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Going beyond improving soil health: cover 
plants as contaminant removers in agriculture 
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Highlights 
Climate change and human contamina-
tion activities play a dual role in agricul-
tural production, which leads to food 
shortages. 

Aside from improving soil health, cover 
plants have the potential also to reduce 
contaminant levels in agricultural soils 
and products. 

Cover plants and their associated 
rhizobiomes are still largely underex-
plored for their contribution to con-
tamination management in current 
agricultural practices. 
Agriculture faces the increasing demands of a growing global population amid 
simultaneous challenges to soils from climate change and human-induced con-
tamination. Cover plants are vital in sustainable agriculture, contributing to soil 
health improvement, erosion prevention, and enhanced climate resilience, but 
their role in contaminant management is underexplored. Herein we review the 
utilization of cover plants for remediating contaminants such as metals, organic 
pollutants, nitrate, antibiotics, antimicrobial resistance genes, plastics, and salts. 
We explore phytoremediation strategies – including phytoextraction, 
phytodegradation, and phytostabilization – in cover plant management. We high-
light the challenges of selecting effective cover plants and the need for biomass 
removal of non-biodegradable contaminants, and we advocate incorporating 
phytoremediation concepts into sustainable agricultural management practices 
beyond nutrient cycling and climate resilience. 
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Several contaminants can potentially 
be remediated with cover plants, such 
as metals, organic pollutants, nitrates, 
antimicrobial resistance genes, plastics, 
and salts. 

Cover plants may reduce the contaminant 
load of cash crops via phytoextraction, 
phytostabilization, phytodegradation, and 
phytovolatilization processes.
Cover plants: promoting healthy soils and reducing contaminant stressors 
To combat the pressing challenges posed by climate change, the widespread utilization of cover 
plants in agriculture has emerged as a crucial strategy [1]. Cover plants (see Glossary), including 
cover crops, offer a multitude of benefits to agriculture (Figure 1A), enhancing soil health [2]  by  
preventing erosion and compaction, improving soil structure, water and air infiltration, and crop 
root growth. They also contribute to nutrient management by absorbing excess nutrients, reducing 
nutrient runoff, and enhancing nutrient availability for subsequent crops [1]. Additionally, cover 
plants suppress weeds by competing for sunlight, nutrients, and space, thereby decreasing the 
need for herbicides [3]. Despite their own need for water, cover plants may aid in moisture reten-
tion, generating and conserving water on an ecosystem scale and potentially reducing net irrigation 
requirements. Cover plants also foster above- and below-ground biodiversity by providing habitat 
and food for beneficial insects, macro- and microorganisms, promoting natural pest control [4]. 
Cover plants, especially as continuous cover, also promote the soil microbiome [5]. Their root sys-
tems create diverse microhabitats of different pH, temperature, moisture, organic plant residues, 
and rhizodeposits that foster microbial proliferation and diversity [6]. Furthermore, cover plants en-
hance climate resilience through carbon sequestration and mitigation of greenhouse gas emission 
[7]. Properly managed with cash crop rotation, cover plants ultimately enhance crop yields [8].

Planting cover plants in mixtures enhances their benefits compared with single-species plantings, 
improving ecosystem functions and increasing resilience to pests, diseases, and environmental 
stressors [9]. Mixtures exert a strong positive impact on the soils due to increased carbon 
availability, varied root exudates, and thus more diverse habitat conditions [10]. The selection of 
specific cover plants is based on factors such as climate, soil type, prior and subsequent crop 
type, rotational regime, growing season, nutrient requirement and provisional abilities, pest and 
disease resistance, management practices, and water requirement, aligning with the intended 
benefits throughout the agricultural season [11]. 
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However, agriculture faces additional challenges, including contamination by metals, persistent 
organic pollutants, nitrate, salinity, plastics, antibiotics, and antibiotic resistance [12,13]. These 
contaminants adversely affect agricultural systems, causing soil degradation, aquifer pollution, 
crop contamination, and impaired microbiome functioning, potentially leading to economic 
losses. Over time, these impacts culminate in the deterioration of soil health, undermining its 
ability to balance essential functions such as nutrient cycling, water regulation, and carbon 
sequestration, ultimately reducing the provision of critical ecosystem services that sustain agricul-
tural productivity and environmental resilience. Conventional physical and chemical soil clean-up 
technologies are often cost- and time-intensive, disruptive to the environment themselves, and 
impractical for large-scale agricultural fields. A promising approach to address contaminant chal-
lenges in agriculture is phytoremediation, encompassing techniques like phytoextraction, 
phytostabilization, phytodegradation, and phytovolatilization (Figure 1B). To ensure high-
quality yields of cash crops, phytoremediation approaches need to be pursued by cover plants 
either relieving cash crops of contaminant loads in fallow seasons or simultaneously. Notably, there 
is a knowledge gap regarding the intersection of cover plants and their phytoremediation potential. 

