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A B S T R A C T

The management of colorectal carcinoma (CRC) relies on pathological interpretation. Digital pa-
thology approaches allow for development of new potent artificial intelligenceebased prognostic
parameters. The study aimed to develop an artificial intelligenceebased image analysis platform
allowing fully automatized, quantitative, and explainable tumor microenvironment analysis and
extraction of prognostic information from hematoxylin and eosinestained whole-slide images of
CRC patients. Three well–characterized, multi-institutional patient cohorts were included (patient
n ¼ 1438, whole-slide image n > 2400). The developed image analysis platform implements quality
control and established algorithms to segment tissue and detect cell types. It enabled systematic
analysis of immune infiltrate, assessing its prognostic relevance, intratumoral heterogeneity, and
biological concepts across multiple survival end points. Analyzing single-cell types and their com-
binations reveals independent, prognostic parameters, highlighting significant intratumoral het-
erogeneity, especially in the biopsy setting, which must be accounted for. A key morphologic
concept related to tumor control by the immune system is described, resulting in a capable, inde-
pendent prognostic parameter (tumor “out of control”). Our findings have direct clinical implica-
tions and can be used as a foundation for updating the existing CRC grading systems.

© 2025 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy
of Pathology. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
Introduction

Colorectal cancer (CRC) is one of the most common and most
aggressive malignant epithelial tumors.1 There is constant de-
mand for new diagnostic, prognostic, and predictive biomarkers
that can allow personalization of therapy approaches. Common
pathological variables, such as pT stage, pN stage, histologic grade,
microsatellite instability (MSI), are still main sources of prognostic
information that determine all relevant clinical decisions.2 One
research group based on comprehensive investigation of micro-
environment in CRC using gene expression profiling and immu-
nohistochemistry developed ImmunoScore parameter with
significant prognostic risk stratification capabilities.3,4 This
parameter, however, requires additional immunohistochemistry
stains and rather complex bioinformatical analysis and finds
limited usage in clinical routine.
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Figure 1.
Principle of artificial intelligenceebased image analysis platform for colorectal cancer specimens and study cohorts. (A) Routine pathological evaluation of colorectal specimens
consists of tissue fixation, embedding, and cutting, resulting in histologic sections that are stained with hematoxylin and eosin. These sections, when digitized, can be a valuable
source of prognostic information, especially when single-cell populations in tumor microenvironment are analyzed. The aim of this study was to create an image analysis
platform that enables fully quantitative and explainable analysis of different cell populations in tumor microenvironments. This analysis results in the development of prognostic
parameters for survival prediction in CRC patients. (B) The principle of the developed platform. Modules 1 to 3 were trained and validated in previous studies and reused in the
platform in an integrative manner. Module 5 was trained using state-of-the-art data set/algorithm for cell detection and classification. Module 6 analyzes raw information from
the pipeline, extracts, and quantifies single cellebased parameters. (C) Three multi-institutional patient cohorts were used for this study. The TCGA cohort was primarily used for
exploration and FED-PATH and PLCO cohorts for independent validation of prognostic parameters. (D) In the TCGA cohort only one slide with tumor was available for each
patient, whereas multiple slides with tumor tissue were available for analysis in the 2 other cohorts. Detailed information on the number of analyzed whole-slide images per
patient case is provided. OS, overall survival; PFS, progression-free survival; PLCO, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; TCGA, The Cancer Genome Atlas.
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Computational pathology and artificial intelligence (AI)ebased
image analysis of histologic sections emerges as an important
source of a new generation of diagnostic, prognostic, and predic-
tive biomarkers for malignant tumors.5,6 Several studies have
addressed the prognosis in patients with CRC through automated
analysis of routine hematoxylin and eosin (H&E)estained whole-
slide images digitized at high resolution (�400).7-23 These involve,
for example, analysis of tumor tissue composition, intratumoral
lymphocytes, tumor budding, and tumor-to-stroma ratio. Some
studies showed that useful features relevant for prognosis could
be extracted automatically without defining any of them manu-
ally.7,8,11,14 Only one study explored immune and stromal cells
beyond intratumoral lymphocytes, using traditional algorithms.23

Understanding the impact of different cell types in the tumor
environment could improve prognostic accuracy and reveal in-
sights into tumor biology with clinical implications.

