
Article https://doi.org/10.1038/s41467-025-59239-7

Modelling the species-area relationshipusing
extreme value theory

Luís Borda-de-Água 1,2,3,8 , M. Manuela Neves4, Luise Quoss 5,6,
Stephen P. Hubbell7, Filipe S. Dias 1,2,3,8 & Henrique M. Pereira 1,2,3,5,6

The nested species-area relationship, obtained by counting species in
increasingly larger areas in a nested fashion, exhibits robust and recurring
qualitative and quantitative patterns. When plotted in double logarithmic
scales it shows three phases: rapid species increase at small areas, slower
growth at intermediate scales, and faster rise at large scales. Despite its sig-
nificance, the theoretical foundations of this pattern remain incompletely
understood. Here, we develop a theory for the species-area relationship using
extreme value theory, and show that the species-area relationship is a mixture
of thedistributions ofminimumdistances toa starting sampling focal point for
each individual species. A key insight of our study is that each phase is
determined by the geographical distributions of the species, i.e., their ranges,
relative to the focal point, enabling us to develop a formula for estimating the
number of species at phase transitions. We test our approach by comparing
empirical species-area relationships for different continents and taxa with our
predictions usingGlobal Biodiversity Information Facility data. Although a SAR
reflects the underlying biological attributes of the constituent species, our
interpretations and use of the extreme value theory are general and can be
widely applicable to systems with similar spatial features.

Larger areas tend to harbour a larger number of species. The species-
area relationship (SAR) describes how the number of species increases
as a function of the size of the area. The nested SAR, obtained by
counting species in increasingly larger areas, exhibits consistent qua-
litative and quantitative patterns across different taxa and habitats, a
generality that makes it one of the most fundamental patterns in
ecology1 and a subject of extensive study in theoretical ecology2–6.
However, the term ‘SAR’ encompasses various methods of data col-
lection and analysis7–10. Here, we exclusively focus on cases where
species are enumerated within nested areas (Fig. 1).

When a SAR is plotted across a wide range of areas on a double
logarithmic plot, it displays three distinct regions, forming a triphasic
curve6,11–14. Initially, for small areas,whichwe call Phase I, the number of
species increases rapidly, with a slope approaching 1. Subsequently,
for intermediate area sizes, Phase II, the SAR exhibits slower growth,
following a power law with an exponent smaller than one. Finally, for
large area sizes, Phase III, the SAR experiences rapid growth again, with
a slope tending to one15.

Several explanations have been proposed for each phase of the
SAR. Williamson16, building on an argument by Plotkin and Levin17,
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attributed the steep slope of Phase I to species occurring at very low
densities in very small areas. In the limiting case where species are
represented by only one individual, this leads to a SAR with a slope of
one on a double logarithmic plot. For Phase II, Preston3 explained the
power law relationship, with a presumed exponent approximately
equal to 0.25, by assuming an underlying lognormal species abun-
dance distribution under the canonical assumption that themaximum
of the distribution of individuals coincides with the most abundant
species. Subsequently, May5 demonstrated that the slope is still
approximately equal to 0.25 when the canonical approach is relaxed.
Finally, the steep slope characterising Phase III has been explained as
the result of the combination of species from different biogeo-
graphical realms6,18 or, similarly, due to the sampled areas being of
similar magnitude to the geographic ranges of species19,20.

However, a unified theory explaining the three phases and their
transition points has been missing21. This is particularly important, as
the nested SAR describes the first wave of extinctions after habitat loss
corresponding to the loss of endemics22,23. Therefore, projections of
biodiversity loss in response to land-use change are contingent on
having a theoretical understanding of this pattern. Here, we use order
statistics and extreme value theory, also known as statistics of
extremes, to construct a mathematical framework of the SAR, aiming
to provide a unified explanation of its key characteristics. Order sta-
tistics deals with the properties of ordered random variables and,
in particular, with the minimum and maximum values24, and
extreme value theory examines their asymptotic behaviour for large
sample sizes25–27. These methods are pertinent in our context because
SARs are obtained from encountering the first individual of each spe-
cies in the community, assuming that sampling initiates from a speci-
fied focal point, as depicted in Fig. 128. Recognising that the first
individual of a species encountered is the one with the minimum dis-
tance to the focal point, obtaining a SARcorresponds to identifying the
minimum value of the distribution of distances for each species in the

community (and converting this distance to an area). Here, we develop
a theoretical framework for the SAR using extreme value theory and
demonstrate that it provides a unified explanation for the SAR phase
transitions. We validate our predictions with empirical data from
diverse taxa and continents, showing that our findings have broad
applicability and suggest that similar statistical principlesmay underlie
other spatial patterns.

