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Abstract: Modern dynamic systems, such as transportation networks and IoT infrastructures, generate massive volumes 
of interrelated temporal data represented as temporal graphs. Conventional methods – like clustering, 
statistical thresholds, and classical time series analysis – often fail to account for the spatial-temporal 
dependencies inherent in these systems, leading to high false positive rates or missed complex anomalies. In 
this paper, we propose a novel anomaly detection approach that combines Temporal Graph Neural Networks 
(TGNN) with Autoencoders. The method utilizes TGNN to extract robust node representations by capturing 
both local connectivity and temporal evolution, while an autoencoder is trained to reconstruct normal node 
behavior. Anomalies are subsequently identified through significant reconstruction errors, which serve as 
indicators of deviations from typical patterns. Experimental evaluations on the real-world PeMSD7 dataset 
demonstrate that the proposed TGNN + Autoencoder method improves detection accuracy by 17.33% 
compared to traditional methods, reduces false positives by 4.71%, and achieves a 6.02% higher F1-score 
relative to using TGNN or autoencoder individually. These results underline the practical relevance of our 
approach for real-time monitoring of transportation networks, while also contributing theoretically to the 
integration of spatial and temporal features in anomaly detection.

1 INTRODUCTION 

Dynamic network systems such as transportation 

networks, the Internet of Things (IoT), financial 

markets, and cybersecurity generate vast amounts of 

interconnected temporal data. For example, 

according to Statista (Fig. 1), the number of IoT 

devices in the world is projected to reach 39.6 billion 

by 2033 [1]. 

Figure 1: Number of IoT devices by 2033 [1]. 

Data generated by such devices form dynamic 
graph structures with nodes and edges that change 

over time. Anomalies in these networks may indicate 
transport congestion, IoT failures, financial fraud, or 
cyberattacks, making early detection critical to 
prevent accidents, inefficiencies, or financial losses. 
However, traditional methods like clustering, 
statistical thresholding, and machine learning have 
significant limitations – they often ignore the inherent 
graph structure needed to capture complex network 
dynamics [2], lack adaptability as approaches such as 
One-Class SVM or Isolation Forest require pre-
training and fail to accommodate new patterns [3], 
and rely on fixed thresholds that lead to high false 
positive rates in dynamic environments [4]. Thus, 
new adaptive approaches that consider both temporal 
and structural dynamics of graphs are essential for 
more accurate anomaly detection. 

The remainder of the paper is organized as 

follows. Section 2 describes the methodology, 

detailing Temporal Graph Neural Networks and 

Autoencoders for anomaly detection Section 3 

reviews traditional methods for anomaly detection. 

Section 4 defines the problem addressed in this study. 

Section 5 details the proposed method of anomaly 

detection, which combines Temporal Graph Neural 

Networks with Autoencoders. Finally, Section 6 

presents the experimental results. 
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2 METHODOLOGY 

The use of Graph Neural Networks (GNN) has 

significantly improved the analysis of graph data, 

allowing the creation of deep representations of nodes 

and edges. However, standard GNNs do not take into 

account temporal dependencies. Therefore, Temporal 

Graph Neural Networks (TGNNs) were proposed for 

dynamic systems (Fig. 2), which take into account the 

evolution of graphs over time [5]. Autoencoders 

(AEs) have proven themselves well in anomaly 

problems, especially in unsupervised learning 

(Fig. 3). AEs learn to reconstruct data, and nodes that 

have a high reconstruction error are considered 

anomalous [6]. 
Node: In TGNN, a node is a dynamic entity (e.g., 

a traffic sensor) in a temporal graph, representing 
time-varying data. Characteristic (Feature): These 
are the measurable, time-dependent attributes of a 
node, such as sensor readings or traffic speed. Latent 
Representation: A compact, low-dimensional 
encoding of a node’s features, capturing its essential 
spatial and temporal patterns. 