In this study, we developed image analysis platform (Fig. 1A, B)
for H&E-stained colorectal tumor samples. The platform allows
full quantitative deciphering of the tumor microenvironment
resulting in a number of clinically relevant, explainable prognostic
parameters and new prognostic systems.
2

Materials and Methods

Patient Cohorts

Three multi-institutional patient cohorts of patients with
resectable CRC were included (Fig. 1C, Table). Two well-
characterized cohorts are from large trials: The Cancer
Genome Atlas (TCGA) CRC cohort and Prostate, Lung, Colo-
rectal, and Ovarian Cancer Screening Trial (PLCO) CRC cohort.
One further cohort (FED-PATH) is from 2 tertiary referral
centers (University Hospital Cologne/UKK and University
Hospital Halle, Germany; years 2012-2021). All patients
included were neoadjuvant-therapy naïve (eligibility crite-
rion). The details on slide digitization are provided in
Figure 1C, D. One additional biopsy cohort was used for
validation of new parameters. This included routine diag-
nostic cases (primary diagnosis of CRC and endoscopic bi-
opsies; n ¼ 61) from a pathology institute (UKK) from years
2019 to 2020 (consecutive cases) gathered in course of the
previous study.24 Nine of 61 cases were of the status MSI,
whereas in 5 patients, MSI status was unknown.



Table
Clinicopathological characteristics of the study cohorts

Parameter I. TCGA cohort
(n ¼ 574)

II. FED-PATH
cohort (n ¼ 207)

III. PLCO cohort
(n ¼ 657)

n % N % n %

Sex

Female 272 47.4 78 37.7 277 42.2

Male 302 52.6 129 62.3 380 57.8

pT stage

pT1 17 3.0 11 5.3 85 12.9

pT2 101 17.6 37 17.9 149 22.7

pT3 389 67.8 118 57.0 373 56.8

pT4 64 64 39 18.8 40 6.1

Unknown 3 0.5 2 1.0 10 1.5

pN stage

pN0 323 56.3 122 58.9 382 58.2

pN1 142 24.7 40 19.3 165 25.1

pN2 108 18.8 42 20.3 87 13.2

Unknown 1 0.2 3 1.4 23 3.5

UICC stage

I 99 17.2 30 14.5 183 27.9

II 205 35.7 47 22.7 164 25.0

III 169 29.4 17 8.2 180 27.3

IV 81 14.1 52 25.1 59 9.0

Unknown 20 3.5 61 29.5 71 10.8

L status

L0 313 54.5 n/a - n/a -

L1 219 38.2 n/a - n/a -

Unknown 42 7.3 n/a - n/a -

V status

V0 383 66.7 127 61.4% n/a -

V1 128 22.3 68 32.9% n/a -

Unknown 63 11.0 12 5.8% n/a -

Pn status

Pn0 168 29.3 n/a - n/a -

Pn1 58 10.1 n/a - n/a -

Unknown 348 60.6 n/a - n/a -

MSI status

MSS 397 69.2 108 52.2% n/a -

MSI-H 94 16.4 14 6.8% n/a -

MSI-L 80 13.9 - - n/a -

Unknown 3 0.5 85 41.1%

Localization

Colon 425 74.0 163 78.7% 569 86.6

Rectum 149 26.0 44 21.3% 88 13.4

PFS

Progression 114 19.9 91 44.0% n/a -

Censored 355 61.8 116 56.0% n/a -

Not available 105 18.3 - - n/a -

OS

Alive 437 76.1 133 64.3 284 43.2

Deceased 116 20.2 67 32.4 373 56.8

Not available 21 3.7 7 3.4 - -

CSS

Alive n/a - n/a - 507 77.2

Deceased n/a - n/a - 150 22.8

Not available n/a - n/a - - -

Follow-up duration

Mean (SD), mo 29.3 (24.6) 36.4 (29.8) 134.9 (7.9)

Range, mo 1-151 1-124 1-293

Age, y

Min 31 28 55

Max 90 92 87

Mean 66.1 65.9 69.3

Median 67 67 70

CSS, cancer-specific survival; L, lymphovascular invasion; MMRd, mismatch repair
deficiency; MSI, microsatellite instability; MSS, microsatellite stability; OS, overall
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Single-Cell Detection and Classification Algorithm: Training

A StarDist algorithm25 (winning solution in CONIC challenge26)
was used to train the model using a Lizard data set27 (details in
Supplementary Methods section) allowing detection of epithelial
cells, lymphocytes, plasma cells, neutrophils, eosinophils, and
connective tissue cells.
Integral Tissue Analysis Platform

The computational platformestablished for this study includes4
deep learning algorithms and several postprocessing and param-
eter extractionmodules (Fig.1B).Modules 1 and2 are segmentation
algorithms for tissue detection and quality control (QC; previously
developedandvalidatedGrandQC tool28). TheQC is awell-validated
multiclass algorithm allowing precise exclusion of tissue-
containing artifacts from the analysis. In the validation, it showed
a Dice score (segmentation accuracy, with 1.0 being ideal segmen-
tation) of 0.938 for detection of nonartificially changed tissue.

