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ABSTRACT
Domain engineering in ferroelectric thin films is crucial for next-generation microelectronic and photonic technologies. Here, a method is
demonstrated to precisely control domain configurations in BaTiO3 thin films through low-energy He ion implantation. The approach trans-
forms a mixed ferroelectric domain state with significant in-plane polarization into a uniform out-of-plane tetragonal phase by selectively
modifying the strain state in the film’s top region. This structural transition significantly improves domain homogeneity and reduces polar-
ization imprint, leading to symmetric ferroelectric switching characteristics. The demonstrated ability to manipulate ferroelectric domains
post-growth enables tailored functional properties without compromising the coherently strained bottom interface. The method’s com-
patibility with semiconductor processing and ability to selectively modify specific regions make it particularly promising for practical
implementation in integrated devices. This work establishes a versatile approach for strain-mediated domain engineering that could be
extended to a wide range of ferroelectric systems, providing new opportunities for memory, sensing, and photonic applications where precise
control of polarization states is essential.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0253298

INTRODUCTION

Controlling domain configurations in ferroelectric thin films is
one of the most crucial avenues to unlock functionalities in ferroic
heterostructures. For example, domain engineering has been shown
to be of vital importance in ferroelectric memristors, domain-wall
memories, and nanocircuitry.1 New ferroelectric nanoelectronics
often rely on the fine-tuning and manipulation of domain walls2 or
the creation of complex polar topologies,3 both requiring the control
of depolarization fields and lattice anisotropy.

Highly efficient domain engineering thus requires a material
system with a high sensitivity toward competing polar and struc-
tural phases. A prototype ferroelectric with a multitude of potential

domain states is perovskite BaTiO3 (BTO). Bulk BTO is a rhom-
bohedral ferroelectric in its ground state and crosses a series of
orthorhombic and tetragonal phases until it reaches cubic symme-
try above the Curie temperature of about 110 ○C.4 The extraor-
dinary properties of BTO have made it a cornerstone material
for numerous technological applications, from high-density capac-
itors to piezoelectric actuators. Recently, BTO’s strong Pockels
effect5 has drawn significant interest for next-generation electro-
optic devices in quantum photonic integrated circuits.6 While
conventional approaches using BTO have demonstrated impres-
sive modulation capabilities for classical optical signals,7 emerging
quantum information applications demand precise control over
domain configurations to maximize electro-optic coefficients while
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minimizing optical losses from domain walls and structural inhomo-
geneities.8 The ability to deterministically engineer BTO’s ferroelec-
tric domain structure could enable high-speed modulators operating
at GHz frequencies, essential for quantum information process-
ing, while maintaining compatibility with existing semiconductor
fabrication processes. However, achieving such control remains
challenging using traditional strain engineering approaches, which
are limited by available substrate materials and critical thickness
constraints.

An efficient way to engineer domain structures in BTO thin
films has been epitaxial strain. Early work has shown that biaxial
in-plane strain of only about one percent can shift the ferroelec-
tric transition temperature upward by several hundred Kelvin.9
Similarly, domain configurations are effectively altered under biax-
ial strain. A complex balance of mostly in-plane oriented mon-
oclinic domains in the form of a regular zigzag lamella pattern
was observed for a low-strain film grown on NdScO3 substrates,10

while larger compressive strain as grown on DyScO3 or GdScO3
substrates leads to stabilization of the tetragonal phase with pre-
dominantly out-of-plane oriented domains.11 These experimental
observations have been in good agreement with phase field simu-
lations based on phenomenological Landau–Ginzburg–Devonshire
theory.12,13

A drawback of epitaxial strain is the need for suitable sin-
gle crystal substrates to achieve desired strain states. In addi-
tion, strain relaxation occurs above a critical film thickness, which
may permit the stabilization of the targeted strain. Alternative
approaches to induce lattice strain in a continuous and control-
lable way may allow access to new domain configurations that
are otherwise impossible to achieve by standard strain engineer-
ing. In our previous work, we have introduced the strain dop-
ing approach, where low-energy He ion implantation is used to
create a unit cell expansion in thin films.14,15 This expansion
may be caused by the ion incorporation into the lattice itself,
or through a secondary effect, such as the creation of oxygen
vacancies. In epitaxial thin films, the volume expansion is typ-
ically equivalent to a uniaxial out-of-plane expansion, since the
in-plane lattice remains epitaxially locked to the substrate. The out-
of-plane strain can then be continuously controllable via the ion
implantation dose and has been used to manipulate magnetic,16,17

dielectric,18,19 and transport properties20 across a range of oxide
films.

