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Abstract: In many areas of the real world, such as robotics and autonomous driving, deep learning models are an indis-
pensable tool for detecting objects in the environment. In recent years, supervised models such as YOLO or
Faster R-CNN have been increasingly used for this purpose. One disadvantage of these models is that they
can only detect objects within a closed vocabulary. To overcome this limitation, research is currently being
conducted into models that can also detect objects outside the known classes of the training data set. A model
is therefore trained with base classes and can recognize novel, unseen classes – this is referred to as open-
vocabulary detection (OVD). Novel models such as YOLO-World offer a solution to this problem, but they
tend to over- or underestimate when calculating confidence values and are therefore often poorly calibrated.
However, reliable determination of confidence values is a crucial factor for the use of these models in the real
world to ensure safety and trustworthiness. To address this problem, this paper investigates the influence of the
calibration method temperature scaling on the OVD model YOLO-World. The optimal T-value is determined
by 2 calibration data sets (Pascal VOC and Open Images V7) and then evaluated on the LVIS minival dataset.
The results show that the use of temperature scaling improved the Expected Calibration Error (ECE) from
6.78% to 2.31%, but the model still tends to overestimate the confidence values in some bins.

1 INTRODUCTION

Object detection plays an essential role in many areas
and systems. These include robotics and autonomous
driving, where it enables interaction with the envi-
ronment (e.g. traffic sign recognition [1]) and helps
to avoid unwanted collisions. In recent years, deep
learning (DL) techniques have been used to develop
models such as YOLO [2] and Faster R-CNN [3].
However, these models are limited to the detection of
objects that were learned during training (closed-set
object detection). To overcome this limitation, more
research has been done on models that can also detect
objects outside the training data set. This is called
Open-Vocabulary Detection (OVD). [4] CLIP (Con-
trastive Language-Image Pre-training) [5], which in-
volves the joint training of a text and image encoder,
is an important step towards the realization of an OVD
model. This approach attempts to extract text fea-
tures and image features and map them in a com-
mon embedding space. Based on CLIP, OVD models
such as YOLO-World [6] or Det-CLIP [7] were devel-
oped. There are a variety of other OVD models such
as Grounding DINO [8], which uses a BERT text en-

coder instead of CLIP.
Despite the achieved generalization capability of

these models, there is currently a problem that the
calculated confidence values are not always reliable,
as shown for Grounding DINO in [9]. This means
that the models tend to be over- or underconfident –
in some cases, true positives (TP) have too low confi-
dence values, while false positives (FP) have too high.
The models are therefore not well calibrated. Without
a reliable determination of the confidence values, the
use of such models in the real world is associated with
some risks - for example, if a red traffic light is iden-
tified as green with 95% certainty in 90% of cases.

To overcome the problem of miss-calibration,
there are numerous methods, which are presented
in [10] and [11] for Neural Networks. In this pa-
per, the calibration of YOLO-World is first exam-
ined by calculating the Expected Calibration Error
(ECE) and displaying the corresponding Reliability
Diagram. From this, it can be deduced how large the
calibration error is and whether the model tends to
over- or underestimate the confidence values. Subse-
quently, the simple calibration method Temperature
Scaling is applied in accordance with [12] and the
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influence on the confidence values and the calibra-
tion error is determined. Two calibration data sets,
Pascal VOC [13] and Open Images V7 [14, 15], are
used to determine the optimal T-value. Furthermore,
the influence of the calibration on the accuracy of the
model is examined by calculating the mAP (mean Av-
erage Precision) for each determined T-value. YOLO-
World was selected for this study because, according
to [6], it outperforms other models, such as Ground-
ing DINO and Det-CLIP, in terms of mAP (mean Av-
erage Precision) on the LVIS minival [16] dataset.