Results
Extreme value theory
Let Fi(r) be the cumulative distribution function (cdf) of the distances,
Ri, of individuals of a species i to a focal point. Then, the cdf of the
corresponding minimum, Li(r), for a sample of n individuals is simply
the complement of the probability of all individuals occurring at a
distance larger than r, that is,

Li rð Þ= 1� 1� Fi rð Þ� �n ð1Þ

(e.g., ref. 24). Li(r) can also be expressed in terms of the area, Li(A),
considering that A=πr2. Recognising that Li(A) corresponds to the
probability of a species contributing to the SAR for a given areaA, then
a mixture, SM(A), can be defined as an equally weighted sum, with
weights equal to 1/ST, of the distributions of the minima of all species,
ST, in the community

SM Að Þ= 1
ST

XST
i= 1

Li Að Þ ð2Þ

Thus, under this formulation, SM(A) is a cdf, corresponding to the
probability of having found a new species, and it can be interpreted as
the proportion of species of the community observed in a given areaA.
The derivative of SM(A), S

0
M(A) is, then, the probability density of

finding a new species for an area A.
When the number of individuals, n, is large, extreme value theory

shows that the number of the possible distributions of minima, L(A),
can, after a suitable normalisation, be narrowed down to three, the
Weibull, the reverse Fréchet and the reverse Gumbel distributions25–27.
Moreover, these distributions can be combined into a single distribu-
tion, known as the generalised extreme value (GEV) distribution for
minima, with location μ, scale σ and shape ζ (refer to Supplementary
Note 1 for details). Deriving the parameters of the distribution of
minima, L(A), i.e., the GEV, from those of the parent distribution, F(r),
proves to be a daunting, if not impossible, task in most cases (see
Supplementary Note 1). Here we use simulations to elucidate the
relationship between the relative position of the range for a species
relative to the initial point of sampling (the focal point) and how it
contributes to the SAR. Although these simulations are based on
simplistic assumptions, they will guide in establishing heuristic
guidelines for predicting the transitions among phases in real-
world SARs.

Computer simulations
Simulations were conducted using 15,000 species, each with 1000
individuals (Fig. 2). For each species, the locations of the individuals
were assumed to conform to isotropic bivariate normal distributions
with the samevariance, σ2

N = 1, butwith centres (x0, y0) presumed to be
uniformly randomly distributed. Consequently, the distribution of
distances to a focal point at (0,0) follows a Rice distribution with

location parameter υp =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 + y

2
0

q
, and scale parameter σp = σN (e.g.,

ref. 29). For instance, the black dots in Fig. 2a represent the SAR
obtained from one realisation of this sampling scheme by identifying
theminimaof thedistributionof distances of each species. To estimate
the parameters of the corresponding GEV, we repeat this procedure
1000 times, yielding a set of 1000 minima for each species. Once the

Fig. 1 | Sampling scheme illustration for two hypothetical species. Open and
closed dots symbolise the hypothetical distributions of individuals of two species.
The red arrows indicate the location of the nearest individual to the focal point,
marked by a cross in the centre of the figure. The location of the closest individual
provides the information to construct the SAR, with the circles identifying the
corresponding areas. The spatial distributions exemplify two scenarios: one where
a species’ range encompasses the focal point (closed dots) and another where it
does not (open dots).
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GEVs for all species were obtained, we generated the red line shown in
Fig. 2a by applying expression (2).Whether by plotting theminima of a
single realisation or using expression (2), all three phases are distinctly
reproduced (Fig. 2a). The apparent deviation between the realisation
and the theoretical prediction for very small areas is due to the low
number of individuals. When a similar simulation is done just focusing
on small areas, the deviation disappears (Fig. 2a inset). In addition to
the previous simulations, we also performed further simulations
across a wider range of scenarios, including (i) species with varying
range sizes, (ii) spatially non-uniformly distributed ranges and (iii)
species with different number of individuals and range sizes; the
results are presented in Supplementary Note 4 and Fig. S3–S10. While
the main attributes of the SARs and their interpretation through the
EVT do not change, these simulations provide further insights into the
patterns observed in empirically observed SARs (see Supplementary
Note 6). Finally, we conducted simulations assuming the individuals’

