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Abstract: This paper presents an Adaptive Event-Triggered nonlinear Control method suitable for Networked Control 

Systems (NCS) with optimized resource exploitation. The work aims to ensure Networked Control Systems 

performance with lowered network usage and adaptive nonuniform controller execution. The nonlinear 

control strategy utilizes a predefined sliding variable, defined by system states and a nonlinear switching 

function, to maintain system stability within a specified boundary. This stability boundary is governed by an 

adaptive triggering condition, which balances system performance against network data-rate constraints and 

resource optimization. The adaptive triggering condition dynamically determines triggering law based on the 

state's 
2l  metrics and auxiliary internal dynamics system. Internal dynamic systems guarantee the stability 

property of the NCS and leverage resource optimization for nonuniform control algorithm execution. The 

minimum inter-event time for a nonuniform approach is derived to address network limitations and controller 

computation burden. The effectiveness of the proposed NCS method is validated through experimental results 

on a real system with UDP communication protocol. 

1 INTRODUCTION 

Sampled data systems have been a subject of research 

for many decades. When sampling and controller 

update occurs periodically, a well-established theory 

exists for analyzing stability and designing control 

strategies for such systems [1]-[4]. This mature 

theoretical foundation and stability analysis of the 

time-delayed system has significantly influenced the 

development of Networked Control Systems (NCS) 

[5]-[7]. However, in practical applications, the 

intervals between consecutive sampling instants in an 

NCS are typically time-varying rather than fixed. For 

instance, when an NCS experiences packet dropouts 

or denial-of-service (DoS) attacks, it can be modeled 

as a sampled data system with nonuniform sampling, 

also referred to as aperiodic or variable sampling. To 

efficiently manage limited network resources, the 

update frequency of sensors or controller units should 

be deliberately reduced. Many NCS components such 

as sensors, actuators, and embedded systems are 

battery-powered, and periodic activity of signal 

sampling with minimal variance from the last 

acquisition and controller updates can lead to 

unnecessary energy consumption and network 

resource usage. In such cases, nonuniform controller 

paradigms emerge as a promising strategy to optimize 

resource usage by activating sampling only when 

significant changes occur. The nonuniform sampling 

controller design for NCS is a viable solution for 

reliable operation. In the last two decades, many 

scholars have dealt with the nonuniform sampling 

approach for linear systems, where the stability is 

analyzed based on the time-delayed system [8],[9]. 

The analysis estimates the NCS's robustness and 

optimal behavior in network imperfection, where the 

controller execution remains under time triggering 

policy. The viable of a nonuniform sampling system 

is an Event-triggering approach (ET). ET is 

prevalently employed to act when the controller 

update policy is fulfilled [10]. The ET does not 

sample the system at uniform time intervals but 

instead executes actions based on a predefined 

triggering rule [11],[12]. While constant periodicity 

is disregarded, it allows for computational relaxation. 

However, it must still ensure the closed-loop 

properties of stability, state convergence, and time 

performance.  

The presented research deals with designing 

adaptive Variable Structure Control (VSC) in the 
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form of ET paradigms. A well-known approach of 

VSC is Sliding Mode Control (SMC), which ensures 

robustness and fast response by forcing system 

trajectories onto a predefined specified surface [13]. 

The main future of an SMC is a discontinuous control 

action concerning the preselected sliding variable, 

where the control alternates between different 

structures to maintain the system's trajectory on the 

sliding surface. Fast switching behavior makes 

sliding mode control well-suited for complex and 

uncertain systems [14]. While SMC excels at 

managing uncertainties and disturbances, its main 

drawback is the nonlinear output, characterized by 

high-frequency oscillations around the sliding 

manifold [15]. These oscillations are undesirable as 

they can lead to increased wear on the physical 

system, unwanted vibrations, excessive heat 

dissipation, and, in NCS, excessive network usage. 

SMC with ET approach relaxes latter conditions and 

improves controller performance. The primary 

benefit of this approach is incorporating an adaptive 

triggering rule that leverages the characteristics of 

relative triggering policies [16]. Adaptation of the 

triggering rule is based on the predefined desired 

value, where the stability of NCS-SMC systems is 

ensured with absolute convergence to the sliding 

surface with an adaptive triggering rule.  

In the SMC mode, when the state trajectory is 

far from the sliding surface, the switching function 

remains unchanged until the trajectory crosses the 

sliding surface. In such a case, theoretically, no 

update is needed. When the trajectory is in the 

vicinity of the sliding variable, the practical sliding 

mode is introduced to ensure system stability 

[17],[18]. The practical sliding mode ensures the 

absolute boundness of the state trajectory, where the 

bandwidth is proportional to the triggering condition. 