2 BACKGROUND

2.1 YOLO-World

YOLO-World [6] is an OVD model that can de-
tect novel classes, i.e., objects that were not in-
cluded in the training data set, in an image. For
this purpose, YOLO-World uses a frozen text en-
coder (CLIP), which generates the text embeddings
W = TextEncoder(F) ∈ RC×D from a given text F ,
where C is the number of classes and D is the di-
mensionality of the embeddings. Here, w j ∈W repre-
sents the j-th text embedding. The YOLO backbone
(YOLOv8) then extracts the image features of an im-
age I. From the given input of image I and text F ,
K object embeddings {ek}K

k=1 with ek ∈ RD are then
generated. The logit (non-probabilistic output of the
network [11]) can thus be formulated as

lk, j = α ·Batch-Norm(ek) ·L2-Norm(w j)
T +β . (1)

In equation 1, lk, j represents the logit, i.e., the object-
text similarity, between the k-th object embedding
and the j-th text embedding. The text and object
embeddings are previously L2-normalized or Batch-
normalized and the product is scaled by two constants
α and β, which are learned during the training pro-
cess. After that, the logits are activated by a sigmoid
function [17], which is defined as

σ(lk, j) =
1

1+ e−lk, j
. (2)

In a sigmoid function, the probability σ(lk, j) of each
logit is calculated independently, in contrast to the
softmax function.

2.2 Temperature Scaling

The temperature scaling calibration method is a
method that is applied after the training process of an
DL model. For this, the logits are scaled with a tem-
perature value T > 0, i.e. a constant value. [10, 11]

The optimal temperature value T must be learned
using a separate calibration data set. According to
[10, 11], this method is very efficient and performs
better than other calibration methods in vision tasks.
The scaled logits can be calculated using the equation

lcal
k, j =

lk, j
T

, (3)

where lcal
k, j are the logits after applying temperature

scaling.

2.3 Mean Average Precision (mAP)

The mAP (mean Average Precision) is a metric for
determining the performance of a model. To calcu-
late this metric, the AP (average precision) value is
averaged across all classes K [18]:

mAP =
1
K

K

∑
i=1

APi . (4)

To determine the AP, two further values, recall and
precision, must first be determined, which can be de-
rived from the number of true positives (TP), false
positives (FP) and false negatives (FN). Further in-
formation can be found in [19]. For each confidence
threshold, a recall and a precision value is calculated
and displayed in a so-called recall-precision curve.
The approximated area under this curve then yields
the AP.

2.4 Reliability Diagram and Expected
Calibration Error (ECE)

Reliability diagrams can be used to visualize the cal-
ibration of a model graphically. [10, 11] Let i be a
sample consisting of the maximum confidence value
p̂i, the associated predicted label ŷi, and the true
class label yi. First, all samples i are divided into
M bins (B1, ...,BM) based on their confidence values
p̂i, where the interval size is 1/M. Bm contains the
set of samples that fall within the confidence interval
Im = (m−1

M , m
M ], where m ∈ 1, ...,M. According to this

classification, two metrics can be derived that are es-
sential for the visualization of the reliability diagram
as well as for the calculation of the expected calibra-
tion error. The accuracy acc(Bm), which is defined
as

acc(Bm) =
1

|Bm| ∑
i∈Bm

1(ŷi = yi) , (5)

determines the ratio of the number of samples that
have correctly predicted the label to the total num-
ber of samples (|Bm|) of the bin Bm. In contrast to
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accuracy, the confidence of Bm,

con f (Bm) =
1

|Bm| ∑
i∈Bm

p̂i , (6)

calculates the mean of all predicted confidence values
p̂i in the bin Bm.

In a reliability diagram, the accuracy and confi-
dence are then displayed for each bin Bm, where a
deviation from the diagonal f (x) = x symbolizes a
miss-calibration. [10, 12] In Figure 2, a blue bar
indicates the acc(Bm), while a red bar always indi-
cates a gap between acc(Bm) and con f (Bm), i.e., a
calibration error. For a perfectly calibrated model
is acc(Bm) = con f (Bm) for all m ∈ 1, ...,M. Since
the reliability diagram does not take into account the
number of samples per bin (|Bm|), a confidence his-
togram is also illustrated. This provides an overview
of the percentage of samples, based on the total num-
ber, in each bin Bm (see Figure 2).

The Expected Calibration Error (ECE) reflects a
value that quantitatively captures the calibration of the
model. To do this, the weighted mean of the differ-
ence between acc(Bm) and con f (Bm) is calculated,

ECE =
M

∑
m=1

|Bm|
n

∣∣acc(Bm)− con f (Bm)
∣∣ . (7)

Here, n is the total number of samples. For a perfectly
calibrated model, ECE = 0.

3 METHODOLOGY

The aim of this paper is to examine the calibration
of YOLO-World and to analyze the influence of the
calibration method temperature scaling while main-
taining the accuracy and performance of this model
(mAP).