locations follow isotropic bivariate Cauchy distributions. The results
were qualitatively similar: we observed three phases, with Phases I and
III characterised by slopes close to 1 in a log-log plot, and Phase II well
approximated by a power law with a slope smaller than 1, but
extending over a wider range of areas compared to the simulations
using isotropic bivariate normal distributions (see Supplementary
Note 4 and Fig. S11).

The key insight gleaned from the simulations is that species
situated at varying distances from the focal point contribute to dif-
ferent phases of the SAR. To elucidate this point, for each minimum
represented by the black dots in Fig. 2a, we recorded υp and σp of the
corresponding distribution of distances, and plotted the ratio υp=σp as
a function of the area (Fig. 2b). It is apparent that the species con-
tributing to Phase I are those that typically exhibit a ratio υp=σp < 2.
Recalling the definitions of υp and σp, a ratio of υp=σp < 2, or υp<2σp,
indicates the bulk of the range of the distribution includes the focal
point or, in other words, the focal point is not far from the centres
of the distribution. Conversely, the species contributing to Phase III are
characterised by υp=σp > 4, or υp >4σp suggesting the ranges for these
species are unlikely to include the focal point, that is, they are far from
it. Phase II emerges as an intermediate situation where 2 < υp=σp < 4.

The same conclusions can also be drawn by examining the rela-
tionship between the ratio υp=σp and the corresponding parameters of
the GEV distribution (Fig. 3). Beginning with the location parameter of
the GEV, μ, it is apparent from Fig. 3a that the estimated value, μ̂,
approaches zerowhen υp=σp < 2, suggesting that theminimum, i.e. the
first individual detected, is very close to the focal point. On the other
hand, for υp=σp >4 the relationship between μ̂ and υp=σp becomes
linear with a slope of one, i.e. the location of the minimum μ̂ becomes
directly proportional to the distance between the focal point and the
centre of the species range ðυpÞ. In fact, when υp=σp≫ 1, we can assume
that the stochastic nature of the minima can be ignored because the
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plausible range of values of thedistribution of theminimumdistance is
very small compared to the distances to the focal point. In this case, we
can describe the ranges of each species simply as discs with a constant
radius. Furthermore, in this case and in the limit of large areas, it can be
shown that S = cA, where c is a constant (refer to Supplementary
Note 2; Figs. S1 and S2 for details).

Within the range of 2<υp=σp<4, and in a double logarithmic plot,
the relationship between μ̂ and υp=σp exhibits an almost power-law

behaviour, μ / υp
σp

� �β
, with β ≈ 3.45 (Fig. 3b). This observation, com-

binedwith the fact that υp is uniformly randomly distributed, leads to a
power law SAR with exponent z ≈0.29 (see also Supplementary
Note 3). This value is similar to that previously mentioned in ref. 3, 5
for Phase II. However, contrary to the assumption of an underlying
lognormal distribution for the species abundance distribution used by
these authors, in our simulations, all species have the same number of
individuals.

