+.

If we suppose, by contradiction, that z∗ = 0, we obtain from (4.13) that y∗ = 0, and
because Q is SNC at (y,0), it follows that z∗

n → 0, which is impossible because
(
z∗
n

) ⊂
SY ∗ . □

Remark 6.6 If one replaces the assumptions (ii)-(iv) from Theorem 4.6 by the following
ones:

(ii’) Q has the Aubin property around (y,0) with modulus lipQ(y,0) < 1;
(iii’) either Ω is SNC at x and F−1 is PSNC at (y, x), or F is SNC at (x, y);
(iv’) the following assumption is satisfied:

D∗F(x, y)(0) ∩ (−N (Ω,x)) = {0} , (6.8)

the conclusion of the theorem becomes as follows:
There exist z∗ ∈ Q(y)+ and y∗ ∈ D∗Q(y,0) (z∗) ∩ BY ∗ such that z∗ + y∗ �= 0 and (4.15)

holds.
Indeed, in this case, by assumption (ii’), we can find α ∈ (lipQ(y,0),1). In the notations

above, we get, using [33, Theorem 1.43], that
∥∥y∗

n

∥∥ ≤ α. Using the fact that the norm is

weakly∗ lower semicontinuous and
∥∥y∗

n

∥∥≤ α,y∗
n

∗→ y∗, it follows that ‖y∗‖ ≤ α < 1.
If we suppose, by contradiction, that z∗ + y∗ = 0, we obtain

x∗ = −u∗ ∈ D∗F(x, y)(0) ∩ (−N (Ω,x)) = {0} ,

hence x∗
n

∗→ 0, u∗
n

∗→ 0. Using the SNC property of Ω, it follows that
(
u∗

n

)
strongly converges

to 0, and because x∗
n + u∗

n → 0,
(
x∗

n

)
converges to 0. But this implies that y∗

n + z∗
n + t∗n

∗→ 0
and x∗

n → 0, and by the PSNC property of F−1, we get that y∗
n +z∗

n + t∗n → 0, so y∗
n +z∗

n → 0.
But

∥∥y∗
n + z∗

n

∥∥≥ ∥∥z∗
n

∥∥−∥∥y∗
n

∥∥≥ 1−α > 0, contradiction. The case when F is SNC at (x, y)

is similar.

In the unconstrained case, we obtain the following corollary, which is slightly different
from Corollary 4.11.

Corollary 6.7 Let X, Y be Asplund spaces, F : X ⇒ Y,Q : Y ⇒ Y be closed-graph set-
valued maps, and (x, y) ∈ X×Y be a local nondominated point of type II for F with respect
to Q. Moreover, assume that:

(i) there is a neighborhood U of x such that
⋂

y∈F(U)

(Q(y) \ (−Q(y))) �= {0};
(ii) Q has the Aubin property around (y,0) with modulus lipQ(y,0) < 1;
(iii) F −1 is PSNC at (y, x).
Then there exist z∗ ∈ Q(y)+ and y∗ ∈ D∗Q(y,0) (z∗) ∩ BY ∗ such that z∗ + y∗ �= 0 and

0 ∈ D∗F (x, y)
(
z∗ + y∗) .
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6.2 Second Strategy

The second strategy is to use the reductions given by Remarks 3.7, 3.8, and then to use
Corollary 5.9 (for type I) and Theorem 5.6 (for type II).

6.2.1 Nondominated Points of Type I

Here, we firstly use the reduction of type I nondomination for F with respect to K on Ω to
the second type nondomination for F with respect to Q on Ω, and discover in another way
that the sum set-valued map F +K +ΔΩ is not open. Moreover, we show that the alternative
openness result given by Corollary 5.9 can be successfully used instead of Corollary 5.4.

Fourth proof of Theorem 4.2 Using the reduction given by F and Q, we know that (x, (x, y))

is a type II local nondominated point for F with respect to Q on Ω. Then, the corre-
sponding set-valued map R given by (5.26) is not open at (x, (x, y)), which is equiv-
alent to the fact that F + K + ΔΩ is not open at (x, y). So, it is not linearly open at
(x, y). Next, one can proceed as in the third proof of 4.2, using Corollary 5.4. Another
way, which we prove next, is to use Corollary 5.9. Indeed, since by Lemma 6.2 the sets
given by (5.7) are allied at (x, y,0,0), and F , K are closed-graph, Ω is closed, for any

n ∈ N \ {0}, we find (x1n, y1n)
GrF→ (x, y), (x2n, y2n)

GrK→ (x,0), x3n

Ω→ x, and also z∗
n ∈ SY ∗ ,(

t∗n , v∗
n

) ∈ 2n−1BX∗×Y ∗ and x∗
1n ∈ D̂∗F(x1n, y1n)(z

∗
n + v∗

n), x∗
2n ∈ D̂∗K(x2n, y2n)(z

∗
n), x∗

3n ∈
N̂ (Ω,x3n) such that

n−1
∥∥(t∗n , z∗

n + v∗
n

)∥∥>
∥∥x∗

1n + x∗
2n + x∗

3n + t∗n
∥∥ ,

hence x∗
1n + x∗

2n + x∗
3n → 0. The rest of the proof is almost the same as in the third proof of

Theorem 4.2. □

6.2.2 Nondominated Points of Type II

We use the set-valued maps F1, F2, F3 given by (5.10) for G := Q, and the fact that the
nondomination of type II for F with respect to Q on Ω implies the nondomination of type
I of F1 with respect to F2 on Ω × Y , as observed in Remark 3.7. We are able to provide a
third proof for Theorem 4.6.