In this work, we apply strain doping to epitaxial BTO films. We
show that the uniaxial strain induced by ion implantation induces
a phase transition from a mixed domain to a purely out-of-plane
oriented tetragonal domain state. This transition is tantamount to
a ferroelectric polarization rotation from in-plane to out-of-plane.
We argue that, due to the universal character of strain doping, polar-
ization rotation can also successfully be induced in a wide range of
other ferroelectric or ferroelastic systems.

RESULTS

A BTO (80 nm)/LSMO (10 nm) film is deposited on a (110)
DyScO3 substrate, capped with 15 nm thick Au electrodes and sub-
sequently implanted with 5 keV He ions. No surface modification
could be seen compared to the as-grown film after the mechani-
cal removal of the protective Au layer. A schematic illustration of

the heterostructure is presented in Fig. 1(a). The dimensionless He
implantation profile, as estimated by a Monte Carlo simulation, is
included as a bar graph. The majority of the He ions are expected
to stop within the first half of the BTO layer. Figure 1(b) shows a
x-ray diffraction (XRD) reciprocal space map around the (103)pc
reflections of the as-grown heterostructure. While the LSMO layer
is coherently strained to the substrate, the BTO film shows some
degree of strain-relaxation. The pseudocubic lattice parameter of
the scandate (aDSO = 3.944 Å) provides a compressive lattice mis-
match of −1.2% to the a-parameter of the tetragonal titanate bulk
lattice structure (aBTO = 3.992 Å, cBTO = 4.036 Å).21–23 Previous work
has revealed that epitaxial BTO films tend to release misfit strain
throughout the film growth, leaving a bottom strained part and a
strain-relaxed top part.24 This behavior is reflected in our XRD mea-
surements. The zoomed-in reciprocal space map clearly reveals the
presence of a coherently strained film part, represented by a single
peak, and a fully relaxed film part, represented by an agglomera-
tion of three sub-peaks. From the intensity ratio of the two BTO
peaks, we estimate that the strained part is 20–35 nm thick. Hav-
ing a single uniform peak indicates that the bottom film part has a
tetragonal structure with a = 3.944 Å and c = 4.069 Å and is made
up of c-oriented ferroelectric domains. This tetragonal strained state
will be called the T-phase. The peak splitting of the top part is a
consequence of a symmetry change under strain-relaxation. A split-
ting into three peaks within the H0L plane can be explained by the
presence of MC-type monoclinic domains with polarization vectors
within the (100)pc and (010)pc plane. A detailed structural clarifica-
tion is difficult, since different domain configurations, such as mixed
rhombohedral/orthorhombic configurations, can lead to the same
XRD peak pattern. Throughout the remainder of the text, we will
refer to this strain-relaxed domain state as the R-phase, referring to
the rhombohedral strain-free bulk-like state. It should be noted that
the conclusions throughout this paper are not affected by this uncer-
tainty, since in all cases, the crystal symmetry is lower than that of the
T-phase and the ferroelectric polarization is rotated away from the
film normal.

Figure 1(c) shows the changes in XRD θ–2θ scans around
the pseudocubic 002 reflections with subsequent He ion implanta-
tion. A clear double peak behavior associated with the strained and
strain-relaxed film part is visible for the as-grown film. Upon ion
implantation, the relaxed film peak is shifting to lower 2θ angles
to unify with the strained film peak. The natural interpretation of
these data is that the top half of the BTO film, which is effectively
implanted with He ions, is strained and structurally adapting to the
bottom half of the film.

