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Summary

The present thesis deals with limit theorems for the numbers of inversions and descents,
as well as for related combinatorial objects. This subject combines two different areas of
mathematics: extreme value theory and statistical algebra. Permutation statistics have
been studied and investigated for a long time, while also generating recent interest. Many
of them can be generalized from symmetric groups to finite Coxeter groups, as symmetric
groups are a subclass of these. When we treat the underlying Coxeter group as a proba-
bility space, commonly equipped with the uniform distribution, the numbers of inversions
and descents become random variables, which we call Xinv and Xdes. The study of their
probabilistic and asymptotic properties, such as the central limit theorem (CLT), is part
of statistical algebra.

The validity of the CLT of Xinv and Xdes was recently classified on all finite Coxeter
groups, which serves as a motivation to subsequently investigate the extreme value be-
haviors of these statistics. Hence, in this thesis, we initiate the study of extreme values
of permutation statistics. By this, we understand the maximum of a permutation stati-
stic within a collection of independent samples. To get meaningful asymptotic statements,
we need to construct a triangular array that encompasses an infinite sequence (Wn)n∈N
of finite Coxeter groups of increasing ranks and contains kn i.i.d. samples Xn1, . . . , Xnkn

drawn from Wn. So far, there is little understanding and classification for extreme values
of triangular arrays, which is why we aim to find new ways to tackle these extreme values.

Due to the asymptotic normality of inversions and descents, the Gumbel distribution is a
natural candidate for the extreme value limit distribution in a triangular array built from
Xinv or Xdes. However, the choice of the number of samples kn plays a crucial role. On one
hand, kn must diverge to infinity, but on the other hand, it must not be too large to avoid
degeneracy of extreme values. One novel contribution is a universal bound on kn which
is yielded by the Berry-Esseen bound. However, we are clearly interested in methods and
results that make use of the underlying permutation statistics and its specific properties.
We find such methods that can yield significantly stronger bounds on kn, which are ideally
subexponential, and this turns out to be successful for both the number of inversions and
the number of descents. This is highlighted as the first main result of this thesis.

In addition, we provide asymptotic theory for the joint distribution (Xinv, Xdes)⊤, which
is less understood than the individual statistics Xinv and Xdes. Up to date, (Xinv, Xdes)⊤
is only known to be asymptotically normal on symmetric groups. The primary challenge
here is the dependency structure between Xinv and Xdes, so the joint distribution needs
to be handled with more elaborate methods. To tackle the dependency, we use the Hájek
projection X̂inv of Xinv, giving an m-dependent approximation (X̂inv, Xdes)⊤ for which
we can obtain a suitable quantitative Gaussian approximation. This leads to several no-
vel contributions, namely, the extension of the CLT for (Xinv, Xdes)⊤ beyond symme-
tric groups, and the max-attraction of (Xinv, Xdes)⊤ to a bivariate Gumbel distribution.



The latter is highlighted as the second main result of this thesis. We further argue that
this result can be obtained for other permutation statistics with certain properties as well.

Finally, we extensively analyze the applicability of these methods to generalized inversions
and descents, which are an interesting combinatorial extension of common inversions and
descents. These generalized statistics are indexed by a parameter d whose magnitude is
significant for asymptotic considerations, so we determine its impact on the CLT and the
extreme value limit theorems.

This thesis is organized as follows. Chapter 1 introduces the basics and different facets
of extreme value theory in both univariate and multivariate scenarios, and outlines the
research history of extremes of triangular arrays.

Chapter 2 gives preliminaries on inversions and descents first on symmetric groups, then
in the more general framework of finite Coxeter groups. Here, we also outline the research
history of the CLT for the random number of inversions and descents.

In Chapter 3, we prove the max-attraction to the Gumbel distribution of inversions and
descents for a large class of finite Coxeter groups, based on generating functions and their
decomposition into independent but not identically distributed parts. For this scenario,
we employ large deviations theory to obtain tail equivalence to the standard normal dis-
tribution, which leads to extreme value limit theorems. We also discuss the asymptotic
upper bound on the number of samples kn in each row of the triangular array. For Xdes,
we find an even better bound on kn than for Xinv. Moreover, we show that a weak but
universal extreme value limit theorem applies to a very large class of random variables,
including other permutation statistics.

Chapter 4 is extensively devoted to the asymptotics of the joint distribution (Xinv, Xdes)⊤.
We first introduce the Hájek projection X̂inv and a high-dimensional Gaussian approxi-
mation for m-dependent random vectors. With these tools, we first extend the CLT for
(Xinv, Xdes)⊤ from symmetric groups to the signed and even-signed permutation groups,
on which we also propose a biased random choice of signs. More importantly though, we
show that (Xinv, Xdes)⊤ is in the maximum domain of attraction of the two-dimensional
Gumbel distribution with independent marginals.

In the concluding Chapter 5, we determine the univariate and bivariate extreme value
asymptotics of generalized inversions and descents with the previously developed methods.



Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit Grenzwertsätzen für die Anzahlen von
Inversions und Descents sowie für ähnliche kombinatorische Objekte. Dieses Thema ver-
bindet zwei verschiedene Gebiete der Mathematik: Extremwerttheorie und statistische
Algebra. Permutationsstatistiken werden seit Langem erforscht und sind auch in jüng-
ster Zeit von Interesse. Viele können von symmetrischen Gruppen auf allgemeine endliche
Coxeter-Gruppen übertragen werden, da symmetrische Gruppen eine Teilfamilie der letzte-
ren bilden. Wir können die zugrundeliegende Coxetergruppe als Wahrscheinlichkeitsraum
auffassen, üblicherweise mit der Gleichverteilung. Die Anzahl der Inversions bzw. Descents
ist dann eine Zufallsvariable, die wir mit Xinv bzw. Xdes benennen. Die Erforschung der
stochastischen und asymptotischen Eigenschaften solcher Zufallsvariablen, etwa des zen-
tralen Grenzwertsatzes (ZGWS), gehört zum Gebiet der statistischen Algebra.

Die Gültigkeit des ZGWS für Xinv und Xdes wurde erst kürzlich für alle endlichen Coxe-
tergruppen charakterisiert. Dies ist für uns eine Motivation, auch die Extremwerte dieser
Statistiken zu untersuchen. Diese Dissertationsarbeit initiiert somit das Studium der Ex-
tremwerte von Permutationsstatistiken. Darunter verstehen wir den größten Wert einer
Permutationsstatistik innerhalb von unabhängigen Stichproben. Um sinnvolle asympto-
tische Aussagen erhalten zu können, müssen wir ein Dreiecksschema konstruieren, das
eine unendliche Folge (Wn)n∈N von immer größer werdenden endlichen Coxeter-Gruppen
umfasst. Auf der n-ten Gruppe Wn ziehen wir dann kn unabhängige Stichproben der in-
teressierenden Permutationsstatistik. Allerdings sind Extremwerte von Dreiecksschemata
nur unzureichend verstanden bzw. klassifiziert, weshalb wir nach neuen Wegen suchen, um
mit ihnen umzugehen.

Angesichts des ZGWS ist die Gumbel-Verteilung ein natürlicher Kandidat für die Ex-
tremwertverteilung eines Dreiecksschemas aus Xinv oder Xdes. Allerdings spielen die Zei-
lenlängen kn des Dreiecksschemas eine entscheidende Rolle. Einerseits muss kn bestimmt
divergieren, andererseits darf es nicht zu groß sein, damit das Extremwertverhalten nicht
entartet. Eine neue Erkenntnis ist die Einführung einer universellen Schranke für kn, die
aus der Berry-Esseen-Fehlerabschätzung resultiert. Wir interessieren uns jedoch beson-
ders für Methoden und Erkenntnisse, welche die zugrundeliegende Permutationsstatistik
berücksichtigen und ihre Eigenschaften ausnutzen. Wir entwickeln solche Methoden, die zu
einer viel besseren, idealerweise subexponentiellen kn-Schranke führen, sowohl für die An-
zahl der Inversions als auch für die Anzahl der Descents. Dies ist das erste Hauptresultat
dieser Arbeit.

Es ist auch interessant, die gemeinsame Verteilung (Xinv, Xdes)⊤, die bislang weniger ver-
standen ist als ihre individuellen Komponenten Xinv und Xdes, auf ihre asymptotischen
Eigenschaften zu untersuchen. Nach heutigem Stand ist für sie nur der ZGWS auf sym-
metrischen Gruppen bekannt. Die wesentliche Herausforderung ist hier die Abhängigkeit
zwischen Xinv und Xdes, weshalb hier aufwändigere Methoden erforderlich sind. Um das
Problem der Abhängigkeit zu lösen, benutzen wir die Hájek-Projektion X̂inv von Xinv



zwecks einer m-abhängigen Approximation (X̂inv, Xdes)⊤, für die wiederum eine geeignete
Gauß-Approximation genutzt werden kann. Dies führt zu mehreren neuen Ergebnissen,
nämlich die Verallgemeinerung des ZGWS auf andere endliche Coxeter-Gruppen sowie die
Max-Anziehung von (Xinv, Xdes)⊤ zu einer zweidimensionalen Gumbel-Verteilung. Letzte-
res ist das zweite Hauptresultat dieser Arbeit. Es zeigt sich außerdem, dass dieses Resultat
auch für andere Permutationsstatistiken mit bestimmten Eigenschaften gültig ist.

Abschließend analysieren wir in aller Ausführlichkeit die Anwendbarkeit dieser Methoden
auf die sog. verallgemeinerten Inversions und Descents, die eine interessante kombinatori-
sche Erweiterung der herkömmlichen Inversions und Descents darstellen. Diese erweiterten
Statistiken werden durch einen Parameter d indiziert, dessen asymptotische Größenord-
nung entscheidend ist. Somit bestimmen wir seinen Einfluss auf die Gültigkeit des ZGWS
und auf das Extremwertverhalten.

Diese Arbeit ist wie folgt strukturiert: Kapitel 1 führt in die Grundlagen und verschiedenen
Richtungen der Extremwerttheorie im Ein- wie im Mehrdimensionalen ein und rekapitu-
liert die Forschungsgeschichte von Extremwerten auf Dreiecksschemata.

Kapitel 2 liefert die Grundlagen für Inversions und Descents zunächst auf symmetrischen,
dann allgemeiner auf endlichen Coxeter-Gruppen. Dabei besprechen wir auch die bislang
bekannten zentralen Grenzwertsätze für die zufällige Anzahl von Inversions oder Descents.

In Kapitel 3 beweisen wir die Max-Anziehung von Inversions und Descents zur Gumbel-
Verteilung für eine große Klasse endlicher Coxeter-Gruppen. Dabei nutzen wir Zerlegungen
ihrer erzeugenden Funktionen in unabhängige aber nicht identisch verteilte Summanden
und verwenden die sog. Large Deviations Theory, um Tail-Äquivalenz zur Standardnor-
malverteilung zu erhalten. Wir diskutieren dabei auch die asymptotische Schranke für die
Längen kn der Zeilen im Dreiecksschema. Für Xdes ergibt sich dabei sogar eine bessere
Schranke als für Xinv. Zudem zeigen wir, dass ein schwächerer Extremwertsatz mit einer
strengen Schranke für kn für eine sehr allgemeine Klasse von Zufallsvariablen gilt, die auch
andere Permutationsstatistiken beinhaltet.

Kapitel 4 ist ausführlich der Asymptotik der gemeinsamen Verteilung (Xinv, Xdes)⊤ ge-
widmet. Wir führen zunächst die Hájek-Projektion X̂inv und die hochdimensionale Gauß-
Approximation m-abhängiger Zufallsvektoren ein. Mit diesen Hilfsmitteln erhalten wir
den ZGWS für (Xinv, Xdes)⊤ auch auf den sog. (even-)signed permutation groups, für die
wir auch eine verzerrte Auswahl der Vorzeichen diskutieren. Noch wichtiger ist jedoch der
Beweis, dass (Xinv, Xdes)⊤ im Max-Anziehungsbereich der zweidimensionalen Gumbel-
Verteilung mit unabhängigen Rändern liegt.

Im abschließenden Kapitel 5 betrachten wir die verallgemeinerten Inversions und Descents,
und bestimmen mit den zuvor entwickelten Techniken auch für diese Klasse von Permu-
tationsstatistiken die uni- und bivariate Extremwert-Asymptotik.
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Notations and abbreviations

We use the following basic notations:

• N is the set of positive integers (not including zero), R is the set of real numbers,
and R+ is the set of positive real numbers. On the real numbers, ⌊·⌋ denotes the
floor operator and ⌈·⌉ denotes the ceiling operator. For two real numbers x, y, we
use the shorthand notations x ∧ y := min{x, y} and x ∨ y := max{x, y}.

• If x is a vector, then x⊤ denotes its transpose. If the components of a vector are
listed within continuous text, we write, e.g., x = (x1, . . . , xn)⊤ to indicate that x
is a column vector. We also often use the bold notation x for fixed vectors in a
multidimensional Euclidean space Rd, to distinguish vectors from real numbers.

• For any collection of sets A1, . . . , An, their joint Cartesian product is denoted by∏n

i=1
Ai. The complement of a set A in a larger set is denoted by Ac.

• If A is a set, then 1A denotes its indicator function. Typically, A is expressed by
a condition such as, e.g., A = {x > y}, for which we use the notation 1{x > y} or
1x>y.

• The quantile function of a distribution function F is denoted by F←.

• E(X) denotes the expected value of a random variable or vector.

• Var(X) denotes the variance and σ(X) =
√

Var(X) denotes the standard deviation
of a random variable. If X is a random vector, then Var(X) denotes its covariance
matrix.

• Cov(X,Y ) is the covariance of two random variables X,Y .

• (Xn)n∈N denotes a sequence, and (Xnj)j=1,...,kn denotes a triangular array of random
variables, with (kn)n∈N denoting the length of its rows. In the case of kn = n ∀n ∈ N,
we refer to (Xn1, . . . , Xnn) as a uniform triangular array. For any doubly indexed
objects, we omit the comma separation of the two indices if both are uniliteral
placeholders. If the first index is a fixed number, we separate it with a comma for
the sake of clarification.

• −→ denotes a limit that refers to n → ∞, unless specified otherwise. When we speak
of divergence, we always mean divergence to infinity.

• The symbols ∼ and D= mean equality in distribution. The symbol D−→ means con-
vergence in distribution, and P−→ means convergence in probability.
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In addition, we use the following symbols for important distributions, and also for corre-
spondingly distributed variables if the meaning is clear from the context:

• U(a, b) denotes the uniform distribution on the interval [a, b] for a, b ∈ R, and
U({0, 1, . . . , n}) denotes the discrete uniform distribution on the set {0, 1, . . . , n}.

• Bin(n, p) denotes the binomial distribution with n trials and success probability p.
In particular, Bin(1, p) is the Bernoulli distribution with success probability p.

• Po(λ) denotes the Poisson distribution, and Exp(λ) denotes the exponential distri-
bution with parameter λ.

• N(0, 1) denotes the standard normal distribution on the real numbers. Nd(0,Σ)
denotes the d-variate centered normal distribution with covariance matrix Σ ∈ Rd×d.
In particular, Id denotes the d-dimensional identity matrix.

All Coxeter groups considered in this thesis are finite. When speaking about products of
Coxeter groups, we always indicate direct products.

Following the common O-notation, we express magnitude relations for positive sequences
(an)n∈N, (bn)n∈N as follows:

• an = O(bn) means that an grows at most as fast as bn, i.e., lim sup
n→∞

an

bn
< ∞. This is

also written as an ≲ bn.

• an = o(bn) or bn = ω(an) means that an grows slower than bn, or is negligible
compared to bn, i.e., lim

n→∞
an

bn
= 0. This is also written as an ≪ bn or bn ≫ an.

• an = Θ(bn) means that an and bn have the same order of magnitude, i.e., both
an = O(bn) and bn = O(an) hold. Even stronger, an ∼ bn means that an and bn are
asymptotically equivalent, i.e., lim

n→∞
an

bn
= 1.

• an = bn +oP(1) means that an, bn are random variables or vectors with an −bn
P−→ 0.

Throughout this thesis, we use the following abbreviations:

• CDA = copula domain of attraction
• CDF = cumulative distribution function
• CLT = central limit theorem
• EVD = extreme value distribution
• EVLT = extreme value limit theorem
• GRF = Gaussian random field
• MDA = max-domain of attraction
• MEVD = multivariate extreme value distribution

2



1 Introduction to Extreme Value Theory

Extreme value theory, or extreme value analysis, deals with extremely large values of ran-
dom variables or vectors. These extreme values (or extremes) are commonly the maxima
or high threshold exceedances of sequences, triangular arrays, stochastic processes, or
other families of random objects. Therefore, a typical issue in extreme value theory is
to investigate the asymptotic properties of extreme values. This theory is an important
field of probability theory with scientific and practical applications in all areas concerned
with extreme events and their modeling. See, e.g., [52, 69] for general overviews of ap-
plications, and see [62] for optimization, [16] for engineering, [61] for meteorology, [103]
for public health, and [72, 93] for finance and risk management. One of the most seminal
works in extreme value theory is the book Statistics of Extremes by Gumbel [55]. Another
frequently cited reference is the book by Leadbetter et al. [71].

The simplest setting is a sequence X1, X2, . . . of independent and identically distributed
(i.i.d.) random variables. The central limit theorem (CLT) states that

Sn − E(Sn)
σ(Sn)

D−→ N(0, 1) (1.1)

for the sequence of partial sums Sn := X1 + X2 + . . . + Xn. The standardization of
Sn constitutes an affine-linear rescaling. In some scenarios, each Sn is constructed as
Sn = Xn,1 + . . . + Xn,kn from an individual block of variables of divergent sizes kn ∈ N,
kn −→ ∞. This gives a triangular array which is denoted by (Xnj)j=1,...,kn . Oftentimes,
(kn)n∈N matches the sequence of natural numbers, giving a uniform triangular array,
but this is not mandatory. Moreover, the i.i.d. case can be generalized in various ways,
such as allowing non-identical distributions or weak dependency structures. For these
reasons, there are several stronger or weaker versions of the CLT. The property (1.1) is
called asymptotic normality, and the question of its validity is also interesting if Sn is not
represented as a partial sum of other random variables.

The CLT serves as a motivation to obtain statements analogous to (1.1) for extreme values.
For a sequence X1, X2, . . . of random variables, we consider the sequence of maxima

Mn := max{X1, X2, . . . , Xn} .

For a triangular array, we accordingly consider the row-wise maximum

Mn := max{Xn1, . . . , Xnkn} .

In either case, we want to find deterministic sequences (an) ⊆ R+, (bn) ⊆ R and a non-
degenerate limit distribution G so that

Mn − bn

an

D−→ G . (1.2)
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1 Introduction to Extreme Value Theory

The affine-linear rescaling of Mn is necessary to give a meaningful limit distribution rather
than a plain constant, which is not useful for inference purposes. Similar to the CLT,
the existence of such G, an, bn depends on the properties of the underlying sequence or
triangular array. We call statements and results in the way of (1.2) extreme value limit
theorems, or in short, EVLTs. These can be viewed as the max-analogues of CLTs, so
whenever the question of a CLT is raised, a natural follow-up question is that of an
EVLT.

Section 1.1 gives the basic understanding of EVLTs and the classification of G, an, bn

for i.i.d. sequences. Section 1.2 discusses dependent stationary sequences and important
examples for extremes of triangular arrays. In particular, we review the use of tail equiv-
alence to the standard normal distribution. Section 1.3 introduces multivariate extreme
value theory for random vectors.

1.1 Sequences of independent and identically distributed
random variables

The foundation of extreme value theory is to understand the extremes of i.i.d. random
variables X1, X2, . . . with a joint distribution function F . In this scenario, (1.2) translates
to

∀x ∈ C(G): P
(
Mn − bn

an
≤ x

)
= P(Mn ≤ anx+ bn) = F (anx+ bn)n −→ G(x) ,

where C(G) denotes the continuity region of G. In fact, it turns out that C(G) = R in all
relevant cases.

Definition 1.1.1. Let G be a non-degenerate distribution function. Let F,X1, X2, . . . be
as above. Then, F is in the max-domain of attraction (MDA) of G if there exist sequences
an > 0, bn ∈ R such that (1.2) is satisfied. For this situation, we write F ∈ MDA(G). Any
distribution function G with a non-empty MDA is called an extreme value distribution
(EVD). Important extreme value distributions are, for t ∈ R:

• the Gumbel distribution Λ(t) := exp
(
− exp(−t)

)
,

• the Fréchet distributions Φα(t) := exp(−t−α)1t>0, where α > 0 is a fixed parameter,
• the Weibull distributions

Ψα(t) :=
{

exp(−|t|α), t ≤ 0
1, t ≥ 0

, α > 0 .

Example 1.1.2. The fact that the aforementioned distributions Λ,Φα,Ψα are extreme
value distributions can be verified by the following examples:

• Let X1, X2, . . .
i.i.d.∼ Exp(1). Then, Mn − log(n) D−→ Λ (see [71, Example 1.7.2]).

• Let X1, X2, . . . be i.i.d. samples of the Pareto distribution function

F (t) =
{

1 − t−α, t ≥ 1
0, t < 1

.

Then, n−1/αMn
D−→ Φα (see [71, Example 1.7.6]).
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1.1 Sequences of independent and identically distributed random variables

• Let X1, X2, . . . be i.i.d. samples of the distribution function

F (t) =


0, t ≤ −1
1 − (−t)α, −1 ≤ t ≤ 0
1, t ≥ 0

.

Then, n1/αMn
D−→ Ψα (see [71, Example 1.7.10]).

Illustrations of the Gumbel distribution and the families of the Fréchet and Weibull dis-
tributions are given in Figures 1.1, 1.2, and 1.3.
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Figure 1.1: A plot of the (standard) Gumbel distribution.
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Figure 1.2: A plot of three exemplary Fréchet distributions. Large choices of the shape
parameter α produce more curved distributions.
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Figure 1.3: A plot of three exemplary Weibull distributions, each cut off at the right end-
point x∗ = 0. Large choices of the shape parameter α produce more curved
distributions.

Remark 1.1.3. An affine transformation of a distribution function G is given by

G′(x) = G

(
x− µ

σ

)
for some σ > 0, µ ∈ R. If G is an extreme value distribution, then so is G′ and
MDA(G) = MDA(G′). In other words, MDAs are invariant under affine transforma-
tions. Two distribution functions G,G′ are of the same type if they differ only by an
affine transformation. If two EVDs G,G′ are not of the same type, then their MDAs are
disjoint. This is substantiated by Khintchine’s Convergence of Types Theorem (see, e.g.,
[71, Theorem 1.2.3]). △

The following theorem is one of the fundamental theorems of extreme value theory. It
substantiates the outstanding importance of the EVDs introduced in Definition 1.1.1.

Theorem 1.1.4. (Fisher–Tippett–Gnedenko, cf. [71], Theorem 1.4.2)
The Gumbel, Fréchet, and Weibull distributions are the only types of extreme value distri-
butions for sequences of i.i.d. random variables. In conclusion, if a distribution function F
belongs to some MDA, then it is in the MDA of either the Gumbel, a Fréchet or a Weibull
distribution.

Remark 1.1.5. According to [71, Theorem 1.3.1], the extreme value distributions are
exactly the max-stable distributions G which satisfy G(cnx + dn)n = G(x) ∀x ∈ R for
some constants cn > 0, dn ∈ R. In that case, by [71, Corollary 1.3.2], there even exist
real-valued functions c: R+ → R+, d: R+ → R so that

G
(
c(s)t+ d(s)

)s = G(t) ∀s, t ∈ R .

The proof of the Fisher–Tippett–Gnedenko theorem narrows down to solving this func-
tional equation. This approach was developed by de Haan [31] and simplified the longer
original proof by Gnedenko [54].
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1.1 Sequences of independent and identically distributed random variables

Convention: Let F be any distribution function. For simplicity, we say that F has
Gumbel behavior whenever F ∈ MDA(Λ) is true. Accordingly, we say that F has Fréchet
behavior if F ∈ MDA(Φα), and that F has Weibull behavior if F ∈ MDA(Ψα), for some
α > 0.

Definition 1.1.6. Let F be a distribution function. The tail function (or simply, the
tail) of F is F (x) := 1 − F (x). The right endpoint of F is x∗ := sup{x ∈ R : F (x) < 1}.
See Figure 1.4 for an illustration. △

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1 F

F

Figure 1.4: Display of a distribution function F together with its tail function F .

There is a complete classification showing which distribution functions F belong to which
MDA, based on the tail and the right endpoint. To describe the asymptotics of the tail,
we need the following definition.

Definition 1.1.7. A measurable function L: R+ → R+ is slowly varying if

lim
x→∞

L(λx)
L(x) = 1 ∀λ > 0 .

The class of slowly varying functions includes those converging to a positive limit, as well
as any other function that grows slower than all xε and faster than any x−ε, ε > 0 (e.g.,
logarithmic functions). More generally, a measurable function R : R+ → R+ is regularly
varying with index α ∈ R if

lim
x→∞

R(λx)
R(x) = λα ∀λ > 0 .

This property is denoted by f ∈ RVα. It is satisfied if and only if there exists a slowly
varying function L with R(x) = xαL(x). △

The following theorem gives a classification of MDAs and additionally lists feasible choices
of the normalization sequences an, bn in (1.2). It shows that the asymptotic extreme value
behavior is closely related to the behavior of the corresponding tail function. For proofs,
we again refer to [31, 54].
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Theorem 1.1.8. Let F be a distribution function and let F← be its quantile function.
Let γn := F←(1 − 1/n).

(a) F ∈ MDA(Φα) ⇐⇒ F ∈ RV−α and x∗ = ∞. In this case, we can choose an = γn

and bn = 0.
(b) Assuming x∗ < ∞, let F ∗(x) := F (x∗ − 1/x). Then, F ∈ MDA(Ψα) ⇐⇒ x∗ < ∞

and F ∗ ∈ RV−α. In this case, we can choose an = x∗ − γn and bn = x∗.
(c) F ∈ MDA(Λ) if and only if there exists a measurable function g : R → R+ such that

lim
t→x∗

F (t+ xg(t))
F (t)

= e−x ∀x ∈ R .

In this case, one can choose any bn such that nF (bn) −→ 1, and an = g(bn).

Remark 1.1.9. The statements of Theorem 1.1.8 can be described as follows: The
Fréchet MDAs are for heavy-tailed distributions. The Weibull MDAs are designed for
any distribution with a finite right endpoint and polynomial behavior near the right end-
point. For example, this applies to the continuous uniform distributions. The Gumbel
MDA is an intermediate case comprising distributions with both finite and infinite right
endpoint. Moreover, the suggested choices of an and bn are not unique. For instance, any
bn + oP(an) fulfills the same purpose as bn due to Slutsky’s lemma. △

The following lemma embodies the fundamental connection between tails and extremes.
It is the basis of the proof of Theorem 1.1.8 and serves many other purposes as well. In the
basic scenario of i.i.d. sequences, it can be proved by simple means, but in more general
scenarios, its validity cannot be assumed without further investigation.

Lemma 1.1.10. (see [71], Theorem 1.5.1)
Let F be a distribution function and let (un)n∈N be a sequence of real numbers. Let
τ ∈ [0,∞] and let Mn be as in (1.2). The following are equivalent:

(a) n
(
1 − F (un)

)
−→ τ .

(b) P(Mn ≤ un) = F (un)n −→ e−τ .

A very important extreme value behavior is that of the standard normal distribution.
It is often possible to derive similarities between the extreme values of interest and the
extremes of the standard normal distribution. The following fundamental theorem states
that the standard normal distribution N(0, 1) has Gumbel behavior.

Theorem 1.1.11. (cf. [71], Theorem 1.5.3)
Let Mn be the maximum of n i.i.d. standard normal variables, and let

αn :=
(√

2 log(n)
)−1

,

βn :=
√

2 log(n) − log(4π log(n))
2
√

2 log(n)
.

Then, it holds that
Mn − βn

αn

D−→ Λ .
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1.1 Sequences of independent and identically distributed random variables

This can be proved in several ways, e.g., by defining un so that 1 − Φ(un) = n−1e−x in
Lemma 1.1.10, and then proving that un = αnx + βn + o(1). See [71, Theorem 1.5.3] for
details. Figure 1.5 displays the normalization constants. It is interesting that the scaling
constant αn decays as n → ∞, while the translation constant βn diverges.

2 4 6 8 10

0

1

2

αn

βn

Figure 1.5: Plot of the normalization constants αn, βn for n = 2, . . . , 10.

Note that in the literature, it is often preferred to take αn :=
√

2 log(n), and to write
αn(Mn − βn) D−→ Λ. Throughout this thesis, we consistently use the notation in Theo-
rem 1.1.11 since it is analogous to that in (1.2).

Remark 1.1.12. The MDAs of the extreme value distributions do not encompass all
probability distributions of real-valued random variables. This especially concerns discrete
and discontinuous distributions. Consider any distribution function F with x∗ < ∞ and
F (x∗−) = limx→x∗− F (x) < 1, implying P(X = x∗) > 0 for X ∼ F . This means that
for an i.i.d. sequence X1, X2, . . . ∼ F , there will be some N ∈ N with XN = x∗ almost
surely, and MN = MN+1 = . . . = x∗. Therefore, the limit distribution of (Mn)n∈N is a
degenerate Dirac measure in x∗, and any affine-linear rescaling still gives a Dirac measure.
Such probability distributions have no meaningful extreme value behavior in the context
of i.i.d. sequences. Regarding discrete distributions supported on infinitely many numbers,
the extreme value asymptotics were investigated and classified by Anderson [1]. According
to [1, Eq. (1.3)], a necessary condition for the existence of a non-degenerate extreme value
limit distribution is

lim
x→x∗

1 − F (x)
1 − F (x−) = 1 .

For example, the Poisson distributions and the geometric distributions do not satisfy this
condition. However, any heavy-tailed discrete distribution is in the MDA of a Fréchet
distribution according to [98].

An example of a continuous distribution outside of all MDAs is F (t) = 1 − log(t)−1. Its
tail is too heavy to satisfy any of the conditions of Theorem 1.1.8.
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1.2 Dependent sequences and triangular arrays
For sequences of i.i.d. variables, the classification of extreme value asymptotics is well
understood. Now, we focus on extensions of this theory to more general scenarios, such as
dependence and non-identical distributions. It turns out that if the random variables show
a sufficiently mild degree of dependence, then their extreme values often behave similarly
to those of corresponding i.i.d. variables.

Definition 1.2.1. A stationary sequence (Xn)n∈N satisfies the strong mixing condition
D if there is a decreasing sequence (gl)l∈N ↘ 0 such that for all u ∈ R and all p, q ∈ N,
i1 < . . . < ip and j1 < . . . < jq with j1 − ip > l:∣∣P(Xi1 , . . . , Xip , Xj1 , . . . , Xjq ≤ u) − P(Xi1 , . . . , Xip ≤ u)P(Xj1 , . . . , Xjq ≤ u)

∣∣ ≤ gl .

This means that if the distance between the blocks Xi1 , . . . , Xip and Xj1 , . . . , Xjq increases,
then their dependence decreases, regardless of the block sizes. This condition can be
weakened by addressing only a sequence of thresholds (un)n∈N rather than all real numbers
u. So, we say that (Xn)n∈N satisfies the mixing condition D(un) if there is a double-indexed
sequence (αn,l) such that αn,ln ↘ 0 for some ln = o(n) and such that for all i1 < . . . < ip,
j1 < . . . < jq as above:∣∣P(Xi1 . . . , Xip , Xj1 , . . . , Xjq ≤ un) − P(Xi1 . . . , Xip ≤ un)P(Xj1 , . . . , Xjq ≤ un)

∣∣ ≤ αn,l .

Theorem 1.2.2. (cf. [71], Theorem 3.3.3)
Let (Xn)n∈N be a stationary sequence of random variables, and assume the existence of
sequences an > 0, bn ∈ R such that:

• a−1
n (Mn − bn) D−→ G for a non-degenerate distribution function G.

• For all x ∈ R, the condition D(anx+ bn) is satisfied.

Then, G must be of a Gumbel, Fréchet, or Weibull type.

However, in order to transfer the classification of Theorem 1.1.8, and to preserve the
fundamental equivalence in Lemma 1.1.10, an additional condition is required.

Definition 1.2.3. Let (Xn)n∈N be a stationary sequence of random variables and let
(un)n∈N be a sequence of thresholds. Then, (Xn) satisfies the anticlustering condition
D′(un) if

lim
k→∞

lim sup
n→∞

n

⌊n/k⌋∑
j=1

P(X1 > un, Xj > un)

 = 0 .

Now, Lemma 1.1.10 carries over as follows:

Lemma 1.2.4. Let (Xn)n∈N be a stationary sequence of random variables, and let (un)n∈N
be a sequence such that both D(un) and D′(un) are satisfied. Then, for any τ ∈ [0,∞):

lim
n→∞

P(Mn ≤ un) = e−τ ⇐⇒ lim
n→∞

nP(X1 > un) = τ .

In conclusion, if both mixing conditions can be verified, then the extreme value behavior
of a stationary sequence (Xn)n∈N can be derived from that of an i.i.d. sequence (X∗n)n∈N

with X∗1
D= X1. In a more general framework, it is possible that (Mn − bn)/an

D−→ Gϑ for
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some index ϑ ∈ [0, 1], while (max{X∗1 , . . . , X∗n} − bn)/an
D−→ G. The index ϑ is called the

extremal index and expresses the degree of clustering of extreme values.

Very recently, the theory of extremes of identically distributed but dependent sequences
has been significantly expanded by Herrmann et al. [59]. For such a sequence (Xn)n∈N,
the dependency structure of the first n members can be encoded and investigated with
help of copulas.

Definition 1.2.5. An n-dimensional copula is any distribution function C: [0, 1]n → [0, 1]
for which all marginal distributions are U(0, 1), i.e.,

∀j = 1, . . . , n ∀u ∈ [0, 1]: C( 1, . . . , 1︸ ︷︷ ︸
j−1 times

, u, 1, . . . , 1︸ ︷︷ ︸
n−j times

) = u .

If F is an n-dimensional distribution function with continuous marginals F1, . . . , Fn, then
there is a unique copula C with F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) ∀x1, . . . , xn ∈ R
by Sklar’s theorem (see, e.g., [42]). Therefore, we say that C is the copula of F , and we
see that copulas store information on the dependency structure of F1, . . . , Fn.

For a sequence (Xn)n∈N of random variables with common distribution function F , Herr-
mann et al. [59] consider the copulas Cn of the random vectors (X1, . . . , Xn) and make
use of the fact that ∀x ∈ R: P(Mn ≤ x) = δn(F (x)), where δn: [0, 1] → [0, 1], δn(u) =
C(u, . . . , u) denotes the diagonal of C. Their main result reads as follows:

Theorem 1.2.6. (see [59], Theorem 2.2)
Let Mn := max{X1, . . . , Xn} for a sequence (Xn)n∈N of identically distributed random
variables with X1 ∼ F, and let M∗n := max{X∗1 , . . . , X∗n} for corresponding i.i.d. variables
X∗1 , X

∗
2 , . . . ∼ F . If F ∈ MDA(G) for an extreme value distribution G by means of

P(M∗n ≤ a∗nx + b∗n) −→ G(x) ∀x ∈ R, and if there exist a rate sequence (rn)n∈N and a
continuous function D on [0, 1] such that δn(u1/rn) −→ D(u) ∀u ∈ [0, 1], then

∀x ∈ R: P
(
Mn ≤ a∗⌈rn⌉x+ b⌈rn⌉

)
−→ D(G(x)) .

