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The nuclear export protein XPO1 interacts with nucleoporin 214 (NUP214) and has been implicated in the pathogenesis of
SET::NUP214 acute myeloid leukemia (AML). We evaluated DEK::NUP214 (DN), characterizing a distinct AML entity, for its
dependency on XPO1 in human AML models. Deletion of XPO1 in DN-positive FKH-1 cells revealed a strong dependency on XPO1.
Pharmacologic inhibition of XPO1 by the second-generation selective inhibitor of nuclear export, eltanexor, in primary human and
FKH-1 cells reduced XPO1 expression, disrupted co-localization of XPO1 and DN, and induced apoptosis and cell cycle arrest.
Functionally, XPO1 and DN co-localized at chromatin, and this co-localization was strongly reduced by XPO1 inhibition. Loss of
chromatin binding resulted in downregulation of DN target genes and pathways related to cell cycle and self-renewal. Eltanexor
treatment of a patient-derived DN-AML xenograft model disrupted leukemia development, showing molecular clearance in bone
marrow after a median of 377 days in eltanexor-treated mice, while control mice succumbed after a median of 244 days. In
summary, XPO1 stabilizes DN at chromatin to allow the activation of its oncogenic gene signature, while targeting XPO1 treats
leukemia successfully in vivo. These findings establish XPO1 as a molecular target in DEK::NUP214 AML.

Leukemia (2025) 39:1102–1113; https://doi.org/10.1038/s41375-025-02570-1

INTRODUCTION
DEK::NUP214 t(6;9)(p23;q34) acute myeloid leukemia (AML) is
recognized as a unique entity by the World Health Organization
(WHO) since 2008, as well as the International Consensus Classifica-
tion (ICC) of hematopoietic neoplasms [1, 2]. It was first identified in
1976 [3], and is found in 1% of patients, mostly affecting younger
adults [4]. The breakpoint occurs in the DEK gene on chromosome 6
and the NUP214 gene (formerly known as CAN) on chromosome 9 in
defined introns, referred to as icb-6 and icb-9 (intron-containing
breakpoints), respectively, leading to the formation of a single
chimeric mRNA transcript [5–7]. This group is often co-mutated with
the FLT3 internal tandem duplication (ITD) and characterized by poor
prognosis and chemotherapy resistance [8]. Accordingly, the
European LeukemiaNet (ELN) assigns patients with DEK::NUP214 to
the adverse risk group [9, 10]. The pathogenesis of DEK::NUP214 AML
has been investigated using human CD34+ human hematopoietic
progenitor cells transduced with DEK::NUP214 xenografted into
immunocompromised mice as well as syngeneic murine models
[11, 12], but models which allow serial transplantation of human AML
cells, which would enable pharmacologic testing of new treatment
approaches, have not been described so far.
High expression of the DEK oncogene in breast and bladder

cancers has been associated with advanced disease and poor

prognosis [13, 14]. This abundant nuclear protein has been shown
to have variable functions in regulation of gene expression, DNA
repair, apoptosis, and senescence. The localization of DEK has
been shown to be confined to the nucleus and bound to
chromatin through the SAP domain and a second DNA-binding
structure in the C-terminus. Both DNA binding domains are
preserved in the fusion protein [15–18].
The fusion partner NUP214 is a nucleoporin, which is implicated

in cell cycle regulation and nucleocytoplasmic transport [19–21]. A
previous study found that NUP214 binds to XPO1 (previously
known as CRM1), a nuclear export protein involved in the
transport of cargos with a nuclear export signal (NES) and RNA
species, as part of the nuclear pore complex (NPC) [22].
Phenylalanine-glycine (FG) repeats are found in intrinsically
disordered proteins like nucleoporins and localize to the
cytoplasmic filaments of the NPC, suggesting these are sites for
initial or terminal binding to the transport complex. Specifically,
NUP214 is involved in a late step of nuclear export, and it is
reported as the nucleoporin with the highest affinity for XPO1
[5, 23]. The DEK::NUP214 fusion protein retains the majority of the
FG repeat domains needed for the interaction with XPO1 [24].
XPO1 functions together with the RanGTPase as an energy
provider for nuclear transport. An export-independent function of

Received: 12 July 2024 Revised: 1 February 2025 Accepted: 13 March 2025
Published online: 27 March 2025

1Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany. 2Institute of Cell Biochemistry, Hannover
Medical School, Hannover, Germany. 3Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany. 4Institute of Pathology, Hannover
Medical School, Hannover, Germany. 5Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany. 6University Hospital Halle (Saale), Department of Internal
Medicine IV, Martin-Luther-University Halle-Wittenberg, Halle, Germany. ✉email: heuser.michael@mh-hannover.de

www.nature.com/leu Leukemia

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41375-025-02570-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41375-025-02570-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41375-025-02570-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41375-025-02570-1&domain=pdf
http://orcid.org/0009-0006-3941-7497
http://orcid.org/0009-0006-3941-7497
http://orcid.org/0009-0006-3941-7497
http://orcid.org/0009-0006-3941-7497
http://orcid.org/0009-0006-3941-7497
http://orcid.org/0000-0003-4409-016X
http://orcid.org/0000-0003-4409-016X
http://orcid.org/0000-0003-4409-016X
http://orcid.org/0000-0003-4409-016X
http://orcid.org/0000-0003-4409-016X
http://orcid.org/0000-0002-3855-0345
http://orcid.org/0000-0002-3855-0345
http://orcid.org/0000-0002-3855-0345
http://orcid.org/0000-0002-3855-0345
http://orcid.org/0000-0002-3855-0345
http://orcid.org/0000-0001-5318-9044
http://orcid.org/0000-0001-5318-9044
http://orcid.org/0000-0001-5318-9044
http://orcid.org/0000-0001-5318-9044
http://orcid.org/0000-0001-5318-9044
https://doi.org/10.1038/s41375-025-02570-1
mailto:heuser.michael@mh-hannover.de
www.nature.com/leu


the XPO1/RAN complex has been established in mitosis regulation
based on its requirement for microtubule nucleation and
centrosome recruitment [25].
This plethora of functions proved to be important in several

cancers including hematological malignancies, pancreatic and
ovarian cancer, and multiple myeloma [25]. Overexpression of
XPO1 is associated with poor prognosis in solid tumor cancers,
while single-point mutations have been identified and associated
with Hodgkin’s lymphoma and chronic lymphocytic leukemia
(CLL) [26]. In AML patient samples, high XPO1 protein levels were
established as an independent negative biomarker of overall
survival [27].
The clinical use of XPO1 inhibitors like leptomycin B has been

complicated by its toxicity [28], resulting in the development of
reversible inhibitors like selinexor and eltanexor. As XPO1 has
broad functions in physiology and cancer, it was implicated as a
general target in many cancers, including AML [29]. Particularly, it
was approved in multiple myeloma in combination with
bortezomib and dexamethasone for patients after 1–3 prior lines
of treatments [30, 31], based on a synergistic effect leading to
induction of apoptosis, while it spared normal peripheral blood
mononuclear cells, as well as sensitizing myeloma cells to
chemotherapy or proteasome inhibitor drugs [32]. However,
randomized trials in relapsed/refractory AML did not show an
improved survival for selinexor [33–36]. Interestingly, one
DEK::NUP214 (DN) patient in a phase I clinical trial with selinexor
had a measurable residual disease-negative (MRD) complete
remission in response to treatment with this single agent
[34, 37, 38], stipulating interest, whether targeting XPO1 may be
a rational, targeted treatment in patients with DEK::NUP214 AML.
We, therefore, aimed to identify the role of XPO1 in DEK::NUP214-
driven human AML.

MATERIALS AND METHODS
Cell lines
The human FKH-1 cell line (DSMZ, Braunschweig, Germany), characterized
by translocation t(6;9)(p23;q34), was used for all in vitro experiments. The
cell lines SEM, OCI-AML2, Kasumi-1, MV4-11 and MOLM-13, which do not
not harbor the translocation t(6;9), were used as a negative controls.

Electroporation and CRISPR/CAS9-mediated XPO1 knockout
FKH-1, OCI-AML2, MV4-11 and Kasumi-1 cells were electroporated with
crRNAs [39] (Alt-R® CRISPR-Cas9 crRNA) (sequences described in Supple-
mentary Table S1) targeting the XPO1 gene or a non-targeting sequence in
a 3:1 or 2:1 ratio of crRNA-Cas9 (Alt-R™ S.p. Cas9 Nuclease V3) and
ribonucleoprotein (RNP) (Integrated DNA Technologies (IDT), Leuven,
Belgium). Additional information is provided in Supplementary Methods.