The YOLO-World model used in this study is the
YOLO-Worldv2-L model (size: 1280), which was pre-
trained using the Objects365 [20] and GoldG [16]
datasets (see [17]). A maximum of 300 detections are
considered per image. For the evaluation, the LVIS
minival [16] dataset (a subset of LVIS [21]) with 5000
images and 1203 object classes is used for all inves-
tigations. Furthermore, the localization of the objects
is done using bounding boxes.

For the implementation, the ECE and the reliabil-
ity diagram of the non-calibrated YOLO-World are
calculated first. The number of bins is M = 10 for all
the investigations carried out in this work. For both
the ECE and the reliability diagram, the true positives
(TP) and false positives (FP) must be determined. The
basic process is shown in Figure 1 and consists of four

steps. In the first step, all ground truths (GT) of an
image are compared with each prediction, consisting
of a label, a confidence score and the bounding box.
Initially, all matches are considered that the correct la-
bel predicted and where the calculated IoU (Intersec-
tion over Union) value between GT and prediction is
above an IoU threshold. After that, they are sorted in
descending order based on their score (second step).
The matches with the highest score are selected first
and evaluated as TP, whereby each prediction may be
assigned to a maximum of one ground truth and each
ground truth to a maximum of one prediction. In this
way, the matches with the highest scores are preferred
and those with a lower score are evaluated later. This
is the third step. The remaining matches and predic-
tions are categorized as false positives (step four). As
a result, the true positives with the best scores and the
false positives can be determined, which are essential
for calculating the ECE (see equation 7). In this work,
the two thresholds IoU-T hreshold ∈ {0.5,0.75} are
considered, which are common threshold values for
determining the mAP (see [6]).

Figure 1: Process for determining the True Positives and
False Positives

Subsequently, two calibration data sets, Pascal
VOC [13] and Open Images V7 [14, 15], are used
to determine the optimal temperature value. Of the
Pascal VOC data set, only the validation data set is
used, which includes 20 object classes and 5823 im-
ages. Since the Open Images validation dataset con-
tains over 40,000 images, only a subset (8000 images)
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is used. These can be extracted in a deterministic way
using this Python code, whereby the total number of
object classes (601 in total) is not changed:

import fiftyone as fo
fo.zoo.load_zoo_dataset(

"open-images-v7",
split="validation",
label_types=["detections"],
max_samples=8000)

In accordance with [12], it is determined that T can
take on the values T ∈ {0.5+0.05 ·n | n ∈N, 0 ≤ n ≤
30}. The distance of 0.05 was chosen for reasons of
time and resources. For each of these T-values, the
ECE of the two calibration data sets can then be de-
termined and displayed graphically, with the scaling
according to equation 3. The minima (minimum T-
values) obtained in this way are then evaluated by the
LVIS minival data set. This makes it possible to see
whether the found minima also reduce the ECE of the
LVIS minival evaluation data set and whether there
is a correlation between the minima of the data sets.
By comparing the ECE values and the reliability dia-
grams before and after scaling with T , the effective-
ness of the temperature scaling procedure with regard
to the calibration of the YOLO-World model can be
derived.

4 RESULTS

4.1 Before Applying Temperature
Scaling

As described in Section 3, the calibration of the
YOLO-World model is first examined using the LVIS
minival evaluation dataset. The results in Table 1
show the values of the ECE and the mAP for different
IoU thresholds before temperature scaling. The ECE
has a size of 6.78% and 7.09% at IoU thresholds of
0.5 and 0.75, respectively.

Table 1: ECE and mAP for various IoU thresholds before
applying temperature scaling.

Metric Result [%]
mAP@[IoU=0.5:0.95] 34.6

mAP@[IoU=0.5] 45.5
mAP@[IoU=0.75] 37.8
ECE@[IoU=0.5] 6.78
ECE@[IoU=0.75] 7.09

Looking at the reliability diagram and the confi-
dence diagram (see Figure 2), it can be seen that about
75% of the predictions lie in the confidence range

of (0;0.1]. The majority of the predictions there-
fore have only a very low score (confidence value).
Furthermore, there is a deviation from the diagonal
in all bins. The accuracy (acc(Bm)), shown in blue,
differs significantly from the calculated confidence
(con f (Bm)), which can be seen from the red gap. This
indicates that the model tends to be overconfident in
its predictions in all bins.

