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Abstract

This thesis addresses the topic of peptide structure formation and the
computational generation of plausible conformations for these systems.
Although the value of this concept may appear self-evident, it has the
potential to be applied in a wide range of contexts. Potential avenues for
further development include applications in bio-materials, medication,
and disease understanding. Given that minor alterations to proteins
and peptides can result in markedly disparate chemical and biochemical
behaviours, it is beneficial to utilise computational techniques to gain
insight into specific behaviours. The selection of an appropriate compu-
tational method is often challenging, given the wide range of available
options, which differ greatly in terms of accuracy and computational
cost. In certain instances, it may not be feasible to sacrifice precision in
order to calculate larger molecules. In this thesis, we propose a novel
approach to the unification of precision and affordable computational
cost.



List of Publications

[1] T. Kunze, C. Dreßler, and D. Sebastiani, “Secondary Structure For-
mation in Hybrid Synthetic/Peptide Polymers: Insights from Molecular
Dynamics Simulations,” Macromol. Theory Simulations, Vol. 32, No. 3,
2023, pp. 1–8. doi: 10.1002/mats.202200070

[2] M.-A. Codescu, T. Kunze, M. Weiß, M. Brehm, O. Kornilov, D.
Sebastiani, and E. T. J. Nibbering, “Ultrafast Proton Transfer Pathways
Mediated by Amphoteric Imidazole,” J. Phys. Chem. Lett., Vol. 14, No. 20,
May 2023, pp. 4775–4785. doi: 10.1021/acs.jpclett.3c00595

[3] T. Kunze, C. Dreßler, C. Lauer, W. Paul, and D. Sebastiani, “Re-
verse Mapping of Coarse Grained Polyglutamine Conformations from
PRIME20 Sampling,” ChemPhysChem, Vol. 25, No. 9, May 2024. doi:
10.1002/cphc.202300521

[4] T. Kunze, C. Dressler, C. Lauer, and D. Sebastiani, “Assignment
of a Physical Energy Scale for the Dimensionless Interaction Energies
within the PRIME20 Peptide Model,” ChemPhysChem, Vol. e202400592,
August 2024. doi: 10.1002/cphc.202400592



Acknowledgments

I’d like to start by thanking Daniel for being such a great professor
to work for. He was an amazing supervisor, guiding me on equal
footing with plenty of freedom and patience. While there were a few
challenges along the way, I’m really grateful to have had the opportunity
to work here for my PhD. Additionally, I’d like acknowledge his excellent
(importing) recruitment skills. This brings me to Christian, who is an
absolute delight to work with, being a genuinely great and cheerful
person. Laying the foundation for most my projects, I owe him big times
for the rather smooth sailing of my PhD. I also appreciate my colleagues
and ex-colleagues for a pleasant work atmosphere, which sometimes
lead to very extended coffee breaks. I would also like to thank my friends
and family for keeping me motivated (as they would also love to have
a doctor in their circle) and always having time to give some quality
distraction. Lastly, I would like to thank my girl Rana for staying with
me through some partially stressful times, as it is her who brightens up
my (work)days the most, showing me different aspects to life, teaching
me new perspectives and of course making some great CAKE (as a team).
Therefore, I will take my responsibility as a Doctor very seriously.



Table of Contents

Abstract ii
List of Publications iii
Acknowledgments iv

Table of Contents v

List of Figures vi

List of Tables viii

Nomenclature ix

1 Introduction 1

2 Theory 3
2.1 Molecular Dynamics Simulations 3
2.2 Modelling/Treatment of Interaction Forces 9
2.3 Monte-Carlo Simulation 16
2.4 Peptides 19
2.5 Analyses 21

3 Summary of the Published Papers 23
3.1 Secondary Structure Formation in Hybrid Synthetic/Peptide

Polymers: Insights from Molecular Dynamics Simula-
tions 23

3.2 Reverse mapping of coarse-grained polyglutamine confor-
mations from PRIME20 Sampling 26

3.3 Assignment of a physical energy scale for the dimen-
sionless interaction energies within the PRIME20 peptide
model 28

4 Paper I: Secondary Structure Formation in Hybrid Synthetic/Peptide
Polymers: Insights from Molecular Dynamics Simulations 30

5 Paper II: Reverse mapping of coarse grained polyglutamine
conformations from PRIME20 sampling 39

6 Paper III: Assignment of a physical energy scale for the di-
mensionless interaction energies within the PRIME20 peptide
model 51

7 Further Research 64

8 Conclusions 76

References 78

v



List of Figures

2.1 Schematic illustration of the MD simulation procedure. 3

2.2 Visualization of the influence on the sampling of a system of
high (red) and low temperature (blue). 7

2.3 Harmonic (red) and dihedral (blue) potential with regards to
the arbitrary displacement (x) from the equilibrium values.
The displacement values are b, ĉ, Ĉ and ą for bonds, angles,
improper and dihedrals, respectively. 10

2.4 Coulomb (blue) and Lennard-Jones Potentiala for arbitrary
distances. Notably, the Coulomb axis has a factor of 1011,
showing that these interactions are of a stronger nature; and
the Coulomb potential is shown for particle attraction (positive
and negative charge), while for two of the same charge type
the Coulomb force is strongly repulsive and therefore positive.

10
2.5 Geometry of the PRIME20 model is visualized with the back-

bone being represented by 3 beads: the NH group (green
bead), the CĂ carbon (red bead) and the CO group (blue bead),
while the side chain is represented by a fourth bead (gray
bead). Each position and size is specific to the individual type
of amino acid. (Taken from own Publ.[3] ) 12

2.6 Visualization of the covalent (white) and pseudo (black and
yellow) bonds used in the P20 model. The pseudo bonds
ensure a stable and configurational real structure. (Taken
from own Publ.[3] ) 13

2.7 Example of the improved sampling efficiency for an arbitrary
potential (circles) of the metropolis algorithm (red) compared
to the random walk (black). 17

2.8 Overview of the reaction that forms peptides from amino
acids. The amino- and acid-groups of the amino acid react to
form a peptide bond. 19

2.9 Exemplary RDFs for a binary system with mixed (black) or
separated (red) phases, depending on the temperature. 21

2.10 Exemplary combined distribution function (CDF). (Taken
from own Publ.[1]) 21

2.11 Exemplary Ramachandran plot of an Asp-peptide with circles
indicating different secondary structure regions. 22

vi



3.1 Structure of hybrid polymers composed of a homopeptide
of amino acids (AA=Asp, Lys, Glu), which is connected to a
short polyethylene chain. The double bond which connects
two such hybrid monomers is maintained during synthe-
sis104–106. 23

3.2 Exemplary combined distribution function (CDF) of [Čā −
(Ĉįĩ10)2], which keeps a peptide dominated structure. 24

3.3 Exemplary combined distribution function (CDF) of [Čā −
(Ĉįĩ3)6], which adopts a ball-like structure. 24

3.4 Scheme describing the conversion of the coarse-grained struc-
tures into all atom geometries. Red: atoms obtained from
the coarse-grained PRIME20 model, green: atoms added by
simple geometric considerations. 26

3.5 Visualization of the peptides at the start (a-c) and end (d-
f) of the simulations. The dimer region, which is crucial
for hydrogen bonding, is highlighted in green, while the
less significant regions for dimer structure are marked in
yellow. 26

3.6 The hydrogen bond data set is shown with the P20 ener-
gies compared to the resulting energies from a 10 ns MD
simulation. 28

3.7 Correlation between the coarse-grained (EP20) and atomistic
(Eaa) energies for a series of conformations with identical
backbone hydrogen bonding states (at the coarse-grained level,
here corresponding to 22 and 17 hydrogen bonds, respectively,
for the left and right plots). In turn, the number of sidechain
interactions varies and corresponds to -1/12 units of EP20 per
sidechain interaction. 29

vii



List of Tables

2.1 Bond and pseudo-bond lengths between beads of PolyQ in
the PRIME20 model with index i representing beads of the
(i)th residue and index i+1 representing beads of the (i+1)th
residue with Sizes in Å.73 12

2.2 Bead diameters and square-well parameters of PolyQ in
PRIME20 with sizes in Å.73 13

2.3 Squeeze parameters and the resulting reduced bead diameters
for backbone bead interactions and interactions involving a
polyglutamine side chain are given. Sizes in Å.73 13

3.1 Secondary structure analysis of all hybrid polymers. Shown is
the integral of characteristic regions in the Ramachandran plot,
which correspond to typical secondary structure motifs. 24

viii



Nomenclature

ýý amino acid

ýąĉĀ Ab Initio Molecular Dynamics

ėĨĘ.ī. arbitrary units

ýĩĦ aspartic acid

ÿĀĂ combined distribution function

ęĝ coarse-grained

ÿċĉ centre of mass

ÿĥīĢ Coulomb

Ĝ Ĝ force field

ăĢī glutamic acid

ĄĎāĔ Hamiltonian replica exchange

ℎĩ hard-sphere

Ĉįĩ lysine

ĉÿ Monte-Carlo

ĉĀ Molecular Dynamics

Č20 PRIME20

Čā poly-ethylene

ČĥĢįč poly-glutamine

Ďă radius of gyration

ĎĀĂ radial distribution function

ĎāďČ Restrained Electrostatic Potential

ĎāďĐ replica exchange solute tempering

ĎĉďĀ root-mean-square deviation

ďýĉÿ stochastic approach Monte-Carlo

ďē square-well

ĒĀē Van-der-Waals

ĒĀē van-der-Waals

ix



1Introduction

The European Union (EU) has acknowledged the necessity to combat
climate change in its constitutional framework, as outlined in Article
191: "Union policy on the environment shall contribute to pursuit of the
following objectives: reserving, protecting and improving the quality
of the environment, protecting human health, prudent and rational
utilisation of natural resources, promoting measures at international
level to deal with regional or worldwide environmental problems, and
in particular combating climate change.".5 This lead to the formulation
of more concrete goals (Summary of procedural developments6 is given)
including a reduction in greenhouse gas emissions by 55% until 2030
and and the achievement of climate neutrality by 2050. This problem has
various aspects, but the task is simple: to reduce energy consumption.
This involves reducing energy consumption, increasing energy efficiency
(e.g. through better insulation in houses), and in some cases, replacing a
product entirely.
Two sectors with significant potential for environmental improvement
are construction and packaging. Concrete is responsible for approxi-
mately 8.6% of all anthropogenic emissions7, making it imperative to
identify alternative production methods. Bio-mineralisation and living
building materials have the potential to significantly reduce the energy
requirements of construction materials by utilising the cell’s proteins,
sugars, and lipids, among other substances.8

Plastics on basis of non-renewable resources are broadly used in packag-
ing9, which causes littering and environmental problems globally.10 The
utilisation of eco-friendly packaging as an alternative to conventional
materials is a promising avenue for addressing the aforementioned is-
sues. However, further research is required to enhance the efficiency
and cost-effectiveness of bio-plastics, particularly in the context of food
packaging.10,11

Although the relationship between environmentally friendly materials
and medical or diagnostic applications may not be immediately apparent,
all peptide-containing materials undergo significant chemical alterations
in response to their surrounding environment. Consequently, these
materials rely on structural changes in the peptides, which are induced
by various methods including a change in temperature, pH-value, sol-
vents or additives.12–14 The resulting properties can be employed in the
engineering of biomaterials to align with a particular application; how-

1
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ever, it is similarly possible to tailor drug delivery systems, particularly
copolymers, to specific targets or locations. 15–18 In contrast, numer-
ous neurodegenerative diseases are characterised by the occurrence of
unwanted changes in proteins, which are caused by the surrounding
environment and result in the loss of normal body function. In partic-
ular, Alzheimer’s, Huntington’s and Parkinson’s diseases highlight the
necessity for further research into the unwanted aggregation of peptides
and proteins thought to be the primary cause of these diseases. 19–21

These aggregation processes, as well as their accompanying biochemical
effects, are under intense research .22,23 Computational methods offer
valuable insights into specific aggregation processes; however, due to
their limited scope, most theoretical methods provide limited under-
standing beyond a single step or isolated question.24 The reasons for this
are that the majority of methods have specific length and time scales
that they can cover, which are specifically tied to the methods’ accuracy.
It is therefore advantageous to combine two or more methods in order
to bridge the length and time scales involved. In order to implement
this approach, it is necessary to convert the model descriptions to align
with the specifications of other methods. Two commonly used methods
to study biomolecules are molecular dynamics (MD) simulations and
Monte Carlo (MC) simulations, which can be conducted with either force
fields or coarse-grained models.25–30 Coarse-grained MC simulations are
capable of sampling a vast portion of the phase space, whereas force
field MD simulations cover a more limited region with greater resolution
and also provide insights into dynamics. The combination of these
two methods addresses the representability and transferability issues
inherent to the coarse-grained approach, while also addressing the local
phase-space sampling limitations of classical MD simulations.31–37 The
combination of these techniques, which are highly complementary, has
already enabled investigations to be conducted at larger system and
time scales.38–44 Furthermore, there are applications of these techniques,
such as the Iterative Boltzmann Inversion34 or the Inverse Monte Carlo
approach35, which produce coarse-grained parameters fitted to MD
simulation properties. These techniques have been successfully applied
and improved over the years.45–52
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Figure 2.1: Schematic illustration of
the MD simulation procedure.

Theory

2.1 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations represent a computational tool
employed to investigate the behaviour of molecular systems at the atomic
and molecular level. The technique employs the principles of classical
mechanics to numerically integrate the equations of motion of a system
of interacting particles over time, as shown schematically in Fig. 2.1.
Furthermore, this technique enables the interactions between molecules
to be modeled in different ways for example, by simple force fields or
even at the quantum electron level. This is one of the reasons why MD
simulations are widely used in many fields of research.

2.1.1 Numerical Integration of the Equations of Motion

The Starting point to calculate the evolution of a system is Newton’s
second law, which describes the propagation of a particle ą by its mass
ģą and spatial coordinates Rą(Ī) at time Ī in the following way

mIRI(t) = FI(t) = −∇V(R1(t),R2(t), ...,RN(t)). (2.1)

The forces Fą(Ī) acting on the particle are defined as the gradient of the
potential V, which describes the potential energy of the system with
respect to all spatial coordinates of Ċ particles.
Given that MD simulations are inherently a many-body problem, the
solution to Eq. 2.1 must be obtained through numerical means.53 The
integration is discretised in time steps of �Ī using the finite difference
method, during which the acting forces on the particle are assumed to
be constant.

The Verlet algorithm

The Verlet algorithm54 employs a Taylor expansion of the position Rą at
time Ī + �Ī to derive the following result:

RI(t + ∆t) = RI(t) + ∆tRI(t) +
1

2
∆t2

RI(t) +
1

6
∆t3

RI(t) + þ(tg4). (2.2)

Doing the same for (Ī − �Ī) results in:

RI(t − ∆t) = RI(t) − ∆tRI(t) +
1

2
∆t2

RI(t) −
1

6
∆t3

RI(t) + þ(tg4), (2.3)

3
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which can then be added to previous Eq. 2.2 to obtain after rearrangement
for Rą(Ī + �Ī) following equation:

RI(t + ∆t) = 2RI(t) − RI(t − ∆t) + ∆t2
RI(t) + þ(tg4). (2.4)

This approach results in an equation, where the term for R̈ą(Ī) vanishes.
Accordingly, the use of terms up to the second derivative has the same
accuracy as the use of all terms up to the third derivative, while neglecting
everything of forth and higher order (þ(Īg4)).
The velocities vą are not explicitly given by the Eq. 2.4 but can be calculated
in the following way:

v(t) =
R(t + ∆t) − R(t − ∆t)

2∆t
. (2.5)

The application of Eq. 2.5 to the initial conditions at time Ī = 0 results
in the inability to calculate the velocities. This presents a challenge
when attempting to analyse the system for the conservation of energy.
Furthermore, following the propagation of errors, the difference of two
substantial 1st order terms employed in Eq. 2.4 results in a considerable
relative error, which impairs the precision of the simulation. 53,55

The Velocity-Verlet algorithm

The Velocity-Verlet algorithm56 improves its previous version by explicitly
calculating position and velocities with a simple approach. Starting point
is Eq. 2.3 where we substitute Ī by Ī + �Ī, which as a result gives:

RI(t) = RI(t + ∆t) − ∆tRI(t + ∆t) +
1

2
∆t2

RI(t + ∆t) −
1

6
∆t3

RI(t) + þ(tg4).

(2.6)
This equation is now added to Eq. 2.2, ignoring the fourth and higher
order terms (þ(Īg4)), to obtain the velocity of particle ą with the following
term

vI(t + ∆t) = vI(t) +
∆t

2
[aI(t) + aI(t + ∆t)]. (2.7)

The positions can be calculated afterwards with the obtained velocities
by

RI(t + ∆t) = RI(t) + ∆tvI(t) +
1

2
∆t2

aI(t). (2.8)

This method addresses the shortcomings of the original Verlet algorithm,
rendering it a superior alternative for MD simulations.

Leap-Frog Algorithm

A different approach to improve the Verlet algorithm calculated the posi-
tions and velocities at different points in time. The leap-frog algorithm57

updates the positions by:

RI(t + ∆t) = RI(t) + ∆tvI(t +
1

2
∆t), (2.9)
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and the velocities by:

vI(t +
1

2
∆t) = vI(t −

1

2
∆t) + ∆ta(t). (2.10)

In this approach, the velocities vą(Ī +
1

2
�Ī) are first calculated using

Eq. 2.10 from the velocities at an earlier point in time Ī −
1

2
�Ī and the

acceleration of time Ī. Then the positions R(Ī + �Ī) can be updated with

the just calculated velocities vą(Ī +
1

2
�Ī) and the positions R(Ī) from time

Ī using Eq. 2.9. In order to also calculate the velocities at a synchronized
time with the positions to obtain the kinetic energy contributions of the
total energy, the velocities at time Ī can simply be calculated by:

vI(t) =
[v(t +

∆t

2
) + v(t −

∆t

2
)]

2
. (2.11)

2.1.2 Thermostats

Using the previously shown algorithms in Sec .2.1.1 for a simulation of
fixed number of particles Ċ within a fixed volumeĒ , result in the energy
being a constant of motion. The ensemble is commonly referred to as
the NVE ensemble. However, in most cases, it is advantageous to have a
constant temperature (NVT ensemble), which is closer to experimental
conditions. In simulations, this is achieved by coupling the system to a
thermostat.

Simple Velocity Rescaling

The velocity rescaling is simplest method for a thermostat. The idea
is to scale the current velocities of atom until the target temperature is
achieved. The average kinetic energy ïćð is is directly proportional to
the temperature Đ:

ïKð =
3

2
NfkbT, (2.12)

with Ċ Ĝ being the degrees of freedom.
The mean kinetic energy ïćð can be expressed by the mean mass and
velocity ïģv

2ð of all particles:

ïKð =
1

2
ïmv

2ð. (2.13)

The temperature of the system can be expressed by combining both
Eq. 2.12 and 2.13 to obtain an expression for the temperature dependent
on the mean velocity:

T =
1

3kb
ïmv

2ð. (2.14)

The temperature difference �Đ that the thermostat must to compensate
for in a time step ąĪ is given by:

∆T = T(t + ąt) − T(t). (2.15)
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The velocity at time Ī + ąĪ can be expressed by the original velocity v(Ī)
with a scaling factor Č

v(t + ąt) = Čv(t). (2.16)

Using this expression for Eq. 2.15 and 2.14 we obtain:

∆T =
m

3kb
[Č2ïv2(t)ð − ïv2(t)ð] (2.17)

∆T =
mïv2(t)ð

3kb
[Č2 − 1]. (2.18)

Here we can shorten the equation by using Eq. 2.14, which results into:

∆T = T(t)[Č2 − 1]. (2.19)

Using the starting temperature Đ0 for Đ(Ī + ąĪ) results in

Č =

√
T0 − T(t)

T(t)
+ 1 (2.20)

and shortened to

Č =

√
T0

T(t)
. (2.21)

This temperature constraining method is a straightforward and expedient
approach to implementing a thermostat. However, the velocity scaling
within a given time step does not permit temperature fluctuations. This
behaviour is far from optimal for simulating experimental conditions.

Berendsen Thermostat

The Berendsen thermostat58 uses weak coupling to scale the velocities

during each time step with a specific rate of temperature (
ĚĐ

ĚĪ
) between

the instantaneous temperature Đ(Ī) and a bath temperature Đĥ :

dT

dt
=

1

ăc
(T0 − T(t)), (2.22)

with coupling parameter ăę adjusting the coupling strength.
The temperature difference in a discrete form between to time steps is
given by:

∆T =
ąt

ăc
(T0 − T(t)). (2.23)

Using this term of �Đ instead of [Đ0 − Đ(Ī)] in Eq. 2.20 gives the scaling
factor in the form of:

Č =

√
ąt

ăc

(
T0

T(t)
− 1

)
+ 1 (2.24)

It is of utmost importance to select the coupling parameter with great
care. If the coupling parameter is set too high, the thermostat has a
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Figure 2.2: Visualization of the in-
fluence on the sampling of a system
of high (red) and low temperature
(blue).

negligible effect on the simulation. Conversely, if the coupling parameter
is set too low (ăę = ąĪ), the thermostat effectively becomes the velocity
rescaling thermostat, which has well-documented disadvantages. The
Berendsen thermostat is characterised by stability and simplicity of
implementation, although it lacks a conserved quantity. The advanced
velocity rescaling algorithm operates in a manner analogous to the
Berendsen thermostat, employing a suitably selected random factor to
ensure the correct distribution of kinetic energy, conserved energy, and
ergodicity.59

2.1.3 Enhanced Sampling

Classical MD simulations struggle to sample the entire phase space due
to the confinement to low energy regions in conformational space. 60

To overcome this problem, improved sampling techniques have been
developed and applied to study large proteins in particular.61 The most
common techniques are replica exchange62, metadynamics63 and sim-
ulated annealing64, which have been developed further over time for
specific purposes.

Replica Exchange

The fundamental principle underlying the replica exchange method
is the sampling of the system of interest at multiple temperatures.65

Due to the elevated temperature, a greater proportion of the phase
space is sampled. Subsequently, conformations that are energetically
favourable are transferred to lower temperatures until they reach the
desired simulation temperature. The probability of exchanging two
neighbouring replicas with configurations Į1 and Į2 with their respective
potential energiesđ is given by:

p(x1 ´ x2) = min{1, exp[(ă1 − ă2)(U(x1) − U(x2))]}. (2.25)

Here, Į2 is the configuration in the higher temperature replica and the
temperature influence is represented by ă in form of:

ă = 1/RT. (2.26)

One disadvantage of this approach is that temperature is an extensive
property, which affects both the protein and the large amounts of water
that act as a solvent in the system.

Hamiltonian Replica Exchange

The Hamiltonian replica exchange (HREX) circumvents this problem
by scaling the force field parameters instead of the temperature. The
idea is that at elevated temperatures, the protein moves more freely
because it has sufficient kinetic energy to overcome barriers. A similar
effect is achieved by scaling down the interactions of the protein, which
subsequently also allows greater mobility. The exchange probability
can be calculated by the difference in potential energies of the two
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configurations Į1 and Į2 for both force field parameters:

p(x1 ´ x2) = min{1, exp

(
−
[U1(x2) − U1(x1)] − [U2(x2) − U2(x1)]

RT

)
}.

(2.27)
This generalised approach provides an avenue for further enhancements.
It is possible to scale the force field parameters simultaneously with the
temperature, in a manner analogous to the original replica exchange
approach. It is also possible to focus on specific structural features. For
instance, when a protein is solved in water, it is possible to scale only the
parameters involving the protein part, thereby ignoring the vast quantities
of water-water interactions that are not of interest. This approach is
called replica exchange solute tempering (REST). The advanced REST2
technique, employs specific scaling for the protein-protein potential
energy đČČ and the protein-water energy đČē . This results in an
acceptance ratio between neighbouring replicas of:

p(x1 ´ x2) = min{1, (ă1 − ă2)

[
(UPP(x2) − UPP(x1)) +

√
ă0√

ă1 +
√
ă2

(UPW(x2) − UPW(x1))

]
}.

(2.28)
The application of these techniques results in a significant reduction in
the sampling time and an increase in the convergence rate, without an
increase in the computational cost. The principal disadvantage of this
method is the loss of dynamic properties due to the rapid change of
configurations.
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2.2 Modelling/Treatment of Interaction Forces

In computational chemistry there are different techniques, that can be
used depending on the important characteristics of the system. These
methods can vary drastically in computational cost and accuracy, making
the correct choice crucial. Among the most commonly used methods,
the quantum mechanical treatment of interaction forces is the most accu-
rate, and is usually implemented using density functional theory. The
quantum mechanical simulation is called Ab Initio Molecular Dynamics
(AIMD) and includes the treatment of the electronic degrees of free-
dom, which comes at an immense computational cost. This treatment
is for example necessary for the calculation of UV spectra, chemical
reactions, including proton transfers, or spin related properties, among
other applications.2,66–68 Although being very accurate, due to the re-
quired computational effort there are severe limitations on the size of the
system, making it unsuitable for the simulation of large biomolecules
and polymers.