Patient samples
Frozen bone marrow cells collected during the routine diagnostic workup
of patients diagnosed with translocation t(6;9) at the Department of
Internal Medicine III at University Hospital of Ulm or Department of
Hematology, Hemostasis, Oncology and Stem Cell Transplantation at
Hannover Medical School were utilized with informed consent of the
patients. All studies were performed in accordance with the Declaration of
Helsinki, and the institutional review board of Hannover Medical School
(ethical votes 936/2011 and 2504–2014) approved the study. Technical
details of in vitro drug experiments are described in Supplementary
Methods.

Patient-derived xenograft models, treatment, and monitoring
All mouse experiments adhered to the guidelines for animal care and use
established by Hannover Medical School and were conducted with
approval from the Lower Saxony State Office for Consumer Protection,
Oldenburg, Germany. Mice were kept under pathogen-free conditions at
the central animal laboratory of Hannover Medical School. To establish the
patient-derived xenograft (PDX) model female and male animals were
used, with age and sex matching to the controls; for drug treatment

experiments, 8–11 weeks old female mice were used. Further details are
provided in the results and in Supplementary Methods.

RNA extraction and quantitative RT-PCR
Total RNA was extracted using the RNeasy micro or mini kit according to
the manufacturer’s instructions (Qiagen, Düsseldorf, Germany) and reverse
transcribed using random primers. Quantitative reverse-transcriptase
polymerase chain reaction (RT-PCR) was performed using the Quantitect
SYBR green PCR kit (Qiagen) for quantification of double-stranded DNA on
a StepOne Plus cycler (Applied Biosystems, Darmstadt, Germany). Relative
expression was determined with the 2−ΔΔCT method [40] using ABL1 as the
housekeeping gene to normalize the results. The primer sequences are
listed in Supplementary Table S2.

Bioinformatic analysis of RNA-seq data
Following drug treatment, RNA from FKH-1 and sorted PDX cells was
isolated as described above. RNA samples were processed at the
Helmholtz Center for Infection Research (Braunschweig, Germany) and
sequenced on a Novaseq 6000 instrument (Illumina, San Diego, CA, USA)
with an average of 5 × 107 reads per RNA sample. Further information is
provided in Supplementary Methods.

Chromatin immunoprecipitation (ChIP) sequencing
Briefly, 24 h post-drug treatment cells were counted and 20 million cells
per condition were washed with ice-cold PBS and resuspended in fixing
buffer for 5 min with rotation at room temperature, this was followed by
quenching the reaction with glycine for 5 min at room temperature. All
buffers contained protease inhibitors (50 µg/ml PMSF, 1 µg/ml leupeptin,
and 10M sodium butyrate). The full description is provided in
Supplementary Methods.

Mutational analysis by next-generation sequencing
A custom TruSight Myeloid Sequencing Panel from Illumina was used to
sequence DNA from primary AML patient samples and cells derived from
PDX models, following the manufacturer’s instructions and as described
before [41, 42] on a MiSeq sequencer (Illumina). This panel includes 48
entire genes or hotspots recurrently found in myeloid leukemias.

Statistical analysis and figure design
Data are shown as mean ± standard error of mean (SEM). Pairwise
comparisons were performed using Student’s t-test for continuous
variables or one-way ANOVA. The two-sided level of significance was set
at P < 0.05. Statistically significant results are marked with an asterisk.
Survival curves were compared using the log-rank test. Statistical analyzes
were performed using Microsoft Excel (Microsoft, Redmond, WA, USA),
GraphPad Prism 9 (GraphPad Software, La Jolla, CA, USA), and R (v3.4.4,
www.r-project.org). Inkscape v1.2.2 (732a01da63, 2022-12-09) (https://
inkscape.org/) was used to create figures. Graphical abstract and Figs. 6A,
and S1B, S6A were created with biorender.com
Additional methods such as the clonogenic progenitor assay (CFC), Sanger

sequencing, cell cycle analysis, viability and apoptosis staining, co-
immunoprecipitation, immunoblotting, morphologic assessment, and
immunofluorescence microscopy are described in Supplementary Methods.