We now turn our attention to triangular arrays. As explained in Remark 1.1.12, almost all
discrete distributions do not have a meaningful extreme value behavior for i.i.d. sequences.
For these families of distributions, we instead aim to find such meaningful behavior within
triangular arrays. This approach allows to consider an infinite family of probability dis-
tributions, which is not possible in the i.i.d. scenario. Families of discrete distributions
are often parametrized by some real number, and limit theorems on extremes of these
families often impose restrictions on the choice of the parameters. Formally, we consider
a triangular array (Xnj)j=1,...,kn with identically distributed rows, where Fn denotes the
joint distribution of the n-th row. Moreover, Mn := max{Xn1, . . . , Xnkn} denotes the
maxima of the rows. If there exist a non-degenerate distribution G and constants an, bn

such that (Mn − bn)/an
D−→ G, then we adopt the terminology in Definition 1.1.1 and say

that the family of F1, F2, . . . is in the max-domain of attraction of G.

The question of classifying the non-degenerate limits of (Mn − bn)/an for triangular ar-
rays has already been raised by Anderson et al. [2, p. 960]. However, this does not seem
possible, particularly since there exist triangular arrays whose maxima are attracted to
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distributions other than the classical EVDs. For example, Panov and Morozova [80] stud-
ied the extremes of triangular arrays stemming from mixture models with heavy-tailed
impurity. Within a certain regime of the impurity, the limit distribution turns out to be
discontinuous, while all classical EVDs are continuous. The recent copula approach for
dependent sequences in [59] may also help to better understand the extremes of certain
triangular arrays.

Several efforts have been made to solve the issues explained in Remark 1.1.12 for com-
mon families of discrete distributions. For example, when considering uniform triangular
arrays of the geometric distribution or the Poisson distribution, choosing the underlying
parameter within a suitable regime leads to a Gumbel limit.

Theorem 1.2.7. (see [78], Theorem 1)
Let X∗n1, . . . , X

∗
nn ∼ Geo(1/n) be i.i.d. geometric variables for all n ∈ N and let M∗n :=

max{X∗n1, . . . , X
∗
nn}. Then, P

(
M∗n ≤ n(x+ logn)

)
−→ Λ(x). More precisely,

P
(
M∗n ≤ n(x+ logn)

)
− Λ(x) ∼ e−xΛ(x) log(n)

2n .

The proof is based on the rate of convergence in Lemma 1.1.10 and a Taylor series of log(x)
for |x−1| < 1. In [78], the statement of Theorem 1.2.7 was extended to a triangular array of
dependent geometric variables that describe waiting times for Laplacian random variables.
For i.i.d. Zn1, Zn2, . . . ∼ U({1, . . . , n}) and j ∈ {1, . . . , n}, letXnj := min{k ∈ N : Znk = j}
be the waiting times of the events {Znk = j}.

Theorem 1.2.8. (see [78], Theorem 2)
The statement of Theorem 1.2.7 holds true for the row-wise dependent triangular array
(Xnj)j=1,...,n, i.e., for Mn = max{Xn1, . . . , Xnn}, we have

P
(
Mn ≤ n(x+ logn)

)
− Λ(x) = O

( log(n)
n

)
.

The proof focuses on verifying the mixing conditions D(un),D′(un) for un := n(x+ logn)
through extensive but straightforward calculations.

For some families of distributions specified by a real parameter, it is sufficient to state
a minimum or maximum growth rate of this parameter. Anderson et al. [2] proved a
Gumbel limit for a triangular array of Poisson variables (Rn,i)i=1,...,n ∼ Po(λn), where the
sequence (λn)n∈N ⊆ N satisfies a minimum growth rate.

Theorem 1.2.9. (see [2], Proposition 1)
Let (λn)n∈N be a sequence with log(n) = o

(
λ

(r+1)/(r+3)
n

)
for some r ∈ N0. Let Rn1, . . . ,

Rnn ∼ Po(λn) be a uniform row-wise i.i.d. triangular array and Mn := max{Rn1, . . . , Rnn}.
Then, there is a linear normalization un(x) = λn +

√
λn (βr

n + αnx) so that

lim
n→∞

P (Mn ≤ un(x)) = exp(− exp(−x)) .

The sequences αn, βn are specified in [2, Section 3]. In the case of r = 0, the constants
αn, βn are exactly those appearing in Theorem 1.1.11, and we have λn = ω(log(n)3).
Moreover, Anderson et al. note in [2, Section 6] that if λn = o(logn), there exists no linear
normalization to attract the triangular array to the Gumbel distribution or any other
EVD. In this case, the triangular array is asymptotically too similar to i.i.d. sequences
X1, X2, . . . ∼ Po(λ) with fixed λ, which have no non-degenerate extreme value behavior.
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Remark 1.2.10. As a consequence of Theorem 1.2.9, we note that for a triangular array
(Xnj)j=1,...,kn with Xn1 ∼ Po(n), the Gumbel attraction P (Mn ≤ un(x)) −→ exp(−e−x)
with un(x) = n +

√
n(βn + αnx) is true for all kn = exp(o(n1/3)). On the contrary, if

kn is too large, then this triangular array has no non-degenerate extreme value behavior
for the aforementioned reasons. These considerations are not exclusive to the Poisson
distribution. In [2, Section 4], it is argued that Theorem 1.2.9 can be generalized to other
distributions represented as sums of i.i.d. random variables. However, the applicability of
these observations is limited by the assumption of identical distribution. △

For the more general case of a row-wise stationary triangular array (Xnj)j=1,...,kn , there
is a Gumbel EVLT due to Dkenge et al. [37] based on the mixing conditions introduced
in Definitions 1.2.1 and 1.2.3. However, it additionally requires that all variables involved
have an infinite right endpoint. This excludes discrete distributions on finitely many
numbers.

Theorem 1.2.11. (see [37], Theorem 2.1)
Let (Xnj)j=1,...,kn be a row-wise stationary triangular array, where µn and σ2

n denote the
mean and variance of the n-th distribution. Moreover, let un(x) := αnx+βn, where αn, βn

are defined as in Theorem 1.1.11. We need the following conditions:

• All Xnj have an infinite right endpoint.
• All Xnj have a moment generating function that exists in an open neighborhood of

the origin.
• kn = exp

(
o(σ2/3

n )
)
.

• For vn = vn(x) := σnukn(x) + µn, both D(vn) and D′(vn) are satisfied.

Then, for all x ∈ R:

lim
n→∞

P
(
Mn,kn − µn

σn
≤ ukn(x)

)
= exp(− exp(−x)) .

For binomial distributions, a result similar to Theorem 1.2.9 is given by Nadarajah & Mi-
tov [81]. The connection of the binomial distributions to the standard normal distribution
is drawn by means of tail equivalence. We review [81, Theorem 3] and its proof in detail
since it can be applied once we achieve tail equivalence for other distributions of interest.

In what follows, let q := 1 − p for any p ∈ (0, 1) and let Φ(x) =
∫ x

−∞

1√
2π
e−x2/2dx be the

cumulative distribution function (CDF) of the standard normal distribution. At first, the
tail equivalence of binomial distributions to the standard normal distribution is given as
follows:

Theorem 1.2.12. (see Feller [47], p. 193)
Let Xn ∼ Bin(n, p) for a fixed parameter p ∈ (0, 1) and let Yn := Xn√

npq
. Then, if

xn = o(n1/6), we have P(Yn > xn) ∼ 1 − Φ(xn).

Next, Nadarajah & Mitov show how to use tail equivalence combined with the extreme
value behavior of the standard normal distribution. Recall the constants αn = (2 logn)−1/2,
βn = α−1

n − αn
(
log logn+ log(4π)

)
/2 from Theorem 1.1.11.
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Theorem 1.2.13. (see Nadarajah & Mitov [81], Theorem 3)
Let (Xn1, . . . , Xnn) i.i.d.∼ Bin(Nn, p), where p ∈ (0, 1) is fixed and Nn ≫ log(n)3. Moreover,
let an :=

√
pqNnαn and bn := pNn +

√
pqNnβn. Then, we have ∀x ∈ R:

P(Mn ≤ anx+ bn) −→ exp(− exp(−x)) .

Proof. From Theorem 1.2.12, we know that if Nn → ∞ and x = xn = o(N1/6
n ), then

1 − Fn

(
pNn +

√
pqNnx

)
∼ 1 − Φ(x) , (1.3)

where Fn is the CDF of Bin(Nn, p). On the other hand, from Lemma 1.1.10 we know that

n
(
1 − Φ(αnx+ βn)

)
−→ e−x.

In this limit process, x is treated as a constant. To plug the sequence (αnx + βn)n∈N in
(1.3) with fixed x, we must ensure that αnx+βn = o(N1/6

n ). Due to βn =
√

2 log(n)+o(1),
we need log(n)3 = o(Nn). Hence, combining both limit processes yields

n
(
1 − Fn

(
pNn +

√
pqNnx

))
∼ n

(
1 − Φ(αnx+ βn)

)
−→ e−x.

Remark 1.2.14. Interestingly, Isaev et al. [63, Lemma 5.1] note that Theorem 1.2.13
holds true not only for fixed p, but also for p −→ 0 or p −→ 1 under the condition
Nnpq ≫ log(n)3. Moreover, in some situations, Lemma 1.1.10 can be applied through
direct analytical calculations, without making use of tail equivalence. See [12, 77] for
examples.

1.3 Multivariate extreme value theory
The previous two sections introduced theory and examples for the extremes of univariate
random variables. However, it is likewise interesting and useful to develop extreme value
theory for multivariate random vectors in d ≥ 2 dimensions. In many applications, it
is important to know the dependence between extremes of different random quantities
(see [41, 43] for examples). To develop such theory, it is necessary to specify what is
meant by extremely large values in multiple dimensions, since there is no clear concept of
ordering. The most useful and intuitive concept is the component-wise partial ordering
x ≤ y ⇐⇒ ∀i = 1, . . . , d : x(i) ≤ y(i) for x = (x(1), . . . , x(d))⊤,y = (y(1), . . . , y(d))⊤ ∈ Rd.
This gives a comprehensive theory, despite the fact that many vectors are not mutually
comparable.

For any d-variate random vector X = (X(1), . . . , X(d))⊤, its CDF is F : Rd → [0, 1],
x 7→ P(X ≤ x) := P(X(i) ≤ x(i)). Its marginal distributions F1, . . . , Fd (or marginals, for
short) are defined as

Fi : Rd → [0, 1], x 7→ Fi(x) = P(X(i) ≤ x(i)) .

Definition 1.3.1. Let Xn = (X(1)
n , . . . , X

(d)
n )⊤ ∼ F be i.i.d. random vectors. For any

i = 1, . . . , d, let M (i)
n := maxk=1,...,nX

(i)
k . If there are constants a(i)

n > 0, b(i)
n ∈ R such that

P
(
M

(i)
n − b

(i)
n

a
(i)
n

≤ x(i) ∀i
)

= F
(
a(1)

n x(1) + b(1)
n , . . . , a(d)

n x(d) + b(d)
n

)n
−→ G(x) (1.4)
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1.3 Multivariate extreme value theory

for all x ∈ Rd, and if each marginal distribution of G is non-degenerate, then we call G a
multivariate extreme value distribution (MEVD) and write F ∈ MDA(G), in analogy to
the univariate setting. We can write (1.4) more concisely as

P
(
Mn − bn

an
≤ x

)
−→ G(x) ,

where Mn := (M (1)
n , . . . ,M

(d)
n )⊤, an := (a(1)

n , . . . , a
(d)
n )⊤, bn := (b(1)

n , . . . , b
(d)
n )⊤ ∈ Rd, and

all operations are taken component-wise.

Remark 1.3.2. Trivially, if (1.4) is true, then the marginal distributions Fi, Gi,
i = 1, . . . , d, must satisfy

∀1 ≤ i ≤ d: Fn
i

(
a(i)

n x + b(i)
n

)
−→ Gi(x) . (1.5)

This means that F ∈ MDA(G) implies Fi ∈ MDA(Gi) for all marginals. Due to Theo-
rem 1.1.4, we can assume that all marginals Gi are either Gumbel, Fréchet, or Weibull
distributions.

Interestingly, the marginals of G can be specified to be the Fréchet-1 distribution Φ1
without restriction, by an according transformation of any F ∈ MDA(G).

Theorem 1.3.3. (see [91], Proposition 5.10)
Let G be a d-variate distribution function with continuous marginals. For i = 1, . . . , d and
x ∈ Rd, let

ψi(x) =
( 1

− log(Gi)

)←
(x) , G∗(x) := G

(
ψ1(x1), . . . , ψd(xd)

)
.

Then, G∗ has Φ1 marginals and is an MEVD if G is an MEVD. For a distribution
function F with marginals F1, . . . , Fd, let Ui := 1/(1 − Fi) and let F∗ be the CDF of(
U1(X(1)

1 ), . . . , Ud(X(d)
1 )

)⊤
, such that

F∗(x) = F
(
U←1 (x(1)), . . . , U←d (x(d))

)
.

If (1.4) is satisfied, then F∗ ∈ MDA(G∗) and

P

 max
j=1,...,n

Ui(X(i)
j )

n
≤ x(i), 1 ≤ i ≤ d

 = Fn
∗ (nx) −→ G∗(x) . (1.6)

Conversely, if (1.5) and (1.6) hold, and G∗ has non-degenerate marginals, then (1.4) holds
as well.

Using this standardization, it is possible to obtain a description of MDAs in the multivari-
ate case. For the classification theorem 1.1.8 in the univariate case, the concept of slow
variation and regular variation was essential (see Definition 1.1.7). It is possible to specify
a multivariate analogue.

Definition 1.3.4. Let C ⊆ Rd be a cone, i.e., x ∈ C ⇐⇒ tx ∈ C ∀t > 0, with 1 ∈ C.
A measurable function h : C → (0,∞) is said to be regularly varying with limit function
λ: C → (0,∞) if λ(1) = 1 and

∀x ∈ C : lim
t→∞

h(tx)
h(t1) = λ(x) .
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1 Introduction to Extreme Value Theory

Equivalently, h is λ-regularly varying if and only if there exists a regularly varying function
V : (0,∞) → (0,∞) such that

∀x ∈ C : lim
t→∞

h(tx)
V (t) = λ(x) .

Theorem 1.3.5. (see [91], Proposition 5.15)
For a distribution function F and an MEVD G, let G∗, Ui, F∗ be as in Theorem 1.3.3.
Then, the following hold:

(a) F∗ ∈ MDA(G∗) if and only if 1 − F∗ is regularly varying on (0,∞)d with limit
λ(x) = − logG∗(x)/− logG∗(1). Precisely,

lim
t→∞

1 − F∗(tx)
1 − F∗(t1) = − logG∗(x)

− logG∗(1) ,

where 1 := (1, . . . , 1)⊤.
(b) F ∈ MDA(G) if and only if F∗ ∈ MDA(G∗) and (1.5) holds.

While this is a straightforward way to derive the asymptotic behavior of multivariate
extreme values, there are further methods that sometimes prove useful. As highlighted
above, it is necessary that the marginals converge to a univariate EVD, for which we have
a complete classification. The difficulty of the multivariate scenario arises from the depen-
dencies between different marginals. We have already seen in Definition 1.2.5 that these
dependencies are elegantly represented by copulas, and that every continuous distribution
function has a unique associated copula by Sklar’s theorem. Therefore, Theorem 1.3.3
expresses a transformation of only the marginals, but not of the associated copula. In
fact, the underlying copula is invariant under strictly increasing transformations.

Definition 1.3.6. If G is a d-variate MEVD, then its copula C is called an extreme
value copula. Some terminology from univariate extreme value theory can be transferred
to copulas. Equivalently, we say that C is an extreme value copula if there exists a copula
C0 for which

lim
n→∞

C0(u1/n)n = C(u) ∀u ∈ [0, 1]d.

In that case, C0 is in the copula domain of attraction of C, and we write C0 ∈ CDA(C).
Furthermore, extreme value copulas can be characterized by max-stability, i.e., C(u) =
C(u1/m)m for all u ∈ [0, 1]d and m ∈ N. △

We now obtain a multivariate analogue of the Fisher–Tippett–Gnedenko theorem. How-
ever, a convenient classification of MEVDs remains impossible due to their diversity.

Theorem 1.3.7. (see [33], Theorem 3.1)
Let F be a d-variate distribution with copula C0 and let G be a d-variate extreme value
distribution with copula C. Then, F ∈ MDA(G) if and only if the marginals satisfy (1.6)
and C0 ∈ CDA(C).

There are many different approaches to describe multivariate EVDs, most notably, spec-
tral measures, tail dependence coefficients, stable tail dependence functions and Pickands
dependence functions (the latter is a concept only in two dimensions). See, e.g., [43,
49, 92, 96] for introductions of these concepts. We will not go into the details, but in
light of the univariate normal distribution being attracted to the Gumbel distribution
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1.3 Multivariate extreme value theory

by Theorem 1.1.11, we now explain the extreme value behavior of multivariate normal
distributions. The two-dimensional case is particularly important.

Definition 1.3.8. Let X1, X2 be two random variables. The upper tail dependence coef-
ficient of X1 and X2 is

λu(X1, X2) := lim
q→1−

P(X2 > F←2 (q) | X1 > F←1 (q)) ,

provided this limit exists. It indicates the asymptotic probability of exceeding a high
quantile in one component, given an exceedance in the other component. However, this
quantity does not depend on the marginal distributions, but only on the dependency
structure embodied by the copula.

Two random variables X1, X2 are called asymptotically independent if λu(X1, X2) = 0.
On the contrary, if λu(X1, X2) > 0, then X1 and X2 are called asymptotically depen-
dent. A remarkable fact is that the marginals of bivariate normal distributions are always
asymptotically independent if they are not perfectly correlated, regardless of the degree
of deviation from perfect correlation. This is known due to [99, Theorem 3].

Remark 1.3.9. Let X = (X1, X2) be bivariate normal with Xi ∼ N(µi, σ
2
i ), i = 1, 2 and

let ρ := corr(X1, X2). The copula of X, which depends on ρ, is denoted by Cρ ∼ (U1, U2).
Trivially, if ρ = 1, then λu = 1, and if ρ = −1, then λu = 0. Now, we assume ρ ∈ (−1, 1)
and write

λu = lim
q→1−

P(U2 > q | U1 = q) + P(U1 > q | U2 = q) . (1.7)

For the first summand, we have

P(U2 > q | U1 = q) = P
(
F−1

2 (U2) > F−1
2 (q)

∣∣∣ F−1
1 (U1) = F−1

1 (q)
)

= P
(
X2 > µ2 + σ2Φ−1(q)

∣∣∣ X1 = µ1 + σ1Φ−1(q)
)
.

Under the condition X1 = µ1 + σ1x, we find that (X2 − µ2)/σ2 is normally distributed
with mean ρx and variance 1 − ρ2. It follows that

lim
q→1−

P(U2 > q | U1 = q) = lim
x→∞

P
(
X2 − µ2
σ2

> x

∣∣∣∣ X1 = µ1 + σ1x

)
= lim

x→∞
Φ
(√

1 − ρ√
1 + ρ

x

)
= 0 .

For reasons of symmetry, the second summand in (1.7) behaves identically. This implies
that the Gaussian copula Cρ is in the CDA of the independence copula C0(x1, x2) = x1x2.
Theorem 1.3.7 therefore gives:

Theorem 1.3.10. The bivariate normal distribution Nρ ∼ N2

(
0,
(

1 ρ
ρ 1

))
with ρ ∈

[−1, 1) is in the MDA of the bivariate Gumbel distribution with independent marginals,
namely,

Λ2(x) := exp
(
−e−x1 − e−x2

)
= Λ(x1)Λ(x2) , x = (x1, x2) ∈ R2.
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1 Introduction to Extreme Value Theory

According to (1.5), by taking the constant vectors αn := (αn, αn) and βn := (βn, βn) with
αn, βn as in Theorem 1.1.11, we have

Mn − βn

αn

D−→ Λ2 ,

where Mn is the component-wise maximum of i.i.d. samples of Nρ.

Figure 1.6 provides a visualization of Λ2.

Figure 1.6: Plot of the two-dimensional Gumbel distribution Λ2(x, y) with independent
marginals, for −4 ≤ x, y ≤ 4.
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2 Finite Coxeter groups and permutation
statistics

The first chapter gave an introduction to EVLTs for i.i.d. sequences, triangular arrays, and
multivariate settings. Now, we present the objects for which we aim to find new EVLTs,
namely, the numbers of inversions and descents on symmetric groups and, more generally,
on finite Coxeter groups. These numbers are typical examples of permutation statistics,
i.e., families of maps from permutation groups to the non-negative integers. They can be
considered as random variables once the underlying group is equipped with a probability
measure. Section 2.1 is devoted to the classification of finite Coxeter groups and the
numbers of inversions and descents on them. Section 2.2 gives basic stochastic properties
of these random variables. Finally, Section 2.3 outlines the history of the CLT for random
inversions and descents on finite Coxeter groups.

2.1 Finite Coxeter groups, inversions and descents
Definition 2.1.1. Let Sn denote the symmetric group on n elements, i.e., the group of
permutations on the set {1, . . . , n} with composition as group operation. We denote a
permutation π ∈ Sn using in-line notation:

π = (π(1), π(2), . . . , π(n)) .

It is well known that each permutation decomposes into disjoint cycles, which in turn
decompose into transpositions, which finally decompose into transpositions of neighboring
numbers (neighboring transpositions, for short). For i = 1, . . . , n − 1, write τi for the
neighboring transposition that permutes i and i+ 1. Then, the system {τ1, . . . , τn−1} is a
minimal generator of Sn.

Definition 2.1.2. Let π ∈ Sn be a permutation. An inversion of π is any pair (i, j)
with i < j and π(i) > π(j). The name suggests that π inverts the order of these two
numbers, which is visualized in Figure 2.1. The set of inversions is denoted by Inv(π), and
its cardinality is the number of inversions inv(π).

Definition 2.1.3. A descent of π ∈ Sn is an inversion of two adjacent numbers, i.e., any
number i ∈ {1, . . . , n−1} with π(i) > π(i+1). Figure 2.2 visualizes descents as the starting
points of descending segments between the points (1, π(1)), (2, π(2)), . . . , (n, π(n)). The set
of descents is denoted by Des(π), and its cardinality is the number of descents des(π). The
Eulerian numbers are the numbers of permutations with a fixed number k ∈ {1, . . . , n−1}
of descents: 〈

n

k

〉
:= |{π ∈ Sn : des(π) = k}| .

An extensive review of Eulerian numbers and related concepts is given by Petersen [84].
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2 Finite Coxeter groups and permutation statistics

1 2 3 4 5

4 5 1 2 3

i < j

π(i) > π(j )

Figure 2.1: Example of a permutation π = (4, 5, 1, 2, 3) on five numbers, highlighting an
inverted pair: 2 < 4, but π(i) = 5 > 2 = π(j).

Remark 2.1.4. Let e denote the identity map of Sn. The symmetric group Sn has the
n − 1 generators τ1, . . . , τn−1. All of these are self-inverse and it can be easily checked
that τiτi+1τi = τi+1τiτi+1 ⇐⇒ (τiτi+1)3 = e for all i ∈ {1, . . . , n− 2}, and τiτj = τjτi ⇐⇒
(τiτj)2 = e for all non-adjacent i, j, i.e., |i − j| ≥ 2. This information is sufficient to
characterize the structure of Sn. The aforementioned relations between the generators
τ1, . . . , τn−1 give a presentation of Sn. This shows that symmetric groups are part of a
larger family of groups, namely, the so-called Coxeter groups.

Definition 2.1.5. Let S = {s1, s2, . . .} be an at most countable set. A symmetric matrix
M : S × S −→ {1, 2, . . . ,∞} is called a Coxeter matrix if M(s1, s2) = 1 ⇐⇒ s1 = s2,
meaning that ones are placed on the principal diagonal and nowhere else. A Coxeter
matrix M gives rise to a Coxeter group W via the following presentation:

W = ⟨S | (s1s2)M(s1,s2) = e for all (s1, s2) ∈ S2 with M(s1, s2) < ∞⟩ . (2.1)

This means that the Coxeter matrix contains all information about the structure of the
corresponding Coxeter group, since there are no other relations by definition, and since
there is no smaller generating set of W . The matrix entries M(s1, s2) are exactly the
orders of the products s1s2, see [8, Proposition 1.1.1b)].

A pair (W,S) of a Coxeter group W and its generating system S satisfying (2.1) is called a
Coxeter system. The underlying Coxeter matrix M is usually suppressed in the notation.
The cardinality of S is called the rank of W and it is denoted by rk(W ).

Definition 2.1.6. Let (W,S) be a Coxeter system based on a Coxeter matrix M . It
is convenient to represent W as an undirected Coxeter graph, according to the following
rules:

• Each generator gives a node.
• If M(si, sj) = 2, there is no edge between si and sj . In this case, sisj is self-inverse,

so si and sj commute.
• If M(si, sj) = 3, there is an unlabeled edge between si and sj .
• If M(si, sj) ≥ 4, there is an edge between si and sj that is labeled with M(si, sj).
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2.1 Finite Coxeter groups, inversions and descents

k

π(k)

1

2

3

4

5

6

1 2 3 4 5 6

descents

Figure 2.2: Graphical display of descents (highlighted in blue) of the permutation π =
(4, 6, 3, 2, 1, 5). The arrows emphasize the convention that the points at the
beginning of descending segments are referred to as descents.

Remark 2.1.7. Products of Coxeter groups are again Coxeter groups. If (W1, S1) and
(W2, S2) are two Coxeter systems with Coxeter matrices M1,M2, then W := (W1 × W2,
S1 ∪ S2) is a Coxeter system with the Coxeter matrix

M(si, sj) =


M1(si, sj), si, sj ∈ S1

M2(si, sj), si, sj ∈ S2

2, otherwise
, si, sj ∈ S1 ∪ S2 .

Definition 2.1.8. A Coxeter group or a Coxeter system is called irreducible if it is not
a Cartesian product of smaller Coxeter groups. This is the case if and only if its Coxeter
graph is connected.

Remark 2.1.9. There is a complete classification of finite irreducible Coxeter groups,
which is given by [28]. It consists of:

• three families of groups called An, Bn, Dn, which will be explained in the following
definitions. The index n corresponds to the rank of these groups. For simplicity, we
refer to the entirety of these three families as classical Weyl groups since they are
the Weyl groups of the classical groups (see, e.g., [106]).

• the family of dihedral groups I2(m) = ⟨r, s | r2, s2, (rs)m⟩, also known as the isometry
groups of the planar regular m-gons. Here, r and s represent reflections of the m-gon
by two symmetry axes that intersect at an angle of π/m.

• six exceptional groups, which are commonly known as E6, E7, E8, F4, H3, H4. They
also appear as isometry groups of certain geometric structures. While we will not
pay special attention to these groups, they will be implicitly covered in the results
concerning the entirety of finite Coxeter groups.
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2 Finite Coxeter groups and permutation statistics

Definition 2.1.10. The groups An can be introduced as the isometry groups of the n-
simplex, which means each An is isomorphic to the symmetric group Sn+1. Note that An

has rank n, which is one less than the cardinality of the underlying set for Sn+1. According
to Remark 2.1.4, the Coxeter matrix of An is:

M(i, j) =


1, i = j

3, |i− j| = 1
2, |i− j| ≥ 2

.

According to Definition 2.1.6, the Coxeter graph of An is a straight path on the set
{1, 2, . . . , n}, as seen in Figure 2.3.

Figure 2.3: The Coxeter graph of An = Sn+1.

However, we will consistently keep referring to symmetric groups as Sn, since this is more
suitable for the methods and concepts used in this thesis. When speaking of classical Weyl
groups of rank n, we also refer to the groups Sn, Bn, Dn by convention, even though Sn

has rank n− 1.

Definition 2.1.11. The groups Bn can be introduced as the isometry groups of the
n-hypercube, but we are interested in their combinatorial interpretation as an extension
of the symmetric groups. For π ∈ Sn, the entries π(1), . . . , π(n) are each given a posi-
tive or negative sign, which yields a signed permutation. Therefore, we call Bn a signed
permutation group. Figure 2.4 illustrates this with an example. △

1 2 3 4 5

4 −5 1 −2 3

Figure 2.4: Example of a signed permutation derived from the permutation illustrated in
Figure 2.1. This signed permutation can be written as (4,−5, 1,−2, 3). The
negative signs are marked in red.

The in-line notation used for symmetric groups can be adopted for signed permutation
groups. We can also describe elements of Bn as permutations on {−n, . . . ,−1, 1, . . . , n}
satisfying the antisymmetry constraint π(i) = −π(i). For another combinatorial interpre-
tation, see [8, Example 1.2.4]. The group Bn can be generated by taking the generators
{τ1, . . . , τn−1} of Sn and adding the element τ0 which inverts the sign of the first entry.
Due to (τ0τ1)2 = (τ1τ0)2 = (−1,−2, 3, . . . , n) being self-inverse, both τ0τ1 and τ1τ0 have
order 4. The Coxeter graph of Bn is shown in Figure 2.5.
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2.1 Finite Coxeter groups, inversions and descents

Figure 2.5: The Coxeter graph of the signed permutation group Bn. The leftmost node
represents the additional generator τ0.

Definition 2.1.12. The even-signed permutation groups Dn are the subgroups of Bn

consisting of all signed permutations with an even number of negative signs. Dn is gen-
erated by {τ1, . . . , τn−1, τ̃0}, where τ̃0 = (−2,−1, 3, . . . , n). The Coxeter graph of Dn is
shown in Figure 2.6. It is easy to verify the cubic relations between τ̃0 and τ1, τ2. △

1 2 3

0

n−2 n−1

Figure 2.6: The Coxeter graph of the even-signed permutation group Dn. The top node
represents the additional generator τ̃0.

We now explain how to generalize the numbers of inversions and descents to Coxeter
groups. Recall that symmetric groups are generated by neighboring transpositions. Mul-
tiplying such a neighboring transposition from the right either creates a new descent or
cancels an existing one. Likewise, inversions are created or canceled by multiplying general
transpositions from the right. Moreover, every conjugate of a neighboring transposition
is a general transposition. For this reason, we introduce the concept of word length and
reflections in order to generalize inversions and descents from symmetric groups to Coxeter
groups.

Definition 2.1.13. Let (W,S) be a Coxeter system. Each w ∈ W has a shortest rep-
resentation w = s1 . . . sk with s1, s2, . . . ∈ S. We call k = l(w) the word length of w.
Moreover, for w ∈ W, s ∈ S, the conjugate t := wsw−1 is called a reflection. Let T ⊆ W
be the set of reflections. The (right) inversions of w are all t ∈ T with l(wt) < l(w), and
the (right) descents of w are all s ∈ S with l(ws) < l(w). This also explains the quantities
inv(w) and des(w).

Remark 2.1.14. On the symmetric group Sn, the number of inversions is equal to the
word length. For π = (π(1), . . . , π(n)) ∈ Sn, we see that n− π−1(n) indicates the number
of inversions (i, j) with i = n, as well as the number of neighboring transpositions needed
to shift n to its position. This argument is continued recursively. △

In the following, we explain the generalization of inversions and descents on the groups
Bn and Dn, and again note that inv(·) is equal to l(·).
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2 Finite Coxeter groups and permutation statistics

Remark 2.1.15. On the groups Bn of signed permutations, using in-line notation, we
count inversions as

inv(π) = |Inv+(π)| + |Inv−(π)| + |Inv◦(π)| ,

where

Inv+(π) := {1 ≤ i < j ≤ n | π(i) > π(j)} ,
Inv−(π) := {1 ≤ i < j ≤ n | −π(i) > π(j)} ,
Inv◦ (π) := {1 ≤ i ≤ n | π(i) < 0} .

The set Inv+(·) is analogous to inversions on symmetric groups. Note that on Bn and Dn,
one has to pay attention to signs, i.e., a pair (i, j) with π(i), π(j) < 0 and |π(i)| < |π(j)| also
adds to Inv+(π). Obviously, if π ∈ Sn, then the other two quantities |Inv−(·)| and |Inv◦(·)|
vanish. These two quantities are required so that |inv(π)| equals the word length on Bn

with respect to the generating system {τ0, τ1, . . . , τn−1} introduced in Definition 2.1.11.
For details, see the proof of [8, Proposition 8.1.1].

On the groups Dn of even-signed permutations, inversions are counted similarly, except
that we now have to omit the number of negative signs. That is,

inv(π) = |Inv+(π)| + |Inv−(π)| .

The proof of [8, Proposition 8.2.1] shows that this matches the word length on Dn.

Remark 2.1.16. The number of descents on Bn can be written as follows. Expand the
in-line notation by setting π(0) := 0. Then,

des(π) =
n−1∑
i=0

1{π(i) > π(i+ 1)} ,

and on the even-signed permutations Dn, we set π(0) := −π(2), giving

des(π) =
n−1∑
i=1

1{π(i) > π(i+ 1)} + 1{−π(2) > π(1)} .

It is easy to verify that these representations give the number of descents on Bn and Dn

according to Definition 2.1.13, see [8, Propositions 8.1.2 and 8.2.2].

Definition 2.1.17. For inversions and descents on a Coxeter group W , we have the
generating functions

Ginv(W ; z) :=
∑

w∈W

zinv(w) , Gdes(W ; z) :=
∑

w∈W

zdes(w) .

Obviously, these are polynomials with natural-numbered coefficients. The generating func-
tion of inversions is known as the Mahonian polynomial, while the generating function of
descents is known as the Eulerian polynomial.

Remark 2.1.18. To decompose the Mahonian polynomial of a finite Coxeter group W ,
we need quantities known as the degrees of fundamental invariants, or simply, the degrees
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of W . Each finite Coxeter group is associated with a canonical action, e.g., Sn permutes
the coordinates of Cn, and Bn can additionally change their signs. Some polynomials
are invariant under this action. Their degrees are the so-called degrees of fundamental
invariants of W . For the main families of finite irreducible Coxeter groups, the degrees
are as follows:

• Sn has degrees 2, 3, . . . , n.
• Bn has degrees 2, 4, . . . , 2n.
• Dn has degrees 2, 4, . . . , 2n− 2 and n.
• I2(m) has degrees 2,m.

In this thesis, we consistently denote the largest degree of a finite Coxeter group by dmax,
suppressing the rank n.

Theorem 2.1.19. (see [8], Theorem 7.1.5)
Let W be a finite Coxeter group with rk(W ) = n. Then,

Ginv(W ; z) =
n∏

i=1
(1 + z + . . .+ zdi−1) ,

where d1, . . . , dn are the degrees of W .

The generating function Gdes also has a decomposition, even into linear factors. This was
proved by Brenti [14] for all irreducible finite Coxeter groups except for the groups Dn,
which were handled by Savage & Visontai [97]. They proved that the Eulerian polynomial
of these groups is real-rooted. From this, it is trivial to conclude that the roots are
negative, since all coefficients of the Eulerian polynomial are positive.