Herein we critically evaluate the current state of knowledge on using cover plants as phytoremediators 
in agriculture for each class of contaminant (Table 1), aiming to close the identified gap, providing valu-
able insights into harnessing cover plants as effective agents for contaminant control in agriculture, 
and merging known benefits of cover planting with phytoremediation concepts.

Non-beneficial metal and metalloid removal by cover plants 
Metals and metalloids (here referred to as metal/loids) of no beneficial use to plants and animals 
are problematic contaminants in agriculture due to their non-biodegradable nature, persistence in 
the environment, toxicity at low concentrations, and ease of transfer from soil to root and subse-
quently through the food chain [14]. Metals are of geogenic origin [15] and thus are omnipresent in 
soils [16]. Elevated levels in agricultural soils often result from mobilization through anthropogenic 
activities such as industrial processes, mining, urbanization, and agrochemical use [14,17]. Once 
taken up by crops, metallic contaminants interfere with basal physiological functions, ultimately 
reducing yields and the quality of edible parts [18,19]. Cover plants show promise for mitigating 
the impacts of metal/loids in agricultural systems (Figure 2A), though they have not yet been inten-
sively and consistently investigated for such functionality. Two primary concepts are approached 
for metal/loids with a non-volatile phase: phytoextraction and phytostabilization.
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Figure 1. (A) Current perception of benefits that cover plants provide for agriculture. (B) Different phytoremediation strategies for soils (partly assisted by 
microorganisms) that are classically employed for contaminated sites. The goal of the review is to propose merging known benefits of cover planting with 
phytoremediation concepts. Figure created with BioRender.
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Table 1. Examples of cover plants that have shown potential for phytoremediating metals/metalloids, organic 
contaminants, and nitrate in soils 

Cover plant Contamination Mechanism Refs 

Ageratum conyzoides Cd [96] 

Echinochloa colona Pb, Zn, Cu, and Cd [96] 

Calendula officinalis Cu [13] 

Calendula officinalis Cu [96] 

Perotis indica Ni, Cd, and Cr [13] 

Euphorbia hirta Cd [96] 

Eleusine indica Cd [13] 

Helianthus annuus n-Alkanes and PCBs, Cr, Pb, and 
Zn 

[97] 

Helianthus annuus Cr (VI) [15] 

Sorghum bicolor L. Pb, Cd, Zn, and Cu [98] 

Trifolium repens Cd, Pb, and Zn [25] 

Zea mays Mg [99] 

Cannabis sativa Cr [100] 

Helianthus annuus Zn [99] 

Nicotiana tabacum Cd [99] 

Secale cereale L. Total N, NO3 
–-N and NH4 

+-N [101] 

Glycine max PFBA, PFHxA, PFBS [102] 

Cannabis sativa, Helianthus annuus, Brassica 
juncea 

PFAS [103] 

Crotalaria juncea, Helianthus annuus Carbaryl insecticide, 1-naphthol [104] 

Cannabis sativa Fungicide metalaxyl-M, EDC, BPA [105] 

Glycine max PFOA, PFOS [24] 

Abbreviations: BPA, bisphenol A; EDC, endocrine disruptor; PCB, polychlorinated biphenyl; PFAS, per- and polyfluoroalkyl 
substances; PFBA, perfluorobutanoic acid; PFBS, perfluorobutanesulfonic acid; PFHxA, perfluorohexanoic acid; PFOA, 
perfluorooctanoic acid; PFOS, perfluoro-octanesulfonic acid.

