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Abstract: Forest degradation is an ongoing global issue, with significant environmental impacts that necessitate efficient
monitoring and management. This paper presents a simple yet effective method for detecting forest degra-
dation using freely available Sentinel-2 satellite data and an anomaly detection approach. The aim of this
study was to develop an accessible and reliable technique that could match the performance of more complex
algorithms while using minimal computational resources. The research focused on spectral bands with 10-20
m resolution and vegetation indices (NDVI, NDMI, GCI, PSSRa) to analyze forest damage in the Harz region.
The method involved identifying anomalies in the spectral data relative to randomly selected reference points
from healthy forest areas, which were verified with high-resolution imagery from Google Earth Pro. The
results demonstrated that specific Sentinel-2 bands, particularly B3 and B5, were the most informative for de-
tecting damaged forests, while vegetation indices were less effective. By analyzing anomalies in these bands,
we successfully tracked forest degradation from 2020 to 2024, revealing a significant increase in damage be-
tween 2020 and 2021, with a total of 68.1 thousand hectares of forest lost by 2024. The theoretical relevance
of this study lies in the development of a cost-effective and straightforward method for forest monitoring,
while the practical relevance is evident in its potential for large-scale forest management and conservation.
This method provides an efficient tool for monitoring forest health with minimal data requirements and com-
putational effort, offering a promising solution for forest managers and conservationists worldwide.

1 INTRODUCTION

Healthy forests maintain ecosystem balance, purify
the air, and provide economically important resources
for people. However, forests constantly face nu-
merous threats, such as diseases, pests, illegal log-
ging, and climate change, which jeopardize their ex-
istence. The forested area of the Harz Nature Park in
Germany, for example, has decreased by over 47%
from 2001 to 2023, largely due to global warming
and poor forest management practices, according to
Global Forest Watch estimates [1]. Therefore, it is
crucial to regularly monitor forest health to identify
issues promptly and take necessary actions for their
preservation.

Traditional forest monitoring methods, including
visual inspections, are limited and labor-intensive, of-
ten failing to detect problems in a timely manner, es-

pecially in remote or hard-to-reach forest areas. For-
est rangers may miss signs of tree diseases or ille-
gal logging, making it difficult to respond quickly to
threats.

In contrast to traditional methods, Earth obser-
vation satellites are an effective tool for monitoring
forests over large areas [2]. They allow for real-
time collection of detailed information on vegeta-
tion health, soil moisture, surface temperature, and
other parameters. Satellite data is successfully ap-
plied for monitoring the consequences of natural dis-
asters [3, 4] and human-induced impacts [5], detect-
ing damage in agricultural fields [6], etc. Satellite im-
agery can quickly identify changes in forest cover, as-
sess tree health [4], detect illegal logging [7, 5], pest
activities [8, 9], and identify other violations. Addi-
tionally, satellite imagery enables long-term analysis
of forest dynamics [4, 10], helping to predict future
issues and take timely measures.
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Various methods are used to detect forest damage
through satellites, including monitoring vegetation in-
dices such [11, 12], time series analysis [13, 4, 10],
and machine learning algorithms [14, 15], includ-
ing convolutional neural networks or transformers
[7, 16, 17]. While these methods are effective in de-
tecting changes in forests, they often require large
amounts of data and computational resources, and
may need significant processing time.

In our study, we aim to develop a simple and rapid
algorithm for accurately detecting forest damage and
diseases with minimal data, time, and resource con-
sumption, while maintaining high accuracy compared
to deep learning methods. By using free Sentinel-2
satellite imagery, we will create an efficient tool for
forest monitoring that allows for rapid responses to
changes, even with limited resources and large areas.

2 DATA AND MATERIALS

2.1 Study Area

For our study, we selected the protected areas of the
Harz Natural Park (Fig. 1), located in central Ger-
many at the border of Thuringia and Saxony-Anhalt.
Selected area covers 2,756 km², most of which is cov-
ered by forest. However, due to adverse weather con-
ditions, including droughts, storms, and pest activity,
the Harz forest has suffered significant damage in re-
cent years [1].

Figure 1: Study area.

To delineate the area of interest, we utilized vector
data of Germany’s protected areas provided by Pro-
tected Planet [18].

To distinguish forested areas from other land
cover types, we employed the 2020 forest map with
a spatial resolution of 10 meters, created based on

Sentinel-2 imagery with support from the Joint Re-
search Centre and the European Commission [19].

Consequently, 2020 was selected as the starting
point for our study, focusing on identifying areas that
have experienced deforestation or contain weakened
and diseased forests since that time.

2.2 Satellite Data Used

To detect forest damage and diseases (unnatural veg-
etation decline), we used free Sentinel-2 satellite har-
monized data, available with an update frequency of
approximately five days from 2017 to the present.

