
Automated Assessment of Student Queries in Redis

Yuliia Prokop
Department of Computer Science, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, 160 00 Prague,

Czech Republic

prokoyul@fel.cvut.cz

Keywords: NoSQL, Redis, Key-value Store, Automated Assessment, RedisJSON, RediSearch, Education, Databases.

Abstract: In recent years, the popularity of NoSQL systems has grown significantly due to their flexibility and high

performance when working with large volumes of data. Redis is one of the most popular key-value stores

actively used in industry and education. However, automated approaches for NoSQL assignment evaluation,

especially those involving advanced Redis modules, remain underdeveloped. This paper presents a web-based

system for automated assessment of students’ Redis queries, supporting basic structures (e.g., list, sorted set,

and hash manipulation) and advanced features (RedisJSON and RediSearch). The system provides instant

feedback on syntax errors, enabling students to correct mistakes and resubmit solutions in real-time. A pilot

study with 42 master’s students showed that about 78% successfully mastered the basics of Redis on the first

try, while only 39% passed advanced assignments. With repeated attempts and targeted feedback, overall

success on advanced tasks increased to 76%, highlighting the importance of continuous, automated guidance.

The paper also discusses typical errors logged by the system (inconsistent or incorrect key naming, syntax

errors when setting key expiration, incorrect index creation or JSON field references, etc.). The results

demonstrate that integrating an automated Redis query assessment into educational programs can significantly

enhance student engagement and learning efficiency. The flexible and modular design of the proposed system

allows easy extension to other NoSQL databases and provides valuable data for instructors to refine teaching

materials.

1 INTRODUCTION

Digital transformation drives the continuous

development of data processing technologies and

generates new technical challenges. Over the last

decade, the increased demand for efficient handling

of big, unstructured, and semi-structured data has led

to the active development of NoSQL database

management systems. For instance, the rapid growth

of real-time analytics and IoT applications

underscores the need for more flexible and scalable

data solutions.

According to DB-Engines Ranking [1], as of

February 2025, relational DBMSs still occupy about

72% of the market, while the remaining 28% are

represented mainly by NoSQL solutions. At the same

time, the demand for specialists familiar with non-

relational DBMSs is growing, which calls for

modernizing the curricula in technical universities. In

response, many educational programs now integrate

specialized modules on NoSQL technologies to better

equip students for emerging industry demands. The

key direction of modernization is the development of

automated knowledge assessment systems that allow

students to get real-time feedback when performing

database tasks.

Despite developing tools for validating SQL and

some document-oriented databases, key-value stores

remain underrepresented in automated evaluation.

Redis, one of the most popular in-memory solutions,

is rarely considered a full-fledged teaching and

validation object, especially for its advanced features

(RedisJSON, RediSearch). This paper fills this gap by

proposing a methodological and software toolkit for

the automated assessment of Redis skills.

2 LITERATURE REVIEW

Many modern studies indicate a steady trend toward

integrating NoSQL technologies into academic

database programs [2 – 9]. The practice-oriented

(hands-on) approach is the most widely used. It helps

147

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

students to deepen their understanding of modern data

storage and processing methods.

The modern ecosystem of non-relational DBMSs

includes several major models (key-value stores,

document stores, wide-column stores, and graph

databases) [2, 10]. Redis is ranked 6th among all

databases in the DB-Engines ranking and is widely

used in the industry. It is often demonstrated to

students as an in-memory NoSQL system showing

the basic concepts: caching, message brokering, and

real-time data processing. Some studies [2 – 4]

confirm that integrating Redis into academic courses

helps students better understand NoSQL’s theoretical

aspects and acquire skills relevant to modern

industrial tasks.

Some authors study the problems of evaluating

student queries in NoSQL. Thus, the paper [11]

describes the peer correction technique: students

assess their colleagues’ queries, identifying syntactic

and semantic errors in SQL and NoSQL. The authors

show that the average accuracy of such evaluations

reaches 83%, and the correction results correlate

moderately with the overall performance. The authors

conclude that peer correction contributes to a better

understanding of one’s own errors and the

development of query writing skills.