A clearer picture can be derived from the reciprocal space
maps of the heterostructure taken at various He implantation lev-
els, shown in Fig. 2. As illustrated schematically on the left, the
strained part of the as-grown film has a tetragonal structure with
out-of-plane polarization. The strain-relaxed R-phase part has an
average polarization that has a significant in-plane polarization com-
ponent. Under He implantation, the relaxed top part undergoes
significant changes. We find that the peak narrows and transforms
into a single peak, while the film expands along the c-axes. We inter-
pret this observation as a strain induced structural transition from
the R- to T-state. As illustrated on the right of Fig. 2, the lattice of
the whole film is elongated along out-of-plane and the polarization
is fully aligned along the film normal. He implantation effectively
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FIG. 1. (a) Schematic representation of the thin film heterostructure studied in this work and the calculated He ion profile. (b) A reciprocal space map around the (103)pc

reflection highlights partial strain relaxation throughout the BaTiO3 film. The zoomed-in image shows the presence of a strained and a relaxed film part. Crosses indicate
peak splitting due to structural domain formation. (c) θ–2θ scans around the (002)pc reflections of the BTO. The scans with varying He implantation levels are shifted
vertically for clarity.

FIG. 2. Series of reciprocal space maps around the (103)pc reflection of the BaTiO3 film with increasing ion implantation dose. The insets illustrate the positions and shapes
of the sub-peaks, with the light red circles reflecting the strain-relaxed top part and the dark red circle reflecting the strained bottom part of the film. The schemes on the left
and right illustrate the lattice distortions and Ti off-center displacements (blue arrows) of the as-grown and 15 × 1015 He/cm2 film, respectively.

transforms the inhomogeneous multi-domain film into a struc-
turally more homogeneous purely tetragonal film.

In order to gain additional insights into the symmetry changes
induced by He implantation, we have performed second harmonic
generation (SHG) measurements on a He implanted BTO het-
erostructure. Figure 3 shows polar plots of the measured s-polarized
(red) and p-polarized (blue) SHG intensity as a function of the
polarization angle φ. The measured data are fit to equations that
either reflect a purely tetragonal film or a mix of tetragonal and

rhombohedral domains. Detailed information on the experimental
setup and derivations of the fitting equations can be found in the
supplementary material. When a fully tetragonal crystal structure is
assumed for the as-grown film (top left graph), the data cannot be fit-
ted satisfactorily. Small but clear deviations can be seen, highlighted
by the blue and red arrows. However, a much better fitting result
is achieved if the equations for a tetragonal/rhombohedral phase
coexistence are used (bottom left). This result is in agreement with
our XRD data, which indicates that the as-grown film is not fully
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FIG. 3. SHG measurements: Polar plots of the measured s-polarized (red) and p-polarized (blue) SHG intensity as a function of polarization angle φ for the as-grown film
and the film implanted with 12.5 × 1015 He/cm2. Measured data and fits are represented by open symbols and solid lines, respectively. Fits are based on the equations for
purely tetragonal phase only (top) and a combination of tetragonal and rhombohedral phases (bottom). The red and blue arrows highlight that the as-grown film requires the
addition of a rhombohedral phase content to fit the SHG data satisfactorily. The graph in the middle shows χ31/χ15, as determined from the fitting parameters, as a function
of the He dose.

tetragonal and includes parts with lower symmetry. Note that SHG
is sensitive to the whole heterostructure, i.e., to the lower tetragonal
coherently strained BTO film part as well as the lower symmetry top
part. The film implanted with 12.5 × 1015 He/cm2 shows a signifi-
cantly different SHG response. This change already indicates that He
implantation affects the ferroelectric domain structure of the BTO
film. The data can be fitted very well by the equations assuming a
purely tetragonal film alone (top right graph). Including the terms
for a rhombohedral phase does not improve the fit by a notable
degree (bottom right graph). This result suggests that He implanta-
tion transforms the mixed phase film into a single-phase tetragonal
film.

In the center graph of Fig. 3, we plot the second harmonic
generation tensor element ratio χ31/χ15 as a function of He dose.
The tensor elements, χ31/χ15, are determined by extracting SHG
intensity at φ = 90○ in the p-out feature and φ = 45○ in the s-out
feature. An increase in this ratio toward 1 has been shown to indi-
cate an increase in crystal symmetry.25–27 The overall symmetry
of the BTO film is increased during He implantation as the
film transforms into a purely tetragonal state. Thus, our SHG
measurements serve as a powerful tool for unraveling the spa-
tial symmetry evolution of BTO films. Moreover, as the tempo-
ral dynamics of lattice symmetry gain increasing significance,28,29

the SHG findings motivate future time-resolved studies employ-
ing ultrafast SHG spectroscopy to investigate the temporal behavior
of BTO.

