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Abstract
In this paper we use the gradient flow equation introduced in Asselle and Starostka (Calc.
Var. 59: 113, 2020) to construct a Morse complex for the Hamiltonian action AH on a
mixed regularity space of loops in the cotangent bundle T ∗M of a closed manifold M .
Connections between pairs of critical points are realized as genuine intersections between
unstable and stable manifolds, which (despite being infinite dimensional objects) turn out to
have finite dimensional intersection with good compactness properties. This follows from
the existence of an additional structure, namely a strongly integrable (0)-essential subbundle,
which behaves nicely under the negative gradient flow of the Hamiltonian action and which
is needed to make comparisons. Transversality is achieved by generically perturbing the
negative gradient vector field −∇AH of the Hamiltonian action within a class of pseudo-
gradient vector fields preserving all good compactness properties of −∇AH . This follows
from an abstract transversality result of independent interest for vector fields on a Hilbert
manifold for which stable and unstable manifolds of rest points are infinite dimensional.
The resulting Morse homology is independent of the choice of the Hamiltonian (and of all
other choices but the choice of the (0)-essential subbundle, which however only changes the
Morse-complex by a shift of the indices) and is isomorphic to the Floer homology of T ∗M
as well as to the singular homology of the free loop space of M .
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1 Introduction

One of the central questions in the theory of Hamiltonian systems is the existence of (one-)
periodic solutions x : T → W , (W , ω) symplectic manifold, to Hamilton’s equation

ẋ(t) = XH (x(t)), (1.1)

where XH is the Hamiltonian vector field associated with a smooth time-dependent one-
periodic Hamiltonian function H : T×W → R via

ıXH ω = −dH .

Such periodic solutions can be characterized (at least at a formal level) as critical points of
the Hamiltonian action functional, which in the case of an exact symplectic form ω = dλ
takes the form

AH (x) =
∫ 1

0
x∗λ −

∫ 1

0
H(t, x(t)) dt .

Unfortunately, one cannot infer the existence of critical points of AH using classical varia-
tional methods such as Morse theory (and its infinite dimensional version due to Palais [36]),
since every critical point ofAH has infinite Morse index and co-index. In fact, for a long time
people believed that no variational methods could be successfully applied to the functional
AH . The first breakthrough in this direction is due to Rabinowitz: in [38] he observed that
the Hamiltonian action in (R2n, ωstd = dp ∧ dq) is of the form

AH (x) = 1

2

∫ 1

0
〈−J ẋ, x〉 dt −

∫ 1

0
H(t, x(t)) dt,

where the first term defines a continuous quadratic form on H1/2(T,R2n), the space of
Sobolev loops in R2n of Sobolev regularity 1/2, and the Hamiltonian term has compact
H1/2-gradient. This enabled him to prove what is nowadays universally known as the Wein-
stein conjecture in the case of smooth compact connected hypersurfaces in R2n bounding a
compact and (strictly) star shaped region. By using finite dimensional approximations, the
H1/2-approach has been then successfully implemented by Conley and Zehnder in [14] to
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prove the Arnold conjecture on (T2n, ωstd). The case of the torus T2n is somehow special
(even though the H1/2-approach can be used also for other symplectic manifolds such as
CP

n , see [20]): sinceT2n is a quotient ofR2n , the space of contractible H1/2-loops onT2n

can be identified with T2n times the Hilbert space of H1/2-loops in R2n having zero mean.
This does not work for general symplectic manifolds, in particular for cotangent bundles
T ∗M over a closed manifold M equipped with the standard symplectic form ωstd = dλ, and
indeed the space of loops of class H1/2 in T ∗M does not have a good structure of an infinite
dimensional manifold, due to the fact that curves of class H1/2 might have discontinuities.

A brilliant idea on how to overcome such a difficulty came few years after the work of
Conley and Zehnder with Floer (see [17] and its further extensions [18, 22, 25, 33]) and
it is not limited to cotangent bundles but works for arbitrary symplectic manifolds which
(if non-compact) are suitably convex at infinity: replacing the H1/2-gradient of AH with
the L2-gradient yields a gradient flow equation only formally, but if one interprets such
a “gradient flow equation” as a PDE, this turns out to be a non-linear perturbed Cauchy-
Riemann equation. This allowed Floer to use holomorphic curve techniques as developed
by Gromov in [23] to define a chain complex for AH , which is generated by contractible
one-periodic solutions of (1.1), by counting the number of solutions to the perturbed Cauchy-
Riemann PDEwhich are asymptotic to pairs of periodic orbits whoseConley-Zehnder indices
differ by one. The resulting homology is called Floer homology, and its importance goes
way beyond Floer’s original motivation of proving the Arnold conjecture on the number of
fixedpoints of non-degenerateHamiltonian diffeomorphismsof closed symplecticmanifolds:
Lagrangian intersection Floer theory (see [21]), symplectic homology (see [11, 19, 42]),
contact homology (see [16]) and Rabinowitz-Floer homology (see [12]) are just some of the
famous derivations of Floer’s seminal ideas (not to mention the ones in low dimensional
topology). Another ingenious approach for the Hamiltonian action in cotangent bundles,
based on finite dimensional approximations and spectra, can be found in the work of Kragh
[29, 30] and have led to a proof of a homotopy version of the nearby Lagrangian conjecture.

Despite the great success of the theory of Floer, the question remained how far the original
approach by Rabinowitz, Conley, and Zehnder can be generalized tomanifolds different from
the torus. In [10] we started addressing this question by showing that, for a Hamiltonian
H : T× T ∗M → R with quadratic growth at infinity, the Hamiltonian action

AH : M1−s → R, s ∈ (1/2, 1), (1.2)

satisfies the Palais-Smale condition,M1−s being theHilbert bundle over theHilbertmanifold
of loops Hs(T, M), s ∈ (1/2, 1), whose typical fibre is given by the space of H1−s-sections
of the pull-back bundle c∗(T ∗M), where c : T → M is any smooth loop. Roughly speaking,
instead of considering loops with Sobolev regularity 1/2, one considers loops in T ∗M whose
projection to the base has regularity larger than 1/2 (but strictly less than 1), thus making
them continuous in the base direction, and whose projection to the fiber has regularity smaller
than 1/2 (but strictly larger than L2-regularity) in such a way that the mean regularity is 1/2.
The key observation is that the regularity loss in the fiber direction does not pose any major
difficulty because of the linear structure of the fibers.

Remark 1.1 The case s = 1/2 in (1.2) would correspond to Rabinowitz, Conley and Zehn-
der’s H1/2-approach. However, as we have already observed, this cannot be used in the case
of cotangent bundles since H1/2(T, M) is not a Hilbert manifold. Notice also that the Hamil-
tonian action (1.2) is actually well-defined also for s = 1. Such a setting is used by Hofer
and Viterbo in [26] to prove the Weinstein conjecture for a class of compact hypersurfaces in
cotangent bundles. However, for s = 1 the Hamiltonian term does not have compact gradient,
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and this reflects in the fact that AH does not satisfy the Palais-Smale condition. This forces
to introduce approximations of AH to achieve compactness and then pass to the limit for the
approximation going to zero using a very delicate diagonal argument.

In this paperwe upgrade the results in [10] by showing that one can obtain a genuineMorse
complex for AH using the Morse complex approach which is developed in [1–3, 5]. In this
approach, one constructs a chain complex by looking at the one-dimensional intersections of
unstable and stable manifolds of pairs of critical points. Despite being infinite dimensional,
unstable and stable manifolds of pairs of critical points always intersect in finite dimensional
objectswith good compactness properties; see Sect. 4. This is the case because of the existence
of an additional structure, namely a (0)-essential subbundle of the tangent bundle TM1−s ,
which behaves well under the negative gradient flow ofAH (more precisely, under a suitable
negative pseudo-gradient flow). Such an additional structure is needed to make comparisons,
in particular to define a notion of relative Morse index for critical points ofAH , and allows to
recover a structure which is described in [13] in terms of polarizations. Its constructionwill be
performed in Sect. 3. If stable and unstable manifolds of critical points intersect transversally
(a condition which can be achieved by a generic perturbation of the negative pseudo-gradient
vector field preserving all its good compactness properties; see Sect. 5 for further details),
then the intersection is a finite dimensional manifold with dimension equal to the difference
of the relative Morse indices.

In the theorem below the assumption s ∈ (1/2, 3/4) is needed to guarantee that the
Hamiltonian actionAH is sufficiently regular to apply the abstract transversality theorem 5.5.

Theorem 1.2 Let M be a closed manifold, and let H : T × T ∗M → R be a smooth
Hamiltonian which is fiberwise convex and quadratic outside a compact set, see (2.1). Then,
for every s ∈ (1/2, 3/4), there is a well-defined Morse complex with Z2-coefficients for the
Hamiltonian action AH : M1−s → R. The induced Morse homology does not depend on
the Hamiltonian, and is isomorphic to the singular homology of the free loop space of M as
well as to the Floer homology of T ∗M.

In this paper we use Z2-coefficients instead of Z-coefficients for the sake of simplicity
only. Indeed, the (0)-essential subbundle constructed in Sect. 3 can be given an orientation (in
a sensewhichwe do not bother to specify here)which allows us to define coherent orientations
for the intersection between stable and unstable manifolds, and hence to construct a Morse
complex withZ-coefficients. It will be highly interesting to see to what extent the orientation
of the (0)-essential subbundle enters the construction of the isomorphism between the Morse
homology and the singular homology of the free loop space. Recall indeed that the use of a
twisted version of the Floer complex is required when constructing the isomorphism between
the Floer homology of T ∗M and the singular homology of the free loop space in case M is
not spin (more precisely, in case the second Stiefel-Whitney class of M does not vanish on
2-tori, see [6, 7]). In case ofZ2-coefficients, a sketch of the construction of the isomorphism
between the Morse homology and the singular homology of the free loopspace is provided in
Sect. 7. A direct comparison between the Morse complex and the Floer complex should also
be possible by generalizing to cotangent bundles the techniques introduced by Hecht [24] in
the case of Hamiltonian systems on tori.

Despite yielding isomorphic homologies, the Morse complex approach has many advan-
tages over Floer’s approach which we shall now briefly describe. First, in the Morse complex
approach transversality is achieved in a much more elementary way (namely, by generically
perturbing the negative pseudo-gradient vector field) and this might be an advantage in more
complicated situations where transversality is hard to achieve resp. cannot be achieved in
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Floer theory. Second, the fact that the Morse complex is constructed by intersecting genuine
geometric objects (namely, stable and unstable manifolds of pairs of critical points) might
suggest the possibility of applying homotopy arguments rather than merely homology argu-
ments. In this direction, it would be interesting to see to what extent the results of Kragh [29,
30] can be recovered using the Morse complex approach. All of this goes the direction of
developing methods alternative to Floer theory which are more topological in nature, with
e.g. the concrete motivation of improving the known results about the degenerate Arnold
conjecture on toric manifolds (in this respect, in the recent preprint [9] in collaboration with
Izydorek we give an alternative, purely Conley index based proof of the Arnold conjecture
in CP

n).
We shall finally notice that, in more linear settings, mixed regularity spaces of loops are

used in much more general contexts than the one considered here (for instance, assuming
that the regularity loss occurs only in some specific directions). This suggests the possibility
that the Morse complex approach can be successfully used for broader classes of symplectic
manifolds (e.g. symplectizations of contact manifolds). This is subject of ongoing research.

We finish this introduction with a brief summary of the content of the paper:

• In Sect. 2, we introduce all notions needed throughout the paper, the functional setting
for AH , and provide some preliminary computations showing e.g. the compactness of
certain commutator operators on fractional Sobolev spaces with super-critical exponent.

• In Sect. 3 we construct the additional structure needed to make comparisons and define
the relative Morse index of critical points of AH .

• In Sect. 4 we show that such an additional structure behaves well under a suitable negative
pseudo-gradient flowofAH , thus enabling us to prove that the intersection between stable
and unstable manifolds of critical points of AH is pre-compact.

• In Sect. 5 we prove an abstract transversality result for vector fields on a Hilbert manifold
for which the stable and unstable manifolds of rest points are infinite dimensional, and
then apply it to show that after a generic perturbation of the negative pseudo-gradient
vector field ofAH we can assume that the stable and unstable manifolds of critical points
of AH whose relative Morse indices differ at most by 2 intersect transversally.

• In Sect. 6 we employ the content of Sections 2-6 to construct the Morse complex forAH .
• In Sect. 7 we finally discuss the functioriality properties of the Morse homology.

2 Preliminaries

2.1 The functional setting

In this subsection, we introduce the functional setting for the Hamiltonian action AH . Thus,
let M be a closed (i.e. compact without boundary) manifold. To avoid extra complications
we further assume that M be orientable.

Referring to [10] for the details, we see that, for s > 1
2 , the fractional Sobolev space

Hs(T, M), T := R/Z, of Hs-loops in M has a natural structure of Hilbert manifold, and
for any r ∈ [−s, s] (see also Lemma 2.7) there exists a vector bundle

πr : Mr → Hs(T, M)

over Hs(T, M), whose typical fiber is given by “Hr -sections” of the pull-back bundle
c∗(T ∗M), where c : T → M is a smooth loop. Local parametrizations for Mr can be
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given as follows: for any open subset U ⊂ Rn and any smooth diffeomorphism

T×U → T× M, (t, q) 
→ (t, ϕ(t, q))

we have an associated bijection

ϕ∗ : Hs(T,U ) × Hr (T, (Rn)∗) → Mr , (q,p) 
→ (
ϕ(·,q(·)), dϕ(·,q(·))−∗p

)
.

The collection of themapsϕ∗, forϕ varying in the above class, form a collection of trivializing
maps inducing the structure of a smooth Hilbert vector bundle on πr : Mr → Hs(T, M).

The choice of a Riemannian metric g on M induces in a natural way a Riemannian metric
〈·, ·〉r for the bundle Mr , for every r . The norm induced by the L2-metric will be denoted
by ‖ · ‖. Similarly, we denote by ‖ · ‖∞ the induced L∞-norm.

For s ∈ ( 12 , 1) we consider the Hilbert-bundle π1−s : M1−s → Hs(T, M). Given a
smooth time-depending Hamiltonian function H : T× T ∗M → R such that

H(t, q, p) = 1

2
|p − θq |2q +U (t, q), ∀t ∈ T, (2.1)

outside a compact set K ⊂ T ∗M , where θ ∈ �1(M) is a (possibly time-depending) one-form
on M (a so called magnetic potential) and U : T × M → R is a smooth time-depending
potential, we can define the Hamiltonian action functional by

AH : M1−s → R, AH (q,p) =
∫ 1

0
(q,p)∗λ −H(q,p), (2.2)

where λ denotes the Liouville one-form on T ∗M and

H : M1−s → R, H(q,p) :=
∫ 1

0
H(t,q(t),p(t)) dt .

Throughout this paper we will assume without further mentioning it that all critical points
of AH are non-degenerate, meaning that the second differential of AH at each critical point
seen as a symmetric bounded bilinear form is non-degenerate.

In the theorem below we summarize the properties of the functional AH , referring to [10,
Sect. 2] for the proof. We shall notice that the Palais-Smale condition is proved in [10] only
for Hamiltonians which are kinetic (up to a constant) outside a compact set, that is only for
θ ≡ 0 and U ≡ c, however the proof extends verbatim to the case in which θ is an arbitrary
one-form on M and U is a time-depending potential.

We recall that we can define a natural Riemannian metric on M1−s by

〈·, ·〉M1−s := 〈·h, ·h〉s + 〈·v, ·v〉1−s, (2.3)

where the splitting TM1−s ∼= HM1−s ⊕ VM1−s into horizontal and vertical subbundle
is induced by the L2-connection (roughly speaking, the Levi-Civita connection of g applied
pointwise).

A sequence (qn,pn) ⊂ M1−s is called aPalais-Smale sequence forAH ifAH (qn,pn) →
a for some a ∈ R and ‖dAH (qn,pn)‖ → 0. Here, with slight abuse of notation, we denote
with ‖ · ‖ the dual norm on T ∗

(qn ,pn)
M1−s induced by the Riemannian metric 〈·, ·〉M1−s in

(2.3).

Theorem 2.1 For every s ∈ ( 12 , 1), the following statements hold:

(1) AH is well-defined over M1−s and at least of class C1,1. More precisely, there exists
k = k(s) ∈ N such that AH : M1−s → R is of class Ck, with k(s) → +∞ as s ↓ 1

2 .
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(2) The operator dH is compact.
(3) Critical points of AH correspond to one-periodic solutions of Hamilton’s Equation.
(4) AH satisfies the Palais-Smale condition.
(5) The action of critical points of AH is uniformly bounded from below.

Proof. Statements (1)-(4) are proved in [10, Sect. 2]. To prove (5) we observe that by assump-
tion

δ : T× T ∗M → R, δ(t, q, p) := H(t, q, p) − 1

2
|p − θq |2q −U (t, q),

is a smooth compactly supported function and set

c := max
{
‖δ‖∞, ‖∂pδ‖∞, ‖U‖∞, ‖θ‖∞

}
.

We also notice that, setting 〈q̇,p〉 := ∫ 1
0 (q,p)∗λ, we have

AH (q,p) = 〈q̇,p〉 − 1

2
‖p− θq‖2 −

∫ 1

0
U (t,q(t)) dt −

∫ 1

0
δ(t,q(t),p(t)) dt

and hence

dAH (q,p)[0,p] = 〈q̇,p〉 − 〈p− θq,p〉 −
∫ 1

0
∂pδ(t,q(t),p(t)) · p(t) dt .

Finally, we compute for (q,p) ∈ crit(AH )

AH (q,p) = AH (q,p) − dAH (q,p)[0,p]

= 1

2
‖p‖2 − 1

2
‖θq‖2 −

∫ 1

0
U (t,q(t)) dt −

∫ 1

0
δ(t,q(t),p(t)) dt

+
∫ 1

0
∂pδ(t,q(t),p(t)) · p(t) dt

≥ 1

2
‖p‖2 − c(‖p‖ + 3)

≥ −1

2
c2 − 3c.