Theorem 2.1.20. Let W be a finite Coxeter group with rk(W ) = n. Then, Gdes(W ; z)
has only negative roots, i.e.,

Gdes(W ; z) =
n∏

i=1
(z + qi)

for some q1, . . . , qn > 0.

2.2 Stochastic properties

Let (W,S) be a finite Coxeter system. Then, the discrete uniform distribution on the
power set P(W ) allows us to regard W as a probability space. Moreover, we now interpret
Xinv(w) := inv(w), Xdes(w) := des(w) as random variables on this probability space. This
notation is used throughout to emphasize the stochastic background. On the symmetric
groups Sn, the probability distribution of Xinv is known as the Mahonian distribution and
that ofXdes is known as the Eulerian distribution. Both have been studied in [5]. Moreover,
on the classical Weyl groups, it is possible to give purely probabilistic representations of
Xinv and Xdes as follows:
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2 Finite Coxeter groups and permutation statistics

Remark 2.2.1. Let Z1, Z2, . . . , Zn ∼ U(0, 1) be i.i.d. random variables with order statis-
tics Z(1) < Z(2) < . . . < Z(n). Let π = (π(1), . . . , π(n)) ∈ Sn be the unique permutation
with Zi = Z(π(i)) ∀i = 1, . . . , n. This procedure yields a uniform random permutation.
Therefore, Xinv and Xdes can be expressed by

Xinv =
∑

1≤i<j≤n

1{Zi > Zj} , Xdes =
n−1∑
i=1

1{Zi > Zi+1} . (2.2)

On the signed and even-signed permutation groups Bn and Dn, we can analogously rep-
resent Xinv and Xdes through i.i.d. variables Z1, . . . , Zn ∼ U(−1, 1). Let XB

inv and XD
inv

denote Xinv on Bn and Dn, respectively. From Remark 2.1.15, it follows that

XB
inv =

∑
1≤i<j≤n

1{Zi > Zj} +
∑

1≤i<j≤n

1{−Zi > Zj} +
n∑

i=1
1{Zi < 0} ,

XD
inv =

∑
1≤i<j≤n

1{Zi > Zj} +
∑

1≤i<j≤n

1{−Zi > Zj} .

Accordingly, let XB
des and XD

des denote Xdes on Bn and Dn, respectively. From Re-
mark 2.1.16, it follows that

XB
des =

n−1∑
k=1

1{Zk > Zk+1} + 1{Z1 < 0} ,

XD
des =

n−1∑
k=1

1{Zk > Zk+1} + 1{−Z2 > Z1} .

Important stochastic quantities such as the mean and variance can be computed. For
irreducible finite Coxeter groups, a summary of these is given in [66].

Theorem 2.2.2. (see [66], Theorem 3.1 and Corollary 3.2)
For any irreducible finite Coxeter group W of rank n, the random number of inversions
Xinv has the mean and variance

E(Xinv) = 1
2

n∑
k=1

(dk − 1) , Var(Xinv) = 1
12

n∑
k=1

(d2
k − 1) ,

where d1, . . . , dn are the degrees of W . In particular,

E(Xinv) =


n(n− 1)/4, W = Sn

n2/2, W = Bn

n(n− 1)/2, W = Dn

m/2, W = I2(m)

,

Var(Xinv) =


(2n3 + 3n2 − 5n)/72, W = Sn

(4n3 + 6n2 − n)/36, W = Bn

(4n3 − 3n2 − n)/36, W = Dn

(m2 + 2)/12, W = I2(m)

.
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Theorem 2.2.3. (see [66], Theorem 4.1 and Corollary 4.2)
For any irreducible finite Coxeter group W of rank n, the random number of descents Xdes
has the mean and variance

E(Xdes) = n/2 , Var(Xdes) = n− 2
12 + 1

m
,

where m denotes half of the size of the largest dihedral subgroup of W . In particular,

Var(Xdes) =


(n+ 1)/12, W = Sn

(n+ 1)/12, W = Bn

(n+ 2)/12, W = Dn

1/m, W = I2(m)

.

Remark 2.2.4. Let W = W1 ×W2 be a product of two Coxeter groups and let XW , XW1 ,
XW2 denote the random number of either inversions or descents on these groups. Then,
we have that XW = XW1 +XW2 , and the two summands are independent. In particular:

(a) If W =
∏k

i=1
I2(mi) is a product of dihedral groups, then Var(Xdes) =

∑k

i=1
m−1

i .
(b) If (Wn)n∈N are finite Coxeter groups without dihedral components, then we have

Var(Xdes) = Θ(rk(Wn)). △

Any factorization of a generating function yields an independent sum decomposition of
the corresponding statistic. In conclusion, due to the decompositions of Ginv and Gdes in
Theorems 2.1.19 and 2.1.20, Xinv and Xdes can be written as sums of independent (but
not identically distributed) variables.

Corollary 2.2.5. Let W be a finite Coxeter group with rk(W ) = n. Then:

(a) Xinv =
∑n

i=1
X

(i)
inv, where X(i)

inv ∼ U
{

0, 1, . . . , d(n)
i − 1

}
and d1, . . . , dn are the degrees

of W .

(b) Xdes =
∑n

i=1
X

(i)
des, where X(i)

des ∼ Bin
(
1,
(
1 + q

(n)
i

)−1) and q1, . . . , qn are the nega-

tives of the roots of Gdes(W ).

Remark 2.2.6. For the symmetric groups, Corollary 2.2.5a) gives

Xinv =
n−1∑
i=1

U({0, . . . , i}) , (2.3)

which can also be explained by the argument sketched in Remark 2.1.14. First, we look
at the last summand U({0, 1, . . . , n− 1}). It encodes the number of inversions induced by
the largest entry n. According to Remark 2.1.14, this number equals n− π−1(n), which is
a uniformly random number in {0, . . . , n−1}. Likewise, the choice of any of the remaining
n− 1 positions for π−1(n− 1) determines the number of inversions induced by π−1(n− 1),
and this holds independently of π−1(n). Recursively, (2.3) follows.
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2 Finite Coxeter groups and permutation statistics

2.3 Central Limit Theorems
The asymptotic normality of inversions and descents is an important and extensively
investigated subject. For the special case of symmetric groups, there is a multifarious
history of different proofs of the CLT. For illustration purposes, Figure 2.7 shows the
probability mass function of Xdes on the symmetric group S31, which clearly displays
similarity to a Gaussian density function. The following list of proofs of the CLT for Xdes
on symmetric groups can be found in [20, Section 3]:

• On symmetric groups, the representation (2.2) of Xdes is a sum of m-dependent
indicator variables. Thus, the CLT for Xdes on Sn is an immediate consequence of
the CLT for m-dependent random variables (see, e.g., [21] for a version with error
bounds).

• Another proof is obtained from the fact that according to [100], P(Xdes = j) =
P(j ≤ Z1 + . . .+ Zn ≤ j + 1) for 0 ≤ j ≤ n− 1 and i.i.d. Z1, . . . , Zn ∼ U(0, 1).

• For proofs based on the roots of the generating function of Xdes, see [57, 88].
• For the use of other regularity properties of the generating function of Xdes, see

[5, Ex. 3.5 and 5.3].
• For applications of Stein’s method of exchangeable pairs, see [26, 51].

Stein’s method is a popular approach in other frameworks as well. See, e.g., [27] for per-
mutations on multisets, [87] for generalized inversions (which will be extensively discussed
in Chapter 5), and [4] for non-uniformly distributed permutations.

The first work giving a CLT for Xinv and Xdes on symmetric groups is due to Bender [5,
Ex. 5.3 and 5.5]. Inversions are also covered in the work of Fulman [51], which uses that
inversions and descents are a special case of permutation statistics based on antisymmetric
matrices. It is also possible to prove the CLT for Xinv by use of Janson’s dependency
criterion [64, Theorem 2], as shown in [10].

Moreover, since the real-rootedness of the Eulerian polynomial Gdes is known for the ir-
reducible families Sn, Bn, Dn, the CLT for Xdes on these families (and their products) is
implied by [13, Theorem 2.1]. Most recently, Özdemir [82] gave a new proof of the CLT for
Xdes on symmetric groups by a martingale representation of Xdes and a Lindeberg-Feller
type CLT for martingale differences (see [56, Theorem 3.2]).

For general finite Coxeter groups, the statistics Xinv and Xdes satisfy the CLT in most
cases. The validity of the CLT was classified by Kahle & Stump [66]. In essence, the CLT
is true if and only if the variances grow fast enough.

Theorem 2.3.1. (see [66], Theorem 6.1 and 6.2)
Let W1,W2, . . . be finite Coxeter groups with rk(Wn) = n. Let dmax be the maximum degree
of Wn. Let s2

n be the variance of X(n)
inv or X(n)

des , respectively. Then:
(a) X

(n)
inv satisfies the CLT if and only if dmax/sn −→ 0.

(b) X
(n)
des satisfies the CLT if and only if sn −→ ∞.

The proof is based on the representations in Corollary 2.2.5, which allow to represent the
sequences

(
X

(n)
inv

)
n∈N

and
(
X

(n)
des

)
n∈N

as triangular arrays. The necessary and sufficient
conditions guarantee that no summand in Corollary 2.2.5 dominates the others.
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k
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〉

5 10 15 20 25 30

Figure 2.7: True to scale probability mass function of Eulerian numbers on Sn for n = 31.

Definition 2.3.2. Let
(
X

(n)
i

)
i=1,...,kn

be a triangular array of real-valued, row-wise inde-

pendent random variables with X(n) :=
∑kn

i=1
X

(n)
i and s2

n := Var(X(n)). The triangular
array satisfies the Lindeberg condition if

∀ε > 0: 1
s2

n

kn∑
i=1

E
(∣∣∣X(n)

i

∣∣∣2 1
{∣∣∣X(n)

i

∣∣∣ ≥ εsn

})
−→ 0 .

Another way to formalize the non-dominance of a single summand is the maximum con-
dition

max
i=1,...,kn

Var(X(n)
i )

s2
n

−→ 0 .

Theorem 2.3.3. (see, e.g., [7], p. 361)
In the setting of Definition 2.3.2, X(n) satisfies the Lindeberg condition if and only if it
satisfies the CLT and the maximum condition.

In the setting of Theorem 2.3.1, we have kn = n ∀n ∈ N. For the proof of Theorem 2.3.1,
Kahle & Stump [66] use the following key steps:

• For X(n)
i ∼ U({0, . . . , dni − 1}) with any choice of integers 2 ≤ dn1 ≤ . . . ≤ dnn, the

CLT is equivalent to the maximum condition (see [66, Proposition 6.12]).

• The maximum condition itself is equivalent to the condition dnn = o(sn) which
appears in Theorem 2.3.1a) (see [66, Lemma 6.13]).

• For any triangular array
(
X

(n)
i

)
i=1,...,n

with globally bounded X
(n)
i such that all

X(n) − E(X(n)) take values in a fixed lattice δZ ⊆ R for some δ > 0, the CLT is
equivalent to the condition Var(X(n)) −→ ∞ which appears in Theorem 2.3.1b)
(see [66, Propositions 6.14 and 6.15]).
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2 Finite Coxeter groups and permutation statistics

Definition 2.3.4. Another interesting statistic on a Coxeter group W is

T (π) := des(π) + des(π−1) , π ∈ W .

Accordingly, let XT := Xdes(π) + Xides(π) with Xides(π) := Xdes(π−1) denote the corre-
sponding random variable on W . We call XT the two-sided Eulerian statistic, as it is a
sum of two Eulerian variables. △

Obviously, Xdes and Xides are not independent. The mean and variance of XT have the
same magnitudes as those of Xdes, see [66, Theorem 5.1 and Corollary 5.2]. A further
observation is that the asymptotic normality of XT is closely related to that of the joint
distribution (Xdes, Xides) due to the Cramér-Wold device.
Chatterjee & Diaconis [20] proved a CLT for XT on the symmetric groups Sn by con-
structing random permutations from order statistics of uniform variables on [0, 1]2, and
using the so-called method of interaction graphs. This method was previously developed
by Chatterjee in [19]. Here, the random quantity of interest is modeled as a multivari-
ate function. An interaction graph displays the pairs of indices for which replacing both
coordinates has a different impact on the quantity than replacing exactly one of the two
coordinates. Brück & Röttger [15, 94] extended the result of [20] to Bn and Dn by suit-
ably adding a random sign. Furthermore, they proved a CLT for XT on a wide range of
composed finite Coxeter groups. Their observations can be summarized as follows:

• If the groups Wn consist of only classical Weyl groups, then the CLT holds if their
ranks are balanced in a way that the largest component rank does not grow as fast
as the sum of all remaining ranks (see [15, Lemma 25]).

• For mixed groups, the sequence (Wn)n∈N must satisfy a regularity condition called
well-behavedness [15, Definition 28], however, no counterexample to this condition
was found according to [15, Remark 29]. Then, for all well-behaved sequences
(Wn)n∈N, the CLT holds if and only if Var(XT ) −→ ∞ (see [15, Theorem 32]).

Moreover, Féray [48] gave a different proof of the CLT for XT on all products of Coxeter
groups with Var(XT ) −→ ∞, without requiring the condition of well-behavedness. This
proof relies on the CLT for XT on classical Weyl groups. The components are split into
classical Weyl groups of large rank (for which XT is already close to normality) and other
components, for which the CLT is derived by comparison of characteristic functions.
While the asymptotic normality of the individual statistics Xinv and Xdes is well studied,
comparatively little is known about their joint distribution. On the symmetric groups
Sn, Fang & Röllin [45] proved a CLT for (Xinv, Xdes)⊤. Furthermore, they proved an
O(n−1/2) rate of convergence using a multivariate generalization of [51]. So far, however,
it is unclear whether their method can be generalized to other finite Coxeter groups.

Definition 2.3.5. Let A ∈ Rn×n be an antisymmetric matrix, that is, Auu = 0 and
Auv = −Avu for all u, v = 1, . . . , n, u ̸= v. This matrix yields the following permutation
statistic:

W(π) =
∑

1≤i<j≤n

Aπ(i)π(j) , (2.4)

for π ∈ Sn uniformly at random. Given several antisymmetric matrices A(1), . . . , A(d), let

W1 :=
∑

1≤i<j≤n

A
(1)
π(i)π(j) , . . . , Wd :=

∑
1≤i<j≤n

A
(d)
π(i)π(j) .
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Example 2.3.6. Consider the following two matrices:

A(1) :=



0 −1 −1 · · · −1
1 0 −1 . . . ...
1 . . . . . . . . . −1
... . . . . . . 0 −1
1 · · · 1 1 0


, A(2) :=



0 −1 0 · · · 0
1 0 −1 . . . ...
0 1 . . . . . . 0
... . . . . . . 0 −1
0 · · · 0 1 0


.

Then, we see that

W1 =
∑

1≤i<j≤n

1{π(i) = π(j) + 1} − 1{π(j) = π(i) + 1}

=
∑

1≤i<j≤n

1{π(i) = π(j) + 1} −
∑
i>j

1{π(i) = π(j) + 1}

= 2
∑

1≤i<j≤n

1{π(i) = π(j) + 1} − (n− 1)

= 2
n−1∑
i=1

1{π−1(i+ 1) > π−1(i)} − (n− 1)

= 2 Des(π−1) − (n− 1) ,

W2 =
∑

1≤i<j≤n

1{π(i) > π(j)} − 1{π(i) < π(j)}

= 2 Inv(π) −
(
n

2

)
= 2 Inv(π−1) −

(
n

2

)
.

As π−1 also represents a uniformly random permutation, we can interpret the standard-
izations of Xinv and Xdes as special instances of (2.4).

Theorem 2.3.7. (see [45], Corollary 3.8)
Let N ∼ N2(0, I2) denote the two-dimensional standard normal distribution. For the joint
distribution

W =
(

Xinv − n(n− 1)/4√
n(n− 1)(2n+ 5)/72

,
Xdes − (n− 1)/2√

(n+ 1)/12

)
,

there is a universal constant C so that

sup
A ⊆ R2

A convex

|P(W ∈ A) − P(N ∈ A)| ≤ Cn−1/2.

In the following, while not listing all the technical details of the proof, we will comprehend
the O(n−1/2) rate of convergence.

Definition 2.3.8. (see [45], Definition 2.1)
A multivariate Stein coupling is a triple (X,X ′, G) of d-dimensional random vectors
satisfying E

(
G⊤F (X ′) − G⊤F (X)

)
= E

(
X⊤F (X)

)
for all vector fields F : Rd → Rd,

provided both means exist. In this case, it immediately follows that E(X) = 0 and
E
(
G(X ′ − X)⊤

)
= Var(X). Write D := X ′ − X. To shorten the notation, we write

EX(·) = E(· | X) for the conditional means. The main error bound from Stein’s method
is as follows:
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Theorem 2.3.9. (see [45], Theorem 2.1)
Within the framework of Definition 2.3.8, assume that Var(X) = Id, and that G and D
are bounded in the sense of

∥G∥ ≤ α , ∥D∥ ≤ β ,

for some constants α, β > 0. Let N ∼ Nd(0, Id). Then, there exists a universal constant
C so that

d(X,N ) := sup
A ⊆ Rd

A convex

|P(X ∈ A) − P(N ∈ A)|

≤ C
(
d7/4αE∥D∥2 + d1/4β + d7/8√αB1 + d3/8B2 + d1/8√B3

)
,

where

B1 :=
√

Var
(
EX(∥D∥2)

)
,

B2 :=

√√√√√ d∑
i,j=1

Var
(
EX(GiDj)

)
,

B3 :=

√√√√√ d∑
i,j,k=1

Var
(
EX(GiDjDk)

)
.

According to Fulman [51], for any collection W = (W1, . . . ,Wd) of doubly-indexed per-
mutation statistics, a Stein coupling is constructed by taking I ∼ U({1, . . . , n}) and
W ′(π) := W(π′), where π′ = π ◦ (I 7→ I + 1 7→ . . . 7→ n 7→ I). Fulman showed that
Eπ(W ′ − W) = −(2/n)W for all π ∈ Sn. Taking G := nD/4 gives a Stein coupling. The
entries of D are explicitly given by

Dr = −2
∑
j>I

A
(r)
π(I)π(j) ,

and with
β1 := max

r=1,...,d
u=1,...,n

n∑
v=1

|A(r)
uv | ,

it is seen that there exists a constant Cd only depending on d giving the bounds

∥G∥ ≤ Cdnβ1 , ∥D∥ ≤ Cdβ1 . (2.5)

Extensive calculations in [45] show that this constant can also be used to give the bounds

Var
(
Eπ(DrDs)

)
≤ Cdβ

4

n
,

Var
(
Eπ(DrDsDt)

)
≤ Cdβ

4β2 ,

where 1 ≤ r, s, t ≤ d and

β2 := max
r=1,...,d
u=1,...,n

n∑
v=1

(
A(r)

uv

)2
.
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We now apply Theorem 2.3.9 to verify the O(n−1/2) bound for W as in Theorem 2.3.7.
Since d = 2 remains constant, we can ignore the respective powers of d and write

d(W,N ) ≤ C
(
αE∥D∥2 + β +

√
αB1 +B2 +

√
B3
)
, (2.6)

where, according to (2.5), we have α = Θ(nβ1), β = Θ(β1). Due to the standardization,
the matrices representing W are given by

A(1)
uv =

√
18

n(n− 1)(2n+ 5)


−1, v > u

1, v < u

0, v = u

, A(2)
uv =

√
3

n+ 1


−1, v = u+ 1
1, v = u− 1
0, otherwise

.

Therefore,

β1 = max
u

(
n∑

v=1
|A(1)

uv |
)

∨
(

n∑
v=1

|A(2)
uv |
)
.

In A(1), there are n−1 non-zero entries in each row, all giving a contribution of Θ(n−3/2), so
the row-wise sums of absolute values are of order Θ(n−1/2). In A(2), there are only at most
two non-zero entries per row, which are of the fitting order Θ(n−1/2). In conclusion, β1 =
Θ(n−1/2). Furthermore, α = Θ(n1/2) and ∥D∥ = O(n−1/2) =⇒ αE(∥D∥2) = O(n−1/2). In
addition, B1 = Θ(n−3/2) =⇒ αB1 = Θ(n−1) =⇒

√
αB1 = Θ(n−1/2). Next, as G = nD/4,

we have

B2 =

√√√√ 2∑
i,j=1

Var
(
EW(GiDj)

)
=

√√√√ 2∑
i,j=1

n2Var
(
EW(DiDj)

)
≤

√√√√ 2∑
i,j=1

Cdnβ4 = O(n−1/2) .

The same is obtained for B3, as β2 is bounded in the way of

β2 = max
u

(
n∑

v=1

∣∣∣A(1)
uv

∣∣∣2)︸ ︷︷ ︸
= Θ(n−2)

∨
(

n∑
v=1

∣∣∣A(2)
uv

∣∣∣2)︸ ︷︷ ︸
= Θ(n−1)

= Θ(n−1) .

In conclusion, every summand on the right hand side of (2.6) is O(n−1/2), which explains
the rate of convergence.
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3 Extremes of inversions and descents on
finite Coxeter groups

3.1 Introduction and framework
In Section 2.3, we discussed the CLT for the number of inversions and descents on finite
Coxeter groups. Subsequently, we aim to understand the extreme value asymptotics of
these statistics. Up to now, to the best of our knowledge, only two permutation statistics
have been studied for the asymptotic behavior of their extremes, see [53, 79]. These two
statistics are introduced as the maxima of a collection of substatistics Xn1(π), . . . , Xnn(π)
for π = (π(1), . . . , π(n)) ∈ Sn:

• The largest gap statistic is the maximum of Xnj(π) := |π(j) −π(j+ 1)|, j = 1, . . . , n
(writing π(n+ 1) := π(1)).

• For fixed k ∈ N and n > k, the largest consecutive k-sum statistic is the maximum
of Xnj(π) :=

∑k−1
i=0

π(i+ j) (again using the ring notation π(n+ j) := π(j)).

In both cases, the variables (Xn1, . . . , Xnn) form a triangular array where in each row, the
entries Xn1, . . . , Xnn are based on the same permutation π ∈ Sn.

Theorem 3.1.1. (see Mladenović [79], Theorem 1)
Let Xn be the largest gap statistic on Sn. Then, for all x ∈ R:

lim
n→∞

P(Xn ≤ x
√
n+ n) = Ψ2(x) ,

where Ψ2 denotes the CDF of the Weibull distribution with shape parameter 2.

The proof is divided in two steps. First, by means of Lemma 1.1.10 it is shown that
the corresponding sequence of independent variables X∗n1

D= Xn1, . . . , X
∗
nn
D= Xnn satisfies

the claim. Then, for the dependent but stationary segment Xn1, . . . , Xnn, the mixing
conditions introduced in Section 1.2 are shown by some combinatorial inclusion-exclusion
arguments, so that the claim carries over from the independent variables. The following
result is proved in the same way.

Theorem 3.1.2. (see Glavas et al. [53], Theorem 1.1)
Let Xn be the largest consecutive k-sum statistic on Sn for fixed k ∈ N. Then, for all
x ∈ R:

lim
n→∞

P
(
Xn ≤ x(k!nk−1)1/k + kn

)
= Ψk(x) ,

where Ψk denotes the CDF of the Weibull distribution with shape parameter k.

For the numbers of inversions and descents, there is no feasible approach to represent
them as a maximum of other random variables. Instead, we consider a triangular ar-
ray consisting of independent samples drawn from a finite Coxeter group in each row.
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3 Extremes of inversions and descents on finite Coxeter groups

It is not mandatory to draw exactly n samples from a finite Coxeter group of rank n.
There are two equivalent frameworks (cf. Remark 1.2.10):

(a) We consider a sequence of finite Coxeter groups (Wn)n∈N with rk(Wn) = n and a
triangular array (Xnj)j=1,...,kn of arbitrary length.

(b) We use a uniform triangular array (Xnj)j=1,...,n, where Xn1, . . . , Xnn are independent
samples drawn from finite Coxeter groups of arbitrary ranks.

Figures 3.1 and 3.2 illustrate these two frameworks for comparison, showing exemplary
triangular arrays with samples drawn from symmetric groups for simplicity.

· · ·
· · ·

· · ·
· · ·

· · ·

· · ·
· · ·

· · ·
· · ·

· · ·

X11 X1k1

X21 X22 X2k2

X31 X32 X33 X34 X3k3

X41 X42 X43 X4k4

X51 X52 X53 X54 X55 X56 X5k5

S1

S2

S3

S4

S5

n kn

Figure 3.1: Beginning of a triangular array of permutation statistics on all symmetric
groups. The row lengths kn have no specific regularity.

X11

X21 X22

X31 X32 X33

X41 X42 X43 X44

X51 X52 X53 X54 X55

S4

S6

S6

S9

S8

1 n r

Figure 3.2: Beginning of a uniform triangular array of permutation statistics with an ex-
emplary choice of the first five symmetric groups. The choices r(n) of the ranks
have no specific regularity.

In what follows, we use the first framework since it allows simpler notation. From there,
it is trivial to state the analogous results within the second framework. So, we have
a sequence of finite Coxeter groups (Wn)n∈N with rk(Wn) = n and a triangular array
(Xnj)j=1,...,kn , where for each n ∈ N, the Xn1, . . . , Xnkn are independent samples of Xinv
or Xdes on Wn. We suppose that the triangular array contains only samples of either Xinv
or Xdes, but not of both. We expect that kn must satisfy an asymptotic upper bound to
avoid degeneracy of extreme values, for the reasons given in Remark 1.2.10.

Remark 3.1.3. To substantiate this explicitly, we state an asymptotic rate of (kn)n∈N
for which the above triangular array (Xnj)j=1,...,kn has degenerate extreme value limit
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3.2 Tail equivalence for non-identically distributed sums

behavior. Each finite Coxeter group W has a unique longest element w0 for which both
Xinv(w0) and Xdes(w0) are maximal (see, e.g., [8, Proposition 2.3.1]. Let M0 denote this
maximum value. For instance, on the symmetric groups Sn, we have w0 = (n, n − 1,
n − 2, . . . , 1), giving M0 = n(n − 1)/2 for inversions and M0 = n − 1 for descents. Now,
let w(n)

1 , . . . , w
(n)
kn

denote i.i.d. random elements of Wn. Then,

P(Mn = M0) = 1 − P

 kn⋂
i=1

{w(n)
i ̸= w0}

 = 1 −
(

1 − 1
|Wn|

)kn

.

If we choose, e.g., kn ≥ |Wn|2, then (1 − |Wn|−1)kn −→ 0 and P(Mn = M0) −→ 1,
which means that (Mn)n∈N cannot be rescaled in order to achieve a non-degenerate limit
distribution. △

In the following, we prove that given a suitable upper bound on kn, the row-wise maximum
Mn := max{Xn1, . . . , Xnkn} is attracted to the Gumbel distribution as n → ∞. Section 3.2
introduces the key tools, namely, theorems that provide tail equivalence through large de-
viation bounds. Section 3.3 presents the new EVLT for Xinv and Xdes on the important
families Sn, Bn, Dn as the first main result of this thesis. Section 3.4 postulates the EVLT
on arbitrary finite Coxeter groups, and also categorizes it for different subclasses of fi-
nite Coxeter groups. Section 3.5 discusses other permutation statistics and presents a
universal EVLT which does not rely on any specific properties of permutation statistics
except asymptotic normality. Section 3.6 suggests further examples of random inversions
and descents in certain structures, for which the transferability of the EVLT is an open
question.

3.2 Tail equivalence for non-identically distributed sums
In Theorem 1.2.13 by Nadarajah & Mitov [81], it was demonstrated how to derive an EVLT
for binomial distributions from tail equivalence to the standard normal distribution. We
aim to achieve tail equivalence in a more general framework to obtain EVLTs for the
numbers of inversions and descents. Note that by Corollary 2.2.5, both of these numbers
can be decomposed into independent summands. In contrast to the decomposition of
binomial distributions into Bernoulli distributions, these summands are not identically
distributed, which makes achieving tail equivalence more difficult.

The subject of tail equivalence is closely related to the field of large deviations theory.
Based on limit theorems such as the strong law of large numbers or the CLT, this theory
deals with bounds and quantification for the probabilities of large deviations from the
limit. See [34, Chapters 1 and 2] for an introduction. We assume the following framework
for all theorems presented in this section.

Framework: Let X1, X2, . . . be an at most countable sequence of centered and indepen-
dent random variables. For n ∈ N, let Sn := X1 + . . . + Xn. Let σ2

k = E(X2
k) for all

k = 1, . . . , n, and let s2
n := σ2

1 + . . .+ σ2
n. Moreover, let Fn denote the CDF of Sn/sn.

In analogy to Theorem 1.2.12, we aim to demonstrate tail equivalence between Fn and the
CDF Φ of the standard normal distribution, or in symbols,

1 − Fn(x) ∼ 1 − Φ(x) ⇐⇒ 1 − Fn(x)
1 − Φ(x) = 1 + o(1) .
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3 Extremes of inversions and descents on finite Coxeter groups

We want to show this not only for fixed x but also for sequences x = x(n) depending
on n ∈ N. Typically, this works only if x does not grow too fast. Upon additionally
assuming that X1, X2, . . . are identically distributed, a seminal result on large deviations
of (1 − Fn)/(1 − Φ) is due to Cramér [29].

Theorem 3.2.1. (cf. Cramér [29])
Under the given framework, assume that X1, X2, . . . are i.i.d. and that the moment gener-
ating function of X1 exists in a neighborhood of the origin. If x = o(

√
n), then

1 − Fn(x)
1 − Φ(x) = exp

(
x3
√
n

L
(
x√
n

))(
1 + o(1)

)
,

where L(x) =
∑∞

k=0
akx

k is a power series with coefficients depending on the cumulants
of X1.

A similar theorem that omits the assumption of identical distribution was developed by
Feller [46]. This theorem imposes boundedness assumptions on the random variables,
therefore it is not a generalization of Theorem 3.2.1.

Theorem 3.2.2. (see Feller [46])
Let (λn)n∈N be a sequence of constants such that λn −→ 0 and

∀k = 1, . . . , n: |Xk| < λnsn . (3.1)

Let x > 0 be fixed and assume that

∀n ∈ N: 0 < λnx < (3 −
√

5)/4 ≈ 0.19 .

Then, there is a constant ϑ with |ϑ| < 9 and a power series Qn(x) =
∑∞

ν=1
qn,νx

ν with
coefficients qn,ν depending on the first ν + 2 moments of Xn so that

1 − Fn(x) = exp
(

−1
2x

2Qn(x)
)(

1 − Φ(x) + ϑλne
−x2/2

)
.

If, in particular, 0 < λnx < 1/12, then |qn,ν | < 1
7(12λn)ν .

Remark 3.2.3. Theorem 3.2.2 concerns finite sequences of random variables and does
not include any asymptotic statement. Nevertheless, it can be applied for each n ∈ N
on a uniform triangular array (Xn1, . . . , Xnn) to draw asymptotic conclusions. As stated
by Feller [46], if it is possible to choose a sequence (λn)n∈N with λn = O(n−1/2), and if
x = o(n1/6), then it follows that

Qn(x) = qn,1x+
∞∑

ν=2
qn,νx

ν ≤ 12
7 λnx+O(n−2/3) = O(n−1/3)

=⇒ exp
(

−x2

2 Qn(x)
)

−→ 1 .

Furthermore, e−x2/2 is bounded by 1 and ϑ is a constant, so ϑλne
−x2/2 −→ 0. Thus,

whenever the aforementioned conditions are satisfied, we have the desired tail equivalence
1 − Fn(x) ∼ 1 − Φ(x). △
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3.2 Tail equivalence for non-identically distributed sums

In comparison, Cramér’s Theorem 3.2.1 allows for the broader regime x = o(n1/2), and it
has also been generalized to random variables that are independent and not necessarily
identically distributed. We now introduce a large deviations theorem of Petrov & Robin-
son [86], which is, to the best of our knowledge, the weakest known generalization of
Theorem 3.2.1.

Under the given framework, let Lj be the cumulant generating function of Xj , that is,
Lj(z) = log

(
E
(
ezXj

))
. We assume that for some H > 0, all functions Lj are analytic

within the circle {z ∈ C : |z| < H}. Moreover, we assume the existence of constants
(cj)j∈N such that ∀|z| < H, j ∈ N : |Lj(z)| < cj and

lim sup
n→∞

n∑
j=1

cj

n
< ∞ . (3.2)

At last, we require that the variances s2
n grow at least linearly, that is,

lim inf
n→∞

s2
n

n
> 0 . (3.3)

Theorem 3.2.4. (see Petrov & Robinson [86], Theorem 2.1)
Given the conditions (3.2) and (3.3), it holds that for x = o(

√
n),

1 − Fn(x)
1 − Φ(x) = exp

(
x3
√
n

Ln

(
x√
n

))(
1 + o(1)

)
,

where Ln(x) =
∑∞

k=0
aknx

k is a power series with coefficients akn expressed in terms of

the cumulants of X1, . . . , Xn of order up to and including n+ 3.

This theorem is an advancement of [85, Theorem 1], which imposed the stricter condition

of lim sup
n→∞

n∑
j=1

c
3/2
j

n
< ∞. However, it is not a generalization of Feller’s Theorem 3.2.2.

Remark 3.2.5. For the extended regime n1/6 ≪ x ≪ n1/2, it is not trivial to achieve tail
equivalence via Theorems 3.2.1 and 3.2.4. To do so, we additionally have to demonstrate

exp
(
x3
√
n

Ln

(
x√
n

))
= 1 + o(1)

⇐⇒ x3
√
n

Ln

(
x√
n

)
= o(1) .

The term x3/
√
n can become as large as o(n). It is controlled only if x = o(n1/6), which is

the same regime as in Theorem 3.2.2. For broader regimes, we have to control the power
series Ln. For j, k ∈ N, let γkj be the k-th cumulant of Xj and let

Γkn =
n∑

j=1

γkj

n
.

According to [86, p. 2985], the first coefficient of Ln is given by

a0,n = Γ3,n

6Γ3/2
2,n

.
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3 Extremes of inversions and descents on finite Coxeter groups

If a0,n is non-zero, then it is impossible to control Ln(x/
√
n) for any n1/6 ≪ x ≪ n1/2. To

obtain tail equivalence from Theorem 3.2.4 within the extended regime n1/6 ≪ x ≪ n1/2, it
is necessary that a0,n = O(n−1). In the intermediate case of a0,n = o(1) and a0,n = ω(n−1),
it may still be possible to extend the regime of x at least partially. In that case, further
coefficients of Ln may have to be taken into account.

3.3 Sequences of classical Weyl groups
We now show how to obtain the EVLT for the numbers of inversions and descents on
sequences of Coxeter groups using the theorems introduced in the previous section. It is
important to distinguish whether dihedral groups are involved or not.