The paper [12] presents a TriQL system designed

to teach three types of databases at once: relational

(MySQL), graph (Neo4j), and document-oriented

(MongoDB). Student work is assessed through lab

assignments in which students compare the results of

their queries executed on native engines. Such an

approach helps to analyze the differences in depth and

realize the advantages and limitations of each model.

The authors of the paper [13] explore the possibilities

of automatically evaluating student queries in SQL,

MongoDB, and Neo4j using a combination of the

PrairieLearn platform and proprietary analysis

algorithms.

The articles [14, 15] describe a similar

mechanism. Students’ solutions in MongoDB and

graph databases are executed through the

PrairieLearn online platform, which automatically

matches the results to a reference solution. Works

[16, 17] describe the integration of the NoSQL Data

Adapter module into the Moodle system, allowing

students to perform queries remotely on NoSQL

databases and receive instant automatic feedback.

Analysis of current research shows that many

authors focus on pedagogical aspects of learning and

do not study query assessment automation. In

addition, these works rarely address key-value

systems.

Existing platforms for automatic evaluation of

student queries predominantly lack built-in NoSQL

support. Some specialized solutions exist, e.g.,

MongoDB University (https://learn.mongodb.com/),

Neo4j Sandbox (https://neo4j.com/sandbox/),

DataStax Academy for Cassandra

(https://www.datastax.com/dev/academy), and Redis

University (university.redis.com). They provide

interactive tools to teach mostly only basic

operations, and the possibilities to integrate them into

the classroom are limited.

Thus, integrating NoSQL into university curricula

and searching for efficient automatic evaluation of

students’ assignments are topical problems that

attract the attention of modern researchers. However,

key-value stores – particularly Redis – do not receive

sufficient attention in most works. The

methodological aspects of teaching and automatic

assessment of Redis’s advanced features (hash and

JSON data indexing, full-text search, aggregation,

etc.) have also been insufficiently studied and require

further research.

This paper aims to develop and justify a

specialized methodological and software toolkit for

the automated assessment of student queries in Redis

with instant feedback and the ability to correct errors

in the same session.

3 METHODS AND MATERIALS

3.1 General Solution Architecture

As part of the research, we developed a web

application to automate assessing students’

knowledge of using Redis. Its main components are:

▪ Web interface (client part) for entering queries

and viewing results;

▪ Server part, which processes incoming queries

and interacts with Redis;

▪ Redis NoSQL server, where commands are

executed (taking into account RedisJSON and

RediSearch modules);

▪ A database (MongoDB) for logging and storing

the validation results.

In designing the application, we emphasized a

modular architecture that facilitates straightforward

updates and expansions. Instructors can modify or

add functionalities by ensuring each component is

loosely coupled without impacting other system

parts.

The architectural diagram of the system is

presented in Fig. 1.

148

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

Figure 1: Architectural diagram of the system (source:

author's development).

The interaction of components takes place

according to the scheme “client-server-Redis-

MongoDB.” The web interface accesses the server

part, which forms and forwards requests to Redis.

After that, the results are returned for display to the

student, and at the same time, logs are written to

MongoDB.

3.2 Materials and Data Preparation

A dataset covering all key Redis types – strings, lists,

sets, sorted sets, hashes, bit fields, and geodata – has

been developed to ensure comprehensive testing. It

includes about 200 queries for inserting various

information about stores, products, and customers,

such as:

HSET product:1 name "Espresso" price

2.50 calories 3 caffeine 64 size "1 oz"

ZADD store:1:menu 1 "Espresso" 2

"Latte" 3 "Cappuccino" 4 "Americano" 5

"Mocha" 6 "Flat White" 7 "Cold Brew" 8

"Frappe" 9 "Green Tea" 10 "Chai Latte"

LPUSH store:1:recent_orders "Vanilla

Latte" "Espresso" "Caramel Macchiato"

"Americano" "Mocha" "Cappuccino" "Flat

White" "Cold Brew" "Frappe" "Green Tea"

SADD loyalty:Gold customer:1 customer:4

GEOADD store_locations -122.2585

37.8614 "CityBrew University"

Each task is stored as a JSON document and

includes:

▪ task description (context and required actions);

▪ a reference solution (one or more correct

queries);

▪ test query (optional – provided only when the

operation does not return a result).