In this paper, we propose a method that combines 
TGNN with an AE for anomaly detection in temporal 
graphs. The approach creates latent representations of 
nodes using a TGNN trained to predict their states 
over time, then trains an autoencoder to reconstruct 
normal node states, with anomalies identified by high 
reconstruction error. 

Figure 2: Timestamp graph. 

TGNNs extend classical GNNs to process 
dynamic graphs by incorporating a temporal 
component. Unlike traditional GNNs, which model 
static node relationships, TGNNs update node states 
at each time step based on both neighboring nodes 
and historical information, often using recurrent 
mechanisms such as Gated Recurrent Units (GRU) or 
Long Short-Term Memory (LSTM) [7, 8]. 

The classical formula for updating the 
representation of a node in GNN is as follows: 

where: 

▪ ℎ𝑖
(𝑡)

– d-dimensional state vector of node i at time

t, where each element represents a specific 
feature (e.g., speed, traffic, etc.)., 

▪ N(i) – the set of neighbors of node i,

▪ 𝛼𝑖𝑗
(𝑡)

– the attention weight between nodes i and j

▪ W – a trainable weight matrix that performs a
linear transformation (projection) of the input
node features,

▪ σ – the activation function (for example, ReLU
or Sigmoid).

At each time step t, the state vector ℎ𝑖
(𝑡)

of node i

is computed by aggregating the state vectors of its 
neighbors N(i), weighted by the attention coefficients 

𝛼𝑖𝑗
(𝑡)

– determine the influence of each neighboring

node j on node i. They are typically computed using 
a small neural network to evaluate the "importance" 
of each neighbor, and then normalized (e.g., via 
softmax) so that the contributions sum to one. This 
mechanism enables the model to focus on the most 
relevant neighbors when aggregating information, 
effectively capturing complex spatial-temporal 
relationships. 

Figure 3: Autoencoder architecture. 

The encoder transforms the input data 𝑥𝑡 into a
compact representation [9] ℎ𝑡

ℎ𝑡= g(𝑥𝑡) 

where: 

▪ 𝑥𝑡 – the input data at time t,
▪ ℎ𝑡 – the hidden feature vector or compressed

representation of the data in the hidden space,
▪ g – the encoder function, which typically

includes several layers of neural networks (for
example, linear transformations or activation
functions).
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The decoder reconstructs the input data 𝑥̂𝑡 of the
hidden representation  ℎ𝑡, trying to recreate the
original input data: 

𝑥̂𝑡= f (ℎ𝑡) 

where: 

▪ 𝑥̂𝑡 – the reconstructed output data for time t,
▪ f – the decoder function, which typically

includes several layers of neural networks to
reconstruct the output data from the compact
representation.

This transformation allows the autoencoder to 
reduce the dimensionality of the input data, 
preserving only the most important information about 
its structure and temporal dynamics. 

To train the autoencoder, we use the loss function 
(Mean Square Error (MSE)) L(𝑥𝑡, 𝑥̂𝑡) = ||𝑥𝑡 - 𝑥̂𝑡 ||.

When working on new data, if the model is unable 
to accurately reconstruct the input data, this may 
indicate anomalous changes in the graph. Therefore, 
an anomaly is defined as a large reconstruction error: 

The proposedmethod was tested on PeMSD7 - a 

real dataset of transport networks [10]. 

3 RELATED WORK 

Traditional time series techniques–such as ARIMA, 

Holt-Winters Exponential Smoothing, and Hidden 

Markov Models–model node changes over time and 

predict future graph states. Yet, they require 

transforming graph data into independent time series, 

resulting in lost structural information, high data 

requirements, and sensitivity to model 

parameters [12]. 

Clustering and machine learning methods (e.g., 

K-Means, DBSCAN, Isolation Forest, One-Class

SVM) also have been used to detect anomalies by

grouping nodes or identifying outliers. Their main

drawbacks are the need to manually set parameters

and the lack of temporal and relational context,

limiting their effectiveness in complex graphs [13].