We first consider a sequence of classical Weyl groups (Wn)n∈N with rk(Wn) = n ∀n ∈ N,
and a triangular array (Xnj)j=1,...,kn as described in Section 3.1. Let X(n)

inv and X
(n)
des

be the number of inversions and descents on Wn, respectively. Let d(n)
1 , . . . , d

(n)
n be the

degrees of Wn and let q(n)
1 , . . . , q

(n)
i be the negatives of the roots of Gdes(Wn). According

to Corollary 2.2.5, we write

X
(n)
inv =

n∑
i=1

X
(n,i)
inv , X

(n)
des =

n∑
i=1

X
(n,i)
des ,

where X(n,i)
inv ∼ U

{
0, 1, . . . , d(n)

i − 1
}

and X
(n,i)
des ∼ Bin

(
1,
(
1 + q

(n)
i

)−1).

Remark 3.3.1. Since Theorem 3.2.4 permits a broader regime of x than Theorem 3.2.2,
it is preferable to apply Theorem 3.2.4 to both Xinv and Xdes. Obviously, both statistics
satisfy (3.3). However, it turns out that the condition (3.2) of Theorem 3.2.4 is not satisfied
for Xinv. For X(n,i)

inv ∼ U
{

0, 1, . . . , d(n)
i − 1

}
, the cumulant generating function is

Li(z) = log

 1
d

(n)
i

d
(n)
i −1∑
k=0

ezk

 = log

 1 − ed
(n)
i z

d
(n)
i (1 − ez)

 .
For some H > 0, we have to find ci such that Li(z) < ci ∀|z| < H. In particular,

ci ≥ Li(H) = log

 1 − (eH)d
(n)
i

d
(n)
i (1 − eH)

 .
Due to eH > 1, we have that Li(H) grows linearly in i, as its argument grows exponentially
in i. Therefore,

∑n

j=1
cj/n grows linearly as well and is not bounded, so the condition

(3.2) is violated.

For Xdes, the condition (3.2) is not violated. However, we have to examine the power
series Ln in order to determine the appropriate regime of x. The second, third, and fourth
cumulants of X(n,i)

des ∼ Bin
(
1,
(
1 + q

(n)
i

)−1) =: Bin(1, pi) are

γ2,i = pi(1 − pi) ,
γ3,i = pi(1 − pi)(1 − 2pi) ,
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3.3 Sequences of classical Weyl groups

γ4,i = pi(1 − pi)(1 − 6γ2,i) .

Recall that a0,n = Γ3,n/Γ3/2
2,n . The third cumulant γ3,i equals the third central moment of

X
(n,i)
des . Therefore, the sum

∑n

i=1
γ3,i equals the third central moment of X(n)

des , which is
zero as the distribution of X(n)

des is symmetric for all finite Coxeter groups. In conclusion,
we have a0,n = 0. However, we need to take the second coefficient of Ln into account,
which is, according to [86, p. 2985]:

a1,n =
Γ4,nΓ2,n − 3Γ2

3,n

24Γ3
2,n

= Γ4,n

24Γ2
2,n

.

Due to γ4,i = γ2,i(1 − 6γ2,i) and 1 − 6γ2,i ∈ [−1/2, 1) for all pi ∈ (0, 1), we have |γ4,i| <
|γ2,i| ∀i = 1, . . . , n =⇒ |Γ4,n| < |Γ2,n|, giving a1,n ≤ Γ−1

2,n/24. However, due to Γ2,n =
n−1Var(X(n)

des) = Θ(1), this only implies a1,n = O(1). In light of Remark 3.2.5, we can
extend the regime of x to x = o(n1/4) to ensure tail equivalence for Xdes. △

Since Theorem 3.2.4 cannot be applied to inversions, we need Theorem 3.2.2 to achieve
tail equivalence. Indeed, this is successful because the components X(n,i)

inv are bounded and
the variance of Xinv is of appropriate magnitude. This argument also works for descents,
but for these, we can use the broader regime x = o(n1/4) according to Remark 3.3.1. We
summarize these observations for the numbers of inversions and descents on classical Weyl
groups as follows, giving the first main result of this thesis.

Theorem 3.3.2. Let (Wn)n∈N be a sequence of classical Weyl groups with rk(Wn) = n

∀n ∈ N. Let (Xnj)j=1,...,kn be a row-wise i.i.d. triangular array with either Xn1
D= Xinv

∀n ∈ N or Xn1
D= Xdes ∀n ∈ N, where:

(a) If Xn1
D= Xinv ∀n ∈ N, then we assume kn = exp

(
o(n1/3)

)
.

(b) If Xn1
D= Xdes ∀n ∈ N, then we assume kn = exp

(
o(n1/2)

)
.

Let Mn := max{Xn1, . . . , Xnkn}. Let µn := E(Xn1), s2
n := Var(Xn1), and

αkn = 1√
2 log kn

, βkn = 1
αn

− 1
2αn

(
log log kn + log(4π)

)
.

Let an := αknsn and bn := βknsn + µn. Then, we have ∀x ∈ R:

P(Mn ≤ anx+ bn) −→ exp
(
− exp(−x)

)
.

Proof. Let Fn be the CDF of Xn1. By Corollary 2.2.5, we know that Xn1 is a sum of n
independent summands. In the case of (Xnj)j=1,...,kn being numbers of inversions, applying
Theorem 3.2.2 separately for each n ∈ N gives

1 − Fn(xsn) = exp
(

−1
2x

2Qn(x)
)(

1 − Φ(x) + ϑλne
−x2/2

)
∀n ∈ N.

The condition λn = O(n−1/2) can be equivalently expressed as |Xk| = O(n−1/2sn). Ac-
cording to Remark 2.1.18, the degrees of classical Weyl groups are bounded by 2n, and
the values of the centered variables X(n,i)

inv − E
(
X

(n,i)
inv

)
are bounded by n. Furthermore,
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3 Extremes of inversions and descents on finite Coxeter groups

sn = O(n3/2) holds due to Theorem 2.2.2. Therefore, the choice of λn = O(n−1/2) is
possible. Upon undoing the centering assumed in Theorem 3.2.2, we obtain according to
Remark 3.2.3:

1 − Fn(µn + sny) ∼ 1 − Φ(y) , for y = o(n1/6) .
Plugging in y = αknx+βkn , and treating x as a constant, the condition αknx+βkn ≪ n1/6

in Theorem 3.2.2 is satisfied due to n ≫ log(kn)3 by assumption (a).

In the case of (Xnj)j=1,...,kn being numbers of descents, Theorem 3.2.4 and Remark 3.3.1
give 1 −Fn(µn + sny) ∼ 1 − Φ(y) for y = o(n1/4), which is satisfied for y = αknx+ βkn by
assumption (b). Hence,

kn
(
1 − Fn(anx+ bn)

)
= kn

(
1 − Fn

(
µn + sn(αknx+ βkn)

))
−→ e−x,

proving the Gumbel attraction of the row-wise maxima Mn in both cases.

Remark 3.3.3. The application of Theorem 3.2.2 fails when we try to extend the regime
of kn. According to [46], if λn = O(n−1/2) and if x is chosen in a way that n1/6 ≪ x ≪ n1/4

in Theorem 3.2.2, then we have

1 − Fn(xsn) ∼ exp
(

−1
2qn,1x

3(1 − Φ(x)
))
, (3.4)

as Qn(x) = qn,1x+
∑∞

ν=2
qn,νx

ν with qn,1 = o(n−1/2). However, n1/2 ≪ x3 ≪ n3/4, giving

exp
(

−1
2x

2Qn(x)
)

= exp
(

−1
2qn,1x

3 + o(1)
)
,

from which (3.4) follows. The first coefficient qn,1 is explicitly stated by Feller [46, Eq.
(2.18)] as

qn,1 = 1
3s3

n

n∑
i=1

E
(
X3

n,i

)
.

Considering the number of inversions on classical Weyl groups, we have s3
n = Θ(n9/2) and

Xn,i ∼ U({0, 1, . . . , di − 1}). The third moment of Xn,i is

E
(
X3

n,i

)
=

di∑
j=0

1
di + 1j

3 = 1
di + 1

d2
i (di + 1)2

4 = d2
i (di + 1)

4 = Θ(d3
i ) .

The degrees of the classical Weyl groups are stated in Remark 2.1.18. We conclude that
n∑

k=1
E
(
X3

n,i

)
= Θ(n4) =⇒ qn,1 = Θ(n−1/2) .

To eliminate −(1/2)qn,1x
3 in (3.4), we need x3 = o(n1/2) =⇒ x = o(n1/6), which contra-

dicts the assumption of x ≫ n1/6. △

As described in Section 3.1, it is equivalent to consider a uniform row-wise i.i.d. triangular
array (Xnj)j=1,...,n, where Xn1 is the number of inversions or descents on some finite
Coxeter group, whose rank is chosen in dependence of n and diverges as n → ∞. Hence,
the ranks are written as r = rn := rk(Wn). Then, by analogy with Theorem 1.2.13, it
follows that r ≫ log(n)3 is necessary to satisfy the assumptions of Theorem 3.2.2 with
xn = αnx + βn. As the sequence (rn)n∈N is divergent, the arguments in the proof of
Theorem 3.3.2 remain valid. Thus, Theorem 3.3.2 can be reformulated as follows:
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Corollary 3.3.4. Let (Wn)n∈N be a sequence of classical Weyl groups with increasing
ranks rn = rk(Wn). Let (Xnj)j=1,...,n be a row-wise i.i.d. triangular array with either
Xn1

D= Xinv ∀n ∈ N or Xn1
D= Xdes ∀n ∈ N, and let Mn := max{Xn1, . . . , Xnn}. Assume

rn ≫ log(n)3 in the case of Xn1
D= Xinv ∀n ∈ N, and assume rn ≫ log(n)3/2 in the case

of Xn1
D= Xdes ∀n ∈ N. Let µn := E(Xn1), s2

n := Var(Xn1), and

αn = 1√
2 logn , βn = 1

αn
− 1

2αn
(
log logn+ log(4π)

)
.

Let an := αnsn and bn := βnsn + µn. Then, we have ∀x ∈ R:

P(Mn ≤ anx+ bn) −→ exp
(
− exp(−x)

)
.

All subsequent EVLTs stated in Sections 3.4, 3.5 and Chapters 4, 5 can be modified in the
same way.

3.4 Arbitrary finite Coxeter groups
In the previous section, we established the EVLT for Xinv and Xdes on sequences of
classical Weyl groups. The EVLT for Xdes is based only on applying Theorem 3.2.4 to
the representation of Xdes given in Corollary 2.2.5b). These arguments hold true for any
sequence finite Coxeter groups where Var(Xdes) grows linearly with respect to the rank,
which is particularly the case for products of classical Weyl groups. Therefore, we can
state:

Theorem 3.4.1. Let (Wn)n∈N be a sequence of finite Coxeter groups with rk(Wn) =
n ∀n ∈ N, which satisfies Var(Xdes) = Θ(n). Let kn = exp

(
o(n1/2)

)
, let (Xnj)j=1,...,kn be

a row-wise i.i.d. triangular array with Xn1
D= Xdes and let Mn := max{Xn1, . . . , Xnkn}.

Let an, bn be as in Theorem 3.3.2. Then,

P(Mn ≤ anx+ bn) −→ exp
(
− exp(−x)

)
∀x ∈ R .

The EVLT for Xinv is based on Theorem 3.2.2. For arbitrary finite Coxeter groups, the
condition |Xk| = O(n−1/2sn) used in the proof of Theorem 3.3.2 is not trivially satisfied.
For inversions, the Xk = X

(n,i)
inv −E

(
X

(n,i)
inv

)
can be bounded by the maximum degree dmax

of Wn. Therefore, this condition is written more descriptively as

dmax ≲
sn√
n
. (3.5)

Using the method of Theorem 3.3.2, we can state a general EVLT for Xinv on sequences
of finite Coxeter groups.

Theorem 3.4.2. Let (Wn)n∈N be a sequence of finite Coxeter groups with n = rk(Wn).
Let kn = exp

(
o(n1/3)

)
, let (Xnj)j=1,...,kn be a row-wise i.i.d. triangular array with Xn1

D=
Xinv and let Mn := max{Xn1, . . . , Xnkn}. Let an, bn be as in Theorem 3.3.2. If the
condition (3.5) holds, then

P(Mn ≤ anx+ bn) −→ exp
(
− exp(−x)

)
∀x ∈ R .

In what follows, we rephrase the condition (3.5) more descriptively for certain products of
finite irreducible Coxeter groups.
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3 Extremes of inversions and descents on finite Coxeter groups

3.4.1 Sequences of products of classical Weyl groups

Let Wn =
∏ln

i=1
Wn,i, where each component Wn,i is a classical Weyl group, and let

n = rk(Wn) = rk(Wn,1) + . . .+ rk(Wn,ln) denote the total rank. Then,

Var
(
XWn

inv

)
=

ln∑
i=1

Var
(
X

Wn,i

inv

)
.

For each n and i, we have Var(XWn,i

inv ) = Θ(rk(Wn,i)). However, the total variance
Var(XWn

inv ) is not of cubic order with respect to n. By Corollary 2.2.5a), Var(XWn
inv )

still has an independent sum representation of n summands. The maximum degree
dmax ≤ 2 max{rk(Wn,1), . . . , rk(Wn,ln)} bounds these summands. Therefore, omitting
the factor 2 without asymptotic consequences, the condition (3.5) now reads

dmax ≲
1√
n

√
rk(Wn,1)3 + . . .+ rk(Wn,ln)3 . (3.6)

This observation yields:

Theorem 3.4.3. Let Wn =
∏ln

i=1
Wn,i be a sequence of products of classical Weyl groups,

and let (Xnj)j=1,...,kn be a row-wise i.i.d. triangular array with Xn1
D= Xinv. Let kn,Mn,

an, bn be as in Theorem 3.3.2. If the condition (3.6) holds, then

P(Mn ≤ anx+ bn) −→ exp
(
− exp(−x)

)
∀x ∈ R .

3.4.2 Sequences of products involving dihedral groups
In this section, we consider sequences Wn =

∏n

i=1
Wn,i of finite Coxeter groups consisting

of dihedral components and classical Weyl group components. Since all dihedral groups
have even-numbered ranks, it is not always feasible to construct a sequence (Wn)n∈N with
ranks covering all natural numbers. However, there is no issue since only the ratio between
the ranks rk(Wn) and the row lengths kn is significant.

Example 3.4.4. If all components are dihedral, i.e.,

Wn =
hn∏
i=1

I2(mn,i)

for some (mn,i)n∈N,i=1,...,n and a sequence (hn)n∈N, then rk(Wn) = 2hn. Therefore, the
condition for applying Theorem 3.3.2 is hn ≫ log(kn)3.

Remark 3.4.5. Regarding Wn as in Example 3.4.4, it has been stated by Kahle &
Stump [66, Corollary 3.2, 4.2] that for products of dihedral groups,

Var(Xinv) =
hn∑
i=1

m2
n,i + 2
12 , Var(Xdes) =

hn∑
i=1

1
mn,i

.

Furthermore, I2(mn,i) has degrees 2,mn,i. Therefore, the degrees of Wn are 2, . . . , 2,
mn,1, . . . ,mn,hn with hn twos. This information is now used to rephrase the condition
(3.5) for mixed products of dihedral groups and classical Weyl groups.
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3.4 Arbitrary finite Coxeter groups

Definition 3.4.6. Let (Wn)n∈N be a sequence of finite Coxeter groups and write Wn =
Gn × In, where Gn contains only classical Weyl group components and In contains only
dihedral components. We use the following notation:

rn := rk(Gn) , Rn := rk(Wn) = rn + 2hn ,

Gn :=
ln∏

i=1
Gn,i , In :=

hn∏
i=1

I2(mn,i) ,

rmax := max{rk(Gn,1), . . . , rk(Gn,ln)} , R2
n :=

ln∑
i=1

rk(Gn,i)3 ,

mmax := max{mn,1, . . . ,mn,hn} , M2
n :=

hn∑
i=1

m2
n,i .

Furthermore, we write XG
inv and XI

inv for the number of inversions in the classical Weyl
group components and in the dihedral components of Wn, respectively. As rk(Wn) =
rn + 2hn, the growth condition is that at least one of rn ≫ log(kn)3 or hn ≫ log(kn)3

holds, i.e., log(kn) ≪ (rn ∨ hn)1/3.

Remark 3.4.7. Regardless of how Gn is composed, Theorem 2.2.2 gives

E(XG
inv) = Θ(r2

n) , Var(XG
inv) = Θ(r3

n) .

Combining this with Remark 3.4.5, we obtain Var(Xinv) = Θ(R2
n + M2

n). We note that
by Theorem 2.1.19,

Ginv(Wn;x) =
Rn∏
i=1

(1 + x+ . . .+ xdi−1) ,

where the degrees di encompass the degrees of the classical Weyl group components
(bounded by 2rmax), hn twos, and the numbers mn1, . . . ,mnhn (bounded by mmax). For
such composed groups, the sufficient condition (3.5) for the Gumbel behavior of Xinv is

rmax ∨mmax = O

(√
R−1

n (R2
n + M2

n)
)
. (3.7)

These observations are summarized as follows:

Theorem 3.4.8. Let Wn = Gn × In be a sequence of finite Coxeter groups, where the
classical components are pooled in Gn and the dihedral components are pooled in In. Let
kn be a sequence of integers satisfying kn = exp

(
o
(
(rn ∨ hn)1/3)). Let (Xnj)j=1,...,kn be a

row-wise i.i.d. triangular array with Xn1
D= Xinv and let Mn := max{Xn1, . . . , Xnkn}. Let

an, bn be as in Theorem 3.3.2. If the condition (3.7) holds, then

P(Mn ≤ anx+ bn) −→ exp
(
− exp(−x)

)
∀x ∈ R .

For products consisting of only dihedral groups, i.e., Gn = ∅ and Wn =
∏hn

i=1
I2(mn,i),

the statement of Theorem 3.4.8 is simplified as follows:

45



3 Extremes of inversions and descents on finite Coxeter groups

Corollary 3.4.9. Let Wn =
∏hn

i=1
I2(mn,i) be a product of dihedral groups and kn =

exp
(
o
(
h

1/3
n
))

. Let (Xnj)j=1,...,kn , Mn, an, bn be as in Theorem 3.4.8. If

mmax ≲ h−1/2
n Mn , (3.8)

then P(Mn ≤ anx+ bn) −→ exp
(
− exp(−x)

)
∀x ∈ R.

Remark 3.4.10. The condition (3.8) is not trivial. Writing the orders of the dihedral
components as a vector mn = (mn,1, . . . ,mn,hn), we get

∥mn∥∞ ≲
1√
n

∥mn∥2 ,

where ∥·∥∞ is the maximum norm and ∥·∥2 is the euclidean norm. Since ∥mn∥∞ ≥
n−1/2∥mn∥2 always holds, the condition (3.8) can be stated more precisely as

∥mn∥∞ = Θ
( 1√

n
∥mn∥2

)
.

Remark 3.4.11. Regarding the EVLT for Xdes on sequences of mixed products of Cox-
eter groups, we require Var(Xdes) = Θ(rn) + ∑hn

i=1m
−1
n,i

!= Θ(Rn) according to Theo-
rem 3.4.1. This is particularly satisfied if all mn,i are uniformly bounded.

3.5 Universal EVLT for other permutation statistics
The results of the previous section can be summarized as follows: For the number of
descents, we have the EVLT on all finite Coxeter groups by Theorem 3.4.1. For the
number of inversions, we have the EVLT on classical Weyl groups and composed finite
Coxeter groups satisfying the regularity condition (3.5) by Theorem 3.4.2. However, the
methods from large deviations theory employed for these results have specific requirements
that are not satisfied in many situations. For the theorems introduced in Section 3.2, it
is essential to have an independent sum decomposition, which is commonly derived from
a factorization of the generating function for permutation statistics. For the two-sided
Eulerian statistic XT introduced in Definition 2.3.4, there is no explicit formula for its
generating function, and no independent decomposition of XT is available so far.

Moreover, each of the theorems in Section 3.2 imposes further technical assumptions. For
example, the variances must have a suitable order to satisfy the control condition (3.1) in
Theorem 3.2.2. The number of cycles on symmetric groups is an example of a permuta-
tion statistic whose generating function provides an independent sum decomposition, but
the control condition (3.1) is not satisfied. For n-permutations, the number of cycles is
commonly written as K0n. According to [3, Eq. 1.27], the generating function of K0n is

GK0n(x) =
n∏

j=1

(
1 − 1

j
+ x

j

)
,

therefore,

K0n =
n∑

j=1
Bin

(
1, 1
j

)
, (3.9)
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3.5 Universal EVLT for other permutation statistics

which is an independent sum. However, it implies

Var(K0n) =
n∑

j=1

j − 1
j2 = log(n)(1 + o(1)) .

The variance is too small to satisfy (3.1) with λn = O(n−1/2). This also violates the
condition (3.3), so Theorem 3.2.4 cannot be applied as well.

If the number of i.i.d. samples kn in each row of a triangular array grows sufficiently slowly,
then the CLT suggests that the rows with large kn behave similarly to the standard normal
distribution. In that case, it turns out that tail equivalence and Gumbel attraction can
already be obtained from Berry–Esseen’s bound. This gives a weaker but universal EVLT
for a very broad class of families of distributions, including other permutation statistics
such as the examples mentioned above. In other words, this EVLT strongly narrows down
the possible sequences of distributions (Fn)n∈N for which a triangular array of any size is
not attracted to the Gumbel distribution.

Theorem 3.5.1. Let F1, F2, . . . be a sequence of distributions which satisfy the Berry–
Esseen bound

sup
x∈R

∣∣∣∣Fn(x) − E(Fn)
σ(Fn) − Φ(x)

∣∣∣∣ = O(n−1/2) ,

where Φ is the CDF of N(0, 1). Let (Xnj)j=1,...,kn be a triangular array with Xn1 ∼ Fn

and let Mn, an, bn be as in Theorem 3.3.2. If kn = O(nε) for some ε < 1/2, then

P(Mn ≤ anx+ bn) −→ exp(− exp(−x)) .

Proof. Let Yn := σ(Xn1)−1 (Xn1 − E(Xn1)) and Z ∼ N(0, 1). Then, the Berry–Esseen
bound is equivalent to

sup
x∈R

|P(Yn > x) − P(Z > x)| = O(n−1/2) . (3.10)

Now, we replace x with xn := αknx + βkn for fixed x, with αkn , βkn as in Theorem 3.3.2.
Tail equivalence means

P(Yn > xn)
P(Z > xn) = 1 + o(1) ⇐⇒ 1 + P(Yn > xn) − P(Z > xn)

P(Z > xn) = 1 + o(1) .

In light of (3.10), we have to show P(Z > xn) ≫ n−1/2. For monotonicity reasons, we can
also assume that kn = ω(nδ) for some δ > 0. From Mill’s Ratio (see [76]), we can deduce

P(Z > xn) = 1 − Φ(αknx+ βkn)

∼ 1
αknx+ βkn

φ(αknx+ βkn)

= O

(
1√

log(n)

)
φ

(
x√

2ε log(n)
+
√

2ε log(n) − log(4πε log(n))
2
√

2ε log(n)

)

= O

(
1√

log(n)

)
exp

(
−ε log(n) − 1

2 log(4πε log(n)) +O

(
log(log(n))2

log(n)

))

= O

(
1√

log(n)

)
n−ε(1 + o(1)) ,
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3 Extremes of inversions and descents on finite Coxeter groups

from which it follows that P(Z > xn) ≫ n−1/2. From here, the proof continues the same
way as in Theorem 3.3.2.

Remark 3.5.2. In particular, there is no asymptotically normal permutation statistic
whose row-wise maximum is never attracted to the Gumbel distribution. Since permu-
tation statistics are defined on finite probability spaces, the CLT commonly implies the
Berry-Esseen bound.

Remark 3.5.3. The Berry-Esseen bound is a bound of the Kolmogorov distance:

dK(Yn, Z) = sup
x∈R

|P(Yn ≤ x) − P(Z ≤ x)| ,

where Yn and Z are given as in the proof of Theorem 3.5.1. In general, we can state that
if dK(Yn, Z) = O(n−r), with 0 < r ≤ 1/2, then Theorem 3.5.1 holds for any kn = O(nε)
with 0 < ε < r. In many situations, the Berry-Esseen bound is obtained not for the
Kolmogorov distance, but for the Wasserstein distance:

dW (Yn, Z) =
∫
R

|Fn(x) − Φ(x)|dx != O(n−1/2) .

For instance, [20] shows this bound for the two-sided Eulerian statistic XT . By a standard
argument (see, e.g., [65, Lemma 2]), it holds that dK(Yn, Z) ≤ 2

√
dW (Yn, Z), which means

that dW (Yn, Z) = O(n−1/2) implies dK(Yn, Z) = O(n−1/4), and Theorem 3.5.1 holds with
kn = O(nε), 0 < ε < 1/4.

3.6 Open questions
Besides the aforementioned examples, there are many more interesting permutation statis-
tics. An elaborate list of these is provided within the database [95]. Moreover, there are
other algebraic, combinatorial, and probabilistic structures related to symmetric groups
and the numbers of inversions and descents. In many cases, the random quantities are
asymptotically normal and satisfy the Berry–Esseen bound, which yields a Gumbel be-
havior by Theorem 3.5.1 with a low bound on kn. For each of these cases, it is an open
question to obtain a subexponential bound on kn, or at least one that permits the uniform
triangular array. We give a few interesting examples with application interest.

Multisets: Conger & Viswanathan [27] studied the CLT for Xinv and Xdes on permuta-
tions of multisets. A multiset takes the form M := {1n1 , 2n2 , . . . , hnh} with n1, . . . , nh ∈ N
and n1 + . . .+ nh = n. The permutations of this multiset are all maps π: {1, . . . , n} → M
with |π−1(i)| = ni ∀i = 1, . . . , h. The numbers of inversions and descents on multisets are
defined analogously to Definitions 2.1.1 and 2.1.2. The CLT on multisets is proved by use
of size-bias couplings in [27, Theorems 2.12 and 2.16].

Conjugacy classes: The symmetric groups, as well as any other finite Coxeter groups,
can be decomposed into their conjugacy classes. The conjugacy class of any π ∈ Sn is
given by {σ−1πσ | σ ∈ Sn}. It is well known that the conjugacy class of π ∈ Sn is
identified by its cycle structure, and that there is a one-to-one relation between conjugacy
classes and partitions (n1, . . . , nn) with n1, . . . , nn ∈ {0, . . . , n} and

∑n

i=1
ini = n. The

asymptotic normality of Xdes has been studied for certain sequences of conjugacy classes.
See, e.g., [50] for conjugacy classes corresponding to large cycles, and more recently, [67]
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3.6 Open questions

for conjugacy classes where the ratio of fixed points α1(n) := n1/n converges to some
α ∈ [0, 1].

Parabolic double cosets: For any group G and two subgroups H,K ⊆ G, the double
cosets are the sets HgK = {hgk | h ∈ H, k ∈ K} for fixed g ∈ G, and the set of double
cosets is denoted by H\g/K := {HgK | g ∈ G}. This is a concept similar to conjugacy
classes. For a symmetric group Sn, the parabolic subgroups are given by Sλ := Sλ1×. . .×SλI

for all partitions λ = (λ1, . . . , λI), where λ1 ≥ . . . ≥ λI ≥ 1 and λ1 + . . .+λI = n. Paguyo
[83] studied the double cosets Sλ\Sn/Sµ for any two parabolic subgroups Sλ, Sµ, and
found that for short partitions with I = o(n), the numbers of inversions and descents
on a sequence of parabolic double cosets Sλ\Sn/Sµ are asymptotically normal, see [83,
Theorems 1.2 and 1.4]. By use of Stein’s method and dependency graphs (cf. [60, Theorem
3.5]), these results also give an O(n−1/2) bound for the Kolmogorov distance, for which
we can apply Theorem 3.5.1.

Mallows distribution: All probabilistic results on finite Coxeter groups presented so far
are based on drawing elements of these groups uniformly at random. However, there are
other interesting probability distributions and random structures on these groups. Jimmy
He [58] studied the CLT for the two-sided Eulerian statisticXT under the so-called Mallows
distribution µq, q ∈ (0,∞). This family of distributions dates back to [74]. See, e.g., [102]
for a description of the Mallows model and its application interest. The probability mass
function of µq is weighted by the number of inversions, i.e., for any element π of a finite
Coxeter group,

Pµq ({π}) := qinv(π)

Zn(q) ,

where Zn(q) is a normalization constant. If W = Sn is a symmetric group, then Zn(q) can
be explicitly stated as the q-factorial Zn(q) = [n]q! :=

∏n−1
k=1

(1 + q + . . .+ qk). Obviously,
q = 1 gives the uniform distribution. If q is small, then the distribution is concentrated
around the neutral element. Furthermore, µq and µ1/q are equidistributed, so it is sufficient
to consider q ∈ (0, 1] (see [58, Proposition 2.6]).

Jimmy He proved the asymptotic normality of XT and (Xdes, Xides) on symmetric groups
for fixed q, as well as for some regimes of variable q (see [58, Theorems 1.1 and 1.2]).
A major part of this work is devoted to the limiting correlation ρ := limn→∞ corr(Xdes,
Xides), which is strictly positive for all q < 1. Similar to [27], the CLT is proved by
constructing a size-bias coupling. Very recently, this method was transferred by Maxwell
Sun [101] to the other classical Weyl groups Bn and Dn. A general classification of the
validity of the CLT in the sense of [66] seems feasible, although in the existing proofs, the
estimates required for the error terms in Stein’s method are very laborious.
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4 CLT and extremes of multivariate
permutation statistics

In the previous chapter, we successfully proved that the extreme values of inversions or
descents are attracted to the Gumbel distribution for most finite Coxeter groups, including
the irreducible classical Weyl groups. In contrast to these individual statistics, we now
aim to understand the asymptotic behavior of the joint permutation statistic(

Xinv
Xdes

)
.

In Section 2.3, we already introduced its CLT on the family of symmetric groups by Fang
& Röllin [45]. It achieves an O(n−1/2) rate of convergence for arbitrarily large tuples of
doubly indexed permutation statistics, but it cannot be generalized to other classical Weyl
groups.

Corollary 2.2.5 gives a decomposition of both Xinv and Xdes into independent random
variables, by decomposing their generating functions into simple polynomials. However, it
is not possible to extend this statement to their joint distribution. Inversions and descents
are not independent of one another. This is already clear from the fact that descents
are special cases of inversions, and also established by the fact that the joint generating
function

An(s, t) :=
∑

π∈Sn

sinv(π)tdes(π)

does not factor into the polynomials given in Theorems 2.1.19 and 2.1.20. It is an interest-
ing question whether An(s, t) factors at all. We have tested a few values of s, t for n = 3
or n = 4, but no regularity has been detected so far.

Our goal is to obtain both a CLT and an EVLT for the joint distribution (Xinv, Xdes)⊤.
While Janson’s dependency criterion [64, Theorem 2] allows to prove the CLT for Xinv,
there is no multivariate version that allows to prove the CLT for (Xinv, Xdes)⊤. Due to
the dependence between Xinv and Xdes, we cannot derive an independent decomposition
of (Xinv, Xdes)⊤ from Corollary 2.2.5. Moreover, to the best of our knowledge, there is no
multivariate equivalent of the large deviations theorems in Section 3.2 that works for our
purposes. Therefore, we cannot reuse the proof methods employed in Chapter 3. We need
a different approach.

Recall that by (2.2),

Xinv =
∑

1≤i<j≤n

1{Zi > Zj} , Xdes =
n−1∑
i=1

1{Zi > Zi+1}

for i.i.d. Z1, . . . , Zn ∼ U(0, 1). Based on these representations, the dependence between
Xinv and Xdes will be tackled by replacing Xinv with its so-called Hájek projection X̂inv

51



4 CLT and extremes of multivariate permutation statistics

based on Z1, . . . , Zn. We will justify that the extremes of (Xinv, Xdes)⊤ can be traced back
to those of (X̂inv, Xdes)⊤. This process will lead to Theorem 4.4.1, the second main result
of this thesis.

In Section 4.1, we investigate the Hájek projection of inversions and descents on symmetric
groups, and in Section 4.2 we extend these observations to other classical Weyl groups.
These groups are also equipped with a new family of probability measures, namely, the
so-called p-biased signed permutations. In Section 4.3, we introduce a powerful Gaussian
approximation by Chang et al. [17], which gives a new proof of the CLT for (Xinv, Xdes)⊤.
Compared to [45], this approach achieves a weaker rate of convergence, but it also applies
to other classical Weyl groups. The new EVLT for (Xinv, Xdes)⊤ is presented in detail in
Section 4.4, which also discusses applications to other permutation statistics. Section 4.5
proposes some open questions suggested by simulations. Section 4.6 gathers the proofs of
several lemmas in this chapter and the code of the simulations in Section 4.5.

4.1 The Hájek projection of inversions and descents
Instead of finding an exact decomposition of (Xinv, Xdes)⊤ into independent summands,
we use an independent sum that gives a close enough approximation.

Definition 4.1.1. Let Z1, . . . , Zn be independent random variables, and let S be the
vector space of all

∑n

i=1
gi(Zi) with real-valued functions g1, . . . , gn and E(g2

i (Zi)) < ∞.
This is a subspace of the space of all square-integrable random variables. The projection of
a random variable X onto S is called the Hájek projection of X (with respect to Z1, . . . , Zn)
and it is explicitly given by

X̂ :=
n∑

k=1
E(X | Zk) − (n− 1)E(X) .

The subtrahend ensures unbiasedness, i.e., E(X̂) = E(X). By the factorization lemma
(also known as the Doob-Dynkin lemma, see, e.g., [90]), every E(X | Zk) is a function of
only Zk. Therefore, the Hájek projection gives a sum of independent random variables. In
applications, we have a sequence X1, X2, . . . of random variables or vectors built on another
sequence Z1, Z2, . . . of independent variables. To decide whether the Hájek projection is
a sufficiently accurate approximation, the following criterion is useful.

Theorem 4.1.2. (cf. [104], Theorem 11.2)
Let (Zn)n∈N be a sequence of independent random variables, let (Xn)n≥1 be another se-
quence of random variables and let X̂n be the Hájek projection of Xn with respect to
Z1, . . . , Zn for each n ∈ N. If Var(X̂n) ∼ Var(Xn) as n → ∞, then

Xn − E(Xn)
σ(Xn) = X̂n − E(X̂n)

σ(X̂n)
+ oP(1) .

Thus, Theorem 4.1.2 states that if Var(X̂n) is approximately equal to Var(Xn), then the
standardizations of Xn and X̂n have the same asymptotics, since their difference vanishes
in probability. If the condition of Theorem 4.1.2 is satisfied, then we also say that the Hájek
approximation is successful. In particular, if (X̂n)n∈N satisfies a CLT, then Theorem 4.1.2
guarantees that (Xn)n∈N also satisfies a CLT.
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4.1 The Hájek projection of inversions and descents

In what follows, for a random variable X, we write Y for its standardization, that is,
Y =

(
X−E(X)

)
/σ(X). All occurring variances are guaranteed to be finite. In particular,

Yinv and Ydes are the standardizations of Xinv and Xdes, respectively, and Ŷinv is that of
X̂inv. The dependence of these variables on the underlying Coxeter group or its rank is
suppressed unless needed for clarification.

Next, we provide the Hájek projection of Xinv and verify the condition of Var(Xinv) ∼
Var(X̂inv) stated in Theorem 4.1.2.