Figure 2: Confidence histogram and reliability diagram for
an IoU threshold of 0.5 and T = 1.

4.2 After Applying Temperature
Scaling

To determine the optimal T-value, the temperature
scaling methode is applied to the calibration data sets
as described in section 3. At this point, it should
be mentioned that calibration methods such as tem-
perature scaling do not model either the data or the
model uncertainty of a model. [10] The results of
this investigation are illustrated in Figure 3. As it
can be seen, there are a total of 4 optimal T-values.
The temperature values of the two IoU thresholds (0.5
and 0.75, respectively) of the Open Images calibration
dataset are relatively close to each other (T = 0.65
and T = 0.6, respectively), while there are larger de-
viations for the Pascal VOC dataset (T = 0.85 and
T = 1.2, respectively).

Figure 3: A plot of the ECE as a function of T for the two
calibration data sets, Pascal VOC and Open Images, to de-
termine the minima for the IoU thresholds 0.5 and 0.75.
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The T-scores obtained in this way are then applied
to the LVIS minival evaluation dataset. The accu-
racy and performance of the model are retained af-
ter application, i.e. the mAP remains unchanged for
all T-values and IoU thresholds, as listed in Table 1.
However, Table 2 shows that the ECE is significantly
reduced, which assumes the most minimal value of
ECE = 2.31% and ECE = 2.66% at T = 0.6, respec-
tively. In general, the temperature values determined
by Open Images result in the lowest ECE. By using
the Pascal VOC, a T-value (T = 0.85) could be de-
termined, which also reduces the ECE, but also a T-
value (T = 1.2), which leads to an increase in ECE.
From this, it can be deduced that the Open Images
dataset is best suited for calibration using temperature
scaling under the given experimental conditions. One
possible reason could be the large number of 601 ob-
ject classes, whereas Pascal VOC comprises just 20,
which are more or less covered by the pre-training
dataset Objects365 of the YOLO-World model. A
temperature value of T = 1 represents the results
without applying the calibration method. Thus, tem-
perature scaling could reduce the calibration error
ECE by 4.47% and 4.43% for an IoU threshold of 0.5
and 0.75, respectively, in the best case (T = 0.6).

Table 2: Determined ECE values for various IoU thresholds
after applying temperature scaling.

T value IoU threshold ECE [%]
0.6 0.5 2.31
0.6 0.75 2.66

0.65 0.5 2.70
0.65 0.75 3.03
0.85 0.5 4.84
0.85 0.75 5.16

1 0.5 6.78
1 0.75 7.09

1.2 0.5 9.45
1.2 0.75 9.76

However, looking at the confidence or reliability
diagram in Figure 4 again after calibration, the first
thing to note is that now about 90% of the samples
lie in the confidence interval of (0;0.1]. The two dia-
grams are shown here for T = 0.6 and an IoU thresh-
old of 0.5. After applying temperature scaling, a sig-
nificant improvement in calibration within bin B1 can
be seen, as well as a slight improvement in bins B2
to B4. However, the model still tends to be overcon-
fident in its predictions, especially in bins B3 to B10,
despite a reduction in ECE. It should be noted that the
ECE is calculated from a weighted sum (see equation
7). Since about 90% of the samples are in the first
bin, this also has the greatest influence on the calcula-

tion of the ECE. In summary, it can be deduced from
this study that the proposed method could reduce the
ECE, but without reducing the overconfidence of the
model in all bins.

Figure 4: Confidence histogram and reliability diagram for
an IoU threshold of 0.5 and T = 0.6.

5 CONCLUSION

In this paper, the influence of the calibration method
temperature scaling on the OVD model YOLO-World
was investigated. The optimal T-value could be de-
termined using two calibration data sets, with the
Open Images data set proving to be more suitable.
It was shown that the model without the application
of temperature scaling has a calibration error (ECE)
of 6.78% and 7.0% for an IoU threshold of 0.5 and
0.75, respectively, and is overconfident in its predic-
tions. After application, the calibration error ECE is
reduced to a value of 2.31% (or 2.66%), while main-
taining the accuracy and performance of the model.
However, the overconfidence of the model could only
be reduced in a few bins in this way. Additional or dif-
ferent calibration approaches are necessary to further
improve the calibration of the model and thus mini-
mize overconfidence in the predictions. An accurate
modeling of the model uncertainty could also improve
the calibration.
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