Module 3 is a segmentation backbone, developed and exten-
sively clinically validated earlier,24 which allows pixel-wise
segmentation of all relevant tissue classes (n ¼ 11) in colorectal
specimens, including all tissue-associated classes: epithelial tu-
mor component, tumor stroma, necrotic debris, mucin, and ter-
tiary lymphoid structures. The algorithm showed a Dice score of
0.88 (average over all classes) in the external validation. For details
on segmentation mask postprocessing (module 3) and single-cell
mask postprocessing, see Supplementary Methods section.
Extracting Quantitative Parameters

For extraction of quantitative parameters, we split the post-
processed tissue segmentationmask and postprocessed single-cell
mask into smaller regions (predefined 1 � 1 mm regions), and the
following parameters are saved per region: (1) area of epithelial
tumor compartment, (2) area of stromal tumor compartment, (3)
number of detected epithelial cells, (4) number of detected lym-
phocytes in stroma, (5) number of detected lymphocytes in
epithelial tumorcompartment, (6)numberofdetectedplasmacells
in stroma, (7) number of detected neutrophils in stroma, (8)
number of detected eosinophils in stroma, and (9) number of
detected connective tissue cells in stroma. These per-region out-
puts are used later for heterogeneity analysis and are also accu-
mulated over the entire slide as a simple sum for slide-level
metrics. The details on aggregation from multiple slides and on
heatmaps/visualization (Fig. 2A, B) are provided in Supplementary
Methods section. All parameterswere dichotomized for prognostic
analysis. The optimal thresholds were identified systematically
(testing thresholds in the form of percentiles of all values in a range
P10-P90) in univariate Cox analysis in exploration cohort. After
that, thresholds were frozen for validation using external cohorts.
Heterogeneity Analysis

Overlays of binary maps (blue color e below the prognostic
threshold; red color e above the prognostic threshold) on original
images were generated for all TCGA cases for parameters of
survival; PFS, progression-free survival; PLCO, Prostate, Lung, Colorectal, and
Ovarian Cancer Screening Trial; pMMR, proficient mismatch repair; Pn, perineural
invasion; SD, standard deviation; TCGA, The Cancer Genome Atlas; V, vascular
invasion; UICC, The Union for International Cancer Control.



Figure 2.
Examples of whole-slide image processing. The path from original hematoxylin and eosinestained whole-slide image through multiclass tissue segmentation (with the aim of
tumor region detection and segmentation into different compartments: epithelial tumor component, tumor stroma, necrotic debris, mucin, etc.) and single-cell detection and
classification. These information layers are then merged and single-cell parameters are extracted in the form of absolute quantifications (number of cells per area) or ratios
(percentage of specific cell types in all cells in tumor stroma). The platform allows advanced visualization of all parameters, including heatmaps, enabling full visual control by
pathologists. WSI, whole-slide image.
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interest. These overlays were analyzed by human analysts to study
intratumoral heterogeneity using the following principle: for the
superficial part, middle part, and invasion front part of the tumor,
the percentage of area over the threshold was determined visu-
ally. This assessment was used to study heterogeneity in different
compartments of the tumor.

Statistical Analysis

All statistical analyses were performed in R, version 4.0.3 (the R
Foundation for Statistical Computing). Descriptive statistics were
used to compare clinicopathological variables. KaplaneMeier es-
timates with the log-rank test and univariate andmultivariate Cox
proportional hazards models were implemented to evaluate the
prognostic role of extracted parameters.

Code Availability

The code used in the work is available under https://github.
com/cpath-ukk/crc_cells/.
Results

Development of Artificial Intelligence Platform for Single-Cell
Analysis

The AI-based platform was developed for rigorous character-
ization of CRC tissue using H&E-stained tissue sections. The plat-
form combines 6 different interconnected modules (Fig. 1B)
necessary for extraction of fully quantitative and explainable single
4

cellebased prognostic parameters aswell as for the visualization of
these biomarkers. Themodel implements QC steps and uses 2main
deep learning algorithms: (1) a precise multiclass tissue segmen-
tationbackbone for colorectal specimens for segmentationof tumor
region into different compartments and (2) a single-cell detection/
classification algorithm allowing detection of tumor cells, intra-
tumoral stromal and intraepithelial lymphocytes, plasma cells,
neutrophilic and eosinophilic granulocytes, and connective tissue
cells in different tumor compartments (for examples see Figure 2).
We used 3well-characterized,multi-institutional, digitized cohorts
of patient cases with resectable CRC to establish and validate clini-
cally relevant parameters (Fig. 1C, D and Table). The algorithm
effectively aggregates from multiple slides for the whole-tumor
case and provides visualization maps for each parameter (Fig. 2).
Establishing Single CelleBased Prognostic Parameters

We used 1 large patient cohort (TCGA) for exploratory pur-
poses and investigated the prognostic role of tumor microenvi-
ronment/immune cells. Two main categories of single-cell
parameters were established: absolute quantifications (normal-
ized by the compartment area: eg, lymphocytes in stroma) and
ratios (ie, percentage of a cell type, eg, neutrophils in stroma). The
parameters were quantified at slide level but aggregated to case
level for patients with multiple tumor slides available.