Lemma 4.1.3. The Hájek projection X̂inv of Xinv is given by

X̂inv = n(n− 1)
4 +

n∑
k=1

(n− 2k + 1)Zk ,

and it holds that Var(Xinv) ∼ Var(X̂inv) as n → ∞.

Proof. By definition, the Hájek projection of Xinv based on Z1, . . . , Zn is

X̂inv =
n∑

k=1
E(Xinv | Zk) − (n− 1)E(Xinv) .

We first consider the conditional means E(Xinv | Zk) for k = 1, . . . , n and get

E(Xinv | Zk) =
∑

1≤i<j≤n

P(Zi > Zj | Zk) =
∑

1≤i<j≤n


1/2, k /∈ {i, j}
Zk, k = i

1 − Zk, k = j

.

We fix k ∈ {1, . . . , n} and analyze the frequency of the three cases listed on the right-
hand side. As {1, . . . , n} \ {k} has cardinality n − 1, there are

(n−1
2
)

subsets {i, j} ⊆
{1, . . . , n} \ {k}. For each of these, we have P(Zi > Zj | Zk) = P(Zi > Zj) = 1/2 for
independence reasons.

The non-trivial contributions arise in the other two cases. In case of i = k, there are n−k
indices j with j > k, for which we have P(Zk > Zj | Zk) = P(Zj < Zk | Zk) = Zk, since
Zk ∼ U(0, 1). Likewise, in case of j = k, there are k − 1 indices i with i < k, which gives
P(Zi > Zk | Zk) = P(Zi > Zk) = 1 −Zk. These contributions are illustrated in Figure 4.1.

i = 1 i = k − 1 j = k + 1k j = n

1− Zk 1− Zk Zk Zk

aaaaaaaaaaaa︸ ︷︷ ︸
(k−1) times

aaaaaaaaaaaaa︸ ︷︷ ︸
(n−k) times

Figure 4.1: Display of the non-trivial contributions to E(Xinv | Zk) stemming from (i, k),
i = 1, . . . , k − 1 (red), and (k, j), j = k + 1, . . . , n (blue).
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4 CLT and extremes of multivariate permutation statistics

Therefore, we obtain

E(Xinv | Zk) = 1
2

(
n− 1

2

)
+ (n− k)Zk + (k − 1)(1 − Zk)

= 1
2

(
n− 1

2

)
+ (n− 2k + 1)Zk + (k − 1) ,

from which we deduce that

X̂inv =
n∑

k=1
E(Xinv | Zk) − (n− 1)E(Xinv)

= n

2

(
n− 1

2

)
+

n∑
k=1

(n− 2k + 1)Zk +
n∑

k=1
(k − 1) − n− 1

2

(
n

2

)

= 1
2

(
n

2

)
+

n∑
k=1

(n− 2k + 1)Zk . (4.1)

The (n− 2k+ 1)Zk are multiples of U(0, 1) that add up pairwise to U(−j, j) with j being
odd if n is even and vice versa, as displayed in Figure 4.2.

k
1 2 3 4 5

n− 2k + 1

−4

−3

−2

−1

0

1

2

3

4

n odd n even

k
1 2 3 4

n− 2k + 1

−4

−3

−2

−1

0

1

2

3

4

U(−2, 2)

U(−4, 4)

U(−1, 1)

U(−3, 3)

Figure 4.2: Display of the coefficients of Zk appearing in X̂inv. They add up in pairs to
some U(−j, j) with j even (left) or j odd (right). These pairs are highlighted
in red and blue, respectively.

According to (4.1) and the independence of the Zk, the variance of the Hájek projection
is given by

Var(X̂inv) =
n∑

k=1
Var

(
(n− 2k + 1)Zk

)
.

54
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Due to Var(Zk) = 1/12, the result is

Var(X̂inv) = 1
12

n∑
k=1

(2k − n− 1)2

= 1
12

n∑
k=1

(
4k2 + (n+ 1)2 − 4k(n+ 1)

)
= 1

12

(
4

n∑
k=1

k2 + n(n+ 1)2 − 4(n+ 1)n(n+ 1)
2

)

= 1
12

(
4n(n+ 1)(2n+ 1)

6 + n(n+ 1)2 − 2(n+ 1)2n

)
= 1

12

(4
3n

3 − n3 +O(n2)
)

= 1
36n

3 − 1
3n .

By Theorem 2.2.2, we have Var(Xinv) = 1
36n

3 + 3n2 − 5n
72 and therefore Var(Xinv) ∼

Var(X̂inv) as n → ∞.

Remark 4.1.4. Interestingly, this approach fails for the descent statistic Xdes. Repeating
the considerations in the proof of Lemma 4.1.3 for descents, we first obtain

E(Xdes | Zk) =
n−1∑
i=1

P(Zi > Zi+1 | Zk) =
n−1∑
i=1


1/2, k /∈ {i, i+ 1}
Zk, k = i

1 − Zk, k = i+ 1
.

Now, except for the boundary cases k = 1 and k = n, the summands for k = i and k = i+1
are each used exactly once, so the Zk in their sum Zk + (1 − Zk) cancel out, leaving a
constant. In total, we obtain

X̂des = Z1 + (1 − Zn) + const =⇒ Var(X̂des) = 2
12 ,

so the variance is not of the linear order of Var(Xdes) stated in Theorem 2.2.3, which
means Theorem 4.1.2 is not applicable. Hence, we do not obtain a fully independent
sum decomposition of (Xinv, Xdes)⊤. However, the success of the Hájek approximation for
inversions is still sufficient for our needs, due to the following observation.

Obviously, Xdes =
∑n−1

i=1
1{Zi > Zi+1} is a sum of m-dependent random variables (to

be precise, m = 1). The representation of inversions is not m-dependent, but its Hájek
projection provides a close independent sum approximation. Therefore, our findings in this
chapter will be based on the following consequence of Theorem 4.1.2 and Lemma 4.1.3:

Corollary 4.1.5. For the standardized random vector (Yinv, Ydes)⊤ and the standardized
Hájek projection Ŷinv, we have (

Yinv
Ydes

)
=
(
Ŷinv
Ydes

)
+ oP(1) .
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4 CLT and extremes of multivariate permutation statistics

A decomposition of (X̂inv, Xdes)⊤ into 1-dependent summands is given by

(
X̂inv
Xdes

)
=

n−1∑
k=1

(
(n− 2k + 1)Zk

1{Zk > Zk+1}

)
+
(

(1 − n)Zn + n(n− 1)/4
0

)
.

Accordingly, a 1-dependent decomposition of (Ŷinv, Ydes)⊤ can be found by standardization.

4.2 Signed and even-signed permutation groups

Now, we obtain the Hájek approximation statement from Lemma 4.1.3 and Corollary 4.1.5
for the signed and even-signed permutation groups Bn and Dn. Recall the introduction
of these groups in Definitions 2.1.11 and 2.1.12, as well as the counting of inversions
and descents described in Remarks 2.1.15 and 2.1.16. Moreover, recall the notations
XB

inv, X
B
des, X

D
inv and XD

des, and the representations given in Remark 2.2.1, in particular,

XB
inv =

∑
1≤i<j≤n

1{Zi > Zj} +
∑

1≤i<j≤n

1{−Zi > Zj} +
n∑

i=1
1{Zi < 0} , (4.2a)

XD
inv =

∑
1≤i<j≤n

1{Zi > Zj} +
∑

1≤i<j≤n

1{−Zi > Zj} . (4.2b)

The third sum, which appears exclusively in XB
inv, has only one summation index and

turns out to be negligible for the asymptotic order of Var(XB
inv). In fact, according to

Theorem 2.2.2, both Var(XB
inv) and Var(XD

inv) satisfy

Var(XB
inv),Var(XD

inv) = n3

9 +O(n2) .

Lemma 4.2.1. (see Section 4.6.1 for the proof)
Let Xinv denote the number of inversions on either Bn or Dn, and let X̂inv denote its
Hájek projection. Then, again, Var(Xinv) ∼ Var(X̂inv), and after standardization,

Yinv = Ŷinv + oP(1) .

Remark 4.2.2. Recall that by Remark 2.2.1,

XB
des =

n−1∑
k=1

1{Zk > Zk+1} + 1{Z1 < 0} , (4.3a)

XD
des =

n−1∑
k=1

1{Zk > Zk+1} + 1{−Z2 > Z1} . (4.3b)

Again, this gives an m-dependent representation of Xdes with m = 1. So overall, there
is an m-dependent representation of (X̂inv, Xdes)⊤. Furthermore, since XB

des and XD
des are

constructed similarly to Xdes on Sn, the Hájek approximation of XB
des or XD

des fails for the
same reasons as given in Remark 4.1.4.
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4.2 Signed and even-signed permutation groups

4.2.1 Asymptotic vanishing of correlation
The covariance matrix of (Xinv, Xdes)⊤ is not the identity matrix. However, we now show
that on all classical Weyl groups, the correlation of Xinv and Xdes vanishes in the limit.
This means that if a normal limit of (Yinv, Ydes)⊤ exists, then it is the bivariate standard
normal distribution. Moreover, we show that the asymptotic vanishing of correlation
applies to (Ŷinv, Ydes)⊤ as well. Then, in light of Remark 4.2.2 and Theorem 1.3.10, we can
work towards proving both a CLT and an EVLT for (Xinv, Xdes) using standard Gaussian
approximation. In order to proceed, we need the covariance of X̂inv and Xdes. In this
process, we also calculate Cov(Xinv, Xdes), since to the best of our knowledge, this result
is not available in the literature.

Lemma 4.2.3. (see Sections 4.6.2 and 4.6.3 for the proof)
Let W be one of the classical Weyl groups Sn, Bn, or Dn, and consider the random variables
Xinv, Xdes, X̂inv on W . Then,

(a) Cov(Xinv, Xdes) =
{

(n− 1)/4, W = Sn

n/4, W = Bn, Dn

.

(b) Cov(X̂inv, Xdes) =


(n− 1)/6, W = Sn

(n− 1)/6 + 1/4, W = Bn

(n− 2)/12, W = Dn

.

Corollary 4.2.4. Since Var(Xinv)Var(Xdes) = Θ(n4) according to Theorems 2.2.2 and
2.2.3, and since the same holds true if Var(Xinv) is replaced with Var(X̂inv), we conclude
from Lemma 4.2.3 that

corr(Xinv, Xdes) = Cov(Xinv, Xdes)
σ(Xinv)σ(Xdes)

= Θ(1/n) ,

corr(X̂inv, Xdes) = Θ(1/n) , n → ∞ .

4.2.2 Signs with random bias
So far, we have assumed that all elements of a signed permutation group are drawn uni-
formly at random, which implies an equally probable choice of positive and negative signs.
On the groups Bn and Dn, we can use a biased choice of the signs, saying that each entry
k ∈ {1, . . . , n} receives a negative sign with probability p ∈ [0, 1] and a positive sign with
probability 1 − p. This gives rise to a family of probability measures on Bn and Dn, in
which the case p = 1/2 corresponds to the uniform distribution, while in the case p = 0,
all mass is on the symmetric group Sn ⊆ Bn, Dn. In a probabilistic sense, we obtain a
continuous transition between the symmetric groups and the other classical Weyl groups.

Definition 4.2.5. Let p ∈ [0, 1] and q := 1 − p. Then, the group of p-biased signed
permutations is the group Bn equipped with the probability measure according to the
above, i.e., for any π ∈ Bn (using the convention 00 := 1),

P({π}) = 1
n!p

neg(π)qn−neg(π) ,

where neg(π) denotes the number of negative signs in π. Therefore, the entries of π can
be represented by random variables Z1, . . . , Zn ∼ U ·R(p), where U ∼ U(0, 1) and R(p) is
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4 CLT and extremes of multivariate permutation statistics

independent of U with

P(R(p) = −1) = p , P(R(p) = 1) = q .

For the distribution of U · R(p), we simply write GR(p) (generalized Rademacher with
parameter p). The CDF of this distribution is

Fp(z) =
{
pz + p, −1 ≤ z ≤ 0
qz + p, 0 ≤ z ≤ 1

.

Accordingly, the Lebesgue density is

fp(z) = p1{−1 < z < 0} + q1{0 < z < 1} .

A corresponding probability distribution on the even-signed permutation group Dn is
obtained by first choosing the unsigned permutation |π| ∈ Sn uniformly at random, and
then assigning n−1 signs for the entries π(1), . . . , π(n−1) with p-bias, and finally specifying
the sign of π(n) so that there is an even number of negative signs.

Example 4.2.6. Note the special cases GR(0) = U(0, 1), GR(1/2) = U(−1, 1) and
GR(1) = U(−1, 0). Figure 4.3 illustrates Fp for p = 1/4 and p = 3/4.

z

−1/4−2/4−3/4−1 10 3/42/41/4

Fp(z)

1

3/4

2/4

1/4

Figure 4.3: Probability distribution functions of generalized Rademacher distributions for
p = 1/4 (blue) and p = 3/4 (red).

Remark 4.2.7. The representations (4.2a), (4.2b) for inversions and (4.3a), (4.3b) for
descents are still valid. We recalculate the mean and the variance of the number of
inversions for all p. First, we observe that for any i < j,

P(−Zi > Zj) = P(−Zi > Zj , Zi > 0, Zj > 0)︸ ︷︷ ︸
= 0

+ P(−Zi > Zj , Zi < 0, Zj < 0)︸ ︷︷ ︸
= p2

+ P(−Zi > Zj , Zi > 0, Zj < 0) + P(−Zi > Zj , Zi < 0, Zj > 0)
= p2 + P(Zi > 0, Zj < 0, Zi < |Zj |) + P(Zi < 0, Zj > 0, |Zi| > Zj)

= p2 + 1
2pq + 1

2pq = p2 + pq = p .

58



4.2 Signed and even-signed permutation groups

Then, it follows directly from (4.2a) and (4.2b) that

E
(
XB

inv

)
=
(
n

2

)(
p+ 1

2

)
+ np , E

(
XD

inv

)
=
(
n

2

)(
p+ 1

2

)
.

Lemma 4.2.8. (see Section 4.6.4 for the proof)
On the p-biased (even-)signed permutation groups, we have

Var
(
XB

inv

)
=
(

−1
3p

2 + 1
3p+ 1

36

)
n3 +

(
−1

2p
2 + 1

2p+ 1
24

)
n2

+
(

−1
6p

2 + 1
6p− 5

72

)
n ,

Var
(
XD

inv

)
=
(

−1
3p

2 + 1
3p+ 1

36

)
n3 +

(1
2p

2 − 1
2p+ 1

24

)
n2

+
(

−1
6p

2 + 1
6p− 5

72

)
n .

In particular, this corresponds with Theorem 2.2.2 if p = 0 or p = 1/2. For the variance
of the Hájek projection, we fortunately get the same leading term for all p.

Lemma 4.2.9. (see Section 4.6.5 for the proof)
On the p-biased (even-)signed permutation groups, we also have

Var(X̂inv) =
(

−1
3p

2 + 1
3p+ 1

36

)
n3 +O(n2) ,

so Theorem 4.1.2 applies again.

The leading term, as a function of p, has no roots in [0, 1] and assumes its global maximum
at p = 1/2, which is the unbiased case. This means that the order of Var(Xinv) and
Var(X̂inv) is guaranteed to be cubic.

From Lemma 4.2.9, we obtain an extension of Corollary 4.1.5, which we present as a
general statement for all three families of classical Weyl groups.

Corollary 4.2.10. Let W be a classical Weyl group of rank n. Let

Z0 :=


−∞, W = Sn

0, W = Bn

−Z2, W = Dn

.

Then,(
X̂inv
Xdes

)
=
(
E(Xinv | Z1)
1{Z0 > Z1}

)
+ . . .+

(
E(Xinv | Zn−1)

1{Zn−2 > Zn−1}

)
+
(
E(Xinv | Zn)−(n−1)E(Xinv)

1{Zn−1 > Zn}

)

is a 1-dependent decomposition of (X̂inv, Xdes)⊤, in analogy to Corollary 4.1.5. On Bn

and Dn, this applies with any sign bias.

59



4 CLT and extremes of multivariate permutation statistics

Lemma 4.2.11. (see Section 4.6.6 for the proof)
The statement of Corollary 4.2.4 extends to the groups Bn and Dn with any sign bias. To
be precise,

Cov(XB
inv, X

B
des) = Cov(XD

inv, X
D
des) = n− 1

4 + pq ,

Cov(X̂B
inv, X

B
des) = n− 1

6 + pq ,

Cov(X̂D
inv, X

D
des) = (n− 1)

(
−2

3p
2 + p

6 + 1
6

)
− 5

6pq − p

4 .

4.2.3 Products of classical Weyl groups
At last, we investigate whether the Hájek projection of Xinv works on products of classical
Weyl groups. Let W =

∏l

i=1
Wi be such a product, where each Wi is one of the groups Sn,

Bn, or Dn. Then, by Remark 2.2.4, we know that

XW
inv =

l∑
i=1

XWi
inv

is a sum of independent random variables, yielding

Var(XW
inv) =

l∑
i=1

Var(XWi
inv) .

Let XWi
inv be constructed from Z

(i)
1 , . . . , Z

(i)
ni , where ni denotes the number of elements

on which the group Wi acts, and each Z
(i)
j is GR(pi) for some pi ∈ [0, 1], and the entire

collection of all Z(i)
j is independent. Setting n := n1 + . . .+nl, the overall Hájek projection

X̂W
inv of XW

inv is

X̂W
inv =

l∑
i=1

ni∑
j=1

E
(
XW

inv | Z(i)
j

)
− (n− 1)E(XW

inv) .

The conditional mean E
(
XW

inv | Z(i)
j

)
can be decomposed further into

E
(
XW

inv | Z(i)
j

)
=

l∑
k=1

E
(
XWk

inv | Z(i)
j

)
.

If k ̸= i, then XWk
inv is independent of Z(i)

j , which means E
(
XWk

inv | Z(i)
j

)
= E(XWk

inv ) is
constant in this case. We therefore obtain

Var(X̂W
inv) =

l∑
i=1

ni∑
j=1

Var
(
E
(
XWi

inv | Z(i)
j

))
︸ ︷︷ ︸

= Var(X̂Wi
inv )

=
l∑

i=1
Var(X̂Wi

inv) .

For any Wi, we have Var(XWi
inv) ∼ Var(X̂Wi

inv). Furthermore, all variances are cubic as seen
in Theorem 2.2.2 and Lemma 4.2.9, i.e., we have

Var(XWi
inv),Var(X̂Wi

inv) = cin
3
i +O(n2

i ) ,
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where ci = −1
3p

2
i + 1

3pi + 1
36. It is seen from the proofs of Lemma 4.1.3 and Lemma 4.2.9

that Var(Xinv) and Var(X̂inv) differ in their quadratic terms, i.e., Var(Xinv)−Var(X̂inv) =
Θ(n2). So, we can write

Var(XW
inv) =

l∑
i=1

cin
3
i + αin

2
i +O(ni) ,

Var(X̂W
inv) =

l∑
i=1

cin
3
i + βin

2
i +O(ni) , (4.4)

with αi ̸= βi for all i.

Consider a sequence (Wn)n∈N of products as introduced above, assuming that the number
l of components remains bounded. Then, it is seen that the equivalence of Var(XW

inv) and
Var(X̂W

inv) is preserved, since the cubic terms are equal and cannot be dominated by the
quadratic terms.

Corollary 4.2.12. Due to the above considerations, Var(XW
inv) ∼ Var(X̂W

inv) and Y W
inv =

Ŷ W
inv + oP(1) hold for finite products of classical Weyl groups.

4.3 High-dimensional Gaussian approximation and CLT
In the following, we first establish a CLT and then an EVLT for (Xinv, Xdes)⊤ by using the
1-dependent decomposition of (X̂inv, Xdes)⊤ given in Corollary 4.2.10, and by applying a
recent CLT for m-dependent triangular arrays by Chang et al. [17]. In the proof of the
univariate EVLT for Xinv and Xdes (see Theorems 3.3.2, 3.4.1, and 3.4.2), it was essential
to establish tail equivalence to the standard normal distribution. In other words, we
obtained a Gaussian approximation of the tails of Xinv and Xdes. Accordingly, we need a
Gaussian approximation of the tail of the joint bivariate distribution.

The classical CLT states that for a sequence or a triangular array (Xn)n∈N ⊆ Rd and an
appropriate d-variate normal distribution N ,

sup
x∈Rd

|P(Xn ≤ x) − P(N ≤ x)| = sup
A=(−∞,x]d

|P(Xn ∈ A) − P(N ∈ A)|

vanishes as n → ∞ under suitable conditions. Even stronger results are obtained if the
system of negative orthants (−∞,x]d is extended to, e.g., the class of all hyperrectangles or
even all convex sets. These two classes also contain the positive orthants [x,∞)d which are
pivotal for EVLTs. The analysis of the rate of convergence on larger systems has mostly
been performed for sums of independent random vectors. See, e.g., [6] for an overview.
Due to a significant application interest (see, e.g., [18, 107]), it was also investigated
what happens with triangular arrays that grow in dimension. To explain this formally,
we consider uniform triangular arrays

(
X

(n)
t

)
t=1,...,n

where the entries X(n)
1 , . . . , X

(n)
n are

centered random vectors in Rp, and p = p(n) is allowed to grow in n. This implicitly covers
the case of fixed dimensions as well, by repeating the components of a vector. Now, write

X(n) :=
n∑

t=1
X

(n)
t , Σ(n) := Var(X(n)) . (4.5)
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For this high-dimensional context, we highlight the work of Chernozhukov, Chetverikov,
and Kato [22] as a seminal work giving a Gaussian approximation for the tails of sums
of independent random vectors. In [23], the authors extended their work from positive
orthants to hyperrectangles and sparsely convex sets. In recent years, there has been a
steady improvement in the rate of convergence and the growth of dimension, see [24, 30,
44, 68, 70]. These results can be equivalently formulated in terms of bounding∣∣∣P (X(n) > c1−α

)
− α

∣∣∣ ,
where c1−α denotes the (1 − α)-quantile of ∥N ∥∞ for the Gaussian counterpart N ∼
N(0,Σ(n)). As this Gaussian distribution is not known in statistical applications, it is
also of interest to obtain analogous bounds where c1−α is the quantile of a bootstrap
approximation of N . For this, see [24, 25, 35, 36, 73].

While the aforementioned works focused on independent random vectors, the work of
Chang et al. [17] addresses several frameworks of dependence within X(n)

1 , . . . , X
(n)
n . This

includes m-dependence, which exactly fits our interests in light of Corollary 4.1.5 and
Remark 4.2.2. The benefit of [17] is the approximation of

rn(Are) := sup
A∈Are

|P(X(n) ∈ A) − P(N ∈ A)| , (4.6)

where N ∼ N(0,Σ(n)), and Are is the system of all hyperrectangles, including infinite
bounds, i.e.,

Are :=
{

{w ∈ Rp : a ≤ w ≤ b} | a,b ∈ [−∞,∞]p
}
.

So, by taking the supremum in (4.6) over all negative orthants (−∞,x], this will allow
to extend the bivariate CLT for (Xinv, Xdes)⊤ beyond symmetric groups. But it will
also allow for Gaussian approximation of tails by taking the supremum in (4.6) over all
positive orthants [x,∞). Furthermore, Chang et al. elaborate in [17, Section 2.1] that the
asymptotics of rn(Are) can be reduced to those of

rn := sup
u∈Rp

ν∈[0,1]

∣∣∣P (√
νX(n) +

√
1 − νN ≤ u

)
− P(N ≤ u)

∣∣∣ .

The following two conditions are imposed on X
(n)
t =

(
X

(n)
t,1 , . . . , X

(n)
t,p

)⊤
, t = 1, . . . , n.

Condition 1: There exists a sequence of constants Bn ≥ 1 and a universal constant
γ ≥ 1 so that for all j = 1, . . . , p:

E
(
exp

(∣∣∣X(n)
t,j

∣∣∣γ B−γ
n

))
≤ 2 .

Condition 2: There exists a constant K > 0 so that for all n ∈ N and j = 1, . . . , p:

min
j=1,...,p

Var
(

1√
n

n∑
t=1

X
(n)
t,j

)
≥ K.

Under these two conditions, Chang et al. [17] provide a bound of rn for random vectors
X(n) = X

(n)
1 + . . . + X

(n)
n with sparse dependency structure. A dependency graph Gn
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on the node set {1, . . . , n} consists of all edges (i, j) for which X
(n)
i and X

(n)
j are depen-

dent. Let ∆n be the maximum degree of Gn and let ∆∗n be the maximum degree of the
2-reachability graph of Gn. If ∆n and ∆∗n are not too large (i.e., if the graphs Gn are
not too dense as n → ∞), then the Gaussian approximation error rn can be bounded as
follows:

Theorem 4.3.1. (see [17], Theorem 2)
Let (X(n)

t )t=1,...,n be a triangular array of high-dimensional random vectors, i.e., for fixed
n ∈ N, we have X(n)

1 , . . . , X
(n)
n ∈ Rp with p = p(n) ≫ nκ for some constant κ > 0. Let

∆n,∆∗n be as above. Under the conditions 1 and 2, it holds that

rn ≲
Bn(∆n∆∗n)1/3 log(p)7/6

n1/6 .

The same statement applies to rn(Are).

If p remains fixed, we can artificially repeat the vector components (say, n times) and
therefore, the requirement p ≫ nκ can be removed. Moreover, if the triangular array
(X(n)

t )t=1,...,n is m-dependent, then ∆n and ∆∗n are both bounded in the way of ∆n ≤ m
and ∆∗n ≤ 2m. We obtain the following corollary.

Corollary 4.3.2. Let (X(n)
t )t=1,...,n be a triangular array of mean zero random vectors in

fixed dimension p and suppose that each row X
(n)
1 , . . . , X

(n)
n is m-dependent with a global

constant m ∈ N. Under the conditions 1 and 2, it holds that

rn(Are) ≲ Bn log(n)7/6

n1/6 , n → ∞ .

Remark 4.3.3. Condition 1 means sub-Gaussianity, i.e., by Markov’s inequality,

∀u > 0: P
(∣∣∣X(n)

t,j

∣∣∣ > u
)

≤ 2 exp(−uγB−γ
n ) .

As stated by Chang et al. [17, p. 5], we can choose γ = 2 and Bn = O(1) for sub-Gaussian
variables, especially for bounded variables like Xdes, Xinv, and the Hájek projection X̂inv.
Condition 2 implies non-degeneracy, which is obviously true in our setting. Therefore, we
can establish a joint CLT for inversions and descents.

Theorem 4.3.4. For the families Sn, Bn, Dn of classical Weyl groups, the joint distribu-
tion of (Xinv, Xdes)⊤ satisfies the CLT. In detail,

(Yinv, Ydes)⊤ =
(
Xinv − E(Xinv)

σ(Xinv) ,
Xdes − E(Xdes)

σ(Xdes)

)⊤
D−→ N2(0, I2) .

Proof. Due to Corollary 4.2.10 and Slutsky’s theorem, it is sufficient to show that (Ŷinv,

Ydes)⊤ D−→ N2(0, I2). On the symmetric groups, we have by Corollary 4.1.5 that(
X̂inv − E(X̂inv)
Xdes − E(Xdes)

)
=

n−1∑
k=1

(
(n− 2k + 1)(Zk − 1/2)
1{Zk > Zk+1} − 1/2

)
+
(

(1 − n)(Zn − 1/2)
0

)

is a sum of 1-dependent random vectors with mean zero. Setting

X
(n)
k :=

(
(n− 2k + 1)(Zk − 1/2)/σ(X̂inv)
(1{Zk > Zk+1} − 1/2)/σ(Xdes)

)
, k = 1, . . . , n− 1,
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4 CLT and extremes of multivariate permutation statistics

X(n)
n :=

(
(1 − n)(Zn − 1/2)/σ(X̂inv)

0

)
,

we obtain the representation (Ŷinv, Ydes)⊤ =
∑n

k=1
X

(n)
k =: X(n). On the other classical

Weyl groups, we find an analogous representation by Corollary 4.2.10. The covariance

matrix of X(n) (see (4.5)) is given by Σ(n) =
(

1 ρn

ρn 1

)
, where ρn := corr(X̂inv, Xdes). An

application of Corollary 4.3.2 with Nn ∼ N(0,Σ(n)) yields that

sup
u∈R2

|P(X(n) ≤ u) − P(Nn ≤ u)| ≤ rn(Are) = O
(
n−1/6 log(n)7/6

)
.

In combination with the fact that ρn −→ 0 (see Lemma 4.2.11), this establishes

(Ŷinv, Ydes)⊤ D−→ N2(0, I2) ,

completing the proof of the theorem.

This CLT can be straightforwardly extended to finite products of classical Weyl groups,
since the applicability of the Hájek projection for such products has been clarified in
Corollary 4.2.12.

Corollary 4.3.5. Any sequence of finite products of classical Weyl groups satisfies the
CLT for (Xinv, Xdes)⊤.

4.4 The extreme value asymptotics of (Xinv, Xdes)⊤

In what follows, we use the Gaussian approximation of Theorem 4.3.1 to prove that
(Xinv, Xdes)⊤ is in the max-domain of attraction of the bivariate Gumbel distribution
with independent marginals:

Λ2(x) = exp
(
−e−x − e−y)

)
, x = (x, y) ∈ R2.

For this, we will draw connections to the bivariate standard normal distribution, similar
to the univariate case (cf. Theorem 3.3.2). The bivariate standard normal distribution is
attracted by Λ2 according to Theorem 1.3.10. Recall the notations αn,βn therefrom, as
well as the notations of (4.5) and (4.6). Let

rn(Aext) := sup
u∈Rp

|P(X(n) ≥ u) − P(N ≥ u)| ≤ rn(Are) .

Theorem 4.3.1 gives an upper bound of rn(Aext). In our setting, it is only valid for the
Hájek approximation (Ŷinv, Ydes)⊤. It is not immediately clear that the same Gaussian
approximation also applies to the original standardized statistic (Yinv, Ydes)⊤.

Following the conventions introduced in Sections 3.1, we write Xn1, . . . , Xnkn for the n-th
row of the triangular array, with a sequence (kn)n∈N of positive integers tending to infinity.
Now, all Xn1, . . . , Xnkn are i.i.d. samples of (Xinv, Xdes)⊤ drawn on a classical Weyl group
Wn of rank n. Moreover, ”∗” denotes component-wise multiplication.

The connection of (Xinv, Xdes)⊤ to the bivariate standard normal distribution is drawn
directly by replacing Xinv with X̂inv and using Slutsky’s theorem. The following EVLT
for (Xinv, Xdes)⊤ is the second main result of this thesis.
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Theorem 4.4.1. Let (Wn)n∈N be a sequence of classical Weyl groups with rk(Wn) = n

∀n ∈ N. Let (Xnj)j=1,...,kn be a row-wise i.i.d. triangular array with Xn1
D= (Xinv, Xdes)⊤,

and assume kn log kn = o(n). Let Mn := max{Xn1, . . . , Xnkn} be the row-wise maximum.
Let µn := E(Xn1) and let sn :=

(
σ(Xinv), σ(Xdes)

)
. Let an := sn ∗ αkn and let bn :=

sn ∗ βkn
+ µn. Then,

∀x ∈ R2: P(Mn ≤ an ∗ x + bn) −→ Λ2(x) .

Proof. For each j = 1, . . . , kn, write Xnj = (X(j)
inv, X

(j)
des)⊤. Further, let X̂(1)

inv, . . . , X̂(kn)
inv be

i.i.d. copies of X̂inv on Wn. To simplify the notation, let

Mn,inv := maxj=1,...,kn X
(j)
inv − E(Xinv)

σ(Xinv) ,

M̂n,inv := maxj=1,...,kn X̂
(j)
inv − E(Xinv)

σ(X̂inv)
,

Mn,des := maxj=1,...,kn X
(j)
des − E(Xdes)

σ(Xdes)
.

Accordingly, we have to show that ∀x, y ∈ R:

lim
n→∞

P
(
Mn,inv − βkn

αkn

≤ x,
Mn,des − βkn

αkn

≤ y

)
= Λ(x)Λ(y) .

Note that α−1
kn

∼
√

2 log kn. Therefore, by Slutsky’s theorem, the claim immediately
follows from

lim
n→∞

P
(
M̂n,inv − βkn

αkn

≤ x,
Mn,des − βkn

αkn

≤ y

)
= Λ(x)Λ(y) , x, y ∈ R , (4.7)

and √
log kn |Mn,inv − M̂n,inv| P−→ 0 , n → ∞ . (4.8)

We start with the proof of (4.8) and get

|Mn,inv − M̂n,inv| ≤ max
j=1,...,kn

∣∣∣∣X(j)
inv − E(Xinv)
σ(Xinv) − X̂

(j)
inv − E(Xinv)
σ(X̂inv)

∣∣∣∣
= max

j=1,...,kn

∣∣∣∣X(j)
inv − X̂

(j)
inv

σ(Xinv) +
(
X̂

(j)
inv − E(Xinv)

) σ(X̂inv) − σ(Xinv)
σ(Xinv)σ(X̂inv)

∣∣∣∣ .
Thus, we obtain for ε > 0:

P
(√

log kn |Mn,inv − M̂n,inv| > 2ε
)

≤ P
(√

log kn max
j=1,...,kn

∣∣∣∣X(j)
inv − X̂

(j)
inv

σ(Xinv)

∣∣∣∣ > ε
)

+ P
(√

log kn max
j=1,...,kn

∣∣∣∣ (X̂(j)
inv − E(Xinv)

) σ(X̂inv) − σ(Xinv)
σ(Xinv)σ(X̂inv)

∣∣∣∣ > ε
)

=: P1 + P2 .

Using the union bound and Markov’s inequality, we have

P1 ≤ kn P
(
|Xinv − X̂inv| > σ(Xinv)ε√

log kn

)
≤ kn

log kn

Var(Xinv)ε2E|Xinv − X̂inv|2
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= kn log kn

Var(Xinv)ε2

(
Var(Xinv) + Var(X̂inv) − 2Cov(Xinv, X̂inv)

)
= kn log kn

ε2

(
1 − Var(X̂inv)

Var(Xinv)
)
, (4.9)

where the last equation follows from the fact that Cov(Xinv, X̂inv) = Var(X̂inv) (see the
proof of [104, Theorem 11.1]). From Theorem 2.2.2 and Lemma 4.1.3, we conclude that

Var(X̂inv)
Var(Xinv) = 1 + Θ(1/n) ,

from which it follows that

P1 = kn log knO(1/n) , n → ∞ ,

which tends to zero by the assumption on kn. Repeating the above considerations for P2
and noting that(

σ(X̂inv) − σ(Xinv)
σ(Xinv)

)2

= Var(Xinv) + Var(X̂inv) − 2σ(Xinv)σ(X̂inv)
Var(Xinv)

∼ Var(Xinv) + Var(X̂inv) − 2Var(X̂inv)
Var(Xinv) = 1 − Var(X̂inv)

Var(Xinv)

yields

P2 ≤ kn log kn

ε2

(
σ(X̂inv) − σ(Xinv)

σ(Xinv)

)2

E
(
X̂

(j)
inv − E(Xinv)
σ(X̂inv)

)2

︸ ︷︷ ︸
= 1

= kn log knO(1/n) = o(1) , n → ∞ , (4.10)

which completes the proof of (4.8). It remains to prove (4.7). By analogy with the proof
of Theorem 4.3.4, Corollary 4.2.10 allows us to find centered 1-dependent random vectors
X

(n,j)
k , k = 1, . . . , n− 1, such that(

Ŷ
(j)

inv
Y

(j)
des

)
=

n∑
k=1

X
(n,j)
k .