Queries are grouped in collections according to

the topics to which they relate.

Example of a task JSON document (from the data

selection collection):

{

"Question": "Get the store with the

lowest sales for the current month.",

"Solution": ["ZRANGE monthly_sales 0 0

WITHSCORES"],

"Test": ""

}

Example of a task from the RediSearch collection:

{

"Question": "Create an index and find

users with Gold loyalty status. Return:

name, email, loyalty_status. Sort by

'name' ascending. Use LIMIT 0 1000.",

"Solution": [

"FT.CREATE

idx:customer_loyalty_only_gold ON HASH

PREFIX 1 customer: SCHEMA

loyalty_status TEXT SORTABLE name TEXT

SORTABLE email TEXT SORTABLE",

"FT.SEARCH

idx:customer_loyalty_only_gold

'@loyalty_status:Gold' SORTBY name ASC

LIMIT 0 1000 RETURN 3 name email

loyalty_status"],

"Test": ""

}

The teacher creates tasks by combining different

data structures and scenarios. The level of task

complexity in the system is not directly fixed. If

necessary, the teacher can flexibly control the “depth”

and complexity of queries, forming a variety of task

collections.

For more precise control over the progress of

learning, the tasks are divided into two main groups:

basic operations (creation, modification, selection,

deletion, simple aggregates) and advanced functions

(RedisJSON, RediSearch): index creation, full-text

search, aggregation, and work with complex JSON

structures.

3.3 Methods of Assessment and System
Operation

The algorithm for giving and executing assignments

consists of these steps:

149

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

1) Selecting an assignment group: The student

indicates whether they want to do basic or

advanced assignments in the web interface.

2) Task list generation: Based on the teacher’s

settings, the system randomly generates a set of

assignments with the required number of tasks.

3) Task display: On the web application page, the

student sees the text of the current task and an

area to enter a Redis query (or queries).

4) Entering and executing: After entering the query

text, the student clicks the “Execute” button;

they can skip the question by clicking the “Skip”

button.

The system performs the following steps

automatically:

1) Parsing and splitting queries: The text the user

sends as a single answer to the current question

is split into separate Redis commands.

2) Resetting the test environment: Before each test

query, the initial dataset in Redis is recreated

anew, and all previously created indexes are

deleted. This guarantees the same initial

database state.

3) Student query execution: The system sends

commands to the Redis server. If Redis returns

a syntax error, the user is notified immediately,

and the testing process is paused. The student

can correct and send the query again for

execution (return to step 1).

4) Comparison with the reference solution: If the

query is executed without errors, the system

resets the data to its original state and executes

the reference query. The results (full text) are

then compared with the student query.

5) Saving logs: The testing process (task

description, reference solution and result,

student’s solution and result, and comparison

result in the form of true or false) is recorded in

MongoDB.

6) Final result output: The system provides the

student with a message listing the number of

correct queries, a list of incorrect queries, and a

notification about the test’s success.

The result of each task is considered correct if the

final state of the data in Redis or the returned result

matches the state of the data or the result of the

reference solution.

The system uses a full-text comparison of the

output results of two solutions (user and reference).

Each task description is designed to avoid evaluation

ambiguities so that the final database state or query

result is clearly defined once all requirements are met.

For example, the assignment explicitly specifies the

sorting order of the output records, the list of fields to

include in the result, the numeric data types for the

fields in the created index, and the record limit. This

ensures high evaluation accuracy.

However, despite its simplicity and reliability,

this approach has certain limitations. To address

these, it is planned to introduce structure-oriented

comparison and more flexible matching rules (e.g.,

ignoring character case and the order of records in the

result or supporting incomplete matches). These

improvements will extend the system’s functionality

and allow a more accurate evaluation of students’

queries, not limiting them to a rigid full-text check.

The block diagram of the algorithm for automatic

query evaluation is shown in Fig. 2.