2.2.1 Classical Force Fields

The classical force fields refer to all-atom treatment of the system, this
however means losing the direct effects originating from electron interac-
tions. The potential energy is described by simple categorized potentials
for intra-molecular interactions like bonds and angles, as well as inter-
molecular interactions mainly van-der-Waals (VDW) and electrostatic
Coulomb (Coul) interactions. In this work the CHARMM27 69 force
field is shown as an example for this approach and also highlight some
difficulties resulting from the this simpler treatment of interactions.
The total potential energyđÿĄýĎĉĉ in this force field is calculated by:

UCHARMM = Ubond + Uangle + Udihedral + Uimprop + UUB + UCMAP + UCoul + UVDW.
(2.29)

Under the harmonic approximation, the potential energy terms for bond
đbond, bond angle đangle, and improper torsion angle đimprop can be
calculated as a sum of individual contributions. These calculations
involve a force constant (ġx) and consider the displacement from the
equilibrium values of bond length (Ę0), bond angle (ĉ0), or improper
angle (Ĉ0).
The bond energy term, which accounts for the stretching or compression
of individual bonds is given by:

Ubond =

∑

bonds

kb(b − b0)
2 , (2.30)

the bond angle energy term, which captures the bending or deviation
from the equilibrium angles between connected atoms is given by:

Uangle =

∑

angles

kĉ(ĉ − ĉ0)
2 , (2.31)
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Figure 2.3: Harmonic (red) and dihe-
dral (blue) potential with regards to
the arbitrary displacement (x) from
the equilibrium values. The displace-
ment values are b, ĉ, Ĉ and ą for
bonds, angles, improper and dihe-
drals, respectively.

Figure 2.4: Coulomb (blue) and
Lennard-Jones Potentiala for arbi-
trary distances. Notably, the
Coulomb axis has a factor of 1011,
showing that these interactions are of
a stronger nature; and the Coulomb
potential is shown for particle attrac-
tion (positive and negative charge),
while for two of the same charge type
the Coulomb force is strongly repul-
sive and therefore positive.

and the improper energy term, which is responsible for maintaining e.g.
chirality and planarity for specific atoms such as a carbonyl carbon, is
given by:

Uimprop =

∑

improp

kĈ(Ĉ − Ĉ0)
2. (2.32)

The dihedral angle potentialđdihedral is described for several periodicities
n and with the absolute value of the force constant ġč due to the possibility
of being negative for instance at ęğĩ conformations and can be calculated
by:

Udihedral =

∑

dihedrals

ką(1 + kącos(ną − ą)). (2.33)

The Urey-BradleyđUB, which is similar tođangle, is a more refined poten-
tial, that helps describing in plane deformations and several symmetric
and asymmetric bond stretching 70 by adding a harmonic 1-3 potential,
referring to atom 1 and 3 of some angles, and is given by:

UUB =

∑

Urey−Bradley

kUB(b1−3 − b1−3;0)
2. (2.34)

TheđCMAP potential provides parameters, that adjust protein backbones
with adapted cross term dihedral angle values in the following way: 71

UCMAP =

∑

residues

uCMAP(Φ,Ψ). (2.35)

All enumerated potential were part of the bonded interactions Ubonded:

Ubonded = Ubond + Uangle + UUB + Udihedral + Uimproper + UCMAP. (2.36)

The non-bonded interactions (đnon−bonded) in the system are described by
two potentials: the electrostatic potential (đelec) and the Lennard-Jones
potential (đLJ), which incorporates the standard 12-6 potential. The total
non-bonded interaction energy is therefore just given by:

Unon−bonded = Uelec + ULJ. (2.37)

The Lennard-Jones potential, represented by Eq. 2.38, accounts for the
attractive and repulsive forces between non-bonded pairs. It is calculated
by summing over all non-bonded pairs in the system. The terms in the



Theory 11

square brackets capture the interplay between the energetically optimal
distance (ĨģğĤ

ğĠ
) and the distance (Ĩğ Ġ) between the pairs. The first term

represents the repulsive interaction, and the second term represents the
attractive interaction.
The electrostatic potential, described by Eq. 2.39, accounts for the long-
range electrostatic interactions between charged particles. It is calculated
by summing over all non-bonded pairs in the system, which involves the
charges (ħğ and ħ Ġ) of the particles and the distance (Ĩğ Ġ) between them,
taking into account the permittivity of vacuum (Ċ0).

ULJ =

∑

nonb.pairs

Ċij



(
rmin
ij

rij

)12

− 2

(
rmin
ij

rij

)6
(2.38)

Uelec =

∑

nonb.pairs

qiqj

Ċ0rij
(2.39)

It is important to note, that there is a distinction between the symbol
Ċ. One represents the permittivity of vacuum, denoted as Ċ0, while the
other refers to the Lennard-Jones parameter, denoted as Ċğ Ġ .

In this particular force field, which was optimized using a mixed arith-
metic combination rule, the Lennard-Jones parameters Ċğ Ġ and Ĩmin

ğ Ġ
are

calculated in the following manner:

Ċij =
√
ĊiĊj (2.40)

and

rmin
ij =

1

2
(rmin

i + rmin
j ). (2.41)

In summary, the use of these simple descriptions for interaction forces
makes this method potent tool to investigate large systems with an all-
atom level of accuracy, however, due to the simplicity of bond interactions,
it can typically not be used for simulating bond breaking or electronic
excitation.

2.2.2 Coarse-Grained Models

Coarse-Grained models increase the speed of calculation by reducing
the degrees of freedom. This includes combining multiple atoms into a
single one, which is removes several rotational and vibrational modes.
The united-atom approach makes use of this by e.g. combining carbon
atoms with the bonded hydrogen atoms. In comparison, conventional
coarse-grained models use this method to a greater extend by combining
e.g. whole polymer chain into a single entity. These entities are called
beads instead, due to the sheer size they can no longer be recognized as
an atom. In addition, coarse-grained models can change the interactions
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Figure 2.5: Geometry of the PRIME20
model is visualized with the back-
bone being represented by 3 beads:
the NH group (green bead), the CĂ

carbon (red bead) and the CO group
(blue bead), while the side chain is
represented by a fourth bead (gray
bead). Each position and size is spe-
cific to the individual type of amino
acid. (Taken from own Publ.[3] )

they describe by reducing the complexity of some interactions or by
combining several potentials into a single or simpler one. ...

PRIME20 Model

The PRIME2072 model was developed to study the aggregation behaviour
of simple homoproteins. By employing square-well as well as hard-sphere
potentials and combining multiple amino acid atoms into a single bead,
the computational effort was drastically reduced.
I this model an amino acid is represented by 4 beads including 3 back-
bone and 1 sidechain bead. The sidechain bead R accounts for specific
sidechain interactions and is positioned at the center of mass of the
sidechain. The backbone comprises NH, CĂ and a CO bead, correspond-
ing to the N, C and CĂ atoms, respectively. Given the focus on the
aggregation of poly-glutamine peptides in this work, we will discuss
only the relevant parameters.
The covalent bonds are represented by infinite well potentials centered
around an ideal bond length ĚğĚěėĢ , while the well width accommodates
for bond length fluctuations � of around 2.375%. The bond potential is
then given by:

Ēbond(Ě) =

{
0 if Ě ∈ [Ěideal − �, Ěideal + �]

∞ otherwise
(2.42)

Additionally, pseudo-bonds are implemented to maintain a trans con-
figuration ensuring stable bonds and angles between neighbouring ÿĂ

beads. These pseudo-bonds are treated similarly to covalent bonds. The
ideal bond lengths for both types are summarized in Tab. 2.1.

Table 2.1: Bond and pseudo-bond lengths between beads of PolyQ in the PRIME20
model with index i representing beads of the (i)th residue and index i+1 representing
beads of the (i+1)th residue with Sizes in Å.73

Bonds
NHğ-CĂ,ğ CĂ,ğ-COğ COğ-NHğ+1 Rğ-CĂ,ğ

1.46 1.51 1.33 1.60

Pseudo-bonds
NHğ-COğ CĂ,ğ-NHğ+1 COğ-CĂ,ğ+1 NHğ-Rğ CĂ,ğ-CĂ,ğ+1 COğ-Rğ

2.45 2.41 2.45 2.50 3.80 2.56

The non-bonded interactions of peptides primarily involve of hydrogen
bonding and sidechain interactions.
The steric effects of sidechains are implemented using a repulsive hard-
sphere (HS) model to simulate sidechain-sidechain, sidechain-backbone
and excluded volume interactions. Hydrogen bonding in the backbone
and hydrophobic interactions between sidechain beads are treated as
semi-finite square-well (SW) potentials in the form of:

ĒHS(Ěğ Ġ) =

{
0 if Ěğ Ġ > ĚHS

ğ Ġ

∞ otherwise
(2.43)
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Figure 2.6: Visualization of the cova-
lent (white) and pseudo (black and
yellow) bonds used in the P20 model.
The pseudo bonds ensure a stable and
configurational real structure. (Taken
from own Publ.[3] )

ĒSW(Ěğ Ġ) =




0 if Ěğ Ġ > ĚSW
ğ Ġ

Ċğ Ġ if ĚHS
ğ Ġ

< Ěğ Ġ < ĚSW
ğ Ġ

∞ otherwise

(2.44)

Here, Ěğ Ġ represents the distance between two beads i and j, ĚĄď
ğĠ

being the

hard-sphere diameter, Ċğ Ġ the square-well depth and Ěďē
ğĠ

the square-well
interaction distance. Specific parameters for square-well potentials vary
for different pairs of interacting side chains. The Lorentz-Berthelot
combining rule was used to calculate ĚĄď

ğĠ
from the bead ĚĄď. The

self-interaction diameter of the sidechains is also used for the sidechain-
backbone interactions, which interaction values are summarized in
Tab. 2.2. Additionally, hydrogen bonding is defined by a distance param-
eter of Ěďē

ğĠ
= 4.5 Å, along with angle constrain between the N-H and

C-O vectors, and each bead is restricted to forming one hydrogen bond.

Table 2.2: Bead diameters and square-well parameters of PolyQ in PRIME20 with sizes
in Å.73

NH CĂ CO R

ĚHS 3.3 3.7 4.0 3.6
ĚSW 4.5 - 4.5 6.6
Ć -1.000 - -1.000 -0.080

To replicate the formation of specific natural protein structures, squeeze
parameters are incorporated to decrease the effective bead diameters in
close proximity. The sidechain parameters are unique for each amino
acid, and all parameters for PolyQ are summarized in Tab. 2.3.

Table 2.3: Squeeze parameters and the resulting reduced bead diameters for backbone
bead interactions and interactions involving a polyglutamine side chain are given. Sizes
in Å.73

Interactions CĂ,ğ−COğ+1 CĂ,ğ−NHğ−1 COğ−NHğ+2 NHğ−NHğ+1 COğ−Coğ+1

original Ě 3.85 3.50 3.65 3.30 4.00
squeeze factor 1.1436 0.88 0.87829 0.8 0.7713
squeezed Ě 4.40286 3.08 3.2057585 2-64 3-0852

Interactions CĂ,ğ−1−Rğ COğ−1−Rğ NHğ+1−Rğ CĂ,ğ+1−Rğ COğ−2−Rğ

original Ě 3.65 3.8 3.45 3.65 3.8
squeeze factor 1.407 1.089 1.158 1.387 1.316
squeezed Ě 5.134 4.139 3.996 5.062 5.000

2.2.3 Obtaining Force Field Parameters

As force fields are less accurate interaction potentials to be able to simulate
large systems, the force fields are usually optimized to target properties
of specific systems. This can range from simulating solid, liquids or
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gases but also optimizing parameters to fit density, heat capacity or ion
mobility, among others. For the special cases of proteins there are also
specific parameters added to obtain equilibrated structures, which are
close to the experimentally obtained Protein Databank entries.

Bonded Interactions

The bonded interaction potentials are typically derived from DFT or even
more sophisticated calculations. To illustrate, a quantum mechanical
calculation is performed for a peptide backbone dihedral potential,
whereby only one specific dihedral angle is varied at a time and the
resulting energy difference upon change is analysed. Subsequently,
the obtained energy plot is fitted to the force field’s specific dihedral
potential.71 It is also common to use already established force fields
and adjust the parameters to fit specific properties usually obtained
experimentally.74

Atomic Partial Charges

In some cases, it is sufficient to fit the atomic partial charges to specific
system properties, such as heats of vaporization or sublimation, liquid
densities, or gas-phase dipole moments.75,76 Otherwise, there are al-
ternative methods for obtaining atomic charges from DFT calculations
or experiments. A comprehensive overview of a broad spectrum of
methods can be accessed77.
The Mulliken78 or Löwdin79 population analysis partitions the molecular
wave function with an arbitrary orbital scheme. The Mulliken charge
ħĉīĢ
ý

is calculated using the following formula:

qMul
A = ZA −

∑

i,j∈A

PijSji (2.45)

where Ėý is the nuclear charge, Čğ Ġ the one-electron matrix elements and
ď Ġğ the overlap matrix with basis functions ğ and Ġ, where Ġ is belonging
to atom A.
The Hirshfeld80 charge analyses allocates the total electron density distri-
bution of molecules or crystals into overlapping and non-overlapping
contributions of each atom. The overlap density ĀĦĨĥ is the sum of all
densities contributing to atom A, shown in Eq. 2.46.

Āpro =

∑

A

ĀA (2.46)

A weight function ĭý assigns the total electron density Ā to the atoms in
the following way:

ĭA =
ĀA

Āpro
(2.47)

The Hirshfeld atomic partial charges are then obtained by:

qHir
A = ZA −

+
dVĭAĀ = ZA −

+
dV

ĀA∑
A ĀA

Ā (2.48)
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The (Restrained) Electrostatic Potential81 (ESP or RESP) is a method that
tries to reproduce the electrostatic Potential ĒāďČ(r). The minimum of
the difference obtained by a least squares fitting for grid points rġ for a
selected number of fit points N, provides the value for the ESP charge
ħāďČ , demonstrated in Eq. 2.49

min{qESP
A } =

1

N

N∑

k

[VQM(rk) − VESP(rk)]
2 (2.49)

For non periodic conditions the potential is calculated in the following
way:

VESP(rk) =
∑

A

qESP
A

|RA − rk |
. (2.50)

It is possible to introduce restraintsĎĨěĩĪ in order to prevent the generation
of unphysical values in the form of harmonic penalty functions. An
example of such a function is:

Rrest = ă
∑

m

(qm − tm)2 , (2.51)

where Īģ represents the target value for charge ħģ and ă is the strength
of the restraint.
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2.3 Monte-Carlo Simulation

Monte-Carlo (MC) simulations or MC method is a broadly applicable
technique to study problems in a statistical manner. It is applied in
industrial engineering, structure prediction, computational statistics, risk
analysis in economics or finance and more.82

In essence, Monte Carlo simulation is a statistical technique used to
accurately study various quantities in complex systems by employing
random sampling from probability distributions. Here, we focus on the
the field of statistical physics and chemistry.

2.3.1 Statistical Background

The central objective of Monte Carlo simulation is to compute the average
value of a physical quantity, denoted as ïýð, within a given system.
This average is determined by sampling a set of configurations Į from a
statistical ensemble, given by:

ïAð =
∑

x

A(x)p(x). (2.52)

To achieve this, a statistical weight function Ħ(Į) is employed, which
quantifies the likelihood of observing a specific configuration within
the ensemble. An easily deployable example of this function is the
Boltzmann weight, which incorporates parameters like temperature Đ
and the Boltzmann constant ġĘ to describe the probability distribution of
configurations, which can be calculated by:

p(x, T) =
e−H(x)/kbT

Z(T)
. (2.53)

It is worth noting, that in theory all sums theoretically are integrals, but
for simplicity and applicability (numerical integration techniques) sums
are used in this notation. In addition, the configurations Į in theory are
the vector with all degrees of freedom, which in theoretical chemistry is
usually considered to be the configurations.
The Hamiltonian function Ą(Į) plays a pivotal role in this context,
calculating the total energy of a system for a given configuration. By
considering the Hamiltonian, we can accurately estimate the probability
of observing a particular configuration.
The partition function Ė(Đ), which acts as a normalization factor, repre-
sents the summation of the Boltzmann factors over all possible configu-
rations of the system:

Z(T) =
∑

x

e−H(x)/kbT. (2.54)

The sampled quantity in our subset ïýð′ tends towards the actual ensem-
ble average ïýð as the subset approaches infinity, according to the law of
large numbers.
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Figure 2.7: Example of the improved
sampling efficiency for an arbitrary
potential (circles) of the metropolis
algorithm (red) compared to the ran-
dom walk (black).

ïAð′ =

n∑

t=1

A(xt)p(xt) −−−−→
n→∞

ïAð. (2.55)

The generation of the subset could also be done by MD simulation,
where acting forces are calculated (see Sec. 2.1.1) to achieve a physically
realistic behaviour of the system. However, this realistic motion of the
system is computationally expensive because the whole space is sampled
inefficiently. In comparison, MC simulations displace the particles
randomly, resulting in a more efficient sampling, but at the expense of
obtaining general dynamic properties.

2.3.2 Metropolis Sampling

The simplest sampling method uses uniformly-created random values for
Į and calculates the average quantity according to (2.55). The randomness
is generated by a random number generator algorithm, which is critical
for this method to have a good phase space sampling. However, due to
the high dimensionality of Į [each atom or coarse-grained bead each in
x, y and z direction], a lot of sampling is done with configurations with
probability Ħ ≈ 0, which contribute very little to the desired average.
Importance sampling is a more refined method, that focuses more on
the relevant points in space, while keeping a probability distribution
similar to Ħ(Į). In order to sample high importance regions in the space,
the Ė(Đ) has to be known, see Eq. 2.53. However this property cannot be
calculated a priori, therefore a new technique is introduced called Markov
Chains or Metropolis algorithm.83 The underlying principle is based on
comparing the probability of the coming step to the probability of the
previous step, resulting in a canceling of the unknown function Ė(Đ):

p(x1 , T)

p(x2 , T
=

e−H(x1)/kbT

Z(T)

Z(T)

e−H(x2)/kbT
=

e−H(x1)/kbT

e−H(x2)/kbT
. (2.56)

The process originates from the Master equation, which sums up the
probability flows of states (Įğ , Į Ġ) for one simulation step (Ī − 1 −→ Ī),
while assuming conservation of energy. This results in the probability of
the state Įğ being calculated by the sum of the probability of the previous
state being Įğ and not changing, and the change of Į Ġ in the previous
step changing to Įğ :

pt(xi) = pt−1xi −
∑

j.i

pt−1(xi)Ĉ(xj |xi) +
∑

j.i

pt−1(xj)Ĉ(xi |xj). (2.57)

Here, Ĉ(Įğ |Į Ġ) denotes the conditional transition probability to change
states from Į Ġ to Įğ .

2.3.3 Stochastic Approximation Monte Carlo

The disadvantage of the previous Metropolis algorithm is the possibility
of getting trapped in local energy minima when the landscape has
multiple distinct maxima.84 In addition, the algorithm relies on the



Theory 18

cancellation of the partition function, but knowledge of it is valuable
as thermodynamic properties can be directly derived from it. The flat
histogram approach, as the name suggests, attempts to obtain a uniform
flat histogram of visited states. To achieve this, an approximation scheme
is used where the acceptance probability depends on the current state of
the probability distribution. This is necessary because the probability
weights are not known a priori. The implementation of this idea for various
situations lead to multiple successful algorithms: Umbrella sampling85,
Multicanonical MC86, Well-tempered ensemble metadynamics87, Wang-
Landau88, or SAMC84.
The SAMC method approximates the microcanonical configurational
density of states ĝ(đ), which is used to calculate the energy-dependent
Boltzman weights:

p(U, T) = g(U)e−U/kbT. (2.58)

The partition function can consequently be calculated by

Z(T) =
∑

U

g(U)e−U/kbT (2.59)

which can be used to obtain the canonical ensemble average of an
observable A by

ïAð(T) =
1

Z(T)

∑

U

A(U)g(U)e−U/kbT. (2.60)

The algorithm starts with an estimate of ĝ(đ), which is set to ĝ̃(đ) = 1
at the start. The acceptance probability from configuration Į1 to Į2 is
calculated by the estimated density of states of their respective energies:

acc(x1 → x2) = min

(
1,

g̃(U(x1))

g̃(U(x2))

)
. (2.61)

The ĝ̃(đ) is updated after each MC step by

ln[̃gt+1(U)] = ln[̃gt(U)] + ĄtąU,Unew + ÿ(U), (2.62)

with a bias ÿ(đ) and the convergence factor ĄĪ , which is updated by:

Ąt = min
(
Ą0 ,

t0

t

)
. (2.63)

The convergence behaviour can be optimized by the parameters Ą0 and
Ī0, and the convergence is proven if additional conditions are met.84,89,90

Eq. 2.61 shows that states with low ĝ̃(đ) will be visited more often and if
ĝ̃(đ) ≈ ĝ(đ) the total number of visits will be equal for allđ . Conversely,
a flat histogram indicates uniform visit probabilities and therefore a good
quality of ĝ̃(đ).
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Figure 2.8: Overview of the reaction
that forms peptides from amino acids.
The amino- and acid-groups of the
amino acid react to form a peptide
bond.

2.4 Peptides

Peptides are biological (oligo-)polymers, that consists of single amino
acids bound by peptide bonds, see Fig. 2.8. These peptides have an
important set of backbone angles: ą [ÿ(ğ) − ÿĂ(ğ) − Ċ(ğ) − ÿ(ğ + 1)]
and ć [Ċ(ğ − 1) − ÿ(ğ) − ÿĂ(ğ) − Ċ(ğ)]. Important information about the
secondary structure can be obtained purely from backbone dihedral
angles. This information is used in Ramachandran plots91, where the
two backbone dihedrals are plotted, and defined areas (sets of ą and ć)
correspond to specific secondary structures, such as Ă-helices or ă-turns.
Most commonly known are the 20 (+2) Ă-amino acids, which are the only
ones to appear in the genetic code of life.92 The two additional amino acids
selenocystein and pyrrolysine can be incorporated by special translation
mechanisms. These amino acids can also be categorized into 6 groups
depending on the chemical properties of the sidechain R. At neutral pH-
value, there are positively and negatively charged sidechains, as well as
uncharged sidechains with polar properties, and hydrophobic sidechains
with alkane or aromatic residues. The last category consists of special
cases like the smallest amino acid Glycine or sidechains with Sulphur- or
Seleno- terminal groups. All naturally occurring proteinogenic amino
acids are (L)-chiral and only a few naturally occurring non-proteinogenic
amino acids are (D)-chiral.
Consisting of one or more long peptide chains, proteins are large
biomolecules, which have various functions in living organisms. The
sequence of the amino acids determines the protein’s secondary and
tertiary structure, which also varies in different chemical environments,
influenced e.g. by additives, solvent, pH-value or temperature.12–14 This
change in structure is needed for example to store a hormone in a resting
state.93 The structure of these proteins in different environments is a
reason for their functionality and obtaining knowledge about their states
and transitions is highly important for medical, pharmaceutical and
bio-engineering purposes.Advances_Poly_Hybrid, 15–18,94,95

2.4.1 Hybrid Peptide-Synthetic-Polymers

The study of hybrid peptide-containing polymers represents a distinct
research area, driven by significant interest in the development of medical
and environmentally friendly materials. The property design of these
materials is already a significant area of research, while the synthesis
of these materials is of a similar level of importance. Given the limited
scope of this thesis, this chapter will concentrate on the particular charac-
teristics of these materials. For an overview of the entire field, please refer
to the sources provided. Book_HybridPoly_Med, Book_Peptide_Mat ,
96 The incorporation of peptide segments into synthetic polymers pro-
vides them with the capacity to assemble into hierarchically organised
nanoscale structures. The peptide structure formation occurs on multiple
length scales, resulting from simple hydrogen bonds, secondary struc-
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ture formation, and larger or tertiary structure formation. This process
confers a significant advantage in the specialisation of the polymer. This
is specifically useful for medical applications, for example in cancer
treatment, where the ability to deliver drugs with high activity, high
specificity, low toxicity and long circulation is of great benefit. 98

Another noteworthy phenomenon is the self-assembly process and the
potential for influencing this behavior, for instance, through amphiphilic-
ity. In solution hybrid peptide-polymers can assemble into biomolecular
nanostructures, such as micelles or vesicles.99 As the peptide segment
is often temperature sensitive, it is possible to have a thermoresponsive
transition into, for instance, fibril structures. 100 Different structures
are also formed in various concecntrations or environments, leading
to structure changes in bulk, at polar/non-polar interfaces or in thin
layers.101
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Figure 2.9: Exemplary RDFs for a
binary system with mixed (black) or
separated (red) phases, depending on
the temperature.