The Sentinel-2 satellite has 13 spectral bands, in-
cluding four bands at 10 meter resolution, six bands
at 20 meter resolution, and three bands at 60 meter
resolution. For our study, we will focus only on the
bands with spatial resolutions of 10 and 20 m because
bands with lower resolutions, such as those at 60 m,
would not provide the level of detail necessary for our
analysis of forest damage and disturbances.

For each year from 2020 to 2024, we selected a
time series of images from the months of late spring
and early summer (May–June), as trees are actively
vegetating during this period. We masked clouds us-
ing Sentinel-2 Cloud Probability data with a cloudi-
ness threshold of 20%. A composite was constructed
from the cloud-free images, assigning each pixel the
median reflectance value.

Additionally, as an extra source for validating the
obtained results, we used open high-resolution im-
agery available for viewing in Google Earth Pro.

3 METHODOLOGY

To detect forest damage and diseases, we propose
an anomaly detection method that identifies unusual
or unexpected patterns in satellite imagery, deviating
from typical forest conditions.

To assess the effectiveness of the proposed ap-
proach, we will analyze both individual Sentinel-2
spectral bands (Table 1) and their combinations —
commonly used vegetation indices for forest mon-
itoring [20] (Table 2). Specifically, the study will
evaluate indices such as Normalized Difference Veg-
etation Index (NDVI), Green Normalized Difference
Vegetation Index (GNDVI), Normalized Difference
Moisture Index (NDMI), Green Chlorophyll Index
(GCI) and Plant Senescence Stress Reflectance Index
(PSSRa), along with spectral bands with spatial reso-
lutions of up to 20 m, which can provide insights into
vegetation changes.
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Table 1: Sentinel-2 spectral bands used.

Band Spacial
Resolution (m) Wavelength (nm) Description

B2 10 490 Blue
B3 10 560 Green
B4 10 665 Red
B5 20 705 Red Edge 1
B6 20 740 Red Edge 2
B7 20 783 Red Edge 3
B8 10 842 NIR
B8a 20 865 Narrow NIR
B11 20 1610 SWIR1
B12 20 2190 SWIR2

Table 2: Vegetation indices used.

Vegetation
index Formula Application

NDVI B8−B4
B8+B4

Vegetation health, density,
and photosynthetic activity.

NDMI B8−B11
B8+B11

Monitoring vegetation and
soil moisture, drought
assessment.

GCI B9
B3 −1 Chlorophyll content

estimation.

PSSRa B7
B4

Detection of vegetation
stress and senescence.

First, we select several areas with damaged
forests, identified using freely available high-
resolution imagery from Google Earth Pro dated
26.06.2023.

We randomly select n points for healthy forest
and n points for damaged forest across different ar-
eas. Then, using Sentinel-2 image for the correspond-
ing date, we calculate the average values within the
spectra of the studied bands and vegetation indices
separately for pixels of healthy and damaged forest
(1, 2). Based on the values obtained, we calculate
the relative difference between the average values of
healthy and damaged forest pixels in different spectra
(3) and thus identify the most sensitive spectra as the
bands/indices with the highest relative difference.

Meanh =
1
n

n

∑
i=1

Vh(xi,yi) (1)

Meand =
1
n

n

∑
i=1

Vd(xi,yi) (2)

RelDi f f =
Meanh −Meand

Meanh

(3)

where Vh(xi,yi) and Vd(xi,yi) are the pixel values for
healthy and damaged forest at positions (xi,yi).

In addition, we visually assess which spectral
bands or indices are the most informative for detect-
ing forest damage.

Once these indicators are identified, we apply the
following approach:

1) Defining reference areas.
Randomly select n points of healthy forest to
calculate the reference spectral characteristics,
against which anomalies will be detected.

2) Sampling and averaging spectral values.
We extract pixel values from selected points
and calculating the average value of these pix-
els for each band or index.

3) Detecting anomalous areas.
We use (4), where anomalies are defined as
pixels with values differing from the average
healthy forest by more than a threshold coeffi-
cient (k), which we set as 10%, in the studied
spectrum (band or index).

Anomalyi =

{
1, if |Vpi −Vhi |> k ·Vhi

0, otherwise
(4)

where Vp is the value of the pixel in the stud-
ied spectrum i, Vh is the average value of the
healthy forest pixels, k is the threshold coeffi-
cient, set to 10%.

4) Combining detected anomalies across dif-

To reduce false-positive results, we combine
anomalies from the bands/indices that are most
sensitive to forest damage. Thus, areas with
anomalous values in all spectra simultaneously
are classified as damaged or diseased
forest (5):

Forestdamage = ∏Anomalyi (5)

4 RESULTS

4.1 Determining the Most Informative
Spectral Data of Sentinel-2 for
Detecting Forest Damage

Figure 2 presents an image of a selected area of in-
terest from June 2023 in ultra-high resolution from
Google Earth Pro (Fig. 2a) and in high resolution
from Sentinel-2 (Fig. 2b). This area was chosen to
visually illustrate the appearance of damaged forest
patches in different spectral ranges of Sentinel-2.