Glossary 
Cash crop: the main crop grown 
primarily for sale to return a monetary 
profit. 
Cover crop: a plant grown primarily to 
manage the agroecosystem and also 
harvested for monetary benefit 
alongside the cash crop. 
Cover plant: a plant grown primarily 
to manage the agroecosystem as a 
non-harvested plant, although it could 
also be harvested as a secondary crop 
(the definition includes cover crops). 
Here it is defined as a plant planted 
temporally between consecutive cash 
crop cycles. 
Green manuring: terminating cover 
plants while still green, and leaving them 
on the field to recycle nutrients from the 
biomass into the soil. 
Intercrop: a special type of cover plant 
that is simultaneously grown with the 
cash crop in the same field and may or 
may not be harvested. 
Phytodegradation: the breakdown of 
contaminants within plant tissues and 
the rhizosphere through metabolic 
processes. 
Phytoextraction: the process in which 
plants absorb contaminants from the soil 
through their roots and translocate them 
to their above-ground tissues, where 
they can be harvested and removed. 
Phytostabilization: the process in 
which plants immobilize contaminants in 
the soil or within roots, thereby reducing 
their mobility and bioavailability. 
Phytovolatilization: the uptake of 
contaminants by plants from soil or 
water and their subsequent release into 
the atmosphere as volatile compounds, 
either in their original form or after 
transformation into less toxic or non-
toxic forms through metabolic 
processes. 
Saline soils: soils that contain high 
levels of soluble salts, with an electrical 
conductivity of the saturated soil extract 
exceeding 4 dS/m, which can hinder 
plant growth by reducing water uptake 
and causing osmotic stress. 
Saltol gene: a gene that confers 
tolerance to salinity stress by enabling 
plants to better balance ions in the root 
compartment, especially sodium (Na+ ) 
and potassium (K+ ). 
Soil health: the capacity of soil to 
function as a living ecosystem, 
supporting plants, animals, and 
humans, while maintaining essential 
ecosystem functions and services such 
as productivity, water filtration, nutrient
Phytoextraction uses metal/loid-hyperaccumulating plants which absorb metal/loids through their 
roots and translocate these contaminants to above-ground biomass, where they accumulate at 
higher concentrations than in roots [20]. This method depends on specific plant traits such as ex-
udate production, associated microbes, and the ability to take up, accumulate, translocate, se-
quester, and detoxify metal/loids [21]. Phytoextraction also depends on soil biogeochemical 
properties and environmental conditions [22]. However, traditional metal/loid-hyperaccumulators 
are often slow-growing, shallow-rooted, and produce low biomass [23]. Cover plants, with their 
rapid establishment, large canopy formation, and deep root systems, present a viable alternative, 
especially when exhibiting some degree of metal/loid tolerance. For instance, in vineyards, cover 
plants (Avena sativa, Trifolium incarnatum, Chenopodium sp., Vicia villosa, Secale cereale, and 
Brassica napus L.) have been shown to reduce copper concentrations in topsoils [24]. Sunflower 
(Helianthus annuus) and clover (Trifolium spp.) were also found to effectively store nickel or cad-
mium in above-ground tissues, making them suitable for phytoextraction [25]. 

Phytostabilization of metal/loids in agricultural soils can be particularly effective when using cover 
plants as intercrops. In that case, they compete with cash crops for metal/loid uptake, thereby 
lowering metal/loid loads in cash crop products. Examples include sorghum (Sorghum vulgare) 
immobilizing bioavailable nickel in its roots, as well as Mucuna cinereum and Mucuna aterrima
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cycling, and resilience to environmental 
changes. 
Soil water: the water present in the soil, 
which exists in various forms such as 
hygroscopic water, capillary water, and 
gravitational water. 
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stabilizing copper in their root systems, making them excellent choices for phytostabilization [26]. 
Additionally, intercrops can stimulate cash crops to develop deeper roots, physically bypassing 
metal/loids often present in the top 5 cm of the soil, so that exposure is only temporary during 
growth.

In conclusion, cover plants offer a sustainable approach to managing metal/loid contamination in 
agricultural systems through phytoextraction and phytostabilization. In terms of managerial impli-
cations for metal/loid phytoremediation, cover plants could remove metallic contaminants during 
fallow seasons or phyto-stabilize metal/loids using intercrops, necessitating farmers to weigh 
pros and cons of metal removal versus nutrient recycling during green manuring (Figure 3). 
Future research and field studies are essential to optimize phytoextraction during fallow seasons 
and phytostabilization of intercrops.