Again, the covariance matrix of (Ŷ (j)
inv , Y

(j)
des )⊤ is given by Σ(n) =

(
1 ρn

ρn 1

)
, where ρn :=

corr(X̂inv, Xdes). For a centered normal random vector Nn = (N1, . . . , N2kn)⊤ whose
covariance matrix is block-diagonal with all kn diagonal blocks equal to Σ(n), we write

Pn(x, y) := P
(
α−1

kn

(
max

j=1,...,kn

N2j−1 − βkn

)
≤ x, α−1

kn

(
max

j=1,...,kn

N2j − βkn

)
≤ y

)
, x, y ∈ R.

We can also write

P
(
αn(M̂n − αn) ≤ x, αn(Mn,des − αn) ≤ y

)
= P

(
αn(Ŷ (1)

inv , . . . , Ŷ
(kn)

inv )⊤ − αn ≤ x, αn(Y (1)
des , . . . , Y

(kn)
des )⊤ − αn ≤ y

)
,
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with x = (x, . . . , x)⊤, y = (y, . . . , y)⊤, αn = (αn, . . . , αn)⊤ ∈ Rkn . An application of
Corollary 4.3.2 then yields, as n → ∞,∣∣∣∣∣P

(
M̂n,inv − βkn

αkn

≤ x,
Mn,des − βkn

αkn

≤ y

)
− Pn(x, y)

∣∣∣∣∣
= O

(
n−1/6 log(kn)7/6

)
= o(1) .

Finally, since ρn → 0 (see Corollary 4.2.4 and Lemma 4.2.11), the extreme value behavior
of bivariate Gaussian random vectors expressed in Theorem 1.3.10 gives

Pn(x, y) n→∞−→ Λ(x)Λ(y) ,

completing the proof of (4.7). Combining (4.7) and (4.8) gives the claim.

Remark 4.4.2. Due to the Hájek approximation error, the upper bound on the row-
wise number of samples kn in Theorem 4.4.1 is a lot stricter than in the univariate case
(cf. Theorem 3.3.2). In particular, this excludes the uniform triangular array. On the
other hand, this new EVLT can be transferred to other individual and joint permutation
statistics, and for some, we can achieve almost the same regime of kn as in Theorem 3.3.2.

In Section 3.5, we explained that the methods of Theorem 3.3.2 are restrictive for other
permutation statistics (e.g., if there is no available factorization of the generating function).
In this process, we also introduced a universal EVLT 3.5.1 for any asymptotically normal
permutation statistic satisfying the Berry–Esseen bound. However, the upper bound kn

in Theorem 3.5.1 still excludes the uniform triangular array and falls short compared to
the subexponential bound in Theorem 3.3.2. In the following framework, we describe the
requirements to prove the EVLT for a univariate or joint permutation statistic with the
methods of Theorem 4.4.1, in order to bypass these restrictions.

Let W be the system of classical Weyl groups or a subsystem thereof (e.g., the family
of symmetric groups), and let (Xn)n∈N be a permutation statistic on W in one or two
dimensions. Formally, (Xn)n∈N is a collection of random variables Xn : Wn → Nd with
Wn ∈ W, rk(W ) = n, and with d ∈ {1, 2} fixed. Moreover, we assume that there is a
representation

Xn =
n∑

i=1
fi(Z1, . . . , Zn) =:

n∑
i=1

X(i)
n (4.11)

for some independent sequence Z1, Z2, . . . of random variables and functions fn: Rn → Nd,
such that the following is satisfied:

• If d = 1, then we assume that Xn is m-dependent (i.e., that all blocks X(1)
n , . . . , X

(n)
n

are m-dependent) for some m ∈ N chosen independently of n. Besides Xdes, an
example of such a permutation statistic is the number of peaks or valleys.

• If d = 2, then one component must be m-dependent. The other component must
be m-dependent as well, or satisfy the condition of Theorem 4.1.2, i.e., Var(Xn) ∼
Var(X̂n), where X̂n is the Hájek projection of Xn based on (4.11). In the latter case,
the Hájek approximation error needs to be controlled by establishing proper bounds
in (4.9) and (4.10). In light of Theorem 1.3.10, it is required that the correlation
between the two components is bounded away from 1, but this is commonly trivial
to verify.
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4 CLT and extremes of multivariate permutation statistics

Theorem 4.4.3. Let (Wn)n∈N be a sequence of classical Weyl groups with rk(Wn) = n
∀n ∈ N. Let Xn be a permutation statistic as described above. Let (Xnj)j=1,...,kn be a
row-wise i.i.d. triangular array with Xn1

D= Xn, where:

(a) If Xn is m-dependent, we assume kn = exp
(
o(n1/7)

)
.

(b) If Xn consists of two components, one of which is m-dependent and the other is not,
but satisfies the condition of Theorem 4.1.2, then we assume kn log(kn) = o(n).

Let Mn := max{Xn1, . . . , Xnkn} be the row-wise maximum. Let µn := E(Xn) and sn :=
σ(Xn), which is taken component-wise in case of d = 2. If d = 1, let an := snαkn and
bn := snβkn + µn. Then,

∀x ∈ R: P(Mn ≤ anx+ bn) −→ Λ(x) .

If d = 2, let an := sn ∗ αkn and bn := sn ∗ βkn
+ µn. Then,

∀x ∈ Rd : P(Mn ≤ an ∗ x + bn) −→ Λ2(x) .

Proof. In case of (b), the proof is identical to that of Theorem 4.4.1. In case of (a), we
only need to show (4.7), while we replace (M̂n,inv,Mn,des) with the standardized maximum
of Xn. We can apply Theorem 4.3.1 with p(n) = n ∨ kn iterations of Xn. Therefore, we
need to ensure that

n−1/6 log(n ∨ kn)7/6 = o(1) ,

which exactly corresponds to the stated condition of kn = exp
(
o(n1/7)

)
. The claim follows

the same way as in the proof of Theorem 4.4.1.

In conclusion, for independent and m-dependent permutation statistics, the high-dimen-
sional Gaussian approximation allows to obtain a subexponential bound on kn, improving
Theorem 3.5.1. In particular, this applies to the following permutation statistics:

Corollary 4.4.4. Let Z1, . . . , Zn ∼ U(0, 1) be i.i.d. The following three permutation
statistics are in the MDA of the Gumbel distribution, given a triangular array with row
lengths satisfying kn = exp

(
o(n1/7)

)
:

• the number of peaks Xp :=
∑n−1

i=2
1{Zi > Zi−1, Zi+1},

• the number of valleys Xv :=
∑n−1

i=2
1{Zi−1, Zi+1 > Zi},

• the number of cycles K0n introduced in Section 3.5, since it has the independent
decomposition given in (3.9).

Regarding products of classical Weyl groups, we have established the CLT for products
with a bounded number of components. To obtain the EVLT, we additionally have to
control the bounds (4.9) and (4.10). It turns out that these bounds do not impose any
further restrictions for kn.

Theorem 4.4.5. For fixed l ∈ N, let Wn =
∏l

i=1
Wn,i be products of finite Coxeter groups

with ranks n1 ≥ . . . ≥ nl sorted in decreasing order. Then, the statement of Theorem 4.4.1
applies to (Wn)n∈N.
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Proof. The proof of Theorem 4.4.1 carries over almost seamlessly, we only need to check
(4.9) and (4.10), which reduces to bounding

1 − Var(X̂inv)
Var(Xinv) . (4.12)

We can rephrase (4.4) as

Var(X̂Wn
inv ) =

l∑
i=1

cin
3
i + αn2 +O(n) , Var(XWn

inv ) =
l∑

i=1
cin

3
i + βn2 +O(n) .

Then,

(4.12) = 1 −
∑l

i=1 cin
3
i + αn2 +O(n)∑l

i=1 cin3
i + βn2 +O(n)

.

Regardless of whether the residual βn2 +O(n) is positive or negative, we can bound (4.12)
in both directions. If the residual is positive, this reads

(4.12) ≥ 1 −
∑l

i=1 cin
3
i + αn2 +O(n)∑l
i=1 cin3

i

= αn2 +O(n)∑l
i=1 cin3

i

= O

( 1
n

)
,

(4.12) = (β − α)n2 +O(n)∑l
i=1 cin3

i + βn2 +O(n)
≤ (β − α)n2 +O(n)∑l

i=1 cin3
i

= O

( 1
n

)
.

Therefore, we obtain the same bound for (4.12) as in the proof of Theorem 4.4.1.

4.5 Summary and open problems

The main result of this chapter is the extreme value behavior of the joint distribution
(Xinv, Xdes)⊤, which is stated in Theorem 4.4.1. Besides, the asymptotic normality of
(Xinv, Xdes)⊤ on classical Weyl groups shown in Theorem 4.3.4 gives a significant extension
of [45]. We benefited from the fact that the number of inversions Xinv can be suitably
approximated by its Hájek projection, allowing to apply Gaussian approximation theory
form-dependent random vectors. There are several open questions related to the sharpness
of the upper bound on kn, and also to other permutation statistics with more complex
dependency structures.

4.5.1 Extension of the upper bound on kn

Due to replacing Xinv with its Hájek projection, Theorem 4.4.1 requires an overly strict up-
per bound on the row lengths kn. In particular, the uniform triangular array (Xnj)j=1,...,n

is not covered by Theorem 4.4.1. However, we suppose that the upper bound kn log(kn) =
o(n) is far from exhaustive. In fact, we conjecture that the dependency structure be-
tween Xinv and Xdes still allows for an exponential bound on kn as seen in Theorems 3.3.2
and 4.4.3.

Conjecture 4.5.1. There is a constant γ > 0 such that the statement of Theorem 4.4.1
holds true for a triangular array (Xnj)j=1,...,kn with Xn1

D= (Xinv, Xdes)⊤ and kn =
exp

(
o(nγ)

)
.
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In particular, regarding the uniform triangular array (Xnj)j=1,...,n withXn1
D= (Xinv, Xdes)⊤

on the symmetric group Sn, the weak convergence of (Mn−bn)/an to Λ2 with Mn, an, bn,Λ2
as in Theorem 4.4.1 was observed in simulations performed with RStudio 2023.06.1 [89].
The code details are sketched in Section 4.6.7. For the underlying symmetric groups, we
chose the sizes n ∈ {20, 50, 100, 200, 500, 1000}, and created 10000 independent replica-
tions of (Mn − bn)/an in order to plot their empirical distribution function. These plots
are shown in Figure 4.4, with the x-axis referring to the inversion component and the
y-axis referring to the descent component. In comparison, the two-dimensional Gumbel
distribution Λ2 is displayed in Figure 1.5. Typically, ELVTs exhibit slow rates of conver-
gence, e.g., in [71, Section 2.4], it is argued that the convergence in Theorem 1.1.11 cannot
be faster than Θ(log(n)−1) even if αn, βn are replaced. Therefore, it is not surprising
that there is only little similarity to Λ2 for small symmetric groups. However, Figure 4.4
illustrates that the empirical distribution function indeed approaches Λ2 as the underlying
symmetric groups become large.
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Figure 4.4: Plots of empirical distribution functions of (Mn − bn)/an for the symmetric
groups Sn, with Mn, an, bn as given in Theorem 4.4.1 and n ∈ {20, 50, 100, 200,
500, 1000}. These empirical distribution functions converge to Λ2 as n → ∞.

This simulation demonstrates the potential to improve the upper bound on kn in Theo-
rem 4.4.1. For the extension to other m-dependent statistics given in Theorem 4.4.3, the
bound kn = exp

(
o(n1/7)

)
results from the rate of convergence in Theorem 4.3.1. The

error rate of this Gaussian approximation is n−1/6 log(p)7/6, and since the dimension p
also affects the error rate, we can choose to replace p with kn to yield an exponential
bound on kn. Research on Gaussian approximation for high-dimensional m-dependent
random vectors to improve the error bound in Theorem 4.3.1 has evolved even further.
Most recently, Bong et al. [11] proved approximation theorems in the way of Theorem
4.3.1 with a main error term of n−1/2 log(np)1/2, and a logarithmic error term only de-
pending on p. There are several additional parts in this logarithmic term that can be
treated as constants in our setting. Despite the authors saying that the conditions of
these approximation theorems essentially capture non-degeneracy and existence of third
moments, it is very laborious to verify these conditions by hand. If this can be done for
the statistics listed in Corollary 4.4.4, then by [11, Theorem 3.2], the upper bound on kn

can be improved to kn = n−1 exp
(
o(n1/4)

)
.

Conjecture 4.5.2. The statement of Theorem 4.4.3(a) holds true if the bound kn =
n−1 exp

(
o(n1/4)

)
is assumed.

4.5.2 Weakly dependent permutation statistics
In Definition 2.3.4, we introduced the two-sided Eulerian statistic XT = Xdes +Xides. Its
asymptotic normality on finite Coxeter groups was shown in [15, 48]. Moreover, it was first
shown by Vatutin [105] that on the symmetric groups Sn, Xdes andXides are asymptotically
uncorrelated, i.e., ρn(Xdes, Xides) −→ 0. Vatutin proved the asymptotic normality of
(Xdes, Xides)⊤ through extensive analytic arguments on characteristic functions, without
providing probabilistic insight into their dependency structure. Later, it was shown in
[20, p. 8] and [66, Propositions 5.6–5.8] that ρn(Xdes, Xides) = O(1/n) for classical Weyl
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groups. [66, Theorem 5.1] implies that ρn(Xdes, Xides) −→ 0 for all finite Coxeter groups.

Theorem 4.3.1 cannot be applied to XT = Xdes +Xides since no m-dependent decomposi-
tion is available, and the dependency graph is too dense as well. The dependency structure
also does not satisfy other conditions for which Gaussian approximation theorems exist.
For example, [17, Theorem 1] provides a Gaussian approximation similar to Theorem 4.3.1
for the framework of strong mixing dependence (cf. Definition 1.2.1), also called α-mixing
dependence. For triangular arrays, the property of uniform α-mixing dependence is defined
as follows:

Definition 4.5.3. Let (Xnj)j=1,...,kn be a triangular array. For each n ∈ N and each
j = 1, . . . , kn, let F−nj be the σ-field generated by Xn1, . . . , Xnj and let F+

nj be the σ-field
generated by Xnj , Xn,j+1, . . . , Xnkn . For k ∈ {1, . . . , kn − 1}, the n-th α-mixing coefficient
at lag k is

αn(k) := sup
j=1,...,kn−k

sup
A∈F−

nj ,B∈F+
n,j+k

|P(A ∩B) − P(A)P(B)| ,

and for k ≥ kn, we put αn(k) = 0. The overall k-th α-mixing coefficient is

αk := sup
n∈N

αn(k).

We say the triangular array (Xnj)j=1,...,kn is α-mixing if α(k) −→ 0 as k → ∞. △

Remark 4.5.4. Note that for a triangular array consisting of indicator variables Xni =
1{Ani} with a collection of events (Ani)i=1,...,kn , the α-mixing coefficients are equivalently
expressed as

αn,k := sup
j=1,...,kn−k

sup
A⊆{1,...,j}
B⊆{j+k,...,kn}

∣∣∣∣∣P
( ⋂

i∈A∪B
Ac

ni

)
− P

(⋂
i∈A

Ac
ni

)
P
(⋂

i∈B
Ac

ni

)∣∣∣∣∣ ,
meaning in this case, we can focus on the dependence between any two blocks (Ani)i∈A,
(Anj)j∈B with distance at least k. △

We now check if the two-sided Eulerian statistic XT forms an α-mixing triangular array
on the family of symmetric groups (the arguments are similar for other classical Weyl
groups). Let kn = 2(n− 1) and write

X
(n)
T =

n−1∑
i=1

Yi +
n−1∑
j=1

Ỹj ,

where Yi := 1{π(i) > π(i + 1)} and Ỹj := 1{π−1(j) > π−1(j + 1)} for uniformly random
π ∈ Sn, in accordance with the notation in [66, Section 5]. The blocks {Y1, . . . , Yn−1} and
{Ỹ1, . . . , Ỹn} each are 1-dependent and therefore do not cause any issues by themselves.
However, regarding the dependence between these two blocks, the α-mixing coefficients
are not influenced by the lag k but rather by the size n of the underlying symmetric group.

Consider two blocks A,B according to Remark 4.5.4. In the simplest case of A,B being
singletons, we consider the events 1{Yi = 1} and 1{Ỹj = 1} for some i, j ∈ {1, . . . , n− 1}.
To determine their dependence, we need to distinguish by the intersection of {π(i), π(i+1)}
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and {j, j+1}. If these two sets are disjoint, then 1{Yi = 1} and 1{Ỹj = 1} are independent.
By a simple counting argument, this is the case for (n − 2)(n − 3)(n − 2)! permutations.
So, there are n! − (n − 2)(n − 3)(n − 2)! = (4n − 6)(n − 2)! = Θ((n − 1)!) remaining
permutations for which 1{Yi = 1} and 1{Ỹj = 1} are dependent. For the details on
computing P(Yi = 1, Ỹj = 1) in these subcases, we refer to [66, p. 450]. It turns out that
a lower bound for any mixing coefficient αn(k) is given by Θ(1/n).

These arguments still hold for blocks A,B of fixed size. If the size of the blocks is un-
bounded as n → ∞, then the probabilities of the respective intersections diminish accord-
ingly. While these arguments are technically more complicated, it can be supposed that
the triangular array of (X(n)

T )n∈N is α-mixing with a decay rate of α(k) = Θ(k−1). How-
ever, the conditions of [17, Theorem 1] require that the mixing coefficients α(k) decay at
an exponential rate, i.e., α(k) = O(e−γ) for some γ > 0. While this may be regarded as a
mild condition for high-dimensional time series and other applications, it is unfortunately
too strict for dependency structures in permutation statistics.

By analogy with the simulation of Section 4.5.1, we created 10000 independent replications
of (Mn − bn)/an on the symmetric group Sn with n = 1000, where Mn is the maximum of
1000 samples of XT . Figure 4.5 shows the empirical distribution functions of these replica-
tions in comparison with the univariate Gumbel distribution, again suggesting convergence
as n → ∞.

Figure 4.5: Plots of the standard Gumbel distribution function Λ and the simulated em-
pirical distribution function of P(Mn ≤ anx+bn) for x ∈ [−4, 4] and Mn, an, bn

stemming from XT , as given in Conjecture 4.5.5.

So, if it is possible to find a high-dimensional Gaussian approximation of α-mixing trian-
gular arrays with an O(k−1) decay of (α(k))k∈N, then we propose the following:

Conjecture 4.5.5. Let (Wn)n∈N be a sequence of classical Weyl groups with rk(Wn) = n

∀n ∈ N, and let (Xnj)j=1,...,kn be a row-wise i.i.d. triangular array with Xn1
D= XT on Wn.

Let Mn, an, bn be as in Theorem 4.4.3. If kn = exp
(
o(nγ)

)
for some constant γ > 0, then

∀x ∈ R: P(Mn ≤ anx+ bn) −→ exp(− exp(−x)).
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A corresponding statement in two dimensions is true for the triangular array (Xnj)j=1,...,kn

with Xn1
D= (Xdes, Xides) on Wn.

4.6 Technical proofs and simulation code
Throughout the following proofs, the symbol

∑
i<j

is a shorthand notation for
∑

1≤i<j≤n

.

4.6.1 Proof of Lemma 4.2.1
We first prove the claim for the even-signed permutation groups Dn and proceed as in
Lemma 4.1.3. Recall that

X̂D
inv =

n∑
k=1

E(XD
inv | Zk) − (n− 1)E(XD

inv) ,

with Zk ∼ U(−1, 1) and XD
inv defined by (4.2b), giving

E(XD
inv | Zk) =

∑
i<j

E
(
1{Zi > Zj} + 1{−Zi > Zj} | Zk

)
=
∑
i<j

P(Zi > Zj | Zk) + P(−Zi > Zj | Zk) . (4.13)

Write Ui := |Zi| and f(Zi, Zj) := 1{Zi > Zj} + 1{−Zi > Zj} for i < j. A straightforward
case distinction gives:

• Zj > 0 =⇒ f(Zi, Zj) = 1{Ui > Uj},
• Zj < 0 =⇒ f(Zi, Zj) = 1{Ui < Uj} + 1,

as f(Zi, Zj) = f(|Zi|, Zj) does not depend on the sign of Zi. To compute (4.13), we only
need to consider the n − k tuples (k, j) and the k − 1 tuples (i, k), since the remaining
tuples are independent of Zk and produce constants that do not contribute to the variance.

Recall that for k < j, we have P(Uk > Uj | Uk) = Uk and P(Uk < Uj | Uk) = 1 − Uk.
Therefore, we write

E(XD
inv | Zk) =

k−1∑
i=1

E
(
f(Zi, Zk) | Zk

)
+

n∑
j=k+1

E
(
f(Zk, Zj) | Zk

)
+ const ,

where

E
(
f(Zi, Zk) | Zk

)
= 1{Zk > 0}(1 − Uk) + 1{Zk < 0}(1 + Uk) ,

E
(
f(Zk, Zj) | Zk

)
= P(Zj < 0)Uk + P(Zj > 0)(1 + 1 − Uk) .

Overall,

E(XD
inv | Zk) = (k − 1)

(
1{Zk > 0}(1 − Uk) + 1{Zk < 0}(1 + Uk)

+ (n− k)
(1

2Uk + 1
2(2 − Uk)

)
︸ ︷︷ ︸

= 1

+ const

74



4.6 Technical proofs and simulation code

= (k − 1)1{Zk > 0}(1 − Uk) + (k − 1)1{Zk < 0}(1 + Uk) + const . (4.14)

To compute Var(X̂D
inv) =

∑n

k=1
Var

(
E(XD

inv | Zk)
)
, we focus on the non-constant parts in

(4.14). To use the standard formula Var(X) = E(X2) − E(X)2, where X is not affected
by constant summands, we first compute

E
((

(k − 1)1{Zk > 0}(1 − Uk) + (k − 1)1{Zk < 0}(1 + Uk)
)2)

= E
(
(k − 1)2(1 − Uk)21{Zk > 0} + (k − 1)2(1 + Uk)21{Zk < 0}

)
+ 2E

(
(k − 1)(1 − Uk)1{Zk > 0}(k − 1)(1 + Uk)1{Zk < 0}

)︸ ︷︷ ︸
= 0

,

because both Zk > 0 and Zk < 0 cannot occur simultaneously. Next, we obtain

E
(
(k − 1)2(1 − Uk)21{Zk > 0} + (k − 1)2(1 + Uk)21{Zk < 0}

)
= 1

2(k − 1)2 E((1 − Uk)2)︸ ︷︷ ︸
= 1/3

+ 1
2(k − 1)2 E((1 + Uk)2)︸ ︷︷ ︸

= 7/3

= 4
3(k − 1)2 .

On the other hand, we have[
E
(
(k − 1)(1 − Uk)1{Zk > 0} + (k − 1)(1 + Uk)1{Zk < 0}

)]2
=
(1

4(k − 1) + 3
4(k − 1)

)2
= (k − 1)2 ,

and therefore,
Var

(
E(XD

inv | Zk)
)

= 1
3(k − 1)2 .

Summation gives

Var(X̂D
inv) =

n∑
k=1

1
3(k − 1)2 =

n−1∑
k=0

1
3k

2 = 1
3
n(n− 1)(2n− 1)

6 = 1
9n

3 +O(n2) ,

as desired. So, we have computed Var(X̂D
inv) on Dn. On Bn, the calculation is similar.

Recall that XB
inv = XD

inv +
∑n

i=1
1{Zi < 0}, therefore,

Var
(
E(XB

inv | Zk)
)

= Var

E(XD
inv | Zk) +

n∑
j=1

E(1{Zj < 0} | Zk)


= Var

(
E(XD

inv | Zk) + E(1{Zk < 0} | Zk) + const
)

= Var
(
E(XD

inv | Zk) + 1{Zk < 0}
)

= Var
(
(k − 1)1{Zk > 0}(1 − Uk) + (k − 1)1{Zk < 0}(1 + Uk)

+ 1{Zk < 0}
)
.
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Using the standard formula again, we have

E
(
E(XB

inv | Zk)2
)

= 4
3(k − 1)2 + E(1{Zk < 0}) + 2E

(
(k − 1)(1 + Uk)1{Zk < 0}

)
= 4

3(k − 1)2 + 1
2 + 3

2(k − 1) ,

E
(
E(XB

inv | Zk)
)2

=
(1

4(k − 1) + 3
4(k − 1) + 1

2

)2
=
(

(k − 1) + 1
2

)2

= (k − 1)2 + (k − 1) + 1
2 .

In conclusion,
Var

(
E(XB

inv | Zk)
)

= 1
3(k − 1)2 + 1

2(k − 1) ,

and in total,

Var(X̂B
inv) = 1

3
n(n− 1)(2n− 1)

6 + 1
2
n(n− 1)

2
= 1

9n
3 + 1

12n
2 − 7

36n = 1
9n

3 +O(n2) .

The claim follows from Theorem 4.1.2.

4.6.2 Proof of Lemma 4.2.3a)
On the symmetric groups, we compute Cov(Xinv, Xdes) from (2.2), i.e., we have

Cov(Xinv, Xdes) =
∑
i<j

n−1∑
k=1

Cov(1{Zi > Zj},1{Zk > Zk+1})

=
∑
i<j

∑
k∈{i−1,i,j−1,j}

1≤k≤n−1

Cov(1{Zi > Zj},1{Zk > Zk+1}) ,

where we used that if k /∈ {i− 1, i, j − 1, j}, then the events {Zi > Zj} and {Zk > Zk+1}
are independent, and therefore Cov(1{Zi > Zj},1{Zk > Zk+1}) = 0. In what follows, we
analyze the case k ∈ {i− 1, i, j − 1, j}, first assuming that all these numbers are distinct.
Moreover, we temporarily ignore the boundary cases of i = 1 (where k = i− 1 is outside
the range of {1, . . . , n}) and j = n (where k = n is within the range but the variable Zk+1
compared with Zk is not). This gives four possible constellations:

• type I: k + 1 = i and j > k + 2,
• type II: k = i and j > k + 1,
• type III: k + 1 = j and i < k,
• type IV: k = j and i < k − 1.

For type I, we have

Cov(1{Zi > Zj},1{Zi−1 > Zi}) = P(Zi > Zj , Zi−1 > Zi) − P(Zi > Zj)P(Zi−1 > Zi)︸ ︷︷ ︸
= 1/4

,

while for type II,

Cov(1{Zi > Zj},1{Zi > Zi+1}) = P(Zi > Zj , Zi > Zi+1) − P(Zi > Zj)P(Zi > Zi+1) .
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For three distinct real numbers a, b, c, there are six possible orderings, all of which are
equally likely in case of a, b, c being uniform variables. The event {a > b, a > c} found in
type II is the union of {a > b > c} and {a > c > b}, while the event {a > b, b > c} found
in type I is only a redundant writing of {a > b > c}. Therefore, in type II,

Cov(1{Zi > Zj},1{Zi > Zi+1}) = 1
3 − 1

4 = 1
12 ,

while in type I,
Cov(1{Zi > Zj},1{Zi−1 > Zi}) = 1

6 − 1
4 = − 1

12 .

The types III and IV are handled the same way. For type III, we have

Cov(1{Zi > Zj},1{Zj−1 > Zj}) = 1
12 ,

and for type IV,
Cov(1{Zi > Zj},1{Zj > Zj+1}) = − 1

12 .

So, in the case of j ̸= i+ 1 and i ̸= 1, j ̸= n, the inner sum

n−1∑
k=1

Cov(1{Zi > Zj},1{Zk > Zk+1})

consists of two canceling pairs of 1/12 and −1/12, and vanishes altogether. Figure 4.6
displays the passage of k over the indices 1, . . . , n and the positions of the positive and
negative covariances.

i1 i− 1 j − 1 j n

k k

−1/12 1/12 1/12 −1/12

Figure 4.6: Canceling pairs of positive and negative covariances between 1{Zi > Zj} and
1{Zk > Zk+1} as k passes over 1, . . . , n − 1 in the non-exceptional case of
1 < i < i+ 1 < j < n. The covariance is zero for all other values of k.

With the help of this figure, we can also see what happens if 1 < i < i + 1 < j < n does
not hold:

• If i and j are subsequent, i.e., j = i + 1, then the two positive contributions in
Figure 4.6 collide. Moreover, for k = i we obtain Cov(1{Zi > Zj},1{Zk > Zk+1}) =
Cov(1{Zi > Zi+1},1{Zi > Zi+1}) = Var(1{Zi > Zi+1}) = 1/4.

• If i = 1, then the leftmost negative contribution in Figure 4.6 disappears.
• If j = n, then the rightmost negative contribution in Figure 4.6 disappears.

As these situations are not mutually exclusive, we obtain the following list of exceptional
cases and their contributions Cij :=

∑n−1
k=1

Cov(1{Zi > Zj},1{Zk > Zk+1}):
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• (A1): j = i+ 1, but neither i = 1 nor j = n =⇒ Cij = 1/4 − 1/6 = 1/12,
• (A2): i = 1 and j = 3, . . . , n− 1 =⇒ Cij = 1/12,
• (A3): j = n and i = 2, . . . , n− 2 =⇒ Cij = 1/12,
• (A4): i = 1, j = 2 =⇒ Cij = 1/4 − 1/12 = 1/6,
• (A5): i = n− 1, j = n =⇒ Cij = 1/6,
• (A6): i = 1, j = n =⇒ Cij = 1/6.

As an example, we display the case (A1) in Figure 4.7.

i1 i− 1 j n

k

−1/12 1/4 −1/12

Figure 4.7: Display of covariances between 1{Zi > Zj} and 1{Zk > Zk+1} in the case of i
and j = i+ 1 being subsequent.

Taking the contributions and frequencies of (A1), . . . , (A6) into account, we obtain the
exact result

Cov(Xinv, Xdes) = (n− 3)
(1

4 − 1
6

)
︸ ︷︷ ︸

(A1)

+ 2(n− 3) 1
12︸ ︷︷ ︸

(A2, A3)

+ 2
(1

4 − 1
12

)
︸ ︷︷ ︸

(A4, A5)

+ 1
6︸︷︷︸

(A6)

= n− 1
4 .

For the groups Bn and Dn, the calculation largely follows the same procedure as that for
Sn. Recall that now, Z1, . . . , Zn ∼ U(−1, 1). On Dn, we have by (4.2b) and (4.3b) that

Cov(XD
inv, X

D
des) =

∑
i<j

n−1∑
k=1

Cov (1{Zi > Zj},1{Zk > Zk+1}) (4.15a)

+
∑
i<j

n−1∑
k=1

Cov (1{−Zi > Zj},1{Zk > Zk+1}) (4.15b)

+
∑
i<j

Cov(1{Zi > Zj} + 1{−Zi > Zj},1{−Z2 > Z1}) . (4.15c)

The contribution of (4.15a) is (n − 1)/4 as seen above. In (4.15b), we first demonstrate
the cancellation in the non-exceptional case when {i− 1, i, j − 1, j} form a set of distinct
numbers. In that case, we have

Cov(1{−Zi > Zj},1{Zi > Zi+1}) + Cov(1{−Zi > Zj},1{Zi−1 > Zi})
= E(1{−Zi > Zj}1{Zi > Zi+1}) − 1/4 + E(1{−Zi > Zj}1{Zi−1 > Zi}) − 1/4
= E(1{−Zi > Zj}1{Zi > Zi+1}) + E(1{−Zi > Zj}1{Zi+1 > Zi}) − 1/2
= E(1{−Zi > Zj}) − 1/2 = 0 ,

and accordingly,

Cov(1{−Zi > Zj},1{Zj > Zj+1}) + Cov(1{−Zi > Zj},1{Zj−1 > Zj}) = 0 .
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However, this cancellation occurs not only in the non-exceptional case, but also in the
cumulation of the exceptional cases (A1) – (A6) listed above, except for the covariances
resulting from the collision of j = i+ 1 and k = i. Therefore, the next step is to compute
Cov(1{−Zk > Zk+1},1{Zk > Zk+1}), k = 1, . . . , n − 1. For Z1, Z2 ∼ U(−1, 1), we
compute

E(1{−Z1 > Z2}1{Z1 > Z2}) = P(−Z1 > Z2, Z1 > Z2)
= P(Z2 < 0, Z2 < Z1 < −Z2)

= 1
4

∫
[−1,1]2

1{y < 0,−|y| < x < |y|}d(x, y)

= 1
4

∫ 0

−1

∫ −y

y
1dxdy = 1

4

∫ 0

−1
2ydy = 1

4 .

Since we also have P(1{−Z1 > Z2})P(1{Z1 > Z2}) = 1/4, it follows that these two
events are uncorrelated. The entire line (4.15b) contributes zero. Finally, consider (4.15c).
Obviously, this double-indexed sum involves exactly the pairs (i, j) with i = 1 or i = 2.
We get

(4.15c) =
2∑

i=1

n∑
j=3

Cov(1{Zi > Zj} + 1{−Zi > Zj},1{−Z2 > Z1})

+ Cov(1{−Z1 > Z2},1{−Z2 > Z1})︸ ︷︷ ︸
= 1/4

+ Cov(1{Z1 > Z2},1{−Z2 > Z1})︸ ︷︷ ︸
= 0

=
n∑

j=3

[
Cov(1{Z1 > Zj},1{−Z2 > Z1})︸ ︷︷ ︸

= −1/12

+ Cov(1{Z2 > Zj},1{−Z2 > Z1})︸ ︷︷ ︸
= −1/12

]

+
n∑

j=3

[
Cov(1{−Zj > Z1},1{−Z2 > Z1})︸ ︷︷ ︸

= 1/12

+ Cov(1{−Zj > Z2},1{−Z2 > Z1})︸ ︷︷ ︸
= 1/12

]
+ 1

4

= − 2
12(n− 2) + 2

12(n− 2) + 1
4 = 1

4 .

Therefore, we obtain the overall result for Dn, which is

Cov(XD
inv, X

D
des) = n− 1

4 + 1
4 = n

4 .

At last, we show that this result holds on Bn as well. By (4.2a) and (4.3a), we have

Cov(XB
inv, X

B
des) = (4.15a) + (4.15b)

+
n∑

i=1

n−1∑
k=1

Cov(1{Zi < 0},1{Zk > Zk+1}) (4.16a)

+
∑
i<j

Cov(1{Zi > Zj} + 1{−Zi > Zj},1{Z1 < 0}) (4.16b)

+
n∑

i=1
Cov(1{Zi < 0},1{Z1 < 0}) . (4.16c)

We now show that (4.16a) and (4.16b) vanish. In (4.16a), the inner sum only involves
k = i− 1 and k = i, therefore,

(4.16a) =
n∑

i=1
Cov(1{Zi < 0},1{Zi−1 > Zi}) + Cov(1{Zi < 0},1{Zi > Zi+1})
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=
n∑

i=1
Cov(1{Zi < 0},1{Zi−1 > Zi}) + Cov(1{Zi < 0},1{Zi > Zi−1})

= E(1{Z1 < 0}) − 1
2 = 0 .