Figure 2: Block diagram of the algorithm for automatic

query assessment (source: author's development).

The teacher sets the minimum number of correct

solutions required to pass the test. Based on these

settings, a notification about the test’s success is

generated. If the student falls short, they can retake

the test.

150

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

3.4 User Interface

The web application implements authentication via

login and password matching the credentials of the

NoSQL server. From a cybersecurity perspective, this

approach restricts access solely to enrolled university

students, as external registration is disabled. By pre-

registering accounts on the NoSQL server – managed

by the instructor before the semester begins – the

system minimizes the risk of unauthorized access and

potential security breaches, ensuring that only

verified and trusted users can interact with the testing

environment.

After logging in, the following functionality is

available to the students:

▪ selection of test type (“Redis basic” or “Redis

advanced” buttons);

▪ list of current tasks (issued sequentially);

▪ field for entering a query;

▪ “Execute” button;

▪ “Skip” button (in case the input field is empty);

▪ “Open dataset” button;

▪ “Quit” button to abort the test;

▪ displaying Redis syntax errors (if any).

Figure 3 shows a screenshot of the window while

testing Redis advanced queries. The “Execute” button

is inactive until the answer is entered. The gray text

in the answer field reminds users that queries should

be separated by a blank line. The system also allows

the assessment of queries in MongoDB, and this

functionality is currently being tested.

Figure 3: Screenshot of the user window when taking the

test (source: author's development).

After the test is completed, the student receives

final feedback. Skipped tasks are marked as incorrect

and added to the list of incorrect queries.

The web interface of the teacher (Fig. 4) provides

the following features:

▪ select a specific test kind and load a collection

of tasks;

▪ configure the number of tasks from each

collection that will be included in the test;

▪ delete a collection of tasks.

The administrator loads the data set (a set of

commands for inserting data of different types). Logs

can be exported in JSON format for review and

analysis by the teacher.

Figure 4: Screenshot of the instructor’s panel (source:

author's development).

4 RESULTS AND DISCUSSION

For the pilot implementation of the system, 42 first-

year master’s students of the specialty “Open

Informatics” were selected. All of them were willing

to take the proposed tests. Participation in testing was

not a mandatory element of the course: students took

the tests to better prepare for the exam and to get

additional feedback. This approach, on the one hand,

ensures high motivation among test takers. Still, on

the other hand, it may lead to a particular sampling

bias (more interested or prepared students participate

predominantly). In the future, it is planned to make

the test mandatory and include it in the system of

admission to the exam.

Students performed two types of tasks: first, they

mastered basic operations (creating, selecting,

updating, and deleting data in Redis) and then moved

on to advanced assignments related to the RedisJSON

and RediSearch modules. Each participant took the

test individually, receiving basic and advanced tasks

randomly.

151

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

The results showed that most students (about

78%) successfully coped with basic tasks on the first

attempt. The main errors were related to syntactic

inaccuracies in queries and attempts to scan across the

hash fields. Thanks to the possibility of instant

checking and resubmitting in case of a mistake, the

average percentage of completed basic tasks reached

93% after two or three attempts. This indicates the

system provides the dynamic feedback needed to

identify and correct errors in Redis basic commands

quickly.

Figure 5 shows a test log fragment with a

student’s successful answer.

Figure 5: Test log fragment (source: author's development).

A common issue arose when students were asked

to create additional data structures (e.g., sets) to serve

as reverse indexes linked to existing hashes. Although

students demonstrated competence in using standard

hash commands (HSET, HGET, etc.), they struggled

with conceptualizing how to populate complementary

sets for more advanced searching.

Students sometimes overlooked the specific

naming conventions provided in the dataset. For

instance, if the dataset used a particular prefix or a

structured naming scheme (e.g.,

store:1:equipment), some students would create

new keys without following the same format. This

discrepancy could lead to mismatches with the

reference solutions and to “incorrect result” flags in

the automated checker.

Another issue was the misuse of spaces in key

names. Students occasionally introduced unintended

spaces or special characters, causing Redis to

misinterpret the command and corrupt the intended

data structure.