Minimizing nitrate leaching to groundwater with cover plants 
Nitrate is a naturally occurring ion essential for plant growth and a crucial component of the nitro-
gen cycle. However, excessive nitrate poses significant risks to both the environment and human 
health [27]. Water bodies connected to agricultural land suffer from nitrate contamination due to 
excessive fertilizer use, intensive livestock farming, and sewage disposal [28]. This prompted the 
European Union to introduce the Nitrates Directive (91/676/EC) in 1991 to mitigate and prevent 
water pollution caused by agricultural nitrates. Resource-efficient agricultural practices, such as 
precision farming and optimized fertilizer application, are vital for mitigating nitrate contamination 
and safeguarding soil and water quality. Additionally, cover plants efficiently scavenge and bind 
available (i.e., leachable) nitrogen, already representing a common sustainable management 
option to reduce nitrate leaching into groundwater, nitrate enrichment in cash crops, and N2O 
emissions [29,30]  (Figure 2B, Table 1).
TrendsTrends inin PlantPlant ScienceScience 

Figure 2. Conceptual schemes of possible phytoremediation strategies for cover plants and intercrops managing (A) metals, and (B) nitrate. (A) For 
metal/loid-contaminated soils, phytoextraction and phytostabilization approaches by cover plants or intercrops are most feasible and often explored in conjunction with 
microbial activities. (B) For nitrate-rich soils, leaching and nitrogen emissions can be reduced by stimulating rhizosphere microbial activities leading to nitrate assimilation 
in microbial and plant biomass, and thus, phytostabilization in roots and soil. Additionally, nitrogen is phytoextracted in the form of above-ground biomass assimilation. 
Green manuring circularly reuses assimilated nitrogen for subsequent cash crops. Figure created with BioRender.
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Figure 3. Flow chart illustrating the various phytoremediation strategies of contaminants when using cover plants and intercrops to determine the fate 
of these cover plants and intercrops. (Orange = contaminant, blue = phytoremediation strategy, green = fate of cover plant/intercrop).
The extent of nitrate leaching reduction via phytoextraction and phytostabilization processes is 
strongly influenced by the cover plant species or species mixtures used. Two global meta-
analyses revealed that non-legume species or species mixtures are particularly effective, with an 
average reduction of 56%, while leguminous cover plants show little to no reduction [29,31]. Within 
non-legumes, broadleaf species (54–77% reduction) outperform grasses (37–61% reduction). 
Cover-plant-enhanced microbial growth and activity improve nitrate conversion, immobilization, 
and mineralization processes through assimilation into microbial biomass or denitrification to nitro-
gen gases (N2 or N2O). Assimilated nitrogen is less prone to leaching and volatilization and may 
serve as an additional nitrogen pool for cash crops [32]. It was shown that soil nitrogen availability 
is increased when soil microbes become more active under warmer conditions in spring, which is 
based on the enzymatic release of amino acids from soil organic matter [33,34]. Timely sowing of 
cover plants after harvesting significantly reduced nitrate leaching [31]. This effectiveness can be in-
fluenced by temperature [35], annual precipitation [36], soil texture, and soil cultivation practices [30]. 

In summary, cover plants/mixtures positively reduce nitrate leaching and increase nitrogen use ef-
ficiency and circularity. Managerial implications for using cover plants or mixtures in nitrate manage-
ment require careful consideration of plant and environmental conditions to avoid drawbacks [30]. 
Farmers must select species with appropriate carbon-to-nitrogen (C:N) ratios, as cover plants like 
grasses can cause nitrogen tie-up during decomposition, reducing its availability for subsequent 
cash crops. Proper timing of termination is equally critical; terminating too early or late can misalign 
nitrogen release with the next crop's nutrient demands, leading to inefficient uptake or nitrate 
leaching. During fallow periods of actively growing or green-manured cover plants, heavy rainfall 
can exacerbate nitrate leaching and trigger nitrous oxide (N O) emissions under waterlogged con-
ditions, posing environmental challenges [32]. Addressing these factors ensures that farmers can 
optimize nitrogen management with cover plants while minimizing risks (Figure 3).
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Desalinizing with cover plants 
More than 10%, or 833 million hectares, of arable land globally, are affected by salts, character-
ized by an electrical conductivity >4 dS/m and/or >15% of exchangeable sodium [12]. Agricultural 
soil salinization is increasing due to industry, deforestation, intensified agriculture, and climate-
induced sea level rise [37]. Salt induces drought stress in plants, lowering crop production [38]. 
Physiological salt tolerance adaptations include moving away from salt sources, increased 
water uptake, higher lignin, and suberin contents in cell walls, vacuole compartmentalization, 
potassium and nitrate homeostasis, production of compatible solutes, and export through 
transporters, glands, vesicles, trichomes, and old leaves [39]. Cover plants, often overlooked in 
managing saline soils, can phytoextract and/or phytostabilize salts in soils, stimulate cash 
crops to root beneath saline topsoil layers, and manage soil water to reduce irrigation needs 
(Figure 4A). 