This cancellation even applies to the boundary terms i = 1 and i = n. We also get

(4.16b) =
n∑

j=2
Cov(1{Z1 > Zj},1{Z1 < 0}) + Cov(1{−Z1 > Zj},1{Z1 < 0})

=
n∑

j=2
P(Z1 < 0, Z1 > Zj) − 1

4︸ ︷︷ ︸
= −1/8

+
n∑

j=2
P(Z1 < 0,−Z1 > Zj) − 1

4︸ ︷︷ ︸
= 1/8

= 0 .

Finally,

(4.16c) =
n∑

i=1
Cov(1{Zi < 0},1{Z1 < 0}) = Var(1{Z1 < 0}) = 1

4 ,

giving the overall result Cov(XB
inv, X

B
des) = (n− 1)/4 + 1/4 = n/4.

4.6.3 Proof of Lemma 4.2.3b)
On the symmetric groups, we have by Lemma 4.1.3:

X̂inv =
n∑

j=1
(n− 2j + 1)Zj + 1

2

(
n

2

)
,

yielding

Cov(X̂inv, Xdes) = Cov

 n∑
j=1

(n− 2j + 1)Zj ,
n−1∑
k=1

1{Zk > Zk+1}


=

n−1∑
j=2

n−1∑
k=1

(n− 2j + 1)Cov(Zj ,1{Zk > Zk+1}) (4.17a)

+
∑

j∈{1,n}

n−1∑
k=1

(n− 2j + 1)Cov(Zj ,1{Zk > Zk+1}) . (4.17b)

Due to the independence of the Zj , we get

(4.17a) =
n−1∑
j=2

(n− 2j + 1)
(
Cov(Zj ,1{Zj < Zj−1}) + Cov(Zj ,1{Zj > Zj+1})

)
= 0 ,

where the last equality follows from

Cov(Zj ,1{Zj < Zj−1}) + Cov(Zj ,1{Zj > Zj+1})

= E(Zj1{Zj < Zj−1}) + E(Zj1{Zj > Zj+1}) − 1
2

= E(Zj1{Zj < Zj−1}) + E(Zj1{Zj > Zj−1}) − 1
2 = E(Zj) − 1

2 = 0 .
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As Z11{Z1 < Z2} is a function of two uniform variables with joint density f : R2 → R,
(x, y) 7→ 1{(x, y) ∈ [0, 1]2}, we can apply Fubini’s Theorem to obtain

E(Z11{Z1 < Z2}) =
∫

[0,1]2
x1{x < y} d(x, y) =

∫ 1

0
x

(∫ 1

0
1{x < y}dy

)
dx

=
∫ 1

0
x(1 − x) dx = 1

6 .

Therefore, we get

(4.17b) = (n− 1)Cov(Z1,1{Z1 > Z2}) − (n− 1)Cov(Zn,1{Zn−1 > Zn})
= (n− 1)

(
E(Z11{Z1 > Z2}) − E(Z11{Z1 < Z2})

)
= (n− 1)

(1
2 − 2E(Z11{Z1 < Z2})

)
= n− 1

6 ,

which shows that Cov(X̂inv, Xdes) = (n − 1)/6 on Sn. For the groups Bn and Dn, with
Zk ∼ U(−1, 1) and the modifications (4.14), (4.3b), the calculation is more extensive but
still follows the same procedure. On Dn, we have

Cov(X̂D
inv, X

D
des) =

n∑
j=1

n−1∑
k=1

(j − 1)Cov((1 − Uj)1{Zj > 0},1{Zk > Zk+1}) (4.18a)

+ (j − 1)Cov
(
(1 + Uj)1{Zj < 0},1{Zk > Zk+1}

)
(4.18b)

+
n∑

j=1
(j − 1)Cov((1 − Uj)1{Zj > 0},1{−Z2 > Z1}) (4.18c)

+ (j − 1)Cov
(
(1 + Uj)1{Zj < 0},1{−Z2 > Z1}

)
. (4.18d)

In the first two lines (4.18a) and (4.18b), there is cancellation of all summands if j /∈ {1, n}
due to previously used arguments. Only j = n is relevant, as the summands are zero for
j = 1. We have E((1 − U1)1{Z1 > 0})E(1{Z1 > Z2}) = 1/8, and by Fubini’s Theorem,
we obtain for (4.18a):

E ((1 − U1)1{Z1 > 0}1{Z1 > Z2}) = 1
4

∫
[−1,1]2

(1 − |x|)1{x > 0}1{x > y}d(x, y)

= 1
4

∫ 1

0

∫ 1

−1
(1 − x)1{x > y}dydx

= 1
4

∫ 1

0
(1 − x)

(
1 +

∫ 1

0
1{x > y}dy

)
dx

= 1
4

∫ 1

0
(1 − x)(1 + x)dx = 1

6 .

Accordingly, for (4.18b), we have E
(
(1 + U1)1{Z1 < 0}

)
E(1{Z1 > Z2}) = 3/8 and

E
(
(1 + U1)1{Z1 < 0}1{Z1 > Z2}

)
= 1

4

∫
[−1,0]×[−1,1]

(1 + |x|)1{x > y}d(x, y)

= 1
4

∫ 0

−1
(1 + |x|)(1 − |x|)dx = 1

6 .

Next, (4.18c) and (4.18d) are non-zero only for j = 1 and j = 2. Since 1{−Z2 > Z1}
equals 1{−Z1 > Z2}, we have

(4.18c) + (4.18d) = (2n− 3)Cov
(
U11{Z1 > 0} + (2 − U1)1{Z1 < 0},1{−Z2 > Z1}

)
.
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Again, by Fubini’s theorem,

Cov
(
U11{Z1 > 0},1{−Z2 > Z1}

)
= − 1

12 ,

Cov
(
(2 − U1)1{Z1 < 0},1{−Z2 > Z1}

)
= 1

6 .

In total,

Cov(X̂D
inv, X

D
des) = (n− 1)

( 1
12 − 1

6

)
+ (2n− 3)

(
− 1

12 + 1
6

)
= n− 2

12 .

On Bn, we have due to (4.3b):

Cov(X̂B
inv, X

B
des) = (4.18a) + (4.18b)

+
n∑

j=1
(j − 1)Cov(Uj1{Zj > 0},1{Z1 < 0}) (4.19a)

+
n∑

j=1
(j − 1)Cov

(
(2 − Uj)1{Zj < 0},1{Z1 < 0}

)
(4.19b)

+ Cov

 n∑
k=1

1{Zk < 0},
n∑

j=1
1{Zj > Zj+1}


︸ ︷︷ ︸

= 0

+ Cov
(

n∑
k=1

1{Zk < 0},1{Z1 < 0}
)

︸ ︷︷ ︸
= 1/4

.

Only j = 1 is relevant in (4.19a) and (4.19b), and we easily obtain

Cov(U11{Z1 > 0},1{Z1 < 0}) = −1
8 ,

Cov
(
(2 − U1)1{Z1 < 0},1{Z1 < 0}

)
= 3

8 ,

giving
Cov(X̂B

inv, X
B
des) = (n− 1)

(
− 1

12 − 1
8 + 3

8

)
+ 1

4 = n− 1
6 + 1

4
as the overall result.

4.6.4 Proof of Lemma 4.2.8

We follow the calculation of Var(Xinv) in the uniform case provided in [66, Section 3]. So,
the main task is to calculate E(X2

inv). For XB
inv, we recall (4.2a) and use the shorthand

notations

XB
inv =

∑
i<j

1{Zi > Zj}

︸ ︷︷ ︸
=: X+

+
∑
i<j

1{−Zi > Zj}

︸ ︷︷ ︸
=: X−

+
n∑

i=1
1{Zi < 0}︸ ︷︷ ︸
=: X◦

= X+ +X− +X◦.
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This means we have to compute E
(
(XB

inv)2) by the decomposition

E
(
(XB

inv)2) = E((X+)2) + E((X−)2) + 2E(X+X−)
+ E((X◦)2) + 2E(X+X◦) + 2E(X−X◦) . (4.20)

The first term E((X+)2) is invariant under p, since it only involves events 1{Zi > Zj}
for which P(Zi > Zj) = 1/2, even if the involved Zi, Zj are not uniformly distributed.
Therefore, we obtain E((X+)2) from [66, Section 3]:

E((X+)2) = 1
2

(
n

2

)
+ 1

4

(
n

2

)(
n− 2

2

)
+ 5

3

(
n

3

)
.

Next, we turn to
E((X−)2) =

∑
i<j

∑
k<l

P(−Zi > Zj ,−Zk > Zl) .

For the
(n

2
)(n−2

2
)

choices of distinct i, j, k, l, we have that P(−Zi > Zj ,−Zk > Zl) = p2 due
to independence, and for the

(n
2
)

cases of (i, j) = (k, l), we simply get P(−Zi > Zj) = p.
The set of triples with exactly two of the indices colliding needs to be analyzed similar to
[66, p. 443f.]. Note that the cases i = k and j = l are counted twice. For instance, in the
case of i = l, we perform a case distinction based on the signs of Zi, Zj , and Zk:

P(−Zi > Zj ,−Zk > Zi) = P(−Zi > Zj ,−Zk > Zi, Zi > 0)
+ P(−Zi > Zj ,−Zk > Zi, Zi < 0)

= P(−Zi > Zj ,−Zk > Zi, Zi > 0, Zj < 0, Zk < 0)
+ P(Zi < 0, Zj < 0, Zk < 0)
+ P(Zi < 0, Zj > 0, Zk < 0,−Zi > Zj)
+ P(Zi < 0, Zj < 0, Zk > 0,−Zk > Zi)
+ P(Zi < 0, Zj > 0, Zk > 0,−Zi > Zj ,−Zk > Zi)

= 1
3p

2q + p3 + 1
2p

2q + 1
2p

2q + 1
3pq

2

= 1
3p(2p+ 1) .

It turns out that each of the six triples gives this contribution. So, overall,

E((X−)2) =
(
n

2

)
p+

(
n

2

)(
n− 2

2

)
p2 +

(
n

3

)
2p(2p+ 1) .

For E(X+X−), each of the disjoint quadruples gives a contribution of p/2. For the colliding
pairs, we have to compute

P(Zi > Zj ,−Zi > Zj)
= P(Zi > Zj ,−Zi > Zj , Zi > 0, Zj > 0)︸ ︷︷ ︸

= 0

+P(Zi > Zj ,−Zi > Zj , Zi < 0, Zj > 0)︸ ︷︷ ︸
= 0

+ P(Zi > Zj ,−Zi > Zj , Zi < 0, Zj < 0) + P(Zi > Zj ,−Zi > Zj , Zi > 0, Zj < 0)

= P(Zi < 0, Zj < 0, Zi > Zj) + P(Zi > 0, Zj < 0,−Zi > Zj) = p2

2 + pq

2 = p

2 .
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For the triples, we repeat the procedure described above. For the cases of j = k and j = l,
we get

P(Zi > Zj ,−Zj > Zk) = −1
6p(2p− 5) .

For the cases i = l and i = k, the calculation differs slightly:

P(Zi > Zj ,−Zi > Zl) = P(Zi > Zj ,−Zi > Zl, Zi > 0, Zl < 0)
+ P(Zi > Zj ,−Zi > Zl, Zi < 0, Zj < 0)

= P(Zi > 0, Zj < 0, Zl < 0,−Zi > Zl)
+ P(Zi > 0, Zj > 0, Zl < 0, Zj < Zi < −Zl)
+ P(Zi < 0, Zj < 0, Zl < 0, Zi > Zj)
+ P(Zi < 0, Zj < 0, Zl > 0, Zj < Zi < −Zl)

= 1
2p

2q + 1
6pq

2 + 1
2p

3 + 1
6p

2q

= 1
6p(2p+ 1) .

Overall, we obtain

E(X+X−) =
(
n

2

)
p

2 +
(
n

2

)(
n− 2

2

)
p

2 + 3
(
n

3

)(1
6p(2p+ 1) − 1

6p(2p− 5)
)

=
(
n

2

)
p

2 +
(
n

2

)(
n− 2

2

)
p

2 + 3
(
n

3

)
p .

The remaining three terms in (4.20) are easily calculated as

E(X+X◦) =
∑
i<j

n∑
k=1

P(Zi > Zj , Zk < 0)

= 3
(
n

3

)
p

2 +
∑
i<j

P(Zi > Zj , Zi < 0) +
∑
i<j

P(Zi > Zj , Zj < 0)

= 3
(
n

3

)
p

2 +
(
n

2

)
(p2 + pq) = 3

(
n

3

)
p

2 +
(
n

2

)
p ,

E(X−X◦) =
∑
i<j

n∑
k=1

P(−Zi > Zj , Zk < 0)

= 3
(
n

3

)
p2 + 2

(
n

2

)(
p2 + pq

2

)
= 3

(
n

3

)
p2 + 2

(
n

2

)
(p2 + p) ,

E((X◦)2) =
n∑

i,j=1
P(Zi < 0, Zj < 0) = 2

(
n

2

)
p2 + np .

Summing all terms in (4.20) and subtracting the square of the mean gives the claim for
Bn. On Dn, we omit the parts involving X◦ and get the corresponding result.
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4.6.5 Proof of Lemma 4.2.9

We follow the proof of Lemma 4.2.1, and again we first prove the claim on the even-signed
permutation groups Dn. For any bias p, it still holds that

E(XD
inv | Zk) =

k−1∑
i=1

E
(
f(Zi, Zk) | Zk

)
+

n∑
j=k+1

E
(
f(Zk, Zj) | Zk

)
,

with E
(
f(Zi, Zk) | Zk

)
and E

(
f(Zk, Zj) | Zk

)
as stated in the proof of Lemma 4.2.1. In

the p-biased case, we have

E
(
f(Zk, Zj) | Zk

)
= P(Zj < 0)Uk + P(Zj > 0)(1 + 1 − Uk)
= (1 − p)Uk + p(2 − Uk) = −2pUk + Uk + 2p .

Therefore,

E(XD
inv | Zk) = (k − 1)

(
1{Zk > 0}(1 − Uk) + 1{Zk < 0}(1 + Uk)

)
+ (n− k)(−2pUk + Uk + 2p) + const .

Ignoring the constant part with a slight abuse of notation, we now compute

E
(
E(XD

inv | Zk)2
)

= (n− k)2E
(
(−2pUk + Uk + 2p)2

)
(4.21a)

+ (k − 1)2E
((

1{Zk > 0}(1 − Uk) + 1{Zk < 0}(1 + Uk)
)2) (4.21b)

+ 2(k − 1)(n− k)E
(
(−2pUk + Uk + 2p)

(
1{Zk > 0}(1 − Uk)

+ 1{Zk < 0}(1 + Uk)
))
. (4.21c)

The sign of Zk is independent of Uk by construction. Therefore,

(4.21a) = (n− k)2E
(
(4p2 − 4p+ 1)U2

k + 4p(−2p+ 1)Uk + 4p2
)

= (n− k)2
(4

3p
2 + 2

3p+ 1
3

)
,

(4.21b) = (k − 1)2
(
qE((1 − Uk))2 + pE

(
(1 + Uk)2))

= (k − 1)2
(
q

3 + 7
3p
)

= (k − 1)2
(

2p+ 1
3

)
,

(4.21c) = 2(k − 1)(n− k)
(
(1 − p)E

(
(1 − Uk)(−2pUk + Uk + 2p)

)
+ pE

(
(1 + Uk)(−2pUk + Uk + 2p)

))
= 2(k − 1)(n− k)

(
(1 − p)

(2
3p+ 1

6

)
+ p

(4
3p+ 5

6

))
= 2(k − 1)(n− k)

(2
3p

2 + 4p
3 + 1

6

)
.
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In total,

E(E(XD
inv | Zk))2) = (n− k)2

(4
3p

2 + 2
3p+ 1

3

)
+ (k − 1)2

(
2p+ 1

3

)
+ 2(k − 1)(n− k)

(2
3p

2 + 4
3p+ 1

6

)
.

We subtract the square of

E(E(XD
inv | Zk)) = (n− k)

(
p+ 1

2

)
+ (k − 1)

(1
2 − p

2 + 3
2p
)

= (n− k)
(
p+ 1

2

)
+ (k − 1)

(
p+ 1

2

)
=
(
p+ 1

2

)
(n− 1) .

The total variance of X̂D
inv is

Var(X̂D
inv) =

n∑
k=1

E(E(XD
inv) | Zk)2) −

(
E(E(XD

inv) | Zk)
)2

=
n∑

k=1
E(E(XD

inv) | Zk)2) − n(n− 1)2
(
p+ 1

2

)2
,

so, to conclude the proof for Dn, we compute
n∑

k=1
E(E(XD

inv | Zk)2) =
(4

3p
2 + 2

3p+ 1
3

) n∑
k=1

(k − 1)2 +
(

2p+ 1
3

) n∑
k=1

(n− k)2

+
(4

3p
2 + 8p

3 + 1
3

) n∑
k=1

(k − 1)(n− k)

=
(4

3p
2 + 2

3p+ 1
3

)
· 1

6n(n− 1)(2n− 1)

+
(

2p+ 1
3

)
· 1

6n(n− 1)(2n− 1)

+
(4

3p
2 + 8p

3 + 1
3

)
· 1

6n(n− 1)(n− 2)

= n3
(2

3p
2 + 4

3p+ 5
18

)
− n2

(4
3p

2 − 8
3p− 1

2

)
+ n

(2
3p

2 + 4
3p+ 2

9

)
.

Subtracting n(n − 1)2 (p+ 1/2)2 gives the desired leading term stated for Var(XD
inv) in

Lemma 4.2.8, i.e.,

Var(XD
inv),Var(X̂D

inv) =
(

−1
3p

2 + 1
3p+ 1

36

)
n3 +O(n2) .

On the groups Bn, we achieve the same result since the additional parts in Var(X̂B
inv)

yielded by
∑n

i=1
1{Zi < 0} are asymptotically negligible. Recall that

XB
inv = XD

inv +
n∑

i=1
1{Zi < 0} ,
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therefore,

Var
(
E(XB

inv | Zk)
)

= Var

E(XD
inv | Zk) +

n∑
j=1

E(1{Zj < 0} | Zk)


= Var

(
E(XD

inv | Zk) + E(1{Zk < 0} | Zk) + const
)

= Var
(
E(XD

inv | Zk) + 1{Zk < 0}
)

= Var
(
(k − 1)1{Zk > 0}(1 − Uk) + (k − 1)1{Zk < 0}(1 + Uk)

+ (n− k)(−2pUk + Uk + 2p) + 1{Zk < 0} + const
)
.

Using the standard formula Var(X) = E(X2) − E(X)2 again, we have

E
(
E(XB

inv | Zk)2
)

= E
(
E(XD

inv | Zk)2
)

+ E (1{Zk < 0})

+ 2E
(
(k − 1)(1 + Uk)1{Zk < 0}

)
+ 2E

(
(n− k)(−2pUk + Uk + 2p)1{Zk < 0}

)
= E

(
E(XD

inv | Zk)2
)

+ p+ 3p(n− k) + (k − 1)(2p+ 1)p,

E
(
E(XB

inv | Zk)
)2

= E
(
E(XD

inv | Zk)
)2

+ p2 + 2E(1{Zk < 0})E
(
E(XD

inv | Zk)
)

=
(
p+ 1

2

)2
(n− 1)2 + p2 + 2p(n− 1)

(
p+ 1

2

)
.

In conclusion,

Var(X̂B
inv) = Var(X̂D

inv) + n(p− p2) − p(2p+ 1)n(n− 1)
2

= Var(X̂D
inv) +O(n2) .

The claim follows from Theorem 4.1.2.

4.6.6 Proof of Lemma 4.2.11

At first, we compute Cov(Xinv, Xdes) on Bn and Dn in the p-biased case. Regardless of
the bias, it always holds that

Cov(XD
inv, X

D
des) = (4.15a) + (4.15b) + (4.15c)

and (4.15a) = (n− 1)/4. The cancellation arguments for (4.15b) still hold as well, except
that ∀k = 1, . . . , n− 1:

Cov(1{−Zk > Zk+1},1{Zk > Zk+1}) = p

2 − p

2 = 0 ,

so, interestingly, (4.15b) = 0. (4.15c) is calculated in the same way as in the proof of
Lemma 4.2.3a), with the only differences that Cov(1{Z1 > Z2},1{−Z2 > Z1}) = 0 and
Cov(1{−Z1 > Z2},1{−Z2 > Z1}) = Var(1{−Z1 > Z2}) = pq. Overall,

Cov(XD
inv, X

D
des) = n− 1

4 + pq ,
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as claimed. For Cov(XB
inv, X

B
des) = (4.15a)+(4.15b)+(4.16a)+(4.16b)+(4.16c), we again

see that (4.16a) and (4.16b) vanish, and with (4.16c) = Var(1{Z1 < 0}) = pq, the claim
follows as well.

Next, we have to compute Cov(X̂D
inv, X

D
des) in the p-biased case. A significant change

to the unbiased case is that X̂D
inv now contains

∑n

k=1
(k − 1)(2pUk − Uk + 1), which is a

negligible constant in the unbiased case. In the p-biased case, we have

Cov(X̂D
inv, X

D
des) = (4.18a) + (4.18b) + (4.18c) + (4.18d)

+
n∑

j=1

n−1∑
k=1

(j − 1)Cov(2pUj − Uj + 1,1{Zk > Zk+1}) (4.22a)

+
n∑

j=1
(j − 1)Cov(2pUj − Uj + 1,1{−Z2 > Z1}) . (4.22b)

In (4.18a), (4.18b), and (4.22a), there is cancellation if j /∈ {1, n} due to previously used
arguments. Only j = 1 is relevant in (4.18a) and (4.18b), while only j = n is relevant in
(4.22a). We have E(Uj1{Zj > 0})E(1{Zj > Zj+1}) = q/4, and the joint density of Zj and
Zj+1 is

fp(x, y) := fp(x)fp(y) =


p2, x, y < 0
pq, x > 0, y < 0
pq, x < 0, y > 0
q2, x, y > 0

.

By Fubini’s Theorem, we obtain

E(U11{Z1 > 0}1{Z1 > Z2}) =
∫

[−1,1]2
|x|1{x > 0}1{x > y}fp(x, y)d(x, y)

=
∫

[0,1]2
q2x1{x > y}d(x, y)

+
∫

[0,1]×[−1,0]
pqx1{x > y}d(x, y)

= q2
∫ 1

0
x2dx+ pq

∫ 1

0
xdx = q2

3 + pq

2 ,

and accordingly,

E
(
(2 − U1)1{Z1 < 0}1{Z1 > Z2}

)
=
∫ 0

−1

∫ 1

−1
(2 − |x|)1{x > y}fp(x, y)dydx

= p2
∫ 0

−1
(2 + x)(1 + x)dx = 5

6p
2 ,

E
(
(2p− 1)Un1{Zn−1 > Zn}

)
= (2p− 1)

∫
[−1,1]2

|x|1{x < y}fp(x, y)d(x, y)

= (2p− 1)
(
p2

3 + q2

6 + pq

2

)
= (2p− 1)p+ 1

6 .

Therefore,
(4.18a) + (4.18b) + (4.22a) = (n− 1)

(
p2 − p+ 1

6

)
. (4.23)
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Moreover, we again have by Fubini’s Theorem:

Cov(U11{Z1 > 0},1{−Z1 > Z2}) = pq

6 − p

4 ,

Cov
(
(2 − U1)1{Z1 < 0},1{−Z1 > Z2}

)
= 2

3pq ,

giving
(4.18c) + (4.18d) = (2n− 3)

(5
6pq − p

4

)
.

At last,

(4.22b) = (2p− 1)Cov(U2,1{−Z2 > Z1}) = (2p− 1)
(
p2

2 + pq

2 − p

2

)
= 0.

By taking the sum (4.23) + (4.18c) + (4.18d) + (4.22b), the claim follows for Dn. Finally,
for Bn, recall that E(XB

inv | Zj) = E(XD
inv | Zj) + 1{Zj < 0} + const. We compute

Cov(X̂B
inv, X

B
des) = (4.23) +

n∑
j=1

(j − 1)Cov(Uj1{Zj < 0} + 1 + Uj1{Zj < 0},1{Z1 < 0})
︸ ︷︷ ︸

= (n−1)pq

+
n∑

j=1
(j − 1)Cov(2pUj − Uj + 1,1{Z1 < 0})

︸ ︷︷ ︸
= 0

+ Cov

 n∑
j=1

1{Zj < 0},
n∑

k=1
1{Zk > Zk+1} + 1{Z1 < 0}


︸ ︷︷ ︸

= pq

= (4.23) + (n− 1)
(

−pq

2

)
+ (n− 1)pq + pq

= (n− 1)(p2 + p+ 1
6 + p− p2) + pq ,

from which the claim follows for Bn as well.

4.6.7 Simulation code
The simulations in Section 4.5.1 examine the limit behavior of the row-wise maxima Mn =
max{Xn1, . . . , Xnn}, drawn from a uniform triangular array with Xn1

D= (Xinv, Xdes)⊤, as
well as Xn1

D= XT = Xdes + Xides. We first show how to generate a random permutation
of size n and to calculate its number of inversions. For the former, we can use the base
function sample, while for the latter, we use an efficient recursive algorithm based on the
classical MergeSort algorithm.

xinv <- function(n) {
arr = sample(n)
inv = count_inversions(arr)
return(inv[[2]])

}
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count_inversions <- function(arr) {
n <- length(arr)
if (length(arr) <= 1) {

return(list(arr, 0))
}
mid <- length(arr) %/% 2
left <- count_inversions(arr[1:mid]); right <- count_inversions([(mid + 1):n])
sort_left <- left[[1]]; sort_right <- right[[1]]
inv_left <- left[[2]]; inv_right <- right[[2]]
merged <- numeric(n)
i <- 1; j <- 1; inv_merge <- 0
for (k in 1:n) {

if (i > length(sort_left)) {
merged[k] <- sort_right[j]
j <- j + 1

} else if (j > length(sort_right)) {
merged[k] <- sort_left[i]
i <- i + 1

} else if (sort_left[i] <= sort_right[j]) {
merged[k] <- sort_left[i]
i <- i + 1

} else {
merged[k] <- sort_right[j]
j <- j + 1
inv_merge <- inv_merge + (length(sort_left) - i + 1)

}
}
inversions <- inv_left + inv_right + inv_merge
return(list(merged, inversions))

}

Counting descents and inverse descents is straightforward.
xdes <- function(n) {

arr = sample(n)
c <- 0
for (i in 1:(n-1)) {

if (arr[i] > arr[i+1]) {
c <- c + 1

}
}
return(c)

}

xt <- function(n) {
arr = sample(n)
invarr <- numeric(n)
for (i in 1:n) {

invarr[arr[i]] <- i
}
c <- 0
for (i in 1:(n-1)) {

if (arr[i] > arr[i+1]) {
c <- c + 1

}
if (invarr[i] > invarr[i+1]) {

c <- c + 1
}

}
return(c)

}

Next, for the simulation on the joint distribution (Xinv, Xdes)⊤, we generate the n-th row of
the triangular array and rescale its maximum with the transformation constants an, bn as
introduced in Theorem 4.4.1. These consist of the constants αn, βn,αn,βn as introduced
in Theorems 1.1.11 and 1.3.10, as well as the mean and variance.
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rowmax <- function(n) {
inv <- numeric(n); des <- numeric(n)
for (i in 1:n) {

inv[i] <- xinv(n); des[i] <- xdes(n)
}
maxx <- c(max(inv), max(des))
alpha <- 1/sqrt(2*log(n))
beta <- 1/alpha - alpha/2 * log(4*pi*log(n))
muinv <- n*(n-1)/4; mudes <- (n-1)/2
mu_n <- c(muinv, mudes)
varinv <- n^3/36 + n^2/24 - 5*n/72; vardes <- (n+1)/12
s_n <- c(sqrt(varinv), sqrt(vardes))
a_n <- alpha * s_n; b_n <- beta * s_n + mu_n
result <- (maxx - b_n)/a_n
return(result)

}

Accordingly, we use the same mechanism for the simulation on XT . The only difference
is in the mean and variance.

rowmax_xt <- function(n) {
t <- numeric(n)
for (i in 1:n) {

t[i] <- xt(n)
}
alpha <- 1/sqrt(2*log(n))
beta <- 1/alpha - alpha/2 * log(4*pi*log(n))
mu_n <- n-1; var_n <- (n+1)/6 + (n-1)/n
s_n <- sqrt(var_n)
a_n <- alpha * s_n; b_n <- beta * s_n + mu_n
result <- (max(t) - b_n)/a_n
return(result)

}

We decided to create 10,000 replications of (Mn − bn)/an. For any selected size n of
the underlying symmetric group, we generate these replications and plot their empirical
distribution. In the simulation, we chose n ∈ {20, 50, 100, 200, 500, 1000}. To obtain the
empirical distribution, we require the function empirical_cdf from the mltools package.

simulation <- function(n) {
all <- matrix(nrow=10000, ncol=2)
for (i in 1:10000) {

all[i,] <- rowmax(n)
}
dt <- data.table(x=all[,1], y=all[,2])
a <- seq(-4, 4, length.out = 100); b <- seq(-4, 4, length.out = 100)
windows(width = 12, height = 12)
ecdf <- outer(a, b, FUN = function(a, b) empirical_cdf(dt, ubounds = data.table(x=a,y=b))$CDF)
persp(x, y, ecdf, ticktype="detailed", theta = 45, phi = 0, col = "yellow",

border = "orange", shade = 0.5)
}

The plot of the two-sided Eulerian statistic XT is slightly easier to implement, since it is
one-dimensional. As seen in Figure 4.5, we also added a direct comparison to the Gumbel
distribution function. The simulation for XT was executed only for n = 1000.

91



4 CLT and extremes of multivariate permutation statistics

simulation_xt <- function(n) {
all <- numeric(10000)
for (i in 1:10000) {

all[i] <- rowmax_xt(n)
}
a <- seq(-4, 4, length.out = 100)
windows(width = 12, height = 12)
y <- empirical_cdf(all,a)$CDF
gumbel <- exp(-exp(-a))
plot(a, gumbel, type="l", col="blue", lwd=2)
lines(a,y, type="l", col="red", lwd=3, add=TRUE)

}
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5 Generalized inversions and descents

In this chapter, we introduce a generalization of inversions and descents on classical Weyl
groups. Recall that on the symmetric group Sn, the uniform random numbers of inversions
and descents are given by

Xinv =
∑

1≤i<j≤n

1{Zi > Zj} , Xdes =
n−1∑
i=1

1{Zi > Zi+1} , (5.1)

with independent Z1, . . . , Zn ∼ U(0, 1), see (2.2). A class of generalized inversion statistics
X

(d)
inv can be constructed by restricting the left-hand sum to pairs (i, j) with 1 ≤ j− i ≤ d,

for some d ∈ {1, . . . , n − 1}. These generalized inversions were first introduced by de
Mari & Shayman [32] who used this concept to describe the Betti numbers of Hessenberg
subvarieties in regular complex-valued matrices. Likewise, the number of descents Xdes
can be generalized to X(d)

des by counting all i ∈ {1, . . . , n−d} with Zi > Zi+d. Even further,
both classes X(d)

inv , X
(d)
des can be extended to the other classical Weyl groups Bn and Dn.

These concepts were introduced by Meier & Stump [75], who also showed a CLT for both
generalized inversions and generalized descents.

We now aim to extend the knowledge gained in the previous two chapters to these new
classes of permutation statistics, i.e., we aim to prove Gumbel attraction for both the
individual statistics X(d1)

inv , X
(d2)
des and the joint statistic (X(d1)

inv , X
(d2)
des )⊤. Here, d1 and d2

can be either fixed or dependent on n. We will investigate the impact of the choice of d
for these results. Since there is no closed representation of the generating function of X(d)

inv
and X

(d)
des, we will again deal with the dependency structure by using Hájek projections

and high-dimensional Gaussian approximation.

Section 5.1 gives basic definitions and properties of generalized inversions and descents.
Section 5.2 is devoted to determining the choices of d for which the Hájek approximation
of X̂(d)

inv is successful. In Section 5.3, we deduce the bivariate CLT and the extreme value
limit theorems for generalized inversions and descents. Section 5.4 gives the technical
proofs of the lemmas in Section 5.2.

5.1 Basic definitions

To simplify notation, we write Nn,d := {(i, j) ∈ {1, . . . , n}2 | 1 ≤ j − i ≤ d}.

Definition 5.1.1. Let Sn be a symmetric group, let π ∈ Sn and d ∈ {1, . . . , n−1}. Then,
d-inversions are all pairs (i, j) ∈ Nn,d with π(i) > π(j), and d-descents are all numbers
i with i ≤ n − d and π(i) > π(i + d). In this sense, common descents are 1-inversions
or 1-descents, and common inversions are (n − 1)-inversions. Drawing π ∈ Sn uniformly
at random, we write X

(d)
inv for the number of d-inversions and X

(d)
des for the number of
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5 Generalized inversions and descents

d-descents. By analogy with (2.2), these are expressed as

X
(d)
inv =

∑
(i,j)∈Nn,d

1{Zi > Zj} , X
(d)
des =

n−d∑
i=1

1{Zi > Zi+d} (5.2)

for i.i.d. Z1, . . . , Zn ∼ U(0, 1). The terms generalized inversions and generalized descents
are umbrella terms for all d-inversions and d-descents, respectively. △

In the literature, there are different terminologies, e.g., in [9, 87], d-inversions as given in
Definition 5.1.1 are called d-descents. However, we use the terms and notation provided
in [75] throughout this chapter to avoid confusion.

Remark 5.1.2. Obviously, each k ∈ {1, . . . , n} can be involved in at most 2d d-inversions.
This bound is redundant if d > n/2. In fact, it is an important case distinction whether
d ≤ n/2 or d > n/2. In the case of d ≤ n/2, we split {1, . . . , n} into the subregions

K1 := {1, . . . , d} , K2 := {d+ 1, . . . , n− d} , K3 := {n− d+ 1, . . . , n} ,

where K2 = ∅ if d = n/2. For any k ∈ K2, all larger indices k+1, . . . , k+d and all smaller
indices k − 1, . . . , k − d allow to form d-inversions. For any k /∈ K2, there are less than d
indices available in one direction, which we call an overlap. If k ∈ K1, then only k− 1 < d
smaller indices are available for d-inversions. This is a left-sided overlap. If k > n − d is
large, then there are only n− k < d larger indices available. This is a right-sided overlap.
The following Figures 5.1 – 5.3 give illustrations, assuming d < n/2.

k1 d n− d n

k − d k + d

Figure 5.1: A central index k ∈ K2 for which the whole segment {k − d, . . . , k + d} is
contained in {1, . . . , n}.

dk n− d1 n

1 k k + d
︸︷︷︸
<d

Figure 5.2: A left-positioned index k ∈ K2 with left-sided overlap, due to k−d /∈ {1, . . . , d}.
The overlap is indicated by the red segment.