With an adaptive triggering rule, the execution and 

network usage can efficiently be alleviated. The 

efficiency of the proposed approach is examined in 

the real NCS with the positioning system with a servo 

drive. 

The structure of the paper is as follows: Section 2 

presents the problem formulation and state 

transformation with error variables introduced into 

the system. The SMC design with an adaptive 

triggering approach is presented in Section 3. Section 

4 introduces the ET approach for two previously 

designed SMC controllers. Two different triggering 

rules are suggested and derived lower nonzero TI 

values are presented. Section 5 presents the results 

and comparisons of the TT and ET strategies. 

Section 6. is the conclusion of the paper. 

2 PRELIMINARIES 

The single-input, single-output nonlinear system is 

given in the following class, 

The functions ( )f x ,
1( )g x ,

2 ( )g x , ( )h x are Lipschitz 

with respect to its arguments.   2

1 2( ) ( ) ( )
T

x t x t x t=  is 

a state vector and ( )u t    is the input variable. Due 

to the nonlinearity of (1), the parameters 

( ) 2:f x → and ( ) ( ) 2

1 2, :g x g x →   depend on 

the operation point of (1). The matched disturbance is 

defined as :d → . All the parameters are assumed 

to be bounded such as, ( )f x A ,

,min ,max( ) , 1,2i i iB g x B i  = , and d D , where 

,min ,max, ,i iA B B and D  are known positive constants. 

The state transformation is made by introducing new 

error variables, 

11

22

d

d

x xe
e

x xe

−  
= =   

−   &
, (2) 

where dx and dx&   are the desired value and its time 

derivative, respectively and holds   2

1 2

T
e e e=  . 

The new transformed system is, 

1( ) ( ) ( )

( )

de f x e g x u d m x x

y h x e

= − + +

=

%&
, (3) 

where   2T

d d dx x x = & && is the time derivative of the 

desired value dx . The disturbance 
2 ( )d g x d= −% is 

assumed to be bounded 
dd  % . The boundary d is a 

positive value and holds dD  . 

3 VSC CONTROLLER DESIGN 

WITH ADAPTIVE 

TRIGGERING MECHANISM 

The VSC controller under SMC paradigms is 

designed for the given system in (1). The reaching 

phase of the SMC is developed regarding the 

preselected sliding function given as,  

1 2( ) ( ) ( )

( )

x f x x g x u g x d

y h x x

= + +

=

&
(1)
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 2 : 0S s s ce = = , (4) 

where is  1 1c c= . The derivative of the function (4) 

with respect to time is, 

( ) ( ) ( )

1 1 2

2 1 1 2

,

,

( ) ( ) ,d d

s c e e

s ce

s f x e g x u c e t d t x f x x

= +

=

= − − + + + +

& & &

& &

%& && &

.
(5) 

The SMC controller is designed to lead the 

variable s  to (4), with respect to disturbance and 

uncertainty boundary d . 

( ) ( )1 1 1 2 21

1

sgn
( )

d d

d

k e c a k e s
u g x

x ax





−
 + − + + 

=   + + 

 

&& &
, 

(6) 

where  1 2k k k= , 2k are linear feedback gains and

holds 0k  . The gain values will be discussed in 

relation to ET. The controller u  for the system in (3) 

is designed with an additional feedback loop in term 

1 1k e , which does not directly influence the system's 

stability but has a significant effect on the tracking 

capabilities of the NCS in ET mode. For the static 

feedback in (6), the nominal values of the functions 

are used ( ) , ( ) , 1,2i if x a g x b i= = =% % .

3.1 Event-Triggered VSC 

In the latter section, the VSC-SMC controller was 

derived for the continuous system, as given in (3). 

The VSC controller will be implemented in discrete 

form, where the Backward-Euler and Backward-

Differencing methods are mainly used in real-time 

applications. For the controller (6), instead of classic 

fixed update time 
tT , the ET approach introduces 

interevent time 
iT , which is defined by triggering 

rules and system dynamics. The 
iT is defined with 

two successive updates defined as  1 0i i i i
T t t



+ =
= − .