2.2 Stable and unstable manifolds

In this subsection we recall the definition of stable resp. unstable manifold, referring to [40]
or [3, Appendix C] for further details. Let M be Hilbert manifold modeled on the infinite
dimensional real separable Hilbert spaceH, and let F be a C1 vector field onM. We denote
by 
F : �(F) ⊂ R×M → M the local flow of F . If x ∈ M is an hyperbolic rest point of
F , meaning that the spectrum of the Jacobian of F at x is disjoint from the imaginary axis,
then we can define the unstable and stable manifolds of x as

Wu(x; F) :=
{
p ∈ M

∣∣∣ (−∞, 0] × {p} ⊂ �(F), lim
t→−∞φF (t, p) = x

}
,

Ws(x; F) :=
{
p ∈ M

∣∣∣ [0,+∞) × {p} ⊂ �(F), lim
t→+∞φF (t, p) = x

}
.

The stable manifold theorem implies that such sets are actually C1-submanifolds of M
with dimension given by the Morse index resp. co-index of x whenever F admits a global
C1 Lyapunov function which is twice differentiable and non-degenerate at x .
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2.3 (0)-Essential subbundles

In this subsection we will recall the definition and some general properties of (0)-essential
subbundles that will be useful later on, referring to [3] for further details. For our purposes,
we will only need to consider (0)-essential subbundles of the tangent bundle of a Hilbert
manifoldM, but everything can be extended verbatim to general Hilbert bundles over Banach
manifolds.

Thus, let M be a Hilbert manifold modeled on the infinite dimensional separable real
Hilbert space H. The Grassmannian of H is the space

Gr (H) := {
V ⊂ H

∣∣ V closed linear subspace
}

of all closed linear subspaces ofH, endowed with the operator norm topology. Since we will
be only interested in subspaces with infinite dimension and codimension, all subspaces of
H appearing hereafter are supposed to be infinite dimensional and codimensional without
further specifying it. Also, we will denote the connected component Gr∞,∞(H) of all infinite
dimensional and codimensional subspaces again with Gr (H).

Given V ,W ∈ Gr (H), we will say that V is a compact perturbation of W if PV − PW
is a compact operator, where PV , PW denotes the orthogonal projection onto V resp. W . In
this case, the relative dimension of V with respect to W is the integer

dim(V ,W ) := dim(V ∩W⊥) − dim(V⊥ ∩W ).

The (0)-essential Grassmannian Gr(0)(H) is the quotient space of Gr(H) by the equiva-
lence relation

V ∼(0) W ⇔ V is a compact perturbation of W , dim(V ,W ) = 0.

Remark 2.2 Removing the condition dim(V ,W ) = 0 one obtains the so-called essential
Grassmannian. Similarly, requiring that dim(V ,W ) ∈ mZ for some fixedm ∈ N one obtains
the notion of (m)-essential Grassmannian. Here we refrain to discuss essential subbundles
in full generality because it will not be needed in the paper, and refer to [3, 5] for further
details.

The tangent bundle TM → M is a smooth Hilbert bundle with typical fibre H and
structure group GL(H). Since GL(H) is contractible (see [31]), the tangent bundle is always
trivial. We define

Gr (TM) =
⋃
p∈M

Gr (TpM) → M,

Gr(0)(TM) =
⋃
p∈M

Gr(0)(TpM) → M.

It is not hard to see that the above bundles have smooth structures. A smooth section of
Gr (TM) → M is just a smooth subbundle of TM → M. Similarly, a smooth section of
Gr(0)(TM) → M will be called a (0)-essential subbundle of TM → M.

Remark 2.3 An equivalent definition of (0)-essential subbundles can be given as follows: Let
{(ϕα,Uα)}α∈A be an atlas of M, and let Eα ⊂ TUα be a subbundle for every α ∈ A. The
family E := {Eα} is called a (0)-essential subbundle of TM, if

Eα

∣∣∣Uα∩Uβ

is a compact perturbation of Eβ

∣∣∣Uα∩Uβ

, ∀α, β ∈ A
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and

dim(Eα, Eβ) = 0, ∀α, β ∈ A.

Remark 2.4 It is natural to ask which conditions ensure that a (0)-essential subbundle lift to a
true subbundle. Following [3, Section 1.4], we see that, since the tangent bundle TM → M
is trivial, every (0)-essential subbundle can be identified with a map

E : M → Gr(0)(H)

and we are looking at the lifting problem

Gr(H)

M Gr(0)(H)

?

E

In the diagram, the vertical map is a fibration from a contractible space, so the (0)-essential
subbundle is liftable to a true subbundle if and only if the map E is null-homotopic. Following
[5] we see that Gr(0)(H) is simply connected, whereas πi (Gr(0)(H)) ∼= πi−1(BO(∞)), for
i ≥ 2, where BO(∞) denotes the classifying space of the infinite real orthogonal group.
Hence, using Bott’s periodicity theorem we deduce that E is null homotopic if and only if

E∗ : πi (M) → πi (Gr(0)(H))

vanishes for every i ≡ 1, 2, 3, 5mod 8. In particular, E is liftable to a true subbundlewhenever
πi (M) = 0 for every i ≡ 1, 2, 3, 5 mod 8.

In the specific case of interest in this paper, we haveM = M1−s for some s ∈ ( 12 , 1), see
Section 2.1, which is homotopy equivalent to�M , the free loop space of the closed manifold
M . As a consequence, the (0)-essential subbundle constructed in Sect. 3 is liftable to a true
subbundle in many cases, for instance whenever M has contractible universal cover (indeed,
in this case πi (M1−s) = 0 for all i ≥ 1). On the other hand, liftability is a very strong
property which, we stress, is not needed for the construction of Morse homology, though
it could be helpful to deal with orientations in the case of Z-coefficients. As in this paper
we are interested in Z2-coefficients only, we refrain to discuss liftability further here and
leave it to future research. We just finally notice that liftability is not related to the fact that
the second Stiefel-Whitney class of M vanishes on tori, which is the obstruction to have an
isomorphism between the Floer homology of T ∗M and the singular homology of �M with
Z-coeffients (the isomorphism is then obtained using a twisted version of the Floer complex,
see [7]). In fact, the (0)-essential subbundle E is always liftable along loops inM1−s (which
can be seen, after projection, as tori in M) because Gr(0)(H) is simply connected.

A (0)-essential subbundle E of TM is called strongly integrable if M admits an atlas
{(ϕα,Uα)} such that each ϕα maps E into the essential subbundle of TH represented by a
constant closed linear subspace V ⊂ H

Dϕα(p)E(p) = [V ], ∀p ∈ Uα, ∀α, (2.4)

and for every α, β the transition map

τ := ϕα ◦ ϕ−1
β : dom(τ ) = ϕβ(Uα ∩ Uβ) ⊂ H → H

satisfies the following property: for every bounded A ⊂ dom(τ ),

QA is pre-compact if and only if Qτ(A) is pre-compact, (2.5)
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where Q denotes a projector with kernel V . We shall observe that the definition above does
not depend on the choice of the projector Q, but only on the subspace V . Indeed, the set QA
is pre-compact if and only if the projection of A into the quotient spaceH/V is pre-compact.
In this case, the atlas {(ϕα,Uα)} is called a strong integrable structure modeled on (H, V )

for the (0)-essential subbundle E .
In what follows we will be interested in the inverse construction, since it will allow us to

build (0)-essential subbundles starting from “natural” local data: If {(ϕα,Uα)} is an atlas of
M such that (2.5) is satisfied with respect to some V ∈ Gr (H), and

dim(Dτ(ξ)V , V ) = 0

for all transitionmaps τ , then defining E by (2.4) yields a (by construction strongly integrable)
(0)-essential subbundle of TM. We finish this subsection recalling that there is also a notion
of integrable (0)-essential subbundle, which is obtained by requiring that for all transition
maps τ

Dτ(ξ)V is a compact perturbation of V , ∀ξ ∈ dom(τ ), (2.6)

hold instead of (2.5). As one readily sees, strong integrability is strictly more restrictive than
integrability, because (2.5) implies (2.6) by differentiation, but on the other hand a non-linear
map whose differential at every point is compact need not be compact.

The reason why strong integrability is better suited for our purposes than integrability
is the following: in case of a functional f whose critical points have infinite Morse index
and co-index, integrability is not enough to conclude pre-compactness of the intersection
Wu(x) ∩ Ws(y) between the unstable and stable manifolds of two critical points x and y,
even if the integrable (0)-essential subbundle is “nicely” related with the negative gradient
flow of f and the Palais-Smale condition holds, see [3, Section 3]. In fact, the intersection
Wu(x) ∩ Ws(y), though finite dimensional, might consist of infinitely many curves with
no cluster points besides x and y. As explained in [3, Section 0.3], this follows from the
fact that the conditions for an integrable (0)-essential subbundle to be “nicely” related with
the negative gradient flow of f are of local nature, whereas compactness involves a global
condition. On the other hand, if the (0)-essential subbundle is additionally strongly integrable,
then we can define in a natural way a global condition which implies pre-compactness of the
intersections; see [3, Section 6] or Sect. 4 for further details. Such a condition is formulated
in terms of invariance of an essentially vertical family, whose definition we now recall, under
a suitable negative pseudo-gradient vector field for f .

Definition 2.5 Let M be a Hilbert manifold modeled on the infinite dimensional separable
real Hilbert space H endowed with a complete Riemannian metric, and let E ⊂ TM be a
strongly integrable (0)-essential subbundle modeled on (H, V ) with strong integrable struc-
ture A = {(ϕα,Uα)}. Denote further with Q : H → H a projector with kernel V . A family
F of subsets of M is called an essentially vertical family for the strong integrable structure
A of E if it satisfies:

(i) F is an ideal of P(M), that is, it is closed under finite unions and if A ∈ F then any
subset of A is also contained in F ,

(ii) for every point p ∈ M there is a local chart (ϕ,U) ∈ A such that every set A ⊂ U with
ϕ(A) bounded belongs to F if and only if Qϕ(A) is pre-compact, and

(iii) if B ⊂ M is contained in an ε-neighborhood of some Aε ∈ F for every ε > 0, then
B ∈ F .

Any set A ∈ F is called essentially vertical set.
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Condition (iii) is in other words saying that F is closed with respect to the Hausdorff
distance. We shall observe that such a condition was not required in [3], the reason being that
it is not needed in the proof of the pre-compactness result for the intersection between stable
and unstable manifolds of critical points, see [3, Theorem 6.5]. Here we instead require it
since it is needed in the proof of the abstract transversality theorem 5.5, as well as in the proof
of the fact that the space of vector fields preservingF is a module over the space of Lipschitz
functions (see Proposition 4.1). As we shall see, such a condition is trivially satisfied by the
familyF which naturally arises in the construction of theMorse complex for the Hamiltonian
action.

2.4 Some preliminary computations

In this section we collect some preliminary estimates and computations about multiplication
and commutator operators on Sobolev spaces that will be useful later on. In what follows we
denote with {ek := e2πk J t } the standard Hilbert basis of L2(T,Rn). For

u =
∑
k∈Z

ukek

and s ∈ R we set

‖u‖2s :=
∑
k∈Z

(1+ |k|)2s |uk |2.

For s ≥ 0 we define the Sobolev space

Hs(T,Rn) :=
{
u ∈ L2(T,Rn)

∣∣∣ ‖u‖s < +∞
}
,

and set H−s(T,Rn) to be its dual space. In a similar way we define the Sobolev spaces

Hs(T,Hom(Rn,Rn)), s ∈ R,

where in this case the Hs-norm is defined using any equivalent matrix-norm for the Fourier
coefficients of a loop A : T → Hom(Rn,Rn) with respect to the basis {ek}. For any σ ∈ R

we finally define the σ -power of the Laplacian � by

�σ u := (2π)2σ
∑
k∈Z∗

|k|2σ ukek .

We start with the following elementary

Lemma 2.6 For α, β, γ ≥ 0 such that α + β > 1, 0 ≤ γ ≤ β and γ < α + β − 1 we have

+∞∑
h=1

1

hα(k + h)β
= O

(
1

kγ

)
for k → +∞,
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Proof Since γ ≤ β we have

+∞∑
h=1

1

hα(k + h)β
≤

+∞∑
h=1

1

hα+β−γ (k + h)γ

= 1

kγ

+∞∑
h=1

1

hα+β−γ (1+ h/k)γ

≤ 1

kγ

+∞∑
h=1

1

hα+β−γ

and the claim follows as the latter series converges by the assumption α + β − γ > 1.

The following result about multiplication operators on Sobolev spaces can be found in
[28, Lemma 28] (see also [43]) for the case of real- or complex-valued functions. As we are
here dealing with vector-valued functions, we include an elementary proof for the sake of
completeness.

Proposition 2.7 Fix s > 1/2. Then, for every r ∈ [−s, s], the pointwise matrix–vector
multiplication of a matrix-valued function with a vector-valued function extends uniquely to
a continuous bilinear map

Hs(T,Hom(Rn,Rn)) × Hr (T,Rn) → Hr (T,Rn)

resp.

Hr (T,Hom(Rn,Rn)) × Hs(T,Rn) → Hr (T,Rn).

In other words, for every r ∈ [−s, s] there exists cr > 0 such that

‖A · u‖r ≤ cr‖A‖s‖u‖r , ∀A ∈ Hs(T,Hom(Rn,Rn)), ∀u ∈ Hr (T,Rn),

‖A · u‖r ≤ cr‖A‖r‖u‖s, ∀A ∈ Hr (T,Hom(Rn,Rn)), ∀u ∈ Hs(T,Rn).

Proof We prove only the first estimate being the proof of the second one identical. We
first consider the case r ∈ [0, s]. Clearly, we can further assume that r ∈ (0, 1/2], as the
claim is obvious for r = 0 and it follows from the standard estimates for the product of
two Sobolev functions with supercritical Sobolev exponents for r ∈ (1/2, s]. By a standard
density argument we can assume that A and u are smooth. We denote with Ak the Fourier
coefficients of A and with uk the Fourier coefficients of u̇. Clearly, we have

A · u =
∑
k∈Z

(∑
h∈Z

Ak−huh
)
ek,

and thus using the Cauchy-Schwarz inequality

‖A · u‖2r =
∑
k∈Z

(1+ |k|)2r
∣∣∣∑
h∈Z

Ak−huh
∣∣∣2

≤
∑
k∈Z

(1+ |k|)2r
(∑
h∈Z

1

(1+ |k − h|)2s(1+ |h|)2r
)

(∑
h∈Z

‖Ak−h‖2(1+ |k − h|)2s |uh |2(1+ |h|)2r
)
.
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We preliminary notice that, for fixed k ∈ Z, the sum

Gr (k) :=
∑
h∈Z

1

(1+ |k − h|)2s(1+ |h|)2r

is finite, since by assumption 2s + 2r > 1. All we have to show is that

Gr (k) = O

(
1

|k|2r
)

for |k| → +∞.

Indeed, if this is the case then the function k 
→ (1+|k|)2rGr (k) is bounded onZ and hence
we obtain for some constant c > 0

‖A · u‖2r ≤ c
∑
k∈Z

∑
h∈Z

‖Ak−h‖2(1+ |k − h|)2s |uh |2(1+ |h|)2r = c‖A‖2s‖u‖2r .

Since Gr (−k) = Gr (k), we can assume without loss of generality k ∈ N. We split the sum
as follows

Gr (k) = G1(k) + G2(k) + G3(k) + G4(k)

=
∑
h≤0

1

(1+ |k − h|)2s(1+ |h|)2r +
�k/2�∑
h=1

1

(1+ |k − h|)2s(1+ |h|)2r

+
k−1∑

h=�k/2�+1

1

(1+ |k − h|)2s(1+ |h|)2r +
∑
h≥k

1

(1+ |k − h|)2s(1+ |h|)2r

and estimate each of these terms separately. For G1(k) we use Lemma 2.6 with α = γ = 2r
and β = 2 s to infer that for k → +∞

G1(k) =
+∞∑
h=0

1

(1+ k + h)2s(1+ h)2r
=

+∞∑
h=1

1

(k + h)2sh2r
= O(

1

k2r
).

Similarly, for G4(k) we have for k → +∞

G4(k) =
∑
h≥k

1

(1+ h − k)2s(1+ h)2r
≤ 1

k2r
∑
h≥k

1

(1+ h − k)2s
= O

(
1

k2r

)

as the latter series converges by the assumption s > 1/2. For G3(k) we estimate similarly

G3(k) � 1

k2r

k−1∑
h=�k/2�+1

1

(1+ k − h)2s
≤ 1

k2r

+∞∑
h=1

1

h2s
= O

(
1

k2r

)
for k → +∞.

In order to bound G2(k) we preliminary compute, for h = 1, ..., �k/2�, using the fact that
the function x 
→ xs−r is monotonically increasing and subadditive

(1+ k − h)s−r ≥ (1+ k)s−r − hs−r ≥ (2s−r − 1)hs−r .

123



109 Page 14 of 55 L. Asselle and M. Starostka

This yields

G2(k) =
�k/2�∑
h=1

1

(1+ k − h)2s(1+ h)2r
� 1

k2r

�k/2�∑
h=1

1

(1+ k − h)2(s−r)(1+ h)2r

� 1

k2r

�k/2�∑
h=1

1

h2s

thus completing the proof in the case r ∈ [0, s].
The case of negative Sobolev exponents follows nowby a simple duality argument. Indeed,

for r ∈ [0, s] and for every smooth v with ‖v‖r = 1 we have

|〈A · u, v〉| = |〈u, AT · v〉| ≤ ‖u‖−r‖AT · v‖r ≤ c‖u‖−r‖AT ‖s‖v‖r = c‖u‖−r‖A‖s,
where we have used the estimate proved above for the case of non-negative Sobolev expo-
nents. Here, 〈·, ·〉 denotes the duality pairing. Taking the supremum over ‖v‖r = 1 yields

‖A · u‖−r = sup
‖v‖r=1

|〈A · u, v〉| ≤ c‖u‖−r‖A‖s,

thus finishing the proof.

Corollary 2.8 For every s > 1/2 the multiplication operators

Hs(T,Hom(Rn,Rn)) × Hs−1(T,Rn) → Hs−1(T,Rn), (A, u) 
→ A · u
Hs−1(T,Hom(Rn,Rn)) × Hs(T,Rn) → Hs−1(T,Rn), (A, u) 
→ A · u,

are well-defined and bounded. Moreover, for fixed A ∈ Hs−1(T,Hom(Rn,Rn)), the oper-
ator

Hs(T,Rn) → Hs−1(T,Rn), u 
→ A · u,

is compact.