Another problem was the use of incorrect syntax

when specifying the key “time to live”. Many

students forgot to provide all the necessary

parameters or specified the time in the wrong units.

More problematic was the case with advanced

Redis features, including RedisJSON and RediSearch

capabilities. Only 39% of students could complete the

test at the end of the first pass.

Many students struggled to configure the index

correctly when using RediSearch for full-text search

or indexing JSON documents. Some omitted essential

fields, causing incomplete search results, while others

declared fields with the wrong data type. Even if the

index was set up correctly, students often encountered

errors when making search queries, such as

improperly accessing fields in a JSON document.

However, with repeated attempts and analysis of

the errors displayed by the system, the success rate

increased to 76%. This confirms that continuous

automatic feedback gives students a deeper

understanding of advanced Redis features.

In addition to quantitative measures for automatic

assessment, the system provided valuable

information for further adjustments to the course

materials.

Thus, the results of implementation demonstrate

the high efficiency of the system and the relevance of

its use in the educational process. The proposed

solution can be easily integrated into NoSQL training

courses, complementing both classical lecture-

practical formats and distance learning programs.

In the future, we plan to expand the assignment

bank to include more “real-world” scenarios and to

refine the hint system so that it not only indicates

when an error has occurred but also gives guidance

on how to correct it.

The advantage of the developed systém is that it

is easily extensible to other NoSQL databases. In

particular, it currently allows testing queries in

MongoDB and can be extended to Cassandra and

Neo4j. Such improvements will further enhance the

quality of training and student satisfaction with the

results of their studies.

5 CONCLUSIONS

A literature review shows that modern NoSQL

technologies are widely recognized as necessary for

academic curricula. However, automatic assessment,

especially for Redis queries, remains poorly studied.

Therefore, a system must be developed to evaluate

Redis queries automatically.

The automated assessment system for student

queries in Redis discussed in this paper demonstrates

its effectiveness in teaching fundamental NoSQL

concepts. Its key feature is instant feedback, which is

provided in real-time. This allows students to identify

and correct any syntax errors made immediately.

Another essential capability of the created system is

the support of advanced Redis modules.

152

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

Unlike existing online courses and sandboxes for

Redis, the system presented here allows the instructor

to customize assignment types (including advanced

and more complex tasks), define a passing threshold,

and track all user activity in real time.

An essential advantage of the system is its

modular architecture, which allows scaling the

solution for any scenario and expanding the task

bank. In addition, the system is easily extensible to

other NoSQL databases (MongoDB, Cassandra,

Neo4j).

The pilot implementation showed that students

have the most difficulties due to an incomplete

understanding of the principles of working with key-

value databases. For example, they try to perform

cross-hash scanning across all fields in basic queries.

In addition, they have difficulties mastering advanced

Redis features related to RedisJSON and RediSearch

modules. The high error rate in tasks related to index

creation and full-text search highlights the need to

emphasize these topics in both the course’s

theoretical instruction and practical classes.

Storing tasks and reference solutions in JSON

format facilitates the automatic checking of results

and subsequent analysis of student’s practical skills.

The possibility of flexibly adjusting the number and

types of tasks and randomization mechanisms opens

prospects for more accurately matching test sessions

to individual students’ skill levels. This, together,

increases the efficiency of the educational process.

The study results confirm that automated query

assessment systems are promising tools for university

courses focused on modern data management

technologies. They can be effectively applied in

traditional lecture-practice learning formats and

online learning platforms.

A further research direction could involve the

development of structure-oriented comparison

methods and flexible matching rules – such as case-

insensitive checks, record-order independence and

support for partial matches – to overcome the

limitations of the current full-text comparison,

broaden the system’s applicability and yield more

accurate assessments of student queries.

REFERENCES

[1] DB-Engines, "DBMS popularity broken down by
database model," DB-Engines, [Online]. Available:
https://db-engines.com/en/ranking_categories.
[Accessed: 19-Feb-2025].

[2] N. Tripathi, "Teaching NoSQL databases in higher
education: A review of models, tools and methods,"
SSRN, 2024, [Online]. Available:
http://dx.doi.org/10.2139/ssrn.4971813.