RESULTS
DEK::NUP214 interacts with and functionally depends
on XPO1
We first validated the expression of the DEK::NUP214 and XPO1
genes and proteins in the FKH-1 cell line, using established
leukemia cell lines as the negative control. RT-qPCR and western
blot showed that only the FKH-1 cells express the DEK::NUP214
gene and protein, while XPO1 is similarly expressed in the two cell
lines (Fig. 1A, B). Sequencing the fusion transcript confirmed the
known breakpoint of DEK::NUP214 (Supplementary Fig. S1A) and
the interaction of XPO1 with DEK::NUP214 was confirmed by co-
immunoprecipitation (Fig. 1C).
To understand the dependency of the DEK::NUP214 fusion

protein on XPO1, XPO1 was deleted in FKH-1 cells using CRISPR/
CAS9, as well as in control cell lines. A non-targeting sequence
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(NTC) and a combination of 3 crRNAs, divided into 2 groups,
targeting different exons of XPO1 were transfected into FKH-1,
OCI-AML2, MV4-11, and Kasumi-1 cells (Supplementary Fig. S1B).
Complete uptake was confirmed in all cells targeted with RNPs
after nucleofection (Supplementary Fig. S1C).
Initial post-nucleofection stress was observed in cells recovered

from all conditions. From 24 h onwards in FKH-1 cells, there was a
continuous increase in the percentage of annexin V+ cells in the
anti-XPO1 targeted groups, while control and NTC cells remained
constant over nine days (Fig. 1D). Consistently, viability decreased
rapidly in XPO1 targeted cells compared to control cells (Fig. 1E),
while the number of viable cells increased significantly slower in
XPO1 targeted cells (Fig. 1F). Reduced expression of the XPO1
transcript and protein was confirmed by RT-qPCR and immuno-
blotting in anti-XPO1 targeted cells, respectively (Supplementary
Fig. S1D, E). Immunofluorescence microscopy was used to
characterize the effect of XPO1 depletion on the DEK::NUP214-
XPO1 interaction. Control and NTC cells showed typical
DEK::NUP214 nuclear bodies and similar expression levels of
XPO1 in the nucleus with co-localization of both proteins, while
XPO1 targeted cells showed reduced to absent expression of
XPO1, loss of co-localization, and a reduced number of
DEK::NUP214 nuclear bodies (Supplementary Fig. S1F). XPO1
knockdown was confirmed in control cell lines (Supplementary
Fig. S2A), with minimal effects on annexin V+ cells and viability
(Supplementary Fig. S2B, C, respectively). Thus, DEK::NUP214
expressing FKH-1 cells depend on XPO1 expression for their
oncogenic function.

Eltanexor effectively inhibits DEK::NUP214 leukemia in vitro
To assess the therapeutic potential of targeting XPO1, the second-
generation selective inhibitor of nuclear export (SINE) eltanexor

(KPT-8602) was selected for studying the pharmacological
inhibition of XPO1. Eltanexor sensitivity was assessed in FKH-1
cells, which had a 50% inhibitory concentration (IC50) of 171.9 nM
(Fig. 2A). Treatment with increasing concentrations of eltanexor
increased apoptosis (Fig. 2B) and reduced the proportion of cells
in S and G2/M phases of cell cycle (Fig. 2C). Moreover, XPO1
protein expression was strongly reduced (Supplementary Fig. S3A),
and immunofluorescence microscopy showed a reduction of
DEK::NUP214 nuclear bodies (Supplementary Fig. S3B). The first-
generation SINE inhibitor selinexor was also evaluated and
showed a similar IC50 concentration, induction of apoptosis, and
reduction of target gene expression as eltanexor (Supplementary
Fig. S4A–C).
The effects of eltanexor were validated in diagnostic bone

marrow samples from eight DEK::NUP214 positive AML patients. All
patients were categorized into the ELN adverse risk group due to
the presence of the DEK::NUP214 fusion (Supplementary Table S3)
and had been untreated prior to sample harvest.
To assess the clonogenic potential, cells were plated in CFC

media supplemented with cytokines and escalating doses of
eltanexor. Eltanexor-treated colonies showed rapidly declining
colony numbers in a dose-dependent manner when compared to
the control (DMSO) (Fig. 2D).
Increasing eltanexor concentrations reduced the viability of