Proof. The first claim follows directly from Proposition 2.7 noticing that s − 1 ∈ [−s, s]
for s > 1/2. The second claim follows also easily from Proposition 2.7. Indeed, since
1− s < 1/2 < s, the considered operator can be written as the composition of the compact
embedding Hs ↪→ Hr , for any 1/2 < r < s, with the bounded (since s − 1 ∈ [−r , r ])
operator

Hr (T,Rn) → Hs−1(T,Rn), u 
→ A · u.

The next technical lemma will be needed to prove the boundedness of the commutator
operator [

A,�s−1 ◦ d

dt

]
: Hr (T,Rn) → H1−s(T,Rn), r >

1

2
,

for fixed A ∈ Hs(T,Hom(Rn,Rn)), s ∈ (1/2, 1), see Proposition 2.10.

Lemma 2.9 Fix s ∈ (1/2, 1) and r > 1/2. For k ∈ Z set

F(k) :=
∑
h∈Z

∣∣|k|2(s−1)k − |h|2(s−1)h
∣∣2

(1+ |k − h|)2s(1+ |h|)2r .
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Then

F(k) = O

(
1

|k|2(1−s)

)
for |k| → +∞.

Proof Notice that F(k) is finite for every k ∈ Z since by the assumptions on s and r

2s + 2r − 2(2s − 1) = 2(r − s + 1) > 1.

Also, since F(−k) = F(k) it is enough to consider the case k → +∞. Given k > 0, we
split

F(k) = F1(k) + F2(k) + F3(k),

where

F1(k) =
k−1∑
h=0

∣∣|k|2(s−1)k − |h|2(s−1)h
∣∣2

(1+ |k − h|)2s(1+ |h|)2r ,

F2(k) =
∑
h≥k

∣∣|k|2(s−1)k − |h|2(s−1)h
∣∣2

(1+ |k − h|)2s(1+ |h|)2r ,

F3(k) =
∑
h<0

∣∣|k|2(s−1)k − |h|2(s−1)h
∣∣2

(1+ |k − h|)2s(1+ |h|)2r ,

and bound each of these terms separately. By the assumption on s the functions x 
→ xs and
x 
→ x1−s are monotonically increasing and subadditive, and we deduce

k2(1−s)F1(k) = k2(1−s)
k−1∑
h=0

(
k2s−1 − h2s−1

)2
(1+ k − h)2s(1+ h)2r

=
k−1∑
h=0

(
ks − k1−sh2s−1

)2
(1+ k − h)2s(1+ h)2r

≤
k−1∑
h=0

(
ks − hs

)2
(1+ k − h)2s(1+ h)2r

≤
k−1∑
h=0

(
k − h

)2s
(1+ k − h)2s(1+ h)2r

≤
k−1∑
h=0

1

(1+ h)2r

≤
+∞∑
h=1

1

h2r
.

The claim

F1(k) = O

(
1

k2(s−1)

)
for k → +∞

follows as the latter series in the above chain of inequalities converges by the assumption
r > 1/2.
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By the subadditivity of the function x 
→ x2s−1 we find the following upper bound for
F2(k):

F2(k) =
+∞∑
h=k

(
h2s−1 − k2s−1

)2
(1+ h − k)2s(1+ h)2r

≤
+∞∑
h=k

(
h − k

)2(2s−1)

(1+ h − k)2s(1+ h)2r

≤
+∞∑
h=k

(
1+ h − k

)2(2s−1)

(1+ h − k)2s(1+ h)2r

=
+∞∑
h=k

1

(1+ h − k)2(1−s)(1+ h)2r

=
+∞∑
�=1

1

�2(1−s)(k + �)2r
.

Since s ∈ (1/2, 1) and r > 1/2, Lemma 2.6 with α = γ = 2(1− s) and β = 2r yields

F2(k) = O

(
1

k2(1−s)

)
for k → +∞.

We now bound F3(k):

F3(k) =
+∞∑
h=1

(
k2s−1 + h2s−1

)2
(1+ k + h)2s(1+ h)2r

≤ 2
+∞∑
h=1

k2(2s−1) + h2(2s−1)

(k + h)2sh2r

= 2k2(2s−1)
+∞∑
h=1

1

(k + h)2sh2r
+ 2

+∞∑
h=1

1

(k + h)2sh2(r+1−2s)
.

The first series in the last expression can be estimated using Lemma 2.6 with α = 2r ,
β = γ = 2s, thus obtaining

k2(2s−1)
+∞∑
h=1

1

(k + h)2sh2r
= k2(2s−1)O

(
1

k2s

)
= O

(
1

k2(1−s)

)
for k → +∞,

whereas applying Lemma 2.6 to the second series with α = 2(r + 1 − 2s), β = 2s, and
γ = 2(1− s) yields

+∞∑
h=1

1

(k + h)2sh2(r+1−2s)
= O

(
1

k2(1−s)

)
for k → +∞.

This completes the proof of the lemma.

Proposition 2.10 Fix s ∈ (1/2, 1). Then, for every r > 1/2 there exists cr > 0 such that
∥∥∥[A,�s−1 ◦ d

dt
]u
∥∥∥
1−s

≤ cr‖A‖s‖u‖r
for every A ∈ Hs(T,Hom(Rn,Rn)), and u ∈ Hr (T,Rn).
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Proof By a standard density argument we may assume that both u and A are smooth. We
write

A =
∑
k∈Z

Akek, u =
∑
h∈Z

uheh,

for the Fourier series expansion of A and u respectively, where {eh} denotes the standard
Hilbert basis of L2. A straightforward computation shows that

[
A,�s−1 ◦ d

dt

]
u = (2π)2s−1i

∑
k∈Z

(∑
h∈Z

(|h|2(s−1)h − |k|2(s−1)k
)
Ak−huh

)
ek .

Therefore, using the Cauchy-Schwarz inequality and Lemma 2.9 we obtain for some positive
number c:∥∥∥[A,�s−1 ◦ d

dt
]u
∥∥∥2
1−s

= (2π)2(2s−1)
∑
k∈Z

(1+ |k|)2(1−s)

∣∣∣∑
h∈Z

(|h|2(s−1)h − |k|2(s−1)k
)
Ak−huh

∣∣∣2

≤ (2π)2(2s−1)
∑
k∈Z

(1+ |k|)2(1−s)F(k)

∑
h∈Z

(1+ |k − h|)2s |Ak−h |2(1+ |h|)2r |uh |2

≤ c
∑
k∈Z

∑
h∈Z

(1+ |k − h|)2s |Ak−h |2(1+ |h|)2r |uh |2

= c
∑
h∈Z

(1+ |h|)2r |uh |2
∑
k∈Z

(1+ |k − h|)2s |Ak−h |2

= c‖A‖2s‖u‖2r
as claimed.

Remark 2.11 The proposition above implies that, for any fixed A ∈ Hs(T,Hom(Rn,Rn)),
the commutator [

A,�s−1 ◦ d

dt

]
: Hs(T,Rn) → H1−s(T,Rn)

is a compact operator, for it can be written as the composition of a bounded operator (the
commutator itself defined on Hr , r ∈ (1/2, s)) with the compact embedding Hs ↪→ Hr .
Notice that the single operators

A�s−1 d

dt
: Hs

0 (T,Rn) → H1−s(T,Rn), �s−1 d

dt
(A·) : Hs

0 (T,Rn) → H1−s(T,Rn),

are only bounded. Also, it is not clear to us whether or not the commutator operator gain
derivatives (unless A is assumed to be sufficiently regular). In fact, one would expect from
the theory of pseudo-differential operators that [A,�s−1 d

dt ] be a pseudo-differential operator
of order 2s − 2, and thus define a bounded operator from Hs into H2−s . This however will
not be relevant for our purposes.

We shall finally observe the following consequence of Proposition 2.10 which will be use-
ful later on: if {Am} ⊂ Hs(T,Hom(Rn,Rn)) is a bounded sequence and {um} ⊂ Hs(T,Rn)
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weakly-converges in Hs to u ∈ Hs(T,Rn), then {[Am,�s−1 d
dt ]um} converges strongly in

H1−s to [A,�s−1 d
dt ]u.

Remark 2.12 Using the chain rule we see that[
A,�s−1 d

dt

]
u = [A,�s−1]u̇ − �s−1 Ȧ · u.

Therefore, combining Corollary 2.8 with Proposition 2.10 we obtain that, for every s ∈
(1/2, 1) and every A ∈ Hs(T,Hom(Rn,Rn)) fixed, also the commutator operator

[
A,�s−1] ◦ d

dt
: Hs(T,Rn) → H1−s(T,Rn) (2.7)

is well-defined and compact.Moreover, for any bounded sequence {Am} ⊂ Hs(T,Hom(Rn,

Rn)) and anyweakly-converging sequence {um} ⊂ Hs(T,Rn), the sequence {[A,�s−1]u̇m}
is strongly converging in H1−s .

3 The (0)-essential subbundle E
In this section we show that there is a natural way to define a (0)-essential strongly integrable
essential subbundle Es ⊂ TM1−s , for which the standard atlas of M1−s (c.f. Subsection
2.1) is a strong integrable structure such that the negative eigenspace of the Hessian of AH

at each critical point (q,p) of AH belongs to the essential class Es(q,p). In particular, we
have a well-defined (integer valued) notion of relative Morse index for critical points of AH .
In Sect. 4 we will then show that Es behaves “nicely” under a suitable pseudo-gradient flow
of AH , thus allowing us to prove that the intersection between stable and unstable manifolds
of any two critical points of AH is finite dimensional and pre-compact.

For s ∈ (1/2, 1) fixed we set H to be the Hilbert space

H := Hs(T,Rn) × H1−s(T, (Rn)∗)

endowed with the standard Hilbert product

〈·, ·〉H := 〈pr1(·), pr1(·)〉s + 〈pr2(·), pr2(·)〉1−s,

where pr1 : H → Hs(T,Rn) and pr2 : H → H1−s(T, (Rn)∗) denote the projections onto
the first and second factor respectively, and define the operator

L : H → H, L(q,p) := (T ∗�−s ṗ,−T�s−1q̇). (3.1)

Here � denotes the Laplace-operator, �α is for every α ∈ R defined by

�αu :=
∑
k∈Z∗

(2π)2α|k|2αukek,

where {ek} is the standard Hilbert basis of L2(T,Rn) and u = ∑
k∈Z ukek is the Fourier

expansion of u, and T : Rn → (Rn)∗ denotes the canonical identification (notice that T and
T ∗ commute with both � and d/dt). It is straightforward to check that L is a bounded self-
adjoint operator representing the quadratic form 〈p, q̇〉 with respect to the Hilbert product
〈·, ·〉H, i.e.

1

2
〈L(q,p), (q,p)〉H = 〈p, q̇〉 =

∫ 1

0
p(t)[q̇(t)] dt, ∀(q,p) ∈ H.
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Moreover, L has 2n-dimensional kernel H0 given by constant loops and its eigenvalues are
given by ±1 with corresponding eigenspaces

H
± =

{
(q,∓T�s−1q̇)

∣∣∣ q ∈ Hs(T,Rn),

∫ 1

0
q(t) dt = 0

}
. (3.2)

In what follows, we denote with Hs
0 (T,Rn) ⊂ Hs(T,Rn) the subspace of loops with zero

mean, andwith Q : H → H the orthogonal projector ontoH+ (sinceH0 is finite dimensional,
there is no need to worry about it). For every open subsetU ⊂ Rn and every diffeomorphism

T×U → T× M, (t, q) 
→ (t, ϕ(t, q)),

we denote the induced local parametrization by

ϕ∗ : Hs(T,U ) × H1−s(T, (Rn)∗) → M1−s,

and denote by Es
ϕ the local subbundle obtained by pushing forward the constant subbundle

of

T
(
Hs(T,U ) × H1−s(T, (Rn)∗)

) ∼= Hs(T,U ) × H1−s(T, (Rn)∗) ×H

given by taking in each tangent space the negative eigenspaceH− := H
−(L) of the operator

L under ϕ∗. In this way, we obtain a family of local subbundles

Es := {Es
ϕ}. (3.3)

Proposition 3.1 For every s ∈ (1/2, 1) fixed, Es defines an integrable (0)-essential subbundle
of TM1−s . Moreover, the negative eigenspaceHu(q,p) of the Hessian d2AH (q,p) of AH :
M1−s → R at a critical point (q,p) belongs to the essential class Es(q,p), meaning
that Hu(q,p) is a compact perturbation of Es

ϕ for any local parametrization ϕ∗ such that
(q,p) ∈ Im ϕ∗.

Definition 3.2 Let (q,p) be a critical point of the Hamiltonian action functional AH :
M1−s → R. Then, the relative Morse index m(q,p) is defined as

m(q,p) := m
(
(q,p), Es) := dim(Hu(q,p), Es

ϕ),

that is, as the relative dimension between the negative eigenspaceHu(q,p) of the Hessian of
AH at (q,p) and Es

ϕ , where ϕ∗ is any local parametrization ofM1−s such that (q,p) ∈ Imϕ∗.
By Proposition 3.1, m(q,p) is a well-defined integer, i.e. independent of the choice of ϕ∗.

Proof We need to show that for every transition map τ∗ we have:

• dτ∗(H−) is compact perturbation of H−.
• dim(H−, dτ∗(H−)) = 0.

A straightforward computation shows that

dτ∗(q,p)[h,k] = (A−1(t)h, B(t)h+ A(t)∗k),

where

A−1(t) := A−1(t,q(t)) := dτ(t,q(t)) ∈ Hs(T,GL(Rn)),

B(t) := B(t,q,p) := (d(dτ−∗(t,q(t))·)p(t) ∈ H1−s(T,Hom(Rn, (Rn)∗)).
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Therefore

dτ∗(q,p)[H−] =
{(

A−1h, Bh+ A∗T�s−1ḣ
)∣∣∣ h ∈ Hs

0 (T,Rn)
}

=
{(
h, BAh+ T A−1�s−1 ˙(Ah)

)∣∣∣ h ∈ Hs
0 (T,Rn)

}

whereweused the fact that A−1(t) ∈ GL(Rn) for every t ∈ T and the identity T A−1 = A∗T .
Also, for notational convenience, we dropped the dependence on t everywhere.

It follows that both H
− and dτ∗(q,p)[H−] are graph of a function Hs

0 (T,Rn) →
H1−s(T, (Rn)∗), namely

h 
→ T�s−1ḣ and h 
→ BAh+ T A−1�s−1 ˙(Ah)

respectively. As such, they are compact perturbation of each other if and only if the corre-
sponding maps differ by a compact operator (add reference). The part h 
→ BAh is compact
by Proposition 2.7, as for all r ∈ (1/2, s] it factorizes as

Hs
0 ↪→ Hr BA−→ H1−s .

As the operator T does not play any role as far as compactness is concerned, we are thus left
with the operator

�s−1 − A−1�s−1 ˙(Ah)

which after multiplying on both sides with A yields the operator
[
A,�s−1 ◦ d

dt

]
: Hs

0 (T,Rn) 
→ Hs−1(T,Rn).

The claim follows now from Proposition 2.10. As far as (0)-essentiality is concerned, we
observe that both H

− and dτ∗(q,p)[H−] are in Fredholm pair with the vertical subspace

{0} × H1−s(T,Rn) ⊂ Hs
0 (T,Rn) × H1−s(T, (Rn)

and the Fredholm index is in both cases zero (this follows from the general fact that the graph
of a function is always in Fredholm pair with the vertical subspace with Fredholm index
zero). Therefore, applying Proposition 5.1 in [2] we obtain

ind (H−, {0} × H1−s(T, (Rn)∗)) = ind (dτ∗(q,p)[H−], {0} × H1−s(T, (Rn)∗))
+ dim(H−, dτ∗(q,p)[H−])

which implies that dim(H−, dτ∗(q,p)[H−]) = 0 as claimed.
In order to prove the last assertion, we take any local parametrization ϕ∗ of M1−s such

that Imϕ∗ contains the critical point (q,p) of AH and compute

AH ◦ ϕ∗(ξ, ν) =
∫ 1

0

(
dϕt (ξ(t)

)−∗[ν(t)](∂tϕt (ξ(t)) + dϕt (ξ(t))[ξ̇ (t)]) dt +H(ϕ·(ξ), dϕ·(ξ)−∗[ν])

=
∫ 1

0
ν(t)[ξ̇ (t)] dt

︸ ︷︷ ︸
=:(1)

+
∫ 1

0
ν(t)

[
dϕt (ξ(t))−1[∂tϕt (ξ(t))]] dt +H(ϕ·(ξ), dϕ·(ξ)−∗[ν])

︸ ︷︷ ︸
=:(2)

.

Since the functional in (2) has compact differential (indeed, no derivatives of ξ or ν appear),
and since the negative eigenspace of the Hessian of the functional in (1) is preciselyH−, the
claim follows.
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As already observed, for our purposes we need to know more about Es than integrability.
What we need is indeed that Es is strongly integrable. Following [3, Page 335], in order to
show this, we need to establish the following property: for any transition map τ∗ = ψ−1∗ ◦ϕ∗
and every V ⊂ ϕ−1∗ (Imϕ∗ ∩ Imψ∗) bounded, QV is pre-compact if and only if Qτ∗(V )

is pre-compact. Clearly, if suffices to show the implication QV pre-compact ⇒ Qτ∗(V )

pre-compact, since the other implication follows replacing τ∗ with τ−1∗ . Notice that transition
maps are of the form

τ∗(q,p) = (
τ(·,q(·)), dτ(·,q(·))−∗p

)
, τ = ψ−1 ◦ ϕ.

Thus, fix τ∗ and consider a bounded set V ⊂ ϕ−1∗ (Imϕ∗ ∩ Imψ∗) such that QV is pre-
compact.

Lemma 3.3 The following statements are equivalent:

i) Qτ∗(V ) is pre-compact.
ii) For every sequences {um} ⊂ V and {vm} ⊂ H

+ such that vm⇀0 we have
〈τ∗(um), vm〉H → 0.