When the controller is updated at 
it , the last output

value ( )iu t  is held until the new update is required

1it +
and holds for all  )1,i it t t + . The induced error 

between the last update and the current value due to 

the discrete implementation is defined as 

( ) ( ) ( )it e t e t = − ,  1 2( ) ( ) ( )
T

t t t  = . At the time of update,

the error is ( ) 0t = , where ( ) ( ) ( ) 0i it e t e t = − =  holds. 

The error variable is crucial by determining the 

triggering condition of ET. The error variable is 

crucial by determining the triggering condition of ET. 

The ideal sliding mode is possible only in theory, 

where the manifold 0s =  is ensured with continuous 

operation of the ( )sgn s  function. In practice, this 

cannot be achieved due to the discrete operation of 

the SMC controller. The variable remains bounded, 

depending on the selected sampling time
sT . It is 

similar; in ET, the system trajectory remains bounded 

by the preselected triggering conditions, which define 

a practical sliding mode [19]. The practical sliding 

mode occurs if a finite time  )1 ,it t  exists for any

given constant   when the sliding variable s reaches 

the vicinity of 0s = and remains there for all time 

1t t . The sliding variable is bounded with 

,s +   . The triggering rule and nonzero, 

minimum positive inter-event time can be defined 

throughout the variable evolution ( )t between two 

successive updates. The controller in (6) with 

nominal parameters at the given update time  
it t=    is 

given as, 

( )
( ) ( ) ( ) ( )( )

( ) ( )

1 1 1 2 21

1

sgni i i

i

d i d i

k e t c a k e t s t
u t b

x t ax t


−
 + − + +
 =
 + + && &

. 
(7) 

Theorem 1: Consider system (3) with the sliding 

manifold (4) and controller (6). The parameter    is 

given such that, 

( ) ( )1 2 2 1c a k k c t  − +    , (8) 

for all 0t  , where   , 0  , and 2 0k  , 

1 1 2k c k=  . The event triggering is established if the 

controller gain is selected as, 

d  +  , (9) 

Proof: The stability analysis is performed with the 

Laypunov function ( ) ( )
21

2
V t s t= . Substituting (5) 

to 

( )( )1 2 1 d dV ss s c a e b u d x ax= = − − + + +%& & && & , (10) 

and respect to the time derivative (10) gives, 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )
( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )

1 2 1

1 1 1 2 21

1 2 1 1

,

sgn ,

i d d

i i

i d i d i

d d

V s t c a e t g u t d t x t ax t

k e t c a k e t
c a e t b b

s t x t ax ts t

d t x t ax t



−

= − − + + +

   + − + 
   − −

   + + +=    
 + + + 

%& && &

&& &

% && &
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )

( )
( ) ( )

( ) ( ) ( )

( ) ( )

( )( ) ( )

1 2 2 1 1 2 2

2 1 1 2

1 2 1 1

2 1 1 1 2

2

sgn ,

1

, ,
1

sgn

i i i i

i i

i i

i

s t c a e t e t k e t k e t s t d t

e t c e t k

c a t k c
e t e ts t k c k

k

s t d t







= − − − − − +

  + + − 
  

− −   − 
 += =   −   

 
− + 

%

%

( )
( ) ( )

( ) ( ) ( )

( ) ( )( )

( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )

2 1 1 2

1 2

2 1 1

1 2 2 2 1 1

1

,

sgn

sgn ,

i i

i i

i

i i i

e t c e t k
c a t

e t c e ts t

s t d t

s t c a t k e t c e t s t d t





 

  + + − 
  − −

  + =  
 
 − + 

= − − + − +

%

%

 

With the introduced sliding variable error 

( ) ( ) ( )s it s t s t = − , the term ( ) ( )2 1 1 ( )i i ie t c e t s t+ =

gives ( ) ( ) ( )2 1 1 ( )i i se t c e t s t t+ = − . Substituting the 

relation into a stability analysis gives, 

( )
( ) ( ) ( )( )

( )( ) ( )

( )
( ) ( ) ( )

( )( ) ( )

( )
( ) ( ) ( ) ( )( )

( )( ) ( )

( )
( ) ( ) ( )

( )( ) ( )

1 2 2

1 2 2 2

1 2 2 2 2 1 1

1 2 2 2 1 1 2

2

2

( )
,

sgn

( )
,

sgn

( )
,

sgn

( )
,

sgn

s

i

s

i

i

i

c a t k s t t
V s t

s t d t

c a t k s t k t
s t

s t d t

c a t k s t k t c t
s t

s t d t

c a k t k c t k s t
s t

s t d t

s k s s s

 



 



  



 



 