In contrast, modern approaches leverage deep 

neural networks, particularly GNNs and TGNNs, 

which capture both spatial and temporal 

dependencies [14]. This work proposes a combination 

of TGNN with AEs: the TGNN models local and 

temporal connections, while the AE learns to 

reconstruct normal node patterns–nodes with high 

reconstruction error are marked as 

anomalous [15, 16]. 

This integrated approach significantly improves 

anomaly detection accuracy by reducing false 

positives and enhancing adaptability to new data. 

Table 1: Comparison of anomaly detection methods. 

Method Description Advantages Disadvantages 

Statistical Methods 

(Z-score, Grubbs' 

Test) 

An anomaly is defined as a deviation 

from the mean. Nodes or edges that 

significantly differ from the norm are 

labeled as anomalous. 

Simplicity, 

computational 

efficiency 

Does not consider graph 

structure, sensitive to noise 

Time Series 

Methods 

(ARIMA) 

Utilize time-series models to predict node 

behavior. Anomalies are flagged when the 

actual value substantially deviates from 

the predicted value. 

Perform well with 

periodic trends 

Do not account for structural 

changes, sensitive to 

parameters 

Clustering Methods 

(K-Means, 

DBSCAN) 

Nodes are clustered based on similarity, 

and those that lie far from the main 

groups are considered anomalous. 

Effective for 

group anomalies 

Require manual selection of 

cluster count, do not 

incorporate temporal data 

Machine Learning 

Methods (Isolation 

Forest, One-Class 

SVM) 

Models are trained on normal data and 

classify any deviation as anomalous (one-

class learning). 

Can operate 

without extensive 

manual parameter 

tuning. 

Unsuitable for dynamic 

graphs without adaptation 

GNN 

(Graph Neural 

Networks) 

Graph Neural Networks analyze structural 

relationships among nodes but do not 

account for temporal dynamics. 

Capture inter-node 

connections 

Do not model the time-

evolving behavior of nodes 
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According to the Table 1, we can conclude that 

traditional methods are insufficient for analyzing 

dynamic graphs because they do not take into account 

the graph structure and the temporal dynamics of 

changes. This limits their ability to effectively detect 

anomalies in complex networks where both spatial 

and temporal relationships are important. 

4 PROBLEM DEFINITION 

The paper addresses the challenge of detecting 

anomalies in temporal graphs representing dynamic 

systems (e.g., transportation networks) where 

traditional methods fail to capture the intricate 

spatial-temporal dependencies, leading to high false 

positives. The goal is to develop a TGNN-based 

approach combined with Autoencoders to accurately 

model node behavior over time and identify 

deviations via reconstruction errors.

5 PROPOSED COMPLEX 

METHOD OF ANOMALY 

DETECTION 

Before detailing our method, we define the research 

problem: given a temporal graph G = (V, E, X, T) –

where V are nodes (e.g., traffic sensors), E are time-

varying spatial connections, X are time-dependent 

features (e.g., speed measurements every 5 minutes), 

and T comprises historical data reflecting normal 

node behavior–the task is to identify nodes that 

deviate significantly from these expected patterns, by 

leveraging both local spatial relationships and long-

term temporal dependencies. 

This task involves analyzing the dynamic 

evolution of each node's state, which is influenced not 

only by its own historical data but also by the states 

of its immediate neighbors, as encoded by the 

adjacency matrix and attention coefficients. The 

challenge lies in integrating these local interactions 

with the long-term trends present in the node features 

over extended periods. To address this, the proposed 

method (Fig. 4) employs a TGNN to jointly capture 

spatial and temporal information, along with an AE to 

learn compact latent representations. Anomalies are 

then detected by identifying significant deviations in 

the reconstruction error, which signal abnormal 

behavior. 

Figure 4: Proposed complex method. 