Proof Assume that Qτ∗(V ) is pre-compact, and let (um) ⊂ V and (vm) ⊂ H
+ be sequences

such that vm⇀0. Then, up to taking a subsequence we have that Qτ∗(um) → u with u ∈ H
+,

and hence

〈τ∗(um), vm〉H = 〈Qτ∗(um), vm〉H
= 〈Qτ∗(um) − u, vm〉H + 〈u, vm〉H
≤ ‖Qτ∗(um) − u‖H · ‖vm‖H + 〈u, vm〉H
→ 0.

Conversely, assume that ii) holds. In order to show that Qτ∗(V ) is pre-compact, we need
to show that for every (um) ⊂ V the sequence Qτ∗(um) contains a strongly converging
subsequence. Thus, let (um) ⊂ V be any sequence. Since Qτ∗(um) is bounded, we have that
up to a subsequence Qτ∗(um)⇀u for some u ∈ H

+. Therefore, choosing vm := Qτ∗(um)−
u⇀0 we obtain

o(1) = 〈τ∗(um), Qτ∗(um) − u〉H = ‖Qτ∗(um)‖2
H
− 〈τ∗(um), u〉H︸ ︷︷ ︸

→‖u‖2
H

,

from which we deduce that ‖Qτ∗(um)‖H → ‖u‖H. This readily shows that Qτ∗(um) → u.

Thus, let {um} ⊂ V any sequence. Up to passing to a subsequence we have

um = (qm,pm) = (q−m , T�s−1q̇−m) + (q+m ,−T�s−1q̇+m) + (q0m,p0m) ∈ H
− ⊕H

+ ⊕H
0

with {q−m}weakly-converging in Hs , {q+m} strongly converging in Hs , and {(q0m,p0m)} strongly
converging in H

0. For any fixed sequence {vm} ⊂ H
+ with vm⇀0 we want to show that

〈τ∗(um), vm〉H → 0.

We notice that {�s−1q̇+m} and {dτ(qm)} are strongly converging in H1−s by assumption,
and that {[dτ(qm),�s−1]q̇m} is strongly converging in H1−s by Remark 2.12. Further, we
write

τ(qm) = τ̃ (qm) + τ(qm)0,
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where τ(qm)0 := ∫ 1
0 τ(qm) dt , and observe that τ(qm)0 converges inRn . Therefore, denoting

with “∼=” any equality up to quantities which are strongly converging in H (recall that this
means strong convergence in Hs resp. H1−s when the corresponding quantity appears in the
first resp. second factor), we compute

τ∗(um) = (τ (qm), T dτ(qm)[�s−1q̇−m − �s−1q̇+m ] + dτ(qm)−∗p0m)

= (τ (qm), T dτ(qm)[�s−1q̇m]) − 2 · (0, T dτ(qm)[�s−1q̇+m ]) + (0, dτ(qm)−∗p0m)

∼= (τ (qm), T dτ(qm)[�s−1q̇m])
= (τ̃ (qm), T dτ(qm)[�s−1q̇m]) + (τ (qm)0, 0)

∼= (τ̃ (qm), T dτ(qm)[�s−1q̇m])
= (τ̃ (qm), T�s−1dτ(qm)[q̇m]) + (0, T [dτ(qm),�s−1]q̇m])
∼= (τ̃ (qm), T�s−1dτ(qm)[q̇m])
= (τ̃ (qm), T�s−1d/dt[τ̃ (qm)]) ∈ H

−.

In other words, τ∗(um) differs from an element in H
− only up to a quantity which strongly

converges in H, and this yields

〈τ∗(um), vm〉H = o(1) + 〈(τ̃ (qm), T�s−1d/dt[τ̃ (qm)]), vm〉H︸ ︷︷ ︸
=0

= o(1)

as claimed. Summarizing, we have proved the following

Theorem 3.4 (Strong integrability) For every s ∈ (1/2, 1), Es defines a strongly integrable
(0)-essential subbundle of TM1−s with the property that the negative eigenspace Hu(q,p)

of the Hessian of AH : M1−s → R at every critical point (q,p) belongs to the essential
class Es(q,p).

4 Pre-compactness of intersection between stable and unstable
manifold

Goal of this section will be to construct a negative pseudo-gradient F for AH such that the
pair (AH , F) satisfies the Palais-Smale condition and which preserves essentially vertical
sets for the (0)-essential subbundle Es constructed in Sect. 3. In virtue of [3, Theorem 6.5],
this implies that the intersection between the stable and unstable manifold of any two critical
points ofAH is a pre-compact finite dimensional manifold of dimension equal the difference
of the relative Morse indices. To achieve this, we will first prove in Sect. 4.1 an abstract result
stating that the space of vector fields that preserve an essential vertical family is amodule over
the space of bounded Lipschitz functions. In Sect. 4.2 we will then employ this abstract result
to construct F first in a fixed local chart and then glue all local definitions by means of cut-off
functions. This construction will be carried out in such a way that the Palais-Smale condition
for the pair (AH , F) follows from the “metric” Palais-Smale condition, see Proposition 2.1.
The vector field F will be then perturbed in Sect. 5 within the class of vector fields preserving
essentially vertical sets in order to achieve transversality.
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4.1 The space of vector fields that preserve an essentially vertical family

In this section we will prove an abstract result about the space of vector fields whose flow
preserves a given essentially vertical family. Thus, let M be a Hilbert manifold admitting a
close embedding into a Hilbert space. We endow M with the induced distance. We further
assume thatF be an essentially vertical family for the strongly integrable essential subbundle
E ⊂ TM. For a bounded Lipschitz vector field F onM, the essentially vertical family F is
said to be F-positively invariant if for every A ∈ F and every T ≥ 0 the setφF ([−T , T ]×A)

is in F .

Proposition 4.1 The space of bounded Lipschitz vector fields F onM of class Ck for which
F is F-positively invariant is a module over the ring of bounded Lipschitz functions of class
Ck on M.

For the proof we will need the following homogenization result, which is certainly known
to the experts, but which will be included here for completeness.

Theorem 4.2 Let E be a real Banach space and let X , Y be globally Lipschitz vector fields
on E. Set, for n ∈ Z+,

Jn :=
⋃
k∈Z

[2k
n

,
2k + 1

n

)
, Zn(t, x) := IJn (t)X(x) + IJ cn (t)Y (x).

Then the flow φn : R× E → E of Zn converges to the flow φ : R× E → E of ((X + Y )/2
uniformly on [−T , T ] × E, for every T > 0.

To prove Theorem 4.2 we will use the following

Lemma 4.3 Let U ⊂ C0([a, b], E) be an equi-bounded and equi-continuous family of E-
valued curves. Let (μn) be a sequence of real valued Radon measures on [a, b] which
converges to zero in the weak-∗topology of C0([a, b], E)∗. Then the convergence

lim
n→+∞

∫
[a,b]

u dμn = 0 in E

is uniform in u ∈ U.

Proof. The statement would be trivially true if E were finite dimensional, because in this
case the family U would be pre-compact in C0([a, b], E). The general case can be reduced
to the scalar case by choosing ϕn,u in E∗ such that ‖ϕn,u‖ ≤ 1 and

〈ϕn,u,

∫
[a,b]

u dμn〉 =
∥∥∥∥
∫
[a,b]

u dμn

∥∥∥∥ .

Indeed, with such a choice the family
{〈ϕn,u, u〉

}
n∈N, u∈U ⊂ C0([a, b],R)

is equi-bounded and equi-continuous, thus pre-compact by the Arzela-Ascoli theorem.
Hence,

lim
n→+∞

∫
[a,b]

〈ϕn,u, u〉 dμn = 0,
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uniformly in u ∈ U. The conclusion follows from the identity
∥∥∥∥
∫
[a,b]

u dμn

∥∥∥∥ = 〈ϕn,u,

∫
[a,b]

u dμn〉 =
∫
[a,b]

〈ϕn,u, u〉 dμn .

Proof of Theorem 4.2 Observe that, if X , Y are κ-Lipschitz, then Zn(t, ·) is κ-Lipschitz with
respect to the second variable for every t ∈ R.

Claim 1. φn(t, ·) is equi-Lipschitz with respect to the second variable, uniformly in t ∈
[−T , T ].
In fact, since Zn is κ-Lipschitz with respect to the second variable,

‖φn(t, x) − φn(t, y)‖ ≤
∥∥∥x − y +

∫ t

0

(
Zn(s, φ(s, x) − Zn(s, φ(s, y))

)
ds
∥∥∥

≤ ‖x − y‖ + κ

∣∣∣
∫ t

0
‖φ(s, x) − φ(s, y)‖ ds

∣∣∣,
and by the Gronwall’s lemma we find

‖φn(t, x) − φn(t, y)‖ ≤ eκ|t |‖x − y‖,
for every t ∈ R and every x, y ∈ E .

Claim 2. If the family of curves U ⊂ C0([a, b], E) is equi-bounded and equi-continuous,
then

lim
n→+∞

∫ b

a

(
Zn(s, u(s)) − X + Y

2
(u(s))

)
ds = 0 in E,

uniformly in u ∈ U.
Indeed, we have the identity
∫ b

a

(
Zn(s, u(s)) − X + Y

2
(u(s))

)
ds =

∫ b

a

(
IJn (s) −

1

2

)
(X − Y )(u(s)) ds.

By Claim 1, the family of curves

{(X − Y ) ◦ u}u∈U ⊂ C0([a, b], E)

is equi-bounded and equi-continuous. Moreover, IJn converges to 1
2 in the weak-∗topology

of C0([a, b], E)∗. Then the conclusion follows from Lemma 4.3.
Claim 3. For every (t, x) ∈ R× E , the sequence (φn(t, x)) is a Cauchy sequence.

By Claim 2 we have

‖φn(t, x) − φm(t, x)‖ =
∥∥∥∥
∫ t

0

(
Zn(s, φ(s, x) − Zn(s, φ(s, y))

)
ds

∥∥∥∥
=
∥∥∥∥
∫ t

0

( X + Y

2
(φn(s, x)) − X + Y

2
(φm(s, x))

)
ds

∥∥∥∥+ εn,m(t),

where εn,m(t) is infinitesimal for m, n → +∞, uniformly in t ∈ [−T , T ]. Since (X + Y )/2
is κ-Lipschitz, we deduce that

‖φn(t, x) − φm(t, x)‖ ≤ κ

∫ t

0
‖φn(s, x) − φm(s, x)‖ ds + εn,m(t).

By Gronwall’s lemma, ‖φn(t, x) − φm(t, x)‖ → 0 for n,m → +∞.
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We are now ready to complete the proof. By Claims 3 and 1, the sequence φn converges to
some φ ∈ C0(R× E, E) uniformly on [−T , T ]× E , for every T > 0. Thus, it only remains
to show that φ is the flow of (X + Y )/2. To this purpose fix (t, x) ∈ E . In the identity

φn(t, x) = x +
∫ t

0

(
Zn(s, φn(s, x)) − Zn(s, φ(s, x))

)
ds +

∫ t

0
Zn(s, φ(s, x)) ds,

the first integral converges to zero since Zn is κ-Lipschitz in the second variable and
φn(·, x) → φ(·, x) uniformly on bounded intervals, whereas the second integral converges
to ∫ t

0

X + Y

2
(φ(s, x)) ds

by Claim 2. Therefore, taking the limit for n → +∞ yields

φ(t, x) = x +
∫ t

0

X + Y

2
(φ(s, x)) ds,

which says that φ is the flow of (X + Y )/2.

Proof of Proposition 4.1 Let X and Y be bounded Lipschitz vector fields of classCk for which
F is positively invariant. If f ∈ Ck(M) is Lipschitz and bounded, then f X is Lipschitz and

φ f X ([−T , T ] × A) ⊂ φX ([−‖ f ‖∞T , ‖ f ‖∞T ] × A).

It follows that F is f X -positively invariant. By Theorem 4.2, the flow φX+Y is the limit of
the flow of the non-autonomous flow φ2Zn , where

Zn(t, x) := IJn (t)X(x) + IJ cn Y (x), Jn =
⋃
k∈Z

[2k
n

,
2k + 1

n

)
,

uniformly on [−T , T ] ×M. By the stability property of F (see Definition 2.3), it is enough
to check that if A ∈ F then also the set

φZn ([−T , T ] × A)

belongs to F , or, equivalently (F is an ideal), that the sets

φZn ([0, T ] × A), and φZn ([−T , 0] × A)

belong to F . We consider the first of these two sets, the argument for the second one being
analogous. Since

φZn
([0, 1

n
] × A

) = φX ([0, 1
n
] × A

)

belongs to F , and

φZn
([0, 2k

n
] × A

) ⊂ φY
(
[0, 1

n
] × φZn

([0, 2k − 1

n
] × A

))
,

φZn
([0, 2k + 1

n
] × A

) ⊂ φX
(
[0, 1

n
] × φZn

([0, 2k
n
] × A

))
,

for every k ∈ Z+, an induction argument shows that

φZn
([0, k

n
] × A

)

belongs to F for every k ∈ N. The thesis follows taking k ≥ nT .
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4.2 Proof of precompactness

In this subsection we use Proposition 4.1 to construct a pseudo-gradient vector field F forAH

which will enable us to prove pre-compactness of intersection between stable and unstable
manifolds of critical points ofAH by employing the general compactness result [3, Theorem
6.5]. To this purpose, the first step is to define what we mean by essentially vertical sets in
M1−s .

Definition 4.4 Abounded set A ⊂ M1−s is called essentially vertical if, for every local chart
(ϕ−1∗ , Imϕ∗),

Qϕ−1∗ (A ∩ Imϕ∗)

is pre-compact inH, where Q : H → H is any projector with kernel the negative eigenspace
H

− of the operator L defined in (3.1). We define

F := {A ⊂ M1−s | A essentially vertical} (4.1)

to be the family of all essentially vertical sets.

Theorem 3.4 implies that the definition of essentially vertical sets is well-posed. Also,
since every bounded set in M1−s can be covered by finitely many domains of local charts,
and in any local chart the condition for a subset to be essentially vertical is given by the
pre-compactness of the projection of such a set onto a suitable subspace, we readily see that
F is an essentially vertical family in the stronger sense of Definition 2.5, namely that F is
closed with respect to the Hausdorff distance.

We now proceed to define the pseudo-gradient vector field F . We start observing that the
metric onM1−s defined in (2.3) is, on every bounded set ofM1−s , equivalent to the metric
induced by embedding M isometrically inRN , see Lemma 2.5 in [10]. Even though the two
metrics might fail to be globally equivalent (see Appendix B of [10]), the local equivalence
is enough to apply Proposition 4.1 on every bounded set ofM1−s , and actually on every set
of the form π−1

1−s(A), A ⊂ Hs(T, M) bounded. Thus, we consider a sequence {ϕ∗,�}�∈N of
local parametrizations such that

M1−s,∗ =
⋃
�∈N

Imϕ∗,�.

Denoting with ‖ · ‖ and ‖ · ‖flat the norm on Hs(T,U )× H1−s(T, (Rn)∗) induced by pull-
back of the metric on M1−s and the norm induced by the flat metric on Rn respectively,
and with ∇ and ∇flat the respective gradients, we see that the equivalence of the two metrics
implies that for every � ∈ N we can find a constant α(�) > 0 such that

α(�)‖∇(AH ◦ ϕ∗,�‖2 ≤ ‖∇flat(AH ◦ ϕ∗,�)‖2flat on Hs(T,U ) × H1−s(T, (Rn)∗).

This suggests to define, for every � ∈ N, the vector field F� on Imϕ∗,� by pushing forward
the vector field

− 1

α(�)
∇flat(AH ◦ ϕ∗,�) (4.2)

and then a vector field F on M1−s by gluing together the family of vector fields {F�} using
a partition of unity {χ�} subordinated to the open covering {Imϕ∗,�}.

A straightforward computation shows that the vector field in (4.2) is a compact perturbation
of α(�)−1L(·), where L is the operator defined in (3.1). Hence, applying Proposition A.18 in
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Appendix A of [39], we see that χ� · F� preserves the essentially vertical family F for every
� ∈ N. From Proposition 4.1 we deduce that

L∑
�=1

χ� · F�

also preserves the essentially vertical family F for every L ∈ N, thus also F as one sees
by passing to the limit L → +∞. As by construction AH is clearly a Lyapounov function
for F , the last piece of information we need in order to be able to apply [3, Theorem 6.5]
is that the pair (AH , F) satisfy the Palais-Smale condition. This however readily follows by
construction of F : Indeed, if (qm,pm) is a Palais-Smale sequence for the pair (AH , F), then
noticing that in the series below all but finitely many terms vanish we compute

dAH (qm,pm)[F(qm,pm)] = dAH (qm,pm)
[ +∞∑

�=1

χ� · F�(qm,pm)
]

= −
+∞∑
�=1

χ�(qm,pm)

α(�)
· d(AH ◦ ϕ∗,�)(ϕ−1

∗,�(qm,pm))

[∇flat(AH ◦ ϕ∗,�)(ϕ−1
∗,�(qm,pm))

]

= −
+∞∑
�=1

χ�(qm,pm)

α(�)
· ‖∇flat(AH ◦ ϕ∗,�)(ϕ−1

∗,�(qm,pm))‖2flat

≤ −
+∞∑
�=1

χ�(qm,pm) · ‖∇(AH ◦ ϕ∗,�)(ϕ−1
∗,�(qm,pm))‖2

= −
+∞∑
�=1

χ�(qn,pn) · ‖∇AH (qm,pm)‖2

= −‖∇AH (qm,pm)‖2,
which implies that (qm,pm) is also a Palais-Smale sequence for the pair (AH ,−∇AH ), thus
pre-compact by Proposition 2.1. Conversely, any Palais-Smale sequence for (AH ,−∇AH ) is
also a Palais-Smale sequence for (AH , F) as it is bounded and hence contained in the union
of finitely many Imϕ∗,�’s.

We are now in position to apply Theorem 6.5 in [3] to deduce the following

Theorem 4.5 The essentially vertical family F is F-positively invariant, where F is the
negative pseudo-gradient vector field for AH : M1−s,∗ → R defined above. As a corollary,
the intersection

Wu((q,p); F) ∩Ws((q̃, p̃); F)

between the unstable and stable manifold of any pair of critical points (q,p), (q̃, p̃) of AH

is pre-compact.