The interpretation regarding the location of a species’ range
relative to the focal point and the phase of the SAR to which it con-
tributes is strengthened by observing the changes in the estimated
shape parameter, ξ̂ , and scale parameter, σ̂ (Figs. 3c, d). The estimated
shape parameter, ξ̂ , is approximately equal to −0.5 when υp=σp < 2,
undergoes a transition at 2 < υp=σp<4, and then remains close to zero
for υp=σp >4. A value of ξ̂ � �0:5 is compatible with a distribution of
minima following a Weibull distribution, which aligns with the expec-
tation that the centre of the range is at or near the focal point, that is,
when the distribution of distances of individuals to the focal point
follows a Rayleigh distribution (Fig. 4). Furthermore, it can be
demonstrated that in this scenario, the number of species, S, increases

approximately linearly with the area, S = cA; thus, the SAR has a
slope of 1 in double logarithmic plots (see Supplementary Note 1). On
the other hand, when υp=σp >4, then ξ̂ is still negative but approaches
zero (ξ̂≲0)which is characteristic of a distribution ofminima following
a Gumbel distribution. This behaviour is expected if the distribution of
distances follows, or approximates, a normal distribution (see Fig. 4).

The number of species at the transitions
The preceding observations offer insight into predicting the propor-
tion of species at which the transitions between phases occur. Begin-
ningwith the transition between Phases I and II, the condition υp=σp≲2
implies that the species whose centres lie within a distance smaller
than 2σp of the focal point contribute to Phase I. If the centres of the
ranges for each species are uniformly randomly distributed, and if we
denote then the number of the species with centres inside the circle of
radius 2σp of the focal point by SP(I-II), then the corresponding pro-

portion of species is given by SMPðI�IIÞ =
SPðI�IIÞ
ST

=
π 2σpð Þ2

AT
. Thus, once

SPðI�IIÞ species have been observed, the subsequent species detected
are those contributing to Phase II. In other words, SPðI�IIÞ marks the
transition from Phase I to Phase II. Employing a similar reasoning but
with condition υp=σp≲4, leads to the proportion of species

SMP II�IIIð Þ =
SPðII�IIIÞ

ST
=

π 4σpð Þ2
AT

, signalling the onset of Phase III.

SPðI�IIÞ = STSMPðI�IIÞ and SPðII�IIIÞ = STSMPðII�IIIÞ are depicted by horizontal

lines in Fig. 2a.

The simulations were performed assuming that all species' ranges
were of the same size and spatially uniformly randomly distributed. In

Fig. 4 | A visual summary illustrating the relationship between the locationof a
species range relative to the focal point and its contribution to a phase of
the SAR. The top row comprises three plots exemplifying bivariate normal dis-
tributions at varying distances from the focal point, represented by the red ‘x’.
a The distribution is centred on the focal point; b The focal point falls within a
distance of the centre of distribution where 2<σp<4, where σ

2
p is the variance; c The

focal point is situated at a distance larger than σp>4 (refer also to Fig. 1).dThe black
curves illustrate the corresponding distributions of distances: a Rayleigh

distribution for the distribution of plot (a), and Rice distributions for the dis-
tributions of plots (b, c). The normal distribution serves as a good approximation
for the Rice distribution when the location parameter is significantly larger than its
scale parameter (distribution on (c)). The red curves represent the respective
limiting distributions of theminima:Weibull distributions for the Rayleigh and Rice
distributions, and a Gumbel-like distribution when the Rice becomes normal-like.
Note that the distributions are not drawn to scale.
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more general terms, the problem can be formulated as follows. Let
f υp r,ϕð Þ be the probability density function of the spatial distribution
of the ranges’ centres, υp. Then, given a segment of a ring of width dr
and angle dϕ at a distance r from the focal point, the proportion of
species within it potentially contributing to a phase corresponds to
those whose range centres, υp, fall within the segment of the ring
f υp r,ϕð Þdϕdr. However, from these, only the species whose ranges
have widthw = 2σp orw = 4σp larger than r will contribute to sPðI�IIÞ, or
sPðII�IIIÞ, respectively. This fraction of species is given by the probability
P w>r, j, r,ϕð Þ. Therefore, the proportion of species at a transition is
given by

SMP =
SP
ST

=
ZRT

0

Z2π

0

P w> rj, r,ϕð Þ f υp r,ϕð Þdϕdr, ð3Þ

where RT the radius of the entire region. When w = 2σp, or w = 4σp, we
retrieve sPðI�IIÞ or sPðII�IIIÞ, respectively (in Supplementary Note 5 we
elaborate on this formula for specific cases and discuss the properties
of SMP; see, in particular, Fig. S12).