In the TCGA cohort, it was shown that each immune cell type,
including connective tissue cells and both tumor intraepithelial
and stromal lymphocytes, confer significant prognostic value for
progression-free survival (PFS) (Fig. 3). For dichotomization based
on the best threshold (Fig. 4A), the results of univariate and
multivariate analyses (common clinicopathological variables) are

https://github.com/cpath-ukk/crc_cells/
https://github.com/cpath-ukk/crc_cells/


Figure 3.
Prognostic value of single cell typeebased parameters. Patient cohort: TCGA (exploratory analysis), progression-free survival as end point. The dichotomization is performed
using best identified thresholds. The KaplaneMeier estimates (P values: log-rank test) are presented. The thresholds are provided in Figure 4A. (A) Prognostic parameters based
on absolute quantifications (normalized using area). (B) Prognostic parameters based on cell ratios (percentage from the whole number of cells in tumor stroma). TCGA, The
Cancer Genome Atlas.
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shown in Figure 4A and B, respectively. The analyses revealed that
a high percentage of connective tissue cells in stroma is inde-
pendently associated with worse prognosis, whereas higher
normalized absolute quantifications and percentages of all im-
mune cells are independently associated with favorable prognosis
(for intercell correlation and correlation with clinicopathological
variables, see Supplementary Fig. S1).
Intraepithelial Intratumoral Lymphocytes: Diagnostic and
Prognostic Value

Intratumoral lymphocytes (iLYMs) immediately adjacent to
tumor cells are a subset of intratumoral tumor-infiltrating lym-
phocytes (TILs). iLYMs are one of the diagnostic features for
detecting high MSI (MSI-H) tumors. Notably, our comparative
investigation of iLYM in microsatellite stable (MSS), MSI low (MSI-
L), and MSI-H cases (Fig. 4D) shows that although there is a sta-
tistical trend to higher iLYM in MSI-H compared with MSS and
MSI-L (P < .001), many cases in the latter categories show high
levels of iLYM. This implies that the latter cannot be used reliably
as a diagnostic parameter. Additionally, we showed that in our
exploration cohort (TCGA), the prognostic role of iLYM is only
evident in MSS/MSI-L patients (Fig. 4D).
Combination Prognostic Parameters

Single cellebased parameters can be complementary and be
connected as a compound prognostic system (Fig. 4C, E). First, we
systematically built multivariate Cox regression models (PFS) from
5

single parameters and found 4 combinations with statistical sig-
nificance, all 4 including stromal lymphocytes (absolute quantifi-
cations, absolute counts of stromal lymphocytes [abs-sLYMs]) as the
core, being the most important prognostic variable (Fig. 4C). In the
context of typical clinicopathological variables (pT/pN; other pa-
rameters were excluded due to lacking statistical significance in
multivariate analysis; for details, see Supplementary Table S1), 2
combinations conferred independentprognostic value: abs-sLYMþ
stromal neutrophilic granulocyte (absolute quantifications, abs-
sNEU) and abs-sLYMþ stromal connective tissue cells (percentage,
perc-sCON) (Fig. 4E). Both systems allowprognostic stratification of
patients into low-, moderate-, and high-risk groups (Fig. 4E). The
prognostic value of 1 additional combination, abs-sLYMþ abs-sEOS
(absolute counts of eosinophils), independently significant in some
analyses, is provided in Supplementary Figure S2.
Independent Validation of Single CelleBased Prognostic
Parameters and Systems

Several cohorts were used for validation: 1 well-characterized
large cohort (PLCO) of resectable cases containing information on
long-term cancer-specific survival (CSS), with other cohorts con-
taining information primarily on overall survival (OS). The PLCO
cohort does not contain information about MSI status. First, we
showed that all single celletype prognostic parameters, except
stromal plasma cells, retain their prognostic value for CSS in the
PLCO cohort (Supplementary Fig. S3, univariate analysis in Fig. 5C;
Figs. 6C and 7A). In multivariate analysis, abs-iLYM (HR, 0.62; 95%
CI, 0.43-0.89 for high vs low; further details are provided in
Fig. 5C), abs-sLYM (HR, 0.67; 95% CI, 0.48-0.94 for high vs low), and