primary AML cells in suspension culture (Supplementary Fig. S5A).
Cell cycle distribution was also strongly affected by eltanexor
resulting in a reduction of the proportion of cells in S and G2/M
phases (Fig. 2E). Analysis of the immunophenotype revealed that
eltanexor led to an increase of CD11b+/CD15− cells while
decreasing the proportion of CD11b+/CD15+ cells (Fig. 2F). These
phenotypic changes correlated with morphological analysis of the
samples where an increase in monocytic differentiation was
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observed with more pronounced vacuolization (Fig. 2G). Further-
more, immunofluorescence staining revealed decreased XPO1
protein expression and loss of nuclear bodies upon eltanexor
treatment (Supplementary Fig. S5B). These data suggest that
inhibition of XPO1 by eltanexor results in cell cycle inhibition and
induction of differentiation in DEK::NUP214 primary patient cells.

XPO1 stabilizes DEK::NUP214 at its chromatin targets
As XPO1 inhibition decreased the DEK::NUP214 nuclear bodies
and disrupted the co-localization of both proteins, ChIP-Seq was
performed to understand the characteristics of XPO1 and
DEK::NUP214 chromatin binding in control and eltanexor-
treated cells.
For XPO1 and DEK::NUP214 control-treated cells, 17,541 and

4928 chromatin loci were observed, respectively. Aggregation of
peak distances of XPO1 loci around NUP214 binding sites showed
strong enrichment of XPO1 at NUP214 sites (Fig. 3A). Upon
eltanexor treatment, the enrichment of XPO1 peaks around
NUP214 peaks decreased (Fig. 3B).
Analysis of XPO1 and NUP214 binding sites within ±1000 bp of

the transcription start sites of known genes indicated that ~8000
genes had at least one peak of either protein within their
transcription start site (TSS). Moreover, the global decrease of
XPO1 and NUP214 chromatin binding after eltanexor treatment
was confirmed by a 2.8 and 1.4-fold reduction of chromatin peaks
of XPO1 and NUP214, respectively (Fig. 3C). Additionally, the
relative distribution of these peaks across the gene structure was
studied to better understand the dynamics of chromatin binding.
In control samples, 18.5% and 33% of NUP214 and XPO1 peaks
were located in the promoter-TSS, respectively. Eltanexor

treatment reduced these peaks to 3.7% and 3.3% (Fig. 3D),
suggesting that DEK::NUP214 requires XPO1 for the execution of
its leukemogenic transcriptional program.

XPO1 inhibition leads to downregulation of putative
DEK::NUP214 target genes
Since the loss of the XPO1 protein has profound effects on viability
and cell cycle in DEK::NUP214 expressing cells and leads to loss of
promoter binding, we next evaluated the transcriptional con-
sequences of eltanexor treatment.
Analysis of the publicly available gene expression profiles of 6

DEK::NUP214 patients and 231 AML patients with newly
diagnosed pediatric AML without the DEK::NUP214 fusion
revealed a unique gene signature for this leukemia subtype as
demonstrated by Sandahl et al. [8]. Particularly, EYA3, PRDM2, and
SESN1 were highly expressed in DEK::NUP214 positive patients
(Fig. 4A). We further confirmed this by analyzing the Beat AML
database that contains 3 DEK::NUP214 patients and 448 AML
patients diagnosed with other subtypes, where this pattern of
upregulation was observed as well (EYA3, p= 0.005, PRDM2,
p= 0.024, SESN1, p= 0.013, data not shown). Using RT-qPCR in
eltanexor or control-treated FKH-1 cells we show that these
putative target genes are significantly downregulated by
eltanexor (Fig. 4B) and selinexor (Supplementary Fig. 4C). In
addition, reduced chromatin binding of XPO1 and NUP214/
DEK::NUP214 was observed on these genes (Supplementary
Fig. S6A). The eltanexor-induced differential gene expression
pattern was further evaluated by gene set enrichment analysis
(GSEA, Fig. 4C). Among the top 30 enriched gene sets comparing
eltanexor with vehicle-treated cells, the majority of gene sets
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related to signaling and immune response (Fig. 4C and
Supplementary Table S4). Among the most downregulated genes
were HOX genes (e.g., HOXB8, HOXB9, PBX3) and cell cycle
regulators (e.g., E2F1, CDC7, Fig. 4D and Supplementary Table S5).
The top downregulated gene sets involved processes of
metabolism and replication, supporting that eltanexor induces
differentiation and cell cycle inhibition (Fig. 4D).