 − − −
 =
 − + 

− − + 
 =
 − + 

 − − + +
 =
 − + 

− + + − 
 =
 − + 

 − − +

&
%

%

%

%

( ) 2

2

,

0,

d

ds k s 



 − − − − 

where 
d  + stability s is guaranteed for a long 

time )1,i it t t +  . The stability condition 0V & is 

ensured if ( )( ) ( )( )sgn sgnis t s t= , otherwise boundary 

is defined as, 

( ) ( ) ( ) ( )

( )
1

1 2 2 1

,

,

i i

l

s t s t ce t ce t

c c a k k c k 
−

− = −

 − + =  
%

, 
(11) 

where   ,l le s ce k  =  =  % and the triggering 

rule (8) is defined as ( ) ( )
1

1 2 2 1t c a k k c 
−

  − +  
. The 

stability in the region l is defined by the Lyapunov 

function ( ) ( )
2

1

1

2
V t e t= , where holds 

2 1 1e s c e= − . The 

trajectory is confined to the region 
1

1 1 le c k 
−

 % . 

3.2 Adaptive ET approach 

The stability analysis and the static triggering law are 

defined in (8). The adaptation algorithm  for 

parameter   can serve as an internal mechanism to 

adjust parameters  in specific regions defined as 

,      , where holds 0  , and   . Adaptive 

triggering is introduced with triggering law, 

, 0, 0e     +   , (12) 

where   is an internal parameter and can be defined 

as, 

( )e  = − + −& , (13) 

and holds 
0 0 0(0) , , , ,     +=   . System in 

(13) is a strictly positive function. The adaptation

algorithm acts as a mechanic that converges to zero if

the static law   is employed. Take, for example, the

condition when triggering has not occurred.

e   + , (14) 

and holds e −  − . If we rewite the system given 

in (13), we get, 

( )

( )

e  

 

 

= − + −

= − −

= − +

&

, (15) 

where it holds that the derivative of the (13) is a strict 

negative function. The stability analysis of ET with 

an adaptation system (13) and (10) is given with the 

Lyapunov function,  

AV V = + , (16) 

and the derivative of 
AV is equal to, 

( )

( )2

2 0

A

A d

V V

V s

k s



 

 

= +

= − − −

− − + 

& & &

& . (17) 

The system's stability with the adaptive system 

(13) is ensured.

4 NETWORKED CONTROL 

SYSTEM  

The structure of the networked control system is 

illustrated in Figure 1. The controller algorithm runs 

on a networked computer, while the triggering 

rule (12) is evaluated on the plant. It is assumed that 

the plant is equipped with a real-time system that has 

computational capabilities and communication 
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interfaces based on the LwIP stack. The real-time 

system handles simple tasks such as evaluating 

triggering conditions, signal conditioning, and 

managing communication. The User Datagram 

Protocol (UDP) is used for the given adaptive ET 

implementation for data transmission. Data packets 

are transmitted across multiple network hops, where 

delays and packet loss may occur. Packet loss in the 

network is modeled as a loss delay, with the 

maximum allowable Round Trip Time (RTT) serving 

as a threshold for packet loss detection. On the plant 

side, a dedicated packet-loss timer is employed. If the 

watchdog timer expires, the system requests new data 

from the server to maintain reliable communication. 

On the server side, the Python server is employed.   

PlantController
u xexd

-

Network

Network

SERVER

Trigger

ARM STM32F7

Figure 1: NCS configuration based on adaptive triggering 

approach. 

Regarding the NCS operation and discrete 

implementation of the ET controller, ensuring that the 

inter-event time will not tend to the Zeno phenomena 

is necessary [20],[21]. The inter-event time has to be 

a lower positive bound, where the lower bound does 

not violate network performance. The estimated 

network performance with the RTT parameter is 

presented in Figure 2. The average RTT is 

2.7RTT ms , with maximal RTT deviance

0.212RTT ms = .   

Figure 2: Network performance with RTT parameter. 

The inter-event time 
iT is determined based on the 

error analysis between two consecutive sampled 

states given as, 

( ) ( ) 1 1 1

2 2 2

( ) ( ) ( )

( ) ( ) ( )

n

n

t t td d d d
e t e t

t t tdt dt dt dt

  

  

−   
 = =   

−   

. (18)

where is ( ) 0nt = , according to the last update, which 

follows, 

( )

( )

( ) ( ) ( )

( )( ) ( ) ( )

( )

( )

1

1 2

1

2

1 1 1 2 2

0

0

( )0 1 0 0

( )0 0 1
,

0

1 sgn

( ) ( )

( ) ( ) .

l

i i

i d i d i

l i d

l i d

k
M

c a k

e t
d t

e tad
t

k e t c a k e tdt

s t x t ax t

f e t M e t P x

f t f M e t P x







 

= −
− +

    
+ −    

−      
   + − +    

   + + +  

 + + +

= + + + +

%

&& &

The solution of the differential equation is, 

( )
( ) ( )( )1 ( )

1l
l i f T

d

f M e t
t f e

P x




−
 + +
  −
 + 

. 