Breeding and genetic engineering have made crops such as tomato (Solanum lycopersicum), 
wheat (Triticum aestivum), and barley (Hordeum vulgare) suitable for production in saline soils by 
overexpressing the Saltol gene [40]. Some crops occasionally used as cover plants, such as bar-
ley (H. vulgare) [41] and mixtures of millet [42], alfalfa [43], clover [44], and vetch [45], have been 
identified as salt-tolerant. Clover and vetch facilitate classic phytoextraction of salts [46] which 
could later provide biomass for bioenergy. Purposefully breeding or genetically engineering these 
cover plants with the Saltol gene has not yet been undertaken but could promote cover plants 
as a key tool in remediating salt-affected agricultural soils. Phytoextraction and salt tolerance
TrendsTrends inin PlantPlant ScienceScience 

Figure 4. Conceptual schemes of possible phytoremediation strategies for cover plants and intercrops managing (A) salt, and (B) organic 
contaminants. (A) For saline soils, cover plants or intercrops can be used to stabilize salt in soils when grown on ridges and furrows. Simultaneous growth of cash 
crops on slopes would enhance root growth to access soil layers below the salt crust. Breeding or engineering the Saltol gene into cover plants would produce more 
resilient cover plants in saline soils. Cover plants can also phytoextract salts, which could be especially effective when simultaneously engineered for salt tolerance with 
the Saltol gene. (B) For organic contaminated soil, cover plants or intercrops facilitate enhanced biodegradation by activating the rhizobiome. Figure created with 
BioRender. 
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mechanisms operate through different processes, though both are crucial for managing salinity in 
plants. Phytoextraction involves the active uptake and accumulation of salt ions (Na+ and Cl− )  from  
the soil into the plant's above-ground tissues [47], where they can be harvested, while salt toler-
ance, as conferred by the Saltol gene, enhances a plant’s ability to survive in saline soils by improv-
ing cellular mechanisms such as compartmentalizing salts in vacuoles and maintaining osmotic 
balance [48]. Although these mechanisms are distinct, they could potentially complement each 
other. Genetic engineering of cover plants [49,50], such as clover and vetch, with the Saltol gene 
could improve their salt tolerance while maintaining or enhancing their ability to extract salts from 
the soil. Combining salt tolerance and phytoextraction could create more efficient plants for 
remediating saline soils; however, there is limited research on combining these two traits, and 
more studies are needed to determine whether the underlying mechanisms would be compatible 
and synergistic or whether one would interfere with the other. 

In terms of managerial implications, cropping in saline soils is commonly performed with furrow 
agriculture, crops being planted on slopes where salt concentrations are lowest [51]. Salt-
tolerant cover plants could be used to either remove salts during fallow periods or simultaneously 
with cash crop production as an intercrop [52]. For intercropping, cover plants should be planted 
on salt-rich ridges or furrows (Figure 4A). This might stimulate cash crop root growth, accessing 
deeper water sources lower in salts. Using cover plants as green manure could stabilize salts, re-
duce irrigation needs, and thus lower salt inputs [53]. Farmers need to decide on whether cover 
plant/intercrop removal or green manuring would be more beneficial for salt versus water versus 
nutrient management (Figure 3). 

Cover plant–microbe interplay may also be crucial in managing saline soils. While cover plants se-
quester carbon from the atmosphere under salt stress [54], this carbon supports the growth of 
rhizospheric microbial communities, including mycorrhiza [55], soil bacteria [56], and endophytes 
[57]. This microbial activity improves soil structure, water retention, nutrient absorption, and rhizo-
sphere expansion. Additionally, these microbes may immobilize and compartmentalize salts [58], 
helping to reduce salt uptake by cash crops. 

Organic contaminant degradation by cover plants 
Pervasive organic contaminants in agricultural soils – including polycyclic aromatic hydrocarbons 
(PAHs), dioxins, triazines, and glyphosate – originate from pesticide use, industrial activities, and 
traffic  [12]. Their impacts on agroecosystems vary, leading to adverse effects on crop yield and 
quality, and potential human health risks [59]. Some organic contaminants are degraded by micro-
organisms [40] and plants, including cover plants [60]. Cover plants, alone or with their rhizobiome, 
hold promise for integrating phytoextraction, phytostabilization, and phytodegradation (including 
phytovolatilization) strategies for organic pollutant management in agroecosystems, mitigating 
long-term pesticide effects (Figure 4B). These phytoremediation processes often work synergisti-
cally in various plant species, making it difficult to quantify the individual contribution of each pro-
cess, but jointly they enhance the effectiveness for organic contaminant removal. The following 
examples illustrate the potential employment of these technologies for cover plants. 