DEK::NUP214 primary AML cells engraft in PDX mice and are
serially transplantable
To validate the effect of eltanexor on DEK::NUP214 leukemia in
vivo, we developed a serially transplantable PDX model of
DEK::NUP214 AML.
Five bone marrow samples of DEK::NUP214 positive AML

patients were transplanted by intravenous injection in the tail
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vein of immunocompromised NSGS mice (Fig. 5A). Engraftment of
human cells was measured by the hCD45+ fraction in peripheral
blood of mice, quantified once a month.
Twenty-four weeks post-transplantation, three patient samples

showed a mean of 12.53 (PDX1), 0.68 (PDX2), and 4.89 (PDX3)
percent hCD45+ cells in peripheral blood (Fig. 5B). These mice

were then sacrificed, and a mixture of bone marrow and spleen
cells were transplanted into secondary recipients. Secondary
recipients of PDX1 cells showed a rapid increase in hCD45+ cells
at week 16. These cells were then transplanted into tertiary
recipients. PDX2 did not engraft in secondary recipients over a
44 weeks period and no additional transplantation was performed.
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One mouse of the PDX3 recipients showed detectable engraft-
ment at week 28 and was sacrificed for analysis at week 44, while
a second mouse was sacrificed with no engraftment at week 24
(Fig. 5C). PDX1 tertiary recipients showed faster engraftment
kinetics when compared with initial transplantations (Fig. 5D).
Each transplantation of PDX1 cells was characterized by

expression of cell surface markers in peripheral blood, bone
marrow, and spleen at the time of sacrifice. PDX1 had >99%

engraftment of hCD45+ cells in bone marrow, whereas in the
spleen it increased from first to second transplantation (Fig. 5E). At
time of sacrifice spleens were enlarged (Fig. 5F).
Next, we evaluated the stem cell and progenitor compartments

in bone marrow and spleen of PDX1 mice during serial
transplantation. For bone marrow cells, the CD34+CD38−
population accounted for less than 1%. Early progenitors
(CD34+CD38+) increased from 32% to 61%, while lineage-
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committed progenitors (CD34-CD38+) decreased from 69% to
37%. Other lineage markers were detected at low levels except for
CD14 (Fig. 5G, filled bars). Similar patterns were observed in spleen
cells (Fig. 5G, black diagonal filled bars). PDX1 cells showed a
similar immunophenotype compared to the patient’s blasts (data
not shown).
Genetic analysis of PDX1 cells showed that all mutations

diagnosed in the patient sample were retained across transplanta-
tions (Supplementary Table S6). Morphologic analysis confirmed a
similar blast phenotype of PDX1 cells compared to the patients’
cells with partially granulated cytoplasm (Fig. 5H). Thus, primary
DEK::NUP214+ AML cells could be engrafted and serially trans-
planted in immunodeficient mice and maintained the genetic and
phenotypic characteristics of the primary cells.

DEK::NUP214 AML is exceptionally sensitive to XPO1
inhibition in vivo
Due to the specific dependency of DEK::NUP214 cells on XPO1 we
evaluated eltanexor in our PDX1 model. The experimental setup
and treatment schedule are shown in Fig. 6A.
Thirty-five days post-transplantation; mice were randomized

into two groups to receive vehicle or eltanexor, respectively. Both
groups had similar leukemic engraftment at this time (Fig. 6B). The
first treatment cycle with eltanexor (12.5 mg/kg p.o., 5 days/week)
or vehicle was given from day 47 to day 125 after transplantation.
Treatment was interrupted from day 126 to day 135 days and then
resumed at a dose of 10 mg/kg for 4 days/week from day 138 to
day 167. Mice were monitored monthly by peripheral blood
assessment for engraftment of hCD45+ cells. In control mice,
engraftment increased from 1% to 40% over 38 weeks, when the
last moribund mouse was sacrificed. In contrast, no hCD45+ cells
could be detected in peripheral blood in eltanexor-treated mice
throughout the duration of treatment, and an additional 26 weeks
after the last control mouse had been sacrificed (Fig. 6C). Over
time WBC, platelets, and hemoglobin decreased in control mice,
while eltanexor-treated mice retained normal blood counts
(Fig. 6D).
Importantly, the eltanexor-treated mice showed a significant