Figure 2.10: Exemplary combined
distribution function (CDF). (Taken
from own Publ.[1])

2.5 Analyses

Although molecular dynamics simulations provide precise information
about the movement of atoms over time, the data obtained from these
simulations is not always straightforward to interpret. There are a
number of software packages that offer a range of analyses, focusing on
equilibrium, dynamic or spectral properties, among others.102,103

2.5.1 Pair Distribution Functions

One of the most rudimentary analyses is the radial distribution function
(RDF) ĝ(Ĩ), which shows the distance distribution of two particles. For
particles Ċğ with their position vectors ®Ĩğ(Ī) the RDF is calculated using
a bin width function ą, as demonstrated in Eq. 2.64. It is also possible to
calculate pair distribution functions for other properties, such as angles
in angle distribution functions ADF (Eq. 2.65).

gab(r) =
V

NaNbr2

Na∑

i=1

Nb∑

j=i+1

ïą(r − |
⃗⃗⃗⃗
Ĩğ(t) −

⃗⃗ ⃗⃗
Ĩ Ġ(t)|)ðt (2.64)

ADFabc(Ă) =
1

sin(Ă)

1

NaNbNc

Na∑

i=1

Nb∑

j=i+1

Nc∑

k=j+1

ïą[Ă − ∠(
⃗⃗⃗⃗
Ĩğ(t)

⃗⃗ ⃗⃗
Ĩ Ġ(t)

⃗⃗⃗⃗⃗
Ĩġ(t))]ð

(2.65)
Two pair distribution functions can be correlated into a combined distri-
bution function, which is is visualized as a 2D contour plot, demonstrated
in Fig. 2.10.

2.5.2 Hydrogen Bonds

Hydrogen bonds are a driving force in peptide structure formation in
classical MD simulations. As such there are several valuable properties
to analyze. The lifetime of a hydrogen bond can be calculated from the
averages (C) of all autocorrelation functions ACF(t), as shown in Eq. 2.66.
The function ĩğ(Ī) = {0, 1} corresponds to a hydrogen bond criterion,
which usually consists on an angle and distance parameter.

C(t) = ïsi(t)si(t + ă)ð (2.66)

Commonly used values are a maximum angle for a hydrogen bond of
ĂģėĮ
Ąþ

= 30◦ and a maximum hydrogen bond distance between donor
and acceptor of ĨģėĮ

Ąþ
= 0.35 Ĥģ. It is possible to obtain system specific

parameters by using combined distribution functions of hydrogen bond
distance and angle to show the most common conformation of the
hydrogen bond.102

2.5.3 Protein- and Peptide-speciûc Analyses

Proteins and peptides exhibit a strong tendency to form secondary
structures, which is why analytical techniques have been developed to
identify these specific properties.
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Figure 2.11: Exemplary Ramachan-
dran plot of an Asp-peptide with cir-
cles indicating different secondary
structure regions.

Radius of Gyration

The radius of gyration (ăĎ) is a structure parameter characterizing the
size of a structure, which has different values for specific secondary
structures like Ă-helices and ă-sheets. It is calculated by the distance Ďğ
of atoms ğ with masses ģğ from the center of mass ĎģěėĤ :

Rg =

(∑
i |Ri − Rmean |

2 · mi∑
i mi

)0.5

. (2.67)

Although the Ďă is designed for an arbitrary system and is also employed
in the analysis of polymers or other biomolecules, it is frequently utilized
in the study of proteins and peptides.

Ramachandran Plot

The Ramachandran plot91 is a statistical evaluation of the combination
of both backbone dihedral angles of a peptide. Different sections of the
plot correspond to specific secondary structures. This is because, for
example, in a helix, the sidechains prohibit specific backbone dihedral
angles as they would result in steric hindrance. A rough example can be
seen in Fig. 2.11.
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Figure 3.1: Structure of hybrid
polymers composed of a homopep-
tide of amino acids (AA=Asp, Lys,
Glu), which is connected to a short
polyethylene chain. The double
bond which connects two such hy-
brid monomers is maintained during
synthesis 104–106.

Summary of the Published Papers
(The following chapter employs figures, which are taken from the respective
publication they summarize.)

3.1 Secondary Structure Formation in Hybrid

Synthetic/Peptide Polymers: Insights from

Molecular Dynamics Simulations

In this work, the influence of the insertion of a polyethylene (PE) chain into
a peptide segment in aqueous solution has been investigated by molecular
dynamics simulations. Similar molecules have already been synthesised
and studied by experimental groups 104–106, but with protected side
chains and in a different solvent. They found that the amount of Ă-
helical structures increased with increasing peptide length using Fourier-
transformed infrared (FTIR) and circular dichroism (CD) spectroscopy.
Given the limitations of these spectroscopic methods, we simulated the
systems to understand these molecules at the atomic level. The focus
was on the competition of structural driving forces between peptide
hydrogen bonding and aggregation of hydrophobic PE chains in water,
rather than on the secondary structures themselves. Understanding
these hybrid synthetic/biopolymers could lead to new applications in
medicine 15–18, nanomaterials 107 and eco-friendly polymers 94, such as
those used in food packaging 108.
Simulating large systems with sufficient convergence requires enhanced
sampling methods to acquire a satisfactory quality of the results. Subse-
quently, the hybrid polymers were investigated using MD simulations
with HREX60 and REST2109,110. The general structure of the polymer is
visualized in 3.1 and in Tab. 3.1 a list of simulated systems is given.
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Figure 3.2: Exemplary combined dis-
tribution function (CDF) of [Čā −
(Ĉįĩ10)2], which keeps a peptide
dominated structure.

Figure 3.3: Exemplary combined dis-
tribution function (CDF) of [Čā −
(Ĉįĩ3)6], which adopts a ball-like
structure.

Table 3.1: Secondary structure analysis of all hybrid polymers. Shown is the integral of
characteristic regions in the Ramachandran plot, which correspond to typical secondary
structure motifs.

Hybrid Polymer ĂĨ-Helix ă-Sheet Other

[PE − (Lys)3]2 0.83 0.12 0.05
[PE − (Lys)3]6 0.73 0.15 0.12
[PE − (Lys)10]2 0.82 0.15 0.03

[PE − (Glu)3]2 0.79 0.18 0.03
[PE − (Glu)3]6 0.63 0.23 0.14
[PE − (Glu)10]2 0.88 0.10 0.02

[PE − (Asp)3]2 0.73 0.23 0.04
[PE − (Asp)3]6 0.62 0.17 0.21
[PE − (Asp)10]2 0.88 0.10 0.02

As the polymer has two vastly different components with opposing
inter-molecular forces (Hydrogen bonding vs hydrophobic PE-chain
aggregation), the bio-segment and the PE-segment were analyzed sep-
arately. The peptide segment was subjected to a series of commonly
employed techniques, including Radius of Gyration (Ďă) and Ramachan-
dran plots, with the objective of analysing its secondary structure. The
polyethylene component was, however, analysed using standard radial
distribution functions.
The results were not satisfactory, as the Ramachandran plot failed to reveal
significant differences, while the RDFs highlighted some differences,
but were hardly interpretable. Assessing the visual strongly varying
structures, was only possible by including both structural forces and parts:
the hydrogen bonding of the peptide and the hydrophobic PE-chain
aggregation. Furthermore, the analysis should be readily applicable to a
range of similar structures in the future, without necessitating a specific
structural approach. With the PE-PE RDF showing different behaviour,
we extended this analysis to a two-dimensional correlation RDF (=CDF:
combined distribution function, shown in Fig. 3.2 and 3.3) with PE-PE
chain interaction on the x-axis and the peptide-peptide distance also as a
RDF on the y-axis. A preliminary analysis of the PE-PE RDF revealed
significant differences. To gain further insight, we extended this analysis
to a two-dimensional correlated RDF (CDF), which represents the PE-PE
chain distances on the x-axis and the peptide-peptide distances as a
RDF on the y-axis. The resulting plot, shown in Fig. 3.2 and 3.3), was
presented with a colour scale, which demonstrated the distribution of
all peptide-peptide distances for each PE-PE distance.
It was found that peptide chains of 10 amino acids maintain a sec-
ondary structure, albeit with a reduction in stability to approximately
50% following the analysis of intramolecular hydrogen bonding. The
introduction of additional PE-chains into the peptide sequence results
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in a complete shift in the force balance, with the previously dominant
peptide interactions being superseded by a PE-chain dominated force.
This results in the aggregation of PE-chains, which reduces the surface
area to water. Consequently, the hybrid polymer assumes a ball-like
structure. This phenomenon is also observed in peptides with the same
monomer, [PE − (AA3)m], but a smaller polymer length (m=2 instead of
m=6).
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COM

Figure 3.4: Scheme describing the
conversion of the coarse-grained
structures into all atom geometries.
Red: atoms obtained from the coarse-
grained PRIME20 model, green:
atoms added by simple geometric
considerations.

3.2 Reverse mapping of coarse-grained polyglu-

tamine conformations from PRIME20 Sam-

pling

In this work, we provide an algorithm for converting coarse-grained P20
structures into their all-atom equivalents. The method utilises the coor-
dinates of the given P20 beads and, through geometric considerations,
as illustrated in Fig. 3.4, allows for the addition of the carbonyl-oxygen
and the hydrogen atoms bonded to the amino group. With regard
to the sidechain, the coarse-grained bead provides only the centre
of mass (COM). The all-atom sidechain group R is aligned with the
vector(ÿĂ − ÿċĉ) provided by the P20 beads.

The conversion algorithm was employed on a range of low-energy
poly-glutamine dimers, differing in peptide length. The P20 structures
generated by an SAMC calculation were found to be straightforward
and reliable to convert. Following the conversion, an MD simulation
was conducted to evaluate the stability of the low-energy P20 SAMC
structures. It proved challenging to identify an appropriate criterion
for stability, as the root-mean-square-deviation (RMSD) or radius of
gyration (Ďă) were not sufficiently reliable for the range of structures
under consideration. The visual stability criterion was primarily focused
on the maintenance of the intermolecular shape of the dimer structure,
as illustrated in Fig. 3.5.

Figure 3.5: Visualization of the
peptides at the start (a-c) and end
(d-f) of the simulations. The dimer
region, which is crucial for hydrogen
bonding, is highlighted in green,
while the less significant regions for
dimer structure are marked in
yellow.

This visual inspection on a chemical level refers to the inter-molecular
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hydrogen bonds between the two peptides. As a result we analyzed
the percentage of hydrogen bonds that remain stable during the MD
simulation (=Hydrogen Bond auto-correlation function). This analysis
was already more reliable than the previously mentioned RMSD or Ďă.
To achieve an even more satisfactory result, a differentiation between
intra- and inter-molecular hydrogen bonding was made, as the focus on
dimer stability gives reason to emphasize on inter-molecular interactions.
Using this readily accessible analysis, revealed that around 70% of the
given low-energy P20 dimer conformations were stable during the short
MD simulations. This indicates the potential for a combined MC-MD
approach to identify relevant peptide conformations in a more efficient
manner, with reduced expenditure of resources and time.
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3.3 Assignment of a physical energy scale for

the dimensionless interaction energies within

the PRIME20 peptide model

In this work we designed a calibration scheme to obtain conversion factors
from the coarse-grained PRIME20 structures used for SAMC simulations
to atomistic force field interactions used for simulation with full explicit
solvation. The same conversion algorithm as in the previous paper was
used to obtain a set of Glu26-dimer all-atom structures, which were then
used for a 10 ns MD simulation to obtain locally relaxed energy estimates
for each structure. The PRIME20 energy consists of two interactions:
the number of backbone hydrogen bonds and the number of sidechain
interactions. Two data sets were generated to analyse whether each of
the two interactions could be transferred to atomistic MD energies.

Figure 3.6: The hydrogen bond data
set is shown with the P20 energies
compared to the resulting energies
from a 10 ns MD simulation.

Fig. 3.6 shows the P20 energies and their energies after conversion to an
atomistic model and subsequent 10 ns MD simulation. The P20 structures
have been chosen to differ by 1 arb.u., which corresponds to the energy of
one hydrogen bond. The conversion factor obtained by linear regression
is about 1.9 kJ/mol for a hydrogen bond in the P20 model, which is
surprisingly low considering that an average hydrogen bond is typically
about 20 kJ/mol. However in the simulation a hydrogen bond between
NH and CO is not simply broken but changed to a peptide-solvent
hydrogen bond. The energy difference corresponds to Eq. 3.1.
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∆EP20 = EMD(Pep · · ·Pep) + EMD(H2O · · ·H2O) − 2EMD(Pep · · ·H2O).
(3.1)

The energy of the sidechain interaction was analyzed using a fixed
number of hydrogen bonds and sampling the energetically close region.
The results are summarized in Fig. 3.7, where the linear regression gives a
slope of almost zero. Therefore there is no detectable correlation between
coarse-grained and atomistic sidechain energies. On the one hand, the
values of the sidechain interaction, which are 1/12th of a hydrogen bond
in the coarse-grained model, may be too small to be detectable in the
temperature noise in the energy. On the other hand, it is possible that
during the 10 ns MD simulation the small conformational changes have
an energetically larger effect than a side chain interaction.

Figure 3.7: Correlation between the
coarse-grained (EP20) and atomistic
(Eaa) energies for a series of
conformations with identical
backbone hydrogen bonding states
(at the coarse-grained level, here
corresponding to 22 and 17 hydrogen
bonds, respectively, for the left and
right plots). In turn, the number of
sidechain interactions varies and
corresponds to -1/12 units of EP20

per sidechain interaction.

In order to verify the results, statistical analyses were carried out to
ensure that the energy conversion factor was not in fact a statistical
anomaly. It turned out that the MD simulation is not able to give an
energy value with an error lower than the obtained 2 kJ/mol. However,
when the hydrogen bonds are analysed over 35 hydrogen bonds, the
required detectable energy rises to 70 kJ/mol. This value is in the range
of our error bar, which we believe to be in the range of 10-20 kJ/mol.
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Proteins and peptides exhibit an immense variety of structures, which are

generally classiûed according to simple structural motifs (mainly ÿ helices

and ÿ sheets). Considerable efforts have been invested in understanding the

relationship between chemical structure (primary structure) of peptides and

their spatial motifs (secondary structure). However, little is known about the

possibility to interfere intentionally in these structural driving forces, for

example, by inserting (short) artiûcial polymer chains in the peptide

backbone. Structure formation on such hybrid synthetic/biochemical

polymers is still an emerging ûeld of research. Here, molecular dynamics

simulations are used to illustrate the inüuence of inserted polyethylene

segments on the secondary structure of several peptide homopolymers. A

loss of structure of ≈50% when the peptide chain length drops to ten amino

acids and a practically complete absence for even shorter peptide segments.

1. Introduction

1.1. Introduction to Project A09 of the SFB/TRR 102 <Polymers
under Multiple Constraints=

This work was part of the third funding phase (2019-2023) of
project A9 of the Collaborative Research Centre SFB/TRR 102,
funded by the German Science Foundation (DFG). In the ûrst
two periods (2012-2015 and 2015-2019, respectively), the research
focus was initially put on ions and small functional segments of
biomolecules, such as chromophores, and their interaction with
solvent molecules. Speciûcally, the ûrst funding period (2011-
2015) resulted in a series of investigations of aqueous solutions
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the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work
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of simple and complex ions,[1–3] in
combination with their spectroscopic
ûngerprints.[1,4] Nevertheless, speciûc fea-
tures of individual protein systems were
already simulated as well.
In the second funding period (2015–

2019), the focus shifted to the investigation
of conformational variations of small amy-
loidogenic proteins due to speciûc muta-
tionswhichmodify the equilibriumof intra-
protein interactions and protein–solvent
interactions.[5] In parallel, the interactions
of salt ions with solvating water molecules
and the interaction equilibrium between
a typical protein salt bridge and the sol-
vating water molecules complemented this
picture.[6–8] Special attention was again paid
to the importance of spectroscopic signa-
tures, both regarding infrared[6,7] and NMR

spectroscopy.[5,9] Finally, during the third funding period (2019–
2023), the project has evolved toward two distinct directions:
general polymer structure formation and functional hybrid
organic/inorganic copolymers in the context of energy stor-
age/conversion.
The ûrst direction is the continuation of the collaborations on

polymer structure formation, which comprises the analysis of
secondary structure perturbation of peptide chains via üexible
polyethylene segments (research part of this article), the under-
standing of induced helicity in an achiral polymer via a single
chiral monomer within the polymer (collaboration with project
A03), and the development of reverse coarse-graining scheme for
benchmarking the sampling quality of a coarse-grained simula-
tion run of systems such as polyglutamine (collaboration with
project A07), as well as the interplay between polymer struc-
ture (here: cellulose) and the solubility in different kinds of
solvents.[10]

On the other hand, a second direction has emerged from the
consideration of novel types of polymers, speciûcally hybrid or-
ganic/inorganic copolymers. On the example of crosslinked or-
ganic/sulfur compounds, we have started an investigation about
local packing effects and lithium diffusion/lithiation reactions in
the presence of lithium ions.[11] Beforehand, a preliminary study
dealt with the understanding of lithium diffusion in amorphous
thiophene.[12] This research line is presently intensiûed and will
give rise to novel projects in the context of renewable energies.
Concluding this survey of topic of this project A09, we want

to spotlight a methodological project line that has emerged from
the successful collaboration with project A07 (W. Paul). In our
joint study of polyglutamine and its conformational distribution
in aqueous solution,[13] we have established an inverse coarse
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Figure 1. Illustration of the result of the inverse coarse-graining procedure
from the PRIME20 peptide model to atomistic resolution, on the example
of a (Gln)22 dimer. Two example conformations are shown: on the left, the
atomistic structure directly reconstructed from the PRIME20 conforma-
tion; on the right, the corresponding structure after 10 ns of equilibration
via atomistic molecular dynamics simulations (in aqueous solution). The
upper conformation remains stable (apart from a global rotation), while
the lower structure changes signiûcantly, marking an enthalpically unfa-
vorable conformation of the PRIME20 sampling.

graining protocol for the PRIME20 coarse grained protein
model.[14] We have designed a computational scheme to re-
establish a temptative atomistic structure of the glutamine
oligopeptide after conformational sampling with at the coarse-
grained level using the PRIME20 model. The temptative struc-
tures are then equilibrated for a short period of 10 ns using all-
atom molecular dynamics simulations, and the degree of struc-
tural deviation from the temptative conformation is measured.
Using this scheme, we are able to validate the phase space sam-
pling quality of the PRIME20 interaction scheme.
An illustration of the application potential of our scheme is

shown in Figure 1 on the example of a glutamine-22 dimer.
Two structures (upper left and lower left) have been obtained
from the PRIME20 conformational sampling scheme, using the
inverse coarse-graining algorithm. Subsequently, molecular dy-
namics simulation have been performed for 10 ns in aqueous
solution, yielding the atomistic conformations shown in the up-
per right and lower right parts of Figure 1. While the upper con-
formation has only rotated in space but otherwise remained un-
changed, the lower structure has changed signiûcantly during
the equilibration run. Such a situation indicates that the particu-
lar conformation as obtained from the PRIME20 conformational
sampling does not represent a localminimumof the potential en-
ergy landscape and should thus be discarded. Preliminary results
indicate that the majority of the conformations generated by the
PRIME20 sampling approach are <good= structures which repre-
sent stable conformations also within the atomistic equilibration
run. Particular focus will be put on the correlation between the

energies computed at the coarse grained level and those obtained
from the atomistic molecular dynamics simulation.

1.2. Introduction to this Research

Proteins have a signiûcant role in our body, ranging from
metabolism, defense mechanisms to structural functions in skin
and bones amongst many others. With a wide range of functions
there is also the possibility of multiple malfunctions, noticeable
by the huge amount of diseases caused by misfolded proteins.
Notoriously Alzheimer’s,[15]Huntington’s,[16] andParkinson’s[17]

are some of the most commonly known neurodegenerative dis-
eases attributed to the toxicity after a structural change and
following aggregation.[18] This transition can occur for multi-
ple reasons, including temperature, pH-value, additives, and
solvent.[19–21]

A therapeutic approach curing these diseases consists of
molecules similar to the aggregating proteins but with the abil-
ity to destabilize the aggregating conformation.[22] This was al-
ready tried with so called ÿ-sheet breaker inhibiting and dissolv-
ing amyloid-ÿ structures, which are the cause for Alzheimer’s
disease.[18,23] Since there has not been any major success for
this complex problem yet, new models and approaches are
discussed.[24,25] Such conformation inducing compounds can of-
ten be found as peptides, especially as copolymers to obtain a
speciûc drug delivery system.[26–29] The use of peptide containing
hybrid copolymers,[30] not only enables a possibly nontoxic drug
delivery system, it can also inüuence the secondary structure to
well-deûned physical characteristics.[31–35]

The synthetic preparation of hybrid polymers can be achieved
by acyclic diene metathesis (ADMET) polymerization in hexaüu-
oroisopropanol (HFIP) or triüuoroethanol (TFE), which takes al-
ready prepared oligopeptides, adding alkenes on both sides to
polymerize multiple of these molecules by metathesis.[30,36,37]

The base oligopeptides can be obtained by ring-opening poly-
merization (ROP), however full natural proteins were previously
only available by the Merriûeld’s method, which can only pro-
duce small peptides at high costs.[38–40] By advancement in chem-
ical protein synthesis powerful alternative synthesis methods are
now available to produce large previously unobtainable proteins,
however this approach deals with different difficulties such as
solubility and puriûcation among others.[41]

For industrial purposes, the research of hybrid polymers is fo-
cused on effectively enhancing or substituting widely used bulk
polymers with biopolymers to increase biodegradability and en-
vironmentally friendly production.[42] This includes materials for
packaging even in the food industry,[43] polymers which are able
to form nanomaterials[44] used in water puriûcation[45] or med-
ical supply like implants.[46] Combining synthetic and biopoly-
mers gives a whole new class of materials, that has the prospect
to utilize the best properties of both. One of the main advantages
of incorporating biological segments into hybrid polymers is the
structural control, for example, given by the secondary structure
of peptide segments.[47] This control includes regulated structure
transitions caused by pH- or temperature-change among other
things.[48] However, the application of hybrid peptide-copolymers
is mostly limited to drug delivery applications as of now,[49] but
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Figure 2. Snapshots of molecular structures of [PE–(AA)10]2 molecules (left to right: Lys, Glu, Asp) during the molecular dynamics simulation. The
explicit solvent molecules are not shown.

upon further research could also have an impact on functional
surfaces or biomineralization.[50]

For structural analysis a set of different techniques is feasible,
including circular dichroism (CD) as well as Fourier transformed
infrared (FTIR) spectroscopy in solution and solid-state.[51–53]

In this work, the interplay of synthetic and peptide segments
in hybrid polymers is investigated. We focus on the insertion of a
speciûc type of synthetic polymer segment into a series of model
peptides.We determine characteristic conformationalmotifs and
their dependence on the chemistry of the hybridmolecule, specif-
ically amino acid (AA) type and length. A particular focus lies on
the attempt to identify conformational patterns induced by the
different geometric chain üexibility, but also the type of philicity
of the polymer segments: while the PE chains are the textbook ex-
ample of hydrophobic molecules, the charged peptide segments
have a distinctly hydrophilic character.
An illustration of three hybrid polymers investigated is given

in Figure 2.
Studies on the structure of homopeptides have been done for

a long time, often by using circular dichroism spectroscopy. For
lysine (Lys) oligomers the structure is random for short pep-
tides and gets more helical content with increasing length and
even more so at higher pH values.[54] Glutamic acid (Glu) pep-
tides show similar behavior, transitioning from random to heli-
cal structure starting at n = 10 and having a full helical structure
after n = 50.[55]

With the insertion of a PE chain into the continuous ho-
mopeptide, stronger hydrophobic forces get introduced into the
molecule. These new integrated forces are opposed to the peptide
intra-molecular and solvent hydrogen bonds and will therefore
result in conformations with reduced solvent accessible surface
area compared to peptides with similar overall length. In Fig-
ure 2 common established structures are visualized. The green
PE chains show multiple possible positions in regard to peptides
and other PE chains. While this qualitative trend is obvious, we
presently have little quantitative understanding of how exactly the
peptide conformation is inüuenced by the geometric üexibility
and the hydrophobic forces due to the artiûcial PE chains. This
is the primary aspect that is addressed in the following, using
atomistic molecular dynamics simulations.

2. Experimental Section

The chemical structure of the small model hybrid systems are
shown in Figure 3, with peptides connected by a PE chain similar

Figure 3. Structure of hybrid polymers composed of a homopeptide with
amino acid (AA=Asp, Lys, Glu), which is connected to a short polyethylene
chain. The double bond which connects two such hybrid monomers is
maintained during synthesis.[30,36,37]

Table 1. Summary of computational parameters for all sets of hybrid poly-
mers. While the temperature Tmax of the highest of Nrepl. replica differs

for the systems, the temperature Tsystem for the calculation of the low-

est replica, which is the one considered for analysis, remains the same.
(AA=Asp, Lys, Glu).