5 Transversality

In this section we prove an abstract transversality result for vector fields on aHilbert manifold
M, and then apply it to show that, up to a small generic perturbation, we can assume that the
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stable and unstable manifolds of critical points of AH intersect transversally. The proof of
the abstract result follows the line of the one given in [4] in the case of finite Morse indices,
however the fact that we are here dealing with infinite dimensional stable and unstable
manifolds forces us to impose further conditions on the perturbation in order not to destroy
all good properties of the given vector field.

We start by recalling some definitions and basic facts about transversality in a Banach
setting, referring to [8] for the details. We also recall that a subspace Y of a topological space
X is said generic if it contains a countable intersection of open and dense subspaces of X .
Baire theorem guarantees that a generic subspace of a complete metric space is dense.

5.1 General facts about transversality

Let ϕ : B → B′ be a map of class Ck between Ck-Banach manifolds, k ≥ 1. A point v ∈ B′
is called a regular value for ϕ if for every p ∈ ϕ−1(v) the differential Dϕ(p) : TpB → TvB′
is a left inverse, that is, if it is onto and its kernel is complemented. In this case, ϕ−1(v) is a
submanifold of class k ofB. Themap ϕ is said aFredholmmap if its differential at every point
is a Fredholm operator, i.e. a bounded operator with finite dimensional kernel and co-kernel.
When the index of the differential is constant (for instance, when B is connected), this integer
is called the Fredholm index of ϕ.

The basic tool in order to deal with genericity questions is the Sard-Smale theorem [41].
In its original formulation, it applies to Fredholm maps whose domain is a Banach manifold
which is a Lindelöf space.Here,we need the following generalizationwhich is due to F.Quinn
and A. Sard [37, Theorem 1], where the Lindelöf property is replaced by the σ -properness
of the map. We recall that a continuous map ϕ : B → B′ is proper if the inverse image of
every compact set is compact, and σ -proper if B is the countable union of open sets, on the
closure of each of which f is proper.

Theorem 5.1 Let ϕ : B → B′ be a σ -proper Fredholm map of class Ck between Ck-Banach
manifolds with Fredholm index m. If k ≥ max{1,m}, then the set of regular values of ϕ is
generic in B′.

In order to apply the Sard-Smale theorem, the following proposition will be useful (see
also [4]):

Proposition 5.2 Let B,B′,B′′ be Banach manifolds, and let ϕ : B → B′ and ψ : B → B′′
be maps of class C1 with regular values p ∈ B′ and q ∈ B′′. Then:

(1) p is a regular value for ϕ|ψ−1(q) if and only q is a regular value for ψ |ϕ−1(p), and
(2) ϕ|ψ−1(q) is a Fredholm map if and only if ψ |ϕ−1(p) is a Fredholm map. In this case, the

Fredholm indices coincide.

The proposition is an immediate consequence of the following linear statements.

Proposition 5.3 Let E, F,G be Banach spaces, and let A ∈ L(E, F), B ∈ L(E,G) be left
inverses. Then:

(1) A|ker B is a left inverse if and only if B|ker A is a left inverse, and
(2) A|ker B is Fredholm if and only if B|ker A is Fredholm. In this case, the Fredholm indices

coincide.

Proof Let R ∈ L(F, E) and S ∈ L(G, E) be right inverses of A, B respectively.
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(1) Suppose that R0 ∈ L(F, ker B) is a right inverse of A|ker B , that is, a right inverse of A
with range in ker B. Then, the map S0 := (IdE − R0A)S is a right inverse of B, being a
perturbation of S by an operator with range in ker B, and it takes values in ker A, for

AS0 = AS − AR0AS = AS − IdF AS = 0.

Therefore, S0 is a right inverse of B|ker A.
(2) The kernels of A|ker B and B|ker A coincide and are equal to ker A ∩ ker B. Moreover,

since R : F → RF is an isomorphism and since IdE − RA is a projector onto ker A,

cokerA|ker B = F

A ker B

R∼= RF

RA ker B
∼= ker A + RF

ker A + RA ker B
= E

ker A + ker B
.

From this we easily conclude that A|ker B is Fredholm if and only if B|ker A is Fredholm,
since both assertions are equivalent to the fact that the pair (ker A, ker B) is Fredholm, i.e.
ker A∩ ker B is finite dimensional and ker A+ ker B is finite codimensional. Moreover,
the index of A|ker B and B|ker A equals the index of the Fredholm pair (ker A, ker B).

In the following lemma we single out a useful family of linear mappings whose kernel is
complemented.

Lemma 5.4 Let E, F,G beBanach spaces, and assume that A ∈ L(E,G) has complemented
kernel andfinite codimensional range. Then, for every B ∈ L(F,G) the kernel of the operator

C ∈ L(E × F,G), C(e, f ) := Ae − B f ,

is complemented in E × F.

Proof Let E0 := ker A, E1 ⊂ E be a closed complement of E0, and P0, P1 be associated
projectors. Let G1 := ranA, G0 ⊂ G be a (finite dimensional) complement of G1, and
Q0, Q1 be associated projectors. Then, A induces an isomorphism from E1 to G1, whose
inverse will be denoted by T ∈ L(G1, E1). The equation C(e, f ) = 0 is equivalent to
AP1e = B f , which is equivalent to the system{

AP1e = Q1B f ,
Q0B f = 0,

again equivalent to {
P1e = T Q1B f ,
Q0B f = 0.

(5.1)

Since Q0B has finite rank, its kernel - say F0 - has a (finite dimensional) complement F1.
By (5.1), the kernel of C is

kerC = {(e0 + T Q1B f0, f0) ∈ E × F | e0 ∈ E0, f0 ∈ F0},
and the closed linear subspace E1 × F1 is a complement of kerC .

5.2 An abstract transversality theorem

LetM be a Hilbert manifoldmodeled on the infinite dimensional separable real Hilbert space
H, and let F be a complete gradient-like Morse vector field of class Ck on M (i.e. all of its
rest points are hyperbolic). Recall that a rest point x is said hyperbolic if the spectrum of the
Jacobian of F at x is disjoint from the imaginary axis. In this case, the linear unstable space

123



109 Page 30 of 55 L. Asselle and M. Starostka

H
u
x is the subspace ofH corresponding to the part of the spectrum with positive real part. We

further assume that F admits a Lyapounov function f such that the pair (F, f ) satisfies the
Palais-Smale condition (this implies, in particular, that the set of rest points of F is at most
countable), and that there exists a strongly integrable (0)-essential sub-bundle E ⊂ TM and
an essentially vertical family F (in the sense of Definition 2.5) such that1:

(C1) for every rest point of F , the linear unstable space H
u
x belongs to the essential class

E(x),
(C3) F is positively F-invariant, that is, if A ∈ F then φ

([0, T ] × A) ∈ F for every T ≥ 0

Here, φ denotes the flow of F . In particular, the intersection between stable and unstable
manifolds of any two rest points of F is pre-compact by [3, Theorem 6.5]. In what follows,
we denote by

m(x) := dim(Hu
x , E(x))

the relative Morse index of the rest point x ∈ sing (F). Our goal is to show that F can be
perturbed away from the set of its rest points in order to obtain a vector field which has the
Morse-Smale property up to order k, that is, for which the stable and unstable manifolds of
critical points whose relative Morse indices differ at most by k intersect transversally. Rather
than considering a particular space of perturbations, we list the properties that such a space
should have. Thus, consider two neighborhoods U ⊂ V ⊂ M of sing (F) such that each
rest point of F belong to a different connected component of V and let X be a Banach space
consisting of vector fields of class Ck in M such that:

(B1) every X ∈ X vanishes on U ,
(B2) for every X ∈ Xwith ‖X‖X < 1, sing (F+ X) = sing (F), f is a Lyapounov function

for F + X , and ( f , F + X) satisfies the Palais-Smale condition,
(B3) the convergence in X implies the Ck

loc convergence,
(B4) X is closed under multiplication by a vector space of real functions on M which

contains bump functions,
(B5) {X(p) | X ∈ X} is dense in TpM for every p ∈ M \ V , and
(B6) every vector field F + X , X ∈ X, satisfies Condition (C3) with respect to E .

We denote byX1 the unit ball inX. Notice that, for every X ∈ X1, F+ X trivially satisfies
(C1) with respect to E by (B1) and (B2), and the intersection

Wu(x; F + X) ∩Ws(y; F + X)

of stable and unstable manifolds any two rest points x, y ∈ sing (F) is pre-compact by (B1),
(B2), and (B6).

Theorem 5.5 The subset of X1 of vector fields X for which F + X is Morse-Smale up to
order k is generic.

Here, order k of the Morse-Smale property is precisely the order of differentiability of
the vector field F and of its perturbations. This fact is determined by the regularity versus
Fredholm index assumption required by the Sard-Smale theorem 5.1. In a finite-dimensional
setting the problem does not occur because Ck functions can always be Ck-approximated by

1 Here we use the same notation as in [3]. We shall notice that Condition (C3) in [3] is formulated in terms
of admissible presentations and Hausdorff measure of non-compactness. However, for our applications it is
more convenient to express it in terms of invariance of an essentially vertical family.
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smooth ones, while such an approximation may not be possible on an infinite-dimensional
Hilbert space (see for instance [32, 35]).

Theorem 5.5, whose proof will take up the rest of this subsection, generalizes Theorem
2.20 in [4], where the case of finite Morse indices is treated. As already pointed out, in this
setting more assumptions are needed in order to ensure that all good properties of ( f , F) are
not destroyed after perturbation.

Thus, let x, y ∈ sing (F) with

m(x) −m(y) ≤ k

be two rest points of F such that Wu(x; F) and Ws(y; F) have a non-empty intersection.
Denote by C the space of C1-curves u : R → M such that

lim
t→−∞ u(t) = x, lim

t→+∞ u(t) = y. and lim
t→±∞ u′(t) = 0.

The space C is a smooth Banach manifold and its tangent space at u is

TuC =
{
v C1-section of u∗TM

∣∣∣ lim
t→±∞ v(t) = lim

t→±∞∇tv(t) = 0
}
,

where ∇t denotes the covariant derivative associated to some connection on u∗TM. The
Banach manifold C is the base space of a smooth Banach bundle B whose fiber at u ∈ C is
the space

Bu :=
{
v C0-section of u∗TM

∣∣∣ lim
t→±∞ v(t) = 0

}
,

endowed with the C0-norm. The zero section of B will be denoted by OB.
The fact that F is of class Ck and Property (B3) on the space X imply that the map


 : X1 × C → B, (X , u) 
→ u′ − (F + X) ◦ u,

is of class Ck . Notice that, for a fixed X ∈ X1, the map 
X := 
(X , ·) is a section of the
Banach bundle B. Moreover, the set

Z := 
−1(OB)

is precisely the union over all X ∈ X1 of the set Wu(x; F + X) ∩Ws(y; F + X).
For (X , u) ∈ Z, we denote by D f 
(X , u) the fibrewise differential

D f 
(X , u) : X× TuC → Bu, D f 
(X , u)[(Y , v)] = D f
1 
(X , u)[Y ] + D f

2 
(X , u)[v],
where

D f
1 
(X , u)[Y ] = −Y ◦ u, D f

2 
(X , u)[v] = ∇tv − ∇(F + X)(u)[v].
In the next lemma we discuss the properties of the partial fibrewise differential D f

2 (X , u).

Lemma 5.6 For (X , u) ∈ Z the following statements hold:

(1) D f
2 
(X , u) is a Fredholm operator of index m(x) −m(y).

(2) D f
2 
(X , u) is onto if and only if Wu(x; F + X) and Ws(y; F + X) meet transversally

along u, and
(3) For every a < b and every w ∈ Bu there exists v ∈ TuC such that

D f
2 
(X , u)[v](t) = w(t), ∀t ∈ (−∞, a] ∩ [b,+∞).
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Proof We choose a trivializationU : R×H → u∗TM and identifyH with Tu(0)M in such

a way that U (0) = IdH. Then, the (linearized) flow defined by D f
2 (X , u) can be read on H

as

Y (t) := U (t)−1d
F+X (t, u(0)),

where 
F+X is the flow of F + X and d denotes differentiation with respect to the variable
on M. The function Y : R → L(H) is the solution of an asymptotically hyperbolic linear
system on R in H

{
Y ′(t) = A(t)Y (t),
Y (0) = Id,

(5.2)

where A(−∞), A(+∞) are conjugated to a local representation of ∇F(x),∇F(y) respec-
tively (by construction X vanishes in a neighborhood of x and y). The operator D f

2 
(X , u)

can thus be read onR×H as

DA := d

dt
− A(t) : C1

0 (R,H) → C0
0 (R,H), (5.3)

where

C0
0 (R,H) :=

{
v : R → H

∣∣∣ lim
t→±∞ v(t) = 0

}
,

C1
0 (R,H) :=

{
v : R → H

∣∣∣ lim
t→±∞ v(t) = lim

t→±∞ v̇(t) = 0
}
.

By the identification H = Tu(0)M we further have

Wu
A = Tu(0)W

u(x), Ws
A = Tu(0)W

s(y), (5.4)

where

Wu
A :=

{
v ∈ H

∣∣∣ lim
t→−∞ Y (t)v = 0

}
,

Ws
A :=

{
v ∈ H

∣∣∣ lim
t→+∞ Y (t)v = 0

}
,

are the unstable resp. stable space of the system Y ′ = AY . We shall observe, before going
further, that the properties of D f

2 
(X , u) we are interested in are independent of the choice
of the trivialization. Indeed, choosing a different trivialization changes Y to GY , for some
G ∈ C1(R;GL(H)), and A, DA respectively to

−G ′G−1 + GAG−1, G ◦ DA ◦ G−1.

(1) Theorem 5.1 in [2] together with (5.4) implies that DA (hence, also D f
2 
(X , u)) is

Fredholm if and only if Wu(x) and Ws(y) have Fredholm intersection at u(t) for some
t ∈ R (hence for every t ∈ R); see also [2, Corollary 8.2, (iv)]. In this case, the Fredholm
index of D f

2 
(X , u) is given by

ind (Tu(t)W
u(x), Tu(t)W

s(y)).

Using Properties (B1), (B2), (B6) and Proposition 3.1 in [3] we obtain that, for every
t ∈ R, the tangent space Tu(t)Wu(x) belongs to the essential class E(u(t)), and since E
is (0)-essential, we also have the identity between integers

dim(Tu(t)W
u(x), E(u(t))) = m(x), ∀t ∈ R.
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On the other hand, using again Properties (B1), (B2), (B6), from Corollary 3.2 in [3]
we deduce that, for any t ∈ R, (Tu(t)Ws(y), E(u(t))) is a Fredholm pair with Fredholm
index

ind (Tu(t)W
s(y), E(u(t))) = −m(y).

Therefore, (Tu(t)Wu(x), Tu(t)Ws(y)) is a Fredholm pair with index

ind (Tu(t)W
u(x), Tu(t)W

s(y))

= ind (Tu(t)W
s(y), E(u(t))) + dim(Tu(t)W

u(x), E(u(t)))

= m(x) −m(y).

(2) This is precisely [2, Corollary 8.2, (iii)].
(3) After trivialization the claim can be reformulated as follows: For every a < b and every

v ∈ C0
0 (R,H) we can find w ∈ C1

0(R,H) such that

DAw(t) = v(t) (5.5)

holds on (−∞, a] as well as on [b,+∞). Adapting the proof of [2, Proposition 4.2] to
our setting yields that the operators DA|(−∞,a] and DA|[b,+∞) are onto, and hence we
can find wa ∈ C1

0((−∞, a],H), wb ∈ C1
0 ([b,+∞),H) such that

DA|(−∞,a]wa = v|(−∞,a], DA|[b,+∞)wb = v|[b,+∞).

Now, any w ∈ C1
0 (R,H) such that w|(−∞,a] = wa and w|[b,+∞) = wb satisfies (5.5).

Lemma 5.7 The map 
 is transverse to the zero-section OB. In particular, Z is a Ck-
submanifold of X1 × C.

Proof Allwe have to show is that, for every (X , u) ∈ Z, the kernel of the fibrewise differential
D f 
(X , u) is complemented in X× TuC, and that

D f 
(X , u) : X× TuC → Bu

is onto, that is, that for every v ∈ Bu we can find (Y , w) ∈ X× TuC such that

− Y ◦ u + ∇tw − ∇(F + X)(u)[w] = v. (5.6)

By Lemma 5.6, D f
2 
(X , u) is Fredholm, and hence in particular has finite codimensional

range and complemented kernel. Thus, Lemma5.4 shows that D f 
(X , u) has complemented
kernel as well.

Using again a local trivialization of u∗TM we see that (5.6) can be read as

− Y (t) + DAw(t) = v(t), ∀t ∈ R, (5.7)

where Y ∈ Ck(R,H) is such that:

i) Y (t) = 0 for every t ∈ R \ (a, b), for suitable −∞ < a < b < +∞, by Property (B1),
and

ii) Y (t) ∈ Vt , Vt ⊂ H dense subspace for every t ∈ (a, b), by Property (B5).

By Lemma 5.6, (1) we know that the operator DA is Fredholm with Fredholm index
m(x) − m(y). In particular, the range of the restriction of the operator

(Y , w) 
→ −Y + DAw (5.8)
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to {0} × C1
0(R,H) is a closed finite codimensional subspace of C0

0 (R,H). Therefore, the
claim follows provided we can show that the range of the operator in (5.8) is dense in
C0
0 (R,H).
Thus, let v ∈ C0

0 (R,H). By Lemma 5.6, (3) we can find w− ∈ C1
0((−∞, 0],H) resp.

w+ ∈ C1
0 ([0,+∞),H) which solves (5.7) on (−∞, 0] resp. [0,+∞) with Y ≡ 0. If w±

match to form a solution of (5.7) onR, then we are done. Otherwise, we choose μ > 0 such
that the restriction u|[−μ,μ] is entirely contained outside U , the neighborhood of sing (F)

over which every Y ∈ X vanishes, and consider the convex combination

w̃(t) := ϕ(t) · w−(t) + (1− ϕ(t)) · w+(t),

where ϕ : R → [0, 1] is a smooth non-increasing function such that

ϕ|(−∞,−μ] ≡ 1, ϕ|[μ,+∞) ≡ 0.