In order to corroborate these experimental findings by the-
ory, we have performed phase field simulations based on a
Landau–Devonshire thermodynamic potential described more in
the Methods section. At first, the domain configuration as a func-
tion of in-plane strain is modeled (first row of Fig. 4). Under a large
in-plane compressive strain of −1.2%, the film consists entirely of
dense c+/− domains. This result is in line with previous theoreti-
cal and experimental observations.9,12 It is also in agreement with
the absence of XRD peak splitting for the fully strained T-phase
film part. When a smaller in-plane strain is assumed in our calcula-
tions, the density of c domains decreases. For fully strain-free films,
a large part of the ferroelectric polarization is tilted away from the
film normal through the formation of orthorhombic, rhombohedral,
or monoclinic domains. This prediction has been confirmed exper-
imentally in strain-free films before10 and is reflected in our data
by the observation of the R-phase with splitting into multiple XRD
peaks.

In a next step, the effect of He implantation on the ferro-
electric domain structure was modeled simply by using the strain-
free domain configuration as a starting point and sequentially
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FIG. 4. Out-of-plane polarization component at the top of a BaTiO3 film as calculated by phase field simulations. The top row highlights the effect of decreasing in-plane
strain during strain relaxation, while the bottom row shows the result obtained through the continuous expansion of the out-of-plane axis while the in-plane axis is fixed. The
insets schematically illustrate the rotation of the average polarization toward the film normal when biaxial compression and out-of-plane expansion are increased.

expanding the unit cells along the out-of-plane direction. Second
order effects, for example through changing material parameters,
were neglected. It can be seen that the ferroelectric polarization
continuously rotates back into the film normal and a c+/− fer-
roelectric domain pattern is established. The out-of-plane expan-
sion counteracts in-plane strain-relaxation. This result is consistent
with our experimental data, which suggests a strain-induced struc-
tural phase transition of the strain-relaxed part toward a fully
tetragonal state.

The structural changes upon He implantation have a profound
influence on the BTO thin film properties. Macroscopic ferroelec-
tric polarization measurements in capacitor geometry shown in
the supplementary material reveal a remanent out-of-plane polar-
ization of about 27 μC/cm2 for the film with the highest dose.
This value is slightly larger than the expected single-crystal value
for tetragonal BTO and is, therefore, further evidence for a com-
plete phase transformation under ion implantation. During the

structural transition toward a fully tetragonal film, the unifor-
mity of the film is increased. One might thus expect a reduction
in asymmetry in ferroelectric hysteresis loops at lower He doses.
In contrast, for higher implantation levels, the strain uniformity
is decreasing again since ion implantation is only affecting the
strain state in the top part of the film, while the bottom part
remains essentially unchanged. This two-region behavior is con-
firmed in dielectric hysteresis measurements shown in Fig. 5. The
hysteresis loop for the as-grown film is slightly asymmetric with a
shift to negative voltages. This polarization imprint behavior has
been observed repeatedly for epitaxial BaTiO3 films and has been
attributed to asymmetry within the ferroelectric layer,30 as, for
example, due to the accumulation of defects near interfaces, and/or
the asymmetry induced by the presence of different top and bot-
tom electrodes.5 The associated in-built field drives ferroelectric
domains to have a favorable orientation, which is downward in
our case.31

FIG. 5. (a) ε–E hysteresis loops for films
with different He implantation doses. (b)
Coercive fields determined from the hys-
teresis loops as a function of the He
dose.
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With He implantation, the hysteresis loops tend to widen,
while the dielectric constants are decreasing overall. Both enhanced
coercive fields and reduced polarizability are a consequence of the
increased defect density introduced due to ion bombardment and
have been reported on other material systems before.32,33 Part of
the decline of the dielectric permittivity may also be attributed
to polarization rotation, as the permittivity along the polarization
axis is typically smaller than off-axis.34 Interestingly, the coercive
fields are increasing at a different rate, as can be seen in Fig. 5(b).
At 10 × 1015 He/cm2, the hysteresis loop is nearly symmetrical.
The polarization imprint is removed. This point coincides with
the structurally most uniform state where the structural transfor-
mation of the top part is fully completed and the out-of-plane
strain state is similar to that of the bottom part. The full film is
of T-phase. For higher He doses, the trend in coercive fields is
reversed and an overall negative in-build field is created again. In
this region, the asymmetry is enhanced again since He ions are
only implanted in the top film part, and consequently, the out-
of-plane strain further increases past that of the bottom part. The
resultant strain gradient is creating a flexoelectric in-built electric
field.30