Regarding (8) holds, 

( )
( )

( )
1 1

1 2 2 1

( )
1l

l i f T

d

f M e t
c a k k c f e

P x




− −
 + +
  − +  = −   + 

The inter-event time is equal to, 

( )
( )

1

1 2 2 1

ln 1 .
( )

l

l i

d

f
T f

f M e t
c a k k c

P x





−

 
 
 

 + 
 + 
  − +      + +  

(19) 

From the derived condition (19), it is obvious that 

the parameter 
iT is positively lower bound and 

depends on the adaptation system  , triggering 

condition  , and controller parameters 1, ,k 2k . The 

selection of the parameters depends on possible 

network imperfection, DoS, and package drops. All 

the network uncertainty is modeled as a delayed 

system [5],[9],[21], where selection of the triggering 

law can be determined in the way to compensate such 

delays and preserve NCS performance [21].  
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5 EXPERIMENTAL RESULTS 

For the experimental system, the positioning system 

with parameters 0.32a = , 1,2 1.21b =  and state 

variables 
1x -angle  deg , 

2x -velocity  RPM is 

presented in Figure 3. The real-time experiments 

were performed on the ARM® Cortex®-M4 based 

STM32F7xx MCU with Digital-Signal Processing 

and Floating-Point Unit (DSP and FPU), operating 

frequency of 180MHz and implemented LwIP stack. 

The motor was driven with an NXP-MC33926 H-

controller and pulse-width modulation-PWM 

technique, with a carrier frequency of 10kHz. The 

preselected sampling time of the TT implementation 

is 1ms. System parameters are;  8.56 3.35k =

1 9.1c = , 22.5 = , 0.15 = , 2.93 = , 0.89= and 

( )0 0max / 3dx x = − . 

The NCS performance is evaluated by given 

performance indices,  

 2

1

1

1
, , ,

sn

n

ks

RMS n n x s u
n =

=  , (20) 

where 
sn is the number of evaluated samples.

Efficiency is measured by comparing three types of 

VSC controllers. The first controller is implemented 

based on the classic time-triggering technique, and its 

states are marked as TT. The second version is 

implemented based on a fixed ET technique, and the 

system states are marked as ET. The third version is 

implemented with an adaptive ET approach and is 

marked as AET. 

Figure 3: Real-time NCS system. 

The results of adaptive ET in NCS structure are 

presented in the following Figure 4 – Figure 7. 

Performance indices are presented in Table 1. 

Figure 4: State variables; 
 1 degx

,  2x RPM
,  degdx

position, velocity, and desired value, respectively. 
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Figure 5: Controller output and sliding variable. 

Figure 6: Triggering boundary   and update error  . 

Figure 7: Controller update flags. 

Table 1: Performance indices of different controller implementations. 

Cont RMSx RMSu RMSs minTi maxTi meanTi Flag 

TT 206.7 88.07 182.9 0.001 0.001 0.001 4e4 

ET 206.9 88.23 184.5 0.001 0.84 0.09 993 

DET 207.1 90.1 201.3 0.025 5.56 1.17 83 
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6 CONCLUSIONS 

This paper introduces the implementation of an 

adaptive event-triggered nonlinear controller for 

networked control systems. The proposed approach 

offers a viable alternative to time-triggered execution 

and ET with a fixed triggering bound, making it 

particularly advantageous for NCS applications with 

data rate limitations. This method enhances usage 

efficiency in resource-constrained environments by 

incorporating network uncertainty directly into the 

controller design, with a proper selection of the 

controller parameters,  triggering rule, and adaptation 

system. Furthermore, this work is a valuable 

foundation for research in different NCS 

configurations, such as multi-agent systems, 

distributed control, and task scheduling in embedded 

systems. The adaptation system can be managed in 

different scenarios based on the desired values' 

properties and the state trajectory's vicinity to the 

sliding manifold. Such an approach will be beneficial 

for the system with fast varying desired values.  
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