Polymer type Tmax [K] Nrepl. Tsystem [K]

[PE–(AA)10]2 500 16 300

[PE–(AA)3]2 700 16 300

[PE–(AA)3]6 600 16 300

to experimentally investigated hybrid polymers.[30,36,37] The pep-
tides were varied in length and amino acid type (AA=Asp, Lys,
Glu).
The hybrid polymers were simulated with classical molecu-

lar dynamics simulations using the enhanced sampling tech-
nique Hamiltonian replica exchange[56] with solute tempering 2
(REST2)[57,58] implemented by PLUMED[59] into GROMACS ver-
sion 2019.1 .[60,61] The CHARMM27[62,63] force ûeld was used to
calculate the hybrid polymer interactions and solvation effects of
water were calculated with the TIP3P water model. Each type of
hybrid molecule was put elongated into cubic box ûlled with wa-
ter, ranging from 6 to 10 nm depending on the hybrid molecule’s
size. All amino acid sidechains were charged, therefore the whole
system was neutralized afterward with chloride or sodium ions.
Overall 16 replica per system were used starting at 300 K and
ranging up to 500 to 700 K, again dependent on the system size
to achieve average exchange probabilities ranging from 10% to
40%, summarized in Table 1. With a Lincs[64] fourth order linear
constraint for covalent hydrogen bonds the time step was kept
at 0.5 fs for technical reasons at early equilibration with replica
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Table 2. Secondary structure analysis of all hybrid polymers and references.
Shown is the integral of characteristic regions in the Ramachandran plot,
which correspond to typical secondary structure motifs.

Hybrid polymer ÿr-helix ÿ-sheet Other

[PE–(Asp)3]2 0.74 0.22 0.04

[PE–(Asp)3]6 0.61 0.18 0.21

[PE–(Asp)10]2 0.83 0.15 0.02

6× Asp3 0.55 0.32 0.13

2× Asp10 0.73 0.26 0.01

[PE–(Glu)3]2 0.75 0.20 0.05

[PE–(Glu)3]6 0.65 0.22 0.13

[PE–(Glu)10]2 0.87 0.11 0.02

6× Glu3 0.49 0.38 0.13

2× Glu10 0.82 0.17 0.01

[PE–(Lys)3]2 0.79 0.14 0.07

[PE–(Lys)3]6 0.70 0.19 0.11

[PE–(Lys)10]2 0.81 0.15 0.04

6× Lys3 0.50 0.35 0.15

2× Lys10 0.92 0.02 0.06

exchange attempt every 200 steps. The simulations were run for
60 ns and analyzed with built-in GROMACS tools for hydrogen
bonding, radius of gyration (Rg) and Ramachandran plots. All
other analysis was performed by TRAVIS[66,67] and visualization
was carried out by VMD.[65] Analysis started after 20 ns of ini-
tial calculation. The [PE–(Glu)3]6 system was run for 90 ns, how-
ever no signiûcant difference in any of the relevant conforma-
tional distributions was found. The reference calculation for the
homopeptides used the same parameters, however without the
replica exchangemethod. The termini of the peptide were capped
by N-methyl (NME) and acetyl (ACE) to reduce the effect of the
termini and as a result have a better reference.

3. Results

3.1. Hybrid Polymer with Single Embedded PE Chain

Our focus lies on the formation of structural motifs at a more
general level, speciûcally the characterization of hybrid polymers
in terms of the spatial arrangement of the peptide and PE seg-
ments. With this goal in mind we have determined structural pa-
rameters, which we have found to be suitable to describe (and
discriminate) the overall conformations of our hybrid polymers.
For reference we analyzed the peptides without the PE-chains,
shown as <6× AA3= and <2× AA10= in Table 2.
One of the main characteristics of peptide secondary struc-

tures is the formation of helical or hairpin structure (helices,
sheet-like structures). Our starting point was therefore to ana-
lyze the degree of helicity, which the hybrid polymers are able to
establish. To derive an approximate conformational statistics, we
calculated the Ramachandran plots and quantiûed the secondary
structure regions approximately. The Ramachandran plot itself
is a representation of the backbone angles (ÿ , ÿ), thereby each
secondary structure correlates to a speciûc region in the plot. Ac-
cumulating all points in these speciûc regions leads to a roughly

estimated distribution of secondary structures. The results in Ta-
ble 2 show similar behavior, observing roughly 75% ÿ- and 15%
ÿ-structures for all types of molecules. Some hybrids show more
equal behavior, for example, [PE–(AA)10]2 and [PE–(AA)3]2. Vi-
sual inspection however shows differences between the amino
acids comparing the snapshots in Figures 4 and 2, which are not
represented by the Ramachandran plot. Hence, it turns out this
broadly used analysis does not give satisfactory structural classi-
ûcation for very short peptide segments. The underlying reason
is that short peptides exhibit characteristic backbone angles with-
out adopting the corresponding secondary structure motifs.
Another aspect of the structure formation for our hybrid sys-

tems is the behavior of the PE chains. Consequently, we calcu-
lated radial distribution functions (RDF) of the PE chains d(PE–
PE). The polyethylene–polyethylene distance d(PE–PE) is calcu-
lated as the distance between the central carbon atoms of the
polyethylene chains. These central carbon atoms are marked
in purple in the snapshot in Figure 4 (top left). The number
as well as the positions of the maxima of the RDFs differ for
each amino acid AA = Asp, Glu, Lys in the hybrid polymer se-
ries [PE–(AA)10]2. In contrast, the RDFs of the small peptide–
polyethylene hybrid molecules of the type [PE–(AA)3]2 have sim-
ilar shapes and only one distinct maximum. The RDFs of the
hybrid-polymers of the type [PE–(AA)3]6 show a rather similar be-
havior compared to the RDFs of the hybrid-polymer [PE–(AA)3]2.
Based on the analysis of the RDFs, we can conclude that big-
ger peptides have greater PE–PE distances and are stronger af-
fected by the type of the amino acid. In order to explain the ori-
gin of these observation, we have therefore switched to more
complex geometric parameters in order to capture more de-
tail of the genuine peptide structure via the intercalated PE
chains. Speciûcally, we have found two particular distances that
are able to describe and discriminate our hybrid polymers. The
ûrst parameter is the distance between centers of masses of a
PE chain and a peptide segment d(PE–AA) with AA=Asp, Glu,
Lys. Note that each pair of PE chain/peptide segment is consid-
ered (not only the adjacent chain). The other parameter d(PE–
PE) is the distance between the center of mass of a given PE
chain to the center of mass of another, not necessarily adjacent,
PE chain.
With the two given parameters d(PE–PE) and d(PE–AA) the

structure was analyzed by a combined distribution function[66,67]

g(d(PE–AA), d(PE–PE)). This function represents the 2D prob-
ability distribution for the simultaneous occurrence of a given
PE–AA distance and a given PE–PE distance.
A particular feature of this set of parameters is the explicit

incorporation of molecular philicity: The combined distribution
function of d(PE–PE) and d(PE–AA) allow the analysis of aggre-
gation effects due to segments of same philicity (PE–PE) and
opposite philicity (PE–AA). Notably, the distances between PE
chains also give information about the secondary structure, since
the PE segments are the linking parts between peptides. This way,
a linear elongated peptide will yield larger PE–PE distances, while
secondary structure features like helices or turns will result in
nearby PE–PE distances.
The results of the radial distribution functions g(d(PE–AA),

d(PE–PE)) for the [PE–(AA)10]2 systems are shown in Figure 5.
The hybrid polymers exhibit distinctly different patterns for the
three amino acids. Each type has an individual pattern of highly
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Figure 4. Radial distribution functions of the distances d(PE–PE) between two polyethylene chains for the different hybrid polymers. Herein, the
polyethylene–polyethylene distance d(PE–PE) is calculated as the center of mass of the PE-chain. Note that the positions of the terminating polyethlyen
chains are also included into the calculation of the RDFs.

Figure 5. Combined radial distribution functions of [PE–(AA)10]2 for the centers of masses d(PE–PE) and d(PE–AA).

populated conformations in the combined distribution func-
tions. For example, PE–Glu shows multiple local maxima at
d(PE–PE)=1 nm with d(PE–AA) ranging from 1 to 3 nm. For as-
partic acid, on the other hand, no such pattern of local maxima is
visible; instead, the system has a broad peak at (3 nm, 2.5 nm). It
should be noted that these combined distribution functions are
averaged over about 50 ns, and show considerable evolution dur-
ing this simulation period. A series of distribution functions for
shorter time windows is given in Supporting Information for il-
lustration.
This analysis cannot capture the full conformational space of

the hybrid polymers due to incomplete statistical sampling con-
vergence of the molecular dynamics simulation. However, the
visible population of spatially extended conformations for early
and late stages of the simulation (see Supporting Information)
indicates that the structural sampling is most probably sufficient
for a qualitative analysis.

The very distinct pattern for larger peptide segments observed
in our simulations show that the actual chemistry of the amino
acid type is decisive for the conformational distribution. There-
fore, these hybrid polymers with a chain length of ten amino
acids can be considered as peptide dominated structures, and the
insertion of the synthetic polymer segments does not eliminate
the individual structures from the peptide segment. The struc-
ture formation is clearly inüuenced by the polyethylene chains,
but the peptide segment is long enough so that the individual
chemistry of the amino acid side chains is able to contribute sig-
niûcantly to the secondary structure formation process.

3.2. Hybrid Polymer with Multiple Embedded PE Chain

A natural follow-up question is how much the structure of the
peptide strand is changed if the peptide is <interrupted= multiple
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Figure 6. Combined radial distribution functions of [PE–(AA)3]6 for the centers of masses d(PE–PE) and d(PE–AA).

times. We therefore switched from [PE–(AA)10]2 to [PE–(AA)3]6
molecules having a similar number of peptide residues but
severely different peptide lengths. A preliminary hypothesis is
that the hydrophobic properties of the PE chain overcome the
peptide interaction and lead to a PE dominated structure. While
this hypothesis is not supported by the Ramachandran plots in
Table 2, we observe a visually quite strong difference in confor-
mational pattern between [PE–(AA)10]2 and [PE–(AA)3]6. Again,
we utilize the combined distribution function g(d(PE–AA), d(PE–
PE)) shown in Figure 6. At ûrst view, the patterns for [PE–(AA)3]6
look clearly distinct from the corresponding combined distribu-
tion function from the [PE–(AA)10]2 systems.
The combined distribution functions are independent of the

amino acid type, which is at variance with the observations for the
[PE–(AA)10]2 polymers. The favorable regions are also less scat-
tered and show only a singlemaximum. Furthermore, the PE–PE
distances are also more conûned to lower distances compared
to the PE–AA distance distribution, which suggests the peptide
part to bemore üexible for [PE–(AA)3]6 compared to [PE–(AA)10]2.
Besides the reduced length of the intermediate AA unit, this is
caused by a lower amount of formed hydrogen bonds, shown by
the average hydrogen bonds per residue over time in Figure 7.
Due to the charged sidechains of the peptide segments the hy-
drogen bonds are considered to be only formed by the backbone.
Overall, this indicates a structure dominated by the hydrophobic
PE chains.

3.3. Inüuence of Total Chain Length

As a complementary question, we have investigated whether the
conformational pattern of our hybrid polymers depends signiû-
cantly on the number of repetitions of the elementary building
block, that is, the number of monomer units m in [PE–(AA)n]m.
To this purpose, we have taken the [PE–(AA)3]6 systems (AA=Lys,
Glu, Asp) and reduced the polymer index from m = 6 to m = 2,
which corresponds to theminimalmeaningful version of this hy-
brid polymers.
The combined spatial distribution functions of the two char-

acteristic effective distances d(PE–AA) and d(PE–PE) in the three
systems is shown in Figure 8. The pattern shows an almost van-
ishing probability for PE–PE distances larger than 1 nm, and sim-
ilarly low probabilities for PE–AA distances beyond 1.5 nm. No
signiûcant variations are observed upon exchange of the amino

Figure 7. Time curve of the average number of backbone hydrogen bonds
of one peptide residue to any other peptide for all [PE–(Asp)n]m. This in-
cludes hydrogen bonds to peptides in the same unit, as well as hydrogen
bonds to other peptide units, which are interrupted by a PE-chain. The
number of hydrogen bonds is divided by the number of peptide residues
to compare the systems, which is indicated by <per peptide residue.=

acid Lys/Glu/Asp. The considerable reduction of the distance dis-
tribution to the central peak near (0.5 nm, 1.0 nm) is even more
apparent when comparing to the hybrid polymers of the same
type but triple length (i.e., [PE–(AA)3]6) in Figure 6. In the latter,
the intermediate distances up to about 3 nm are visibly more fre-
quent in the distribution. It should be noted that while the overall
shape of the distribution function is still quite similar betweenm
= 2 and m = 6, the change in polymer length has a considerably
larger effect than the variation of amino acid type.
Geometrically, the (PE–PE, PE–AA) peak distances around

(0.5 nm, 1.0 nm) correspond to directly adjacent polymer strands.
We have checked whether this spatial proximity is rather acci-
dental or a direct consequence of hydrogen bonding, which is
the most prominent structural driving force in peptides and pro-
teins. The temporal evolution of the number of hydrogen bonds
per amino acid during our trajectories is shown in Figure 7. The
pattern for the hybrid polymers with short amino acid sequences
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Figure 8. Combined radial distribution functions of [PE–(AA)3]2 for the centers of masses d(PE–PE) and d(PE–AA).

(i.e., n = 3, shown in red and blue) are very similar. This con-
ûrms the picture observed in the combined radial distribution
functions (Figures 6 and 8). However, the polymers with longer
amino acid chains (n = 10) show a hydrogen bonding probability
that is about ûve times higher. With an absolute value around 0.6,
this probability is already close to the expected limit for a regular
peptide of 0.8–0.9.
These ûndings illustrate that while the [PE–(AA)3]6 hybrid

polymer has about the same total number of amino acids as
[PE–(AA)10]2, it behaves structurally much more like the mini-
malist [PE–(AA)3]2 polymer. On the other hand, the [PE–(AA)10]2)
system is already similar to a regular peptide, despite the consid-
erable perturbation from the polyethylene segment.

4. Conclusion

We have modeled the conformational space of a series of short
peptides and their persistence upon perturbation of their pep-
tide sequence by insertion of short, highly üexible polyethylene
segments. Speciûcally, we have performed molecular dynamics
simulations of [PE–(AA)n]m (with AA=Asp, Lys, Glu; n={3, 10};
m={2, 6}) in aqueous solution. The analysis of one- and 2D ra-
dial distribution functions and hydrogen bonds of these pep-
tide/polymer segments shows that the secondary structure re-
sponse to the inserted polyethylene chain is quite different for the
three amino acid types. Upon frequent insertion (corresponding
to a very short length n = 3 of the peptide chain), we are unable
to observe anymeaningful secondary structure, independently of
amino acid type and total length of the hybrid polymer.
Our results show that it is possible to locally suppress sec-

ondary structure motifs in peptides by means of inserting short
synthetic polymer segments into the chain, and that this pertur-
bation is restricted to about ûve to ten amino acids into the pep-
tide.
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the author.

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation)—Project-ID 189853844—SFB/TRR 102.

Open access funding enabled and organized by Projekt DEAL.

Conüict of Interest

The authors declare no conüict of interest.

Data Availability Statement

The data that support the ûndings of this study are available from the cor-
responding author upon reasonable request.

Keywords

hybrid bio/synthetic polymers, molecular dynamics simulations, peptide
secondary structure

Received: November 10, 2022
Revised: February 6, 2023

Published online:

[1] H. Elgabarty, M. Wolff, A. Glaubitz, D. Hinderberger, D. Sebastiani,

Phys. Chem. Chem. Phys. 2013, 15, 16082.

[2] C. Allolio, N. Salas-Illanes, Y. S. Desmukh, M. R. Hansen, D. Sebas-

tiani, J. Phys. Chem. B 2013, 117, 9939.

[3] T. Watermann, H. Elgabarty, D. Sebastiani, Phys. Chem. Chem. Phys.

2014, 16, 6146.

[4] C. Schiffmann, D. Sebastiani, Phys. Status Solidi B 2012, 249, 368.

[5] F. Hoffmann, J. Adler, B. Chandra, K. R. Mote, G. Bekçioğlu-Neff, D.
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Reverse Mapping of Coarse Grained Polyglutamine
Conformations from PRIME20 Sampling

Thomas Kunze,[b] Christian Dreßler,[a] Christian Lauer,[b] Wolfgang Paul,[b] and
Daniel Sebastiani*[b]

An inverse coarse-graining protocol is presented for generating
and validating atomistic structures of large (bio-) molecules
from conformations obtained via a coarse-grained sampling
method. Specifically, the protocol is implemented and tested
based on the (coarse-grained) PRIME20 protein model (P20/
SAMC), and the resulting all-atom conformations are simulated
using conventional biomolecular force fields. The phase space
sampling at the coarse-grained level is performed with a
stochastical approximation Monte Carlo approach. The method

is applied to a series of polypeptides, specifically dimers of
polyglutamine with varying chain length in aqueous solution.
The majority (>70%) of the conformations obtained from the
coarse-grained peptide model can successfully be mapped back
to atomistic structures that remain conformationally stable
during 10 ns of molecular dynamics simulations. This work can
be seen as the first step towards the overarching goal of
improving our understanding of protein aggregation phenom-
ena through simulation methods.

1. Introduction

Proteins are one of the key constituents of life on our planet.
Composed of specific amino acid sequences,[1,2] they perform a
large part of bio-relevant functionality in all living organisms.
On the other hand, protein malfunction is at the origin of
numerous diseases, among many others, Alzheimer’s,[3]

Huntington’s[4] and Parkinson’s[5] disease. One of the problem-
atic processes in this context is their unwanted aggregation,
e.g., into amyloid fibers.[6,7]

This aggregation process, its local biochemical prerequisites,
and also kinetic and mechanical aspects are the subject of an
ongoing intense research effort.[8,9] In this context, computa-
tional methods are an important clue to the qualitative and
quantitative understanding of the numerous individual ele-
ments of the aggregation process.[10] However, computational
methods generally address only one particular step or one
isolated question of the process, as there are no theoretical
approaches that capture the vast complexity of the aggregation
in a comprehensive way, i. e. with atomistic resolution on the
picosecond timescale, chemical accuracy, hours of simulated
times and including macroscopic effects like crowding.[11] There

are continuously attempts made in the theory community to
“bridge” computational scales, be it length scales, time scales,
or accuracy and chemical resolution levels. These attempts
normally consist of combining two or more established
methods from different regions on those scales, and the
theoretical challenge is to yield a consistent description of the
system of interest across these methods, meaning that the two
distinct methods must be enabled to “hand over” the system
forth and back in a consistent manner.

In this context, we present here a protocol that enables the
transfer of biomolecular systems of intermediate size between
two specific simulation methods which are based on slightly
different resolution levels (atomistic versus coarse-grained
structures) and different interaction potentials (biomolecular
force fields versus hard sphere-type potentials). Therefore, part
of the representability and transferability problems of the quasi-
global coarse-grained (CG) sampling gets addressed by the local
spatio-temporal phase space coverage of the classical force field
MD simulations.[12–18]

Specifically, we combine atomistic molecular dynamics
simulations with a Monte-Carlo sampling scheme based on the
coarse-grained PRIME20 protein model. The difficulty of this
combination of simulation methods is the loss of atomistic
resolution in the PRIME20 scheme which needs to be reverted
and the partial simplification of repulsive and attractive
interactions which need to reintroduce the energetic and
entropic contributions of the neglected degrees of freedom
into the coarse-grained potential. Especially the use of implicit
solvent for biomolecules on aqueous solution may lead to a
thermodynamically incorrect weighting of conformations of
different nature.

Both Monte Carlo and Molecular Dynamics (MD) simulation
were extensively used in the past to study bio molecules.[19–24]

Several hybrid approaches already combine these two methods,
because Monte Carlo and MD simulations are highly comple-
mentary techniques.[25–31] While Monte Carlo methods are a

[a] Prof. Dr. C. Dreßler

Institut für Physik, Ilmenau University of Technology

Weimarer Straße 32, 98693 Ilmenau, Germany

[b] T. Kunze, C. Lauer, Prof. Dr. W. Paul, Prof. Dr. D. Sebastiani

Faculty of Natural Sciences II,

Martin-Luther University Halle-Wittenberg

Von-Danckelmann-Platz 4, 06120 Halle, Germany

E-mail: daniel.sebastiani@chemie.uni-halle.de

Supporting information for this article is available on the WWW under

https://doi.org/10.1002/cphc.202300521

© 2024 The Authors. ChemPhysChem published by Wiley-VCH GmbH. This is

an open access article under the terms of the Creative Commons Attribution

Non-Commercial NoDerivs License, which permits use and distribution in

any medium, provided the original work is properly cited, the use is non-

commercial and no modifications or adaptations are made.

ChemPhysChem 2024, 25, e202300521 (1 of 11) © 2024 The Authors. ChemPhysChem published by Wiley-VCH GmbH

ChemPhysChem

www.chemphyschem.org

Research Article

doi.org/10.1002/cphc.202300521



suitable tool to probe large parts of the conformational space
of bio molecules, MD simulations are able to calculate the local
structure fluctuations and dynamics of a given peptide
configuration. In this work, we will combine the coarse-grained
polymer model PRIME20 which has successfully been used in
Stochastic Approximation Monte Carlo simulations (P20/SAMC)
and an all atom MD simulation. The coarse-grained Monte Carlo
model can be used to identify a set of low energy structures,
which is not possible from a classical MD trajectory due to the
limited length of the simulations. All atom MD simulations
starting from the structures obtained from the Monte Carlo
method will reveal the full atomistic picture including, e.g.,
solvation by explicit water molecules. The dynamical properties,
such as the evolution of the hydrogen bond network, can be
studied in that way and atomistic MD simulation will automati-
cally incorporate entropic contributions of degrees of freedom
which had been averaged over in the coarse grained descrip-
tion. In this way, the molecular dynamics simulations will act as
validation and a posteriori correction tool for the thermody-
namic weighting function for configurations delivered by the
Monte Carlo simulations.

There are successful examples for the combination of MD
and MC methods. The Inverse Monte Carlo approach[16] or the
Iterative Boltzmann Inversion[32] can produce coarse-grained
parameters fitted to MD simulation properties such as radial
distribution functions. These and similar such methods were
successfully improved and used to study a variety of
topics.[15,17,33–40]

2. Coarse-Grained Model

The atomistic description of AMBER03[41] follows the general
force field approach. In order to compare this already estab-
lished technique, we have to introduce the characteristics of
the PRIME20 model.

The PRIME20 model is a 4-bead model, where each amino
acid is represented by 3 backbone beads and 1 side chain bead,
as shown in Figure 1. The backbone beads refer to the NH
bead, the Cα bead and the CO bead. They are located at the Ca

position, the C position and the N position, respectively. The

side chain bead R is located at the center of mass of the side
chain, while its position and size is specific for the amino acid it
represents. Here, we will focus on the parameters relevant for
polyglutamine (PolyQ), which are obtained from the complete
list of parameters for the PRIME20 model.[42]

Covalent bonds are represented as white sticks on the right
side in Figure 1. They are modeled as infinite well potentials
around an ideal bond length. The width of the well allows for
bond length fluctuations Δ of 2.375% from the ideal value:

Vbond dð Þ ¼

0 if d 2 dideal � D; dideal þ D½ ÿ

∞ otherwise

8

<

:

(1)

Here d represents the distance between two bonds, dideal is
the ideal bond length and Δ=0:02375dideal. PRIME20 utilizes
pseudo-bonds between beads separated by two covalent
bonds to stabilize bond angles, and between consecutive Cα

beads to keep the peptide in a trans configuration. Pseudo-
bonds behave in the same way as covalent bonds and are
represented by black and yellow sticks in Figure 1. Bond and
pseudo-bond lengths for PolyQ are listed in Table 1.

Non-bonded bead interactions separate into two types. On
the one hand, there are excluded volume interactions between
multiple backbone beads and between backbone and side
chain beads. They are modeled as hard-sphere (HS) repulsions.
On the other hand, there are hydrophobic interactions between
side chain beads as well as hydrogen bond formation between
NH and the CO bead, which are modeled as semi-infinite square
well potentials:

VHS dij

� ÿ

¼

0 if dij > dHS
ij

∞ otherwise

8

<

:

(2)

VSW dij

� ÿ

¼

0 if dij > dSW
ij

eij if dHS
ij < dij < dSW

ij

∞ otherwise

8

>

>

>

<

>

>

>

:

(3)

Figure 1. Geometry of the PRIME20 model. The backbone is represented by 3 beads: the NH group (green bead), the Cα carbon (red bead) and the CO group
(blue bead). The side chain is represented by the fourth bead (gray bead). Its position and size is specific for the individual type of amino acid. On the left the
assignment of atoms to beads and the dihedral angles are shown. On the right the geometry of a PRIME20 dimer is shown. White sticks represent covalent
bonds. Black and yellow sticks represent pseudo-bonds that stabilize the structure. The size of the beads is not true to scale.
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where dij is the distance between beads i and j, dHS
ij is the hard-

sphere diameter, dSW
ij is the square-well interaction distance and

εij is the square-well depth. For interactions between side-chain
beads, the 3 functional parameters (dHS

ij , dSW
ij and εij) have

specific values for each pair of interacting side-chain beads i
and j. For hard-sphere repulsion interactions we use the Lorenz-
Berthelot combining rule to calculate dHS

ij from the beads dHS. As
side-chain diameters are only defined for side-chain-side-chain
interactions, we use their self-interaction diameter for side-
chain-backbone interactions. The self-interaction value of dHS

i;j

and dSW
i;j are shown in Table 2.