This proposed IoT anomaly detection system 

operates through six key stages:  

1) Incoming IoT data (sensors, network events) are

converted into graph structures and transferred

to the Graph Database.

2) TGNN takes as input a graph, node

characteristics and timestamp history. It creates

graph embeddings to represent relationships in

the data.

3) Autoencoder receives these embeddings, tries to

reconstruct the original data.

4) Comparison of the original and reconstructed

data → reconstruction error is calculated.

5) If the error is high → anomaly is detected.

6) Anomaly deviation triggers an alert in the

Monitoring System (Grafana, Kibana).
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We designed our TGNN architecture using a 

three-layer A3TGCN model combined with a single-

layer GRU to efficiently capture both spatial and 

temporal dependencies in dynamic IoT networks. 

The model consists of three graph convolutional 

layers with 64 hidden units each, using ReLU 

activation and an attention-based aggregation 

mechanism to refine node representations by 

weighting the influence of neighboring nodes. The 

three-layer A3TGCN model was selected to ensure 

that nodes incorporate information from both direct 

neighbors and second-order connections, effectively 

modeling localized interactions in dynamic graphs. 

Increasing the depth beyond three layers resulted in 

diminishing improvements while increasing 

computational costs, making deeper architectures 

inefficient for real-time IoT applications. A shallower 

model, on the other hand, did not provide sufficient 

contextual information for anomaly detection. The 

use of attention-based aggregation further refines 

node representations, ensuring that structurally 

important nodes have a greater impact on anomaly 

detection. 

To model temporal dependencies, we integrate a 

single-layer GRU instead of more complex recurrent 

architectures like LSTM. GRUs provide a faster and 

more memory-efficient alternative to LSTMs while 

maintaining comparable performance in capturing 

long-term dependencies. Unlike simple RNNs, GRUs 

effectively retain relevant historical information 

while dynamically controlling memory updates, 

making them well-suited for large-scale, 

continuously evolving IoT networks. The 

combination of TGNN for spatial learning and GRU 

for sequential modeling allows the system to 

distinguish between normal fluctuations and true 

anomalies over time. 

Finally, a fully connected output layer maps the 

learned node embeddings to a single scalar value per 

node, indicating its predicted state. The model is 

trained using the Mean Squared Error (MSE) loss 

function, which evaluates the reconstruction error 

between predicted and actual states. 

The encoder network consists of three fully 

connected layers with 128, 64, and 32 neurons, each 

followed by a LeakyReLU activation function to 

introduce non-linearity while preserving small 

gradient updates for low-activation values. The final 

layer of the encoder maps the data into a latent space 

of 16 dimensions, providing a compressed 

representation of node embeddings while maintaining 

key structural and temporal information. 

  The decoder network mirrors the encoder, consisting 

of three fully connected layers (32, 64, 128 neurons), 

using LeakyReLU activation in the hidden layers and 

a linear activation in the final layer to reconstruct the 

original input. This symmetrical structure ensures 

effective reconstruction while preserving node-

specific features. 

    To improve generalization and prevent overfitting, 

we apply dropout (0.2 probability) and batch 

normalization after each hidden layer. The AE is 

trained using MSE loss, which quantifies the 

difference between reconstructed and actual node 

embeddings, helping the model learn normal patterns 

in graph data. 

    Correctly setting the threshold τ is crucial: too low 

increases false positives, while too high leads to false 

negatives. In this work, we adopt a quantile method 

that automatically adapts τ to the reconstruction error 

distribution by setting it at the 95th percentile. 

𝜏 =  𝑄95, 

where 𝑄95 is the value above which 5% of nodes with

the largest reconstruction error are located. This 

approach allows for dynamic detection of anomalies, 

reducing the risk of false positive detections, since the 

model adapts to changes in the graph structure and the 

dynamics of its nodes. 