survival advantage compared to the control mice (median survival
not reached vs 244 days after transplantation, p= 0.0034) (Fig. 6E).
One eltanexor-treated mouse had to be sacrificed at 167 days due
to weight loss, possibly related to drug treatment. No human
CD45+ cells were detected in peripheral blood, bone marrow and
spleen of this mouse suggesting eradication of the disease at
this time.
At the time of sacrifice control mice showed enlarged spleens,

while eltanexor-treated mice had regular sized spleens (Fig. 6F).
Morphology from cytospin preparations of bone marrow and
spleen confirmed blast infiltration in control mice, while no blasts
were detectable in eltanexor treated mice (Fig. 6G). Immunophe-
notyping of control-treated mice showed a mean engraftment of
hCD45+ cells in bone marrow and spleen of 93.2% and 42.1%,
respectively, while no hCD45+ cells could be identified in
eltanexor-treated mice (Fig. 6H). Bone marrow and spleen cells
of control-treated mice had a similar immunophenotype as the
previous transplantations of PDX1 cells (Supplementary Fig. S7A).
RT-qPCR confirmed the expression of the DEK::NUP214 fusion
gene in bone marrow of sacrificed control mice but could not
detect the fusion gene in bone marrow of eltanexor-treated mice
(data not shown).
Differentially expressed genes were evaluated in sorted

hCD45+PDX1 cells from bone marrow after an 11-day treatment
period. The most downregulated genes in eltanexor treated mice
included HOX and cell cycle genes as in the in vitro treated FKH-1
cells (Supplementary Table S7). PCA analysis demonstrated
similarities between the FKH-1 cell line and the PDX1 model
following eltanexor treatment (Supplementary Fig. S7B), while
GSEA revealed common pathways, such as enriched immune

response and metabolism (Supplementary Fig. S7C, Supplemen-
tary Tables S8, S9, S10).
Due to the co-occurrence of FLT3 mutations in DEK::NUP214

patients, we examined the potential synergy of eltanexor and
gilteritinib, an FTL3 inhibitor, in five leukemia cell lines (Supple-
mentary Table S12 and Supplementary Fig. S8). We identified that
combination treatment in FKH-1 cells at high doses leads to a
synergistic effect.
In summary, XPO1 inhibition by eltanexor eradicated primary

human DEK::NUP214 leukemia cells in vivo and proved an
exceptional on-target sensitivity of these cells in a primary human
AML model.

DISCUSSION
Functional investigation of the role of XPO1 in DEK::NUP214 AML
showed that the oncogenic function of DEK::NUP214 depends on
XPO1, as deletion of XPO1 led to cell cycle arrest and apoptosis
in vitro, while pharmacologic inhibition of XPO1 by eltanexor
cured PDX mice from DEK::NUP214 AML. Inhibition of
XPO1 strongly reduced chromatin binding of both XPO1 and
NUP214, downregulated DEK::NUP214 target genes and pathways
related to cell cycle and metabolism, and disrupted nuclear body
formation. These findings establish XPO1 as a molecular target in
DEK::NUP214 AML.
NUP214 proteins are frequent partners in chromosomal

translocations like NUP214::ABL1, SQSTM1::NUP214, SET::NUP214,
and DEK::NUP214, which can occur in AML and ALL [19, 21]. The
NUP214 protein is located in the periphery of the nuclear pore
complex (NPC), where it mediates nuclear traffic and maintains
barrier permeability. NUPs have also been implicated in chromatin
reorganization and gene regulation by chromatin binding, both in
a nuclear-transport dependent and independent manner [43–46].
The oncogenic function of NUP214 fusion proteins has been
attributed to their re-localization from the cytoplasmatic filaments
of the NPC to the nucleus, their interaction with XPO1 [24],
activation of STAT- and mTOR- signaling, and inhibition of NF-kB-
transcriptional activation [47–49].
The wild-type DEK protein is an epigenetic regulator, which is

characterized by two DNA binding domains and histone binding
[50]. The DN fusion protein contains almost the full-length DEK
sequence and interferes with wild-type DEK, leading to loss of the
interaction with known interacting proteins like CK2 and histone
H3 [51]. Our results show that XPO1 and DN co-occupy chromatin,
and that XPO1 is required to maintain binding of DN to DNA. In a
NUP98-HOXA9 fusion model it was shown that chromatin binding
of the fusion protein was dependent on pre-bound XPO1.
Chromatin binding of XPO1 has also been shown in NPM1c and
SET::NUP214 leukemia [52], suggesting that XPO1 mediates and
stabilizes chromatin binding of DN [53].
We evaluated the role of XPO1 by genetic deletion and