For the formation of hydrogen bonds between NH and CO
beads additional conditions, next to being within square-well
interaction distance dSW

ij =4.5 Å, have to be satisfied. Firstly,
both beads considered for the hydrogen bond formation are
not already involved in another hydrogen bond, and secondly
there is an angle constraint between the N�H and the C�O
vector.

In the model described up to this point, beads in close
proximity along the chain will overlap in a way that prevents
the formation of certain protein structures found in nature. To
solve this shortcoming, squeeze parameters are introduced,
which reduce the effective diameters of beads in close
proximity along the chain. There are squeeze parameters for 10

different bead interactions. These parameters applied to side
chain beads are specific for each amino acid and the glutamine
parameters are shown in Table 3. For a detailed description of
hydrogen bond formation as well as squeeze parameter
implementation in the PRIME20 model we refer to the following
Refs. [42,43].

The energy scale in the model is defined by the hydrogen
bond strength eHB ¼ �1. Side-chain interaction energies are
given relative to eHB (see ε in Table 2). Physical energies E0 and
temperatures T 0 can be retrieved from the reduced quantities (E
and T) by assigning a value to eHB: E

0 ¼ eHBE and T 0 ¼ eHBT=kB.
Both, the coarse-grained MC as well as the MD approach are

established techniques, which can be applied separately for the
investigation of the polypeptide aggregation. The combination
of these two methods requires the careful design of mutual
interfaces. In the first part of the manuscript, we will present a
possible pathway to transfer coarse-grained structures of two
polyglutamine strands into all atom geometries by a general
applicable protocol. In the second part, we will start from the
converted all atom structures to perform molecular dynamics
simulations and discuss the stability of the P20/SAMC struc-
tures. The importance and relevance of establishing protocols
for the back- and forth-conversion of structures between the
coarse-grained model and all atoms MD simulation was already
shown in various applications, especially for biomolecular and
micellar systems.[44–58]

Table 1. Bond and pseudo-bond lengths between beads of PolyQ in PRIME20. Here, the index i represents beads of the (i)th residue and the index i+1
represents beads of the (i+1)th residue. Sizes in Å.

Bonds NHi-Ca;i Ca;i-COi COi-NHi+1 Ri-Ca;i

1.46 1.51 1.33 1.60

Pseudo-bonds NHi-COi Ca;i-NHi+1 COi-Ca;iþ1 NHi-Ri Ca;i-Ca;iþ1 COi-Ri

2.45 2.41 2.45 2.50 3.80 2.56

Table 2. Bead diameters and square-well parameters of PolyQ in PRIME20.
Sizes in Å.

NH Cα CO R

dHS 3.3 3.7 4.0 3.6

dSW 4.5 – 4.5 6.6

ɛ �1.000 – �1.000 �0.080

Table 3. Squeeze parameters and resulting reduced bead diameters for backbone bead interactions and interactions involving a polyglutamine side chain.
Sizes in Å.

Interactions Ca;i-COi+1 Ca;i-NHi–1 COi-NHi+2 NHi-NHi+1 COi-Coi+1

original d 3.85 3.50 3.65 3.30 4.00

squeeze factor 1.1436 0.88 0.87829 0.8 0.7713

squeezed d 4.40286 3.08 3.2057585 2.64 3.0852

Interactions Ca;i�1-Ri COi�1-Ri NHiþ1-Ri Ca;iþ1-Ri COi�2-Ri

original d 3.65 3.8 3.45 3.65 3.8

squeeze factor 1.407 1.089 1.158 1.387 1.316

squeezed d 5.134 4.139 3.996 5.062 5.000
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3. Results

3.1. Conversion of coarse-grained into all atom structures

Our goal is to develop a protocol for the back-conversion of
conformations obtained from the coarse-grained peptide inter-
action model PRIME20 into atomistic structures. The concept of
our protocol is illustrated in Figure 2. The PRIME20 scheme
provides simulation data which contains coordinates for the
backbone carbon and nitrogen atoms, as well as the center of
mass (COM) coordinates of the side chain residues of the
peptide. The illustration in Figure 3 indicates these with red
circles. The atoms labeled with green circles are not provided
by the PRIME20 scheme, and the center of mass of a residue R
of course lacks the coordinates for the individual atoms.

The concept of our back-mapping scheme is to derive the
coordinates of the carbonyl oxygens and the nitrogen protons
from the peptide backbone directly from the backbone carbon
coordinates, by assuming equilibrium bond distances and a
planar geometry with respect to the two adjacent backbone
atoms. For the other atoms in the amino acid residues R, the
coordinate of the initial carbon atom is computed in the same
way, and the orientation of the residue is defined by the
connection vector from the backbone Cα atom to the center of
mass from the PRIME20 simulation data (see Figure 3). For the

initial conversion step, we assume the molecular equilibrium
conformation for the amino acid residue as such, so that the
anchor point (via the center of mass) and the orientation (via
the Cα-COM vector) are sufficient to reconstruct the coordinates
of the full residue.

The atomic coordinates computed in this way are tentative
values, which lead to considerable misalignments in the peptide
structure. The most common problem is that atoms from two
adjacent amino acid residues are too close to each other.
However, our protocol turns out to yield reasonable values for
the start of a short geometry optimization cycle, in the sense
that the standard optimization algorithms are able to respond
to the close-proximity-misalignments and reorient the amino
acid residues away from each other by maintaining the overall
peptide structure as proposed by the coarse-grained scheme. It
should be noted that while the resulting atomistic peptide
geometry is technically possible, it is not for granted that this
conformation is locally stable from a thermodynamical perspec-
tive. The latter aspect is addressed in a second stage within our
back-mapping scheme.

To grasp the structural deviation from our back-mapping
method, we have calculated the root-mean square displace-
ment (RMSD) comparing the P20/SAMC resulted structure to
the geometry optimized structures for the MD simulations.
Similar to the structure conversion, we only compared the N,

Figure 2. Visualization of the central process for the generation of data in this article.

Figure 3. Scheme describing the conversion of the coarse-grained structures into all atom geometries. Red: atoms obtained from the coarse-grained PRIME20
model, green: atoms added by simple geometric considerations.
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CCarbonyl, Cα atoms and the sidechain COM to the respective
beads of the PRIME20 model. The RMSD data for all
conformations is given in Table 4, as well as visual examples for
change in structure caused by the energy optimization in
Figure 4. We observe relatively similar and actually quite small
displacements for all calculated structures, which on the one
hand shows the back-mapping technique is reliable, on the
other hand shows the PRIME20 structures are near a local
energy minimum instead of being geometries that will relax
considerably upon energy minimization.

3.2. Relaxed geometry of the all atom peptide structures

In order to cover a broad variety of systems for the back-
mapping protocol, we generated a series of 21 solvated peptide
dimers (Glun)2 with varying length (n 2 14, 16, 18, 20, 22, 24, 26,
28, 36) within the P20/SAMC simulation framework. For each of
the nine dimer systems, up to four conformations were selected
from the P20/SAMC scheme for inverse coarse-graining. In order
to test the back-mapping protocol, we picked generally low-
energy conformation along with a few extremely low-energy
conformations, so that both “easy”, in the sense of typical
aggregated peptide conformations, and “difficult” conforma-

tions, in the sense of very uncommon peptide features, were
processed and back-mapped to atomistic structures. The terms
“easy” indicates typical aggregated conformations as was
determined via analysis of the hydrogen bond contact proba-
bilities within the PRIME20 scheme. “Difficult” conformations
are of the lowest energy found in single P20/SAMC simulation
runs. This makes them more likely to contain sterically
demanding atomistic features such as highly rigid hydrogen
bond networks. A complete list of the investigated peptide
dimers including their chain lengths and energies calculated
within the P20/SAMC model is given in Table 4. In the table, the
canonical expectation value hUiT ¼ 1=ZU

P

U Ug Uð Þe�bU of the
configuration energy at room temperature is given. It is derived
from the density of states g(U) of the PolyQ systems. One can
see, that hUiT increases when going to systems of longer chain
lengths. Performing MD simulations at room temperature on
conformations of configuration energies far below hUiT has
implications on the expected mechanical stability in MD. The
further away from hUiT a configurations energy is, the more
likely it will be unstable in the MD simulation. However, for the
MD simulation run lengths of 10 ns (see SI), possible meta-
stability in configurations can be found.

In the next step, we added explicit solvent molecules to the
all atom structures and performed geometry optimizations.

Table 4. Overview of all calculated systems with the canonical expectation value of the configurational energy hUiT at room temperature. Furthermore,
including MD energy properties, visual stability and a comparison of visual and ACFhb stability. Green color shows agreement between both, red
disagreement and black cases, where visual inspection was not fully distinguishable/ accessible (n.a.), for unstable (x) and stable (o) structures.

System hUiT (T=300 K) Visual Stability Stability hbinter RMSD

�23.92 �1.68 unstable x 0.94

�18.88 �3.01 stable o 0.79

�21.88 �3.01 half-stable (n.a.) x 0.74

�25.00 �3.40 stable o 0.65

�26.36 �3.40 stable o 0.78

�30.00 �3.40 unstable x 0.83

�27.00 �8.05 stable o 0.72

�30.00 �8.05 half-stable (n.a.) o 0.92

�29.36 �20.48 stable o 0.76

�30.00 �20.48 stable o 0.57

�37.48 �20.48 stable o 0.90

�30.32 �19.86 stable o 0.72

�31.40 �19.86 stable o 0.76

�33.92 �19.86 stable o 0.73

�44.04 �19.86 unstable x 0.90

�35.00 �31.48 stable o 0.79

�44.96 �31.48 unstable x 0.85

�36.12 �20.63 unstable x 0.72

�38.24 �20.63 unstable o 0.76

�40.00 �37.23 stable o 0.75

�40.00 �37.23 stable o 0.67
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To this purpose the all atom peptide dimer structures were
centered in a 4 nm×4 nm×4 nm simulation box, and water
molecules were added until a density between 1.00–1.07 g=cm3

was reached. After solvating the peptide dimers, we performed
geometry optimizations of the all atom structures using the
program package GROMACS and the force field AMBER03.[41]

The calculation of force field energies was successful, in the
sense that all calculations converged rapidly, for each of the
converted all atom systems and the atomic positions of the
peptide dimers were relaxed with respect to the minimization
of the energy. For the comparison to the initial coarse grained
P20/SAMC structures, the geometry optimized all atom peptide
dimer structures were again reconverted into the coarse
grained structures. The root mean square deviation of the
coarse grained peptide dimers between before and after
geometry optimization is given in Table 4.

In Figure 4, we show for three selected examples initial
coarse-grained structures from the P20/SAMC calculations and
the relaxed and back mapped all atom structures. The initially
obtained coarse-grained peptide dimer structures and the
geometry optimized all atom peptide dimer geometries are in
good agreement.

In conclusion, both the back-conversion of the coarse-
grained peptide dimer structures into atomic configurations
and the subsequent local geometry optimizations with explicit
aqueous solvation were successful and resulted in structurally
acceptable conformations with a very good structural similarity
to the original (coarse-grained) configurations.

All individual steps within our backmapping protocol are
summarized in Figure 2. Our approach can be used for the
automatic generation of fully solvated initial structures for all
atom molecular dynamics simulations from coarse-grained P20/
SAMC model geometries. In the future, we plan to extend our

approach to peptide structures formed by other amino acids
than glutamine.

3.3. Molecular dynamics simulation of initial dipeptide

configurations obtained from the P20/SAMC calculations

We have visually inspected the peptide dimer structures
provided by the P20/SAMC sampling before and after the
molecular dynamics relaxations in order to characterize the
structures on an empirical level as “stable” or “unstable”. We
have focused on the strength of structural changes within the
stronger hydrogen-bonded central regions of the peptides. The
hydrogen bonding can be either at the peptide backbone level
(NHO, both intramolecular and intermolecular, corresponding
to beta-hairpin structures and collinear peptide strand con-
formations, respectively) or between amino acid sidechains
(mainly intermolecular), see Figure 5.

Regarding the visual discrimination between “stable” and
“unstable”, we have started by defining a “core” and a
“peripheral” part of the dimer (green and yellow shaded areas
in Figure 5). The core region is the part that contains direct
peptide contacts, and would be the nucleation area for further
aggregation of additional peptides. The peripheral regions are
peptide segments that are fully solvated and/or localized
outside the direct attachment region for additional peptides.
The classification “stable” vs. “unstable” is now applied based
on the structural integrity of the core region, i. e. its persistence
after the short MD simulation.

The empirical classification of all 21 peptide dimer con-
formations in terms of “stable” or “unstable” is given in Table 4.
The atomic coordinates of the first and last frame are also
reported as raw data in the SI. A qualitative observation from

Figure 4. Comparison of the PRIME20 structure (red) and the backmapped, geometry optimized all atom structures (blue) used as starting point for the MD
simulation. All PRIME20 beads are visualized and their respective MD atoms: Ca , N, C and the sidechain centre of mass COMSide).
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this first visual classification step is that if the initial P20/SAMC
structure incorporates parallel peptide strands (either intra-
molecular, in a hairpin conformation, or intermolecular by just
parallel backbone segments) connected through hydrogen
bonds, then the structure of the aggregated peptide strands
remained stable during the atomistic relaxation run. Examples
for such configurations are the structures Figure 5(a)/(d) and
(c)/(f).

Another empirical observation from our visual inspections is
that as soon as one of the coarse-grained peptides adopts a
quasi-spherical shape, the dimer interaction is inhibited and the
resulting configuration turns out to be unstable under molec-
ular dynamics equilibration. A typical example for such a
structure is represented in Figure 5(b)/(e), where both peptides
lose their initial P20/SAMC conformation (Figure 5(b)) after
relaxation 5(e). A possible explanation for this observation is the
implicit treatment of solvation within the PRIME20 model. More
compact (i. e. rather spherical) conformations tend to maximize

the intramolecular contacts of the peptide and to minimize the
surface area towards the solvent. Within the explicit solvation
used for the atomistic molecular dynamics simulations, the
enthalpic benefit of peptide-solvent interactions is stronger,
and thus the tendency to form compact structures is weaker.
Independently of the solvation influence, the P20/SAMC
calculations produces very low-energy structures, which are
associated to exist at lower temperatures. However, the model
P20 model is optimized for proteinogenic structures at room
temperature, which could lead to unphysical structures at the
low temperature range. This behaviour is reflected in compar-
ing the <U> T to the actual system energy. In most cases, only
the lowest energy was not stable during the MD simulations.

Figure 5. Visualization of the peptides at the start (a-c) and end (d-f) of the simulations.
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3.4. Hydrogen bond dynamics

As a complementary perspective regarding the dimer stability,
we now look for a physical property that can be quantified a bit
better compared to a mere visual inspection. We chose to look
at the intermolecular hydrogen bonds between the peptides, in
particular considering their temporal stability. Therefore, we
calculated the autocorrelation function of all intermolecular
hydrogen bonds and its time evolution. This function indicates
how many of the initial hydrogen bonds (at t ¼ 0) have
remained intact after a given time (e.g. during the full
simulation of 10 ns). The data is shown in Figure 6 for a
selection of dimer configurations. Each line corresponds to a
given starting structure from the PRIME20 sampling, and those
structures that have been visually characterized as “stable” are
represented as full lines, while “unstable” structures are shown
as dashed lines.

While there is a certain amount of numerical noise, a
plateau value is reached for most of the dimers after around
3 ns. Afterwards, we observe fluctuations around those pla-
teaus, which corresponds to hydrogen bond breaking and
reformation processes. Interestingly, our inital empirical assess-
ment in terms of stability is fully confirmed by this semi-
quantitative analysis: all “stable” structures yield a highly
preserved hydrogen bond network (i. e. little decay of the

autocorrelation function), while the “unstable” structures all
exhibit a rapid decay and large fluctuations. The average values
of the autocorrelation functions are listed in Table 5.

Here, we have looked at the hydrogen bonding autocorrela-
tion functions merely with a qualitative eye, as a complemen-
tary semi-quantitative tool in addition to the classification of
stable/unstable structures as discussed above. We have explic-
itly avoided to fit the hydrogen bond autocorrelation functions
shown in Figure 6 to exponentials (yielding a numerical hydro-
gen bond lifetime), as we believe this would imply a
quantitative relaxation time measure, which, however, is simply
not reflected by the raw data (to our belief).

Additionally, we have also calculated the same autocorrela-
tion functions but for intramolecular and intra/inter hydrogen
bonds combined (all data given in the Supporting Information).
However, with our focus on the peptide dimer stability, the
intermolecular hydrogen bonds had most significance.

Figure 6. Intermolecular backbone hydrogen bonding autocorrelation function (percentage of hydrogen bonds of initial structure that are preserved) over the
whole MD simulation time for all simulated peptides. Straight lines resemble stable structures, dashed lines unstable structures and dotted lines show the
structure, which is visually unstable but hydrogen bonding suggests a stable structure.

Table 5. Averages of all unstable or stable autocorrelation functions of the
intermolecular hydrogen bonds.

Stability Average

stable 0.84

unstable 0.51
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3.5. Discussion and Outlook

The overall picture of our simulations confirms the reliability of
the P20/SAMC method. From the thermodynamically most
representative conformations generated from the P20/SAMC
approach, physical meaningful configurations remained stable
during the MD simulations, while unphysical peptide dimer
structures were unstable. A particularly characteristic shape of
highly unstable structures resembles a sphere, and these
structures can be caused by the specific way in which the
solvent is represented within the PRIME20 model. Instead of a
chemically specific solvent interaction (which would depend on
the actual chemical environment, i. e. whether there are actual
particules in the vicinity), the PRIME20 model incorporates
solvent effects by reducing the interaction strength between
actual particles. As an example, the energetic strength of a
hydrogen bond is chosen considerably lower than the normal
chemical value of around 20 kJ/mol. Since the side chains are
normally more solvent exposed than the peptide backbone,
those hydrogen bonds carry an even lower energy contribution.
The stable peptide aggregates formed in most cases extended
hydrogen bond patterns between parallel peptide strands.
While the categorization of coarse-grained structures into
“stable” and “unstable” types is nontrivial from a quantitative
point of view, it turned out that a more qualitative perspective
is (in our opinion) sufficient to capture whether the conforma-
tion are essentially chemically reasonable.

Thus, the combination of the coarse-grained MC and MD
simulations is suited to identify and investigate the local
dynamics of stable aggregates of peptide strands. The P20/
SAMC model allows to sample efficiently the entire phase
space, while the all atom molecular dynamics simulations
enable the probing of the geometric as well as the dynamic
properties of the local minimum energy structures. As a side
effect, molecular dynamics helps to validate the reliability of the
P20/SAMC low energy structures by exclusion of unstable
geometries from further analysis.

In the next step, we plan to extend our protocol for the
conversion of coarse-grained into all atom structures towards
peptides composed of other amino acids compared to gluta-
mine.

The algorithm for the conversion of coarse-grained into all
atom structures could be applied to all 21 PRIME20 polyglut-
amine structures without any changes. Subsequent relaxation
of the coordinates of the fully solvated peptide dimer structures
was possible using the GROMACS program package. The
resulting geometry optimized structures were in good agree-
ment with the initial P20/SAMC geometries. This is in particular
remarkable, because the transferability to an all atom approach
was not explicitly intended during the development of the
PRIME20 model.

This work can be seen as the first step towards the
overarching goal of improving the understanding of peptide
aggregation using the PRIME20 model. In this development
step, we have demonstrated how to convert coarse-grained
P20/SAMC structures into all atom structures for MD simula-
tions. Although the back mapping was possible, the resulting

coarse-grained structures could not be used for energy
calculations within the PRIME20 model. The reason being the
use of square-well potential and many cutoff values for inter-
and intramolecular distances that have to be fulfilled by a
peptide geometry to be a valid PRIME20 structure. Fluctuating
configurations from finite temperature molecular dynamics
simulations do often not fulfill these strict cut off criterions.

4. Conclusions

We have designed and implemented a reverse coarse-graining
approach for the back-mapping of atomistic structures into
conformations obtained from a united-atom scheme (PRIME20
approach) that is suitable for large-scale Monte-Carlo based
conformational sampling. The reverse coarse-graining method
is straightforward to implement for regular proteins/peptides
and allows for a subsequent exploitation of atomistic molecular
structures generated from the extensive conformational search
done at the coarse-grained level.

We have validated the approach with a series of shorter
peptide dimers via a conformational stability analysis using
molecular dynamics simulations. It turns out that the majority –
but not all – of the conformations delivered from the large-scale
conformational sampling are “good” structures that remain
stable for at least 10 ns of simulation. As a side result, we have
found that a visual empirical assessment of the conformations
yields stability estimates which are in good agreement with a
more quantitative analysis in terms of the persistence of the
intermolecular hydrogen bond network. All structures that were
visually assessed as “unphysical” turned out to be unstable
during the molecular dynamics simulations.

Our approach provides a further layer of atomistic detail to
the coarse grained simulation of structurally challenging
systems, combining the large-scale phase space sampling
capability of the coarse-grained Monte Carlo method with the
better accuracy and the atomistic resolution available at the
molecular dynamics level.

Computational Details

We used the PRIME20 model to perform coarse grained Monte-
Carlo simulations for dimers of polyglutamine with chains length n
between 14 and 36 amino acids. The simulation method we used is
the Stochastic Approximation Monte Carlo (SAMC) method. It is an
advanced flat-histogram Monte Carlo method which aims for a flat
visitation histogram of energy states. In achieving this, it avoids
getting stuck in local energy minima as can be the case with
conventional Monte Carlo methods. SAMC achieves the even
visitation of energy states by approximating the density of states
(DOS) g(U) with respect to the potential energy U. The DOS
describes the number of states in the system that belong to a given
energy interval [U, U+ΔU]. It then uses the DOS in its acceptance
criterion: for an SAMC move from configuration x with the energy
U(x) to configuration x0 with the energy U x0ð Þ, the move is accepted
with the probability min 1; ~g U x0ð Þð Þ=~g U xð Þð Þð Þ. ~g Uð Þ is the current
estimate for the DOS. After the move is rejected or accepted, ~g Uð Þ
is updated according to ~g U xnewð Þð Þ ¼ ~g U xnewð Þð Þ þ gt , where
xnew ¼ x0 if the move was accepted and xnew ¼ x if the move was
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rejected. The modification factor γt goes to 0, for time t ! ∞. t is
measured in MC steps. Additional conditions have to be met in
order for the DOS to converge.[59–61] After a sufficiently accurate g(U)
was obtained, further MC runs with a fixed DOS were performed.
With the flat visitation histogram of energy states, snapshots at
various energies were collected in multiple simulation runs of
109 MC steps.

Four different MC move types are used in the SAMC simulations. A
local displacement move, which moves a single bead in a randomly
chosen direction by a random distance, with a maximal displace-
ment of 0.02 Å. A pivot rotation move, which randomly chooses a
residue and rotates either its Ψ or Φ angle by a random amount
and direction. Furthermore, two moves are implemented to
manipulate the relative position of the two chains in the system: a
whole-chain rotation and a whole-chain translation move. After
every move, the new configuration must be in agreement with the
PRIME20s constraints on bond-lengths and excluded volumes.
Similar to already successful calculations,[62] we simulated polyglut-
amine dimer systems with chain lengths N 2 (14, 16, 18, 20, 22, 24,
26, 28, 36). N refers to the number of residues in a single chain. For
shorter chains (N 2 (14, 16, 18, 20, 22, 24, 26)) the cubic simulation
box was of length L ¼ 112:5 Å and for longer chains (N 2 (28, 36))
the box was of length L ¼ 150 Å. The simulation box was periodic
in all directions. This translates to a milli-molar concentration, which
is close to in vitro experiments on polyglutamine aggregation.

The coarse-grained low-energy structures resulting from the
PRIME20 simulations listed in Table 4 were translated into all-atom
structures with both termini charged and were directly suitable for
calculations. These structures were then explicitly solvated using
the standard GROMACS[63,64] solvation tool; it should be noted that
this solvation algorithm resulted in varying numbers of water
molecules for different geometries. After an initial energy minimiza-
tion (emtol=100; emstep=0.1; niter=20) for all atoms, a 10 ns
NVT MD simulation with a 0.5 fs time step was performed at 300 K
using velocity rescaling with 0.1 ps time constant, Lincs 4th order
constraint[65] for covalent hydrogen bonds and the AMBER03[41]

force field, while water interactions were represented by the
TIP3P[66] water model. The Verlet cutoff-scheme and periodic-
boundary conditions were used, and electrostatics were calculated
with PME using potential-shift-Verlet for the coulomb modifier.

The energies and radii of gyration RG were calculated by GROMACS
tools,[63,64] and visualization was performed with VMD.[67] The first
2 ns were treated as initial equilibration and not used for GROMACS
analysis. The hydrogen bond autocorrelation functions were
calculated with a python script; the persistence of all hydrogen
bonds determined in the initial structure was checked every 1 ns
along the trajectory, by means of a combined distance/angle
criterion. Note that we explicitly checked for temporary ruptures of
hydrogen bonds, i. e. the autocorrelation function can increase
again if a hydrogen bond is only shortly broken.