Figure 4.
Advanced prognostic analysis of single cellebased parameters and their combinations in the exploration cohort (TCGA cohort). (A) Univariate analysis using progression-free
survival as end point. The thresholds used are provided. Higher numbers of all cells, except for connective tissue cells, are associated with better prognosis for both absolute
and relative (ratios) measurements, whereas a higher percentage of connective tissue cells is associated with worse prognosis. (B) Multivariate analysis with inclusion of pT and
pN pathological variables. All parameters show independent prognostic value. (C) Combinations of single-cell parameters showing complementary prognostic value. Statistical
significance levels presented are from systematic multivariate Cox analysis of different combinations, including only single-cell parameters (without clinicopathological vari-
ables). (D) Diagnostic and prognostic role of intraepithelial intratumoral lymphocytes (iLYM, absolute counts normalized by tumor tissue area). Intraepithelial lymphocytes are
considered a diagnostic feature of MSI-H tumors. Our analysis shows that MSS and MSI-L tumors show high levels of iLYM on a regular basis, precluding use of this parameter for
diagnostic purposes. Prognostic role of iLYM is prominent but conferred only to MSS/MSI-L patients. (E) Analysis of combination of prognostic parameters, resulting in prognostic
systems. Stromal intratumoral lymphocytes þ neutrophils (both absolute counts) as well as stromal intratumoral lymphocytes (absolute) þ connective tissue cells (relative/
percentage) allow potent patient stratification according to progression risk into low-, intermediate-, and high-risk groups. All hazard ratios and P levels are from multivariate
Cox analysis including pT and pN categories of the tumor. HR, hazard ratio; MAX, maximal value; MIN, minimal value; MSI-H, high microsatellite instability; MSI-L, low mi-
crosatellite instability; MSS, microsatellite stability; THR, threshold.
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abs-sNEU (HR, 0.59; 95% CI, 0.40-0.88 for high vs low) showed
independent prognostic value for the CSS end point. For OS end
point, 7 of 10 parameters showed independent prognostic value in
a largemerged cohort (TCGAþ PLCOþ FED-PATH; Supplementary
Fig. S4A). Prognostic analysis for single cellebased parameters in a
smaller FED-PATH cohort (PFS as the end point) and for the
merged cohort (OS as the end point) is provided in Supplementary
Figures S5 and S6, showing results similar to those of the PLCO and
TCGA cohorts, as already described here.

As for prognostic systems, abs-sLYM þ abs-sNEU showed in-
dependent prognostic value clearly for CSS end points and with
small but statistically significant differences in multivariate anal-
ysis for OS end points (Fig. 5A, D). For the abs-sLYM þ perc-sCON
system, only the high-risk groupwas an independent predictor for
CSS in multivariate analysis (Fig. 5B; analysis of other combina-
tions for the merged cohort/OS in Supplementary Fig. S4B, C).
Intratumoral Heterogeneity of Single CelleBased Prognostic
Parameters

The developed platform allows visualization of single-cell
parameter measurements for investigation of the intratumoral
6

heterogeneity (Fig. 5E). Importantly, when visualized on the
regional level (~1 � 1 mm), all parameters showed significant
heterogeneity that might be important for clinical decision mak-
ing. In 1 large cohort (TCGA), we performed semiquantitative
assessment of intratumoral heterogeneity for 5 parameters with
independent prognostic value (Fig. 6A). For each slide, based on
the morphologic context, the percentage of area positive for the
parameter (>prognostic threshold, as in Fig. 4A) was estimated for
tumor surface, middle region, and invasion front (if available in
slide). Next, all cases were split into “high” or “low” prognostic
groups based on single prognostic parameters (as in Fig. 4A). Some
important findings are evident. Thus, even in abs-sLYM “low”

cases, on average 72% of the tumor surface showed “high” levels of
abs-sLYM, probably due to activation through intestinal content/
bacteria. However, in general, in “high" cases for all parameters,
independent of compartment, the dominant part of the tumor
showed regionally high parameter levels (Fig. 6A).
Applicability of Parameters to Biopsy Samples

Prognostication based on the analysis of tumor biopsy samples
provides additional clinical value. We applied our platform to