By construction, w̃ ∈ C1
0(R,H) satisfies (5.7) on (−∞,−μ] ∪ [μ,+∞). Therefore, we can

rewrite (5.7) as

Y (t) = DAw̃(t) − v(t) =: ṽ(t), ∀t ∈ R, (5.9)

where ṽ ∈ C0
0 (R,H) has support in [−μ,μ]. Fix now ε > 0, and choose δ > 0 such that

|t0 − t1| < δ ⇒ ‖ṽ(t0) − ṽ(t1)‖ <
ε

4
.

Recall that this is possible since ṽ has compact support. Fix now

−μ := τ0 < τ1 < ... < τ�−1 < τ� := μ

such that |τi−1 − τi | < δ for every i = 1, ..., �, and let

σi := τi−1 + τi

2
, i = 1, ..., �,

be themiddle point of the interval [τi−1, τi ]. By ii), for every i = 1, ..., �we can find Yi ∈ Vσi

such that

‖Yi − ṽ(σi )‖ <
ε

4
.

For ρ > 0 small enough we now consider a partition of unity (ϕi )i=1,...,� of (−μ −
ρ,μ + ρ) subordinated to the open covering (−τi−1 − ρ, τi + ρ), i = 1, ..., �, such that
ϕi |[τi−1+ρ,τi−ρ] ≡ 1 for every i = 1, ..., �, and define

Y (t) :=
�∑

i=1

ϕi (t) · Yi .

Property (B4) implies that Y ∈ X. Furthermore, by construction we have for t ∈ [τi−1 +
ρ, τi − ρ]

‖Y (t) − u(t)‖ = ‖Yi − ṽ(t)‖ ≤ ‖Yi − ṽ(σi )‖ + ‖ṽ(σi ) − ṽ(t)‖ <
ε

2
,
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whereas for t ∈ (τi−1 − ρ, τi−1 + ρ), i = 2, ..., �,

‖Y (t) − ṽ(t)‖ = ‖ϕi−1(t)Yi−1 + ϕi (t)Yi − ṽ(t)‖
= ‖ϕi−1(t)(Yi−1 − ṽ(t)) + ϕi (t)(Yi − ṽ(t))‖
≤ ‖Yi−1 − ṽ(t)‖ + ‖Yi − ṽ(t)‖
≤ ‖Yi−1 − ṽ(σi−1)‖ + ‖ṽ(σi−1) − ṽ(t)‖ + ‖Yi − ṽ(σi )‖ + ‖ṽ(σi ) − ṽ(t)‖
< ε,

where we used the fact that ϕi−1 and ϕi are the only two functions of the chosen partition of
unity that do not vanish identically on (τi−1 − ρ, τi−1 + ρ) and that

|t − σi−1|, |t − σi | < δ, ∀t ∈ (τi−1 − ρ, τi−1 + ρ).

Finally, one shows in an identical fashion that ‖Y (t)− ṽ(t)‖ < ε also for t ∈ (−μ−ρ,−μ+
ρ) ∪ (μ − ρ,μ + ρ), thus obtaining

‖Y − ṽ‖∞ < ε,

which is to say that

‖D f 
(X , u)(Y , w̃) − v‖∞ < ε.

This completes the proof.

Let S ⊂ U be a small smooth sphere center in x and transversal to the flow of F , and
hence also to the flow of F + X for every X ∈ X since X vanishes on U by property (B1).
We denote byZ0 ⊂ Z the codimension-oneCk-submanifold given by pairs (X , u) ∈ Z such
that u(0) ∈ S, and by

π : Z0 → X1, (X , u) 
→ X ,

the restriction to Z0 of the projection onto the first factor of X1 × C.

Lemma 5.8 The following statements hold:

(1) The map π is Fredholm of index m(x) −m(y) − 1.
(2) X ∈ X1 is a regular value of π if and only if Wu(x; F + X) and Ws(y; F + X) meet

transversally.

Proof

(1) By Lemma 5.7, OB is a regular value of 
. Since any X ∈ X1 is a regular value for the
projection X1 × C → X1, Statement (1) follows immediately from Proposition 5.2, (2)
combined with Lemma 5.6, (1). Indeed, the projection Z → X1 is Fredholm with index
m(x) − m(y), and restricting to Z0 just reduces the dimension of the kernel by one in
each tangent space.

(2) Follows trivially from Lemma 5.6, (2) combined with Proposition 5.2, (1).

The last piece of information we need in order to apply the Sard-Smale theorem 5.1 is
the σ -properness of the map π ; notice indeed that the classical Sard-Smale theorem is not
applicable in this setting as the spaces under consideration are not Lindelöf.

Proposition 5.9 The map π : Z0 → X1 is σ -proper.
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In order to prove the proposition above, we need to show that we can write X1 × C as
countable union of open sets (Un) in such a way that

π−1(K) ∩ Un compact, ∀K ⊂ X1 compact. (5.10)

For a fixed X ∈ X1, the pre-image π−1({X}) can be identified with

Wu(x; F + X) ∩Ws(y; F + X),

and as such is pre-compact by the Properties (B1), (B2), and (B6) of the space X. Moreover,
the only source of non compactness is represented by those flow-lines which converge in the
Hausdorff distance to a brokenflow line from x to y, see [3, Proposition8.2] orProposition6.1.
In particular, the set

π−1({X}) ∩
{
(X , u)

∣∣∣ u ∈ C is such that dist
(
u(·), sing (F) \ {x, y}) ≥ 1

n

}

is compact for every n ∈ N. This suggest that (5.10) should hold for

Un :=
{
(X , u) ∈ X1 × C

∣∣∣ dist(u(·), sing (F) \ {x, y}) >
1

n

}
, ∀n ∈ N. (5.11)

As it turns out, (5.10) is implied by the following generalization of [3, Theorem 6.5] to
sequences of vector fields in X1 converging to some X∞ ∈ X1.

Theorem 5.10 Let (Xm) ⊂ X1 be a sequence such that Xm → X∞ ∈ X1. Then, denoting
by φm the flow on M defined by F + Xm for every m ∈ N, the following statement holds:
Let (pm) ⊂ M, (sm) ⊂ (−∞, 0], and (tm) ⊂ [0,+∞) be such that φm(sm, pm) → x and
φm(tm, pm) → y. Then, the sequence (pm) is compact.

As a corollary, the union
⋃
m∈N

Wu(x; F + Xm) ∩Ws(y; F + Xm)

is pre-compact.

Proof of Proposition 5.9 Clearly, it suffices to show that, for every n ∈ N and every sequence
(Xm) ⊂ X1 converging to some X∞ ∈ X1, the set( ⋃

m∈N∪{∞}
Wu(x; F + Xm) ∩Ws(y; F + Xm)

)
∩ Un

is compact. By Theorem 5.10, we have that

⋃
m∈N∪{∞}

Wu(x; F + Xm) ∩Ws(y; F + Xm)

is compact. The proof of Proposition 8.2 in [3] now extends to this more general setting
showing that the only source of non-compactness of

⋃
m∈N

Wu(x; F + Xm) ∩Ws(y; F + Xm)

is given by those sequences of flow lines that converge in the Hausdorff distance to a broken
flow line of F + Xm for some m ∈ N ∪ {∞}, thus completing the proof.
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Proof of Theorem 5.10 The proof is analogous to the one of [3, Theorem 6.5]. However, to
be able to pass from a fixed vector field to a converging sequence of vector fields we have
to employ the stronger definition of essentially vertical families given in Definition 2.5. For
this reason, we only provide a sketch of the proof highlighting where modifications of the
original argument are needed, and refer to [3] for the details.

We start noticing that Lemma 6.7 in [3], being a local statement, trivially generalizes to
our more general setting. Indeed, by Property (B1), all vector fields Xm , m ∈ N ∪ {∞},
vanish on a neighborhood of sing (F).

Without loss of generality, we can assume that (pm) is bounded away from x and y, and,
by aminimality argument, that there are no sequences (s′m) ⊂ (−∞, 0] resp. (t ′m) ⊂ [0,+∞)

such that, up to a subsequence,

φm(s′m, pm) → z−, resp. φm(t ′m, pm) → z+,

for some rest point z− with f (z−) < f (x) resp. z+ with f (z+) > f (y), where f is a
Lyapounov function for F , and by Property (B2), of F + Xm for all m ∈ N∪ {∞}. Also, up
to neglecting finitely many m’s, we can suppose that for all m ∈ N we have

φm(sm, pm) ∈ U , φm(tm, pm) ∈ V , pm /∈ U ∪ V ,

where U and V and closed neighborhoods of x and y respectively where all Xm vanish.
In virtue of Lemma 6.7 in [3], up to shrinking U further we can assume that for a suitable
sequence s′′m ∈ (sm, 0) there holds {φm(s′′m, pm) | m ∈ N} ⊂ ∂U and

{φm(s′′m, pm) | m ∈ N} ∈ F, (5.12)

lim sup
n→+∞

f (φm(s′′m, pm)) < f (x). (5.13)

Similarly, up to shrinking V further we can assume that for a suitable sequence t ′′m ∈ (0, tm)

there holds {φm(t ′′m, pm) | m ∈ N} ⊂ ∂V and

{φm(t ′′m, pm) | m ∈ N} ∩ A pre-compact, ∀A ∈ F, (5.14)

lim inf
n→+∞ f (φm(t ′′m, pm)) > f (y). (5.15)

Since Xm → X∞ and ( f , F + Xm) satisfies the Palais-Smale condition for every m ∈
N∪{∞}, by (5.13) and (5.15) we have that the sequence (t ′′m−s′′m) is bounded, say t ′′m−s′′m ≤
T , ∀m ∈ N. We now claim that⋃

m∈N
φm
([0, T ] × φm(s′′m, pm)

) ∈ F . (5.16)

Notice that this completes the proof; indeed,

{φm(t ′′n , pm) | m ∈ N} ⊂
⋃
m∈N

φm
([0, T ] × φm(s′′n , pm)

)

is essentially vertical as well, and hence in (5.14) we can take A = {φm(t ′′n , pm) | m ∈ N},
thus obtaining that the sequence (φm(t ′′m, pm)) is compact. By the boundedness of t ′′m and by
the fact that the vector fields F + Xm are all complete, we conclude that also the sequence
pm is compact.

In order to prove (5.16), we start noticing that for fixed m ∈ N ∪ {∞} the set
φm
([0, T ] × φm(s′′m, pm)

)
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is essential vertical, as F is positively (F + Xm)-invariant by Property (B6). Let now ε > 0
be fixed. Since Xm → X∞, we have that there exists mε ∈ N such that⋃

m≥mε

φm
([0, T ] × φm(s′′m, pm)

) ⊂ Bε

(
φ∞

([0, T ] × {φm(s′′m, pm) | m ∈ N})),

where Bε(A) := {p ∈ M | dist (p, A) < ε} denotes the open ε-neighborhood of the set
A ⊂ M. Notice that

φ∞
([0, T ] × {φm(s′′m, pm) | m ∈ N})

is essentially vertical by (5.12) and by the fact that F is positively (F + X∞)-invariant.
Hence⋃

m∈N
φm
([0, T ] × φm(s′′m, pm)

)

=
( ⋃
m<mε

φm
([0, T ] × φm(s′′m, pm)

)) ∪ ( ⋃
m≥mε

φm
([0, T ] × φm(s′′m, pm)

))

is contained in the open ε-neighborhood of the essentially vertical set

Aε :=
( ⋃
m<mε

φm
([0, T ] × φm(s′′m, pm)

)) ∪ (φ∞
([0, T ] × {φm(s′′m, pm) | m ∈ N})).

Since ε is arbitrary, (5.16) follows from the stability property of F , see Property (iii) in
Definition 2.5.

Proof of Theorem 5.5 For any pair of distinct rest points x, y of F such that m(x) −m(y) ≤
k, let X1(x, y) be the set of regular values of the map π . By Lemma 5.8, Part (1), and
Proposition 5.9, the Ck-map π is Fredholm of index m(x)−m(y)− 1 < k and σ -proper, so
the Sard-Smale theorem 5.1 implies that the set X1(x, y) of regular values for π is generic
in X1. By Lemma 5.8, Part (2), for every X ∈ X1(x, y) the manifolds Wu(x; F + X) and
Ws(y; F + X) meet transversally.

Since the set sing (F) is at most countable, the intersection
⋂ {

X1(x, y)
∣∣∣ x  = y ∈ sing (F), m(x) −m(y) ≤ k

}
(5.17)

is also a generic subset of X1. By Property (B2), for any X ∈ X1 the vector field F + X has
exactly the same rest points of F , so for every X in the generic subset (5.17) the vector field
F + X satisfies the Morse-Smale property up to order k.

5.3 TheMorse-smale property for the Hamiltonian action

In this section we show how to apply the abstract transversality theorem 5.5 to achieve - after
a generic perturbation of the negative pseudo-gradient vector field F of AH constructed in
Subsection 4.2 - transverse intersection of stable and unstable manifolds of critical points of
the Hamiltonian action AH whose relative Morse indices differ at most by two. To do this
we need to ensure that F is at least of class C2, that is, that AH is at least of class C3. Using
the converse of Taylor’s theorem (see e.g. [8]) and an argument analogous to the one in the
proof of Theorem 4 in [27], we see thatAH is of classC3 provided H1−s compactly embeds2

2 Actually, compact embedding in L3 should be enough, and this would yield the weaker condition s ∈
(1/2, 5/6).
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in L4. According to the Sobolev embedding theorem for fractional Sobolev spaces (see e.g.
[15, Theorem 6.5]), this is the case when 4 is strictly smaller than the critical exponent

p∗ := 2

1− 2(1− s)
,

which in turns implies that s < 3/4. Thus, hereafter we will assume s ∈ (1/2, 3/4).

Theorem 5.11 (Morse-Smale property up to order two for the Hamiltonian action) Let
H : T× T ∗M → R be a smooth time-depending Hamiltonian satisfying the growth condi-
tion (2.1) and such that the critical points of the correspondingHamiltonian action functional
AH : M1−s → R are all hyperbolic. Denote by F the negative pseudo-gradient vector field
constructed in Subsection 4.2, for some s ∈ (1/2, 3/4). Then, there exists a generic set P of
small perturbations P of F which satisfy the following properties:

(1) P is a complete Morse gradient-like vector field with Lyapounov function AH .
(2) P coincides with F in a neighborhood of the critical point set of AH , and sing (P) =

crit (AH ). In particular, the negative eigenspace of the Jacobian of P at each rest point
(q,p) ∈ M1−s belongs to the essential class Es(q,p).

(3) The pair (AH , P) satisfies the Palais-Smale condition: Every sequence (qn,pn) ∈ M1−s

such that AH (qn,pn) → a, for some a ∈ R, and dAH (qn,pn)[P(qn,pn)] → 0 admits
a converging subsequence.

(4) The essential vertical family F defined in (4.1) is P-positively invariant, that is, for each
A ∈ F the set 
P ([−T , T ] × A) belongs to F for every T ≥ 0, where 
P denotes the
flow of P. In particular, the intersection between the stable and unstable manifolds

Wu((q0,p0); P) ∩Ws((q1,p1); P)

of any two rest points (q0,p0), (q1,p1) of P (i.e. critical points of AH ) is pre-compact.
(5) The stable and unstable manifolds of any two rest points (q0,p0), (q1,p1) of P such that

m(q0,p0) − m(q1,p1) ≤ 2 intersect transversally. In particular, if non-empty,

Wu((q0,p0); P) ∩Ws((q1,p1); P)

is a submanifold of M1−s of dimension m(q0,p0) − m(q1,p1) ≤ 2.

Proof. We fix two open neighborhoods U ⊂ V ⊂ M1−s of the set of critical points of AH

such that every critical point of AH belongs to a different connected component of V and
consider the space X of all vector fields X on M1−s of class C2 such that:

i) X vanishes identically on U ,
ii) X preserves the essential vertical family F .

On X we introduce a Whitney norm ‖ · ‖X as follows: we pick a smooth function χ :
[0,+∞) → R such that

0 < χ(σ) <
1

2
inf

M1−s
σ \U

−dAH [F], ∀σ ≥ 0,

where M1−s
σ := {(q,p) ∈ M1−s | ‖p‖1−s ≤ σ }, and define for every X ∈ X

‖X‖X := ‖χ−1 · X‖C2 ,

where with slight abuse of notation we set

(χ−1 · X)(q,p) := 1

χ(‖p‖1−s)
· X(q,p), ∀(q,p) ∈ M1−s .
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Clearly, the topology induced by the norm ‖ · ‖X coincides with the topology given by
the C2

loc-convergence. We shall notice that the infimum in the definition of χ is strictly
positive for every fixed σ ≥ 0 since the pair (AH , F) satisfies the Palais-Smale condition
but might go to zero for σ → +∞. Properties (B1), (B3), and (B4) follow immediately from
the definition of X and Proposition 4.1. Moreover, Property (B5) holds even in a stronger
form, as the set {X(p) | X ∈ X} coincides with TpM1−s for every p ∈ M1−s \ V . To
see this, consider a local chart (ϕ−1∗ , Im, ϕ∗) of M1−s such that p ∈ Imϕ∗, and denote
with slight abuse of notation the image of p under ϕ−1∗ again with p. Clearly, for every
v ∈ Tp(Hs(T,Rn) × H1−s(T, (Rn)∗)) ∼= Hs(T,Rn) × H1−s(T, (Rn)∗), the constant
vector field Fv ≡ v preserves essentially vertical sets (as its flow is just a translation).
Therefore, by multiplying Fv by a smooth cut-off function supported in a small ball around
p we see that there is a vector field F̃v onM1−s which preserves essentially vertical sets and
such that Fv(p) = v.

We now denote by X1 the open unit ball in X with respect to the Whitney norm ‖ · ‖X. By
the very definition of ‖ · ‖X and the triangle inequality we see that, for every X ∈ X1,

inf
M1−s

σ \U
−dAH [F + X ] ≥ 1

2
inf

M1−s
σ \U

−dAH [F] > 0, ∀σ ≥ 0,

so that the singular set of P := F+ X coincides with the singular set of F for every X ∈ X1.
Furthermore, for every (q,p) ∈ M1−s \ U we have

dAH ((q,p))[P(q,p)] ≤ 1

2
dAH (q,p)[F(q,p)].

This implies at once thatAH is a Lyapounov function for P for every X ∈ X1, and that every
Palais-Smale sequence for the pair (AH , P)must eventually enter U , where we have P ≡ F .
Thus, the pair (AH , P) satisfies the Palais-Smale condition. In other words, Property (B2)
also holds for X.