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) – Project-ID 189853844 – TRR 102.
Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interests

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are openly
available in Reverse mapping of coarse grained polyglutamine
conformations from PRIME20 sampling at https://github.com/
thomascookies/Reverse-mapping-of-coarse-grained-polyglut-
amine-conformations-from-PRIME20-sampling, reference num-
ber 0.

Keywords: backmapping · coarse-grained · molecular dynamics
simulations · monte carlo simulation · peptide secondary
structure · PRIME20

[1] M. Huntley, G. B. Golding, J. Mol. Evol. 2000, 51 (2), 131.
[2] C. E. Pearson, R. R. Sinden, Curr. Opin. Struct. Biol. 1998, 8 (3), 321.
[3] R. H. N. Kalaria, S. I. Harik, J. Neurochem. 1989, 53 (4), 1083.
[4] H. Y. Zoghbi, H. T. Orr, Annu. Rev. Neurosci. 2000, 23, 217.
[5] C. M. Lill, C. Klein, Nervenarzt 2017, 88 (4), 345.
[6] C. Soto, FEBS Lett. 2001, 498 (2–3), 204.
[7] P. H. Nguyen, A. Ramamoorthy, B. R. Sahoo, J. Zheng, P. Faller, J. E.

Straub, L. Dominguez, J. E. Shea, N. V. Dokholyan, A. de Simone, B. Ma,
R. Nussinov, S. Najafi, S. T. Ngo, A. Loquet, M. Chiricotto, P. Ganguly, J.
McCarty, M. S. Li, C. Hall, Y. Wang, Y. Miller, S. Melchionna, B.
Habenstein, S. Timr, J. Chen, B. Hnath, B. Strodel, R. Kayed, S. Lesné, G.
Wei, F. Sterpone, A. J. Doig, P. Derreumaux, Chem. Rev. 2021, 121 (4),
2545.

[8] A. M. Morris, M. A. Watzky, R. G. Finke, Biochim. Biophys. Acta Proteins

Proteomics 2009, 1794 (3), 375.
[9] J. A. Housmans, G. Wu, J. Schymkowitz, F. Rousseau, FEBS J. 2023, 290

(3), 554.
[10] S. Navarro, S. Ventura, Curr. Opin. Struct. Biol. 2022, 73, 102343.
[11] R. O. Dror, R. M. Dirks, J. P. Grossman, H. Xu, D. E. Shaw, Annu. Rev.

Biophys. 2012, 41 (1), 429.
[12] D. Rosenberger, M. Hanke, N. F. Van der Vegt, Eur. Phys. J. Spec. Top.

2016, 225 (8–9), 1323.
[13] H. J. Risselada, S. J. Marrink, Phys. Chem. Chem. Phys. 2009, 11 (12), 2056.
[14] E. Brini, V. Marcon, N. F. Van der Vegt, Phys. Chem. Chem. Phys. 2011, 13

(22), 10468.
[15] D. Reith, M. Pütz, F. Müller-Plathe, J. Comput. Chem. 2003, 24 (13), 1624.
[16] A. P. Lyubartsev, A. Laaksonen, Phys. Rev. E 1995, 52 (4), 3730.
[17] S. Izvekov, G. A. Voth, J. Phys. Chem. B 2005, 109 (7), 2469.
[18] J. W. Mullinax, W. G. Noid, J. Phys. Chem. C 2010, 114 (12), 5661.
[19] M. Karplus, J. Kuriyan, Proc. Natl. Acad. Sci. USA 2005, 102 (19), 6679.
[20] M. Bendahmane, K. P. Bohannon, M. M. Bradberry, T. C. Rao, M. W.

Schmidtke, P. S. Abbineni, N. L. Chon, S. Tran, H. Lin, E. R. Chapman, J. D.
Knight, A. Anantharam, Mol. Biol. Cell 2018, 29 (7), 834.

[21] S. Sharma, M. Lindau, Proc. Natl. Acad. Sci. USA 2018, 115 (50), 12751.
[22] R. M. Henry, C. H. Yu, T. Rodinger, R. Pomés, J. Mol. Biol. 2009, 387 (5),

1165.
[23] L. K. Scarbath-Evers, S. Jähnigen, H. Elgabarty, C. Song, R. Narikawa, J.

Matysik, D. Sebastiani, Phys. Chem. Chem. Phys. 2017, 19 (21), 13882.
[24] F. Hoffmann, J. Adler, B. Chandra, K. R. Mote, G. Bekçioğlu-Neff, D.

Sebastiani, D. Huster, J. Phys. Chem. Lett. 2017, 8 (19), 4740.
[25] I. Kurisaki, S. Tanaka, Phys. Chem. Chem. Phys. 2022, 24 (17), 10575.
[26] M. S. Barhaghi, B. Crawford, G. Schwing, D. J. Hardy, J. E. Stone, L.

Schwiebert, J. Potoff, E. Tajkhorshid, J. Chem. Theory Comput. 2022, 18
(8), 4983.

[27] H. J. Woo, A. R. Dinner, B. Roux, J. Chem. Phys. 2004, 121 (13), 6392.
[28] I. Y. Ben-Shalom, C. Lin, T. Kurtzman, R. C. Walker, M. K. Gilson, J. Chem.

Theory Comput. 2019, 15 (4), 2684.
[29] M. S. Bodnarchuk, M. J. Packer, A. Haywood, ACS Med. Chem. Lett. 2020,

11 (1), 77.
[30] G. A. Ross, E. Russell, Y. Deng, C. Lu, E. D. Harder, R. Abel, L. Wang, J.

Chem. Theory Comput. 2020, 16 (10), 6061.
[31] S. Pylaeva, A. Böker, H. Elgabarty, W. Paul, D. Sebastiani, ChemPhysChem

2018, 19 (21), 2931.
[32] D. Reith, M. Pütz, F. Müller-Plathe, J. Comput. Chem. 2003, 24 (13), 1624.
[33] W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A.

Das, H. C. Andersen, J. Chem. Phys. 2008, 128, 24.
[34] E. Brini, N. F. Van der Vegt, J. Chem. Phys. 2012, 137, 154113.

ChemPhysChem 2024, 25, e202300521 (10 of 11) © 2024 The Authors. ChemPhysChem published by Wiley-VCH GmbH

ChemPhysChem
Research Article

doi.org/10.1002/cphc.202300521
 1

4
3

9
7

6
4

1
, 2

0
2

4
, 9

, D
o

w
n

lo
ad

ed
 fro

m
 h

ttp
s://ch

em
istry

-eu
ro

p
e.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

0
2

/cp
h

c.2
0

2
3

0
0

5
2

1
 b

y
 F

ak
-M

artin
 L

u
th

er U
n

iv
ersitats, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

7
/0

5
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



[35] P. Ganguly, N. F. A. Van der Vegt, J. Chem. Theory Comput. 2013, 9 (12),
5247.

[36] L. C. Jacobson, R. M. Kirby, V. Molinero, J. Phys. Chem. B 2014, 118 (28),
8190.

[37] J.-w. Shen, C. Li, N. F. Van der Vegt, C. Peter, J. Chem. Theory Comput.

2011, 7 (6), 1916.
[38] M. Langeloth, T. Sugii, M. C. Böhm, F. Müller-plathe, J. Chem. Phys. 2015,

143, 243158.
[39] S. Jain, S. Garde, S. K. Kumar, Ind. Eng. Chem. Res. 2006, 45 (16), 5614.
[40] C.-C. Fu, P. Kulkarni, S. Shell, G. Leal, J. Chem. Phys. 2012, 137, 164106.
[41] Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang, P.

Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, P. Kollman, J. Comput. Chem.

2003, 24 (16), 1999.
[42] A. Böker, W. Paul, J. Phys. Chem. B 2022, 126 (38), 7286.
[43] A. Böker, Ph.D. thesis, Martin-Luther-University Halle-Wittenberg, 2019.
[44] J. Peng, C. Yuan, R. Ma, Z. Zhang, J. Chem. Theory Comput. 2019, 15 (5),

3344.
[45] S. D. Peroukidis, D. G. Tsalikis, M. G. Noro, I. P. Stott, V. G. Mavrantzas, J.

Chem. Theory Comput. 2020, 16 (5), 3363.
[46] M. Feig, P. Rotkiewicz, A. Kolinski, J. Skolnick, C. L. Brooks III, Proteins

Struct. Funct. Genet. 2000, 41 (1), 86.
[47] B. Hess, S. Leo, N. Van der Vegt, K. Kremer, Soft Matter 2006, 2 (5), 409.
[48] A. P. Heath, L. E. Kavraki, C. Clementi, Proteins Struct. Funct. Bioinf. 2007,

68 (3), 646.
[49] C. Peter, K. Kremer, Soft Matter 2009, 5 (22), 4357.
[50] S. M. Gopal, S. Mukherjee, Y.-m. Cheng, M. Feig, Proteins Struct. Funct.

Bioinf. 2009, 78 (5), 1266.
[51] A. J. Rzepiela, L. V. Schäfer, N. Goga, H. J. Risselada, A. H. De Vries, S. J.

Marrink, J. Comput. Chem. 2010, 31 (6), 1333.
[52] P. J. Stansfeld, M. S. P. Sansom, J. Chem. Theory Comput. 2011, 7 (4),

1157.

[53] P. Brocos, P. Mendoza-Espinosa, R. Castillo, J. Mas-Oliva, Á. Piñeiro, Soft
Matter 2012, 8 (34), 9005.

[54] T. A. Wassenaar, K. Pluhackova, R. A. Bo, S. J. Marrink, D. P. Tieleman, J.
Chem. Theory Comput. 2014, 10 (3), 676.

[55] L. E. Lombardi, M. A. Martí, L. Capece, Bioinformatics 2016, 32 (8), 1235.
[56] M. Machado, S. Pantano, Bioinformatics 2016, 32 (10), 1568.
[57] S. Poblete, S. Bottaro, G. Bussi, Biochem. Biophys. Res. Commun. 2018,

498 (2), 352.
[58] M. Shimizu, S. Takada, J. Chem. Theory Comput. 2018, 14 (3), 1682.
[59] F. Liang, J. Stat. Phys. 2006, 122 (3), 511.
[60] F. Liang, C. L. Liu, R. J. Carroll, J. Am. Stat. Assoc. 2007, 102 (477), 305.
[61] T. Shakirov, S. Zablotskiy, A. Böker, V. Ivanov, W. Paul, Eur. Phys. J. Spec.

Top. 2017, 226 (4), 705.
[62] C. Lauer, W. Paul, Macromol. Theory Simul. 2023, 2200075, 1.
[63] H. J. C. Berendsen, D. Van der Spoel, R. Van Drunen, Comput. Phys.

Commun. 1995, 91 (1–3), 43.
[64] D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J.

Berendsen, J. Comput. Chem. 2005, 26 (16), 1701.
[65] B. Hess, J. Chem. Theory Comput. 2008, 4 (1), 116.
[66] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein,

J. Chem. Phys. 1983, 79 (2), 926.
[67] W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14 (1), 33.

Manuscript received: November 10, 2023
Revised manuscript received: February 1, 2024
Accepted manuscript online: February 5, 2024
Version of record online: March 28, 2024

ChemPhysChem 2024, 25, e202300521 (11 of 11) © 2024 The Authors. ChemPhysChem published by Wiley-VCH GmbH

ChemPhysChem
Research Article

doi.org/10.1002/cphc.202300521
 1

4
3

9
7

6
4

1
, 2

0
2

4
, 9

, D
o

w
n

lo
ad

ed
 fro

m
 h

ttp
s://ch

em
istry

-eu
ro

p
e.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

0
2

/cp
h

c.2
0

2
3

0
0

5
2

1
 b

y
 F

ak
-M

artin
 L

u
th

er U
n

iv
ersitats, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

7
/0

5
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



6Paper III: Assignment of a physical energy scale

for the dimensionless interaction energies within

the PRIME20 peptide model

Thomas Kunze, Christian Lauer, Christian Dreßler, and Daniel
Sebastiani

Assignment of a physical energy scale for the dimensionless
interaction energies within the PRIME20 peptide model.

ChemPhysChem 2024, e202400592.

The PRIME20 structures were provided by Christian Lauer. The
conversion of the structures (using the previously published algorithm)
and all calculations were performed by me under the supervision of
Prof. Daniel Sebastiani. The main text was written by me in
collaboration with Prof. Daniel Sebastiani. Christian Lauer and Prof.
Christian Dreßler assisted in the writing by providing guidance and
paragraphs regarding their own contributions.

I hereby confirm that the use of this article is compliant with all
publishing agreements, as this article is under an open access licence:
https://creativecommons.org/licenses/by-nc-nd/4.0/

The shown article is the accepted version, not the final version published
by the journal.

51



01/2020

Accepted Article

Title: Assignment of a Physical Energy Scale for the Dimensionless
Interaction Energies within the PRIME20 Peptide Model

Authors: Thomas Kunze, Christian Dressler, Christian Lauer, and
Daniel Sebastiani

This manuscript has been accepted after peer review and appears as an
Accepted Article online prior to editing, proofing, and formal publication
of the final Version of Record (VoR). The VoR will be published online
in Early View as soon as possible and may be different to this Accepted
Article as a result of editing. Readers should obtain the VoR from the
journal website shown below when it is published to ensure accuracy of
information. The authors are responsible for the content of this Accepted
Article.

To be cited as: ChemPhysChem 2024, e202400592

Link to VoR: https://doi.org/10.1002/cphc.202400592



Assignment of a Physical Energy Scale for the Dimensionless In-

teraction Energies within the PRIME20 Peptide Model
Thomas Kunze Christian Lauer Christian Dreßler Daniel Sebastiani*

T. Kunze, C. Lauer, C. Dreßler, D. Sebastiani*,
Address: Martin-Luther University Halle-Wittenberg
Faculty of Natural Sciences II
Von-Danckelmann-Platz 4 06120 Halle/Saale
Sachsen-Anhalt Germany
Ilmenau University of Technology
Email Address:
thomas.kunze@chemie.uni-halle.de
christian.dressler@tu-ilmenau.de
christian.lauer@physik.uni-halle.de
daniel.sebastiani@chemie.uni-halle.de

Keywords: Backmapping, Coarse-Grained, Molecular Dynamics Simulations, Monte Carlo Simulation,
Peptide Interactions, PRIME20

We present a calibration scheme to determine the conversion factors from a coarse-grained stochastic approximation Monte Carlo ap-
proach using the PRIME20 peptide interaction model to atomistic force-field interaction energies at full explicit aqueous solvation.
The conversion from coarse-grained to atomistic structures was performed according to our previously established inverse coarse-
graining protocol. We provide a physical energy scale for both the backbone hydrogen bonding interactions and the sidechain inter-
actions by correlating the dimensionless energy descriptors of the PRIME20 model with the energies averaged over molecular dynam-
ics simulations. The conversion factor for these interactions turns out to be around 2kJ/mol for the backbone interactions, and zero
for the sidechain interactions. We discuss these surprisingly small values in terms of their molecular interpretation.

1 Introduction

Protein malfunction can lead to various diseases including Alzheimer’s,1 Huntington’s,2 and Parkinson’s3

disease. One problem in this context is the unwanted aggregation of proteins, where the result of that
process can lead to the formation of amyloid fibers.4,5

Computational methods play a crucial role in qualitatively and quantitatively understanding the numer-
ous individual elements of the aggregation process.6

However, the complexity of aggregation requires the combination of multiple theoretical methods to achieve
accuracy while maintaining reasonable timescales.
In our previous work,7 we provided a protocol that allows the transfer of bio-molecular systems of inter-
mediate size between two specific simulation methods. This approach combines two different resolution
levels (atomistic vs coarse-grained) and two different interaction potentials (bio-molecular force fields vs
hard-sphere potentials). Combining these two methods addresses the representability and transferability
problems of the quasi-global coarse-grained (CG) sampling by local spatio-temporal phase space cover-
age of the classical force field molecular dynamics (MD) simulations.8–14 In detail, our approach com-
bines an MC sampling scheme based on the P20 protein model with MD simulations to regain atomistic
accuracy by reintroducing energetic and entropic contributions neglected by the CG potential. Further-
more, explicit solvent interactions may result in a more thermodynamically accurate weighting of the
conformations.
Both MC and MD simulations have been extensively used in the past to study biomolecules.15–20 As
they are highly complementary techniques, several hybrid approaches already combine these two meth-
ods.21–27 Monte Carlo methods are a suitable tool for exploring large parts of the conformational space
of biomolecules.
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Meanwhile, MD simulations can model the local structural fluctuations and dynamics of a given peptide
configuration. By starting from structures obtained from the Monte-Carlo method, the subsequent MD
simulations will provide the atomistic view, further enhanced by explicit water solvation. This allows for
the examination of the dynamic characteristics of hydrogen bond networks by automatically including
the entropic effects of atomistic degrees of freedom.

2 Computational Methods

2.1 Stochastic Approximation Monte-Carlo Simulation

The Stochastic Approximation Monte Carlo (SAMC)28,29 method, which was developed as a mathemat-
ical formulation of the Wang-Landau30 algorithm, was used for the simulation of a Glu26-dimer. The
objective of the SAMC is to achieve a flat visitation histogram of energy states. This approach avoids
the problem of getting stuck in local energy minima, that can occur with standard MC simulations. The
SAMC achieves an even visitation of energy states by approximating the microcanonical density of states
(DOS) g(U) with respect to the potential energy U . The DOS describes the number of states in the sys-
tem that belong to a given energy interval [U,U + ∆U ]. SAMC then uses the DOS in its acceptance cri-
terion: for an SAMC move from configuration x with energy U(x) to configuration x′ with the energy
U(x′), the move is accepted with a probability of:

acc(x′|x) = min

(
1,

g̃(U(x))

g̃(U(x′))

)
, (1)

with g̃(U) being the current estimate for the DOS. After the move is rejected or accepted, g̃(U) is up-
dated according to:

g̃(U(xnew)) = g̃(U(xnew)) + γt, (2)

where xnew = x′ if the move was accepted and xnew = x if the move was rejected. The modification
factor γt goes to 0 for time t → ∞, according to:

γt = min

(
γ0,

t0
t

)
, (3)

with t being measured in MC steps. The convergence of the SAMC algorithm was proven when addi-
tional conditions were fulfilled.28,29,31 Simulations were run until a sufficiently accurate g(U) was ob-
tained, with γt < 10−7. Afterwards, multiple production MC runs with a fixed DOS and over 109 MC
steps each were performed to collect configuration snapshots over the system’s entire energy range.
Four different MC move types were used in the SAMC simulations. Firstly, a local displacement move,
which moves a single bead in a randomly chosen direction by a random distance, with a maximal dis-
placement of 0.02 Å. Secondly, a pivot rotation move, which randomly chooses a residue and rotates ei-
ther its Ψ or Φ angle by a random amount and direction. Additionally, two moves are implemented to
manipulate the relative position of the two chains in the system: a whole-chain rotation and a whole-
chain translation move. After every move, the new configuration must be in agreement with the PRIME20’s
constraints on bond lengths and excluded volumes. Similar to already successful calculations,32 we simu-
lated polyglutamine dimer systems with a chain consisting of 26 glutamine residues. A cubic simulation
box with length L = 150 Åwas used, which was periodic in all directions. This translates to a millimolar
concentration, which is close to in vitro experiments on polyglutamine aggregation.
In the PRIME20 model, there are peptide backbone-backbone interactions of amplitude one as well as
sidechain-X interactions (X=backbone or sidechain) of amplitude 0.08. In the concept of this coarse-
grained interaction model, no specific microscopic nature of these interactions is specified, which means
both hydrogen bonding and hydrophobic interactions are represented by this effective interaction strength.
In our system, however, all three interaction types (peptide backbone-backbone, sidechain-backbone or
sidechain-sidechain) are actually hydrogen bonds. The PRIME20 interaction model contains two dis-
tinct types of intra- and inter-peptide interactions: backbone hydrogen bonds and sidechain interactions.

2



2.2 Molecular Dynamics Simulation

These interaction types contribute 1.0 and 0.08 arbitrary energy units to the PRIME20 total energy ex-
pression, respectively, for each molecular group that actually interacts in the local geometry of a given
glutamine structure:

EP20 = −1Nbackbone − 0.08Nsidechains. (4)

In order to adequately sample this “space of interactions” contained in the ensemble of coarse-grained
structures generated by the MC simulations, we have generated subsets of conformations in such a way
that each pair of values for the amplitude of the two interaction types (Nbackbone, Nsidechains) is well repre-
sented in the ensemble of configurations used as input for our inverse coarse-graining protocol.

2.2 Molecular Dynamics Simulation

In previous work, a protocol for the back-conversion of conformations obtained from the coarse-grained
peptide interaction model PRIME20 to atomistic structures was developed. The PRIME20 scheme pro-
vides simulation data which contains coordinates for the backbone carbon and nitrogen atoms, as well as
the center of mass (COM) coordinates of the side chain residues of the peptide, which are indicated by
red circles in Fig. 1. The atoms labeled with green circles are not provided, however with our previously
published algorithm, we derive the coordinates of the carbonyl oxygens and the nitrogen protons in the
peptide backbone directly from the backbone carbon coordinates by assuming planar NH-C-CO geome-
try. For the sidechain R, which is only one bead provided in the PRIME20 model, the coordinate of the
initial carbon atom is computed by adjacent NH and CO groups, and the orientation of the residue is
defined by the connection vector from the backbone Cα atom to the center of mass from the PRIME20
simulation data. We assume molecular equilibrium conformation for the amino acid residues, so that the
anchor point (via the center of mass) and the orientation (via the Cα-COM vector) are sufficient to re-
construct the coordinates of the full residue.
The atomic coordinates of the Glu26-dimer computed this way lead to considerable misalignments in the
3D structure of the peptides. The most common problem is that atoms from two adjacent amino acid
residues are too close to each other. However, the protocol turned out to yield reasonable values for the
start of a short geometry optimization cycle. The standard optimization algorithms are able to respond
to close-proximity misalignments and reorient the amino acid residues away from each other while main-
taining the overall peptide structure proposed by the coarse-grained scheme. It should be noted that
while the resulting atomistic peptide geometry is technically possible, it is not guaranteed that this con-
formation is locally stable from a thermodynamical perspective. The latter aspect was addressed in our
previous work of the back-mapping scheme.7

For each PRIME20 energy data point, a Glu26-dimer structure was randomly selected from the provided
MC structure set and converted into an all-atom structure, similar to previous research. More specifi-
cally, the coarse-grained structures resulting from the PRIME20 MC simulations were translated into
all-atom structures with both termini charged and were directly suitable for calculations. These struc-
tures were then explicitly solvated with 6700 water molecules using the standard GROMACS33,34 solva-
tion tool. After an initial energy minimization (emtol=100; emstep=0.1; niter=20) for all atoms, a 10 ns
NVT MD simulation with a 0.5 fs time step was performed at 300K using velocity rescaling with a 0.1 ps
time constant, Lincs 4th order constraint35 for covalent hydrogen bonds, and the AMBER0336 force field,
while water interactions were represented by the TIP3P37 water model. The Verlet cutoff scheme and
periodic boundary conditions were used, and electrostatics were calculated with PME using potential-
shift Verlet for the Coulomb modifier.
As a reference simulation, 6700 water molecules were simulated with the same MD parameters, but with
a slightly smaller box to achieve a similar density. The average energy obtained was -215346 kJ/mol. A
short MD simulation of a single Glu26-peptide resulted in an average energy of -5392 kJ/mol. Therefore,
our simulation with 6700 water molecules and 2 peptides has a reference energy of -226130 kJ/mol. This
reference energy was used for visual clarity in our plots.
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Figure 1: The central process for the generation of data in this article is visualized: starting by back-mapping7 Prime20
structures to all-atom structures and running short MD simulations to compare the energies for both techniques.

3 Results

3.1 Density of States of the coarse-grained conformational space

Figure 2: Distribution of the (dimensionless) energies EP20 of the ensemble of coarse-grained structures (N ≈ 800000) gen-
erated using the PRIME20 interaction model. The orange line is the running average (for an energy window of 0.5 arb.u.