Figure 5.
Independent validation of single cellebased prognostic parameters/prognostic systems and intratumoral heterogeneity of the single-cell parameters. (A) Prognostic system:
stromal intratumoral lymphocytes þ neutrophils (both absolute counts). Patient cohort: PLCO. clinical endpoint: cancer-specific survival. (B) Prognostic system: stromal
intratumoral lymphocytes (absolute) þ connective tissue cells (relative/percentage). Patient cohort: PLCO. Clinical endpoint: cancer-specific survival. (C) Univariate and
multivariate analysis in PLCO cohort using cancer-specific survival as endpoint. The thresholds used are the same as in the exploration cohort. (D) Prognostic system: stromal
intratumoral lymphocytes þ neutrophils (both absolute counts). Patient cohort: merged e 3 study cohorts. Clinical end point: overall survival. (E) Significant intratumoral
heterogeneity for all single-cell parameters can be observed. Red color: parameter value above threshold (same thresholds as in Figures 4A and 6C), blue color: parameter value
below threshold. Detailed quantitative evaluation according to different tumor compartments is provided in Figure 7A. CSS, cancer-specific survival; HR, hazard ratio; OS, overall
survival; PLCO, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; TCGA, The Cancer Genome Atlas.
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whole-slide images of 1 biopsy case cohort (cases n ¼ 61). We
used pNþ status at resection or diagnosis of synchronous distant
metastasis (M1syn) as a surrogate for disease progression and
negative clinical outcome. The results separated by pNþ/M1syn
and pN0/M0syn are provided in Figure 6B. In this limited-size
cohort, we found that the constellation of “low” abs-sLYM and
“low” abs-sNEU in the biopsy carried substantially higher risk
(~3� higher risk) of pNþ/M1syn.
”Out-of-Control” Tumor Area: Tumor Biology and Prognostic
Implications

During morphologic analysis of intratumoral heterogeneity
maps, an important finding was recognized: the regions with low
levels of intraepithelial intratumoral lymphocytes frequently co-
occurred with high levels of connective tissue cells in stroma and
vice versa (Fig. 6C). This biological mechanism has been described
previously with cancer-associated fibroblasts preventing access of
T cells to tumor cells (see Discussion section for further analysis).

Our platform allows for fully quantitative assessment of such
regions, and we hypothesized that tumor proportion where the
tumor is “out of control” of the immune system (low abs-iLYM/
high perc-sCON) is mirroring aggressive tumor biology features
and should have prognostic implications. Importantly, for the PFS
end point in the TCGA cohort, there is a clear prognostic stratifi-
cation based on the percentage of tumor “out of control.”
7

Subcohorts of patients, of substantial size, can be identified: with
very good prognosis (area “out of control” < 10%) and at very high
risk of progression (area > 60%; multivariate HR, 5.2; P ¼ 2e-05)
(Fig. 6D). We have also shown that area “out of control” is highly
correlated with pNþ status, postoperative disease progression,
and development of distant metastasis (Fig. 6D).

Of interest, in all MSI-H tumors, an average of 12.3% of the
whole-tumor area is “out of control,” with MSS/MSI-L tumors
having on average of >40% of the tumor not controlled by the
immune system. This provides an additional insight into tumor
biology of MSI/MSS cancers and offers clarification on their
differing clinical aggressivity profiles (Fig. 6D).

These findings were validated in multivariate analysis in the
PLCO cohort using a CSS end point (Fig. 7) and for patient sub-
groups with limited nodal disease (pN1) and pN0. Notably, using
5% as a cutoff of area “out of control” provided even better iden-
tification of PLCO patients with excellent prognosis compared
with TCGA. Most patients from the PLCO cohort had more than 1
tumor slide available (Fig. 1D; for most TCGA patients, only 1 slide
with potential selection bias), rendering this cohort as potentially
more representative.
Discussion

In this study,we developed a quantitative AI-based platform for
tissue analysis in patients with resectable CRC (Figs. 1A, B and 2)



Figure 6.
Intratumoral heterogeneity of single cellebased parameters in different tumor compartments, analysis of biopsy samples, and area of tumor “out-of-control” concept and
prognostic parameter. (A) Single cellebased parameters demonstrate significant intratumoral heterogeneity. A detailed investigation of intratumoral heterogeneity was per-
formed for all new parameters assessing normalized absolute values of different cell populations. For this, first, all cases (TCGA cohort) were classified as “high” and “low” for
each single parameter (using established thresholds, see Fig. 4A). Second, for each case and each parameter the visual maps were produced (examples in Fig. 6E; “red” ¼ region
within tumor with parameter value higher than threshold, “blue” e lower than threshold). Next, human analysts estimated the percentage of “red” areas in all cases, separately
in different tumor compartments (surface, middle region, invasion front). The rates of positivity for single parameters are summarized, separately for cases with “high” and “low”