Indian mustard (Brassica juncea) is effective in phytoextracting and accumulating PAHs above-
ground [61], and degrading pesticides like dichlorodiphenyltrichloroethane into less harmful 
forms [62]. Its extensive root network enhances soil aeration, making Indian mustard suitable 
for crop rotation during fallow periods or as an intercrop, mitigating long-term pesticide impacts. 
If pollutants are degraded without toxic grain accumulation, Indian mustard supports oilseed 
production; otherwise, strategic management is essential for complete pollutant removal simulta-
neously with nutrient management.
Trends in Plant Science, May 2025, Vol. 30, No. 5 545
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Vetiver grass (Chrysopogon zizanioides) showcases strong phytoextraction capabilities with its en-
hanced root uptake, translocation processes, and selective accumulation of hydrocarbons and 
pesticides in above-ground biomass [63,64]. It also excels in long-term phytostabilization with its 
deep, fibrous root system immobilizing contaminants. Vetiver grass synergizes with rhizosphere 
microbes to degrade, even volatilize, pollutants such as hydrocarbons, enhancing remediation ef-
ficacy. Despite its adaptability to various environmental conditions (extremes in water, temperature, 
pH, salinity, and metal co-contamination), vetiver grass has primarily been studied in industrial 
phytoremediation contexts, but its capabilities suggest potential as an off-season cover plant fo-
cused on pollutant management without significant nutrient contributions. 

Sunflower (H. annuus) primarily remediates metals but also shows potential to extract and accu-
mulate hydrocarbons [65]. It can also metabolize and volatilize herbicides such as atrazine, 
directly or aided by exudation-activated microorganisms [66]. While sunflower’s agricultural re-
mediation potential is recognized, current applications prioritize soil structure improvement and 
erosion control [67]. Research aims to optimize sunflower’s phytoremediation through crop rota-
tion and intercropping to maximize agronomic benefits. 

Using Sunn hemp (Crotalaria juncea L.) during summer fallow periods and incorporating crop 
residues into the soil before planting the cash crop corn significantly reduced atrazine's desethyl 
atrazine (DEA) concentrations in corn fields over several years [68]. This reduction was attributed 
to Sunn hemp’s ability to increase soil organic matter and stimulate the microbiome, recruiting a 
highly effective atrazine-degrading microbial community under repetitive herbicide applications. 
Concomitantly, DEA leaching into groundwater was reduced, and Sunn hemp could still be 
harvested for its seeds. 

Some cover plants possess capabilities to extract, stabilize, and degrade/volatilize organic pollut-
ants, and efforts have begun to integrate these abilities with traditional cover plant functions such as 
nutrient management and soil structuring. Tailoring managerial approaches to specific contamina-
tion scenarios necessitate decisions on intercropping versus cover planting, monocropping versus 
mixed cropping, and harvesting versus green manuring (Figure 3). If the cover plants transform 
contaminants into non-toxic residues, the cover plants can be sold or used as green manure 
(Figure 3). If the cover plants still contain contaminants or toxic residues, they have to be harvested 
and disposed of or used in alternative economic ways (energy production, construction). Screening 
and genetically optimizing current cover plants for organic pollutant management and enhancing 
interactions with aerobic and anaerobic bacteria, yeast, algae, and fungi [69] are crucial steps to 
assessing their phytoremediation effectiveness in field conditions. 

Preventing antimicrobial resistance spread with cover plants 
Antimicrobial resistance (AMR) is a global health crisis exacerbated by excessive antibiotic use in 
human medicine and livestock production [70], with livestock consuming four times more antibi-
otics than humans [71]. Between 30% and 90% of administered antibiotics end up in manure due 
to incomplete animal metabolism [39]. Manure also contains antibiotic-resistant bacteria (ARB) 
that develop during hygienic, disease, and growth-support treatment [72,73], making manure a 
reservoir for antibiotic resistance genes (ARGs), with levels ranging from 2.1 × 105 to 7.8 × 105 

copies/g [74]. When applied to fields, antibiotics and ARGs can transfer to edible crops, posing 
significant human health risks [75,76]. Mitigation strategies adapted to agricultural practices are 
nonexistent but urgently needed. 