Third proof of Theorem 4.6 Since (x, y) ∈ X×Y be a local nondominated point of type II for
F with respect to Q on Ω, we deduce that ((x, y) , y) is a local nondominated point of type I
for F1 with respect to F2 on Ω × Y (see relation (5.10), for G := Q). Using Lemma 6.1, we
see that the set-valued map F1 +F2 +ΔΩ×Y is not open at ((x, y) , y). Observe that F1 +F2 +
ΔΩ×Y coincides to the set-valued map H : X × Y ⇒ Y given by (5.11). Since the alliedness
of the sets A1, A2, A3 defined by (5.14) at (x, y,0) is given by Lemma 6.5, we deduce
that the condition (5.15) from Theorem 5.6 is not satisfied. Therefore, for any n ∈ N\ {0},
there exists (x1n, y1n)

GrF→ (x, y), (y2n, z2n)
GrQ→ (y,0), x3n

Ω→ x, and also w∗
n ∈ SY ∗ , z∗

1n, z∗
2n ∈

n−1BY ∗ , y∗
1n ∈ Y ∗ and x∗

1n ∈ D̂∗F(x1n, y1n)(w
∗
n −y∗

1n −z∗
1n), y

∗
2n ∈ D̂∗Q(y2n, z2n)(w

∗
n −z∗

2n),
x∗

3n ∈ N̂(Ω,x3n) such that

x∗
1n + x∗

3n → 0 and y∗
1n + y∗

2n → 0.

We observe again that the conditions of Theorem 4.6 imply the Aubin property of Q around
(y,0), so the boundedness of

(
w∗

n − z∗
2n

)
implies the boundedness of

(
y∗

2n

)
, which in turn,
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since y∗
1n + y∗

2n → 0, show the boundedness of
(
y∗

1n

)
. As in the second proof of Theorem 4.6

in the previous section, we may deduce the boundedness of the sequences
(
x∗

1n

)
and

(
x∗

3n

)
.

The Asplund spaces assumption implies, as above, that (x∗
1n), (x∗

3n),
(
y∗

1n

)
,
(
y∗

2n

)
, (w∗

n −
y∗

1n − z∗
1n), (w∗

n − z∗
2n) are weak∗ convergent to some elements x∗

1 , x∗
3 , y∗

1 , y∗
2 , w∗

1 , w∗
2 ,

respectively, with w∗
1 + y∗

1 = w∗
2 . This shows that

x∗
1 ∈ D∗F(x,y)(w∗

2 − y∗
1 ), y∗

2 ∈ D∗Q(y,0)(w∗
2), x

∗
3 ∈ N(Ω,x),

x∗
1 + x∗

3 = 0, y∗
1 + y∗

2 = 0,

so (4.15) holds for z∗ := w∗
2 and y∗ := y∗

2 . Using the lower semicontinuity of Q, we get by
Lemma 4.1 that z∗ ∈ Q(y)+.

If we suppose, by contradiction, that z∗ = 0, we get, by assumption (4.13), that y∗ = 0.

By the SNC property of Q at (y,0), using (y2n, z2n)
GrQ→ (y,0), y∗

2n ∈ D̂∗Q(y2n, z2n)(w
∗
n −

z∗
2n),

(
y∗

2n,w
∗
n − z∗

2n

) ∗→ (0,0), we get w∗
n −z∗

2n → 0 and, since z∗
2n → 0, that w∗

n → 0, which
is impossible because

∥∥w∗
n

∥∥= 1 for any n. □

7 Conclusions

In this paper, we studied the relationships between solution concepts for vector problems
with respect to variable domination structures, that is, the situation where the solution con-
cepts are given with respect to set-valued maps K : X ⇒ Y (nondominated solutions of type
I), as well as Q : Y ⇒ Y (nondominated solutions of type II). Taking into account these
relationships, it is sufficient to derive optimality results for nondominated solutions of one
type, and to use these assertions for deriving corresponding results for solutions of the other
type.

Notice that the solution concepts studied in this paper follow the vector approach, for
which the image set is considered as a set of elements of the output space. However, the
solution concept of the set-valued optimization problem could also be considered by estab-
lishing a set less relation (see, e.g., [29]) between the sets of the output space. In order to
show optimality conditions for solutions based on the set approach, an appropriate calculus
needs to be developed. Another way is to use the method proposed in [25, 27] to employ
the relationships between solution concept based on the vector approach and the solution
concept given by a set less relation. With these relationships, we could derive necessary op-
timality conditions for solutions given by a set less relation from corresponding conditions
for solutions based on vector approach. In a forthcoming paper, we will derive necessary
optimality conditions for solutions of set optimization problems based on the set approach
from the results for solutions based on the vector approach shown in our paper. Also, for
further research, it would be interesting to derive Ekeland’s type variational principles for
nondominated solutions of type I and II, equivalent assertions like fixed point theorems of
Kirk-Caristi type and existence assertions in the sense of Takahashi employing this unifying
approach.

Moreover, it is of interest to derive solution procedures for generating nondominated
solutions of type I and II based on the necessary optimality conditions and the relationships
between the solution concepts developed in our paper.
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