status showing significant heterogeneity. This might have implications for testing of parameters in the biopsy setting, eg, stromal lymphocyte “low” cases can show high stromal
lymphocyte counts on the tumor surface, presumably related to the activation via bacteria and luminal intestinal content. Eosinophils and intratumoral intraepithelial lym-
phocytes tend to be underrepresented in tumor middle regions in cases classified as “high” for these parameters. (B) Analysis of single cellebased parameters in a cohort of
biopsy tumor samples (n ¼ 61). No prognostic information is available for these cases and pNþ status at resection or synchronous M1 status are used as surrogate for progression
risk/negative clinical outcome. Biopsy samples “low” for both stromal intratumoral lymphocytes and neutrophilic granulocytes might be predictive for pNþ/M1syn in biopsy
setting (~�3 higher risk when both parameters are “low”/under threshold). (C) Morphologic analysis of intratumoral heterogeneity revealed an important constellation/concept.
In many regions, low levels of intratumoral intraepithelial lymphocytes are correlated with an increased number of connective tissue cells (morphologically fibroblasts) in tumor
stroma. Cancer-associated fibroblasts are believed to restrict access of lymphocytes to tumor cells, however, this might be a consequence of tumor cells escaping from immune
system control. We hypothesize that these are the regions where the tumor is “out-of-control” of the immune system e aggressivity hotspots that should influence the disease
outcome. Quantitative assessment of tumor area (% of area) “out of control” is an independent prognostic parameter. KaplaneMeier estimates (log-rank test for P value;
progression-free survival; TCGA cohort) are shown for trichotomization using cutoffs <10% of tumor area “out of control,” 10% to 60%, and >60% with the former defining
large subgroup of patients with excellent prognosis and the latter a large subgroup of patients with poor prognosis. The hazard ratios and P levels presented in the table
stem from multivariate Cox analysis with inclusion of pT and pN categories. Table on the right side: Substantially larger areas (%) of tumor “out of control” are evident in MSS/
MSI-L cases, pNþ cases, progression cases, and cases that developed M1 in the course of the disease. These findings were validated in the independent PLCO cohort
(Supplementary Fig. S4A-C) including patient subgroups with limited nodal disease (Supplementary Fig. S4D) and pN0 (Supplementary Fig. S4E). HR, hazard ratio; M0syn/
M1syn, synchronous distant metastasis; MSI-H, high microsatellite instability; MSI-L, lowmicrosatellite instability; MSS, microsatellite stability; TCGA, The Cancer Genome Atlas.
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that can serve as a capable extractor of explainable prognostic
information from conventional H&E-stained tissue sections. It
addresses 2 critical clinical gaps. (1) The lack of automated,
explainable, and objective biomarkers, which can improve clinical
staging and navigate important life-prolonging decisions (such as
the necessity of adjuvant therapy after resection). (2) The ability to
measure and understand immune-evasion mechanisms, which
contribute to tumor aggressiveness. A key innovation is the “out-
of-control” tumor areada biomarker highlighting regions where
tumors escape immune surveillance. This, along with stromal
lymphocyte and neutrophil counts, allows for stratification of pa-
tients into risk groups and demonstrates independent prognostic
value in external validation (Fig. 6A-D). Developed instrument
performs analysis on routine immunohistochemistry sections and
8

does not require additional stains (eg, for ImmunoScore
analysis3,4).

Only 1 previous study, by Vayrynen et al,23 linked stromal
immune cell densities to prognosis in CRC but relied on tissue
microarrays from central tumor regions, which can introduce se-
lection bias and fail to capture tumor heterogeneity. In contrast,
our study analyzed full-slide images across multiple cohorts,
providing a more comprehensive view of the tumor microenvi-
ronment. By using state-of-the-art machine learning for tissue
segmentation and single-cell classification, our method avoids
the limitations of handcrafted features and ensures greater
generalizability. Our findings highlight significant intratumoral
variation in immune cell distribution, emphasizing the need
for whole-tumor assessment to improve prognostic accuracy



Figure 7.
Quantitative assessment of tumor area (% of area) “out of control” as a prognostic parameter in the PLCO cohort. (A-E) KaplaneMeier estimates (log-rank test for P value; cancer-
specific survival) are shown using different cutoffs: (A) Three prognostic groups: <10% of tumor area “out of control,” 10% to 60%, and >60% with the former defining large
subgroup of patients with excellent prognosis and the latter a large subgroup of patients with poor prognosis. (B) Three prognostic groups: <5%, 5% to 60%, and >60%. (C) Four
prognostic groups: <5%, 5% to 40%, 40% to 80%, and >80%. (D) Same as B for pT1-4/pN0-1 subcohort (limited nodal disease), (E) same as B for pT1-4/pN0 subcohort. Comment:
The hazard ratios (HRs) and P levels presented in the table stem from multivariate Cox analysis with inclusion of pT and pN categories. (F) Substantially larger areas (%) of tumor
“out of control” are evident in microsatellite stability/low microsatellite instability cases, pNþ cases, in cases with cancer-related death, and cases with higher UICC Stage. MAX,
maximal value; MIN, minimal value; PLCO, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; UICC, Union for International Cancer Control.
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(Figs. 5E and 6A). Interestingly, Vayrynen et al23 analyzed intra-
epithelial plasma cells and neutrophilic and eosinophilic gran-
ulocytes. In our examination, most neutrophilic and eosinophilic
granulocytes were found in the context of luminal necrosis, and
plasma cells were absent in the intraepithelial compartment.
Vayrynen et al23 and our study come to similar conclusions
regarding prognostic parameters.