pharmacologic inhibition. Eltanexor led to a strong reduction of
XPO1 protein levels, imitating the genetic deletion induced by
CRISPR/CAS9. It has been described previously that binding of
SINEs to the NES groove of XPO1 leads to conformational changes
that mark the protein for proteasomal degradation by E3 ubiquitin
ligases [54–56]. This suggests that loss of the XPO1 protein
mediates the observed effects.
The formation of nuclear bodies in NUP fusions has been shown

to co-localize with XPO1 and regulate aberrant gene activation
[57, 58]. Nuclear bodies are involved in spatial organization of the
nucleus, supporting compartmentalization [59]. In our study, both
the FKH-1 cell line and primary AML cells were characterized by
nuclear bodies co-localizing with XPO1 and DN, which disap-
peared upon eltanexor treatment and genetic deletion of XPO1.
Saito et al. [60] showed that the formation of nuclear bodies can
dysregulate XPO1-mediated nuclear export in SET::NUP214
expressing cells. We observed that eltanexor treatment
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downregulated cell cycle and self-renewal associated gene sets,
while metabolism pathways were dysregulated. It is thus likely
that XPO1 mediates the oncogenic effects of DN by dysregulation
of transport and cell cycle on protein level besides its effects on
transcription.
We selected eltanexor over selinexor due to its improved safety

profile, likely due to its reduced crossing of the blood-brain barrier
[61]. A prior study in NPM1 mutant leukemia models also showed
sensitivity to SINE compounds, while the treatment prolonged
survival by approximately 24–25 days, but could not eradicate the
disease [62]. This supports a high specificity of eltanexor for DN
AML and a critical vulnerability of DN disease.
XPO1 inhibition by selinexor is approved for second-line

treatment of multiple myeloma [63]. However, a randomized
study in relapsed/refractory AML patients comparing selinexor
with the best available therapy did not show an improved survival
with selinexor [34]. Interestingly, one DEK::NUP214 AML patient in
a phase I clinical trial with selinexor as a single agent had an MRD-
negative complete remission [34, 37, 38], underscoring the clinical
potential of our findings.
The synergistic effect observed in the FKH-1 cells could be related to

the upregulation of AXL, another target of gilteritinib [64, 65]. This
upregulation was observed after 24 h treatment with eltanexor
(Supplementary Table S5). It has been shown that dual inhibition of
both kinases can lead to improved targeting of the bonemarrow niche
[66]. In addition, a significant proportion of FLT3 wildtype patients
respond to FLT3 inhibitors, likely due to an FLT3-like gene expression
signature, found in the absence of FLT3 mutations [67–74].
For DEK::NUP214, one patient was reported where gilteritinib

was used after failure of standard induction chemotherapy. This
patient achieved complete remission after eight weeks of
treatment [75]. It is worth noting that sorafenib in combination
with azacitidine was also able to induce remission in a
DEK::NUP214 patient [76]. However, another study showed that
seven patients positive for DEK::NUP214 who had relapsed were
treated with lestaurtinib, gilteritinib or sorafenib, alone or in
combination with standard chemotherapy, and failed to respond.
One patient who received gilteritinib monotherapy achieved
complete remission [77]. These data suggest that XPO1 and FLT3
are co-dependent in DEK::NUP214 patients and their combined
targeting may enhance treatment response and outcome. On the
other hand, the SINE inhibitors may be combined with standard
treatments for AML patients like intensive chemotherapy [78] or a
hypomethylating agent with venetoclax [79], which showed
synergistic effects with selinexor and eltanexor in vitro [80].
In summary, we propose XPO1 as a molecular target in

DEK::NUP214 AML, which is required for chromatin binding of
DEK::NUP214, nuclear body formation, and activation of the
leukemic program of DEK::NUP214. Based on the induction of
molecular remission and cure of DEK::NUP214 human AML in a
PDX model by single agent eltanexor we suggest that this strategy
should be evaluated in DEK::NUP214 AML patients.

DATA AVAILABILITY
RNA-seq and ChIP-seq data are available at Gene Expression Omnibus (GEO) under
accession numbers GSE270396 and GSE270397, respectively.
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