The interpretation of SPðI�IIÞ and SPðII�IIIÞ warrants some con-
siderations. The phases identified in the SAR in a log-log plot,
usually by visual inspection, correspond to regions with distinct
slopes. Our simulations have revealed that the transitions between
phases correspond to changes in the values of the parameters of the
distributions of the minima that occur at approximately υp=σp � 2
and υp=σp � 4. These values guided the derivation of the criteria for
estimating SPðI�IIÞ and SPðII�IIIÞ. However, the transitions between
phases are not abrupt, SARs tend to exhibit smooth curves. Con-
sequently, there is always an inherent arbitrariness when choosing
the cut-off value between phases, and the criteria υp=σp≲2 and
υp=σp≲4 should be regarded as heuristic. Nevertheless, as we will
see, these simple criteria yield satisfactory results when analysing
empirical SARs.

Empirical species-area relationships
Identifying the three phases of a SAR in a real-world setting requires
species richness data spanning a broad range of spatial scales. Until
recently, single data sets covering all three scales were unavailable.
Here, we use data from the Global Biodiversity Information Facility
(GBIF), the world’s largest biodiversity aggregator of biodiversity
records, to illustrate triphasic SARs and employ the insights derived
from the simulations to predict the number of species at which the
transitions among phases occur.

We generated SARs by first randomly placing the focal point and
then determining the shortest distance to the continental coast, which
determines the maximum area covered by the SAR. We only con-
sidered SARs that had at least 50 species (see ‘Methods’ for details).
However, analysing the SARs empirically obtained from GBIF data
requires mentioning two caveats. First, sudden spikes in species
counts occur frequently; this happenswhen the records of the location
of several species are aggregated to a single location (e.g., because
they were collected in an intensively surveyed site), resulting in SARs
with artificially steep slopes. Second, not all SARs exhibit three phases,
some only manifest the first two; this is particularly prevalent when
SARs cover a limited range of areas, such as those with the focal point
located near the coastline or, as we will see below, for those of taxa,
such as birds, that have large ranges.

We analysed data for five landmasses (Africa, Australia, Eurasia,
North America and South America) and four taxa (Amphibians, Birds,
Mammals and Reptiles). In the Supplementary Note 6, we present
results for all landmasses and taxa, but here we focus on amphibians
and birds from Australia and North America for two main reasons.
First, both Australia and North America have the most complete bio-
diversity assessments, and both have large contiguous areas from

which we can increase the sampling area without intersecting the
coasts. Second, amphibian and bird species have the smallest and the
largest ranges, respectively (see Fig. S14); thus, we anticipated obser-
ving qualitatively very distinct SARs.

For each taxon and landmass, we obtained 200 SARs, the grey
lines in (Fig. 5 and Supplementary Note 6, Fig. S13). Note from Figs. 5
and S13 the huge variability across the spatial scales of individual SARs,
as expected due to SARs being influenced by both the density of the
data in the different sampled areas, and the heterogeneous distribu-
tionof species densities. In contrast to other taxa, SARs for bird species
do not show a clear Phase III. This was expected, given that Phase III
arises when sampling encompasses species from different biogeo-
graphical regions with disconnected ranges, but since bird species can
have large ranges, Phase III never occurs. Additionally, we derived an
average SAR from the 200 sampled SARs (see ‘Methods’), depicted by
the black dots in Figs. 5 and S13. These average SARs demonstrate the
expected trends, namely the different phases. To estimate the number
of species at which the transitions between phases occur, SP(I–II) and
SP(II–III), we calculated, for each species, the distances of the individuals
to the centre of their range using the empirical coordinates of the
individuals. The range centres were calculated as the ‘centres of
gravity’ of the individuals’ locations. From these distributions, we
obtained the standard deviation, σp, for each species. Then, using the
heuristic values of 2σp or 4σp, as suggested from the simulations, we
determined the number of species where the sampling focal point was
within 2σp or 4σp from the centre of the range, thus estimating SP(I–II)
and SP(II–III), respectively. The values of SP(I-II) and SP(II-III) are displayed in
(Fig. 5 and Supplementary Note 6), showing good agreement with the
regions where the SARs exhibit inflections. The slopes for each phase,
using SP(I–II) and SP(II–III) as approximate delimiters, follow the expected
trend, with Phase II having a smaller slope compared to the other two
phases; Figs. 5 and S13.