Finally, by construction the essentially vertical familyF is positively P-invariant for every
X ∈ X. All claims follow now with

P :=
{
P := F + X

∣∣∣ X ∈ X1

}
.

6 TheMorse complex

In this section, building on the results of Sects. 3, 4, and 5, we construct theMorse complex of
the triple (AH ,M1−s, Es), where s ∈ (1/2, 3/4) is arbitrary and Es is the strongly integrable
(0)-essential subbundle defined in Sect. 3. To ease the notation, we hereafter write E instead
of Es . The contents of this section are an easy adaptation of the general theory developed in
[3, Sections 8-11]; for this reason, we only provide a sketch of the construction referring to
[3] for the proofs.

Before proceeding further, we shall make some comments:

• The assumption on s guarantees that the Hamiltonian action AH is at least of class C3.
As we saw in Sect. 5, this allows us to use the Sard-Smale theorem to achieve the Morse-
Smale property up to order 2, which is precisely what one needs to define the Morse
complex.

• Changing the (0)-essential subbundle E by a compact perturbation changes the Morse-
complex by a shift of the indices (when M1−s is connected).
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• For a (0)-essential subbundle which does not come from a true subbundle, coherent
orientations for the intersection between stable and unstable manifolds cannot be defined
in general, and hence one obtains just a Morse complex with Z2-coefficients. However,
the (0)-essential subbundleE can be given an orientation (in a suitable sense)which allows
to useZ-coefficients instead ofZ2-coefficients. To keep the exposition as elementary as
possible, we rather not pursue this direction in this paper and work with Z2 coefficients
instead.

6.1 Broken flow-lines

Let (q,p), (q̃, p̃) ∈ M1−s be two critical points of AH . As shown in 5.11, (4), for every
perturbation P ∈ P , where P is defined as in (5.3), the intersection

Wu((q,p); P) ∩Ws((q̃, p̃); P)

is pre-compact. Consider a sequence of flow lines from (q,p) to (q̃, p̃), and the sequence of
their closure

Sn := 
P (R× {(qn,pn)}) ∪ {(q,p), (q̃, p̃)}, (qn,pn) ∈ Wu((q,p); P) ∩Ws((q̃, p̃); P).

By pre-compactness we can assume that (qn,pn) → (q∞,p∞), and the continuity of 
P

would yield


P (·, (qn,pn)) → 
P (·, (q∞,p∞))

uniformly on compact subsets ofR. However, it may happen that (q∞,p∞) /∈ Wu((q,p); P)

or (q∞,p∞) /∈ Ws((q̃, p̃); P), so
P (·, (q∞,p∞)) could be a flow line connecting two other
rest points, and the convergence would not be uniform on R. In this case, Sn converges up
to a subsequence to a broken flow line from (q,p) to (q̃, p̃) in the Hausdorff distance, which
we recall is the union

S = S1 ∪ ... ∪ Sk,

where each Si is the closure of a flow line from ξi−1 to ξi , with

(q,p) = ξ0  = ξ1  = ...  = ξk−1  = ξk = (q̃, p̃) ∈ crit (AH ).

It is straightforward to check that a compact set S ⊂ M1−s is a broken from line from (q,p)

to (q̃, p̃) if and only if the following three conditions are satisfied:

i) (q,p), (q̃, p̃) ∈ S.
ii) S is 
P -invariant.
iii) the intersection S ∩ A

−1
H (c) is a singleton if c ∈ [AH (q,p),AH (q̃, p̃)] and is empty

otherwise.

Proposition 6.1 Let (qn,pn) ⊂ Wu((q,p); P) ∩Ws((q̃, p̃); P), and set

Sn := 
P (R× {(qn,pn)}) ∪ {(q,p), (q̃, p̃)}.
Then, (Sn) has a subsequence which converges to a broken flow line from (q,p) to (q̃, p̃) in
the Hausdorff distance.

It is worth noticing that the proof of the proposition above, which is given in [3, Section
8], uses only the pre-compactness of the intersection Wu((q,p); P) ∩ Ws((q̃, p̃); P), and
hence in particular it is independent of the other properties of the triple (AH ,M1−s, E).
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6.2 Intersections of dimension 1 and 2

Wefix P ∈ P , whereP is given by (5.3), and consider the quadruple (AH ,M1−s, P, E). The
Morse-Smale condition up to order zero (c.f. Theorem 5.11, (5)) implies that for a broken
flow line from (q,p) to (q̃, p̃) we have

m(q,p) > m(ξ1) > ... > m(ξk−1) > m(q̃, p̃),

where m(·) =m(·, E) denotes the relative Morse index with respect to the (0)-essential sub-
bundle E .

We assume henceforth that (q,p) and (q̃, p̃) are critical points of AH with

m(q,p) −m(q̃, p̃) ∈ {1, 2}.
In this case, Theorem 5.11 implies that

Wu((q,p); P) ∩Ws((q̃, p̃); P)

is a submanifold of M1−s of dimension 1 resp. 2 with compact closure.
In the former case, we readily see that the intersection consists of finitely many connected

components. Indeed each connected component is a flow line from (q,p) to (q̃, p̃), and the
set C of their closures is discrete in the Hausdorff distance. On the other hand, by the Morse-
Smale property at order zero, these are the only broken flow lines from (q,p) to (q̃, p̃), and
hence C is compact by Proposition 6.1. Notice that the restriction of the flow 
P to the
closure of a component of the intersection is conjugated to the shift flow onR:

R×R ! (t, u) 
→ u + t ∈ R.

In the latter case, the quotient of a connected component W of the intersection by the
R-action, W/R, is either a circle or an open interval. In other words, W is described by a
one-parameter family of flow lines uλ, where λ ranges in S1 or in (0, 1). In the first case,
one easily verifies that W = W ∪ {(q,p), (q̃, p̃)} is homeomorphic to a 2-sphere, and that

P |W is conjugated to the exponential flow on the Riemann sphere. In the second case, we
see using Proposition 6.1 that W \W consists of broken flow lines which have precisely one
intermediate rest point. Then, 
P |W is semi-conjugated to the product of two shift-flows on
R.

Proposition 6.2 (Semi-conjugacy) Let (q,p) and (q̃, p̃) be two critical points of AH with

m(q,p) − m(q̃, p̃) = 2,

and let W be a connected component of Wu((q,p); P) ∩ Ws((q̃, p̃); P) such that W/R is
an open interval. Then, there exists a continuous surjective map

h : R×R → W

such that the following hold:

(1) 
P
t (h(u, v)) = h(u + t, v + t) for every (u, v) ∈ R×R and every t ∈ R.

(2) h(R2) = W, and there exists critical points ξ, ξ ′ of AH with

m(ξ) = m(ξ ′) = m(q,p) − 1,

and connected components W1,W2,W ′
1,W

′
2 of W

u((q,p); P)∩Ws(ξ ; P), Wu(ξ ; P)∩
Ws((q̃, p̃); P), andWu((q,p); P)∩Ws(ξ ′; P), Wu(ξ ′; P)∩Ws((q̃, p̃); P) respectively,
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such that

W1 ∪W2  = W ′
1 ∪W ′

2,

and

h(R× {−∞}) = W1, h({+∞} ×R) = W2,

h({−∞} ×R) = W ′
1, h(R× {+∞}) = W ′

2.

(3) The restrictions of h to R2, {±∞} ×R, and R × {±∞}, are diffeomorphisms of class
C1.

The proof of Proposition 6.2, as well as of Proposition 6.3 below, can be found in [3,
Section 11]. Here we just notice that, in Claim (2) it may happen that ξ = ξ ′, and in this
case even thatW1 = W ′

1 orW2 = W ′
2, but the last two identities cannot hold simultaneously.

When ξ  = ξ ′, h is injective, so it is a conjugacy.

Proposition 6.3 Let (q,p), (q̄, p̄), and (q̃, p̃) be critical points of AH with

m(q,p) = m(q̄, p̄) + 1 = m(q̃, p̃) + 2,

and let W1,W2 be connected components of Wu((q,p); P)∩Ws((q̄, p̄); P) and Wu((q̄, p̄);
P) ∩ Ws((q̃, p̃); P) respectively. Then, there exists a unique connected component W of
Wu((q,p); P)∩Ws((q̃, p̃); P) such that W1 ∪W2 belongs to the closure of W with respect
to the Hausdorff distance.

6.3 The boundary homomorphism

As in the previous subsections, we consider a tuple (AH ,M1−s, P, E) for some P ∈ P . For
every k ∈ Z we set Ck(P) to be the Z2-vector space generated by the critical points of AH

with relative Morse index k. We show now how to define on Ck(P) a boundary operator ∂k .
Notice preliminarly that, by Proposition 2.1, the action of critical points of AH is uniformly
bounded from below, and hence in particular every interval of the form (−∞, a] contains
only finitely many critical points of AH .

For any pair of critical points (q,p), (q̃, p̃) of AH such that

m(q,p) = m(q̃, p̃) + 1 = k

we define

σ
(
(q,p), (q̃, p̃)

) := #
{
c.c. of Wu((q,p); P) ∩Ws((q̃, p̃); P)

}
modulo 2

and

∂k(q,p) :=
∑
k−1

σ
(
(q,p), (q̃, p̃)

) · (q̃, p̃),

where with slight abuse of notation
∑

k−1 denotes the sum over all critical points ofAH with
relative Morse index k − 1. By the observation above, the sum is indeed a finite sum.

Theorem 6.4 For every k ∈ Z we have ∂k−1 ◦ ∂k = 0.
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Proof We compute using linearity

∂k−1 ◦ ∂k(q,p) = ∂k−1

(∑
k−1

σ
(
(q,p), (q̃, p̃)

) · (q̃, p̃)

)

=
∑
k−1

σ
(
(q,p), (q̃, p̃)

) · ∂k−1(q̃, p̃)

=
∑
k−1

σ
(
(q,p), (q̃, p̃)

) ·∑
k−2

σ
(
(q̃, p̃), (q̄, p̄)

) · (q̄, p̄)

=
∑
k−2

(∑
k−1

σ
(
(q,p), (q̃, p̃)

) · σ ((q̃, p̃), (q̄, p̄)
)) · (q̄, p̄)

= 0,

as Proposition 6.2 implies that broken flow lines between two critical points whose relative
Morse indices differ by two always come in pairs.

We call the pair (C∗(P), ∂∗) theMorse complex of theHamiltonian actionAH with respect
to the (0)-essential sub-bundle E , and denote by HM∗(T ∗M, E) the induced homology,
which we hereafter refer to as the Hamiltonian Morse homology of the cotangent bundle
T ∗M . As the notation suggests, the Hamiltonian Morse homology of the cotangent bundle
is independent of the choices of the perturbation P ∈ P and of the Hamiltonian function,
as soon as the growth condition (2.1) is satisfied. In fact, HM∗(T ∗M, E) is isomorphic to
the singular homology of the free loop space of M . These facts will be proved in the next
section.

7 Functoriality

Goal of this section will be to prove the following

Theorem 7.1 Let H0, H1 : T × T ∗M → R, be two smooth Hamiltonians satisfying the
growth condition (2.1) and such that every critical point of AH0 and AH1 is hyperbolic, and
let P0, P1 be corresponding vector fields as in Theorem 5.11. Then the Morse complexes
(C∗(P0), ∂∗) and (C∗(P1), ∂∗) are isomorphic. In particular, the induced homology is inde-
pendent both of the Hamiltonian and the vector field, and it can be therefore denoted by
HM∗(T ∗M, E). Furthermore, HM∗(T ∗M, E) is isomorphic to the singular homology of
�M, the free loop space of M, thus also to the Floer homology of T ∗M.

The theorem above is a consequence of the following more general functorial property of
the Morse homology.

Theorem 7.2 The following statements hold:

(1) Let H be an Hamiltonian as in Theorem 7.1, and let P, P̃ be two vector fields as in
Theorem 5.11. Then the Morse complexes (C∗(P), ∂∗) and (C∗(P̃), ∂∗) are isomorphic.
In particular, the induced homology does not depend on the chosen vector field and can
be denoted by HM∗(T ∗M, E,AH ).

(2) Suppose that H0 and H1 are Hamiltonians as in Theorem 7.1 such that H0 ≤ H1. Then,
there is a sequence of homomorphisms of Abelian groups

φH0,H1 : HMk(T
∗M, E,AH0) → HMk(T

∗M, E,AH1), ∀k ∈ Z,
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such that φH1,H2 ◦ φH0,H1 = φH0,H2 and φH0,H0 = id (actually, φH0,H0+c = id for any
c ≥ 0).

Proof of Theorem 7.1 By assumption we can find constants c−, c+ ∈ R such that

H0 + c− ≤ H1 ≤ H0 + c+.

By the functorial property of Morse homology we see that there are homomorphisms of
Abelian groups φH0+c−,H1 and φH1,H0+c+ such that

φH1,H0+c+ ◦ φH0+c−,H1 = φH0+c−,H0+c+ = id.

In particular, φH0+c−,H1 is injective and φH1,H0+c+ is surjective, which means that the
Morse homology HM∗(T ∗M, E,AH1 , P1) is at least as rich as the Morse homology
HM∗(T ∗M, E,AH0 , P0). Exchanging the role of H0 and H1 yields the claim.

The isomorphism between HM∗(T ∗M, E) and the singular homology of �M is con-
structed exactly as in [6] for the case of Floer homology. Taking advantage of the freedom
in the choice of the Hamiltonian function, we choose H of the form3

H(t, q, p) = 1

2
|p|2 +U (t, q).

Such an Hamiltonian is the Fenchel dual of the Tonelli Lagrangian

L : T× T M → R, L(t, q, p) = 1

2
|v|2 −U (t, q).

The Legendre transform (t, q, p) 
→ (t, q, ∂H/∂ p(t, q, p)) establishes a one-to-one cor-
respondence between the set of one-periodic solutions to Hamilton’s equations on T ∗M ,
denoted P(H), and the set of one-periodic solutions of the Euler-Lagrange equation on T M ,
denoted P(L), which in local coordinates read

d

dt

∂L

∂v
(t, q(t), q̇(t)) = ∂L

∂q
(t, q(t), q̇(t)).

In the latter formulation, one-periodic solutions correspond to critical points of theLagrangian
action

S : H1(T, M) → R, S(q) :=
∫ 1

0
L(t, q(t), q̇(t)) dt .

Moreover, the Morse index of every one-periodic solution q ∈ P(L) coincides with the
relative Morse index of the corresponding solution x ∈ P(H). As it turns out, one can
apply infinite dimensional Morse theory (in fact, the Morse complex approach) as developed
by Palais [36] to the functional S, and the resulting Morse homology is isomorphic to the
singular homology of H1(T, M) (and hence, to the singular homology of �M , as the latter
two spaces are homotopy equivalent). The claim follows now showing that there is a chain
complex isomorphism between {CM∗(S), ∂∗} and the Morse complex {C∗(AH ), ∂∗} of the
quadruple (AH ,M1−s, P, E). This can be done adapting the argument of [6] to the setting
of this paper.

Thus, we are left to prove Theorem 7.2. Even if we are dealing herewith strongly indefinite
functionals, the argument is very similar to the case of finite Morse indices (see for instance
[4] and references therein).

3 As already observed, for a generic choice of the potential U , all critical points of AH are hyperbolic.
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Thus, let H : T× T ∗M → R be a smooth Hamiltonian as in Theorem 7.1 and let P, P̃
be two vector fields as in Theorem 5.11. We introduce the smooth Morse function

ϕ : R → R, ϕ(r) = 2r3 − 3r2 + 1,

which has a non-degenerate local maximum at r = 0 with ϕ(0) = 1 and a non-degenerate
local minimum at r = 1 with ϕ(1) = 0. Moreover, ϕ′(r) diverges for r → ±∞. On
R×M1−s we consider the function

f : R×M1−s → R, f (r , x) := ϕ(r) + AH (x)

and the cone vector field

F(r , ·) := χ(r)P(·) + (1− χ(r))P̃(·) − ϕ′(r) ∂

∂r
,

whereχ : R → R is the characteristic function of the half-line (−∞, 1
2 ]. It is straightforward

to check that f is a non-degenerate Lyapounov function for F .

Remark 7.3 The cone vector field F has discontinuities at the hypersurface {r = 1/2}.
However, these still allow to have a well-defined Morse complex. Indeed, both vector fields

P(r , ·) := P(·) − ϕ′(r) ∂

∂r
and P(r , ·) := P̃(·) − ϕ′(r) ∂

∂r

are transverse to the hypersurface {r = 1/2} and point in the same direction. For z = (r , x) ∈
(−∞, 1/2) × M1−s we denote by τ(z) > 0 the hitting time of the P-flowline through z
with the hypersurface {z = 1/2} and readily see that


t
F (z) =

{

t

P(z) t ≤ τ(z),



t−τ(z)
P̃

◦ φ
τ(z)
P (z) t > τ(z).

From this one can easily deduce that the stable and unstable manifolds of critical points of
f are indeed smooth manifolds. The details are left to the reader.

Clearly, the critical points of f (equivalently, the rest points of F) are the points (0, x)with
x ∈ critAH and (1, y)with y ∈ critAH . In particular, by Proposition 2.1 this implies that the
action of critical points of f is uniformly bounded from below. Also, the pair ( f , F) satisfies
the Palais-Smale condition; indeed, if (rn, xn) ⊂ R×M1−s is a Palais-Smale sequence for
the pair ( f , F) then, up to extracting a subsequence, we either have that rn → 0 or rn → 1.
Let us assume that rn → 0 (the other case being completely analogous). Without loss of
generality we can suppose that |rn | < 1

2 for all n ∈ N, so that for all n ∈ N we have

f (rn, xn) = AH (xn) + ϕ(rn), F(rn, xn) = P(xn) − ϕ′(rn)
∂

∂r
.

This shows that (xn) is a Palais-Smale sequence for the pair (AH , P), thus pre-compact as
the pair (AH , P) satisfies the Palais-Smale condition.