Cover plants have not been considered yet as tools for ARB and ARG removal in agriculture, 
albeit offering significant potential through two primary mechanisms: (i) reducing soil antibiotic
546 Trends in Plant Science, May 2025, Vol. 30, No. 5
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concentrations, and (ii) limiting ARB establishment, thereby restricting horizontal gene transfer of 
ARGs into the soil microbiome. 

Reduction in soil antibiotic concentrations is facilitated by both phytoextraction and 
phytodegradation/volatilization. Different plant species exhibit varying abilities to absorb antibi-
otics, depending on plant species and antibiotic class [75]. While research has focused on edible 
crops for food safety [77–79], cover plants show promise for phytoextraction when removed 
from the soil. However, the typically low antibiotic concentrations in plant tissues suggest that 
uptake may not be the primary removal pathway [77]. Instead, low antibiotic concentrations in 
rhizospheres of maize and manured vegetables [80,81] were attributed to enhanced biodegrada-
tion by a stimulated rhizobiome. Cover plants could potentially provide such a service through 
interactions with their associated microbiomes, although direct evidence has not yet been 
obtained. Fueling the rhizobiome with stimulating exudates [39] may enhance antibiotic 
degradation. Therefore, selecting cover plants based on their known ability to stimulate the soil 
microbiome, influenced by factors such as root exudate composition, could enhance their effec-
tiveness in attenuating antibiotics. 

Cover plants could also contribute to ARB and ARG management by stabilizing microbial commu-
nities against disturbance and invasion by alien species [82]. Studies consistently show lower ARB 
abundances in rhizospheres than in bulk soil, possibly due to increased selection pressures and 
limited establishment of ARBs from manure applications [39,83]. Growing cover plants before 
manure application may promote a soil microbiome more resistant to invasion, reducing the persis-
tence of manure-borne ARBs and the frequency of horizontal gene transfer (Figure 5A). 

Further research is essential to explore the managerial implications for cover plants in preventing 
the establishment and persistence of antibiotics, ARGs, and ARBs, especially in manure-fertilized
TrendsTrends inin PlantPlant ScienceScience 

Figure 5. Conceptual schemes of possible phytoremediation strategies for cover plants and intercrops managing (A) antibiotics and antimicrobial 
resistance and (B) plastics. (A) For antibiotic, antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARG) contaminated soil, cover plants or intercrops 
offer enhanced antibiotic degradation and reduction in ARG transfer. (B) For plastic-contaminated soil, cover plants or intercrops enhance degradation below- and 
above-ground through activated microbiome and phytoextraction respectively. Figure created with BioRender. 
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agroecosystems. Moreover, integrating cover plants into agricultural practices for nutrient reten-
tion and subsequent incorporation as green manure can reduce manure application, thereby low-
ering environmental inputs of antibiotics, ARGs, and ARBs. 

Managing plastics with cover plants 
Although 96% of studies on plastics focus on aquatic environments, terrestrial sources contribute 
4–23 times more to macro-, micro-, and nano-plastics (here collectively referred to as plastics) 
[84,85]. Plastics enter agricultural land through diffuse inputs from human activities, including 
agricultural materials like film sheets, mulches, and fertilizer/pesticide packaging [86]. Composed 
of diverse organic polymers with additives, these plastics persist for decades, slowly degrading 
through UV light, Fenton reactions, and microbial activity [85]. In soil, plastics are consumed by 
soil fauna [87] and microorganisms [88], are taken up by plants [58], or they migrate into adjacent 
ecosystems [89]. Studies in agroecosystems show plastics adversely impact plant growth, soil 
microbiomes, and soil physicochemical properties [85,90,91]. Specifically, plastics disrupt 
plant–microbe interactions in the rhizosphere, influencing the amounts, composition, and activity 
of exudates and exoenzymes, thereby altering elemental cycling and plant nutrition [58]. 

Cover plants can potentially manage plastic inputs in agriculture, though this has not yet been 
studied. Using cover plants instead of plastic film sheets and mulches may lead to similar benefits, 
including weed suppression, soil water and temperature management, erosion control, and bet-
ter cash crop root system growth and nutrient management [92]. However, further research is 
needed to determine whether cover plants, alone or with woody mulches, can match the benefits 
of plastic mulches, such as increased crop yields and early-season growth. Comparative studies 
are recommended to assess the benefits and drawbacks of plastic mulch versus cover plant 
management, including life cycle assessments of plastic inputs in both systems (Figure 5B). 