Discussion
Although the SAR is a basic pattern with a long and venerable his-
tory in ecological studies1, it remains an active area of research21.
Here, we show that extreme value theory offers a comprehensive
framework for analysing the SAR. The power of the EVT lies in its
ability to provide several analytical tools and conceptual insights
for interpreting the characteristics of the SAR at different spatial
scales. For instance, under certain idealised conditions, the steep
slopes observed for small spatial scales (Phase I) and large spatial
scales (Phase III) can be derived and interpreted using EVT. Our
work is a first incursion into the relationship between EVT and an
ecological pattern, the SAR, and we anticipate that future applica-
tions of EVT and order statistics in ecology will uncover new pat-
terns and provide tools for their quantification, potentially linking
these patterns to their underlying processes. Probably, one of the
most significant insights from our work is the discovered relation-
ship between a species' range and location and the SAR phase to
which it contributes. This observation led to the development of a
simple rule of thumb for predicting the number of species at which
transitions among the phases of the SAR occur (SP(I-II) and SP(II-III));
see also Supplementary Note 5. This rule may be further refined as
more detailed information on species ranges is collected. We fore-
see that SP(I–II) and SP(II–III) may be used in conservation studies
aimed at estimating species richness and identifying the area sizes
where changes in the rate at which new species appear are expected.

It has long been recognised that nested SARs exhibit three phases
when data are collected across a broad range of spatial scales1,5,6,12,13,16.
Among the three phases, Phase I is probably the one that has received
less attention [but see in refs. 16,30]. However, our results show the
ubiquity of its presence, therefore it should not be ignored when
analysing SARs. This phase is characterised by a steep slope, that can
be understood by assuming that species contributing to it have ranges
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encompassing the sampling focal point (see Supplementary Note 1).
On the other hand, Phase II is probably the best documented and
analysed1,3,5,21. According to our analyses using extreme value theory,
this phase corresponds to a transition in the properties of the dis-
tributions ofminima. In the future, more comprehensive datasets with
precise information regarding individual locations may reveal addi-
tional properties of this phase, in particular, the determinants of the
range of slope values. Finally, Phase III, which requires datasets cov-
ering large areas, has been reported less frequently. This phase was
originally hinted at by Williams11 and has since then been reported by
other authors12,13,19 and retrieved in simulations31. This phase too can be
understood in terms of the location of the species’ ranges in rela-
tionship to the focal point, specifically, those species whose ranges do
not include the focal point (see also Supplementary Note 2).

Rosenzweig1 associated Phases I, II and III to ‘tiny pieces of single
biotas’, to ‘larger pieces of single biotas’ and ‘areas that have had
separate evolutionary histories’, respectively. Hubbell6 called them
‘local’, ‘regional’ and ‘continental to intercontinental’, respectively,
suggesting a likely correspondence with these geographical scales.
Indeed, the spatial scales at which these phases appear, as well as the
observed transitions, likely reflect the spatial scales at which the pro-
cesses generating diversity (such as speciation, extinction, and
migration) operate. However, aswe showed, the qualitative features of
the SARs, such as the presence of three phases, can be understood

solely in terms of the range sizes of the species and their relative
distances to the starting point of the sampling scheme. The nested SAR
thus emerges as a specific instance of a broader pattern, onewhere the
observation of thefirst instanceholds decisive significance. That is, the
functional form of the nested SAR is not idiosyncratic to ecological
communities but rather arises of general ‘laws acting around us’,
borrowing an expression by J. Harte32. It is the numerical values of a
specific SAR parameter that reflect the underlying biology of the
species and the interactions among themselves and with the environ-
ment. This suggests that the findings of our work can be applied to any
systems where the components form spatial aggregates similar to
those observed among species in communities.