If E ⊂ TM1−s denotes the (0)-essential subbundle defined in Sect. 3, we readily see that
{0} × E ⊂ T (R×M1−s) is a strongly integrable (0)-essential subbundle with the property
that the Hessian of f at any critical point is a compact perturbation of {0} × E , and that
the relative Morse indices of critical points of f with respect to the (0)-essential subbundle
{0} × E are

m((0, x); {0} × E) = m(x; E) + 1, ∀x ∈ critAH ,

m((1, y); {0} × E) = m(y; E), ∀y ∈ critAH ,
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where m(·, E) is the relative Morse index defined in Definition 3.2. Finally, if F denotes the
essentially vertical family defined in (4.1), we have that

⋃
J⊂R

J × F

is an essentially vertical family for {0}× E which is F-invariant (recall indeed that F is both
P- and P̃-invariant). Therefore, Theorem 6.5 in [3] implies that the intersection between
stable and unstable manifolds of any two critical points of f is pre-compact.

Let us now have a closer look at the stable and unstable manifolds of critical points of f .
Denoting by σ : R → (0, 1) the solution of the Cauchy problem

{
σ ′(t) = −ϕ′(σ (t)),
σ (0) = 1

2 ,

a direct inspection to the flow of F shows that for every x, y ∈ critAH we have

Ws((0, x); F) = {0} ×Ws(x; P),

Wu((0, x); F) =
⋃

−∞<s<1

{r} × 
P̃
t+(r)

(
Wu(x; P)

)
,

Ws((1, y); F) =
⋃

0<s<+∞
{r} × 
P

t−(r)

(
Ws(y; P̃)

)
,

Wu((1, y); F) = {1} ×Wu(y; P̃),

where the functions t+ : (−∞, 1) → R+ and t− : (0,+∞) → R− are defined implicitly
by

{
t+(r) = 0 for r ≤ 1/2,

σ (t+(r)) = r for r ≥ 1/2,

{
t−(r) = 0 for r ≥ 1/2,

σ (t−(r)) = r for r ≤ 1/2.

In particular, for every x, x ′, y, y′ ∈ critAH we have

Wu((0, x); F) ∩Ws((0, x ′); F) = {0} × (
Wu(x; P) ∩Ws(x ′; P)

)
,

Wu((1, y); F) ∩Ws((1, y′); F) = {1} × (
Wu(y; P̃) ∩Ws(y′; P̃)

)
,

Wu((0, x); F) ∩Ws((1, y); F) =
⋃

0<r≤1/2

{r} × (
Wu(x; P) ∩ 
P

t−(r)(W
s(y; P̃))

)

∪
⋃

1/2≤r<1

{r} × (

P̃

t+(r)(W
u(x; P)) ∩Ws(y; P̃)

)

Wu((1, y); F) ∩Ws((0, x); F) = ∅.

From this, we readily see that all but possibly the third intersection are transverse by
assumption. Notice also that in case x = y we have

Wu((0, x); F) ∩Ws((1, x); F) = (0, 1) × {x}.
This can be seen also as following:We interpretAH as a function of both r and x and observe
that

dAH (r , x)[F(r , x)] = χ(r) · dAH (r , x)[P(x)] + (1− χ(r)) · dAH (r , x)[P̃(x)] < 0
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for all (r , x) ∈ R×M1−s such that x /∈ critAH . Therefore, AH is strictly decreasing along
all non-constant flow lines of F , besides those which are up to time shifts of the form

t 
→ (σ (t), x), x ∈ critAH .

In particular, up to time shifts there is exactly one flow line going from (0, x) to (1, x) for
every x ∈ critAH , and the intersection

Wu((0, x); F) ∩Ws((1, x); F) = (0, 1) × {x}
is transverse. This can be seen roughly speaking as follows: at the hypersurface {r = 1/2}
we have

{1/2} × (
Wu(x; P) ∩Ws(x; P̃)

)
and the claim follows since TxWu(x; P) belongs to the negative cone to f at x whereas
TxWs(x; P̃) belongs to the positive cone to f at x . The details are left to the reader.

Repeating the argument of Sect. 6 word by word, we deduce that the Morse complex with
Z2-coefficients with respect to the (0)-essential subbundle {0} × E for the cone vector field
F is well-defined provided the vector fields P and P̃ satisfy the following

Transversality for pairs condition:For every x, y ∈ critAH withm(x; E)−m(y; E) ≤ 1
the intersection

Wu(x; P) ∩Ws(y; P̃)

is transverse.
Indeed, by the computations above, we see that stable and unstable manifolds of critical
points of f intersect transversally if and only if the transversality for pairs condition holds.
Such a condition can be achieved by a generic small perturbation of P̃ , as one sees adapting
the arguments in Sect. 5. It is worth observing that according to [1, Section 8] it is possible to
define aMorse complex even if the transversality for pairs condition is not satisfied. However,
in this case the boundary operator is not uniquely determined.

Recalling that we are using Z2-coefficients, we see that the boundary operator ∂F∗ takes
the form

∂F∗+1 : C∗+1(F) ∼= C∗(P) ⊕ C∗+1(P̃) → C∗−1(P) ⊕ C∗(P̃) ∼= C∗(F), ∂F∗+1 =
(

∂P∗ 0

�∗ ∂ P̃∗+1

)
,

for some chain homomorphism �∗ : C∗(P) → C∗(P̃) (this follows from the fact that
0 = ∂F∗ ◦ ∂F∗+1).

We now explicitly determine�∗. Using the computations above about stable and unstable
manifolds of critical points of f it is easy to check that the pair (P, P̃) satisfies the following
two additional properties:

Compactness for pairs condition: For every x, y ∈ critAH with m(x; E)−m(y; E) ≤ 1
the sets

Wu(x; P) ∩ 
P (R− ×Ws(y; P̃)), 
P̃ (R+ ×Wu(x; P)) ∩Ws(y; P̃)

are pre-compact.
Finiteness for pairs condition: For every x ∈ critAH the set

{
y ∈ critAH

∣∣ m(y; E) = m(x; E), and Wu(x; P) ∩Ws(y; P̃)  = ∅}
is finite.
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These facts, together with the transversality for pairs condition, allow us to construct 
∗ as
follows: Define critκAH to be the set of critical points ofAH with relativeMorse index κ . For
any x, y ∈ critκAH consider p ∈ Wu(x; P)∩Ws(y; P̃). The tangent space of Wu(x; P) at
any p is a compact perturbation of E(p) with

dim(TpW
u(x; P), E(p)) = m(x; E) = κ,

while the pair (TpWs(y; P̃), E(p)) is Fredholm with

ind (TpW
s(y; P̃), E(p)) = −m(y; E) = −κ.

It follows that (TpWu(x; P), TpWs(y; P̃)) is a Fredholm pair of index 0 (see e.g. Proposition
A.2 in [3]). By the transversality and compactness for pairs conditions, the intersection
Wu(x; P)∩Ws(y; P̃) is a compact discrete set, thus finite. We can therefore define for every
x ∈ critκAH (observe that this is indeed a finite sum by the finiteness for pairs condition)

�κ x :=
∑

y∈critκAH

(
#Wu(x; P) ∩Ws(y; P̃) modulo 2

)
· y

= x +
∑

y ∈ critκAH ,

AH (y) < AH (x)

(
#Wu(x; P) ∩Ws(y; P̃) modulo 2

)
· y.

It is straightforward to check that such a homomorphism coincides with the one appearing
in the expression for ∂F∗ (in other words, the Morse complex (C∗(F), ∂F∗ ) is the mapping
cone of the homomorphism �; see e.g. [34, II.4]). Moreover, ordering the critical points of
AH by increasing value of the action, we see that �κ is represented by an upper-triangular
matrix with 1 on the diagonal entries. Part (1) of Theorem 7.2 now readily follows, as an
homomorphism of this form must be an isomorphism. Indeed, if x1, x2, ... are the critical
points of index κ of AH ordered by increasing value of AH , the inverse of 
κ is defined
inductively by

�−1
κ x1 = x1,

�−1
κ x� = x� −

�−1∑
j=1

(
#Wu(x�; P) ∩Ws(x j ; P̃) modulo 2

)
· 
−1

κ x j , ∀� ≥ 2.

The homomorphism 
H0,H1 in Part (2) for Hamiltonians H0 ≤ H1 with corresponding
negative pseudo-gradient vector fields P0 and P1 is constructed using the same ideas used
for Part (1): One defines the cone function f : R×M1−s → R of the Hamiltonian actions
AH0 ≥ AH1 by

f (r , ·) := χ(r)AH0(·) + (1− χ(r))AH1(·) + ϕ(r),

which is a non-degenerate Lyapounov function of the cone vector field

F(r , ·) := χ(r)P0(·) + (1− χ(r)P1(·) − ϕ′(r) ∂

∂r
.

Repeating the argument above, we see that the Morse complex with Z2-coefficients of the
cone vector field F with respect to the (0)-essential subbundle {0} × E is well-defined, and
that the boundary operator ∂F∗ is the cone of some chain homomorphism �H0,H1 , which thus
induces a homomorphism 
H0,H1 in homology. The fact that 
H0,H0+c = id for all c ≥ 0
follows by taking P0 = P1.
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Thus, we are left to show the transitivity property


H1,H2 ◦ 
H0,H1 = 
H0,H2

for any triplet of Hamiltonians (H0, H1, H2) such that H0 ≤ H1 ≤ H2. This will be achieved
by iterating the cone vector field construction. Thus, choose negative pseudo-gradient vector
fields Pi for AHi , i = 0, 1, 2, as in the statement of Theorem 5.11 and denote with Fi j ,
0 ≤ 1 ≤ j ≤ 2, the cone vector field of Pi and Pj :

Fi j (r , ·) = χ(r)Pi (·) + (1− χ(r))Pj (·) + ϕ(r).

Up to a generic small perturbation of P1 and P2 we can suppose that the Morse complex

(C∗(Fi j ), ∂
Fi j∗ ) is well-defined. Equivalently, this means that each pair (Pi , Pj ) satisfies the

transversality, compactness, and finiteness for pairs conditions. All we have to show is that
(recall that we are using Z2-coefficients)

�H1,H2 ◦ �H0,H1 + �H0,H2 = ∂ P2 ◦ P + P ◦ ∂ P0

for some homomorphism P∗ : C∗(P0) → C∗+1(P2) which is usually called the prisma
operator.

Remark 7.4 For arbitrary vector fields F0, F1, F2 such that each pair (Fi , Fj ) satisfies the
transversality, compactness, and finiteness for pairs conditions, the chain map �F0,F2 :
C∗(F0) → C∗(F2) need not be chain homotopic to the composition �F1,F2 ◦ �F0,F1 . For
instance, take F0 = F2 and F1 to be a vector field with no rest points.4 In this case we have
�F0,F2 = id, whereas �F1,F2 = �F0,F1 = 0, so that �F0,F2 is not chain homotopic to the
composition �F1,F2 ◦ �F0,F1 unless the Morse complex of F0 = F2 is contractible.

On R2 ×M1−s consider the cone vector field of F01 and F02

F01,02(r , l, ·) = χ(r)F01(l, ·) + (1− χ(r))F02(l, ·) − ϕ′(r) ∂

∂r
.

It is immediate to check that the cone function

f01,02(r , l, ·) = χ(s)AH0(·) + χ(r)(1− χ(l))AH1(·)
+ (1− χ(r))(1− χ(l))AH2(·) + ϕ(l) + ϕ(r)

is a non-degenerate Lyapounov function for F01,02 and that its critical points (equivalently,
the rest points of F01,02) are of the form

(0, 0, x), (1, 0, x), x ∈ critAH0 ,

(0, 1, y), y ∈ critAH1 ,

(1, 1, z), z ∈ critAH2 .

In particular, the action of critical points of f01,02 is uniformly bounded from below. Also,
as one sees adapting the argument used for Part (1), the pair ( f01,02, F01,02) satisfies the
Palais-Smale condition, the Hessian of f01,02 at every critical point is a compact perturbation
of the strongly integrable (0)-essential subbundle {(0, 0)} × E ⊂ T (R2 × M1−s) and the

4 Every infinite dimensional Hilbert manifold admits a vector field with no rest points since its tangent bundle
is trivial.
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relative Morse indices read

m((0, 0, x); {(0, 0)} × E) = m(x; E) + 2, ∀x ∈ critAH0 ,

m((1, 0, x); {(0, 0)} × E) = m(x; E) + 1, ∀x ∈ critAH0 ,

m((0, 1, y); {(0, 0)} × E) = m(x; E) + 1, ∀y ∈ critAH1 ,

m((1, 1, z); {(0, 0)} × E) = m(z; E), ∀z ∈ critAH2 .

Finally,
⋃

A⊂R2

A × F

is an essentially vertical family for {(0, 0)} × E which is F01,02-invariant. This implies in
virtue of Theorem 6.5 in [3] that the intersection between stable and unstable manifolds
of any two critical point of f01,02 is pre-compact. Transversality can also be achieved by

a small perturbation, so that the Morse complex (C∗(F01,02), ∂
F01,02∗ ) with Z2-coefficients

with respect to the (0)-essential subbundle {(0, 0)} × E is well-defined.
Writing

C∗+1(F01,02) ∼= C∗−1(P0) ⊕ C∗(P0) ⊕ C∗(P1) ⊕ C∗+1(P2)

it is easy to check that ∂
F01,02∗ takes the form

∂
F01,02
∗+1 =

⎛
⎜⎜⎜⎝

∂
P0∗−1 0 0 0
∗ ∂

P0∗ ∗ 0
(�H0,H1)∗−1 0 ∂

P1∗ 0
∗ (�H0,H2)∗ ∗ ∂

P2∗+1

⎞
⎟⎟⎟⎠ .

To determine the missing terms we observe that

F01,02(r , l, ·) = χ(l)P0(·) + χ(r)(1− χ(l))P1(·) + (1− χ(r))(1− χ(l))P2(·)
− ϕ′(l) ∂

∂l
− ϕ′(r) ∂

∂r

= χ(l)
(
P0(·) − ϕ′(r) ∂

∂r

)

+ (1− χ(l))
(
χ(r)P1(·) + (1− χ(r))P2(·) − ϕ′(r) ∂

∂r

)

− ϕ′(l) ∂

∂l

= χ(l)F00(r , ·) + (1− χ(l))F12(r , ·) − ϕ′(l) ∂

∂l
= F00,12(l, r , ·)

and similarly f01,02(r , l, ·) = f00,12(l, r , ·). In particular, the boundary operator ∂
F01,02∗ can

be rewritten as

∂
F01,02
∗+1 = ∂

F00,12
∗+1 =

⎛
⎜⎜⎜⎝

∂
P0∗−1 0 0 0

idC∗−1(P0) ∂
P0∗ 0 0

∗ ∗ ∂
P1∗ 0

∗ ∗ (�H1,H2)∗ ∂
P2∗+1

⎞
⎟⎟⎟⎠ .
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Comparing the two expressions for ∂
F01,02∗ yields

∂
F01,02
∗+1 =

⎛
⎜⎜⎜⎝

∂
P0∗−1 0 0 0

idC∗−1(P0) ∂
P0∗ 0 0

(�H0,H1)∗−1 0 ∂
P1∗ 0

P∗−1 (�H0,H2)∗ (�H1,H2)∗ ∂
P2∗+1

⎞
⎟⎟⎟⎠

for some homomorphism P∗−1 : C∗−1(P0) → C∗(P2). The identity 0 = ∂
F01,02
∗+1 ◦ ∂

F01,02
∗+2

implies now that

(�H1,H2)∗ ◦ (�H0,H1)∗ + (�H0,H2)∗ = ∂
P2∗+1 ◦ P∗ + P∗−1 ◦ ∂ P0∗

as claimed.

Appendix A Flows which preserve an essentially vertical family

In this appendix we prove some extra properties about flows which preserve an essentially
vertical family. Thus, let M be a Hilbert manifold modeled on the real separable Hilbert
spaceH, and let E be a strongly integrable essential sub-bundle of TMwith strong integrable
structure given by an atlas A which carries an essentially vertical family F . For a C1-vector
field F on M we denote by

φF : �(F) ⊂ R×M → M
its local flow. Our first claim is that, if F is complete andF is F-positively invariant, meaning
that for every A ∈ F the set φF ([−T , T ] × A) ∈ F for every T ≥ 0, then E is invariant
with respect to F . This means that, denoting with E(p) a local representative of E at p for
every p ∈ M, the following holds:

DφF
t (p)E(p) is a compact perturbation of E(φF

t (p)), ∀t ∈ R, ∀p ∈ M. (A.1)

We shall notice that this notion does not depend on the choice of the local representative at
p. Indeed, by [3, Page 341], E is invariant with respect to F at p ∈ M if and only if

(LFP)(p)P(p) ∈ L(TpM) is a compact endomorphism, (A.2)

where LF denotes the Lie-derivative along F and P denotes a projector onto a local repre-
sentative of E in a neighborhood U of p (more precisely, P is a section of the Banach bundle
of linear endomorphisms of TU such that for every p ∈ U , P(p) is a projector onto E(p)).
It is now straightforward to check that (A.2) is independent of the choice of the projector as
well as of the choice of the local representative of E .

Proposition A.1 Let F be a complete vector field on M for which the essentially vertical
family F is positively invariant. Then, the strongly integrable essential sub-bundle E is
positively invariant under F.

Proof BeingCondition (A.2) local, we canwork in a neighborhoodU of a fixed point p ∈ M.
Using a chart ϕ in A we can further identify such a neighborhood with an open subset U of
H in such a way that p correspond to 0, and assume that E is represented by the constant
sub-bundle corresponding to a closed linear subspace V ⊂ H. Let P : H → H be a projector
onto V . By the very definition of F , we see that essentially vertical sets which are contained
in 1

2U := ϕ−1( 12U ) correspond to subsets A ⊂ 1
2U such that (I − P)A is pre-compact.
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Clearly, the set V ∩ 1
2U belongs to F . Then, the fact that F is F-positively invariant implies

that, for T > 0 small enough (namely, such that 
F ([−T , T ] × 1
2U ) ⊂ U ), the map

1

2
U → H, x 
→ (I − P)
F

t (Px),

has pre-compact image for every t ∈ [−T , T ]. Differentiating at x = 0 yields that the linear
operator

(I − P)DφF
t (0)P

is compact for every t ∈ [−T , T ]. Therefore, the operator

(LF P)(0)P = [DF(0), P]P = (I − P)DF(0)P = (I − P)
d

dt

∣∣∣
t=0

DφF
t (0)P

= d

dt

∣∣∣
t=0

(I − P)DφF
t (0)P

is compact.
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