CONCLUSION

Helium ion irradiation is demonstrated to offer precise control
over ferroelectric domain orientation in BTO films. This approach
is found to enable transformation of an as-grown mixed ferroelec-
tric state, characterized by significant in-plane polarization com-
ponents in the relaxed top portion of the film, into a uniform
out-of-plane tetragonal phase. The structural modification signifi-
cantly improves domain homogeneity while reducing polarization
imprint and restoring symmetric ferroelectric switching characteris-
tics. The ability to selectively modify only the top portion of the film
through low-energy ion implantation provides a powerful tool for
post-growth domain engineering without affecting the coherently
strained bottom interface.

Manipulating domain configurations through ex situ ion
implantation constitutes an appealing strategy to tailor the switching
characteristics of ferroelectric films. We expect that this technology
can be applied to a wide range of material systems with different
types of ferroelectric and ferroelastic domain patterns. As an exam-
ple, the ability to precisely control ferroelectric domains in BTO
films through He ion implantation has significant implications for
quantum photonic integrated circuits, where efficient electro-optic
modulation and low propagation losses are critical. The demon-
strated transformation to a uniform out-of-plane polarization state
could enhance the Pockels effect needed for high-speed quantum
information encoding, while the reduction in domain wall density
could minimize optical losses that currently limit the device per-
formance. Given that BTO’s electro-optic coefficient is ∼30 times
greater than conventional materials such as lithium niobate, the abil-
ity to optimize its domain configuration could enable modulators
operating at GHz frequencies needed for quantum information pro-
cessing applications. Combined with the technique’s CMOS com-
patibility and room temperature processing, this approach provides
a promising pathway toward realizing monolithic quantum pho-
tonic devices that integrate efficient modulation with other critical
functionalities, such as photon generation and detection.

METHODS SUMMARY
Heterostructure growth

The BTO/LSMO heterostructure was grown by pulsed laser
deposition from stoichiometric targets on a commercial DSO sub-
strate at a deposition temperature of 700 ○C. The laser fluence for
BTO and LSMO was 1.0 and 2.0 kJ/cm2, respectively. The layers
were grown in an oxygen pressure of 0.05 and 0.2 mbar, respectively,
followed by annealing for 5 min and a cooldown in 0.2 atm O2.

He ion implantation

After film growth, Au films of 15 nm thickness have been
deposited on top of the sample to serve as a buffer and neutralization
layer for helium ion implantation. The sample was cut into smaller
pieces, and various helium doses were implanted using a SPECS IQE
11/35 ion source at an energy of 5 keV. Helium was chosen, since it
is noble and a light element. It will, therefore, avoid charge doping
and reduce defect creation. The ion distribution was simulated with
the SRIM 2013 software package. After implantation, the Au layers
were mechanically removed.

X-ray diffraction

X-ray diffraction was carried out using a Panalytical X’Pert thin
film diffractometer with Cu Kα radiation.

Second harmonic generation

A laser with 1000 nm wavelength, 150 fs pulse duration, and
1 MHz repetition rate was used. The light incident angle is kept con-
stant at 45○ with respect to the surface normal. The experimental
setup and the fitting equations are described in more detail in the
supplementary material.

Phase field modeling

The evolution of the polarization was calculated by solving the
time dependent Ginzburg–Landau equations. The framework and
all Landau–Devonshire potential parameters were identical to the
ones used by Li and Chen.12 A model size of 64Δx× 64Δx× 48Δx was
employed, with a grid spacing of Δx = 1 nm. The film and substrate
thickness are 30Δx and 12Δx, respectively.

Dielectric and ferroelectric properties

Circular capacitors with a radius of 25 μm were produced by
depositing Au electrodes on the heterostructures using magnetron
sputtering. Dielectric characterization has been performed using a
HP 4278A LCR meter.

SUPPLEMENTARY MATERIAL

See the supplementary material for more details on the He
implantation process, SHG analysis, and ferroelectric polarization
measurements.
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