Methods
The Rice and Rayleigh distributions
If a species has individuals spatially distributed according to an iso-
tropic bivariate normal distribution with standard deviation σ, and
with its centre at a distance υ from the focal point (the origin), then the
distribution of distances to the focal point follows a Ricedistribution29.
The probability density function of the Rice distribution is

f rjυ, σð Þ= r
σ2 exp � r2 + υ2
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Fig. 5 | Empirical GBIF SARs alongside corresponding SP predictions. a, b SARs
for amphibians and for birds from Australia (AU). c, d SARs for amphibians and for
birds fromNorth America (NA). The grey curves in the background represent SARs
obtained from 200 randomly located focal points, while the black dots indicate a

mean SAR (see ‘Methods’ for details). The horizontal red lines represent the num-
ber of species predicted at the transition between Phases I and II, SP(I–II), and the
horizontal blue lines represent the predicted number between Phases II and III,
SP(II–III).
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where I0
rυ
σ2

� �
is themodified Bessel function of the first kind and order

zero33, and σ is the scale parameter. Its cdf is

F rjυ,σð Þ= 1�Q1
υ
σ
,
r
σ

� �
, ð5Þ

where Q1 is the Marcum Q-function34. The expected value of the Rice
distribution is

υ0 = σ
ffiffiffiffiffiffiffiffiffi
π=2

p
1 F1 �0:5; 1;

�υ2

2σ2

� �
, ð6Þ

where 1F1 is the confluent hypergeometric functionof thefirst kind.We
calculated the 1F1 function with the R package CharFun35. The variance
is given by

σ02 = 2σ2 + υ2 � υ02, ð7Þ

The Rayleigh distribution is a particular case of the Rice dis-
tribution when the isotropic bivariate distribution is centred at the
origin. Its probability density function is

f rjσð Þ= r
σ2 exp � r2

2σ2

� �
, ð8Þ

where σ > 0 is the scale parameter. The cdf is

F rjσð Þ= 1� exp � r2

2σ2

� �
: ð9Þ

The mean is σ
ffiffiffiffiffiffiffiffiffi
π=2

p
and the standard deviation σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4� πÞ=2

p
,

thus the ratio of the mean by the standard deviation is constant and
equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð4� πÞ

p
.

Simulations
In the simulations, the species had isotropic bivariate normal distribu-

tions with ranges, with centres (x0,y0) at a distance υp =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
0 + y

2
0

q
from

the focal point. The parameter υp was uniformly randomly distributed
and confined to a circle of radius RT, therefore, it was sampled fromffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

unif½0,RT �
p

, where ‘unif’ stands for ‘uniform distribution’. To estimate
the parameters of the GEV for a given species we sampled 1000 points
(individuals) from its corresponding Rice distribution, using the R
package VGAM36, and identified the minimum distance. This sampling
process was repeated 1000 times. The GEV parameters were then esti-
mated from these 1000 points using the R package extRemes37.

Materials
GBIF data. The GBIF is the world’s largest biodiversity aggregator,
housing over two billion biodiversity records, a figure that has seen a 12-
fold increase in available data since 200738. Data retrieval from the GBIF
was facilitated by the ‘rgbif’ package39,40. The data were downloaded as
a .csv file (simple GBIF format) based on the taxon keys of each species.
The species selection process was guided by various lists provided by
Dr. Miguel Alejandro Fernandez Trigoso. Records lacking information
on coordinates and with geospatial issues were excluded. The dataset
encompassed all ‘human observations’, ‘observations’ and ‘machine
observations’ across all available years. Post-download, certain records
were removed due to encountering one of the following two issues:
‘taxon_fuzzy_match’ and ‘geodetic_datum_invalid’. In addition, only
records indicating an occurrence status of ‘present’ were retained. The
observation coordinates underwent projection into equidistant projec-
tions specific for each landmass (GBIF provides data in WGS84).

Geospatial analyses were performed utilising the ‘sf’41,42 and ‘terra’43

packages and for enhanced analytical capabilities and visualisation of

point data, the ‘splancs’ package44 was incorporated. The home range
estimations for each specieswere computed employing the ‘adehabitatHR’
package45. The general data processing relied on the R packages ‘dplyr’46,
‘purrr’47, and ‘readr’48, and maps were obtained with ‘rnaturalearth’49.
For each landmass (Africa, Australia, Eurasia, North America and South
America) and taxonomic group (amphibians, birds, mammals and rep-
tiles), we randomly selected the coordinates of 200 focal points. For
each focal point, we determined the distance to the nearest coast, identi-
fied the species within this radius and recorded, for each species, the
individual closest to the focal point. If a focal point led to fewer than
50 species, it was ignored and another focal pointwas chosen; this process
was repeated until we reached 200 SARs. The minimum distances
were thenconverted to the areaof the corresponding circle centredon the
focal point. Finally, we constructed the SAR using these areas.