The 95th percentile is chosen empirically 

because it reduces false positives by avoiding the 

misclassification of normal nodes, provides noise 

immunity by adapting to the specific error 

distribution rather than relying on a manually set 

threshold, and effectively captures rare events by 

identifying the top 5% of the most deviant nodes. To 

validate this choice, we performed a threshold 

sensitivity analysis, summarized in the table above. 

Selecting the 90th percentile increases recall to 0.88 

but significantly raises false positives due to lower 

precision. Conversely, the 98th percentile improves 

precision to 0.91 and reduces false positives, but 

recall drops sharply to 0.74, causing many anomalies 

to be missed. The 95th percentile offers the best 

balance between precision and recall with an F1-score 

of 0.88, ensuring both effective anomaly detection 

and a manageable false positive rate. 

Unlike fixed-threshold methods, the quantile 

approach adapts automatically to the graph's state: in 

stable conditions, the error distribution is narrow and 

τ is low, while significant changes adjust τ to new 

data. Our method captures the entire process in one 

formula: the state vector of node i at time t is 

computed by aggregating neighbor states (weighted 

by attention coefficients), transforming them via a 

trainable weight matrix and activation function, and 

then passing the result through an encoder-decoder to 
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reconstruct the original state. This entire process is 

encapsulated in the following expression: 

ℎ̂𝑡(𝑡) =  𝑓𝐷𝐸𝐶

(

𝑓𝐸𝑁𝐶 (𝜎(𝑊 ∑

𝑗∈𝑁(𝑖)

𝛼𝑖𝑗(𝑡)ℎ𝑗(𝑡 − 1) + 𝑏))

)

In this formulation, ℎ𝑖(𝑡) denotes the state vector

of node 𝑖 at time 𝑡, 𝛼𝑖𝑗(𝑡) represents the attention

coefficient reflecting the influence of neighbor 𝑗 on 

node 𝑖, and 𝑊is a trainable weight matrix that projects 

the aggregated features into a new space before 

applying the non-linear activation 𝜎. The functions 

𝑓𝐸𝑁𝐶 та 𝑓𝐷𝐸𝐶 correspond to the encoder and decoder

of the autoencoder, respectively, which learn a 

compact latent representation and reconstruct the 

original signal. 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦(𝑖, 𝑡) = (||ℎ𝑖(𝑡) − ℎ̂𝑖(𝑡)||
2

> 𝜏).

The anomaly indicator is then determined by 

comparing the reconstruction error ||ℎ𝑖(𝑡) −

 ℎ̂𝑖(𝑡)||
2

 a threshold 𝜏; if the error exceeds 𝜏, the node

is flagged as anomalous. This compact representation 

captures the entire method's essence, seamlessly 

integrating spatial and temporal dynamics for 

effective anomaly detection. 

Variables and notation: 
▪ ℎ𝑖(𝑡)  − is the node representation from the

TGNN at time 𝑡;
▪ 𝑓𝐸𝑁𝐶 and 𝑓𝐷𝐸𝐶 −  are the encoder and decoder

functions of the autoencoder;
▪ 𝜎 – is an activation function (e.g., ReLU);
▪ 𝑊 and 𝑏 trainable parameters;
▪ 𝛼𝑖𝑗(𝑡) − represents the attention weight 

between node 𝑖 and its neighbor 𝑗; 
▪ τ – is the threshold for anomaly detection.

Thus, the proposed approach allows not only to

train high-quality representations of nodes in 

temporal graphs, but also to effectively identify 

anomalous nodes using the reconstruction error. The 

use of the quantile threshold selection method ensures 

the adaptability of the model, which allows avoiding 

problems associated with excessive sensitivity to 

noise in the data. The proposed method combines the 

advantages of TGNN in training representations with 

the advantages of the autoencoder in detecting 

deviations, which makes it an effective tool for 

analyzing anomalies in dynamic graphs. 