Our analysis identified the “out-of-control” tumor area-
dregions with low intratumoral lymphocytes and increased
connective tissue cells (most of them being fibroblasts during vi-
sual evaluation by pathologists) highlighting aggressive tumor
behavior. Cancer-associated fibroblasts (CAFs) within these re-
gions may contribute to immune evasion, a factor linked to un-
favorable outcomes in CRC.29,30 The presumable mechanism is
that CAFs block access of lymphocytes to the tumor cells; however,
it is not clear if CAF expansion is a cause or just a consequence of
tumor cells escaping from immune control in the first place.31,32
9

The “out-of-control” biomarker independently stratifies patients
by prognosis, including those with limited or absent nodal disease
metastasis (Figs. 6D and 7). To the best of our knowledge, this is
the first conceptual description and AI-based implementation of
the “out-of-control” tumor area parameter using regular H&E
slides.

Several other studies used deep learning for analysis of prog-
nostic stratification in CRC but most focus on either specific cell
types or tissue features in isolation.7-22 As for the explainable
quantitative approach, in a series of well-planned development
and validation studies, Pai et al20-22 created a QuantCRC tool that
requires manual tumor region selection and primarily assesses 1
cellular parameter (density of intraepithelial lymphocytes/TIL).22

In our study, we not only demonstrated a fully automized anal-
ysis but also performed a detailed investigation of a multitude of
cell types and parameters, including TILs. Importantly, in our
study, distinct frommost previous reports21,33-35 and given precise
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segmentation maps of the tumor region, we were able to sub-
classify TILs into iLYM (intraepithelial intratumoral lymphocytes)
and sLYM (stromal intratumoral lymphocytes). We provide evi-
dence that in CRC these 2 fractions might carry slightly different
prognostic value, with iLYMs lacking prognostic significance in
MSI cases (TCGA cohort; Fig. 4C). This warrants further investi-
gation of these 2 fractions separately.

Among explainable analytical tools, Bokhorst et al13 developed
a fully automated prognostic tool for tumor bud assessment,
which, similar to QuantCRC by Pai et al,22 showed independent
prognostic value. Jiao et al,36 Kather et al,17 Liu et al,12 and Xu
et al16 used tissue (stroma)-related features and/or intratumoral
lymphocytes (different definitions) from less-precise patch-level
tissue.22 Although Graham et al37 presented an appealing view on
how multiple tasks (tissue segmentation and cell segmentation)
can be unified into 1 algorithm, they do not investigate their tool
in prognostic applications. Using multiple algorithms (Pai et al,21

Bokhorst et al,13 Vayrynen et al,23 and our own platform) is not
a limitation but can reduce computational effort. Several
studies7,8,11,14 utilized an end-to-end approach, with Jiang et al8

showing that convolutional neural networks can extract infor-
mation directly from images without supervision (using
RetCCL38).39 Similar approaches exist7,11,14,18; however, these
methods have limited interpretability/explainability, although
single biomarkers stemming from the studies did evolve into
explainable image features (such as tumor-adipose feature18,40 or
the noneAI-based SARIFA biomarker41), under extensive valida-
tion currently.

Our study is not devoid of limitations. First, it uses retro-
spective cohorts, and prospective validation is necessary. Sec-
ond, more detailed studies of the prognostic role of new
parameters are necessary in MSI/MSS subgroups of patients
with CRC. MSI status was not available on FED-PATH or PLCO
cohorts, which represents a limitation of these data sets. Third,
the “connective tissue” cell class, defined by the cell segmen-
tation algorithm used, is a collective term for several cell types
including not only fibroblasts but also endothelial cells, and,
importantly, histiocytes. More fine granular stratification of
connective tissue cells might be necessary, which is not
possible with the current version of the algorithm and is a
subject of further research. Finally, integral evaluations are
lacking and highly warranted to bring the markers examined
together within a single study, allowing a clear understanding
of their interdependencies.
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