To obtain the ‘mean SAR’, we used the following procedure. For a
given number of species, say 1 species, the first observed, we ranked the
SARs according to the area at each the first species was observed. For
example, if we have three SARs (SAR1, SAR2, SAR3), and if their first
observed species is located at 1 ha, 3 ha, and 2ha, respectively, then the
SARs would be ranked (SAR1= 1st, SAR2= 3rd, SAR3= 2nd). We repeated
this procedure for the second observed species, the 3rd, et. seq., which
allowed to have for each SAR a number corresponding to its rank for a
given number of species. We then calculated for each SAR the mean
value of its ranks; this corresponds to a vector of the mean rank of each
species. The ‘mean SAR’ is, then, the one whose mean rank is closer to
mean of the vector of the mean ranks. We also determine the ‘median
SAR’ as the SARwhosemean rank is closer to themedian of the vector of
the mean ranks. The results obtained with the ‘median SAR’ and the
‘mean SAR’ were similar.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We downloaded data for amphibians (A), birds (B), mammals (M), and
reptiles (R) from the Global Biodiversity Information Facility for Africa
(AF), Australia (AU), Asia (AS), Europe (EU), Eurasia (EA), North America
(NA), and South America. The dataset is identified by the following DOI
code, using the format Taxa.Landmass.Year.Month.Day, where the date
corresponds to when the data was accessed: A.AF.2023.02.13 - https://
doi.org/10.15468/dl.3htyck, B.AF.2023.02.13 - https://doi.org/10.15468/dl.
76ykxu, M.AF.2023.02.13 - https://doi.org/10.15468/dl.94g5q8, R.AF.20
23.01.30 - https://doi.org/10.15468/dl.9bnbme, A.AU.2023.02.13 - https://
doi.org/10.15468/dl.52ftrc, B.AU.2023.02.13 - https://doi.org/10.15468/dl.
w3r3fm, M.AU.2023.02.13 - https://doi.org/10.15468/dl.qyjkqg, R.AU.20
23.01.30 - https://doi.org/10.15468/dl.u2733r, A.AS.2023.02.15 - https://
doi.org/10.15468/dl.grprm8, M.AS.2023.02.15 - https://doi.org/10.15468/
dl.7v9wkv, R.AS.2023.02.15 - https://doi.org/10.15468/dl.cg64ct, B.EA.20
23.02.16 - https://doi.org/10.15468/dl.nmcsqs, A.EU.2023.02.15 - https://
doi.org/10.15468/dl.h3xku4, M.EU.2023.02.15 - https://doi.org/10.15468/
dl.dpr9jx, R.EU.2023.02.15 - https://doi.org/10.15468/dl.9r649b, A.NA.20
23.02.13 - https://doi.org/10.15468/dl.uat8ch, B.NA.2023.02.14 - https://
doi.org/10.15468/dl.9d4hjn, M.NA.2023.02.13 - https://doi.org/10.15468/
dl.b6s9h8, R.NA.2023.01.26 - https://doi.org/10.15468/dl.3pdzsg, A.SA.20
23.02.13 - https://doi.org/10.15468/dl.pwznx7, B.SA.2023.02.14 - https://
doi.org/10.15468/dl.bcs9rv, M.SA.2023.02.13 - https://doi.org/10.15468/
dl.ru9h67, R.SA.2023.01.30 - https://doi.org/10.15468/dl.hyjxyt. The data
used in this study are available in the Zenodo database via the following
link https://doi.org/10.5281/zenodo.11222083.

Code availability
All scripts and code used to analyse the data and necessary to repro-
duce the figures are available from Zenodo here: https://doi.org/10.
5281/zenodo.11222083.
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