Once plastics are present in agricultural lands, intercropped cover plants may offer effective 
phytoremediation by providing phytostabilization services, reducing or competing for plastic up-
take by cash crops. In terms of managerial implications, cover plants could be used during fallow 
seasons to phytodegrade plastics by stimulating microbial activity and inducing microbial biofilm 
formation, which has been shown to increase plastic degradation. For instance, Janczak and col-
leagues [93] demonstrated in a pot study that plants such as miscanthus (Miscanthus x 
giganteus), rapeseed (Brassica napus), and willow (Salix viminalis), in combination with inoculated 
bacteria (Arthrobacter sulfonivorans, Serratia plymuthica) or fungi (Clitocybe sp., Laccaria laccata) 
selected for their hydrolytic activity and ability to grow on plastics in vitro, degraded polymer sur-
faces more effectively than non-amended controls. Moreover, microbial and plant-produced 
mucus may phytostabilize plastic degradation products in the rhizosphere, reducing their uptake 
into cash crops. However, the degradation of plastics into smaller particles could facilitate their up-
take into cash crops or release phytotoxic chemicals, making plastic degradation in an agricultural 
context potentially problematic. Further research is needed to determine whether phytodegradation 
of plastics facilitates or prevents their uptake into cash crops and whether phytotoxicity occurs. 
These studies should be plastic type-specific and combine cover plant–cash crop systems in var-
ious soils and environmental conditions. Comparative field studies and long-term assessments are 
essential to evaluate the effectiveness and safety of this approach in different agricultural systems. 

Concluding remarks considering managerial implications 
In conclusion, cover plants – and especially cover plant mixtures – offer a promising, sustainable 
approach for managing a wide range of agricultural contaminants through phytoextraction, 
phytostabilization, phytodegradation, and phytovolatilization (Figure 1B). Strategies for address-
ing legacy and prevalent contaminants such as metal/loids, organic pollutants, and nitrate are well
548 Trends in Plant Science, May 2025, Vol. 30, No. 5
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established but require field verification (see Outstanding questions). By contrast, the potential of 
cover plants to tackle emerging contaminants such as ARG, plastics, and salts still needs to be 
identified, explored, and optimized before their application. 

Managerial implications for handling barely to non-degradable contaminants (metal/loids, 
plastics, salts) need to be well thought through, as these substances often phytostabilize in the 
roots of cover plants and may re-enter the environment upon decomposition (Figure 3). To 
mitigate this risk, selecting cover plants with high contaminant retention or stabilization capacities 
is essential [94]. Additionally, crop rotation and species diversification can dilute contaminant 
concentrations and reduce their persistence in the soil–plant system. Regular soil monitoring is 
also vital to track contaminant dynamics in the rhizosphere and deeper soil layers, ensuring 
long-term effectiveness in phytoremediation efforts. 

When plants extract non-degradable contaminants, the management of  the harvested 
biomass is critical  to prevent recontamination (Figure 3).  Options such as bioenergy 
production – through combustion, gasification, or bioethanol production – offer potential, 
but require careful  handling of  residual  contaminants. Phytomining is another viable 
strategy for recovering valuable metals, while controlled disposal methods like hazardous 
landfilling or high-temperature incineration provide safe containment. Emerging 
approaches, such as biopolymer production, may allow the use of biomass for bioplastics 
or industrial  fibers, adding value to the remediation process. The choice of  handling 
method depends on the type and form of contaminants, as well  as economic feasibility 
and regulatory considerations. 

Balancing the enhancement of soil health and nutrient management with contaminant remedi-
ation is crucial for maintaining crop yield and quality [95]. Despite their benefits, cover plants 
can introduce ecological challenges. In arid regions or during low rainfall periods they may de-
plete soil moisture, reducing water availability for subsequent crops. They can also harbor 
pests, diseases, or weeds, potentially affecting cash crops if not carefully managed. Moreover, 
improper selection or timing of cover plants can cause unintended nutrient imbalances, 
disrupting soil nutrient dynamics. For farmers, logistical challenges further complicate the 
adoption of cover plants. The costs of seeds, labor, and specialized machinery add to financial 
pressures, particularly when immediate returns are absent. Certain cover plants may require 
unique planting or termination techniques, necessitating additional investment. Furthermore, 
mismanagement in planting or terminating cover plants can interfere with cash crop schedules, 
diminishing overall farm productivity. To fully leverage the potential of cover plants for soil 
remediation, field studies tailored to diverse agricultural settings and cash crops are necessary. 
These studies can help refine strategies, balancing ecological benefits with practical implemen-
tation, and enhance the widespread adoption of cover plants in contaminant-managing 
sustainable agriculture. 
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