Figure 3 displays this area in various spectral
bands of Sentinel-2, while Figure 5 shows its repre-
sentation through vegetation index spectra.

From Figure 5, it is evident that damaged areas are
most clearly distinguishable in spectral bands B2, B3,
B4 (10 m) and B5, B11, B12 (20 m). Other bands

ferent spectra.
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do not provide such effective visual identification of
damaged forests.

Figure 2: Sample area with damaged forest, coordinates:
51°48’41.68” N, 10°51’06.94” E.

Figure 3: Sample area in the spectrum of the Sentinel 2
bands.

The bar chart in Figure 4 presents a numeri-
cal comparison of the mean values of the bands for
healthy and damaged forest areas, while the line graph
represents the relative difference between these val-
ues. Notably, for all bands, the pixel values of dam-
aged forests exceed those of healthy forests. The

largest discrepancies are observed in bands B3 (-40%)
and B5 (-49.7%), making them the most informa-
tive spectral bands for detecting forest damage using
Sentinel-2 data.

Figure 4: Histogram of average pixel values of Sentinel-2
bands for healthy and damaged forest.

Figure 5: Sample area in the spectrum of the Sentinel 2
vegetation indices.

Regarding vegetation indices, visual analysis of
the images (Fig. 5) indicates that they are not suf-
ficiently effective for clearly distinguishing between
pixels of healthy and damaged forests. However, nu-
merical analysis reveals that the vegetation index val-
ues for damaged forests are significantly lower than
those for healthy forests, particularly for GCI (-47%)
and PSSRa (-21.4%) (Fig. 6). Nevertheless, due to the
low visual separability of damaged forest areas from
healthy ones using vegetation indices, we decided to
focus solely on spectral bands B3 and B5.
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Figure 6: Histogram of average pixel values of Sentinel-2
vegetation indices for healthy and damaged forest.

Thus, for further analysis and detection of dam-
aged forests, we will utilize the intersection of anoma-
lies identified in bands B3 and B5.

4.2 Identifying Damaged Forest Areas
Through Anomaly Detection

Figure 7 shows an example of detecting damaged
forest areas using the proposed approach based on
anomaly analysis in spectral channels B3 and B5. As
shown in the figure, the combination of anomalies de-
tected in these channels allows for clear differentia-
tion between healthy and damaged forest areas, al-
most without missing any damaged areas and mini-
mizing the number of false positives.

Figure 7: Example of detecting damaged forests. Coordi-
nates: 51°34’59.36” N, 10°59’47.50” E.

By applying this method, we evaluated the dy-
namics of forest damage from 2020 to 2024 (Fig. 8)
and calculated the areas of degraded land.

As seen in Figure 9, the area of damaged for-
est sharply increased between 2020 and 2021 (from
25.13 to 49.41 thousand hectares) and continues to
grow each year, although the rate of increase is slow-
ing. The highest concentration of degraded forest is
observed in the central and western parts of the Harz,
in the regions of Thuringia and Lower Saxony, while

to the east, in Saxony-Anhalt, the extent of the dam-
age is smaller. As of 2024, the total area of degraded
forest in the Harz amounts to 68.1 thousand hectares.

Figure 8: Detected damaged forests on the territory of the
Harz, 2020-2024.

Figure 9: Dynamics of changes in the area of degraded
forests in the Harz, 2020-2024.

5 CONCLUSIONS

In this study, we proposed a simple method for detect-
ing degrading forests based on free Sentinel-2 satellite
data and an anomaly detection approach, analyzing
the forest areas in the Harz region. We examined in-
dividual Sentinel-2 channels with spatial resolution of
10-20 m and four vegetation indices—NDVI, NDMI,
GCI, and PSSRa—on test plots with damaged forest,
using high-resolution imagery from Google Earth Pro
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(2023) as auxiliary data for verification. It was found 

that specific Sentinel-2 spectral channels were more 

effective for detecting degrading forests than 

vegetation indices. The most informative Sentinel-2 

channels were identified as B3 (green) and B5 (red 

edge 1), with B4 and B12 also proving to be useful.   

By defining anomalous pixel values in the B3 and 

B5 channels relative to randomly selected reference 

areas (healthy forests), we successfully detected 

damaged forest areas with high accuracy and minimal 

time, data, and computational resource costs. Using 

the developed method, we were able to track the 

dynamics of forest loss in the Harz region and 

calculate the areas of damage. It was determined that 

the largest losses occurred between 2020 and 2021 

(approximately 24.27 thousand hectares of forest 

were lost), after which the trend gradually slowed 

down, though it remained negative. By 2024, the total 

loss of forest in the Harz region amounted to 68.1 

thousand hectares.  

Thus, this study demonstrates that anomaly 

detection in Sentinel-2 imagery can serve as an 

effective, cost-efficient method for monitoring forest 

degradation, enabling the assessment of forest loss 

over time and providing valuable information for 

forest management and conservation efforts. The 

method can be adapted to other regions, facilitating 

broader applications in forest health monitoring. 
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