We have computed the energy histogram of the ensemble of initial coarse-grained structures that were
generated with the flat-histogram Monte-Carlo sampling scheme at the PRIME20 level of theory (see
Fig. 2). We use the dimensionless energy units provided by the PRIME20 interaction model, which com-
bine inter-peptide backbone hydrogen bonding and side chain interaction energies with specific relative
weights. Although the distribution is not strictly flat, it has no characteristic internal structure, and
shows that the sampling protocol provides a sufficient number of conformations for any given energy
value. In order to exclude any hidden bias in this distribution, we also analyzed its Fourier transform
(see SI for details), which revealed no particular spectral features.
In the PRIME20 model, the total energy (EP20) is composed of a larger contribution due to backbone
hydrogen bonding and a smaller contribution due to side chain interactions, with a non-trivial commen-
surability, see the Methods section. To verify the balanced distribution of the weaker side-chain inter-
actions contributions, we have additionally calculated the density of states of the total PRIME20 ener-
gies EP20 modulo the hydrogen bonding contributions (i.e. considering only the side chain interactions,
represented by the fractional part of EP20). This projected density of states is given in the Supporting
Information. Again, this distribution function shows no distinct spectral peaks, indicating an adequate
statistical representation of all amplitudes for this weaker interaction type.
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3.2 Energy correlation between coarse-grained and atomistic models

This preliminary statistical analysis of the underlying conformational space of our peptide dimer in terms
of its energy distribution shows that the there are no “forbidden” energy ranges with low densities of
states. In particular, also the thermodynamically unfavourable conformations (i.e. those with energies
near EP20=0arb.u.) are well represented in the manifold. In this sense, we are confident that our basic
data is reasonably unbiased and does not need to be weighted or corrected a posteriori.
Hence, we conclude that the initial Monte-Carlo sampling at the PRIME20 level can be considered con-
verged for our purposes.

3.2 Energy correlation between coarse-grained and atomistic models

Figure 3: Correlation of EP20 and Eaa for the hydrogen bond series with linear regression analysis. The slope of the re-
gression is 1.9 [kJ ·mol−1/arbP20.u.].

The central goal of this work is to investigate the correlation between the dimensionless energies of the
coarse-grained peptide structures generated under the PRIME20 model and the (regular dimensional)
energies of the locally relaxed all-atom conformations. The all-atom energies are obtained from our re-
verse coarse-graining protocol7 by means of a preliminary geometry-optimization and a subsequent 10 ns
molecular dynamics simulation (at constant ambient temperature) at the all-atom force-field level. The
instantaneous total energy values during the MD simulation are then averaged, yielding the final energy
value at the all-atom level. Such a correlation allows to assign an effective physical energy value to the
dimensionless energy scale used by the coarse-grained interaction model.
The raw correlation as well as the linear fit are shown in Fig. 3. Clearly, a positive correlation is recog-
nizable, i.e. structures with more positive PRIME20 energies correspond to conformations with more
positive force-field energies. However, the variations of the final all-atom energies are quite large, and
even exceed the systematic dependence of Eaa on EP20. It should be noted that there is of course also
a statistical error bar associated with every single data point Eaa; this aspect will be addressed later on
in this article.
The correlation between coarse-grained PRIME20 energies EP20 and locally relaxed all-atom conforma-
tions Eaa is obtained as 1.9 kJ/mol per PRIME20 energy unit. At first sight, this value is considerably
lower than the typical energy of a hydrogen bond of 20 kJ/mol (one energy unit in the PRIME20 inter-
action model corresponds to one intermolecular NH· · ·OC peptide hydrogen bond). However, the ref-
erence situation is not simply a broken peptide hydrogen bond. Instead, both the NH and CO hydro-
gen bonding partner will establish hydrogen bonds to liquid water from the solvent, but in turn break
a water-water hydrogen bond. The true situation is of course even more involved, as the coordination
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3.3 Sidechain Interaction

numbers of the water molecules may differ between the two situation (i.e. a water can donate two hydro-
gen bonds to other water molecules, but is less likely to bond ).
Thus, one PRIME20 energy unit corresponds to the difference between these two competing situations:

∆EP20 = EMD(Pep · · ·Pep) + EMD(H2O · · ·H2O)− 2EMD(Pep · · ·H2O). (5)

Hence, a comparably small value of 1.9 kJ/mol makes perfect sense as the effective intermolecular pep-
tide hydrogen bond energy difference.
However, the problem remains that different coarse-grained structures with virtually no energy difference
(e.g. one PRIME20 energy unit) typically yield all-atom conformations that exhibit considerable ener-
getic deviations (of ten times the corresponding all-atom energy difference, i.e. 10× 2 kJ/mol = 20 kJ/mol).
This variability represents a challenge for the physical interpretation of the energy landscape generated
and sampled by the PRIME20 interaction model; most likely, the coarse-graining approach suffers from
not recognizing many of the more subtle energetic effects of structural deformations of the peptides. Ex-
amples of such effects include torsional and angular potentials along the peptide backbone chain, but
also steric effects related to the actual size of solvent molecules (e.g. an area with space for 1.9 water
molecules can only be filled with one water molecule, which in an all-atom description will result in a
force that tending to reduce the volume of that area).

3.3 Sidechain Interaction

Figure 4: Correlation between the coarse-grained (EP20) and atomistic (Eaa) energies for a series of conformations with
identical backbone hydrogen bonding states (at the coarse-grained level, here corresponding to 22 and 17 hydrogen bonds,
respectively, for the left and right plots). In turn, the number of sidechain interactions varies and corresponds to -1/12
units of EP20 per sidechain interaction.

In Fig. 4, we plot the energies at the coarse-grained and at the atomistic level for a series of conforma-
tions that have an identical number of backbone hydrogen bond interactions, characterized by “large”
energy steps (one arbitrary unit) at the coarse-grained level, but different numbers of sidechain inter-
actions, characterized by “small” energy steps (1/12 of an arbitrary unit). Each of these conformations
was processed through our inverse coarse graining protocol, so that each atomistic energy represents an
average value obtained during a 10 ns molecular dynamics simulation. Here, we have arbitrarily chosen
two specific values for the number of backbone hydrogen bond interactions (22 and 17, respectively, for
the two plots in Fig. 4).
We observe a correlation between the (coarse-grained) sidechain interactions and the atomistic energies
with practically zero slope. While the atomistic energies are statistically quite scattered with a distribu-
tion width of around ± 20 kJ/mol, the correlation slope is below 1 kJ/mol per EP20 energy unit in both
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3.4 Analysis of statistical errors / numerical uncertainties of the atomistic MD simulations

cases. The reason for this weak correlation is that it is statistically challenging to detect a correlation
of the order of 1/12 of a hydrogen bond (identified in the previous section as corresponding to an atom-
istic energy of 2 kJ/mol, resulting in 0.2 kJ/mol for the expected sidechain interaction) in the presence of
numerical noise of the order of 20 kJ/mol. From a chemical perspective, even the short MD simulations
within our equilibration protocol (10 ns) result in conformational changes that are energetically more im-
portant than a single sidechain interaction energy. Hence, we consider the actual energetic conversion
factor of the PRIME20 sidechain interactions to be zero. Notably, this does not mean that the sidechain
interactions have zero interaction strength, but rather that the correlation of the PRIME20 interaction
scheme with the true (atomistic) interaction energy is small.

3.4 Analysis of statistical errors / numerical uncertainties of the atomistic MD simula-
tions

Figure 5: Energy fluctuation during the MD simulation was analyzed using histograms, running averages and the one-
sigma interval (x̄± σ).

Fig. 5 shows the time evolution of the total energy during a typical MD simulation . The energy fluctu-
ates in a range of around 4000 kJ/mol, while the one-sigma interval is about 1200 kJ/mol. Since our goal
is to evaluate the conversion relationship between the P20 energies and the MD energies, we first want
to investigate the accuracy of the determination of the average energy based on a 10 ns MD simulation.
In other words, we want to check how effective is the averaging of the considerable instantaneous total
energy fluctuations during the MD runs, compared to the energy variations between the different P20
structures. As a simple estimate of the numerical error due to the averaging of the discrete energy val-
ues, we calculated the energy averages for a randomly selected subset of the MD snapshots with about
half of the data set size.
We also calculated for the same data set the standard error of the mean (SEM σx̄), which is given by:

σx̄ ≈
σx√
N

(6)

Since our energy data points are highly correlated at short times, it is not appropriate to use the number
of MD steps for N . Instead, we propose to use the number of typical hydrogen bond lifetimes (10 ps for
relaxation of the hydrogen bond network of liquid water) for this quantity; for a simulation time of 10 ns,
this results in N=10ns/10ps=1000. The use of the longer relaxation times corresponding to the peptide
groups would lead to a ”more-than-local equilibration”, however our idea behind this entire backmap-
ping approach is to leave the overall structure (as delivered by the coarse-grained model) unchanged as
much as possible (i.e. doing only a local equilibration to avoid steric incompatibilities).
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3.4 Analysis of statistical errors / numerical uncertainties of the atomistic MD simulations

Using our standard deviation σ = 620kJ/mol and the resulting N=1000 gives us an estimated energy er-
ror:

σx̄ ≈
620 kJ/mol√

1000
≈ 19.6 kJ/mol (7)

Thus, the formal statistical uncertainty for the calculation of average all-atom energy for a given P20
starting structure during the MD simulation is obtained as ±20 kJ/mol. For comparison, using instead
a time interval of 1 ps for the assumed lifetime of a given MD simulation would give an estimated energy
error of only 6.2 kJ/mol. It is interesting to note, that another estimate can be obtained visually from
the running average (red line) in Fig. 5. A closer inspection reveals fluctuations of about ±40 kJ/mol,
which is in a similar range to the estimate from Eq. 7.

Figure 6: Validation of the statistical averaging accuracy from our MD simulations.

In Fig. 6 the average atomistic total energy for a series of PRIME20 converted structures is shown for
two averaging protocols: first using all MD snapshots (black) or only half of the available number of snap-
shots (red), selected randomly from the entire MD trajectory. This comparison is intended to illustrate
the accuracy of the statistical averaging from a different perspective.
The averaging error this way turns out to be considerably smaller than the statistical error obtained pre-
viously (see Fig. 5) derived from the explicit energy distribution. Therefore, we believe that our energy
averaging protocol based on the 10 ns MD simulations is sufficient to yield converged average energy val-
ues with an accuracy around 5 kJ/mol. We want to stress, that this is not an accurate statistical error
but rather a consistency check that not obvious bias is generated by our approach.
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4 Conclusion

We have determined the energy scale conversion factors from the coarse-grained protein interaction model
PRIME20 to all-atom energies at the common force-field level using explicit solvation and local confor-
mational equilibration. Using a previously established protocol for the structure conversion,7 we have
generated an ensemble of conformations using stochastic approximation Monte Carlo sampling. We sub-
sequently computed atomistic energies for each value of the coarse-grained interaction descriptor (pep-
tide backbone hydrogen bonding and sidechain interaction) by averaging over a set of about ten different
coarse-grained conformations, equilibrating each conformation for about 10 ns via molecular dynamics
simulations.
Our central result is that the atomistic physical energy scale for the backbone hydrogen bonding inter-
action of the PRIME20 model (which uses dimensionless energy units) is obtained as 2 kJ/mol per back-
bone interaction and virtually zero per sidechain interaction. This energy scale appears comparably small
at first sight but is explained in terms of its interpretation as relative energies with respect to competing
interactions (peptide to solvent). Our results confirm previous findings about salt bridges in peptides.38

We validate our findings by carefully estimating our statistical errors in the determination of the aver-
age atomistic energy values using several statistical techniques. Eventually, our results will allow for an
insightful interpretation of structures generated using the coarse-grained PRIME20 interaction model.
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reumaux, Chem. Rev. 2021, 121, 4 2545.

6 S. Navarro, S. Ventura, Curr. Opin. Struct. Biol. 2022, 73 102343.

7T. Kunze, C. Dreßler, C. Lauer, W. Paul, D. Sebastiani, ChemPhysChem 2024, 25, e202300521.

8D. Rosenberger, M. Hanke, N. F. van der Vegt, Eur. Phys. J. Spec. Top. 2016, 225, 8-9 1323.

9H. J. Risselada, S. J. Marrink, Phys. Chem. Chem. Phys. 2009, 11, 12 2056.

10 E. Brini, V. Marcon, N. F. Van Der Vegt, Phys. Chem. Chem. Phys. 2011, 13, 22 10468.
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19 L. K. Scarbath-Evers, S. Jähnigen, H. Elgabarty, C. Song, R. Narikawa, J. Matysik, D. Sebastiani,
Phys. Chem. Chem. Phys. 2017, 19, 21 13882.

20 F. Hoffmann, J. Adler, B. Chandra, K. R. Mote, G. Bekçioğlu-Neff, D. Sebastiani, D. Huster, J. Phys.
Chem. Lett. 2017, 8, 19 4740.

21 I. Kurisaki, S. Tanaka, Phys. Chem. Chem. Phys. 2022, 24, 17 10575.

22M. S. Barhaghi, B. Crawford, G. Schwing, D. J. Hardy, J. E. Stone, L. Schwiebert, J. Potoff,
E. Tajkhorshid, J. Chem. Theory Comput. 2022, 18, 8 4983.

23H. J. Woo, A. R. Dinner, B. Roux, J. Chem. Phys. 2004, 121, 13 6392.

24 I. Y. Ben-Shalom, C. Lin, T. Kurtzman, R. C. Walker, M. K. Gilson, J. Chem. Theory Comput. 2019,
15, 4 2684.

25M. S. Bodnarchuk, M. J. Packer, A. Haywood, ACS Med. Chem. Lett. 2020, 11, 1 77.

26G. A. Ross, E. Russell, Y. Deng, C. Lu, E. D. Harder, R. Abel, L. Wang, J. Chem. Theory Comput.
2020, 16, 10 6061.
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ABSTRACT: Imidazole, being an amphoteric molecule, can act both as an acid and as a base.
This property enables imidazole, as an essential building block, to e�ectively facilitate proton
transport in high-temperature proton exchange membrane fuel cells and in proton channel
transmembrane proteins, enabling those systems to exhibit high energy conversion yields and
optimal biological function. We explore the amphoteric properties of imidazole by following the
proton transfer exchange reaction dynamics with the bifunctional photoacid 7-hydroxyquinoline
(7HQ). We show with ultrafast ultraviolet-mid-infrared pump−probe spectroscopy how for
imidazole, in contrast to expectations based on textbook knowledge of acid−base reactivity, the
preferential reaction pathway is that of an initial proton transfer from 7HQ to imidazole, and only
at a later stage a transfer from imidazole to 7HQ, completing the 7HQ tautomerization reaction.
An assessment of the molecular distribution functions and first-principles calculations of proton
transfer reaction barriers reveal the underlying reasons for our observations.

Amphoterism is the ability of molecules to act both as an
acid and as a base. An example is water (H2O) that can

both donate a proton, becoming a hydroxide anion (OH−),
and accept a proton, forming the hydronium ion (H3O

+). In a
similar way, amphoterism governs the acid and base properties
of other protic solvents such as alcohols (ROH) and amines
(RNH2) and heterocyclic aromatic molecular systems like
imidazole (C3N2H4). Another example is o�ered by
ampholytes, molecules that have both acidic and basic groups,
such as the amino acid H2N-RCH-CO2H, where tautomerism
between a neutral form and a zwitterionic form is augmented
with additional anionic and cationic forms. Amphoterism
e0ciently facilitates proton transport pathways by consecutive
proton exchange steps, making it a key factor in the underlying
microscopic mechanism of the von Grotthuss mechanism in
water1−9 and in other protic solvents.10,11 In the von Grotthuss
picture, the excess proton “jumps” sequentially along the
solvent molecules at a pace much faster than what the Stokes−
Einstein hydrodynamic di�usion model predicts for an
individual protonated solvent molecule. Proton exchange is
also understood to occur in a sequential von Grotthuss-like
fashion in acid dissociation12−16 and in acid−base neutraliza-
tion reactions in protic solvents,17−22 as well as for proton
transport in phosphoric acid,23 imidazole,24 and imidazole
derivatives.25,26 Imidazole derivatives can be major constitu-
ents in hydrogen fuel cells,27,28 for instance, as excellent proton
carriers in high-temperature proton exchange membrane fuel
cells (HT-PEMFC).29 Finally, imidazole, being the functional
group of the amino acid histidine, is a crucial building block in
numerous biological systems, e0ciently enabling energy
transport,30 signal transduction,31 or pH regulation.32−34

In this Letter, we report our findings for imidazole as a
means for ultrafast proton transport in a methanol solution.
The reasons behind the particular choice of the two molecular
compounds (methanol and imidazole) for the proton-
conducting material are possibly not immediately obvious. In
the context of (industrial) proton exchange membrane fuel
cells, liquid water is a very common choice as the proton
conductor, and in practice, it is realized in the form of water
channels in an otherwise hydrophobic polymer matrix with
sulfonic acid end groups (the famous NAFION material
concept). These materials reach their functional limits at the
boiling point of liquid water, which is why considerable e�ort
is being dedicated to finding water-free proton-conducting
materials. In contrast to water as such, midsized organic
molecules (such as imidazole and hydroxylated alkanes) could
be attached directly as side chains to the polymer backbone,
which would reduce or eliminate the functional degradation
due to evaporation at increased temperatures. In our
experimental and computational setup, a direct consideration
of polymers is not possible, which is why we resort to the
corresponding molecular systems. The vision is that learning
the local mechanisms of protonation dynamics in these
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materials will enable or improve the rational design of real
(polymeric) water-free proton-conducting materials.
For our purposes, we use 7-hydroxyquinoline (7HQ) to

initiate proton transfer reactions and follow the dynamics using
femtosecond UV-pump-IR-probe spectroscopy. The objective
is to measure the reaction dynamics of “tight” contact and
“loose” solvent-separated reaction pairs that can be prepared
under well-defined conditions. The underlying mechanisms of
proton transfer dynamics of such “tight” and “loose”
photoacid−carboxylate complexes have been found to occur
on time scales of hundreds of femtoseconds and several
picoseconds, respectively. This di�erence in time scales is
understood to be due to a single-step event with possible
solvent shell rearrangements in the case of “tight” reaction
pairs,35 whereas a sequential mechanism from a proton-

donating photoacid via the water solvent bridge to the
accepting base necessitates hydrogen bond rearrangements
facilitating the proton hops along the water bridge.17 As the
reaction dynamics time scales of these “tight” and “loose”
complexes are clearly distinct from those of the photoacid
molecules reacting with base molecules after more extensive
configurational and di�usional motions that will involve a large
number of hydrogen bond and solvent shell rearrangements
taking place on time scales of hundreds of picoseconds (or
longer), the latter fraction has time-dependent characteristics
that rather can be regarded as being due to reaction kinetics
without providing detailed insight into the elementary steps
that underlie the proton exchange.
Amphoterism is also at play in the acid−base equilibrium of

7-hydroxyquinoline (7HQ) in the electronic S0 ground state

Figure 1. Comparison of the acid−base reaction pathways between the N and Z tautomers and the ionic A and C species of 7HQ, reacting with (a)
formate ion/formic acid or (b) the amphoteric H2B

+/HB/B−, where HB can be imidazole, or the solvent H2O or CH3OH. Excess proton transfer
pathway I can occur with the bases formate anion and imidazole but also with the solvent reacting with 7HQ. Note that for formate solutions
proton vacancy pathway II can occur only with 7HQ exclusively reacting with the solvent, not with formate as the active reaction partner, whereas
for imidazole solutions, both pathways are possible for imidazole and the solvent reacting with 7HQ. The transient UV-pump-IR-probe spectra are
shown as a function of the base added to the deuterated methanol solution at particular pulse delay times for 7HQ reacting with (c) the formate
anion or (d) imidazole. The dashed lines in the plots indicate the transient response recorded at −100 ps, showing the baseline in these
measurements.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.3c00595
J. Phys. Chem. Lett. 2023, 14, 4775−4785

4776



for both aqueous and methanol solutions, where for an
aqueous solution under neutral pH ∼7 conditions both the
neutral (N) and zwitterionic (Z) tautomer occur quantita-
tively, at a low pH of <2 the cationic form C dominates, and at
a high pH of >10 the anionic form A is formed (see Figure
1).36,37 7HQ is a so-called bifunctional photoacid, for which
electronic excitation of the S0 → S1 transition of the neutral
7HQ tautomer N makes the molecule both a photoacid and a
photobase. The pKa value of the OH group decreases by 8
units, making 7HQ a strong acid, whereas the pKb value of the
quinoline nitrogen site changes by 5 units, making 7HQ also a
stronger base. These properties strongly dictate the acid−base
behavior in the first electronic excited state and photoinduced
proton transfer dynamics of 7HQ in protic solvents.11,36−42

Recent results obtained in a combined ultrafast infrared
spectroscopic and ab initio quantum molecular dynamics study
of 7HQ in water/methanol mixtures have shown that on a
microscopic level proton transport takes place from the
proton-accepting quinoline group to the proton-donating
OH group via a methoxide/hydroxide transport mechanism
on a time scale of tens to hundreds of picoseconds.11 Via the
addition of another acid or base, it is possible to change the
preference of the proton transfer pathways from a hydrolysis/
methanolysis (solvolysis) “proton vacancy” mechanism (with
7HQ following the N* → C* → Z* route) to a protolysis
“excess proton” mechanism (with 7HQ transforming from N*
→ A* → Z*). Our first results were obtained with the formate
anion, which promptly accepts the proton from the OH group
of 7HQ upon electronic excitation of the bifunctional
photoacid, when in the proximity of 7HQ under either
“tight” contact reaction pair or “loose” solvent-separated
reaction pair conditions.43 Our results obtained with the
formate anion as an additive did not support a full quantitative
transformation of 7HQ following the N* → A* → Z*
pathway. In this work, we report on the possible role of
imidazole as a mediator in the di�erent proton transport
pathways that 7HQ can follow, as always with a close interplay
with and or even direct involvement of the nearest solvent
molecules. Here we will show that amphoterism is at play with
imidazole, acting both as a proton acceptor and as a proton
donor, as opposed to N-methylimidazole that has been used as
base in proton transfer studies with 7-hydroxy-4-(trifluor-
omethyl)-1-coumarin.44 In the case of amphoteric imidazole,
one cannot a priori assume that the dominant reaction pathway
of 7HQ changes from the solvolysis (methanolysis) to the
protolysis pathway when imidazole is added to a solution of
7HQ in a methanol solution, as imidazole can be the active
reaction partner of 7HQ in both possible acid−base reaction
routes. Whereas empirical free energy−reactivity relationships
will provide clear hints about this matter for “loose” 7HQ−
imidazole reaction pairs, there is no straightforward assessment
available for the “tight” 7HQ−imidazole reaction pairs that
may be envisaged to be present in solutions with high
imidazole concentrations, as proton transfer reactions for
“tight” acid−base reaction pairs may well have a low reaction
barrier or may even be barrierless.
We follow the ultrafast proton transfer dynamics between

7HQ and imidazole as a function of time upon electronic
excitation of the neutral 7HQ tautomer N at 330 nm. By using
ultrafast infrared spectroscopy, we can follow the dynamical
behavior of the di�erent forms of ampholyte 7HQ in the first
electronic excited state, namely, N* and Z* tautomers and
charged C* and A* species.11,42,43 The IR-active normal

modes specific to each species of 7HQ in the S1 state have
been identified and characterized,42 allowing the acid−base
reaction dynamics along the protolysis or solvolysis pathways
in deuterated methanol (CD3OD) to be distinctly followed11

(see Figure 1) and steered.43 Figure 1 also provides an
overview of the transient UV/IR pump−probe spectra
recorded for the 7HQ−imidazole pair at specific pulse delay
times when particular steps along the possible proton transfer
pathways are anticipated to occur. We show here the spectral
region of 1390−1560 cm−1 where the marker bands for
di�erent charged and tautomer species of 7HQ can be most
easily discerned (a broader spectral range is presented in the
Supporting Information). N* has a strong IR-active transition
at 1475 cm−1; Z* displays two IR-active bands at 1440 and
1530 cm−1, while A* appears with a broad band at 1430 cm−1

but is narrower and frequency downshifted to 1422 cm−1 at
longer pulse delays. The pulse delay-dependent magnitudes of
these marker bands are directly proportional to the transient
population of the 7HQ species in the S1 state. For comparison,
the transient UV/IR pump−probe spectra are depicted with
those of a previously reported experiment on the 7HQ−
formate photoacid−base system43 and the stock solution of
7HQ.11,42