[3] M. Menzin, S. Mohan, D. R. Musicant, and R. Soori
Murthi, "NoSQL in undergrad courses is no problem,"
in Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, 2020,
pp. 962-963, [Online]. Available:
https://doi.org/10.1145/3328778.3366909.

[4] S. Mohan, "Teaching NoSQL databases to
undergraduate students: a novel approach," in
Proceedings of the 49th ACM Technical Symposium
on Computer Science Education, 2018, pp. 314-319,
[Online]. Available:
https://doi.org/10.1145/3159450.3159554.

[5] M. Greiner, "Teaching NoSQL data models: a
tutorial," in Proceedings of the 2021 AMCIS, 2021,
Article 19.

[6] S. Kim, "Seamless integration of NoSQL class into the
database curriculum," in Proceedings of the 2020
ACM Conference on Innovation and Technology in
Computer Science Education, 2020, pp. 314-320,
[Online]. Available:
https://doi.org/10.1145/3341525.3387399.

[7] M. Lin, J. Jun, Y. Zhu, and C. Zhan, "Research on the
teaching reform of database curriculum major in
computer in big data era," in Proc. 2017 12th Int. Conf.
Computer Science and Education (ICCSE), IEEE,
2017, pp. 570-573.

[8] B. Fowler, J. Godin, and M. Geddy, "Teaching case:
introduction to NoSQL in a traditional database
course," Journal of Information Systems Education,
vol. 27, no. 2, p. 99, 2016.

[9] A. Bajaj and W. Bick, "The rise of NoSQL systems:
research and pedagogy," Journal of Database
Management, vol. 31, no. 3, pp. 67-82, 2020, [Online].
Available: https://doi.org/10.4018/JDM.2020070104.

[10] C. Costa and M. Santos, "Big data: State-of-the-art
concepts, techniques, technologies, modeling
approaches and research challenges," IAENG
International Journal of Computer Science, vol. 44, pp.
285-301, 2017.

[11] W. Wu, "Assessing peer correction of SQL and
NoSQL queries," in Proceedings of the 54th ACM
Technical Symposium on Computer Science
Education V.1, 2023, pp. 535-541.

[12] A. Alawini, P. Rao, L. Zhou, L. Kang, and P.-C. Ho,
"Teaching data models with TriQL," in Proceedings of
the 1st International Workshop on Data Systems
Education, 2022, pp. 16-21.

[13] Z. Li, S. Yang, K. Cunningham, and A. Alawini,
"Assessing Student Learning Across Various Database
Query Languages," 2023 IEEE Frontiers in Education
Conference (FIE), College Station, TX, USA, 2023,
pp. 1-9, [Online]. Available:
https://doi.org/10.1109/FIE58773.2023.10343409.

[14] R. Alkhabaz, S. Poulsen, M. Chen, and A. Alawini,
"Insights from student solutions to MongoDB
homework problems," in Proceedings of the 26th
ACM Conference on Innovation and Technology in
Computer Science Education V.1, 2021, pp. 276-282,
[Online]. Available:
https://doi.org/10.1145/3430665.3456308.

153

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

[15] M. Chen, S. Poulsen, R. Alkhabaz, and A. Alawini, "A
quantitative analysis of student solutions to graph
database problems," in Proceedings of the 26th ACM
Conference on Innovation and Technology in
Computer Science Education V.1, 2021, pp. 283-289,
[Online]. Available:
https://doi.org/10.1145/3430665.3456314.

[16] A. Werner, "Applying NoSQL data adapter with the
learning paths mechanism for better knowledge
transfer in the age of distance learning," Procedia
Computer Science, vol. 207, pp. 3330-3339, 2022,
[Online]. Available:
https://doi.org/10.1016/j.procs.2022.09.424.

[17] A. Werner and M. Bach, "NoSQL e-learning
laboratory-interactive querying of MongoDB and
CouchDB and their conversion to a relational
database," in Communications in Computer and
Information Science, vol. 865, 2018, pp. 581-592,
[Online]. Available: https://doi.org/10.1007/978-3-
319-67792-7_56.

154

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