6 EXPERIMENT 

This section evaluates the proposed TGNN+AE 

method for anomaly detection on the PeMSD7 

dataset, which contains temporal graphs of a transport 

network (nodes = road sensors, edges = spatial 

connections). The goal is to detect traffic anomalies 

(e.g., accidents, congestion) by analyzing 

reconstruction errors and comparing results with 

traditional methods (Isolation Forest, One-Class 

SVM, K-Means). Traffic speeds were normalized 

using Z-score, and sequences of 24 previous values 

were used to predict the current state. The TGNN 

extracts spatiotemporal features, while the 

autoencoder compresses these into a latent space, 

with the 95th percentile of the reconstruction error 

used as the anomaly threshold. The experimental 

results show that the TGNN+AE method improves 

detection accuracy by 17.33%, reduces false positives 

by 4.71%, and increases the F1-score by about 6% 

compared to using each method separately. 

Table 2: Comparison of results. 

Method Precision Recall F1-score 

Isolation Forest 0.72 0.68 0.70 

One-Class SVM 0.76 0.64 0.69 

K-Means 0.78 0.72 0.75 

Autoencoder 

(AE) 
0.81 0.76 0.79 

TGNN 0.85 0.81 0.83 

TGNN + AE 0.89 0.85 0.88 

From Table 2, it can be seen that TGNN + AE 

improves the anomaly detection accuracy by 10.67% 

compared to the best traditional method (K-Means): 

Percentage Increase = 
𝐹1𝑇𝐺𝑁𝑁 + 𝐴𝐸 − 𝑚𝑎𝑥 (𝐹1 𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙)

𝑚𝑎𝑥 (𝐹1 𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙)
×

100=
0.88 − 0.75

0.75
= 17.33%. 

TGNN + AE provides 6.02% higher F1-measure 

compared to using Autoencoder or TGNN alone: 

Percentage Increase = 
𝐹1𝑇𝐺𝑁𝑁 + 𝐴𝐸 − 𝑚𝑎𝑥 (𝐹1 𝐴𝐸,𝐹1𝑇𝐺𝑁𝑁)

𝑚𝑎𝑥 (𝐹1 𝐴𝐸,𝐹1𝑇𝐺𝑁𝑁)
×

100=
0.88 − 0.83

0.83
= 6.02%. 

TGNN + AE reduces the number of false positives 

by 4.71% compared to TGNN due to improved 

Precision: 
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False Positive Reduction = 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝐺𝑁𝑁 + 𝐴𝐸 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝐺𝑁𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝐺𝑁𝑁
× 100=

0.89 − 0.85

0.89
= 4.71%. 

To assess the efficiency, the distribution of the 

reconstruction error and the definition of the 95th 

percentile as the anomaly threshold were used. The 

graph (Fig. 5) shows how the threshold and the error 

distribution were calculated: 

Figure 5: Distribution of reconstruction error. 

This graph shows the distribution of the 

reconstruction error and the anomaly threshold (red 

dashed line), which is determined by the 95th 

percentile. Nodes with a reconstruction error greater 

than this threshold are classified as anomalous. 

Comparative analysis proved that the proposed 

complex method outperforms traditional approaches, 

providing higher accuracy and lower number of false 

positive detections. 

7 CONCLUSIONS 

This paper proposes a comprehensive method for 

anomaly detection in temporal graphs based on a 

combination of TGNN and a graph AE.  

The TGNN captures spatiotemporal relationships, 

while the AE learns hidden node representations and 

measures deviations through reconstruction error. 

Experimental results show that the TGNN+AE 

approach improves detection accuracy by 17.3%, 

reduces false positives by 4.71%, and increases the 

F1-measure by 6.02% compared to using each 

method alone. A key element is setting the anomaly 

threshold at the 95th percentile of the reconstruction 

error, which adaptively identifies anomalous nodes 

without manual tuning, thereby enhancing stability. 

Overall, this integrated method effectively predicts 

node dynamics and identifies anomalies, paving the 

way for further research into adaptive anomaly 

detection in complex dynamic systems. 
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