Remark 5.1.3. On the contrary, if d > n/2, then n − d < d and each index has an
overlap to at least one side, and the above partition into three subregions is now written
as

K1 := {1, . . . , n− d} , K2 := {n− d+ 1, . . . , d} , K3 := {d+ 1, . . . , n} .
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5.1 Basic definitions

d kn− d1 n

k − d k n
︸︷︷︸
<d

Figure 5.3: A right-positioned index k ∈ K3 with right-sided overlap, due to k + d /∈
{1, . . . , n}. The overlap is indicated by the red segment.

The indices in K2 produce a two-sided overlap. For simplicity, we call the case of d ≤ n/2
the short case and the case of d > n/2 the long case. △

The mean and variance of X(d)
inv have been extensively computed by Pike [87]. It is easy

to verify that the special cases d = 1 and d = n − 1 are consistent with the results for
common inversions and descents in Theorems 2.2.2 and 2.2.3.

Theorem 5.1.4. (see [87], Theorem 1)
For all d = 1, . . . , n− 1, it holds that

E
(
X

(d)
inv

)
= 2nd− d2 − d

4 .

Moreover, if d ≤ n/2, then

Var
(
X

(d)
inv

)
= 6nd+ 4d3 + 3d2 − d

72 .

If d > n/2, then

Var
(
X

(d)
inv

)
= −1

6d
3 +

(1
3n− 7

24

)
d2 −

(1
6n

2 − 5
12n+ 1

8

)
d+ 1

36n
3 − 1

12n
2 + 1

18n .

The calculation of Var
(
X

(d)
inv

)
is reviewed in [75, Theorem A.1], where the variance of

d-descents is provided as well.

Theorem 5.1.5. (see [75], Theorem A.1)
The mean and variance of generalized descents are given as E

(
X

(d)
des

)
= (n− d)/2 and

Var
(
X

(d)
des

)
=
{

(n+ d)/12, d ≤ n/2
(n− d)/4, d > n/2

.

We now discuss the extension of generalized inversions and descents from symmetric groups
to the other classical Weyl groups Bn and Dn. This extension was introduced by Meier
& Stump [75] and it is based on the root poset of a classical Weyl group. We refer to [75,
Section 2] for the details. On the symmetric group Sn, the ordered pairs of indices (i, j)
correspond to the positive roots [ij] := ei − ej , where ei, ej are unit vectors in Rn, and the
height of [ij] within the root poset is ht([ij]) = j − i.

On the signed permutation group Bn, we also have to consider the positive roots [ĩj] :=
ei + ej and [i] := ei for 1 ≤ i < j ≤ n. The heights of these additional roots are

95



5 Generalized inversions and descents

ht([ĩj]) = i+ j and ht([i]) = i. The root [ĩj] corresponds to the indicator 1{−π(i) > π(j)}
appearing in Remark 2.1.15, while [i] corresponds to 1{π(i) < 0}. On the even-signed
permutation group Dn, the roots [i] are disregarded, and [ĩj] has height i+ j − 2. Hasse
diagrams of the root posets of Bn and Dn are illustrated by the examples B5 and D6 in
Figure 5.4.

[4̃5]

[3̃5]

[3̃4][2̃5]

[2̃4][1̃5]

[2̃3][1̃4]

[1̃3]

[1̃2]

[1]

[2]

[3]

[4]

[5]

[15]

[14][25]

[13][24][35]

[12][23][34][45]

ht

1

2

3

4

5

6

7

8

9

ht

[5̃6]

[4̃6]

[3̃6][4̃5]

[3̃5] [2̃6]

[2̃5] [1̃6][3̃4]

[2̃4] [1̃5]

[1̃4][2̃3]

[1̃3]

[1̃2]

[26]

[25] [36]

[24] [35] [46]

[23] [34] [45] [56]

[16]

[15]

[14]

[13]

[12]

Figure 5.4: Hasse diagrams of the root posets of the signed permutation group B5 (left)
and the even-signed permutation group D6 (right). The roots [ij] are marked
blue, the roots [ĩj] are marked red and the roots [i] are marked green. The
vertical axis indicates the heights of all positive roots.

Definition 5.1.6. For any classical Weyl group, d-inversions are determined by roots
of height at most d, and d-descents are determined by roots of height exactly d, see [75,
Definition 2.4]. For symmetric groups, this coincides with Definition 5.1.1. In addition to
Nn,d, we introduce

Ñn,d := {(i, j) ∈ {1, . . . , n}2 | i < j, i+ j ≤ d} .

Then, on the signed and even-signed permutation groups, X(d)
inv and X(d)

des can be expressed
as follows:

X
B,(d)
inv =

∑
(i,j)∈Nn,d

1{Zi > Zj} +
∑

(i,j)∈Ñn,d

1{−Zi > Zj} +
n∧d∑
i=1

1{Zi < 0} , (5.3a)

X
D,(d)
inv =

∑
(i,j)∈Nn,d

1{Zi > Zj} +
∑

(i,j)∈Ñn,d+2

1{−Zi > Zj} , (5.3b)
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X
B,(d)
des =

n−d∑
i=1

1{Zi > Zi+d} +
⌈d/2⌉−1∑

i=1
1{−Zi > Zd−i} + 1{Zd < 0} , (5.3c)

X
D,(d)
des =

n−d∑
i=1

1{Zi > Zi+d} +
⌈d/2⌉∑
i=1

1{−Zi > Zd+2−i} . (5.3d)

Note that in (5.3c) and (5.3d), indicators are ignored if they involve indices out of
bounds. The largest possible choice of d equals the total height of the root poset, namely,
dmax −1, where dmax denotes the largest degree of the underlying classical Weyl group, see
Remark 2.1.18. To precisely compute the variance of X(d)

inv and X(d)
des on the groups Bn and

Dn, one needs to distinguish eight cases, as seen in [75, Theorems A.4 and A.13]. How-
ever, many of these cases give the same asymptotic quantification, which can be stated as
follows:

Lemma 5.1.7. (cf. [75], Theorems A.4 and A.13)
For the generalized inversions and descents on both the groups Bn and Dn, it holds that

Var
(
X

(d)
inv

)
=


1
36d

3 + 1
12nd+O(d2), d ≤ n/2

1
36d

3 +O(d2), n/2 ≤ d < n

− 1
12d

3 + 1
3nd

2 − 1
3n

2d+ 1
9n

3 +O(d2), d ≥ n

,

Var
(
X

(d)
des

)
=
{ 1

24d+ 1
12n+O(1), d < n

−1
8d+ 1

4n+O(1), d ≥ n
.

For generalized inversions and descents on all classical Weyl groups, the CLT was investi-
gated by Meier & Stump [75]. Here, it is essential that the number of available pairs to
form d-inversions or d-descents continues to grow as n → ∞. For a classical Weyl group W
of rank n, let N≤n,d denote the number of positive roots with height at most d, and let N=

n,d

denote the number of positive roots with height exactly d. In particular, N≤n,d = |Nn,d| if
W = Sn, N

≤
n,d = |Nn,d| + |Ñn,d+2| if W = Dn, and N≤n,d = |Nn,d| + |Ñn,d| + d if W = Bn.

Theorem 5.1.8. (see [75], Corollary 2.7 and Theorem 2.9)
Let (Wn)n∈N be a sequence of classical Weyl groups and let d = (dn)n∈N be a sequence of
natural numbers with 1 ≤ d ≤ dmax −1. Let X(d)

inv and X(d)
des be the statistics of d-inversions

and d-descents on Wn, respectively. Then:

(a) If N≤n,d −→ ∞, then X
(d)
inv satisfies the CLT.

(b) If N=
n,d −→ ∞, then X

(d)
des satisfies the CLT.

5.2 The Hájek approximation of generalized inversions
In the following process, we investigate whether the previously developed methods are
applicable to the individual statistics X(d1)

inv , X
(d2)
des and the joint statistic (X(d1)

inv , X
(d2)
des )⊤,

where d1, d2 are either fixed or dependent on n. To this end, we first investigate the Hájek
projection X̂

(d)
inv in detail, and see for which d it satisfies the condition of Theorem 4.1.2.

We first consider X̂(d)
inv on symmetric groups and then provide the analogous observations

on the other classical Weyl groups.
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5 Generalized inversions and descents

For common descents, we have seen in Remark 4.1.4 that for nearly every Zk, there is
exactly one index k + 1 giving one contribution of Zk to E(Xdes | Zk), and exactly one
index k−1 giving one contribution of 1−Zk, yielding cancellation of the Zk. The boundary
cases are insufficient to produce a linear variance as required. If d is fixed, this problem
persists. As described in Remark 5.1.2, the boundaries produce an overlap that helps to
avoid complete cancellation and keep some contributions of Zk. Figure 5.5 illustrates this
for d = n/3. In conclusion, we need d = dn sufficiently large so that the overlap gives
enough contribution to Var(X̂(d)

inv) in relation to Var(X(d)
inv).

some Zk remain all Zk cancel out some 1− Zk remain

n/3 2n/3 n1 K1 K2 K3

Figure 5.5: Overview of cancellation and remainders of Zk and 1 − Zk in the three subre-
gions K1,K2,K3.

In what follows, we analyze the short case of d ≤ n/2. By definition,

X̂
(d)
inv =

n∑
k=1

E
(
X

(d)
inv | Zk

)
− (n− 1)E

(
X

(d)
inv

)
and

E
(
X

(d)
inv | Zk

)
=

∑
(i,j)∈Nn,d

P(Zi > Zj | Zk) =
∑

(i,j)∈Nn,d


1/2, k /∈ {i, j}
Zk, k = i

1 − Zk, k = j

. (5.4)

As already noted in the proof of Lemma 4.1.3, only the pairs (i, j) with k ∈ {i, j} contribute
to Var

(
E
(
X

(d)
inv | Zk

))
. We call these contributions the non-trivial parts for simplicity.

The number of these pairs depends on whether k belongs to K1,K2, or K3. Figure 5.6
visualizes this case distinction for the exemplary choice of n = 15 and d = 4.
If k ∈ K2, then the non-trivial parts are

Zk + Zk + . . .+ Zk︸ ︷︷ ︸
d times

+ (1 − Zk) + (1 − Zk) + . . .+ (1 − Zk)︸ ︷︷ ︸
d times

= d .

This means E
(
X

(d)
inv | Zk

)
is constant due to cancellation, and vanishes when computing

the variance. So, in the short case, Var
(
E
(
X

(d)
inv | Zk

))
originates only from K1 and K3.

If k ∈ K1, then E
(
X

(d)
inv | Zk

)
= (k − 1)(1 − Zk) + dZk + const = (d + 1 − k)Zk + const.

If k ∈ K3, then E
(
X

(d)
inv | Zk

)
= (n − k)Zk + d(1 − Zk) + const = (n − k − d)Zk + const.

So, the overall representation of X̂(d)
inv in the short case is

X̂
(d)
inv =

n∑
k=1

ωd(k)Zk + const , with ωd(k) :=


d− k + 1 , k ∈ K1

0, k ∈ K2

n− d− k , k ∈ K3

. (5.5)

Figure 5.7 illustrates the coefficients ωd(k) appearing in (5.5).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
j

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

i = 12

i = 13

i = 14

k = 3

k = 8

k = 13

Figure 5.6: Overview of relevant pairs (i, j) for computing the variance of E
(
X

(d)
inv | Zk

)
,

where n = 15 and d = 4. For each of the subregions K1,K2,K3, an exemplary
index k is chosen, and the pairs that give a non-trivial contribution are high-
lighted in red for k ∈ K1, in blue for k ∈ K2, and in green for k ∈ K3.

Lemma 5.2.1. (see Section 5.4.1 for the proof)
In the short case,

Var
(
X̂

(d)
inv

)
= 1

72
(
4d3 + 6d2 + 2d

)
.

So, if d ≤ n/2 and d = ω(n1/2), then Var
(
X̂

(d)
inv

)
∼ Var

(
X

(d)
inv

)
.

Now, we consider the long case. Due to d > n/2, we now have d > n−d, and the subregions
K1,K2,K3 are redefined according to Remark 5.1.3. For the non-trivial contributions, we
note that:

• If k ∈ K1 or k ∈ K3, then the remainder is the same as in the short case.

• If k ∈ K2, then the two-sided overlap gives the same contribution as stated in the
proof of Lemma 4.1.3, namely, (n− 2k + 1)Zk + (k − 1) .

So, we again obtain a representation in the way of

X̂
(d)
inv =

n∑
k=1

ωd(k)Zk + const , with ωd(k) :=


d− k + 1, k ∈ K1

n− 2k + 1, k ∈ K2

n− d− k, k ∈ K3

. (5.6)
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1

d

−d

1 2 d d+ 1

n− d

n− 1 n

Figure 5.7: Plot of ωd(k) in the short case (d ≤ n/2).

Figure 5.8 illustrates the coefficients ωd(k) in the long case. It is seen that the plot of
Figure 5.7 smoothly transitions into that of Figure 5.8 as d transitions from the short
case into the long case. Furthermore, in the case of common inversions, i.e., d = n − 1,
Figure 5.8 coincides with Figure 4.2.

In the following lemma, we show that in the long case, the leading terms of Var
(
X

(d)
inv

)
and Var

(
X̂

(d)
inv

)
are always matching.

Lemma 5.2.2. (see Section 5.4.2 for the proof)
In the long case,

Var
(
X̂

(d)
inv

)
= −1

6d
3 +

(1
3n− 1

4

)
d2 −

(1
6n

2 − 1
3n+ 1

12

)
d+ 1

36n
3 − 1

12n
2 + 1

18n .

Therefore, if d > n/2, we always have Var
(
X̂

(d)
inv

)
∼ Var

(
X

(d)
inv

)
.

Combining these two observations, we can state:

Corollary 5.2.3. Consider the generalized inversion statistic X
(d)
inv on the symmetric

groups (Sn)n∈N, with d = dn being a sequence satisfying 1 ≤ d ≤ n − 1 ∀n ∈ N. Then,
Var

(
X̂

(d)
inv

)
∼ Var

(
X

(d)
inv

)
holds if and only if d = ω(n1/2).

We now derive an analogous result for the other classical Weyl groups Bn and Dn.
Recall the root poset structure explained in Section 5.1, the representations in Defini-
tion 5.1.6, and the asymptotic quantification of Var(X(d)

inv) given in Lemma 5.1.7.
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2d− n

d

n− 2d

−d

1 n− d d d+ 1 n

Figure 5.8: Plot of ωd(k) in the long case (d > n/2).

For simplicity reasons, we ignore any p-bias and consider only the uniform distribution on
Bn and Dn. So, we recall that XB,(d)

inv is based on i.i.d. Z1, . . . , Zn ∼ U(−1, 1). For each
k = 1, . . . , n, we have

E
(
X

B,(d)
inv | Zk

)
=

∑
(i,j)∈Nn,d

P(Zi > Zj | Zk) +
∑

(i,j)∈Ñn,d

P(−Zi > Zj | Zk)

+
n∧d∑
i=1

P(Zi < 0 | Zk) .

Similar to the symmetric groups, we will compute coefficients ωd(k) such that∑
(i,j)∈Nn,d

P(Zi > Zj | Zk) +
∑

(i,j)∈Ñn,d

P(−Zi > Zj | Zk) = ωd(k)Zk + const .

If d < k, then the third sum
∑n∧d

i=1
P(Zi < 0 | Zk) = d/2 is constant. Otherwise, we have
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5 Generalized inversions and descents

Var
(
E
(
X

B,(d)
inv | Zk

))
= Var

(
ωd(k)Zk + 1{Zk < 0} + const

)
= Var(ωd(k)Zk) + Var(1{Zk < 0}) + 2Cov(ωd(k)Zk,1{Zk < 0})

= ωd(k)2

3 + 1
4 + 2ωd(k) Cov(Zk,1{Zk < 0})︸ ︷︷ ︸

= −1/4

, (5.7)

from which we see that even if d < k, the leading terms of Var
(
X̂

B,(d)
inv

)
are not influ-

enced by the third sum. So, we have to determine the coefficients ωd(k), from which we
successfully obtain a statement analogous to Corollary 5.2.3:

Lemma 5.2.4. (see Section 5.4.3 for the proof)
On the signed permutation groups Bn, let d = dn be a sequence with 1 ≤ d ≤ 2n − 1
∀n ∈ N. Then, Var

(
X̂

(d)
inv

)
∼ Var

(
X

(d)
inv

)
holds if and only if d = ω(n1/2).

This statement also extends to the even-signed permutation groups Dn, since the difference
between X

B,(d)
inv and X

D,(d)
inv is asymptotically negligible (cf. (5.3a) and (5.3b)).

5.3 Asymptotic results

We now consider the joint statistic
(
X

(d1)
inv , X

(d2)
des

)⊤
for two sequences d1 = d1(n), d2 =

d2(n) with d1(n), d2(n) ≤ dmax − 1 ∀n ∈ N. We first address the asymptotic normal-
ity of

(
X

(d1)
inv , X

(d2)
des

)⊤
, and then state the extreme value behavior of X(d1)

inv , X
(d2)
des and(

X
(d1)
inv , X

(d2)
des

)⊤
. In this process, we keep using d as an umbrella notation for d1 or d2,

depending on the context.

If d1 and d2 both remain fixed, then both X
(d)
inv and X

(d)
des are m-dependent (m = d) and

it is not necessary to apply the Hájek approximation. From the CLT for m-dependent
random vectors, it follows that:

Theorem 5.3.1. For any two fixed numbers d1, d2, the joint distribution
(
X

(d1)
inv , X

(d2)
des

)⊤
satisfies the CLT.

In what follows, we assume that both d1 = d1(n) and d2 = d2(n) diverge. Recall the
notations N≤n,d, N

=
n,d from Theorem 5.1.8. To obtain bivariate asymptotic normality, it is

obviously necessary that both N≤n,d −→ ∞ and N=
n,d −→ ∞, in analogy to Theorem 5.1.8.

These conditions are also necessary to allow for non-degeneracy of extreme values. To
state a Gumbel EVLT for X(d1)

inv , we only require N≤n,d1
−→ ∞, which is already ensured

as d1 is divergent. In contrast, the divergence of N=
n,d2

is ensured if and only if d2 is not
too large, or precisely, if d2 = dmax − ω(1).

Since d2 = d2(n) diverges, there exists no constant m ∈ N for which all X(d2)
des are m-

dependent. However, the dependency structure of X(d2)
des is still sparse. According to (5.2),

(5.3c), (5.3d), we can represent X(d2)
des as a sum of indicator variables, each of which depends

on at most three others. Therefore, the maximum degrees ∆n,∆∗n of the corresponding
dependency graphs are bounded in the way of ∆n ≤ 3 and ∆∗n ≤ 9. We can apply
Theorem 4.3.1 again and proceed the same way as in Theorem 4.3.4.
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If d1 = d1(n) diverges as well, then the maximum degrees ∆n,∆∗n of the dependency graphs
of
(
X

(d1)
inv , X

(d2)
des

)⊤
are bounded in the way of ∆n ≤ 4d1 and ∆∗n ≤ 8d1. Moreover, we have

to take into account that by (5.2), (5.3a), (5.3b), X(d1)
inv is based on Θ(nd1) summands,

so we have to replace n with nd in Theorem 4.3.1. Therefore, Theorem 4.3.1 gives an
o(1) bound of rn(Are) only if d2/3

1 log(nd1)7/6 = o((nd1)1/6), which leads to the condition
d1 = o

(
n1/3 log(n4/3)−7/3

)
. For any faster growth rate of d1, we have to replace X(d1)

inv

with X̂(d1)
inv and we still obtain the CLT on all classical Weyl groups from [17, Theorem 2],

provided the respective conditions in Corollary 5.2.3 and Lemma 5.2.4.

Corollary 5.3.2. If d1 = o
(
n1/3 log(n4/3)−7/3

)
or d1 = ω(n1/2), then

(
X

(d1)
inv , X

(d2)
des

)⊤
satisfies the CLT for any d2 = d2(n) ∈ {1, . . . , dmax − 1} with d2 = dmax − ω(1).

We now postulate the univariate and bivariate EVLTs for generalized inversions and de-
scents. For a univariate triangular array consisting of generalized descents, the EVLT is
straightforward since it is not necessary to use the Hájek projection. We already argued in
Remark 4.4.2 that a subexponential bound on kn can be obtained if the Hájek projection
is not needed for the Gaussian approximation. So, in the univariate EVLT for generalized
descents, we can use the bound on kn stated in Theorem 4.4.3, but we have to take the
number of summands of X(d)

des into account, which is N=
n,d.

Theorem 5.3.3. Let (Xnj)j=1,...,kn be a row-wise i.i.d. triangular array with Xn1
D= X

(d)
des

for a sequence d = dn with 1 ≤ d ≤ dmax − 1 and d = dmax − ω(1), and let Mn, an, bn be
as in Theorem 3.3.2. If kn = exp

(
o
(
(N=

n,d)1/7)) , then

∀x ∈ R: P(Mn ≤ anx+ bn) −→ exp
(
− exp(−x)

)
.

An analogous EVLT for X(d)
inv applies if d grows slow enough to permit the application of

Theorem 4.3.1.

Theorem 5.3.4. Let (Xn1, . . . , Xnkn) be a row-wise i.i.d. triangular array with Xn1
D=

X
(d)
inv and d = dn as in Theorem 5.3.3. Let Mn, an, bn be as in Theorem 3.3.2. If d = o(n1/3)

and kn = exp
(
o(n1/7d−3/7)

)
, then

∀x ∈ R: P(Mn ≤ anx+ bn) −→ Λ(x) .

Proof. According to the above considerations, the maximum degrees ∆n,∆∗n of the de-
pendency graphs of the representations (5.2), (5.3a), and (5.3b) are bounded in the way
of ∆n ≤ 4d and ∆∗n ≤ 8d. Since these representations are based on Θ(nd) summands, we
need to replace n with nd when applying Theorem 4.3.1. An application of Theorem 4.3.1
with n ∨ kn i.i.d. iterations of X(d)

inv yields

|P(Mn ≤ anx+ bn) − P(Mn ≤ αnx+ βn)| = O
(
n−1/6d1/2 log(kn)7/6

)
= o(1) ,

where Mn is the maximum of n i.i.d. copies of the standard normal distribution. The
claim follows.

For any other growth rate of d, we can state an EVLT only in cases where the Hájek
approximation of X(d)

inv is successful. These cases are characterized by Corollary 5.2.3 and
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5 Generalized inversions and descents

Lemma 5.2.4. Again, the Hájek projection causes a strongly reduced asymptotic bound
on kn.

Recall that the proof of Theorem 4.4.1 consists of two parts: The first part is to show that
the error resulting from replacing Xinv with X̂inv vanishes in probability (cf. (4.8)). This
part is pivotal for the upper bound on the number of samples kn from a finite Coxeter
group of rank n. The second part is to apply Theorem 4.3.1 for (X̂inv, Xdes) (cf. (4.7)).
The number of descents can be ignored within these considerations, so we can first use
this method to state the univariate EVLT for X(d)

inv . Depending on the magnitude of d,
the upper bound on kn can now be even stricter than the bound given in Theorem 4.4.1.

Theorem 5.3.5. Let (Xnj)j=1,...,kn be a row-wise i.i.d. triangular array with Xn1
D= X

(d)
inv

on a classical Weyl group of rank n, and with d = dn such that d = ω(n1/2). Assume
kn log(kn) = o(d2/n) and let Mn, an, bn be as in Theorem 3.3.2. Then,

∀x ∈ R: P(Mn ≤ anx+ bn) −→ exp(− exp(−x)) .

Proof. The conditions in Corollary 5.2.3 (for symmetric groups) and Lemma 5.2.4 (for
other classical Weyl groups) ensure that

1 − Var(X(d)
inv)

Var(X̂(d)
inv)

= o(1) . (5.8)

As seen in the proof of Theorem 4.4.1, the rate of convergence in (5.8) determines the
bound on kn by means of (4.9) and (4.10). We compute this rate for symmetric groups,
since the same conclusions can be obtained on the other classical Weyl groups. In the
short case, we have

1 − Var(X(d)
inv)

Var(X̂(d)
inv)

= 1 − 4d3 + 6nd+ 3d2 − d

4d3 + 6d2 + 2d = 4d2 + 6n+ 3d− 1
4d2 + 6d+ 2

= 1 − 4d2

4d2 + 6d+ 2 − 3d+ 1
4d2 + 6d+ 2 − 6n

4d2 + 6d+ 2

= Θ
(1
d

)
− 6n

4d2 + 6d+ 2 .

Apparently, 6n/(4d2 + 6d+ 2) always dominates 1/d. In conclusion,

1 − Var(X(d)
inv)

Var(X̂(d)
inv)

= Θ
(
n

d2

)
,

giving the condition of kn log(kn) = o(d2/n) according to the arguments in the proof of
Theorem 4.4.1. From here, we proceed as in the proof of Theorem 4.4.1. In the long case,
we always have Var(X(d)

inv) ∼ Var(X̂(d)
inv) and therefore,

1 − Var(X(d)
inv)

Var(X̂(d)
inv)

= Θ
(1
d

)
= Θ

( 1
n

)
= Θ

(
n

d2

)
.

Again, the proof now follows the same steps as in Theorem 4.4.1.
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The bivariate EVLT for
(
X

(d1)
inv , X

(d2)
des

)⊤
can now be stated analogously to the previous

three EVLTs. Note that the descent component does not interfere with the arguments in
the proofs of Theorems 5.3.4 and 5.3.5.

Corollary 5.3.6. Let (Xnj)j=1,...,kn be a row-wise i.i.d. triangular array with Xn1
D=

(X(d1)
inv , X

(d2)
des ) for two sequences d1 = d1(n), d2 = d2(n) as above.

(a) If d1 = o(n1/3), then assume kn = exp
(
o
(
(N=

n,d2
)1/7 ∧ n1/7d

−3/7
1

))
.

(b) If d1 = ω(n1/2), then we assume kn log(kn) = o(d2/n) in analogy to Theorem 5.3.5.

Let Mn, an, bn be as in Theorem 4.4.1. Then,

∀x ∈ R2: P(Mn ≤ an ∗ x + bn) −→ Λ2(x) .

5.4 Technical proofs

5.4.1 Proof of Lemma 5.2.1

We recall the representation of X̂(d)
inv in the short case provided in (5.5). Its variance results

only from the sum of all ωd(k)Zk. Therefore,

Var
(
X̂

(d)
inv

)
= Var

 n∑
k=n−d+1

(n− k − d)Zk +
d∑

k=1
(d+ 1 − k)Zk


=

n∑
k=n−d+1

1
12(n− k − d)2 +

d∑
k=1

1
12(d+ 1 − k)2

= 1
12

d∑
k=1

k2 + 1
12

d∑
k=1

(−k)2 = 1
6
d(d+ 1)(2d+ 1)

6

= 1
72
(
4d3 + 6d2 + 2d

)
.

So, the leading term is always 4d3/72. According to Theorem 5.1.4, we have

Var(X(d)
inv) = 1

72
(
4d3 + 6nd+ 3d2 − d

)
,

therefore it must be ensured that d3 ≫ nd ⇐⇒ d ≫
√
n, proving Lemma 5.2.1.

5.4.2 Proof of Lemma 5.2.2

In the long case, the calculations are slightly more complex due to the indices in K2 giving
a two-sided overlap. Proceeding from (5.6), we state that

Var
(
X̂

(d)
inv

)
= 1

12

n−d∑
k=1

(d+ 1 − k)2 (5.9a)

+ 1
12

d∑
k=n−d+1

(n− 2k + 1)2 (5.9b)
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+ 1
12

n∑
k=d+1

(n− k − d)2 . (5.9c)

By appropriate index shifting, we calculate

(5.9a), (5.9c) = 1
12

(
d∑

k=1
k2 −

2d−n∑
k=1

k2
)

=⇒ (5.9a) + (5.9c) = 1
6

(
d∑

k=1
k2 −

2d−n∑
k=1

k2
)

= 1
36(n− d)

(
14d2 + d(9 − 10n) + 2n2 − 3n+ 1

)
,

(5.9b) = 1
36(2d− n)(4d2 − 4dn+ n2 − 1) .

This gives the overall result

Var
(
X̂

(d)
inv

)
= 1

36
(
−6d3 + 12d2n− 9d2 − 6dn2 + 12dn− 3d+ n3 − 3n2 + 2n

)
.

In contrast, by Theorem 5.1.4,

Var
(
X

(d)
inv

)
= 1

36

(
−6d3 +

(
12n− 21

2

)
d2 −

(
6n2 − 15n+ 9

2

)
d+ n3 − 3n2 + 2n

)
.

Since the long case implies n/2 < d < n, all monomials of order 3 are leading terms. It is
easily seen that these leading terms are matching, i.e.,

Var
(
X

(d)
inv

)
,Var

(
X̂

(d)
inv

)
= 1

36
(
−6d3 + 12nd2 − 6n2d+ n3 +O(n2)

)
.

This proves Lemma 5.2.2.

5.4.3 Proof of Lemma 5.2.4
In light of (5.7), we need to determine the linear coefficients ωd(k) stemming from∑

(i,j)∈Nn,d

P(Zi > Zj | Zk) +
∑

(i,j)∈Ñn,d

P(−Zi > Zj | Zk) .

We write ωd(k) = ωd(k)+ +ωd(k)−, with ωd(k)+ stemming from the first sum and ωd(k)−
stemming from the second. For ωd(k)+, we can use the observations from Lemmas 5.2.1
and 5.2.2. However, we need to take into account that due to Z1, . . . , Zn ∼ U(−1, 1), we
now have

P(Zk > Zj | Zk) = Zk + 1
2 , P(Zi > Zk | Zk) = 1 − Zk

2 ,

P(−Zk > Zj | Zk) = 1 − Zk

2 , P(−Zi > Zk | Zk) = 1 − Zk

2 .

In conclusion, the coefficients ωd(k)+ on Bn are half of the coefficients ωd(k) on Sn if
d < n. Otherwise, for d ≥ n we always have ωd(k)+ = (n − 2k + 1)/2. Moreover,
ωd(k)− = −Ñ (k)

n,d/2, where

Ñ
(k)
n,d := |{(i, j) ∈ Ñn,d | i = k or j = k}| .
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By analogy with the proofs of [75, Theorems A.4 and A.13], we need to distinguish the
four cases d ≤ n/2, n/2 ≤ d ≤ 2n/3, 2n/3 ≤ d < n, and d ≥ n. If d ≤ n/2, then all pairs
in Ñn,d are located within K1, yielding

ωd(k) =


(d− k + 1)/2 − (d− k − 1)/2, k ≤ d/2
(d− k + 1)/2 − (d− k)/2, d/2 < k ≤ d

0, d < k ≤ n− d

(n− d− k)/2, n− d < k ≤ n

=
{

(n− d− k)/2, n− d < k ≤ n

O(1), otherwise
.

In conclusion, if d ≤ n/2, then

Var
(
X̂

B,(d)
inv

)
= 1

3

n∑
k=1

ωd(k)2 +O(d2) = 1
12

n∑
k=n−d+1

(n− d− k)2 +O(d2)

= 1
12
d(d+ 1)(2d+ 1)

6 +O(d2) = 1
36d

3 +O(d2) .

Due to Var
(
X

B,(d)
inv

)
= d3/36 + nd/12 + O(d2) according to Lemma 5.1.7, we obtain the

same condition as in Lemma 5.2.1, namely, d = ω(n1/2).

If n/2 < d < n, then the pairs in Ñn,d also cover K2. For k ∈ K2, there cannot be any
pairs (k, j) if n/2 < d ≤ 2n/3, while this is possible if d > 2n/3. However, the difference
between these two subcases is only marginal. If n/2 < d ≤ 2n/3, we obtain

ωd(k) =


O(1), k ∈ K1(
n− 2k + 1 − (d− k)

)
/2, k ∈ K2

(n− d− k)/2, k ∈ K3

.

If d > 2n/3, then

ωd(k) =


O(1), k ∈ K1(
n− 2k + 1 − (d− k − 1)

)
/2, k ∈ K2, k ≤ d/2(

n− 2k + 1 − (d− k)
)
/2, k ∈ K2, k > d/2

(n− d− k)/2, k ∈ K3

.

In conclusion, if n/2 < d < n, then

Var
(
X̂

B,(d)
inv

)
= 1

3

n∑
k=1

ωd(k)2 +O(d2)

= 1
12

d∑
k=n−d+1

(n− d− k + 1)2 + 1
12

n∑
k=d+1

(n− d− k)2 +O(d2)

= 1
12

d∑
k=n−d+1

(n− d− k + 1)2 + 1
12

2d−n∑
k=1

k2 +O(d2)
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= 1
12

2d−n−1∑
k=1

k2 + 1
12

(
d∑

k=1
k2 −

2d−n∑
k=1

k2
)

+O(d2)

= 1
36d

3 +O(d2) .

In the remaining case of d ≥ n, the main focus is on counting Ñ (k)
n,d . Figure 5.9 illustrates

the positions of pairs (i, j) ∈ Ñn,d for the exemplary choice of n = 12, d = 16.

1 2 3 4 5 6 7 8 9 10 11 12
j

1

2

3

4

5

6

7

8

i

d/2

d− n

Figure 5.9: Visualization of pairs (i, j) in Ñn,d for n = 12 and d = 16. The numbers d− n
and d/2 are important case distinction thresholds for counting the pairs (k, j)
and (i, k), respectively.

With help of Figure 5.9, it is straightforward to count

Ñ
(k)
n,d =


n− 1, 1 ≤ k ≤ d− n

d− k − 1, d− n < k ≤ d/2
d− k, d/2 < k ≤ n

.

This result is also illustrated in Figure 5.10, which displays the number of pairs (i, k) and
the number of pairs (k, j).
Therefore, if d ≥ n, we have

ωd(k) =


1 − k, 1 ≤ k ≤ d− n

(n+ 2 − d− k)/2, d− n < k ≤ d/2
(n+ 1 − d− k)/2, d/2 < k ≤ n

.
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1 2 3 4 5 6 7 8 9 10 11 12

k

1

2

3

4

5

6

7

8

9

10

11

Ñ
(k)
n,d

d− n d/2

Figure 5.10: Plots of the numbers of pairs (i, k) (red) and (k, j) (blue) in Ñn,d. The sum
of these two numbers is Ñ (k)

n,d , which is displayed by the black crosses and the
dashed line.

We compute

n∑
k=1

ωd(k)2 =
d−n∑
k=1

(k − 1)2 + 1
4

n∑
k=d−n+1

(n− d+ 1 − k)2 +O(n2)

= 1
6
(
2d3 − 3d2(2n+ 1) + d(6n2 + 6n+ 1) − n(2n2 + 3n+ 1)

)
+ 1

24(2n− d)(14d2 − 20dn− 9d+ 8n2 + 6n+ 1) +O(n2) .

Due to Var(Zk) = 1/3, we obtain

Var(X̂B,(d)
inv ) = 1

72
(
−6d3 + 3d2(8n− 1) − 3d(8n2 − 1) + 2n(4n2 − 1)

)
+O(n2)

= − 1
12d

3 + 1
3nd

2 − 1
3n

2d+ 1
9n

3 +O(n2) .

By Lemma 5.1.7, this also applies for Var(XB,(d)
inv ), completing the proof.
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List of Symbols

Chapter 1
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of these two numbers is Ñ (k)
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