The following observations on proton transfer dynamics of
7HQ, as grasped from the transient response of the IR-active
marker bands of 7HQ obtained with imidazole as a base, are
much like those realized with formate: (1) an initial decrease in
the level of N* and the appearance of A* within the time
resolution, (2) a further decrease in the level of N* and the
appearance of more A* on the time scale of a few picoseconds,
(3) the magnitudes of the early time components of the
decrease in the level of N* and the increase in the level of A*
increase with imidazole concentration, and (4) the magnitude
of the N* marker band decreases further at longer time scales
of hundreds of picoseconds, scaling with the base concen-
tration and approaching zero for the highest base concen-
tration used in these experiments (4.0 M).
Distinctly di�erent behavior can also be deduced from the

comparison between the 7HQ−imidazole and 7HQ−formate
results at the high base concentration depicted in Figure 1.
Whereas in the 7HQ−formate case the transient A* marker
band indicates that the proton transfer kinetics predominantly
halts at the A* anion, for the 7HQ−imidazole case the reaction
proceeds further. The appearance of the Z* marker bands
occurs on a time scale of hundreds of picoseconds, whereas the
A* marker band has by then frequency downshifted from 1430
to 1422 cm−1 and diminished in spectral breadth, suggesting a
decrease in the transient population of A* on this long time
scale. The initial large spectral breadth and subsequent
narrowing of IR-active marker bands on picosecond time
scales have often been observed for ultrafast photoinduced
reactions45 and ascribed to initial excess vibrational excitation
(i.e., the molecules with increased internal vibrational
population numbers are “hot”), followed by vibrational cooling
by energy dissipation to the solvent shell molecules. Such
phenomena are typically observed for IR-active vibrational
modes of chromophores undergoing photoinduced chemical
reactions. As anharmonic coupling constants have typically a
negative sign, the IR-active fingerprint of initial “hot”
molecules appears to be frequency downshifted, and with the
vibrational cooling process, the spectral narrowing of the IR-
active fingerprint modes is accompanied by a frequency
upshift. However, in the case of 7HQ reacting with imidazole,
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the frequency shift occurs in the opposite direction. An
alternative explanation for our observations on the A* marker
band around 1422−1430 cm−1 on a time scale from
picoseconds to several tens of picoseconds may be found in
a possible distribution of hydrogen bond configurations
directly upon proton/deuteron transfer from 7HQ to
imidazole, converting N* into A*, followed by hydrogen
bond and solvent shell rearrangements. Instead, the two
marker bands of Z* at 1440 and 1530 cm−1 exhibit a small
increase of spectral width with a large pulse delay for a high
imidazole concentration compared to what has been observed
for 7HQ without an added base. The 1470 cm−1 marker band
of the N* species of 7HQ shows a small increase in spectral
width but negligible changes in frequency position with an
increase in imidazole concentration. Even though a normal
mode analysis of the fingerprint modes of the four di�erent
7HQ species, N*, C*, A*, and Z*, has been performed42 and
these normal modes have been found to be predominantly
governed by C−C, C�C, C−N, and C�N stretching
displacements of the C and N atoms in the aromatic quinoline
ring parts and C−H bending motions of 7HQ, a proper
analysis of the role of hydrogen bonding and solvent shell
rearrangements can be performed only when the first solvent
shell molecules are also included in these normal mode
characterizations. Only further in-depth mode analysis of the
IR-active marker vibrations of N*, A*, and Z* as well as an
assessment of the distribution of the configurations of the
7HQ−imidazole reaction pairs and their temporal character-
istics, which can be grasped by ab initio molecular dynamics
simulations, may shed light on the underlying reasons for this
interesting observation.
Whereas in our earlier studies11,42 we have been able to

successfully analyze the observed transient population kinetics
by the time-dependent magnitude of the N*, A*, and Z*

species, we found here that this approach has led to
inconsistent results. The reason is that in these previous
studies the population kinetics predominantly occurred on
longer time scales of hundreds of picoseconds, whereas
possible changes in the band shape and shifts in frequency
position are known to typically take place on subpicosecond
time scales or time scales of a few picoseconds, albeit not
necessarily for all IR-active marker bands.43 To discern the
correct transient population dynamics of 7HQ upon electronic
excitation of the N tautomer at early pulse delay times, the
transient mid-infrared absorption bands have been analyzed
using a Gaussian line shape fitting procedure (for details, see
the Supporting Information). It turns out that this procedure is
necessary to correctly determine the population dynamics of
the A* anion that is generated in the “tight” and “loose”
complexes at the early pulse delay times.
Figure 2 shows the results of our analysis of the transient

population of the N* and Z* tautomer and the A* anion
species in the 7HQ−imidazole reaction. The outcome of the
Gaussian line shape fitting of the 1422−1430 cm−1 marker
band of A* and of the two marker bands of Z* (1437 and 1530
cm−1) is shown in panels a and b of Figure 2 for the 4.0 M
imidazole case, which we have plotted on a logarithmic scale
for the pulse delay x-axis, to accentuate the early time
dynamics. Indeed, the full width at half-maximum (fwhm) of
this band decreases by a factor of 2.5 within 50−100 ps (Figure
2a), which we tentatively ascribe to hydrogen bond
reorganization and solvent shell rearrangement dynamics of
the imidazole/imidazolium units in the 7HQ−imidazole
product pairs on this time scale. Moreover, the integrated
intensity of the A* marker band has a major component
appearing within the time resolution, and an additional
increase on the picosecond time scale (see Figure 2b). Similar
early time components can also be observed in the decay of

Figure 2. (a) Full widths at half-maximum (fwhm) of 7HQ marker bands for the A* and Z* species as a function of pulse delay time for the 7HQ
stock and 4 M imidazole solutions. (b) Integrated areas of the A* and Z* marker bands (at 1422 and 1530 cm−1, respectively), as a function of
pulse delay time. (c) Transient kinetics of the 7HQ N* and Z* tautomers as a function of the DIm imidazole concentration. (d) Absolute
population fractions of the N* and Z* tautomers and the A* anion at a 1 ns pulse delay time, derived from the transient UV/IR pump−probe
spectra, as a function of imidazole concentration. Note that the curves depicted in panels a and b are shown with logarithmic scaling of the x-axis,
whereas in panel c, a normal scaling has been used, to highlight the early time components of “tight” and “loose” complexes in panels a and b and
the long time components in panel c.
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N*, and together with the observations of the increase in the
level of A*, a consistent picture of “tight” contact and “loose”
solvent-separated 7HQ−imidazole reaction pairs emerges, the
relative fraction for these increasing with imidazole concen-
tration. Interestingly, at longer pulse delay times, the integrated
intensity of the A* marker band decays with a time constant
that appears within the error margin of the experimental data
to be identical to the increase in the integrated intensity of the
Z* marker band at 1530 cm−1 (Figure 2b). Additional
components in the decay of N* occurring on a time scale of
hundreds of picoseconds appear to be similar to components

in the rise of Z* (Figure 2c). Results from exponential fits of
these long time components are summarized in Table S2.
The experimental results clearly display a change in the

reaction dynamics of 7HQ when going from 0.0 M (stock
solution) to 4.0 M imidazole. The N* to Z* tautomerization
accelerates in the presence of imidazole, and a switch from the
solvolysis (methanolysis) “proton hole” pathway toward the
protolysis “excess proton” pathway is apparent upon addition
of more imidazole to the solution. To determine the relative
reaction yields along these two di�erent routes, we have used
the results from the marker band fitting to Gaussian profiles

Figure 3. Average particle density of imidazole (HIm) and methanol (CH3OH) molecules around a cis- or trans-7HQ molecule (see the color
scale) together with the average orientation of the displayed vectors of HIm and CH3OH (see the arrows).
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(see also Figure S3). For the stock solution, we observe an
equilibration of the fraction ( f i) of photoexcited 7HQ−N*

molecules from fN*(τ = 0 ps) = 1 to fN*(τ = 1 ns) = 0.35.
Realizing that for the “proton hole” pathway, with 7HQ
following the N* → C* → Z* tautomerization route, only a
significant transient population of the N* and Z* tautomers
has been observed at any pulse delay for 7HQ in deuterated
methanol (CD3OD),11,42,43 we can then correlate the value of
the observed transient absorbance of the Z* 1540 cm−1 band
with a transient population value: f Z*(τ = 1 ns) = 0.65 [with
f Z*(τ = 0 ps) = 0]. Assuming that the IR cross sections of the
integrated 7HQ marker bands are not a�ected when going
from the (0.0 M imidazole) stock solution to 4.0 M imidazole
in CD3OD, we learn then that with a 1 ns pulse delay the
fraction of Z* increases to f Z*(τ = 1 ns) = 0.80 ± 0.03 while
that of N* is much smaller [fN*(τ = 1 ns) = 0.03 ± 0.03]. This
means that the value observed for the integrated band intensity
of the A* anion with a 1 ns pulse delay is significant: fA*(τ = 1

ns) = 0.17 ± 0.03. Now comparing the long delay value of the
integrated band value of A* (9.4 ± 0.2) with that of its
maximum value (19.8 ± 0.2) reached at 10 ps, we learn that
under 4.0 M imidazole conditions a transient population build-
up fraction of A* reaches a value of fA*(τ = 10 ps) = 0.36 ±

0.07. This value is consistent with the decrease in the transient
population of N* from f N*(τ = 0 ps) = 1 to f N*(τ = 10 ps) =
0.45 ± 0.05, due to the fast deuteron transfer reaction for
“tight” and “loose” complexes, as derived from the early time
decay components of the N* marker band at 1470 cm−1.
The decay of the integrated area of the A* marker band at

time scales of hundreds of picoseconds correlates well with the
rise of that of the Z* marker band points strongly to the
dominant occurrence of the N* → A* → Z* pathway at 4.0 M
imidazole, yet we cannot unequivocally exclude the possibility
that a significant fraction still follows the N* → C* → Z*

pathway. One could interpret the long time dynamical
behavior of the N*, A*, and Z* marker bands in experimental

Figure 4. Combined distribution function depicting the probability of finding a certain distance (see the sketch) between 7HQ and CH3OH and
between CH3OH and HIm on the horizontal and vertical axes, respectively.
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observations as being indicative of further fractions of the 7HQ
N* tautomer following the N* → A* → Z* pathway, for
which the first proton/deuteron transfer step takes more time
due to rearrangements of the imidazole molecules toward the
proton/deuteron-donating 7HQ−OH site with possible
interstitial solvent molecules, including partial rotational and
di�usional motions. After these rearrangements, a proton/
deuteron transfer rate may be inferred from free energy−
reactivity relationships (see Table S3), albeit this under the
assumption of spherical shapes for acids and bases without
explicit molecular structure, to model the long time
components in di�usion-assisted photoacid−base reactions in
protic solvents.11,42,43,46−52 On the contrary, the alternative
option of imidazole acting as a proton/deuteron donor toward
the 7HQ−quinoline nitrogen site also must be considered. As
the acidity of imidazole as a proton donor is quite similar to
that of the solvent methanol, one can also argue that a major
fraction of 7HQ still follows the N* → C* → Z* pathway, but
now with the first step initiated by imidazole acting as proton
donor forming the imidazolate anion. On the basis of our
experimental results, we can exclude an ultrafast proton/
deuteron transfer on subpicosecond time scales or time scales
of a few tens of picoseconds for the N* → C* → Z* pathway,
because C* is not observed at these short pulse delay times
and Z* is only formed with a time constant of 150 ps at 4.0 M
imidazole. This implies, even for 4.0 M imidazole conditions,
an absence of “tight” complexes when the preexisting hydrogen
bond between the 7HQ quinoline nitrogen site and N−H
group of imidazole comprises a barrierless proton transfer
reaction coordinate or when these “tight” complexes have a
major abundance it has a major reaction barrier with a 150 ps
reaction time constant as a result. To discern which of these
two options prevails, we now present our results on classical
molecular dynamics simulations and electronic excited state
quantum chemical calculations.
More insight into the geometric aspects of specific 7HQ−

imidazole reaction pair configurations can be obtained from
the atomic and molecular spatial distribution functions of
solvent molecules around 7HQ, which can be derived from
molecular dynamics simulations. Figure 3 shows the average
particle densities of methanol and imidazole around the
hydrogen bond-donating and -accepting sites of 7HQ. These
results show a pronounced occurrence of having the 7HQ−
OH group acting as a hydrogen bond donor, for the cis and
trans configurations of the hydroxyl group, to a specific
methanol or imidazole molecule acting with their lone pairs as
a hydrogen bond acceptor. Here it is good to note that the
distribution of dihedral angle functions of 7HQ is ∼60% cis-
7HQ and ∼40% trans-7HQ, irrespective of the concentration
of imidazole used in our experiments. The dihedral angles have
rather narrow distributions of the cis-7HQ and trans-7HQ
configurations with their maxima in the plane of the 7HQ−
aromatic backbone (see the Supporting Information). As a
result, the spatial distribution functions of methanol and
imidazole are confined to a limited range around the hydrogen
bond-donating and -accepting sites of 7HQ. This fact also
validates the assumption that a planar projection of the solvent
distribution functions, as shown in Figure 3, provides all
essential information in a transparent fashion.
The fact that the magnitudes of the calculated spatial

distribution functions for methanol or imidazole being donors
of hydrogen bonds to the 7HQ hydroxyl and quinoline
nitrogen lone pairs are approximately 3−4 times lower than

those where methanol or imidazole acts as a hydrogen bond
acceptor strongly suggests an accordingly smaller hydrogen
bond interaction strength for these two di�erent types of
hydrogen bonds that 7HQ can have. This also means that in
the context of preformed “tight” contact reaction pairs
imidazole is more likely to act with its nitrogen lone pair as
a base to the 7HQ hydroxyl acidic group than imidazole is to
act with its N−H group as an acid to donate the proton to the
7HQ quinoline nitrogen site. To determine whether a similar
situation occurs for the “loose” solvent-separated reaction
pairs, we computed the two-dimensional distribution functions
from our molecular dynamics simulations (Figure 4). Here,
again, a larger relative occurrence is apparent for those “loose”
complexes where the solvent and imidazole are interacting as
hydrogen bond acceptors to the 7HQ−OH group. Instead, in
the other “loose” complexes, the solvent and imidazole act as
hydrogen bond donors to the 7HQ−quinoline nitrogen. The
combined distribution functions also show that the hydrogen
bond distances are indicative of weak hydrogen bond
strengths,53−56 as expected for 7HQ in the electronic ground
state.
The observed population kinetics obtained from the

experimental ultrafast UV/IR pump−probe results shows
that for high imidazole concentrations the N* → A* → Z*
pathway of 7HQ is the dominant pathway for the “tight” and
“loose” reaction pair fractions. The particle density and
distribution functions derived strongly point to a significant
fraction of imidazole being hydrogen bonded at both the
7HQ−OH and 7HQ−quinoline nitrogen sites for these “tight”
and “loose” reaction pairs. These findings yield a series of new
questions about the relative reaction rates for individual proton
transfer steps. (1) Why is the deprotonation of N* into the
solvent faster toward imidazole than toward methanol? (2)
Why is the protonation of A* at the nitrogen site faster when
taken from imidazole than from methanol as the proton
donor? (3) Why is the protonation at the nitrogen site from
imidazole faster for A* than for N*, whereas the opposite is the
case for methanol?42 To provide insight into these factors that
control the reaction rates of individual steps and the overall
relative importance of the N* → A* → Z* and N* → C* →
Z* pathways, we have determined the proton transfer energy
profiles for the distinct reaction steps for the “tight” hydrogen-
bonded 7HQ−HIm complexes (see Figure 5). For the reaction
path, we used a linear interpolation between the optimized
reactant and product geometries. This path was sampled with
vertical excitation energy calculations at the time-dependent
density functional theory (TD-DFT) level. The solvent
screening e�ect was incorporated via e�ective polarizable
continuum methods using both the dielectric constants
corresponding to electronic polarization only (ε∞ = 4.5,57

inspired from the observation that the protonation reaction is
considerably faster than the geometric solvent reorientation
dynamics) and, for comparison, the dielectric constant
corresponding to full solvent relaxation (ε0 = 32.6358). Special
care was taken to correctly follow the proper electronic excited
state energy profile (i.e., the one that corresponds to the S1
state of 7HQ) that does not always represent the lowest
vertical excitation along the reaction path. Our calculations
show that from an enthalpy perspective, the imidazole
molecules are considerably more likely to accept or donate a
proton than are methanol molecules. The reaction barriers
with methanol as the proton acceptor or donor are so much
higher (on the order of 80 kJ/mol) that whenever imidazole is
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present in the solvent, the reaction will preferentially follow
those pathways where imidazole is actively involved as the
proton acceptor [N* + HB → A* + H2B

+ (Figure 5a)] or the
proton donor [A* + HB → Z* + B− (Figure 5b)]. In terms of
relative reaction rates, we estimate that the reaction via
imidazole will occur 108 times faster than via methanol,
assuming that the vibrational relaxation after vertical excitation
results in a locally increased kinetic energy of the proton
corresponding to a proton temperature of 600 K. Finally, in the
comparison of proton abstraction by either N* or A* from
imidazole, it follows that the barrier of the A* + HB → Z* +
B− pathway is lower than that of the N* + HB → C* + B−

pathway (with HB being imidazole). In this case, the relative
reaction rates can be estimated to di�er by a factor of 50
(considering a relative barrier di�erence of 10 kJ/mol at a

proton temperature of 300 K, as the reacting proton does not
originate from 7HQ and therefore does not have an increased
temperature).
A close connection between acid−base reaction rates has

been defined by Marcus using the BEBO free energy−
reactivity relation,46 and ultrafast proton transfer studies have
shown that this relationship appears to confirm predicted
proton transfer rates with those derived from experi-
ments.11,49−51 The current understanding is that conclusions
can be drawn about only solvent-mediated proton transfer, i.e.,
for “loose” solvent-separated acid−base reaction pairs.
Interestingly, despite this caveat, an assessment of the acid−
base reactivity of 7HQ with imidazole based on a comparison
of the di�erences in pKa values, ΔpKa (see Table S3), also
provides for the case of “tight” acid−base reaction pairs a clear
indication of why N* reacts faster with imidazole than with
methanol as the proton acceptor or why A* reacts faster with
imidazole than with methanol as the proton donor and why
abstraction of a proton from imidazole by A* is faster than that
by N*. We argue that with the current energy barrier
calculations we can provide a proper estimate in quantitative
terms of the extent to which a close similarity exists between
the quantum chemical calculations of acid−base reaction pairs
and the semiempirical BEBO free energy relationship.
We note that the energy barriers, the ΔpKa values, and the

observed reaction rates all point to imidazole being a faster
proton transporter than methanol, even though the underlying
mechanisms for proton transport are similar.10,24 We suggest
that the individual steps in charge separation are more
e0ciently mediated by the larger aromatic imidazole both as
a proton acceptor and as a proton donor (due to a greater
delocalization of the charge on the imidazole cation and anion,
respectively; this feature also applies for the aromatic 7HQ
molecule) than by methanol where the charge is much more
localized. Ultimately, our findings for the energy barriers of the
individual proton transfer steps with imidazole as the proton
donor and proton acceptor strongly suggest that the N* → A*
→ Z* pathway is followed by those 7HQ molecules that are
already in the “tight” and “loose” reaction pair configurations
and is the more likely route followed by those 7HQ molecules
where larger orientational rearrangements are necessary before
a reaction with imidazole can proceed.
We have attempted to identify the underlying reasons for the

shape of the energy profiles in terms of the degree of charge
delocalization in the solvent molecules (methanol and
imidazole), in view of providing an intuitive qualitative answer
to the three questions about the proton transfer reaction rates.
For this purpose, we have computed the changes in the partial
charges for the A* + HB → Z* + B− reaction for the oxygen/
nitrogen atoms of B. While for methanol the oxygen partial
charge changes from −0.54 to −0.98, the imidazole nitrogen
charge changes from −0.13 to −0.39. Interestingly, the other
nitrogen atom in imidazole remains practically unchanged, and
its partial charge changes from −0.35 to −0.39. The negative
charge is thus equally shared between the two nitrogen atoms,
while in CH3O

−, the entire charge is carried by the single
oxygen atom. This illustrates the considerably better intra-
molecular delocalization of the anionic excess charge for
imidazole compared to methanol, which in turn explains why
the proton donation capability is so much better for imidazole.
A similar argument holds for the 7HQ deprotonation
reactions. Along this line of argument, we anticipate similar
e�ects will play an important role in proton transport in mixed

Figure 5. Energy paths for (a) oxygen site deprotonation onto HB =
CH3OH, HIm (N* + HB → A* + H2B

+) and (b) proton abstraction
from HB onto the nitrogen site (A* + HB → Z* + B−) in both cases
with di�erent solvation influences. (c) Energy path for proton
abstraction of HIm onto A* and N*.
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water/imidazole and mixed methanol/imidazole solutions
without the photoacid chromophore, but much less in neat
imidazole or imidazole derivatives.24,26

In conclusion, our joint experimental−theoretical study
illustrates that it is possible to manipulate the pathway of acid−
base proton exchange reactions in a controlled way, exploiting
the di�erent microsolvation properties and proton a0nities of
suitably chosen solvent molecules. Here, we have used the
bifunctional photoacid 7HQ in combination with methanol
and imidazole as solvent components, as opposed to the more
common aqueous solvation. In comparison to the water
environment, we observe specific changes in the reaction
pathways and reaction dynamics when 7HQ is transformed
from the N* state to the final Z* state. Previous studies of
proton transfer pathways of 7HQ in methanol have shown that
the acquisition of a proton from the solvent methanol by the
7HQ quinoline nitrogen site is the first and rate-determining
step followed by a fast proton donation by the 7HQ hydroxyl
OH group to the solvent (with the reaction rate of the first N*
→ C* step being 2 orders of magnitude smaller than that of
the second C* → Z* step). Adding imidazole as a reaction
partner quantitatively changes the time ordering of the proton
transfer steps, with ultrafast proton donation of the 7HQ
hydroxyl OH group to imidazole occurring on a subpicosecond
time scale or a time scale of a few picoseconds, and only at
clearly longer time scales does the acquisition of a proton by
the 7HQ quinoline nitrogen site from a nearby imidazole
complete the 7HQ N* → Z* tautomerization reaction. The
sequential N* → A* → Z* pathway has, irrespective of the
7HQ−imidazole reaction pair configurations being “tight”
contact or “loose” solvent-separated, a 2−3 order of magnitude
di�erence in reaction rates between the first N* → A* step and
the second A* → Z* step. In light of our findings of this large
di�erence in reaction rates for imidazole as the proton acceptor
compared to imidazole as the proton donor, it would be
interesting to further explore this aspect in those cases in which
imidazole derivatives mediate proton transfer, such as in HT-
PEMFC or transmembrane proton channel proteins.

■ EXPERIMENTAL AND COMPUTATIONAL
METHODS

The Supporting Information includes details about the
experimental setup used;11,42,43 free energy−reactivity assess-
ments (using reported42,59,60 or derived61−63 pKa values);
molecular dynamics simulations with LAMMPS64 and
PACKMOL65 packages, and using optimized potentials for
liquid simulations all-atom (OPLS-aa) force fields,66 restrained
electrostatic potentials (RESP),67 and a Nose−́Hoover chain
thermostat;68−70 trajectory analysis using the TRAVIS,71,72

VMD,73 and Tachyon74 program packages; and proton transfer
energy profiles calculated with ORCA58 on the TD-DFT level
with a solvent polarizable continuum model (CPCM).75
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8Conclusions

This thesis deals with the atomistic computational modeling of structural
and dynamic properties of peptides and peptide-derived polymers. The
central focus of the work is on the formation of secondary structure
elements based on elementary interactions at the level of the primary
structure, with the help of enhanced atomistic molecular dynamics simu-
lations. At this level, one of the challenges for theoretical/computational
approaches is that systems of increasingly complex intrinsic structure
exhibit increasingly large fluctuations in their microstructure and mi-
crodynamics. As a consequence, experimentally accessible (physico-
chemical) properties are ensemble averages of increasingly complex
phase space structures, where atomistic parameters (e.g. typical hydro-
gen bonding distances) can no longer be derived from experimental
data. In turn, the quantitative calculation of such experimental data
on the basis of atomistic approaches becomes increasingly difficult,
since their phase space convergence becomes more resource-intensive
to achieve. In this thesis, this challenge is addressed by a step-wise
adaptation of the complexity of the simulated structures, starting from
small molecules in a multi-component solvent, via local structures of hy-
brid synthetic/biochemical copolymers, up to large-scale conformational
sampling of solvated polypeptides at the transition to coarse-grained
simulation techniques.
Specifically, the properties that were addressed in these areas in the
present thesis work are (a) microsolvation phenomena, including lo-
cal solvent micro-phase-separation; (b) the impact of structural flex-
ibility (controlled by chain length variations) on the ability to form
secondary structures; and (c) the accuracy of enhanced phase space
sampling techniques for a highly flexible solvated polypeptide using
coarse-grained simulations using effective interaction potentials, and
their back-transformation to realistic atomistic conformations.
The first system investigates the insertion of flexible PE segments into
peptides. This insertion of hydrophobic segments disrupts the hydrogen
bonds of the peptide backbone and reduces or ultimately eliminates
secondary structure formation of the peptide. Notably, as the complexity
and size of the system increases, a single hydrogen bond makes a smaller
contribution to the overall chemical behaviour. However, when studying
a specific hydrogen bond, it is possible to model the system at a more
sophisticated level to increase accuracy, as it was done in Chap. 7.
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The second system investigates the efficient simulation of larger rather
than smaller systems by combining two complementary techniques of
coarse-grained Monte Carlo simulations and classical all-atom Molec-
ular Dynamics simulations. This approach exploits the advantages
of both methods, a good and efficient phase-space sampling from the
coarse-grained MC simulations, while the MD simulation provides more
degrees of freedom and explicit solvation to obtain more accurate results.
This makes it possible to study large biomolecules at the all-atom level,
which is usually limited by computational cost. An algorithm has been
developed to convert structures between the coarse-grained and atomistic
models. In practice, the majority of coarse-grained low energy structures
obtained by MC simulations retained their secondary structure after the
short MD simulation. In addition, an energy conversion parameter was
obtained to give a physical energy scale to the coarse-grained structures.

This work lays the groundwork for further research on large biomolecular
systems, especially for medical and material science purposes, as a simple
but robust conversion algorithm makes it possible to investigate large
systems in a more time-efficient manner.
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